Dissolved solids in basin-fill aquifers and streams in the southwestern United States
Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.
2007-01-01
The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.
NASA Astrophysics Data System (ADS)
Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.
1999-12-01
The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.
Gazetteer of hydrologic characteristics of streams in Massachusetts; Housatonic River basin
Wandle, S.W.; Lippert, R.G.
1984-01-01
The Housatonic River basin includes streams that drain 504 square miles in western Massachusetts and 30.5 square miles in eastern New York. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics for four gaged streams were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 52 partial-record sites, and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are provided for selected gaging stations. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)
Urbanization causes stream degradation in various ways, but perhaps the most extreme example is the burial of streams in underground storm drains to facilitate above ground development or to promote the rapid conveyance of stormwater. Stream burial is extensive in urban basins (...
The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.
Hotton, Veronica K; Sutherland, Ross A
2016-03-01
The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.
Von Guerard, Paul; McKnight, Diane M.; Harnish, R.A.; Gartner, J.W.; Andrews, E.D.
1995-01-01
During the 1990-91 and 1991-92 field seasons in Antarctica, streamflow, water-temperature, and specific-conductance data were collected on the major streams draining into Lake Fryxell. Lake Fryxell is a permanently ice-covered, closed-basin lake with 13 tributary streams. Continuous streamflow data were collected at eight sites, and periodic streamflow measurements were made at three sites. Continuous water-temperature and specific- conductance data were collected at seven sites, and periodic water-temperature and specific-conductance data were collected at all sites. Streamflow for all streams measured ranged from 0 to 0.651 cubic meter per second. Water temperatures for all streams measured ranged from 0 to 14.3 degrees Celsius. Specific conductance for all streams measured ranged from 11 to 491 microsiemens per centimeter at 25 degrees Celsius. It is probable that stream- flow in the Lake Fryxell Basin during 1990-92 was greater than average. Examination of the 22-year streamflow record in the Onyx River in the Wright Valley revealed that in 1990 streamflow began earlier than for any previous year recorded and that the peak streamflow of record was exceeded. Similar high-flow conditions occurred during the 1991-92 field season. Thus, the data collected on streams draining into Lake Fryxell during 1990-92 are representative of greater than average stream- flow conditions.
Land, Larry F.; Shipp, Allison A.
1996-01-01
Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.
Low-flow characteristics of streams in the Puget Sound region, Washington
Hidaka, F.T.
1973-01-01
Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by relatively impermeable igneous, sedimentary, and metamorphic rocks or by relatively impermeable glacial till. Melt water from snow and ice influences the index for streams which originate at glaciers, and result in fairly large indexes--0.25 or greater. The slope index is influenced principally by the character of the geologic materials that underlie the basin. The largest slope indexes were computed for small streams that drain areas underlain by compact glacial till or consolidated sedimentary rocks. In contrast, lowland streams that flow through areas underlain by unconsolidated alluvia and glacial deposits have the smallest indexes. Small slope indexes also are characteristic of glacial streams and show the moderating effect of the snow and ice storage in the high mountain basins. The spacing indexes are similar to the slope indexes in that they are affected by the character of the geologic materials underlying a basin. The largest spacing indexes are characteristic of small streams whose basins are underlain by glacial till or by consolidated sedimentary rocks. The smallest indexes were computed for some lowland streams draining areas underlain by permeable glacial and alluvial sediments. The indexes do not appear to have a definite relation to each other. The low-flow-yield indexes are not related to either the slope or spacing indexes because snow and ice storage has a great influence on the low-flow-yield index, while the character of the geologic materials influences the slope and spacing indexes. A relation exists between the slope and spacing indexes but many anomalies occur that cannot be explained by the geology of the basins.
Weaver, J.C.; Pope, B.F.
2001-01-01
An understanding of the magnitude and frequency of low-flow discharges is an important part of evaluating surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized in this report for 67 continuous-record gaging stations and 121 partial-record measuring sites in the Cape Fear River Basin of North Carolina. Records of discharge collected through the 1998 water year were used in the analyses. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, similar to 7Q10 discharge except that only flow during November through March is considered; and (5) 7Q2 low-flow discharge. Low-flow characteristics in the Cape Fear River Basin vary widely in response to changes in geology and soil types. The area of the basin with the lowest potentials for sustained base flows is underlain by the Triassic basin in parts of Durham, Wake, and Chatham Counties. Typically, these soils are derived from basalt and fine-grained sedimentary rocks that allow very little infiltration of water into the shallow aquifers for storage and later release to streams during periods of base flow. The area of the basin with the highest base flows is the Sand Hills region in parts of Moore, Harnett, Hoke, and Cumberland Counties. Streams in the Sand Hills have the highest unit low flows in the study area as well as in much of North Carolina. Well-drained sandy soils in combination with higher topographic relief relative to other areas in the Coastal Plain contribute to the occurrence of high potentials for sustained base flows. A number of sites in the upper part of the Cape Fear River Basin underlain by the Carolina Slate Belt and Triassic basin, as well many sites in lower areas of the Coastal Plain (particularly the Northeast Cape Fear River Basin), have zero or minimal (defined as less than 0.05 cubic foot per second) 7Q10 discharges. In this area, the poorly sustained base flows are reflective of either (1) thin soils that have very little storage of water to sustain streams during base-flow periods (Carolina Slate Belt), or (2) soils having very low infiltration rates (Triassic basin). As a result, there is insufficient water stored in the surficial aquifers for release to streams during extended dry periods. Within the part of the study area underlain by the Carolina Slate Belt, streams draining basins 5 square miles or less may have zero or minimal 7Q10 discharges. The part of the study area underlain by the Triassic basin has a higher drainage-area threshold at 35 square miles, below which streams will likely have zero or minimal 7Q10 discharges. Occurrences of zero or minimal 7Q10 discharges in the Coastal Plain were noted, though on a more widespread basis. In this area, low flows are more likely affected by the presence of poorly drained soils in combination with very low topographic relief relative to other areas in the Coastal Plain, particularly the Sand Hills. In eastern Harnett County and northeastern Cumberland County, basins with less than 3 square miles may be prone to having zero or minimal 7Q10 discharges. Soils in this area have been described as a mixture of sandy and clay soils. In the Northeast Cape Fear River Basin, particularly on the western side of the river, streams draining less than 8 square miles may have zero or minimal 7Q10 discharges. The poorly drained clay soils along with very little topographic relief results in the low potential for sustained base flows in this part of the study area. Drainage area and low-flow discharge profiles are presented for 13 streams in the Cape Fear River Basin; these profiles reflect a wide range in basin size, characteristics, and streamflow conditions. In addition to the Haw River and Cape Fear River main stem, pro
Glacier-derived August runoff in northwest Montana
Clark, Adam; Harper, Joel T.; Fagre, Daniel B.
2015-01-01
The second largest concentration of glaciers in the U.S. Rocky Mountains is located in Glacier National Park (GNP), Montana. The total glacier-covered area in this region decreased by ∼35% over the past 50 years, which has raised substantial concern about the loss of the water derived from glaciers during the summer. We used an innovative weather station design to collect in situ measurements on five remote glaciers, which are used to parameterize a regional glacier melt model. This model offered a first-order estimate of the summer meltwater production by glaciers. We find, during the normally dry month of August, glaciers in the region produce approximately 25 × 106 m3 of potential runoff. We then estimated the glacier runoff component in five gaged streams sourced from GNP basins containing glaciers. Glacier-melt contributions range from 5% in a basin only 0.12% glacierized to >90% in a basin 28.5% glacierized. Glacier loss would likely lead to lower discharges and warmer temperatures in streams draining basins >20% glacier-covered. Lower flows could even be expected in streams draining basins as little as 1.4% glacierized if glaciers were to disappear.
NASA Astrophysics Data System (ADS)
Porter, S.
2001-12-01
Chemical, biological, and habitat conditions were characterized in 70 streams in the upper Mississippi River basin during August 1997, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study was designed to evaluate algal and macroinvertebrate responses to high agricultural intensity in relation to nonpoint sources of nutrients and herbicides, characteristics of basin soils, wooded-riparian vegetation, and hydrology. Concentrations and forms of nutrients, herbicides and their metabolites, and seston constituents varied significantly with regional differences in soil properties, ground and surface water relations, density of riparian trees, and precedent rainfall-runoff conditions. Dissolved nitrate concentrations were relatively low in streams with high algal productivity; however, nitrate concentrations increased with basin water yield, which was associated with the regional distribution of rainfall during the month prior to the study. Stream productivity and respiration were positively correlated with seston (phytoplankton) chlorophyll concentrations, which were significantly larger in streams in areas with poorly drained soils and low riparian-tree density. Concentrations of dissolved phosphorus were low in streams where periphyton biomass was high. Periphyton biomass was relatively larger in streams with clear water and low abundance of macroinvertebrates that consume algae. Periphyton biomass decreased rapidly with modest increases in the abundance of scrapers such as snails and certain mayfly taxa. Differences in dissolved oxygen, organic carbon, stream velocity, and precedent hydrologic conditions explained much of the variance in macroinvertebrate community structure. The overall number of macroinvertebrate species and number of mayfly, caddisfly, and stonefly (EPT) taxa that are sensitive to organic enrichment were largest in streams with moderate periphyton biomass, in areas with moderately-well drained soils and high riparian-tree density. Regional differences in hydrologic processes can account for significant differences or gradients in chemical and biological conditions in streams that drain a relatively homogeneous landscape.
Sediment transport by streams in the Walla Walla basin, Washington and Oregon, July 1962-June 1965
Mapes, B.E.
1969-01-01
The Walla Walla River basin covers about 1,760 square miles in southeastern Washington and northeastern Oregon. From the 6,000-foot crest of the Blue Mountains on the east to the 340-foot altitude of Lake Wallula (Columbia River) on the west, the basin is drained by the Touchet River and Dry Creek, entirely within Washington, and by Mill Creek, North and South Forks Walla Walla River, and Pine Creek-Dry Creek, which all head in Oregon. The central lowland of the basin is bordered on the north by Eureka Flat, Touchet slope, and Skyrocket Hills, on the east by the Blue Mountains, and on the south by the Horse Heaven Hills. The basin is underlain by basalt of the Columbia River Group, which .is the only consolidated rock to crop out in the region. Various unconsolidated fluviatile, lacustrine, and eolian sediments cover the basalt. In the western part of the basin the basalt is overlain by lacustrine deposits of silt and sand which in places are mantled by varying thicknesses of loessal deposits. In the northern and central parts of the basin the loess is at least 100 feet thick. The mountainous eastern part of the basin is underlain at shallow depth by basalt which has a residual soil mantle weathered from the rock. The slopes of the mountains are characterized by alluvial fans and deeply cut stream valleys ,filled with alluvium of sand, gravel, and cobbles. Average annual precipitation in the basin ranges from less than 10 inches in the desert-like areas of the west to more than 45 inches in the timbered mountains of the east; 65 percent of the precipitation occurs from October through March. The average runoff from the basin is about 4.8 inches per year. Most of the runoff occurs during late winter and early spring. Exceptionally high runoff generally results from rainfall and rapid melting of snow on partially frozen ground. During the study period, July 1964-June 1965, average annual sediment yields in the basin ranged from 420 tons per square mile in the mountainous area to more than 4,000 tons per square mile in the extensively cultivated northern and central parts of the basin, which are drained by the Touchet River and Dry Creek. The Touchet River and Dry Creek transported approximately 80 percent of the total sediment load discharged from the Walla Walla River basin. The highest concentrations were contributed by the loessal deposits in the Dry Creek drainage. Two runoff events resulting from rain and snowmelt on partially frozen ground produced 76 percent of the suspended sediment discharged from the basin during the study period. The maximum concentration measured, 316,000 milligrams per liter, was recorded for Dry Creek at Lowden on December 23. 1964. Daily suspended-sediment concentrations for the Walla Walla River near Touchet exceeded 700 milligrams per liter about 10 percent of the time, and 14,000 milligrams per liter about 1 percent of the time. The discharge-weighted mean concentration for the 3-year period of study was 7,000 milligrams per liter. Silt predominates in the suspended sediment transported by all streams in the basin. On the average, sediment from streams draining the Blue Mountains was composed of 20 percent sand, 60 percent silt, and 20 percent clay ; for streams draining the Blue Mountains slope-Horse Heaven Hills area, the percentages are 9, 65, and 26, respectively ; and for those draining the Skyrocket Hills-Touchet slope, the percentages are 5, 75, and 20, respectively. The bedload in the mountain and upland streams was estimated to be about 5-12 percent as much as the suspended load. For the Walla Walla River and its tributaries in the lower basin area, the bedload was estimated to be only about 2-8 percent as much as the suspended load.
Occurrence and transport of acetochlor in streams of the Mississippi River Basin
Clark, G.M.; Goolsby, D.A.
1999-01-01
The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6- methylphenyl) acetamide] was first used on corn (Zea mays L.) in the USA during the growing season of 1994. By 1996, it was the third most heavily used corn herbicide in the midwestern USA. During the growing season of 1997, 78% of 375 samples collected at 32 stream sites in the Mississippi River Basin contained detectable concentrations of acetochlor. However, concentrations in only 2% of the samples exceeded 2 ??g/L, the maximum annual average concentration allowable in public water supplies derived primarily from surface water. The largest acetochlor concentrations were detected in streams draining basins in parts of Illinois, Indiana, and Iowa. The median concentration of acetochlor in streams was about 10% that of atrazine (6- chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine), about 25% that of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide], about 50% that of cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5- triazin-2-yl]amino]-2-methylpropionitrile], and about threefold that of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide]. Load estimates indicate that, during the growing season of 1997, agricultural subbasins draining areas of Illinois, Indiana, and Iowa contributed about 37000 kg, or 74%, of the 50 000 kg of acetochlor measured in streams of the Mississippi River Basin.
Thomas A. Abrahamsen
1999-01-01
Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...
Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.
2012-01-01
This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables automatic delineation of a simulation basin of any size (area) and having any level of stream-network complexity. WATER then automatically identifies the presence of sinkholes catchments within the simulation basin boundaries; extracts and compiles the necessary climatic, topographic, and basin characteristics datasets; and runs the SDP-TOPMODEL approach to estimate daily mean discharges (streamflow).
Robbins, Clarence H.
1982-01-01
Peak stages, discharges, and rainfall recorded at 22 gaging stations on streams draining small (less than 25 mi super 2) urbanized basins across Tennessee are presented. The gaged basins are in 17 different municipalities with populations ranging between 5,000 and 100,000. The report gives a description of each gaged site along with a data sheet on which peak stages, discharges, and corresponding rainfall are listed. The description gives the station location, type of gage, basin characteristics, and general remarks. (USGS)
1993-04-16
Utah and Juab counties, centered approximately 5 miles northwest of the town of Nephi in Juab County, in the Basin and Range portion of the...3.2 to 3.6 of this EA. Permanent streams are rare in the SSA; no stream leaves the SSA because each of the valleys forms a closed basin . The northern...the SSA is differentiated by distinct topographical basins . All runoff in the northern portion of the SSA drains into Utah Lake. Runoff in the
Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs
NASA Astrophysics Data System (ADS)
Samson-Do, Myriam; St-Hilaire, André
2015-04-01
Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.
Rittmaster, R.L.; Shanley, J.B.
1995-01-01
The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.
NASA Astrophysics Data System (ADS)
Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.
2012-11-01
The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.
Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams
Stuckey, Marla H.; Reed, Lloyd A.
2000-01-01
Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.
Dynamic river networks as the context for evaluating riparian influence on river basin solute export
Many studies have examined the influence of riparian areas on nitrogen as water drains from hillslopes and through riparian zones at the stream reach scale. Most of these studies have been conducted along relatively small streams. However, water quality concerns typically deal wi...
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.
2014-12-01
Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.
Wolff, Reuben H.; Wong, Michael F.
2008-01-01
Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were analyzed to determine concentrations and loads at a particular point in time. Flow-weighted time composite samples from the automated point samplers were analyzed to determine mean constituent concentrations or loads during a storm. Chemical analysis of individual grab samples from the automated point sampler at Storm Drain C demonstrated the ?first flush? phenomenon?higher constituent concentrations at the beginning of runoff events?for the trace metals cadmium, lead, zinc, and copper, whose concentrations were initially high during the period of increasing discharge and gradually decreased over the duration of the storm. Water-quality data from Storm Drain C and four stream sites were compared to the State of Hawaii Department of Health (HDOH) water-quality standards to determine the effects of highway storm runoff on the water quality of Halawa Stream. The geometric-mean standards and the 10- and 2-percent-of-the-time concentration standards for total nitrogen, nitrite plus nitrate, total phosphorus, total suspended solids, and turbidity were exceeded in many of the comparisons. However, these standards were not designed for stormwater sampling, in which constituent concentrations would be expected to increase for short periods of time. With the aim of enhancing the usefulness of the water-quality data, several modifications to the stormwater monitoring program are suggested. These suggestions include (1) the periodic analyzing of discrete samples from the automated point samplers over the course of a storm to get a clearer profile of the storm, from first flush to the end of the receding discharge; (2) adding an analysis of the dissolved fractions of metals to the sampling plan; (3) installation of an automatic sampler at Bridge 8 to enable sampling earlier in the storms; (4) a one-time sampling and analysis of soils upstream of Bridge 8 for base-line contaminant concentrations; (5) collection of samples from Halawa Stream during low-flow conditions
Wiley, Jeffrey B.; Brogan, Freddie D.
2003-01-01
The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.
Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74
Fretwell, M.O.
1977-01-01
This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).
Myers, Donna N.; Metzker, Kevin D.; Davis, Steven
2000-01-01
The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.
Watershed Models for Predicting Nitrogen Loads from Artificially Drained Lands
R. Wayne Skaggs; George M. Chescheir; Glenn Fernandez; Devendra M. Amatya
2003-01-01
Non-point sources of pollutants originate at the field scale but water quality problems usually occur at the watershed or basin scale. This paper describes a series of models developed for poorly drained watersheds. The models use DRAINMOD to predict hydrology at the field scale and a range of methods to predict channel hydraulics and nitrogen transport. In-stream...
NASA Astrophysics Data System (ADS)
Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran
2017-04-01
A homoclinal shifting process in NE of the Ebro basin, NE Iberian Peninsula, reorganized an old flow network into a new one. This process was initiated by the reactivation of a major normal fault (Amer Fault). An anaclinal stream, flowing to the hanging wall block, incised in the fault-line scarp, accessing by headward erosion the less resistant Paleogene units. The result was the formation of a sequence of strike valleys. The first valleys are situated in a more elevated topographical position than the valleys formed later. The last and the most important valley is La Plana de Vic, which is being emptied by differential erosion in front of the resistant base layer. The study of the lateral migration of a drainage basin since its initial stages has allowed the recognition of the layout of a drainage network and its model of evolution. The new drainage network includes three different subsystems. The main subsystem consists of stream courses flowing along the strike valley. While the other two subsystems flow into the main or can flow directly to the basin sink. These are the anaclinal subsystem, which drains the scarp face of the asymmetric valley, and the cataclinal subsystem, which drains the cuesta. The process of homoclinal shifting makes the strike streams migrate laterally and dip in the less resistant unit. This migration implies the reorganization of the other two tributary subsystems. The sequence of reorganizations may be preserved on the resistant bedrock of the cuesta. This allows the reconstruction of the route of the headward erosion of the initial anaclinal stream course through remnants of ancient strike streams flowing into former basin sinks, and its cataclinal tributaries draining the cuesta. In the case study of La Plana de Vic the migration route of the basin sink can be reconstructed from its initial position, Early Pleistocene, until present day. Besides, reorganization of the cataclinal network can also be recognized. During the lateral migration three incisions were made in a large anticlinal structure in the north (Bellmunt Anticline) and one incision was made in a crystalline massif (Montseny) in the south. The last of the incisions into the Bellmunt Anticline captured by headward erosion an older drainage network with headwaters in the axial Pyrenees. The result of the homoclinal shifting process was the capture of older drainage basins and the formation of the current drainage basin of the river Ter.
Tice, Richard H.
1968-01-01
Flood magnitude-frequency relation applicable to streams in the North Atlantic slope basins, New York to York River, Va., are presented in this report. The relations are based on flood data collected at 487 gaging stations having 5 or more years of record not materially affected by regulation. For sites on most streams, the magnitude of a flood of any given frequency between 1.1 and 50 years can be determined from two curves - one expressing the relation between the mean annual flood and size of draining basin and the other expressing the ratio to the mean annual flood of floods of other recurrence intervals. For New Jersey streams, an adjustment to the mean annual flood is based on the percentage of surface area covered by lakes and swamps in the basin.
Davis, Jerri V.; Bell, Richard W.
1998-01-01
Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.
NASA Astrophysics Data System (ADS)
McPhillips, L. E.; Walter, M. T.
2014-12-01
There is increasing evidence that salt application to roads and parking lots in winter is driving a rise in chloride concentrations in streams in the northeastern United States. Our research focuses specifically on salt dynamics in stormwater detention basins, which receive runoff directly from parking lots and detain it before it reaches the stream. The four study basins are located on the Cornell University campus in Ithaca, NY USA. Between summer 2012 and 2014, soil electrical conductivity was continuously monitored inside and outside the basins using Decagon 5TE sensors and dataloggers. In two basins which drain stormwater quickly, conductivity levels changed minimally over the year. However, in the other two basins which drain much slower and often are saturated, conductivity increased through the winter, peaking at 8-10 mS/cm, and then took several months to decrease to baseline levels; thus the basins served as a source of salt to outflowing water even into the summer. This annual variation in soil salinity has implications for plant and microbial communities living in these basins. Research by colleagues has indicated that changing salinity can alter microbial communities and impact biogeochemical processes that play a role in water quality remediation. Thus we are also investigating the impact of salinity on denitrification rates in these basins. All of this information will help us understand what role stormwater detention basins are playing in controlling fluxes of road salt in watersheds, as well as how changing salinity influences the ecosystem services provided by these basins.
NASA Astrophysics Data System (ADS)
Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd
2017-04-01
Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of P in rivers are groundwater and tile flow. P was also released by surface runoff during large storm events when sediment was eroded into the rivers. The contributions of point sources in terms of waste water treatment plants to the overall P loading were low. The modifications made in the SWAT source code should be considered as a starting point to simulate P loads in artificially drained landscapes more precisely. Further testing and development of the code is required.
Mercury in Fish, Bed Sediment, and Water from Streams Across the United States, 1998-2005
Scudder, Barbara C.; Chasar, Lia C.; Wentz, Dennis A.; Bauch, Nancy J.; Brigham, Mark E.; Moran, Patrick W.; Krabbenhoft, David P.
2009-01-01
Mercury (Hg) was examined in top-predator fish, bed sediment, and water from streams that spanned regional and national gradients of Hg source strength and other factors thought to influence methylmercury (MeHg) bioaccumulation. Sampled settings include stream basins that were agricultural, urbanized, undeveloped (forested, grassland, shrubland, and wetland land cover), and mined (for gold and Hg). Each site was sampled one time during seasonal low flow. Predator fish were targeted for collection, and composited samples of fish (primarily skin-off fillets) were analyzed for total Hg (THg), as most of the Hg found in fish tissue (95-99 percent) is MeHg. Samples of bed sediment and stream water were analyzed for THg, MeHg, and characteristics thought to affect Hg methylation, such as loss-on-ignition (LOI, a measure of organic matter content) and acid-volatile sulfide in bed sediment, and pH, dissolved organic carbon (DOC), and dissolved sulfate in water. Fish-Hg concentrations at 27 percent of sampled sites exceeded the U.S. Environmental Protection Agency human-health criterion of 0.3 micrograms per gram wet weight. Exceedances were geographically widespread, although the study design targeted specific sites and fish species and sizes, so results do not represent a true nationwide percentage of exceedances. The highest THg concentrations in fish were from blackwater coastal-plain streams draining forests or wetlands in the eastern and southeastern United States, as well as from streams draining gold- or Hg-mined basins in the western United States (1.80 and 1.95 micrograms THg per gram wet weight, respectively). For unmined basins, length-normalized Hg concentrations in largemouth bass were significantly higher in fish from predominantly undeveloped or mixed-land-use basins compared to urban basins. Hg concentrations in largemouth bass from unmined basins were correlated positively with basin percentages of evergreen forest and also woody wetland, especially with increasing proximity of these two land-cover types to the sampling site; this underscores the greater likelihood for Hg bioaccumulation to occur in these types of settings. Increasing concentrations of MeHg in unfiltered stream water, and of bed-sediment MeHg normalized by LOI, and decreasing pH and dissolved sulfate were also important in explaining increasing Hg concentrations in largemouth bass. MeHg concentrations in bed sediment correlated positively with THg, LOI, and acid-volatile sulfide. Concentrations of MeHg in water correlated positively with DOC, ultraviolet absorbance, and THg in water, the percentage of MeHg in bed sediment, and the percentage of wetland in the basin.
A SURVEY OF METHODS FOR SETTING MINIMUM INSTREAM FLOW STANDARDS IN THE CARIBBEAN BASIN.
F. N. SCATENA
2004-01-01
To evaluate the current status of instream flow practices in streams that drain into the Caribbean Basin, a voluntary survey of practising water resource managers was conducted. Responses were received from 70% of the potential continental countries, 100% of the islands in the Greater Antilles, and 56% of all the Caribbean island nations. Respondents identified â...
Longitudinal Stream Profile Morphology and Patterns of Knickpoint Propagation in the Bighorn Range
NASA Astrophysics Data System (ADS)
Safran, E. B.; Anderson, R. S.; Riihimaki, C. A.; Armstrong, J.
2005-12-01
The northern U. S. Rocky Mountains and the adjacent sedimentary basins are in a transient state of response to regional, Late Cenozoic exhumation. Assembling the history of landscape change there requires interpreting the morphology and genesis of transient landforms such as knickpoints in longitudinal stream profiles. We used concavity and normalized channel steepness indices to quantify the longitudinal profile morphology of >75 streams draining the east side of the Bighorn Range and the adjacent Powder River Basin. Our analyses show that individual units in the range-margin sedimentary cover rock exert a strong influence on longitudinal profile morphology. In the Tongue River and Crazy Woman Creek drainages, more than 50% of the streams examined had knickpoints localized within a resistant, siliceous dolomite. Knickpoints on most streams with drainage areas greater than ~100 km2 at the range front have migrated headward into the gneissic and plutonic core of the range. In the Clear Creek drainage, where the lateral extent of sedimentary cover rock is more restricted than in the adjacent drainages, knickpoints do not align with any particular unit. River profiles in the Powder River Basin beyond 10-20 km from the range front exhibit concavities of ~0.3-0.6 and normalized channel steepness indices of 40-60 (using 0.45 as a reference concavity). All profiles analyzed that extend into the mountain range exhibit at least one reach with exceptionally high (>2) concavity and relatively high (100-600) normalized channel steepness index, highlighting zones of transient adjustment to local base-level drop in the basin. Headwater reaches of range-draining streams exhibit variable but moderate values of concavity (0.15-0.9) and normalized channel steepness index (20-100). The varied morphology of these reaches reflects their passage across a relict surface of low relief but also the effects of glaciation and/or the signature of the narrow summit spine that caps the range.
Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.
2003-01-01
Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the shallow ground-water system. The average concentration of total nitrogen in drains and streams discharging to the Yakima River from RM 103.7 to RM 72 in August 1999 was 2.63 mg/L, and in July 1988 was 3.16 mg/L; average concentrations of total phosphorus were 0.20 and 0.26 mg/L. After irrigation season, streamflow in agricultural drains decreases because irrigation water is no longer diverted from the Yakima and Naches Rivers. As a result, concentrations of total nitrogen in drains increase because nitrate, which constitutes much of total nitrogen, continues to enter the drains from subsurface drains and shallow ground water. Concentrations of total phosphorus and suspended sediment often decrease, because they are transported to the drains in runoff of irrigation water from fields. In Granger Drain, concentrations of total nitrogen ranged from 2-4 mg/L during irrigation season and increased to about 6 mg/L after irrigation season, and concentrations of total phosphorus, as high as 1 mg/L, decreased to about 0.2 mg/L. In calendar year 1999, Moxee Drain transported an average of 28,000 lb/d (pounds per day) of suspended sediment, 380 lb/d of total nitrogen, and 46 lb/d of total phosphorus to the Yakima River. These loads were about half the average loads transported by Granger Drain during the same period. Average streamflows were similar for the two drains, so the difference in loads was due to differences in constituent concentrations: those in Moxee Drain were about 40-60 percent less than those in Granger Drain. Loads of suspended sediment and total phosphorus in Moxee and Granger Drains were nearly four times higher during irrigation season than during the non-irrigation season because with increased flow during irrigation season, concentrations of suspended sediment and total phosphorus are usually higher. Loads of nitrate in the drains were about the same in both seasons because nitrate concentrations are higher during the non-irrigation season.
Geochemistry of the Johnson River, Lake Clark National Park and Preserve, Alaska
Brabets, Timothy P.; Riehle, James R.
2003-01-01
The Johnson River Basin, located in Lake Clark National Park and Preserve, drains an area of 96 square miles. A private inholding in the upper part of the basin contains a gold deposit that may be developed in the future. To establish a natural baseline to compare potential effects on water quality if development were to occur, the upper part of the Johnson River Basin was studied from 1999 to 2001 as part of a cooperative study with the National Park Service. Two basic rock types occur within the drainage basin of the study: the Jurassic Talkeetna Formation of interbedded volcanic and volcaniclastic rocks, and the slightly younger plutonic rocks of the Aleutian-Alaska Ranges batholith. The Johnson River gold prospect reflects widespread, secondary mineralization and alteration of the Talkeetna Formation. Metals found at the prospect proper are: arsenic, cadmium, copper, gold, iron, lead, mercury, molybdenum, selenium, silver, and zinc. The Johnson River prospect is located in the East Fork Ore Creek Basin, a 0.5 square mile watershed that is a tributary to the Johnson River. Water quality data from this stream reflect the mineralization of the basin and the highest concentrations of several trace elements and major ions of the water column were found in this stream. Presently, pH in this stream is normal, indicating that there is sufficient buffering capacity. At the Johnson River streamgage, which drains approximately 25 mi2 including the East Fork Ore Creek, concentrations of these constituents are significantly lower, reflecting the runoff from Johnson Glacier and Double Glacier, which account for approximately 75 percent of the total discharge. Streambed concentrations of cadmium, lead, and zinc from East Fork Ore Creek and its receiving stream, Ore Creek, typically exceed concentrations where sediment dwelling organisms would be affected. Similar to the water column chemistry, concentrations of these elements are lower at the Johnson River streamgage, reflecting the fine sediment input from the glacier streams draining Johnson Glacier and Double Glacier. The amount of organic carbon present in the study area is relatively low and most sites indicate that some degree of toxicity is present even though these basins do not contain mineralized areas. Acid based accounting tests on rock samples in the study area indicate a neutralizing capacity in the Talkeetna Formation rocks. These results should be used with caution because similar tests were not done on rocks from narrow veins or faults that could have acid generating potential. In addition, based on field tests during the study, carbonate-bearing rocks in streambeds are armored by a carbonate-depleted shell and would not readily neutralize acidic water.
Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach
Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...
Gazetteer of hydrologic characteristics of streams in Massachusetts; Blackstone River basin
Wandle, S.W.; Phipps, A.F.
1984-01-01
The Blackstone River basin encompasses 335 square miles in south-central Massachusetts, including parts of Bristol, Middlesex, Norfolk, and Worcester Counties. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics, were calculated using a new data base with records through 1980. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. The 7-day, 10-year low-flow values are presented for 31 partial-record sites and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are presented for the six gaged streams in the Blackstone River basin. This gazetteer will aid in the planning and siting of water-resources-related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)
Hydrology of the Bayou Bartholomew alluvial aquifer-stream system, Arkansas
Broom, M.E.; Reed, J.E.
1973-01-01
The study area comprises about 3,200 square miles of the Mississippi Alluvial Plain in southeast Arkansas. About 90 percent of the area drains south to the Ouachita River in Louisiana. The alluvial aquifer and the streams are hydraulically connected and are studied as an aquifer-stream system. Bayou Bartholomew is a principal stream of the system. The aquifer is underlain by confining strata of the Jackson Group and Cockfield Formation. The mean annual surface-water yield of the area that drains to the Ouachita River basin is nearly 2 million acre-feet. Flood-control projects have significantly reduced flooding in the area. Basin boundaries and low-flow characteristics of streams have been altered as a result of the flood-control projects and streamflow diversion for irrigation. The direction of ground-water flow generally is southward. Bayou Bartholomew functions mostly as a drain for ground-water flow from the west and as a recharge source to the aquifer east of the bayou. As a result of navigation pools, the Arkansas River is mostly a steady-recharge source to the aquifer. Pumpage from the aquifer and streams increased from about 20,000 acre-feet in 1941 to 237,000 acre-feet in 1970. Estimates of flow, derived from analog analysis but lacking field verification, indicate that recharge to the aquifer in 1970 was about 161,000 acre-feet. About 70 percent of the recharge was by capture from streams as a result of ground-water pumpage. Discharge from the aquifer was about 233,000 acre-feet. About 80 percent of the discharge was through wells. Stream diversion in 1970 from capture and open channel, excluding capture from the Arkansas and Mississippi Rivers, was about 110,000 acre-feet. Return flow to streams from rice irrigation and fishponds was about 60,000 acre-feet. The chemical quality of streamflows is excellent for irrigation. Water from the aquifer generally ranges from permissible to excellent for irrigation. The use of water from the aquifer in the flood-plain area, exclusive of irrigation, is severely limited unless it is treated to remove the iron and reduce the hardness.
Brabets, Timothy P.; Whitman, Matthew S.
2004-01-01
The Cook Inlet Basin study unit of the U.S. Geological Survey National Water-Quality Assessment Program comprises 39,325 square miles in south-central Alaska. Data were collected at eight fixed sites to provide baseline information in areas where no development has taken place, urbanization or logging have occurred, or the effects of recreation are increasing. Collection of water-quality, biology, and physical-habitat data began in October 1998 and ended in September 2001 (water years 1999-2001). The climate for the water years in the study may be categorized as slightly cool-wet (1999), slightly warm-wet (2000), and significantly warm-dry (2001). Total precipitation was near normal during the study period, and air temperatures ranged from modestly cool in water year 1999 to near normal in 2000, and to notably warm in 2001. Snowmelt runoff dominates the hydrology of streams in the Cook Inlet Basin. Average annual flows at the fixed sites were approximately the same as the long-term average annual flows, with the exception of those in glacier-fed basins, which had above-average flow in water year 2001. Water temperature of all streams studied in the Cook Inlet Basin remained at 0 oC for about 6 months per year, and average annual water temperatures ranged from 3.3 to 6.2 degrees Celsius. Of the water-quality constituents sampled, all concentrations were less than drinking-water standards and only one constituent, the pesticide carbaryl, exceeded aquatic-life standards. Most of the stream waters of the Cook Inlet Basin were classified as calcium bicarbonate, which reflects the underlying geology. Streams in the Cook Inlet Basin draining areas with glaciers, rough mountainous terrain, and poorly developed soils have low concentrations of nitrogen, phosphorus, and dissolved organic carbon compared with concentrations of these same constituents in streams in lowland or urbanized areas. In streams draining relatively low-lying areas, most of the suspended sediment, nutrients, and dissolved organic carbon are transported in the spring from the melting snowpack. The urbanized stream, Chester Creek, had the highest concentrations of calcium, magnesium, chloride, and sodium, most likely because of the application of de-icing materials during the winter. Several volatile organic compounds and pesticides also were detected in samples from this stream. Aquatic communities in the Cook Inlet Basin are naturally different than similar sites in the contiguous United States because of the unique conditions of the northern latitudes where the Cook Inlet Basin is located, such as extreme diurnal cycles and long periods of ice cover. Blue-green algae was the dominant algae found at all sites although in some years green algae was the most dominant algae. Macroinvertebrate communities consist primarily of Diptera (true flies), Ephemeroptera (mayflies), and Plecoptera (stoneflies). Lowland areas have higher abundance of aquatic communities than glacier-fed basins. However, samples from the urbanized stream, Chester Creek, were dominated by oligochaetes, a class of worms. Most of the functional feeding groups were collector-gatherers. The number of taxa for both algae and macroinvertebrates were highest in water year 2001, which may be due to the relative mild winter of 2000?2001 and the above average air temperatures for this water year. The streams in the Cook Inlet Basin typically are low gradient. Bank substrates consist of silt, clay, or sand, and bed substrate consists of coarse gravel or cobbles. Vegetation is primarily shrubs and woodlands with spruce or cottonwood trees. Canopy angles vary with the size of the stream or river and are relatively low at the smaller streams and high at the larger streams. Suitable fish habitat, such as woody debris, pools, cobble substrate, and overhanging vegetation, is found at most sites. Of the human activities occurring in the fixed site basins ? high recreational use, logging, and urbanizat
Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.
2010-01-01
To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.
Sediment production from forest road surfaces.
Leslie Reid; T. Dunne
2011-01-01
Erosion on roads is an important source of fine-grained sediment in streams draining logged basins of the Pacific Northwest. Runoff rates and sediment concentrations from 10 road segments subject to a variety of traffic levels were monitored to produce sediment rating curves and unit hydrographs for different use levels and types of surfaces. These relationships are...
Regional flood-frequency relations for streams with many years of no flow
Hjalmarson, Hjalmar W.; Thomas, Blakemore E.; ,
1990-01-01
In the southwestern United States, flood-frequency relations for streams that drain small arid basins are difficult to estimate, largely because of the extreme temporal and spatial variability of floods and the many years of no flow. A method is proposed that is based on the station-year method. The new method produces regional flood-frequency relations using all available annual peak-discharge data. The prediction errors for the relations are directly assessed using randomly selected subsamples of the annual peak discharges.
Gamble, C.R.
1989-01-01
A dimensionless hydrograph developed for a variety of basin conditions in Georgia was tested for its applicability to streams in East and West Tennessee by comparing it to a similar dimensionless hydrograph developed for streams in East and West Tennessee. Hydrographs of observed discharge at 83 streams in East Tennessee and 38 in West Tennessee were used in the study. Statistical analyses were performed by comparing simulated (or computed) hydrographs, derived by application of the Georgia dimensionless hydrograph, and dimensionless hydrographs developed from Tennessee data, with the observed hydrographs at 50 and 75% of their peak-flow widths. Results of the tests indicate that the Georgia dimensionless hydrography is virtually the same as the one developed for streams in East Tennessee, but that it is different from the dimensionless hydrograph developed for streams in West Tennessee. Because of the extensive testing of the Georgia dimensionless hydrograph, it was determined to be applicable for East Tennessee, whereas the dimensionless hydrograph developed from data on streams in West Tennessee was determined to be applicable in West Tennessee. As part of the dimensionless hydrograph development, an average lagtime in hours for each study basin, and the volume in inches of flood runoff for each flood event were computed. By use of multiple-regression analysis, equations were developed that relate basin lagtime to drainage area size, basin length, and percent impervious area. Similarly, flood volumes were related to drainage area size, peak discharge, and basin lagtime. These equations, along with the appropriate dimensionless hydrograph, can be used to estimate a typical (average) flood hydrograph and volume for recurrence-intervals up to 100 years at any ungaged site draining less than 50 sq mi in East and West Tennessee. (USGS)
Carpenter, K.D.; Waite, I.R.
2000-01-01
Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.
Izuka, Scot K.; Ewart, Charles J.
1995-01-01
A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride ions in water samples from Talufofo Stream are characteristic of water draining a heavily vegetated basin near the ocean. The streamflow and water-chemistry data indicate that discharge from springs is in hydraulic connection with the limestone aquifer near the headwaters of the basin. The base flow therefore is subject to stresses placed on the nearby limestone ground-water system. Pumping from wells in the limestones at the headwaters of Talufofo Stream Basin may decrease spring flow in Talufofo Stream.
Ground Water in the Southern Lihue Basin, Kauai, Hawaii
Izuka, Scot K.; Gingerich, Stephen B.
1998-01-01
A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.
Denning, A. Scott; Baron, Jill S.; Mast, M. Alisa; Arthur, Mary
1991-01-01
Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.
Mize, S.V.; Porter, S.D.; Demcheck, D.K.
2008-01-01
Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.
Izbicki, J.A.; Pimentel, I.M.; Johnson, Russell; Aiken, G.R.; Leenheer, J.
2007-01-01
The composition of dissolved organic carbon (DOC) in stormflow from urban areas has been greatly altered, both directly and indirectly, by human activities and there is concern that there may be public health issues associated with DOC, which has unknown composition from different sources within urban watersheds. This study evaluated changes in the concentration and composition of DOC in stormflow in the Santa Ana River and its tributaries between 1995 and 2004 using a simplified approach based on the differences in the optical properties of DOC and using operationally defined differences in molecular weight and solubility. The data show changes in the composition of DOC in stormflow during the rainy season and differences associated with runoff from different parts of the basin, including extensive upland areas burned prior to the 2004 rainy season.Samples were collected from the Santa Ana River, which drains ~6950 km2 of the densely populated coastal area of southern California, during 23 stormflows between 1995 and 2004. Dissolved organic carbon (DOC) concentrations during the first stormflows of the ‘winter’ (November to March) rainy season increased rapidly with streamflow and were positively correlated with increased faecal indicator bacteria concentrations. DOC concentrations were not correlated with streamflow or with other constituents during stormflows later in the rainy season and DOC had increasing UV absorbance per unit carbon as the rainy season progressed. DOC concentrations in stormflow from an urban drain tributary to the river also increased during stormflow and were greater than concentrations in the river. DOC concentrations in stormflow from a tributary stream, draining urban and agricultural land that contained more than 320 000 animals, mostly dairy cows, were higher than concentrations in stormflow from the river and from the urban drain. Fires that burned large areas of the basin before the 2004 rainy season did not increase DOC concentrations in the river during stormflow after the fires – possibly because the large watershed of the river damped the effect of the fires. However, the fires increased the hydrophobic neutral organic carbon fraction of DOC in stormflow from the urban drain and the tributary stream.
Water temperature of streams in the Cook Inlet basin, Alaska, and implications of climate change
Kyle, Rebecca E.; Brabets, Timothy P.
2001-10-02
Water-temperature data from 32 sites in the Cook Inlet Basin, south-central Alaska, indicate various trends that depend on watershed characteristics. Basins with 25 percent or more of their area consisting of glaciers have the coldest water temperatures during the open-water season, mid-May to mid-October. Streams and rivers that drain lowlands have the warmest water temperatures. A model that uses air temperature as input to predict water temperature as output was utilized to simulate future trends in water temperature based on increased air temperatures due to climate warming. Based on the Nash-Sutcliffe coefficient, the model produced acceptable results for 27 sites. For basins with more than 25 percent glacial coverage, the model was not as accurate. Results indicate that 15 sites had a predicted water-temperature change of 3 degrees Celsius or more, a magnitude of change that is considered significant for the incidence of disease in fish populations.
Munn, Mark D.; Hamilton, Pixie A.
2003-01-01
In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment elevated concentrations of nitrogen and phosphorus in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.Nutrient enrichment is one of five national priority topics addressed by NAWQA in its second decade of studies, which began in 2001. During its first round of assessments in 51 major river basins (referred to as “Study Units”), NAWQA scientists collected data on water chemistry, stream hydrology and habitat, and biological communities; currently, NAWQA is revisiting selected basins and focusing on (1) trends, (2) factors that affect water quality and aquatic health, and (3) national priority water issues related to, for example, the development of nutrient criteria, source-water protection strategies, and stream restoration plans.The nutrient enrichment study has four major objectives that address nutrient conditions, dissolved oxygen, aquatic communities, and geographic and landscape features in agricultural basins (see inset). The focus on agricultural streams is a starting point. As the study progresses, streams draining other land uses, such as those in residential and urban areas, will likely be added.
Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California
Gannett, Marshall W.; Lite, Kenneth E.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.
2007-01-01
The upper Klamath Basin spans the California-Oregon border from the flank of the Cascade Range eastward to the Basin and Range Province, and encompasses the Klamath River drainage basin above Iron Gate Dam. Most of the basin is semiarid, but the Cascade Range and uplands in the interior and eastern parts of the basin receive on average more than 30 inches of precipitation per year. The basin has several perennial streams with mean annual discharges of hundreds of cubic feet per second, and the Klamath River at Iron Gate Dam, which represents drainage from the entire upper basin, has a mean annual discharge of about 2,100 cubic feet per second. The basin once contained three large lakes: Upper and Lower Klamath Lakes and Tule Lake, each of which covered areas of 100 to 150 square miles, including extensive marginal wetlands. Lower Klamath Lake and Tule Lake have been mostly drained, and the former lake beds are now cultivated. Upper Klamath Lake remains, and is an important source of irrigation water. Much of the wetland surrounding Upper Klamath Lake has been diked and drained, although efforts are underway to restore large areas. Upper Klamath Lake and the remaining parts of Lower Klamath and Tule Lakes provide important wildlife habitat, and parts of each are included in the Klamath Basin National Wildlife Refuges Complex. The upper Klamath Basin has a substantial regional ground-water flow system. The late Tertiary to Quaternary volcanic rocks that underlie the region are generally permeable, with transmissivity estimates ranging from 1,000 to 100,000 feet squared per day, and compose a system of variously interconnected aquifers. Interbedded with the volcanic rocks are late Tertiary sedimentary rocks composed primarily of fine-grained lake sediments and basin-filling deposits. These sedimentary deposits have generally low permeability, are not good aquifers, and probably restrict ground-water movement in some areas. The regional ground-water system is underlain and bounded on the east and west by older Tertiary volcanic and sedimentary rocks that have generally low permeability. Eight regional-scale hydrogeologic units are defined in the upper Klamath Basin on the basis of surficial geology and subsurface data. Ground water flows from recharge areas in the Cascade Range and upland areas in the basin interior and eastern margins toward stream valleys and interior subbasins. Ground water discharge to streams throughout the basin, and most streams have some component of ground water (baseflow). Some streams, however, are predominantly ground-water fed and have relatively constant flows throughout the year. Large amounts of ground water discharges in the Wood River subbasin, the lower Williamson River area, and along the margin of the Cascade Range. Much of the inflow to Upper Klamath Lake can be attributed to ground-water discharge to streams and major spring complexes within a dozen or so miles from the lake. This large component of ground water buffers the lake somewhat from climate cycles. There are also ground-water discharge areas in the eastern parts of the basin, for example in the upper Williamson and Sprague River subbasins and in the Lost River subbasin at Bonanza Springs. Irrigated agriculture is an integral part of the economy of the upper Klamath Basin. Although estimates vary somewhat, roughly 500,000 acres are irrigated in the upper Klamath Basin, about 190,000 acres of which are part of the Bureau of Reclamation Klamath Project. Most of this land is irrigated with surface water. Ground water has been used for many decades to irrigate areas where surface water is not available, for example outside of irrigation districts and stream valleys. Ground water has also been used as a supplemental source of water in areas where surface water supplies are limited and during droughts. Ground water use for irrigation has increased in recent years due to drought and shifts in surface-water allocation from irrigati
Ross, R.M.; Bennett, R.M.; Snyder, C.D.; Young, J.A.; Smith, D.R.; Lemarie, D.P.
2003-01-01
Hemlock (Tsuga canadensis) forest of the eastern U.S. are in decline due to invasion by the exotic insect hemlock woolly adelgid (Adelges tsugae). Aquatic biodiversity in hemlock ecosystems has not been documented; thus the true impact of the infestation cannot be assessed. We compared ichthyofaunal assemblages and trophic structure of streams draining hemlock and hardwood forests by sampling first- and second-order streams draining 14 paired hemlock and hardwood stands during base flows in July 1997 at the Delaware Water Gap National Recreation Area of Pennsylvania and New Jersey. Over 1400 fish of 15 species and 7 families were collected, but hemlock and hardwood streams individually harbored only one to four species. Brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) were two to three times as prevalent in hemlock than hardwood streams. Insectivorous fishes occurred in significantly higher proportion in streams of hardwood (0.90) than hemlock (0.46) stands, while piscivores occurred more often in hemlock (0.85) than hardwood (0.54) stands. Functional (trophic) diversity of fishes in hemlock and second-order streams was numerically greater than that of hardwood and first-order streams. Species composition also differed by stream order and terrain type. Biodiversity is threatened at several levels within hemlock ecosystems at risk to the hemlock woolly adelgid in eastern U.S. forests.
Environmental Setting of the Sugar Creek and Leary Weber Ditch Basins, Indiana, 2002-04
Lathrop, Timothy R.
2006-01-01
The U.S. Geological Survey operates streamflow-gaging stations at Sugar Creek at New Palestine and at Leary Weber Ditch at Mohawk within the study area. Mean daily streamflow for Sugar Creek is higher than streamflow at Leary Weber Ditch. Through most of its length, Sugar Creek is a gaining stream and base flow is supported by ground-water sources. At Leary Weber Ditch, there is little to no streamflow when tile drains are dry. Modifications to the natural hydrology of the study area include a large system of tile drains, the intersection of Sugar Creek by several major roads, and outflows from nearby wastewater-treatment plants. Leary Weber Ditch is affected only by tile drains.
Bent, Gardner C.; Archfield, Stacey A.
2002-01-01
A logistic regression equation was developed for estimating the probability of a stream flowing perennially at a specific site in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing whether streams are perennial or intermittent at a specific site in Massachusetts. This information is needed to assist these environmental agencies, who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending along the length of each side of the stream from the mean annual high-water line along each side of perennial streams, with exceptions in some urban areas. The equation was developed by relating the verified perennial or intermittent status of a stream site to selected basin characteristics of naturally flowing streams (no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, waste-water discharge, and so forth) in Massachusetts. Stream sites used in the analysis were identified as perennial or intermittent on the basis of review of measured streamflow at sites throughout Massachusetts and on visual observation at sites in the South Coastal Basin, southeastern Massachusetts. Measured or observed zero flow(s) during months of extended drought as defined by the 310 Code of Massachusetts Regulations (CMR) 10.58(2)(a) were not considered when designating the perennial or intermittent status of a stream site. The database used to develop the equation included a total of 305 stream sites (84 intermittent- and 89 perennial-stream sites in the State, and 50 intermittent- and 82 perennial-stream sites in the South Coastal Basin). Stream sites included in the database had drainage areas that ranged from 0.14 to 8.94 square miles in the State and from 0.02 to 7.00 square miles in the South Coastal Basin.Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of (1) drainage area (cube root), (2) drainage density, (3) areal percentage of stratified-drift deposits (square root), (4) mean basin slope, and (5) location in the South Coastal Basin or the remainder of the State. Although the equation developed provides an objective means for estimating the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used to develop the equation. The equation may not be reliable for (1) drainage areas less than 0.14 square mile in the State or less than 0.02 square mile in the South Coastal Basin, (2) streams with losing reaches, or (3) streams draining the southern part of the South Coastal Basin and the eastern part of the Buzzards Bay Basin and the entire area of Cape Cod and the Islands Basins.
Domagalski, Joseph L.; Ator, S.; Coupe, R.; McCarthy, K.; Lampe, D.; Sandstrom, M.; Baker, N.
2008-01-01
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Groundwater simulation and management models for the upper Klamath Basin, Oregon and California
Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.
2012-01-01
The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of the pumped water comes from groundwater storage over a broad geographic area even after two decades. Moreover, because the effects are spread out over a broad area, the impacts to individual features are much smaller than in the case of nearby pumping. Simulations show that the discharge features most affected by pumping in the area of the Bureau of Reclamation's Klamath Irrigation Project are agricultural drains, and impacts to other surface-water features are small in comparison. A groundwater management model was developed that uses techniques of constrained optimization along with the groundwater flow model to identify the optimal strategy to meet water user needs while not violating defined constraints on impacts to groundwater levels and streamflows. The coupled groundwater simulation-optimization models were formulated to help identify strategies to meet water demand in the upper Klamath Basin. The models maximize groundwater pumping while simultaneously keeping the detrimental impacts of pumping on groundwater levels and groundwater discharge within prescribed limits. Total groundwater withdrawals were calculated under alternative constraints for drawdown, reductions in groundwater discharge to surface water, and water demand to understand the potential benefits and limitations for groundwater development in the upper Klamath Basin. The simulation-optimization model for the upper Klamath Basin provides an improved understanding of how the groundwater and surface-water system responds to sustained groundwater pumping within the Bureau of Reclamation's Klamath Project. Optimization model results demonstrate that a certain amount of supplemental groundwater pumping can occur without exceeding defined limits on drawdown and stream capture. The results of the different applications of the model demonstrate the importance of identifying constraint limits in order to better define the amount and distribution of groundwater withdrawal that is sustainable.
Bonn, Bernadine A.
1999-01-01
This report describes the results of a reconnaissance survey of elements and organic compounds found in bed sediment and fish tissue in streams of the Tualatin River Basin. The basin is in northwestern Oregon to the west of the Portland metropolitan area (fig. 1). The Tualatin River flows for about 80 miles, draining an area of about 712 square miles, before it enters the Willamette River. Land use in the basin changes from mostly forested in the headwaters, to mixed forest and agriculture, to predominately urban. The basin supports a growing population of more than 350,000 people, most of whom live in lower parts of the basin. Water quality in the Tualatin River and its tributaries is expected to be affected by the increasing urbanization of the basin.
Modes of supraglacial lake drainage and dynamic ice sheet response
NASA Astrophysics Data System (ADS)
Das, S. B.; Behn, M. D.; Joughin, I. R.
2011-12-01
We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.
Mary Ann Madej; Greg Bundros; Randy Klein
2012-01-01
Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...
Macek-Rowland, Kathleen; Lent, Robert M.
1996-01-01
The effects of land-use activities on the water quality of five streams on the Fort Berthold Indian Reservation were evaluated. The five basinsevaluated were East Fork Shell Creek, Deepwater Creek, Bear Den Creek, Moccasin Creek, and Squaw Creek. East Fork Shell Creek and DeepwaterCreek Basins are located east of Lake Sakakawea and Bear Den Creek, Moccasin Creek, and Squaw Creek Basins are located west of the lake. Land-use data for the five selected basins on and adjacent to the Fort Berthold Indian Reservation were obtained for 1990-92. Discharge measurements were made and water-quality samples were collected at stations and sites on each of the five streams during October 1991 through September 1993. Analysis of land-use data indicated that prairie was the largest land-use category in the study area. More prairie acreage was found in the basins located west of Lake Sakakawea than in the basins located east of the lake. Wheat was the predominant crop in the study area. More wheat acreage was found in the basins located east of Lake Sakakawea than in the basins located west of the lake. Discharge data for the five selected streams indicated that all of thestreams were ephemeral and had many days of no flow during the study period. High flows were usually the result of spring runoff or intense storms over the basins. East Fork Shell Creek and Deepwater Creek with larger basins and flatter stream slopes had high flows characterized by rapidly rising flows and gradually receding flows. In contrast, Bear DenCreek, Moccasin Creek, and Squaw Creek with smaller basins and steeper stream slopes had high flows characterized by rapidly rising flows and receding flows of shorter duration. Analysis of water-quality samples indicated concentrations of nitrogen, phosphorus, and total organic carbon varied throughout the study area. Nitrogen concentrations were larger in the streams located east of LakeSakakawea than in the streams located west of the lake. The largest nitrogen concentrations in all of the streams occurred during the nongrowing periods.Phosphorus (orthophosphate and total phosphorus)concentrations were larger in the streams located east of Lake Sakakawea than in the streams located west of the lake. The larger orthophosphateconcentrations in the eastern streams may be indicative of insecticide application in the eastern streams' basins. Total organic carbon concentrations were fairly consistent in all five streams. Water-quality samples were analyzed for the pesticides atrazine, carbofuran, cyanazine, and 2,4-D by using immunoassay testing. Pesticide concentrations above the minimum reporting levels were more prevalent insamples from streams located east of Lake Sakakawea than in the streams located west of the lake. The eastern streams drain areas where herbicides were applied to crops. Fecal-bacteria concentrations were larger in the streams located west of Lake Sakakawea, where prairie is more dominant, than in the streams located east of the lake. The larger concentrations and loads were associated with intense storm events and the presence of livestock.
Caldwell, W.S.
1992-01-01
Selected physical, chemical and biological components of streams draining undeveloped, forested basins in North Carolina were characterized on the basis of samples collected at nine sites on streams in basins that ranged in size from 0.67 to 11.2 sq mi. Water analysis included specific conductance, dissolved oxygen, water temperature, suspended sediment, pH, major dissolved constituents, nutrients, minor constituents, organochlorine insecticides, and biochemical oxygen demand. Biological characteristics included fish tissue analysis for minor constituents and synthetic organic compounds, fish community structure, and benthic macroinvertebrates. Precipitation is the source of 10 to 40% of the chloride concentration and 20 to 30% of the sulfate concentration in stormflow. Mean total nitrogen concentrations ranged from 0.16 mg/L during low-flow conditions to 1.2 mg/L during stormflow. Organic nitrogen was 60 to 85% of the total nitrogen concentration. Stream water was free of organochlorine insecticides. DDD, DDE, DDT, Lindane, and Mirex were detected in 18 of 60 samples of streambed material. About 35% of fish tissue analyses showed detectable concentrations of copper, lead, mercury and nickel. Synthetic organic chemicals were not detected in fish tissue. Fish community structure data were rated using Karr's Index of Biotic Integrity. Streams rated poor to good because of natural stresses on fish communities. Five streams in the Piedmont and mountains received excellent bioclassification ratings based on benthic macroinvertebrtate data. Two streams in the Coastal Plain rated good to fair because of natural stresses.
Esselman, P.C.; Freeman, Mary C.; Pringle, C.M.
2006-01-01
Linkages between geology and fish assemblages have been inferred in many regions throughout the world, but no studies have yet investigated whether fish assemblages differ across geologies in Mesoamerica. The goals of our study were to: 1) compare physicochemical conditions and fish-assemblage structure across 2 geologic types in headwaters of the Monkey River Basin, Belize, and 2) describe basin-scale patterns in fish community composition and structure for the benefit of conservation efforts. We censused headwater-pool fishes by direct observation, and assessed habitat size, structure, and water chemistry to compare habitat and fish richness, diversity, evenness, and density between streams in the variably metamorphosed sedimentary geologic type typical of 80% of Belize's Maya Mountains (the Santa Rosa Group), and an anomalous extrusive geologic formation in the same area (the Bladen Volcanic Member). We also collected species-presence data from 20 sites throughout the basin for analyses of compositional patterns from the headwaters to the top of the estuary. Thirty-nine fish species in 21 families were observed. Poeciliids were numerically dominant, making up 39% of individuals captured, followed by characins (25%), and cichlids (20%). Cichlidae was the most species-rich family (7 spp.), followed by Poeciliidae (6 spp.). Habitat size and water chemistry differed strongly between geologic types, but habitat diversity did not. Major fish-assemblage differences also were not obvious between geologies, despite a marked difference in the presence of the aquatic macrophyte, Marathrum oxycarpum (Podostemaceae), which covered 37% of the stream bottom in high-nutrient streams draining the Santa Rosa Group, and did not occur in the low-P streams draining the Bladen Volcanic Member. Correlation analyses suggested that distance from the sea and amount of cover within pools are important to fish-assemblage structure, but that differing abiotic factors may influence assemblage structure within each geologic type. The fauna showed weak compositional zonation into 3 groups (headwaters, coastal plain, and nearshore). Nearly 20% of the fish species collected have migratory life cycles (including Joturus pichardi, Agonostomus monticola, and Gobiomorus dormitor) that use freshwater and marine habitats. Some of these species probably rely on a natural flow regime and longitudinal connectivity for reproduction and dispersal of young, and natural flow regime and longitudinal connectivity are important factors for maintenance of functional linkages between the uplands and the coast in the ridge-to-reef corridor where the Monkey River is located. Therefore, we suggest that the viability of migratory fish populations may be a good biological indicator of upland-to-estuary connectivity important both to fishes and coastal ecosystem function. We recommend follow-up studies to substantiate the relative strengths of relationships between community structure and abiotic factors in contrasting geologies and to examine potential bottom-up responses of stream biota to the higher nutrient levels that were observed in stream waters draining the Santa Rosa Group geologic type.
Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines
Kozar, Mark D.; McCoy, Kurt J.
2017-01-01
Simulation of groundwater flow in abandoned mines is difficult, especially where flux to and from mines is unknown or poorly quantified, and inter-basin transfer of groundwater occurs. A 3-year study was conducted in the Elkhorn area, West Virginia to better understand groundwater-flow processes and inter-basin transfer in above drainage abandoned coal mines. The study area was specifically selected, as all mines are located above the elevation of tributary receiving streams, to allow accurate measurements of discharge from mine portals and tributaries for groundwater model calibration. Abandoned mine workings were simulated in several ways, initially as a layer of high hydraulic conductivity bounded by lower permeability rock in adjacent strata, and secondly as rows of higher hydraulic conductivity embedded within a lower hydraulic conductivity coal aquifer matrix. Regardless of the hydraulic conductivity assigned to mine workings, neither approach to simulate mine workings could accurately reproduce the inter-basin transfer of groundwater from adjacent watersheds. To resolve the problem, a third approach was developed. The MODFLOW DRAIN package was used to simulate seepage into and through mine workings discharging water under unconfined conditions to Elkhorn Creek, North Fork, and tributaries of the Bluestone River. Drain nodes were embedded in a matrix of uniform hydraulic conductivity cells that represented the coal mine aquifer. Drain heads were empirically defined from well observations, and elevations were based on structure contours for the Pocahontas No. 3 mine workings. Use of the DRAIN package to simulate mine workings as an internal boundary condition resolved the inter-basin transfer problem, and effectively simulated a shift from a topographic- dominated to a dip-dominated flow system, by dewatering overlying unmined strata and shifting the groundwater drainage divide up dip within the Pocahontas No. 3 coal seam several kilometers into the adjacent Bluestone River Watershed. Model simulations prior to use of the DRAIN package for simulating mine workings produced estimated flows of 0.32 to 0.34 m3/s in each of the similar sized Elkhorn Creek and North Fork Watersheds, but failed to estimate inter-basin transfer of groundwater from the adjacent Bluestone River Watershed. The simulation of mine entries and discharge using the MODFLOW DRAIN package produced estimated flows of 0.46 and 0.26 m3/s for the Elkhorn Creek and North Fork watersheds respectively, which matched well measured flows for the respective watersheds of 0.47 and 0.26 m3/s.
Miller, Matthew P.; Kennen, Jonathan G.; Mabe, Jeffrey A.; Mize, Scott V.
2012-01-01
Site-specific temporal trends in algae, benthic invertebrate, and fish assemblages were investigated in 15 streams and rivers draining basins of varying land use in the south-central United States from 1993–2007. A multivariate approach was used to identify sites with statistically significant trends in aquatic assemblages which were then tested for correlations with assemblage metrics and abiotic environmental variables (climate, water quality, streamflow, and physical habitat). Significant temporal trends in one or more of the aquatic assemblages were identified at more than half (eight of 15) of the streams in the study. Assemblage metrics and abiotic environmental variables found to be significantly correlated with aquatic assemblages differed between land use categories. For example, algal assemblages at undeveloped sites were associated with physical habitat, while algal assemblages at more anthropogenically altered sites (agricultural and urban) were associated with nutrient and streamflow metrics. In urban stream sites results indicate that streamflow metrics may act as important controls on water quality conditions, as represented by aquatic assemblage metrics. The site-specific identification of biotic trends and abiotic–biotic relations presented here will provide valuable information that can inform interpretation of continued monitoring data and the design of future studies. In addition, the subsets of abiotic variables identified as potentially important drivers of change in aquatic assemblages provide policy makers and resource managers with information that will assist in the design and implementation of monitoring programs aimed at the protection of aquatic resources.
Carpenter, Kurt D.
2003-01-01
In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River and Oak Grove Fork) had the highest concentrations of phosphorus (and lowest concentrations of nitrogen), and streams draining forestland in the middle basin (Clear Creek, Eagle Creek, and the North Fork of the Clackamas River) had relatively high concentrations of nitrogen (and low concentrations of phosphorus). In contrast, relatively low concentrations of both nitrogen and phosphorus were found at the two reference streams, reflecting their pristine condition. Relatively high phosphorus levels in the upper basin are probably due to the erosion of naturally occurring phosphorus deposits in this area. Likely sources of nitrogen (mostly nitrate) in the forested watersheds include nitrogen-fixing plants, atmospheric deposition, timber harvesting, and applications of urea fertilizers.
Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.
1997-01-01
Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance. Ordination identified three site groups and three community types. Site groups consisted of (1) small streams of the Cascades and Eastern Cascades ecoregions, (2) small streams of the Columbia Basin ecoregions, and (3) large rivers of the Cascades and Columbia Basin ecoregions. The small streams of the Columbia Basin could be further subdivided into two groups--one where agricultural intensity was low and one where agricultural intensity was moderate to high. Dividing the basin into these three groups removed much of the influence of elevation and facilitated the analysis of land-use effects. Community types identified by ordination were (1) high elevation, cold-water communities associated with low agricultural intensity; (2) lower elevation, warm-water communities associated with low agricultural intensity, and (3) lower elevation, warm-water communities associated with moderate to high agricultural intensity. Multimetric community condition indices indicated that sites in the Cascades and Eastern Cascades site group were largely unimpaired. In contrast, all but two sites in the Columbia Basin site group were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor responsible for this impairment, and all impaired sites were characterized by multiple indicators of impairment. Three sites (Granger Drain, Moxee Drain, and Spring Creek) had high levels of impairment. Sites in the large-river site group were moderately to severely impaired downstream from the city of Yakima. High levels of impairment at large-river sites corresponded with high levels of pesticides in fish tissues and the occurrence of external anomalies. The response exhibited by invertebrates and algae to a gradient of agricultural intensity suggested a threshold response for sites in the Columbia Basin site group. Community condition declined precipitously at agricultural intensities above 50 (non-pesticide agricultural intensity index) and showed little respon
Laudon, Julie; Belitz, Kenneth
1989-01-01
Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.
Arp, C.D.; Whitman, M.S.; Jones, Benjamin M.; Kemnitz, R.; Grosse, G.; Urban, F.E.
2012-01-01
Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrost and snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fish Creek drainage basin is composed of three watersheds that represent a gradient of the ACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevation model, and river gauging and climate records to better understand ACP watershed structure and processes. We show that connected lakes accounted for 19 to 26% of drainage density among watersheds and most all channels initiate from lake basins in the form of beaded streams. Of the > 2500 lakes in these watersheds, 33% have perennial streamflow connectivity, and these represent 66% of total lake area extent. Deeper lakes with over-wintering habitat were more abundant in the watershed with eolian sand deposits, while the watershed with marine silt deposits contained a greater extent of beaded streams and shallow thermokarst lakes that provide essential summer feeding habitat. Comparison of flow regimes among watersheds showed that higher lake extent and lower drained lake-basin extent corresponded with lower snowmelt and higher baseflow runoff. Variation in baseflow runoff among watersheds was most pronounced during drought conditions in 2007 with corresponding reduction in snowmelt peak flows the following year. Comparison with other Arctic watersheds indicates that lake area extent corresponds to slower recession of both snowmelt and baseflow runoff. These analyses help refine our understanding of how Arctic watersheds are structured and function hydrologically, emphasizing the important role of lake basins and suggesting how future lake change may impact hydrologic processes.
Zinc and Its Isotopes in the Loire River Basin, France
NASA Astrophysics Data System (ADS)
Millot, R.; Desaulty, A. M.; Bourrain, X.
2014-12-01
The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).
Revisiting Horton's laws with considerations of the directly drained VS source area
NASA Astrophysics Data System (ADS)
Yang, Soohyun; Paik, Kyungrock
2015-04-01
River networks have been regarded as excellent examples of self-similar patterns in nature. Fractal characteristics of river networks have been quantified through scaling relations between several morphologic variables (e.g., Hack, 1957; Flint, 1974). In particular, Horton's legendary study on scaling properties between numbers and lengths of streams in different orders (Horton, 1945) has significantly influenced research studies in this subject. Today, Horton's laws are referred to the log-linear relationships of three variables across stream orders, i.e., number, length, and area which is later added by Schumm (1956). In a closer look, there is a conceptual inconsistency between their definitions though. While length is defined as the length of stream of a specific order only, area by its definition includes drainage area of lower order streams. To deal with this inconsistency, there was an attempt to distinguish the average area drained directly by the stream of a particular order in the Hortonian formulation (Marani et al., 1991; Beer and Borgas, 1993). Nevertheless, there remains an interesting problem in the definition of directly drained area for 1st order and for the rest orders in these studies. While the whole area of 1st order stream is regarded as the directly drained area in these studies, for a channel to form it needs the minimum drainage area named source area. In this study, we evaluate how significant considering this zero order area separately is in understanding overall river network organization. To this end, we define new expression for the directly drained area and revisit Horton's laws with a generalized formulation. To test the proposed ideas, several river networks extracted from digital elevation models (DEMs) are analyzed. References Beer, T., & Borgas, M. (1993). Horton's laws and the fractal nature of streams. Water Resources Research, 29(5), 1475-1487. Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10(5), 969-973. Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370. Marani, A., Rigon, R., & Rinaldo, A. (1991). A note on fractal channel networks. Water Resources Research, 27(12), 3041-3049. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597-646.
Microbiological quality of Puget Sound Basin streams and identification of contaminant sources
Embrey, S.S.
2001-01-01
Fecal coliforms, Escherichia coli, enterococci, and somatic coliphages were detected in samples from 31 sites on streams draining urban and agricultural regions of the Puget Sound Basin Lowlands. Densities of bacteria in 48 and 71 percent of the samples exceeded U.S. Environmental Protection Agency's freshwater recreation criteria for Escherichia coli and enterococci, respectively, and 81 percent exceeded Washington State fecal coliform standards. Male-specific coliphages were detected in samples from 15 sites. Male-specific F+RNA coliphages isolated from samples taken at South Fork Thornton and Longfellow Creeks were serotyped as Group II, implicating humans as potential contaminant sources. These two sites are located in residential, urban areas. F+RNA coliphages in samples from 10 other sites, mostly in agricultural or rural areas, were serotyped as Group I, implicating non-human animals as likely sources. Chemicals common to wastewater, including fecal sterols, were detected in samples from several urban streams, and also implicate humans, at least in part, as possible sources of fecal bacteria and viruses to the streams.
Ground-water conditions and geologic reconnaissance of the Upper Sevier River basin, Utah
Carpenter, Carl H.; Robinson, Gerald B.; Bjorklund, Louis Jay
1967-01-01
The upper Sevier River basin is in south-central Utah and includes an area of about 2,400 .square miles of high plateaus and valleys. It comprises the entire Sevier River drainage basin above Kingston, including the East Fork Sevier River and its tributaries. The basin was investigated to determine general ground-water conditions, the interrelation of ground water and surface water, the effects of increasing the pumping of ground water, and the amount of ground water in storage.The basin includes four main valleys - Panguitch Valley, Circle Valley, East Fork Valley, and Grass Valley - which are drained by the Sevier River, the East Fork Sevier River, and Otter Creek. The plateaus surrounding the valleys consist of sedimentary and igneous rocks that range in age from Triassic to Quaternary. The valley fill, which is predominantly alluvial gravel, sand, silt, and clay, has a maximum thickness of more than 800 feet.The four main valleys constitute separate ground-water basins. East Fork Valley basin is divided into Emery Valley, Johns Valley, and Antimony subbasins, and Grass Valley basin is divided into Koosharem and Angle subbasins. Ground water occurs under both artesian and water-table conditions in all the basins and subbasins except Johns Valley, Emery Valley, and Angle subbasins, where water is only under water-table conditions. The water is under artesian pressure in beds of gravel and sand confined by overlying beds of silt and clay in the downstream parts of Panguitch Valley basin, Circle Valley basin, and Antimony subbasin, and in most of Koosharem subbasin. Along the sides and upstream ends of these basins, water is usually under water-table conditions.About 1 million acre-feet of ground water that is readily available to wells is stored in the gravel and sand of the upper 200 feet of saturated valley fill. About 570,000 acre-feet is stored in Panguitch Valley basin, about 210,000 in Circle Valley basin, about 6,000 in Emery Valley subbasin, about 90,000 in Johns Valley subbasin, about 36,000 in Antimony subbasin, about 90,000 in Koosharem subbasin, and about 60,000 in Angle subbasin. Additional water, although it is not readily available to wells, is stored in beds of silt and clay. Some ground water also is available in the bedrock underlying and surrounding the basins, although the bedrock formations generally are poor aquifers.The principal source of recharge to the valley fill in the upper Sevier River basin is infiltration from streams, canals, and irrigated fields. Some ground water also miles into the valley till from the bedrock surrounding the basins.The basin contains about 300 wells, most of which are less than 4 inches in diameter, are less than 250 feet deep, and are used for domestic purposes and stock watering. More than half the wells are flowing wells in Koosharem subbasin.Approximately 82,000 acre-feet of ground water was discharged in 1962 from the valley till. Springs discharged about 33,000 acre-feet, wells about 3,000, and drains about 3,000; and evapotranspiration from phreatophyte areas about 43,000 acre-feet. Springs in bedrock discharged an additional 75,000 acre-feet. Most of the water discharged by springs, wells, and drains was used for irrigation.The ground water in the basin generally is of good chemical quality. The water is excellent for irrigation and stock but is not as desirable for most domestic and industrial uses because of its hardness. The dissolved-solids content of the ground water generally increases slightly from the upstream end of the individual ground-water basins to. the downstream end owing mostly to repeated use of the water for irrigation. Surface water and ground water in the upper Sevier River basin are inter- connected, and the base flows of streams are affected by changes in ground- water levels. Increased pumping of ground water would result in (1) an increase in the recharge to the aquifers from surface-water sources or (2) a decrease in the discharge from streams, springs, flowing wells, and areas of phreatophytes or (3) a combination of these.About 43,000 acre-feet of ground water is now discharged annually by evapotranspiration from phreatophyte areas, and perhaps one-third of this loss, or about 14,000 acre-feet, could be salvaged by eliminating wet areas and phreatophytes. The areas where water could be salvaged are at the downstream ends of Panguitch Valley basin, Circle Valley basin, and Antimony subbasin. Most of the 14,000 acre-feet 'of water could be pumped from large-diameter wells or developed by properly designed drains without greatly affecting stream- flow and with only moderate effect on 'spring discharge. If the wells were properly located, the pumping would lower water levels and dry up wet areas where phreatophytes grow. Conjunctive use of ground water and surface water would facilitate the more efficient use of all water resources in the basin
Hainly, R.A.; Loper, C.A.
1997-01-01
This report describes analyses of available information on nutrients and suspended sediment collected in the Lower Susquehanna River Basin during water years 1975-90. Most of the analyses were applied to data collected during water years 1980-89. The report describes the spatial and temporal availability of nutrient and suspended-sediment data and presents a preliminary concept of the spatial and temporal patterns of concentrations and loads within the basin. Where data were available, total and dissolved forms of nitrogen and phosphorus species from precipitation, surface water, ground water, and springwater, and bottom material from streams and reservoirs were evaluated. Suspended-sediment data from streams also were evaluated. The U.S. Geological Survey National Water Information System (NWIS) database was selected as the primary database for the analyses. Precipitation-quality data from the National Atmospheric Deposition Program (NADP) and bottom-material-quality data from the National Uranium Resource Evaluation (NURE) were used to supplement the water-quality data from NWIS. Concentrations of nutrients were available from 3 precipitation sites established for longterm monitoring purposes, 883 wells (854 synoptic areal survey sites and 29 project and research sites), 23 springs (17 synoptic areal survey sites and 6 project and research sites), and 894 bottom-material sites (840 synoptic areal survey sites and 54 project and research sites). Concentrations of nutrients and (or) suspended sediment were available from 128 streams (36 long-term monitoring sites, 51 synoptic areal survey sites, and 41 project and research sites). Concentrations of nutrients and suspended sediment in streams varied temporally and spatially and were related to land use, agricultural practices, and streamflow. A general north-to-south pattern of increasing median nitrate concentrations, from 2 to 5 mg/L, was detected in samples collected in study unit streams. In streams that drain areas dominated by agriculture, concentrations of nutrients and suspended sediment tend to be elevated with respect to those found in areas of other land-use types and are related to the amount of commercial fertilizer and animal manure applied to the area drained by the streams. Animal manure is the dominant source of nitrogen for the streams in the lower, agricultural part of the basin. Concentrations of nutrients in samples from wells varied with season and well depth and were related to hydrogeologic setting. Median concentrations of nitrate were 2.5 and 3.5 mg/L for wells drawing water at depths of 0 to 100 ft and 101 to 200 ft, respectively. The lowest median concentrations for nitrate in ground water from wells were generally found in siliciclastic-bedrock, forested settings of the Ridge and Valley Physiographic Province, and the highest were found in carbonate-bedrock agricultural settings of the Piedmont Physiographic Province. Twenty-five percent of the measurements from wells in carbonate rocks in the Piedmont Physiographic Province exceeded the Pennsylvania drinking-water standard. An estimate of mass balance of nutrient loads within the Lower Susquehanna River Basin was produced by combining the available information on stream loads, atmosphericdeposition loads, commercial-fertilizer applications, animal-manure production, privateseptic-system nonpoint-source loads, and municipal and industrial point-source loads. The percentage of the average annual nitrate load carried in base flow of streams in the study unit ranged from 45 to 76 percent, and the average annual phosphorus load carried in base flow ranged from 20 to 33 percent. Average annual yields of nutrients and suspended sediment from tributary basins are directly related to percentage of drainage area in agriculture and inversely to drainage area. Information required to compute loads of nitrogen and phosphorus were available for all sources except atmospheric deposition, for which only nitrogen data were available. Atmospheric deposition is the dominant source of nitrogen for the mostly forested basins draining the upper half of the study unit. The estimate of total annual nitrogen load to the study unit from precipitation is 98.8 million pounds. Nonpoint and point sources of nutrients were estimated. Nonpoint and point sources combined, including atmospheric deposition, provide a potential annual load of 390 million pounds of nitrogen and 79.5 million pounds of phosphorus. The range of percentages of the estimated nonpoint and point sources that were measured in the stream was 20 to 47 percent for nitrogen and 6 to 14 percent for phosphorus. On the average, the Susquehanna River discharges 141,000 pounds of nitrogen and 7,920 pounds of phosphorus to the Lower Susquehanna River reservoir system each year. About 98 percent of the nitrogen and 60 percent of the phosphorus passes through the reservoir system. Interpretations of available water-quality data and conclusions about the water quality of the Lower Susquehanna River Basin were limited by the scarcity of certain types of water-quality data and current ancillary data. A more complete assessment of the water quality of the basin with respect to nutrients and suspended sediment would be enhanced by the availability of additional data for multiple samples over time from all water environments; samples from streams in the northern and western part of the basin; samples from streams and springs throughout the basin during high base-flow or stormflow conditions; and information on current land-use, and nutrient loading from all types of land-use settings.
Floods of April-June 1952 in Utah and Nevada
Wells, J.V.B.
1957-01-01
The floods of April-June 1952 in the Great Basin and in the Green River basin in Utah came as the result of the heaviest snow cover recorded, a long period of near-record subnormal temperature during March and early April, and an abrupt change to above-normal temperature that induced rapid melting.Rainfall played an insignificant part. Low- and intermediate-elevation snow melted, bringing many streams to record-high level. Large diurnal fluctuations of discharge were evident on smaller streams. The temperature remained high until mid-May. As high-elevation snow became primed for runoff, the temperature dropped enough to refreeze and alter the structure of snow cover, thus reducing the effectiveness of the subsequent melting temperature. Had there been no respite from melting temperatures much greater peak discharges would have occurred, with damage greatly exceeding that experienced. Streams remained at high levels for several weeks.Record peaks were reached on Strawberry River, lower Weber River, Ogden River, Spanish Fork, lower Provo River, and Jordan River in Utah; Humboldt River and its tributaries draining the north area of the basin in Nevada; and the central Bear River in Idaho and Wyoming. Record volumes for the water year were measured on many streams in the northcentral part of Utah, the northeastern part of Nevada, and the central part of the Bear River basin in Idaho and Wyoming. Damage in the Great Basin reached \\$10 million and in the Green River basin, more than$300,000. Two lives were lost on Ogden River. The greatest urban damage, in Salt Lake City, totaled \\$1.9 million; the greatest single damage, to Denver and Rio Grande Western Railroad, was \\$510,000.
Tectonic and Diapiric Forcing of Western Puerto Rico Landscape
NASA Astrophysics Data System (ADS)
Rogers, R. D.; Macinnes, S.; Hibbert, A.
2008-12-01
Puerto Rico's divide bifurcates in the west into a southern higher-elevation divide and a lower-elevation northern divide. The southern divide trends along exposures of weak, low density serpentinized ocean basement of the Monte de Estado Range forming the highest elevations in western Puerto Rico. Evidence of long-term active uplift along the serpentinite-cored divide is abundant. Streams draining Monte de Estado (MdE) radiate outward from an ellipse centered on the serpentinite exposure. The Rio Anasco draining the north flank of MdE is highly asymmetric, displaying a large scale tilt to the north while the Rio Guanajibo draining its south flank is highly asymmetric with tilt to the south. Subbasins of these rivers are asymmetric, tilted away from the core of the serpentinite exposures. Hypsometric integrals of the Anasco and Guanajibo basins are higher than basins of central and eastern Puerto Rico indicating an inequilibrium condition. The concurrence of morphologic indicators of active uplift (stream patterns and basin asymmetry and hypsometry) with the distribution of topographically elevated low-density serpentinite exposures indicates that MdE is experiencing active diapiric uplift. Northwestern Puerto Rico differs morphologically from the rest of the island. Underlain by island arc crust with exposed igneous and sedimentary strata similar to that of the eastern two-thirds of the island, the Atlantic shore has sea cliffs at the base of a coastal plateau west of the Rio Manati. Rivers draining western Puerto Rico have strikingly lower ratio to valley floor widths to valley height than the rivers to the east indicating incision in response to uplift is greater to the west. Western-most rivers have closer outlet spacing, lower distances from outlets to divide and their watershed have higher hypsometric intergrals all indicating that northwest Puerto Rico is actively uplifting at a rate greater than the eastern two-thirds of the island. North and south flowing tributaries to the Rio Culibrinas display drainage asymmetry reflecting an eastward tilt to northwestern Puerto Rico. This tilt and the uplift of northwest Puerto Rico is consistent with its position on the east flank of the Mona Rift footwall uplift.
NASA Astrophysics Data System (ADS)
Markewitz, Daniel; Resende, Julio C. F.; Parron, Lucilia; Bustamante, Mercedes; Klink, Carlos A.; Figueiredo, Ricardo De O.; Davidson, Eric A.
2006-08-01
The cerrados of Brazil cover 2 million km2. Despite the extent of these seasonally dry ecosystems, little watershed research has been focused in this region, particularly relative to the watersheds of the Amazon Basin. The cerrado shares pedogenic characteristics with the Amazon Basin in draining portions of the Brazilian shield and in possessing Oxisols over much of the landscape. The objective of this research was to quantify the stream water geochemical relationships of an undisturbed 1200 ha cerrado watershed for comparison to river geochemistry in the Amazon. Furthermore, this undisturbed watershed was used to evaluate stream discharge versus dissolved ion concentration relationships. This research was conducted in the Córrego Roncador watershed of the Reserva Ecológica do Roncador (RECOR) of the Instituto Brasileiro Geografia e Estatística (IBGE) near Brasilia, Brazil. Bulk precipitation and stream water chemistry were analysed between May 1998 and May 2000. The upland soils of this watershed are nutrient poor possessing total stocks of exchangeable elements in the upper 1 m of 81 +/- 13, 77 +/- 4, 25 +/- 3, and 1 +/- 1 kg ha-1 of K, Ca, Mg, and P, respectively. Bulk precipitation inputs of dissolved nutrients for this watershed are low and consistent with previous estimates. The nutrient-poor soils of this watershed, however, increase the relative importance of precipitation for nutrient replenishment to vegetation during episodes of ecosystem disturbance. Stream water dissolved loads were extremely dilute with conductivities ranging from 4 to 10 μS cm-1 during periods of high- and low-flow, respectively. Despite the low concentrations in this stream, geochemical relationships were similar to other Amazonian streams draining shield geologies. Discharge-concentration relationships for Ca and Mg in these highly weathered soils developed from igneous rocks of the Brazilian shield demonstrated a significant negative relationship indicating a continued predominance of groundwater baseflow contributions these cationic elements.
Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.
1997-01-01
This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that recharge from precipitation to the water table is 26 to 28 cm/year. Hydraulic conductivities are 1.7 x 10-6 to 2.7 x 10-6 m/s for glacial deposits, about 3 x 10-7 m/s for bedrock beneath lower hillsides and valleys, and about 6x10-8 m/s for bedrock beneath upper hillsides and hilltops. Analysis of parameter uncertainty indicates that the above values are well constrained, at least within the context of regression analysis. In the regression, several attributes of the ground-water flow model are assumed perfectly known. The hydraulic conductivity for bedrock beneath upper hillsides and hilltops was determined from few data, and additional data are needed to further confirm this result. Model fit was not improved by introducing a 10-to-1 ration of horizontal-to-vertical anisotropy in the hydraulic conductivity of the glacial deposits, or by varying hydraulic conductivity with depth in the modeled part (uppermost 150m) of the bedrock. The calibrated model was used to delineate the Mirror Lake ground-water basin, defined as the volumes of subsurface through which ground water flows from the water table to Mirror Lake or its inlet streams. Results indicate that Mirror Lake and its inlet streams drain an area of ground-water recharge that is about 1.5 times the area of the surface-water basin. The ground-water basin extends far up the hillside on the northwestern part of the study area. Ground water from this area flows at depth under Norris Brook to discharge into Mirror Lake or its inlet streams. As a result, the Mirror Lake ground-water basin extends beneath the adjacent ground-water basin that drains into Norris Brook. Model simulation indicates that approximately 300,000 m3/year of precipitation recharges the Mirror Lake ground-water basin. About half the recharge enters the basin in areas where the simulated water table lies in glacial deposits; the other half enters the basin in areas where the simulated water table lies in be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qian; Sun, Ning; Yearsley, John
We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lowermore » reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change.« less
NASA Astrophysics Data System (ADS)
Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua
2018-04-01
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.
NASA Astrophysics Data System (ADS)
Mimba, M. E.; Ohba, T.; Nguemhe Fils, S. C.; Wirmvem, M. J.
2016-12-01
Thousands of people in East Cameroon depend on surface water for consumption and domestic purposes. The Lom basin, north of the region, is heavily mineralized especially in gold owing to its regional geological setting. Although research has been done regarding the rock type, age, formation history and reconnaissance gold surveys, surface water investigation in the area has received limited attention. Thus, this study appraises the first regional hydrogeochemical program for environmental assessment of the mineralized Lom basin. Fifty-two representative stream water samples were collected under base flow conditions and analysed for major cations (Ca2+, Mg2+, Na+, K+ ), major anions (HCO3-, F-, Cl-, NO2-, NO3-, Br-, PO43-, SO42- ) and stable isotopes (δD and δ18O). Calcium and HCO3- were the dominant ions. The chemical facies were CaHCO3 and NaHCO3 indicating surface water draining igneous/metamorphic rocks in hot and humid equatorial climate, resulting in the discordant dissolution of primary silicate minerals. From the isotopic evaluation, the stream water is of meteoric origin, shows negligible evaporation effect and has a common recharge source. The major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Distribution trends of Ca2+, Mg2+, Na+, K+, HCO3- and SO42- showed a correlation with the lithology and the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area. The distribution patterns of NO3- and Cl- reflect pollution from settlement. Overall, the chemistry of stream water in the Lom basin is mainly controlled by rock weathering compared to anthropogenic influence. Surface water quality is easily influenced by anthropogenic activities, and stream sediment collects effectively trace metals resulting from such activities. Hence, geochemical mapping incorporating stream water and stream sediment is of considerable value in future investigations within the Lom basin.
Water quality of the Swatara Creek Basin, PA
McCarren, Edward F.; Wark, J.W.; George, J.R.
1964-01-01
The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and recreation. In general, the quality of Swatara Creek improves after it mixes with water from the Upper Little and Lower Little Swatara Creeks, which converge with the main stream near Pine Grove. Jonestown is the first downstream location where Swatara Creek contains bicarbonate ion most of the time, and for the remaining downstream length of the stream, the concentration of bicarbonate progressively increases. Before the stream enters the Susquehanna River, chemical and diluting processes contributed by tributaries change the acidic calcium sulfate water, which characterizes the upper Swatara, to a calcium bicarbonate water.A major tributary to Swatara Creek is Quittapahilla Creek, which drains a limestone region and has alkaline characteristics. Effluents from a sewage treatment plant are discharged into this stream west of Lebanon. Adjacent to the Creek are limestone quarries and during the recovery of limestone, ground water seeps into the mining areas. This water is pumped to upper levels and flows over the land surface into Quittapahilla Creek. As compared with the 1940's, the quality of Swatara Creek is better today, and the water is suitable for more uses. In large part, this improvement is due to curtailment of anthracite coal mining and because of the controls imposed on new mines, stripping mines, and the related coal mining operations, by the Pennsylvania Sanitary Water Board. Thus, today (1962) smaller amounts of coal mine wastes are more effectively flushed and scoured away with each successive runoff during storms that affect the drainage basin. Natural processes neutralizing acid water in the stream by infiltration of alkaline ground water through springs and through the streambed are also indicated.
Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota
Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.
1969-01-01
The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.
Olson, Scott A.; Brouillette, Michael C.
2006-01-01
A logistic regression equation was developed for estimating the probability of a stream flowing intermittently at unregulated, rural stream sites in Vermont. These determinations can be used for a wide variety of regulatory and planning efforts at the Federal, State, regional, county and town levels, including such applications as assessing fish and wildlife habitats, wetlands classifications, recreational opportunities, water-supply potential, waste-assimilation capacities, and sediment transport. The equation will be used to create a derived product for the Vermont Hydrography Dataset having the streamflow characteristic of 'intermittent' or 'perennial.' The Vermont Hydrography Dataset is Vermont's implementation of the National Hydrography Dataset and was created at a scale of 1:5,000 based on statewide digital orthophotos. The equation was developed by relating field-verified perennial or intermittent status of a stream site during normal summer low-streamflow conditions in the summer of 2005 to selected basin characteristics of naturally flowing streams in Vermont. The database used to develop the equation included 682 stream sites with drainage areas ranging from 0.05 to 5.0 square miles. When the 682 sites were observed, 126 were intermittent (had no flow at the time of the observation) and 556 were perennial (had flowing water at the time of the observation). The results of the logistic regression analysis indicate that the probability of a stream having intermittent flow in Vermont is a function of drainage area, elevation of the site, the ratio of basin relief to basin perimeter, and the areal percentage of well- and moderately well-drained soils in the basin. Using a probability cutpoint (a lower probability indicates the site has perennial flow and a higher probability indicates the site has intermittent flow) of 0.5, the logistic regression equation correctly predicted the perennial or intermittent status of 116 test sites 85 percent of the time.
Nitrous oxide emission from denitrification in stream and river networks
Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.
2011-01-01
Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3-. We suggest that increased stream NO3- loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.
Fusillo, Thomas V.; Schornick, J.C.; Koester, H.E.; Harriman, D.A.
1980-01-01
Water-quality data collected in the upper Oyster Creek drainage basin, Ocean County, N.J., indicate that the stream has excellent water quality except for a persistently low pH. The mean concentrations of the major inorganic ions were all less than 6.0 milligrams per liter. Mean concentrations of total nitrogen and total phosphorus were 0.15 mg/L and 0.01 mg/L, respectively. Dissolved oxygen averaged 8.7 mg/L and 81% saturation. Low pH levels are typical of streams draining cedar swamps. In Oyster Creek, the pH tended to decrease downstream due to chemical and biological processes. The pH levels in swamps were one-half unit or more lower than the pH levels in the adjacent stream. Sharp declines in stream pH were noted during runoff periods as the result of the mixing of poorly-buffered stream water with more highly acidic water from surrounding swamp areas. The quality of ground water within the study area was similar to the quality of streamflow, except for higher iron and ammonia-nitrogen concentrations and a higher pH range of 4.9 to 6.5. Precipitation represented a major source of many chemical constituents in the ground- and surface-waters of the Oyster Creek basin. (USGS)
Water-quality and fluvial-sediment characteristics of selected streams in northeast Kansas
Bevans, H.E.
1982-01-01
In cooperation with the U.S. Soil Conservation Service, an investigation was made of the water-quality and fluvial-sediment characteristics of selected streams in northeast Kansas for which the construction of floodwater-retarding and grade-stabilization structures to control soil erosion is being considered. The predominent chemical type of water in streams draining the study area is calcium bicarbonate. In-stream concentrations of chemical constituents generally decrease with increasing streamflow. Exceptions to this are nitrate and phosphorus, which enter the streams as components of surface runoff. Computed mean annual discharges of dissolved solids ranged from 512 tons for Pony CratkSabetha, Kansas, to 23,900 tons for the Wolf River near Sparks, Kansas. Sediment yields in the study area, predominently silt and clay, are among the largest in the State. Drainage basins in the northern part of the study area yielded the most suspended sediment, with Pony Creek at Sabetha and near Reserve, Kansas, yielding 5,100 tons per square mile per year. Drainage basins in the southern part of the study area yielded less suspended sediment, with Little Grasshopper Creek near Effingham, Kansas, yielding 493 tons per square mile per year and Little Delaware River near Horton, Kansas, yielding 557 tons per square mile per year. (USGS)
Streamflow characteristics of streams in the Helmand Basin, Afghanistan
Williams-Sether, Tara
2008-01-01
A majority of the Afghan population lacks adequate and safe supplies of water because of contamination, lack of water-resources management regulation, and lack of basic infrastructure, compounded by periods of drought and seasonal flooding. Characteristics of historical streamflows are needed to assist with efforts to quantify the water resources of the Helmand Basin. The Helmand Basin is the largest river basin in Afghanistan. It comprises the southern half of the country, draining waters from the Sia Koh Mountains in Herat Province to the eastern mountains in Gardez Province (currently known as the Paktia Province) and the Parwan Mountains northwest of Kabul, and finally draining into the unique Sistan depression between Iran and Afghanistan (Favre and Kamal, 2004). The Helmand Basin is a desert environment with rivers fed by melting snow from the high mountains and infrequent storms. Great fluctuations in streamflow, from flood to drought, can occur annually. Knowledge of the magnitude and time distribution of streamflow is needed to quantify water resources and for water management and environmental planning. Agencies responsible for the development and management of Afghanistan's surface-water resources can use this knowledge for making safe, economical, and environmentally sound water-resource planning decisions. To provide the Afghan managers with necessary streamflow information, the U.S. Geological Survey (USGS), in cooperation with the U.S. Agency for International Development (USAID), computed streamflow statistics for data collected at historical gaging stations within the Helmand Basin. The historical gaging stations used are shown in figure 1 and listed in table 1.
Wilber, William G.; Renn, Danny E.; Crawford, Charles G.
1985-01-01
The effect of surficial geology on stream quality was evident for several dissolved constituents in forested and agricultural watersheds. In general, pH and concentrations of alkalinity and calcium were significantly higher in streams draining the Wisconsin glacial province than in streams draining the Illinoian glacial province and unglaciated regions. The higher pH and concentrations of these constituents suggests that there is greater dissolution of carbonate minerals in the Wisconsin glacial province than the other regions. Median concentrations of arsenic, lead, and manganese for streams draining the Wisconsin glacial province were significantly lower than for those constituents in streams draining the Illinoian province and unglaciated region. The median cadmium concentration for streams draining the Wisconsin glacial province was lower than for streams draining the unglaciated region. These differences may have been due to lower solubilities of metal and trace elements at higher pH values in the Wisconsin glacial province than in the Illinoian glacial province and the unglaciated region.
Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)
Snell, Leonard J.
1979-01-01
The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)
Bradfield, A.D.
1986-01-01
Coal-mining impacts on Smoky Creek, eastern Tennessee were evaluated using water quality and benthic invertebrate data. Data from mined sites were also compared with water quality and invertebrate fauna found at Crabapple Branch, an undisturbed stream in a nearby basin. Although differences in water quality constituent concentrations and physical habitat conditions at sampling sites were apparent, commonly used measures of benthic invertebrate sample data such as number of taxa, sample diversity, number of organisms, and biomass were inadequate for determining differences in stream environments. Clustering algorithms were more useful in determining differences in benthic invertebrate community structure and composition. Normal (collections) and inverse (species) analyses based on presence-absence data of species of Ephemeroptera, Plecoptera, and Tricoptera were compared using constancy, fidelity, and relative abundance of species found at stations with similar fauna. These analyses identified differences in benthic community composition due to seasonal variations in invertebrate life histories. When data from a single season were examined, sites on tributary streams generally clustered separately from sites on Smoky Creek. These analyses compared with differences in water quality, stream size, and substrate characteristics between tributary sites and the more degraded main stem sites, indicated that numerical classification of invertebrate data can provide discharge-independent information useful in rapid evaluations of in-stream environmental conditions. (Author 's abstract)
The Mojave River from sink to source: The 2018 Desert Symposium Field Trip Road Log
Miller, David; Reynolds, R.E.; Groover, Krishangi D.; Buesch, David C.; Brown, H. J.; Cromwell, Geoffrey; Densmore-Judy, Jill; Garcia, A.L.; Hughson, D.; Knott, J.R.; Lovich, Jeffrey E.
2018-01-01
The Mojave River evolved over the past few million years by “fill and spill” from upper basins near its source in the Transverse Ranges to lower basins. Each newly “spilled into” basin in the series? sustained a long-lived lake but gradually filled with Mojave River sediment, leading to spill to a yet lower elevation? basin. The Mojave River currently terminates at Silver Lake, near Baker, CA, but previously overflowed this terminus onward to Lake Manly in Death Valley during the last glacial cycle. The river’s origin and evolution are intricately interwoven with tectonic, climatic, and geomorphic processes through time, beginning with San Andreas fault interactions that created a mountain range across a former externally draining river. We will see and discuss the Mojave River’s predecessor streams and basins, its evolution as it lengthened to reach the central Mojave Desert, local and regional tectonic controls, groundwater flow, flood history, and support of isolated perennial stream reaches that host endemic species. In association with these subjects are supporting studies such as paleoclimate records, location and timing for groundwater and wetlands in the central Mojave Desert, and effects of modern water usage. The trip introduces new findings for the groundwater basin of Hinkley Valley, including an ongoing remediation project that provides a wealth of information on past and present river flow and associated development of the groundwater system.
Garklavs, George; Healy, R.W.
1986-01-01
Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)
Occurrence, distribution, and transport of nutrients in Eastern Iowa Rivers
Becher, Kent D.
2001-01-01
Total nitrogen loads contributed to the Mississippi River from the Eastern Iowa Basins during 1996, 1997, and 1998 were 97,000, 120,000, and 230,000 metric tons respectively. Total phosphorus loads contributed to the Mississippi River from the Eastern Iowa Basins during 1996, 1997, and 1998 were 6,900, 4,600, and 8,800 metric tons, respectively. The highest nitrogen and phosphorus yields typically occurred in streams draining small watersheds that were dominated by a single land use and geology. Sampling sites located in drainage basins with higher row-crop percentage typically had higher nitrogen and phosphorus yields. Sites that were located in the Des Moines Lobe and the Southern Iowa Drift Plain typically had higher phosphorus yields probably due to more erodible soils and steeper slopes.
1983-06-01
Field Control Results 18 - Record Test Results 18 GRAVEL DRAIN MATERIAL, 19 FILTER MATERIAL, 20 ABUTMET INFILL MATERIAL- 20 X. EMBANKMENT ANALYSIS 21 XI...Thirty-three in-situ density tests were conducted in the near surface embankment foundation materials by the sand displacement method . An additional...seven densities were obtained from undisturbed samples by the bulk density method . The results of density tests in the foundation are shown on plate
Selenium Concentrations in Middle Pennsylvanian Coal-Bearing Strata in the Central Appalachian Basin
Neuzil, Sandra G.; Dulong, Frank T.; Cecil, C. Blaine; Fedorko, Nick; Renton, John J.; Bhumbla, D.K.
2007-01-01
Introduction This report provides the results of a reconnaissance-level investigation of selenium (Se) concentrations in Middle Pennsylvanian coal-bearing strata in the central Appalachian basin. Bryant and others (2002) reported enrichments of Se concentrations in streams draining areas disturbed by surface mining relative to Se concentrations in streams that drain undisturbed areas; the study was conducted without the benefit of data on Se concentrations in coal-bearing strata prior to anthropogenic disturbance. Thus, the present study was conducted to provide data on Se concentrations in coal-bearing strata prior to land disturbance. The principal objectives of this work are: 1) determine the stratigraphic and regional distribution of Se concentrations in coal-bearing strata, 2) provide reconnaissance-level information on relations, if any, between Se concentrations and lithology (rock-type), and 3) develop a cursory evaluation of the leachability of Se from disturbed strata. The results reported herein are derived from analyses of samples obtained from three widely-spaced cores that were collected from undisturbed rock within a region that has been subjected to extensive land disturbance principally by either coal mining or, to a lesser extent, highway construction. The focus was on low-organic-content lithologies, not coal, within the coal-bearing interval, as these lithologies most commonly make up the fill materials after coal mining or in road construction.
Snyder, C.D.; Young, J.A.; Lemarie, D.P.; Smith, D.R.
2002-01-01
We conducted a comparative study in the Delaware Water Gap National Recreation Area to determine the potential long-term impacts of hemlock forest decline on stream benthic macroinvertebrate assemblages. Hemlock forests throughout eastern North America have been declining because of the hemlock woolly adelgid, an exotic insect pest. We found aquatic invertebrate community structure to be strongly correlated with forest composition. Streams draining hemlock forests supported significantly more total taxa than streams draining mixed hardwood forests, and over 8% of the taxa were strongly associated with hemlock. In addition, invertebrate taxa were more evenly distributed (i.e., higher Simpson's evenness values) in hemlock-drained streams. In contrast, the number of rare species and total densities were significantly lower in streams draining hemlock, suggesting that diversity differences observed between forest types were not related to stochastic factors associated with sampling and that streams draining mixed hardwood forests may be more productive. Analysis of stream habitat data indicated that streams draining hemlock forests had more stable thermal and hydrologic regimes. Our findings suggest that hemlock decline may result in long-term changes in headwater ecosystems leading to reductions in both within-stream (i.e., alpha) and park-wide (i.e., gamma) benthic community diversity.
NASA Astrophysics Data System (ADS)
Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.
2015-03-01
A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
Helgesen, J.O.
1995-01-01
Surface-water-quality conditions and trends were assessed in the lower Kansas River Basin, which drains about 15,300 square miles of mainly agricultural land in southeast Nebraska and northeast Kansas. On the basis of established water-quality criteria, most streams in the basin were suitable for uses such as public-water supply, irrigation, and maintenance of aquatic life. However, most concerns identified from a previous analysis of available data through 1986 are substantiated by analysis of data for May 1987 through April 1990. Less-than-normal precipitation and runoff during 1987-90 affected surface-water quality and are important factors in the interpretation of results.Dissolved-solids concentrations in the main stem Kansas River during May 1987 through April 1990 commonly exceeded 500 milligrams per liter, which may be of concern for public-water supplies and for the irrigation of sensitive crops. Large concentrations of chloride in the Kansas River are derived from ground water discharging in the Smoky Hill River Basin west of the study unit. Trends of increasing concentrations of some dissolved major ions were statistically significant in the northwestern part of the study unit, which could reflect substantial increases in irrigated acreage.The largest concentrations of suspended sediment in streams during May 1987 through April 1990 were associated with high-density cropland in areas of little local relief and medium-density irrigated cropland in more dissected areas. The smallest concentrations were measured downstream from large reservoirs and in streams draining areas having little or no row-crop cultivation. Mean annual suspended-sediment transport rates in the main stem Kansas River increased substantially in the downstream direction. No conclusions could be reached concerning the relations of suspended-sediment transport, yields, or trends to natural and human factors.The largest sources of nitrogen and phosphorus in the study unit were fertilizer and livestock. Nitrate-nitrogen concentrations in stream-water samples did not exceed 10 milligams per liter; relatively large concentrations in the northwestern part of the study unit were associated with fertilizer application. Concentrations of total phosphorus generally were largest in the northwestern part of the study unit, which probably relates to the prevalence of cultivated land, fertilizer application, and livestock wastes.Deficiencies in dissolved-oxygen concentrations in streams occurred locally, as a result of discharges from wastewater-treatment plants, algal respiration, and inadequate reaeration associated with small streamflow. Large densities of a fecal-indicator bacterium, Escherichia coli, were associated with discharges from municipal wastewater-treatment plants and, especially in the northwestern part of the study unit, with transport of fecaThe largest concentrations of the herbicide atrazine generally were measured where the largest quantities of atrazine were applied to the land. Large atrazine concentrations, 10 to 20 micrograms per liter, were measured most frequently in unregulated principal streams during May and June. Downstream of reservoirs, the seasonal variability of atrazine concentrations was decreased compared to that of inflowing streams.
1975-03-01
Smith, Jr. 1971. Annual Catch of Yellow Perch from Red Lakes, Minnesota, in Relation to Growth Rate and Fishing Effort. University of Minnesota...forest... The stream borders become marshy... growths of wild rice.., muskrats and ducks, muddy game trails between r water and woods... Hardwood forest...the Reservation itself, the Red Lake River drained what was then-so far as I could see from the canoe--real wilderness...There were heavy growths of
Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter
2012-01-01
Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.
Transient river response, captured by channel steepness and its concavity
NASA Astrophysics Data System (ADS)
Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.
2015-01-01
Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang
This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- andmore » intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.« less
Matt R. Whiles; J. Bruce Wallace
1997-01-01
Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...
Chemical quality of surface water in the West Branch Susquehanna River basin, Pennsylvania
McCarren, Edward F.
1964-01-01
The West Branch Susquehanna River is 228 miles long and drains 6,913 square miles of mountainous area in central Pennsylvania. Much of this area is forestcovered wilderness, part of which is reserved as State game land. Wild animals, such as deer, bear, turkey and grouse, are sheltered there, and many streams contain trout and other game fish. This helps to make the region one of the best hunting and fishing areas in Pennsylvania. The Congress has approved Federal funds for the construction of several reservoirs to prevent flooding of the main river and several of its tributaries. Water stored behind the dams will not be withdrawn below a minimum level designated as conservation pools. These pools will be available for recreation. Several headwater streams, such as Clearfield, Moshannon, and at times Sinnemahoning Creek, that carry drainage from coal mines are acid and contain high concentrations of dissolved solids, especially sulfates. These streams acidify the West Branch Susquehanna River downstream as far as Jersey Shore. One of the most influential tributaries affecting the quality of the West Branch Susquehanna River after they merge is Bald Eagle Creek. Bald Eagle Creek enters the main river downstream from Lock Haven which is approximately 100 river miles from the river's source. Because of its alkaline properties, water of Bald Eagle Creek can neutralize acidic water. Many streams draining small areas and several draining large areas such as Pine Creek, Lycoming Creek, and Loyalsock Creek are clear nearly neutral water low in dissolved solids whose pH is about 7.0 most of the time. These streams have a diluting and neutralizing effect on the quality of the West Branch Susquehanna River, so that from Williamsport downstream the river water is rarely acid, and for most of the time it is of good chemical quality.
Konrad, Christopher; Sevier, Maria
2014-01-01
Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.
Miller, C.V.; Foster, G.D.; Majedi, B.F.
2003-01-01
Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.
Miller, David; Reynolds, R.E.; Groover, Krishangi D.; Buesch, David C.; Brown, H. J.; Cromwell, Geoffrey; Densmore-Judy, Jill; Garcia, A.L.; Hughson, D.; Knott, J.R.; Lovich, Jeffrey E.
2018-01-01
The Mojave River evolved over the past few million years by “fill and spill” from upper basins near its source in the Transverse Ranges to lower basins. Each newly “spilled into” basin in the series? sustained a long-lived lake but gradually filled with Mojave River sediment, leading to spill to a yet lower elevation? basin. The Mojave River currently terminates at Silver Lake, near Baker, CA, but previously overflowed this terminus onward to Lake Manly in Death Valley during the last glacial cycle. The river’s origin and evolution are intricately interwoven with tectonic, climatic, and geomorphic processes through time, beginning with San Andreas fault interactions that created a mountain range across a former externally draining river. We will see and discuss the Mojave River’s predecessor streams and basins, its evolution as it lengthened to reach the central Mojave Desert, local and regional tectonic controls, groundwater flow, flood history, and support of isolated perennial stream reaches that host endemic species. In association with these subjects are supporting studies such as paleoclimate records, location and timing for groundwater and wetlands in the central Mojave Desert, and effects of modern water usage. The trip introduces new findings for the groundwater basin of Hinkley Valley, including an ongoing remediation project that provides a wealth of information on past and present river flow and associated development of the groundwater system.
Magnitude and frequency of floods in Arkansas
Hodge, Scott A.; Tasker, Gary D.
1995-01-01
Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and Ouachita Rivers have floodflow characteristics that differ from those of smaller tributary streams and were treated individually. Regional regression equations are not applicable to these large rivers. The magnitude and frequency of floods along these rivers are based on specific station data. This section is provided in the Appendix and has not been updated since the last Arkansas flood frequency report (1987b), but is included at the request of the cooperator.
Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.
2000-01-01
The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and industrial wastewater- treatment and thermoelectric plants, urban runoff, and disposal of solid and hazardous wastes contribute contaminants to surface water and ground water throughout the study area. Surface water and ground water in the Great and Little Miami River Basins are classified as very hard, calcium-magnesium- bicarbonate waters. The major-ion composition and hardness of surface water and ground water reflect extensive contact with the carbonate-rich soils, glacial sediments, and limestone or dolomite bedrock. Dieldrin, endrin, endosulfan II, and lindane are the most commonly reported organochlorine pesticides in streams draining the Great and Little Miami River Basins. Peak concentrations of the her-bicides atrazine and metolachlor in streams commonly are associated with post-application runoff events. Nitrate concentrations in surface water average 3 to 4 mg/L (milligrams per liter) in the larger streams and also show strong seasonal variations related to application periods and runoff events. Ambient iron concentrations in ground water pumped from aquifers in the Great and Little Miami River Basins often exceed the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (300 micrograms per liter). Chloride concentrations are below aesthetic drinking-water guidelines (250 mg/L), except in ground water pumped from low-yielding Ordovician shale; chloride concentrations in sodium-chloride- rich ground water pumped from the shale bedrock can exceed 1,000 mg/L. Some of the highest average nitrate concentrations in ground water in Ohio and Indiana are found in wells completed in the buried-valley aquifer; these concentrations typically are found in those parts of the sand and gravel aquifer that are not overlain by clay-rich till. Atrazine was the most commonly detected herbicide in private wells. Concentrations of volatile organic compounds in ground water generally were below Federal drinking-water standards, except near areas of known or
Nitrous oxide emission from denitrification in stream and river networks
Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay P.; Bernot, Melody J.; Burgin, Amy J.; Crenshaw, Chelsea L.; Helton, Ashley M.; Johnson, Laura T.; O'Brien, Jonathan M.; Potter, Jody D.; Sheibley, Richard W.; Sobota, Daniel J.; Thomas, Suzanne M.
2011-01-01
Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change. PMID:21173258
New metrics for evaluating channel networks extracted in grid digital elevation models
NASA Astrophysics Data System (ADS)
Orlandini, S.; Moretti, G.
2017-12-01
Channel networks are critical components of drainage basins and delta regions. Despite the important role played by these systems in hydrology and geomorphology, there are at present no well-defined methods to evaluate numerically how two complex channel networks are geometrically far apart. The present study introduces new metrics for evaluating numerically channel networks extracted in grid digital elevation models with respect to a reference channel network (see the figure below). Streams of the evaluated network (EN) are delineated as in the Horton ordering system and examined through a priority climbing algorithm based on the triple index (ID1,ID2,ID3), where ID1 is a stream identifier that increases as the elevation of lower end of the stream increases, ID2 indicates the ID1 of the draining stream, and ID3 is the ID1 of the corresponding stream in the reference network (RN). Streams of the RN are identified by the double index (ID1,ID2). Streams of the EN are processed in the order of increasing ID1 (plots a-l in the figure below). For each processed stream of the EN, the closest stream of the RN is sought by considering all the streams of the RN sharing the same ID2. This ID2 in the RN is equal in the EN to the ID3 of the stream draining the processed stream, the one having ID1 equal to the ID2 of the processed stream. The mean stream planar distance (MSPD) and the mean stream elevation drop (MSED) are computed as the mean distance and drop, respectively, between corresponding streams. The MSPD is shown to be useful for evaluating slope direction methods and thresholds for channel initiation, whereas the MSED is shown to indicate the ability of grid coarsening strategies to retain the profiles of observed channels. The developed metrics fill a gap in the existing literature by allowing hydrologists and geomorphologists to compare descriptions of a fixed physical system obtained by using different terrain analysis methods, or different physical systems described by using the same methods.
Haag, K.H.; Porter, S.D.
1995-01-01
The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.
Himalayas as seen from STS-66 shuttle Atlantis
1994-11-14
View is southeastward across China (Tibet), half of Nepal and India. The partly frozen lake near the center of the frame is Pei-Ku T'so ("Bos-tie Lake"). The central Himalaya stretches from Mount Everest on the left past Annapurna on the right. Large tributaries converge to form the Ganges River, flowing through the lowland basin south of the Himalaya. This photograph illustrates the rain shadow effect of the Himalaya Chain; wet, warm air from the Indian Ocean is driven against the mountains, lifted, and drained of water that forms ice caps, the abundant rivers, and forests of the foothills. In contrast the high plateau of Tibet is arid, composed largely of topographically-closed basins because stream flow is inadequate to form integrated drainage networks.
Wright, Winfield G.
1997-01-01
As part of the Clean Water Act of 1972 (Public Law 92-500), all States are required to establish water-quality standards for every river basin in the State. During 1994, the Colorado Department of Public Health and Environment proposed to the Colorado Water Quality Control Commission (CWQCC) an aquatic-life standard of 225 µg/L (micrograms per liter) for the dissolved-zinc concentration in the Animas River downstream from Silverton (fig.1). The CWQCC delayed implementation of this water-quality standard until further information was collected and a plan for the cleanup of abandoned mines was developed. Dissolved-zinc concentrations in this section of the river ranged from about 270 µg/L during high flow, when rainfall and snowmelt runoff dilute the dissolved minerals in the river (U.S. Geological Survey, 1996, p. 431), to 960 µg/L (Colorado Department of Public Health and Environment, written commun., 1996) during low flow (such as late summer and middle winter when natural springs and drainage from mines are the main sources for the streams). Mining sites in the basin were developed between about 1872 and the 1940's, with only a few mines operated until the early 1990's. For local governments, mining sites represent part of the Nation's heritage, tourists are attracted to the historic mining sites, and governments are obligated to protect the historic mining sites according to the National Historic Preservation Act (Public Law 89-665). In the context of this fact sheet, the term "natural sources of dissolved minerals" refers to springs and streams where no effect from mining were determined. "Mining-related sources of dissolved minerals" are assumed to be: (1 ) Water draining from mines , and (2) water seeping from mine-waste dump pile where the waste piles were saturated by water draining from mines. Although rainfall and snowmelt runoff from mine-waste piles might affect water quality in streams, work described in this fact sheet was done during low-flow conditions when springs and drainage from mine were the main sources of dissolved minerals affecting the streams. Data are being collected by the U.S. Geological Survey (USGS) to determine the magnitude and sources of dissolved minerals during rainfall- and snowmelt-runoff periods. This fact sheet presents results of studies done by the USGS in collaboration with the Animas River Stakeholders Group and was prepared in cooperation with the Southwestern Colorado Water Conservation District. The studies were done at selected sites in the Upper Animas River Basin to determine natural and mining-related sources of dissolved minerals and are continuing in the basin with the Animas River Stakeholders Group and as part of the Department of the Interior Abandoned Mine Lands Initiative. The results of these studies will provide useful information for determining water-quality standards in the basin.
Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.
1999-01-01
IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and designing treatment facilities for several additional AMD sites that adversely affect the Cheat River and its tributaries. To obtain the baseline water-quality information necessary to evaluate instream treatment and alternative methods for remediating AMD and its effects, the U.S. Geological Survey (USGS), in cooperation with the WVDEP, collected stream water samples at 111 sites throughout the Lower Cheat River Basin during low-flow conditions from July 16-18, 1997. The data also will provide information on stream water quality in areas affected by AMD and thus would point to priority areas of focus, such as the sources of the AMD. This report presents the results of analyses of the samples collected in July 1997 and describes a process for ranking of stream water-quality degradation as a guide to water-resource managers considering AMD remediation activities.
Water Quality in the Yakima River Basin, Washington, 1999-2000
Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.
2004-01-01
This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).
Long-term evolution of denudational escarpments in southeastern Brazil
NASA Astrophysics Data System (ADS)
Cherem, Luis Felipe Soares; Varajão, Cesar Augusto C.; Braucher, Regis; Bourlés, Didier; Salgado, André Augusto R.; Varajão, Angélica C.
2012-11-01
Topographic relief in southeastern Brazil consists of a sequence of stepped surfaces that formed after the fragmentation of Gondwana during the Cretaceous, Tertiary and Quaternary tectonic pulses. This region is drained by four major rivers within four major river basins, with interfluves that contain denudational escarpments, fault escarpments and mountain ranges. This study presents an analysis of the long-term evolution of two denudational escarpments, the Cristiano Otoni and the São Geraldo steps, which divide the river basins of the São Francisco, Doce and Paraíba do Sul rivers in southeastern Brazil. Denudation rates were obtained through the measurement of mean concentrations of in situ produced cosmogenic 10Be in sand-sized fluvial quartz sediments collected from granitic terrains. The rates were calculated and compared with one another and correlated to the basin-scale mean relief, slope, area, and stream power. The mean denudation rates of the Cristiano Otoni and São Geraldo highlands are 8.77 (± 2.78) m My- 1 and 15.68 (± 4.53) m My- 1, respectively. The mean denudation rates of the Cristiano Otoni and São Geraldo escarpments are 17.50 (± 2.71) m My- 1 and 21.22 (± 4.24) m My- 1, respectively. The denudation rates of the catchments of highlands that drain toward the escarpments are similar to those of their respective highlands. The results demonstrate that relief and slope have similar positive control on the denudation rates for all of the samples despite their different geomorphic context and history of landscape evolution. The São Francisco River Basin is losing area to the Doce River Basin, which, in turn, is losing area to the Paraíba do Sul River Basin.
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Wahl, M.; Turnbull, S. J.
2015-12-01
Historically the Midwestern United State was a region dominated by prairie grasses and wetlands. To make use of the rich soils underlying these fertile environments, farmers converted the land to agriculture and currently the Midwest is a region of intensive agricultural production, with agriculture being a predominant land use. The Midwest is a region of gentle slopes, tight soils, and high water tables, and in order to make the lands suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. As part of the Minnesota River Basin Integrated Study we are simulating nested watersheds in a sub-basin of the Minnesota River Basin, Seven Mile Creek, using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis) to simulate water, sediment, and nutrients. Representative of the larger basin, more than 80% of the land in the watershed is dedicated to agricultural practices. From a process perspective, the hydrology is complicated, with snow accumulation and melt, frozen soil, and tile drains all being important processes within the watershed. In this study we attempt to explicitly simulate these processes, including the tile drains, which are simulated as a network of subsurface pipes that collect water from the local water table. Within the watershed, tiles discharge to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. Testing of the methods on smaller basins demonstrates the ability of the model to simulate measured tile flow. At the larger scale, the model demonstrates ability to simulate flow and sediments. Sparse nutrient data limit the assessment of nutrient simulations. The models are being used to asses an array of potential future land use scenarios, including predevelopment and increased agricultural use. Results from these simulations will be presented. Preliminary results indicate that tile drains increase discharge and erosion in the watershed.
Land, Larry F.
1996-01-01
In 1991, the U.S. Geological Survey (USGS) began nationwide implementation of the National Water-Quality Assessment (NAWQA) Program. Long-term goals of NAWQA are to describe the status of and trends in the quality of a large, representative part of the Nation?s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources (Leahy and others, 1990). The Trinity River Basin in east-central Texas (fig. 1) was among the first 20 hydrologic areas, called study units, to be assessed by this program. The first intensive data-collection phase for the Trinity River Basin NAWQA began in March 1993 and ended in September 1995. Streams in the Trinity River Basin were assessed by sampling water, bed sediment, and tissue of biota and characterizing the aquatic communities and their habitat. Aquifers were assessed by sampling water from wells. The coastal prairie is a small part of the Trinity River Basin, but it is environmentally important because of its proximity to Galveston Bay and the extensive use of agricultural chemicals on many irrigated farms. Galveston Bay (fig. 1) was selected by Congress as an estuary of national significance and was included on a priority list for the National Estuary Program. The Trinity River is especially important because its watershed dominates the total Galveston Bay drainage area and because its flow contributes substantial amounts of freshwater and water-quality constituents to the bay. Historically, measurements of the quantity and quality of water entering Galveston Bay from the Trinity River Basin have been made using data from a station about 113 kilometers (70 miles) upstream from Trinity Bay, an inlet bay to Galveston Bay. With a focused objective of providing additional water-quality information in the intervening coastal prairie area and an overall objective of improving the understanding of the relations between farming practices and stream quality in the Trinity River Basin, a special study was conducted. This report provides a description of the occurrence and concentrations of nutrients in two streams in this intervening area. An earlier report by Brown (1996) describes the occurrence and concentrations of pesticides in these two streams. An overall analysis of nutrient data collected during 1974?91 in the Trinity River Basin is given by Van Metre and Reutter (1995).
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
2006-06-29
This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).
Flood-frequency prediction methods for unregulated streams of Tennessee, 2000
Law, George S.; Tasker, Gary D.
2003-01-01
Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.
Bradfield, A.D.; Porter, S.D.
1990-01-01
The Kentucky River basin, an area of approximately 7,000 sq mi, is divided into five hydrologic units that drain parts of three physiographic regions. Data on aquatic biological resources were collected and reviewed to assess conditions in the major streams for which data were available. The North, Middle, and South Forks of the Kentucky River are in the Eastern Coal Field physiographic region. Streams in this region are affected by drainage from coal mines and oil and gas operations, and many support only tolerant biotic stream forms. The Kentucky River from the confluence of the three forks to the Red River, is in the Knobs physiographic region. Oil and gas production operations and point discharges from municipalities have affected many streams in this region. The Red River, a Kentucky Wild River, supported a unique flora and fauna but accelerated sedimentation has eliminated many species of mussels. The Millers Creek drainage is affected by brines discharged from oil and gas operations, and some reaches support only halophilic algae and a few fish. The Kentucky River from the Red River to the Ohio River is in the Bluegrass physiographic region. Heavy sediment loads and sewage effluent from urban centers have limited the aquatic biota in this region. Silver Creek and South Elkhorn Creek have been particularly affected and aquatic communities in these streams are dominated by organisms tolerant of low dissolved oxygen concentrations. Biological data for other streams indicate that habitat and water quality conditions are favorable for most commonly occurring aquatic organisms. (USGS)
NASA Astrophysics Data System (ADS)
Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee
2015-04-01
Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
NASA Astrophysics Data System (ADS)
Braun, J. J.; Jeffery, K.; Koumba Pambo, A. F.; Paiz, M. C.; Richter, D., Jr.; John, P.; Jerome, G.
2015-12-01
Critical Zone Observatories (CZO) in equatorial regions are seldom (see e. g. http://www.czen.org/, USA and http://rnbv.ipgp.fr/, France). The equatorial zone of Central Africa is almost free of them with the exception of the CZO of the Upper Nyong river basin (organic-rich river on the lateritic plateau of South Cameroon; SO BVET, http://bvet.omp.obs-mip.fr/). On both sides of the Equator line, the Ogooué River Basin (215,000 km2) stretches on about 80% of the total area of Gabon and drains various geological and morpho-pedological contexts and feeds the sedimentation areas of the Central African passive margin (Guillochaux et al., 2014). The Upper Ogooué (up to Lambaréné) drains the stepped planation surface of the Congo craton while the Lower Ogooué drains Mesozoic and Cenozoic sedimentary terrains. The climate is equatorial (Pmean = 2500 mm/yr; Tmean = 26 °; %humidity > 80%). Continuous hydro-climatic chronicles exist for the period 1953-1974 (managed by ORSTOM, now IRD). The runoff at Lambaréné (92% of the basin area) is very high (714 mm/yr). With a rural density of 1 inhabitant/km2, it is one of the last largely pristine tropical forested ecosystems on the Planet. In addition, the basin will be, in the coming decades, the theatre of important anthropogenic changes (dams, agriculture, mining, urbanisation, …). However, a conservation plan with an ambitious sustainable development policy is set up. This plan articulates the environmental issues related to the emergence of the country. Because of these characteristics, the basin offers ideal conditions for studying the changes in equatorial region of hydro-climate, weathering/erosion regimes and regolith production based on morpho-pedological contexts and associated physical, chemical and biological processes. It is thus germane to launch an integrated CZO initiative at both regional scale and local scale. At the regional scale, we plan to reactivate some of the hydro-climatic stations located on the planation surface (Franceville, Ayem, and Lambaréné). At the local scale, we plan to set up a small experimental watershed on the Lopé stream draining the northern part of the Lopé National Park, which is covered by a mosaic of forest and savannah. The Ogooué CZO will be highly complementary to the Nyong CZO, Cameroon, and a major asset for the international community.
Stream water quality in the coal region of West Virginia and Maryland
Kenneth L. Dyer
1982-01-01
This report is a compilation of water quality data for 118 small streams sampled in 27 counties of West Virginia and nine streams in two counties of western Maryland. Forty-eight of these streams drain unmined watersheds; 79 drain areas where coal has been surface mined. Most of these streams were sampled at approximate monthly intervals. The water quality data from...
NASA Astrophysics Data System (ADS)
Larose, R.; Lee, S.; Lane, T.
2015-12-01
Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.
Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan
Whitney, John W.
2006-01-01
This report presents an overview of the geology, hydrology, and climate of the lower Helmand Basin, a large, closed, arid basin in southern Afghanistan. The basin is drained by the Helmand River, the only perennial desert stream between the Indus and Tigris-Euphrates Rivers. The Helmand River is the lifeblood of southern Afghanistan and has supported desert civilizations in the Sistan depression for over 6,000 years. The Helmand Basin is a structurally closed basin that began to form during the middle Tertiary as a consequence of the collision of several Gondwanaland fragments. Aeromagnetic studies indicate the basin is 3-5 kilometers deep over basement rocks. Continued subsidence along basin-bounding faults in Iran and Pakistan throughout the Neogene has formed the Sistan depression in the southwest corner of the basin. Lacustrine, eolian, and fluvial deposits are commonly exposed in the basin and were intruded by latest Miocene-middle Quaternary volcanoes, which indicates that depositional environments in the lower Helmand Basin have not substantially changed for nearly 10 million years. Lakes expanded in the Sistan depression during the Quaternary; however, the size and extent of these pluvial lakes are unknown. Climate conditions in the lower Helmand Basin likely mirrored climate changes in the Rajasthan Desert to the east and in Middle Eastern deserts to the west: greater aridity during global episodes of colder temperatures and increased available moisture during episodes of warmer temperatures. Eolian processes are unusually dominant in shaping the landscape in the basin. A strong wind blows for 120 days each summer, scouring dry lakebeds and creating dune fields from annual flood deposits. Nearly one-third of the basin is mantled with active or stabilized dunes. Blowing winds combined with summer temperatures over 50? Celsius and voluminous insect populations hatched from the deltaic wetlands create an environment referred to as the 'most odious place on earth' by 19th century visitors. During dry years, large plumes of dust originating from Sistan are recorded by weather satellites. The Helmand River drains about 40 percent of Afghanistan and receives most of its moisture from melting snow and spring storms. Similar to many desert streams, the Helmand and its main tributary, the Arghandab River, are characterized by large fluctuations in monthly and annual discharges. Water from the Helmand accumulates in several hamuns (shallow lakes) in the Sistan depression. The wetlands surrounding these hamuns are the largest in western Asia and are directly affected by droughts and floods on the Helmand. Average annual discharge on the Helmand is about 6.12 million megaliters (million cubic meters), and the annual discharge varies by a factor of five. In 2005, the region was just beginning to recover from the longest drought (1998-2005) of record back to 1830. Annual peak discharges range from less than 80 cubic meters per second in 1971 to nearly 19,000 cubic meters per second in 1885. Large floods fill each hamun to overflowing to create one large lake that overflows into the normally dry Gaud-i Zirreh basin. The interaction of flooding, active subsidence, and wind erosion causes frequent channel changes on the Helmand delta. A major development effort on the Helmand River was initiated after World War II with substantial aid from the United States. Two dams and several major canals were completed in the 1950s; however, poor drainage conditions on the newly prepared agricultural fields caused extensive waterlogging and salinization. New drains were installed and improved agricultural methods were implemented in the 1970s, and some lands became more productive. Since 1980, Afghanistan has endured almost constant war and civil and political strife. In 2005, the country was on a path to rebuild much of its technical infrastructure. Revitalization of agricultural lands in the lower Helmand Basin and improved managem
Using heat to characterize streambed water flux variability in four stream reaches
Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.
2008-01-01
Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Lundquist, J.D.; Flint, A.L.
2006-01-01
Historic streamflow records show that the onset of snowfed streamflow in the western United States has shifted earlier over the past 50 yr, and March 2004 was one of the earliest onsets on record. Record high temperatures occurred throughout the western United States during the second week of March, and U.S. Geological Survey (USGS) stream gauges throughout the area recorded early onsets of streamflow at this time. However, a set of nested subbasins in Yosemite National Park, California, told a more complicated story. In spite of high air temperatures, many streams draining high-elevation basins did not start flowing until later in the spring. Temperatures during early March 2004 were as high as temperatures in late March 2002, when streams at all of the monitored Yosemite basins began flowing at the same time. However, the March 2004 onset occurred before the spring equinox, when the sun was lower in the sky. Thus, shading and solar radiation differences played a much more important role in 2004, leading to differences in streamflow timing. These results suggest that as temperatures warm and spring melt shifts earlier in the season, topographic effects will play an even more important role than at present in determining snowmelt timing. ?? 2006 American Meteorological Society.
Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France
NASA Astrophysics Data System (ADS)
Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.
2012-12-01
The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. The main objective of this study is to characterize the sources and the behavior of these heavy metals in the aquatic environment, and their spatial distribution using a multi-isotope approach. Each of these isotope systematics on their own reveals important information about their geogenic or anthropogenic origin but, considered together, provide a more integrated understanding of the budgets of these pollutants within the Loire River Basin.
Dileanis, Peter D.; Schwarzbach, S.E.; Bennett, Jewel
1996-01-01
The effect of irrigation drainage on the water quality and wildlife of the Klamath Basin in California and Oregon was evaluated during 1990-92 as part of the National Irrigation Water Quality Program of the U.S. Department of the Interior. The study focused on land serviced by the Bureau of Reclamation Klamath Project, which supplies irrigation water to agricultural land in the Klamath Basin and the Lost River Basin. The Tule Lake and Lower Klamath National Wildlife Refuges, managed by the U.S. Fish and Wildlife Service, are in the study area. These refuges provide critical resting and breeding habitat for waterfowl on the Pacific flyway and are dependent on irrigation drainwater from upstream agriculture for most of their water supply. Water-quality characteristics throughout the study area were typical of highly eutrophic systems during the summer months of 1991 and 1992. Dissolved-oxygen concentrations and pH tended to fluctuate each day in response to diurnal patterns of photosynthesis, and frequently exceeded criteria for protection of aquatic organisms. Nitrogen and phosphorus concentrations were generally at or above threshold levels characteristic of eutrophic lakes and streams. At most sites the bulk of dissolved nitrogen was organically bound. Elevated ammonia concentrations were common in the study area, especially down- stream of drain inputs. High pH of water increased the toxicity of ammonia, and concentrations exceeded criteria at sites upstream and downstream of irrigated land. Concentrations of ammonia in samples from small drains on the Tule Lake refuge leaseland were higher than those measured in the larger, integrating drains at primary monitoring sites. The mean ammonia concentration in leaseland drains [1.21 milligrams per liter (mg/L)] was significantly higher than the mean concentration in canals delivering water to the leaseland fields (0.065 mg/L) and higher than concentrations reported to be lethal to Daphnia magna (median lethal concentration of 0.66 mg/L). Dissolved- oxygen concentrations also were lower, and Daphnia survivability measured during in situ bioassays was correspondingly lower in the leaseland drains than in water delivery canals. In static laboratory bioassays, water samples collected at the primary monitoring sites caused toxicity in up to 78 percent of Lemna minor tests, in up to 49 percent of Xenopus laevis tests, in 17 percent and 8 percent of Hyalella azteca and Pimephales promelas tests, respectively, and 0 percent in Daphnia magna tests. In situ exposure at the sites caused mortality in more than 83 percent of Pimephales tests and in more than 41 percent of Daphnia and Hyalella tests. Much of the observed toxicity appears to have been caused by low dissolved oxygen, high pH, and ammonia. Although water in the study area was toxic to a variety of organisms, no statistically significant differences in the degree of toxicity between sites were observed above or below irrigated agricultural land in any of the bioassays. Pesticides were frequently detected in water samples collected at the monitoring sites during the 1991 and 1992 irrigation seasons. Among the most frequently detected compounds were the herbicides simazine, metribuzin, EPTC, and metolachlor and the insecticide terbufos. All the insecticides detected were at concentrations substantially below acute toxicity values reported for aquatic organisms. The herbicide acrolein has been used extensively in the basin to manage aquatic plant growth in irrigation canals and drains. The concentration of acrolein was monitored in a canal near Tule Lake after an application in order to evaluate the potential for the pesticide to be transported to refuge waters. Although acrolein concentrations were toxic to fish in the channels adjacent to Tule Lake, very little of the canal water entered the refuge during the monitoring period. Organochlorine pesticide concentrations in 25 surficial sediment samples collected in 1990 were below bas
Panfil, Maria S.; Jacobson, Robert B.
2001-01-01
This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more streamside bluffs than the Current River tributaries. Land use patterns in both river systems correlate with physiography - cleared land area is negatively associated with drainage-basin average slope. Both river systems are dominantly forested (0-35 per-cent cleared land), however, the potential for landscape disturbance may be greater in the Buffalo River system where a larger proportion of cleared land occurs on steep slopes (>15 degrees). When all drainage basins are grouped together, reach-scale channel characteristics show the strongest relations with drainage-basin physiography. Bankfull channel geometry and residual pool dimensions are positively correlated with drainage area and topographic relief variables. After accounting for differences in drainage area, channel dimensions in Buffalo River tributaries tend to be larger than in Current River tributaries. This trend is consistent with the flashy runoff and large storm flows that can be generated in rugged, sandstone-dominate terrain. Substrate particle size is also most strongly associated with physiography; particle size is positively correlated with topographic relief variables. When tributaries are subset by river system, relations with geology and land use variables become apparent. Buffalo River tributaries with larger proportions of carbonate bedrock and cleared land area have shallower channels, better-sorted, gravel-rich substrate, and more eroding banks than those with little cleared land and abundant sandstone bedrock. Gravel-bar area on the Buffalo River main stem was also larger within 1-km of carbonate-rich tributary junctions. Because geology and cleared land are themselves correlated, relations with anthropogenic and natural factors could often not be separated. Channel characteristics in the Current River system show stronger associations with physiography than with land use. Channels are shallower and have finer substrates in the less rugged, karst-rich, western basins than in the
Wilson, K.S.
1988-01-01
The Ohio Department of Natural Resources, Division of Reclamation, plans widespread reclamation of abandoned coal mines in the Raccoon Creek basin in southeastern Ohio. Throughout Raccoon Creek basin, chemical, biological, and suspended-sediment data were collected from July 1984 through September 1986. Chemical and biological data collected at 17 sites indicate that the East Branch, Brushy Creek, Hewett Fork, and Little Raccoon Creek subbasins, including Flint Run, are affected by drainage from abandoned coal mines. In these basins, median pH values ranged from 2.6 to 5.1, median acidity values ranged from 20 to 1,040 mg/L (milligrams per liter) as CaCo3, and median alkalinity values ranged from 0 to 4 mg/L as CaCo3. Biological data indicate that these basins do not support diverse populations because of degraded water systems. Suspended-sediment yields of 70.7 tons per square mile per year at the headwaters of Raccoon Creek and 54.5 tons per square mile per year near the month of Raccoon Creek indicate that cumulative sedimentation from erosion of abandoned-mine lands is not excessive in the basin.
Recovery of particulate organic matter dynamics in a stream draining a logged watershed
Jackson Webster; E.J. Benfield; Stephen W. Golladay; Matthew E. McTammany
2014-01-01
Watershed (WS) 7 at Coweeta was logged in 1977. The stream draining this watershed, Big Hurricane Branch, was affected in many ways. While the stream has recovered in some characteristics, the continuing press disturbance limits many aspects of recovery. In this chapter, we report the long-term pattern of recovery of the organic matter dynamics of this stream.
We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...
CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS
The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...
Environmental setting and its relations to water quality in the Kanawha River basin
Messinger, Terence; Hughes, C.A.
2000-01-01
The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the spring and least in the autumn. About 61 percent of the basin's population use surface water from public supply for their domestic needs; about 30 percent use self-supplied ground water, and about nine percent use ground water from public supply. In 1995, total withdrawal of water in the basin was about 1,130 Mgal/d. Total consumptive use was about 118 Mgal/d. Surface water in the Blue Ridge Province is usually dilute (less than 100 mg/L dissolved solids) and well aerated. Dissolved- solids concentrations in streams of the Valley and Ridge Province at low flow are typically greater (150-180 mg/L) than those in the Blue Ridge Province. The Appalachian Plateaus Province contains streams with the most dilute (less than 30 mg/L dissolved solids) and least dilute (more than 500 mg/L dissolved solids) water in the basin. Coal mining has degraded more miles of streams in the basin than any other land use. Streams that receive coal-mine drainage may be affected by sedimentation, and typically contain high concentrations of sulfate, iron, and manganese. Other major water-quality issues include inadequate domestic sewage treatment, present and historic disposal of industrial wastes, and logging, which results in the addition of sediment, nutrients, and other constituents to the water. One hundred eighteen fish species are reported from the Kanawha River system downstream from Kanawha Falls. Of these, 15 are listed as possible, probable, or known introductions. None of these fish species is endemic to the Kanawha River Basin. The New River system has only 46 native fishes, the lowest ratio of native fishes to drainage area of any river system in the eastern United States, and the second-highest proportion of endemic fish species (eight of 46) of any river system in the eastern United States.
Izuka, S.K.; Resig, J.M.
2008-01-01
Cuttings recovered from two deep exploratory wells in the Lihue Basin, Kauai, Hawaii, include fossiliferous marine deposits that offer an uncommon opportunity to study paleoenvironments from the deep subsurface in Hawaii and interpret the paleogeography and geologic history of Kauai. These deposits indicate that two marine incursions gave rise to protected shallow-water, low-energy embayments in the southern part of the Lihue Basin in the late Pliocene-early Pleistocene. During the first marine incursion, the embayment was initially zoned, with a variable-salinity environment nearshore and a normal-marine reef environment offshore. The offshore reef environment eventually evolved to a nearshore, variable-salinity environment as the outer part of the embayment shallowed. During the second marine incursion, the embayment had normal-marine to hypersaline conditions, which constitute a significant departure from the variable-salinity environment present during the first marine incursion. Large streams draining the southern Lihue Basin are a likely source of the freshwater that caused the salinity fluctuations evident in the fossils from the first marine incursion. Subsequent volcanic eruptions produced lava flows that buried the embayment and probably diverted much of the stream flow in the southern Lihue Basin northward, to its present point of discharge north of Kalepa Ridge. As a result, the embayment that formed during the second marine incursion received less freshwater, and a normal-marine to hypersaline environment developed. The shallow-water marine deposits, currently buried between 86 m and 185 m below present sea level, have implications for regional tectonics and global eustasy. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
Rantz, S.E.; Stafford, H.M.
1956-01-01
Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.
Liebermann, Timothy D.; Mueller, David K.; Kircher, James E.; Choquette, Anne F.
1989-01-01
Annual and monthly concentrations and loads of dissolved solids and major constituents were estimated for 70 streamflow-gaging stations in the Upper Colorado River Basin. Trends in streamflow, dissolved-solids concentrations, and dissolved-solids loads were identified. Nonparametric trend-analysis techniques were used to determine step trends resulting from human activities upstream and long-term monotonic trends. Results were compared with physical characteristics of the basin and historical water-resource development in the basin to determine source areas of dissolved solids and possible cause of trends. Mean annual dissolved-solids concentration increases from less than 100 milligrams per liter in the headwater streams to more than 500 milligrams per liter in the outflow from the Upper Colorado River Basin. All the major tributaries that have high concentrations of dissolved solids are downstream from extensive areas of irrigated agriculture. However, irrigation predated the period of record for most sites and was not a factor in many identified trends. Significant annual trends were identified for 30 sites. Most of these trends were related to transbasin exports, changes in land use, salinity-control practices, or reservoir development. The primary factor affecting streamflow and dissolved-solids concentration and load has been the construction of large reservoirs. Reservoirs have decreased the seasonal and annual variability of streamflow and dissolved solids in streams that drain the Gunnison and San Juan River basins. Fontenelle and Flaming Gorge Reservoirs have increased the dissolved-solids load in the Green River because of dissolution of mineral salts from the bank material. The largest trends occurred downstream from Lake Powell. However, the period of record since the completion of filling was too short to estimate the long-term effects of that reservoir.
Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.
2018-01-01
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.
Cummans, J.E.
1976-01-01
Low-flow-frequency data are tabulated for 90 streamflow sites on the Kitsap Peninsula and adjacent islands, Washington. Also listed are data for 56 additional sites which have insufficient measurements for frequency analysis but which have been observed having no flow at least once during the low-flow period. The streams drain relatively small basins; only three streams have drainage areas greater than 20.0 square miles, and only nine other streams have drainage areas greater than 10.0 square miles. Mean annual precipitation during the period 1931-60 ranged from about 25 inches near Hansville to about 70 inches near Tahuya. Low-flow-frequency curves plotted from records of streamflow at eight long-term gaging stations were used to determine data for low-flow durations of 7, 30, 60, 90, and 183 days. Regression techniques then were used to estimate low flows with frequencies up to 20 years for stations with less than 10 years of record and for miscellaneous sites where discharge measurements have been made. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Biswajit
2012-01-01
SummaryIn river basins where melt water from snow and ice constitutes a dominant component of stream discharge during summer, degradation or reduction of perennial snow and ice covered areas ( SCA P) has a profound effect on stream water availability in those basins. Degradation of SCA P that includes glaciers is a globally widespread phenomenon observed in the recently past decades; its cause has been attributed to global warming and its consequence is expected to dramatically alter the flow regimes of the rivers draining the terrains. The predicted change in flow regime is an initial increase in summer flows in the early decades of 21st century followed by sharp decline of the same during the later parts of the century. Estimation of SCA P within the Upper Indus Basin (UIB), straddling the western ranges of the Greater Himalayas, Karakoram Mountains, and the eastern mountain ranges of the Hindu Kush, shows that from 1992 to 2010 there has been about 2.15% reduction in SCA P. A spatially distributed basin-scale stream water availability model is presented to calculate monthly river discharges at critical hydrologic junctions within UIB. Model calculations for the years 1992, 2000, and 2008, show that due to the degradation of the SCA P within the basin, there has been significant decrease in summer discharges at various hydrologic junctions. The percentage decline in flows varies from 10% to 22%, depending on the locations of the junctions within the basin. The space-dependence of these variations reflects differential degradation of SCA P in various parts of the basin. Furthermore, the time of peak discharge at all of the hydrological junctions has shifted from middle/late summer to late spring/early summer as another outcome of SCA P reduction. Such temporal shifting of nival regimes to early part of warmer season has also been predicted by global warming models. However, the case study presented here for a major Himalayan river basin demonstrates that such shifting of peak discharge in the time domain can also take place simply due to retreat of the equilibrium line. Thus, the effects of a warming climate have possibly been already set within UIB. Instead of experiencing an increased pulse of summer flows for the next few decades, summer flows within this basin are expected to decline. Changes in the timing of peak flows can have adverse effects on multipurpose water resources management without appropriate adaptation and mitigation measures. Monthly average stream flow data with 35 year period of record from a key gauging station support the findings of the model results. Similarly, digital maps of SCA P at different time periods within a key catchment of UIB, containing one of the major glaciers, show retreat of glacial lobes and significant decrease in total SCA P taking place during the past decades.
Harned, Douglas
1988-01-01
An evaluation of water-quality data from streams that receive stormwater runoff from a segment of Interstate Highway 85 in North Carolina indicated increased levels of many constituents compared to levels in nearby undeveloped basins. Additional data collected from a network of dry and wet atmospheric deposition collectors, lysimeter samples, soil surveys, wind measurements, and road sweepings helped define the general sources and migration of chemical substances near the highway. The eight study basins, located in a rural area in the Piedmont of North Carolina, had a combined area of 17.5 square miles and drained a 4.8-mile-long segment of the interstate. The average traffic flow along this section was 25,000 vehicles per day. During storm runoff, streamflow in basins traversed by the highway rose and fell more rapidly than that in the undeveloped basins. This more rapid response is due to the impervious, paved area of the basins and the manmade drainage systems designed to rapidly move water off the highway. Alkalinity, specific conductance, and concentrations of calcium, sodium, and chloride were greater at the highway stations than in the undeveloped basins as a result of highway salting for control of ice. Specific conductance and concentrations of dissolved and total nitrogen peaked at the beginning of each storm event. The data indicated that, for the study basins, highway runoff had little or no effect on suspended sediment, water temperature, dissolved oxygen, and pH. However, the pH at all stations decreased during stormflow because the rainfall drained off by the streams had pH values less than 5.7. High metals concentrations were found in the soils within 100 feet of the highway and in the soil water infiltrating the soil zone. Chromium, copper, nickel, and zinc concentrations in the streams near the highway generally were above the maximum levels recommended by the U.S. Environmental Protection Agency (EPA) for the protection of aquatic life. Lead and cadmium concentrations frequently exceeded the maximum levels recommended by the EPA for drinking water. The highway is a source of contaminants to surrounding areas. Particulate and metal loads in dustfall and chemical-constituent concentrations in soils decrease exponentially with distance from the highway. The highest concentrations of contaminants were found on the downwind side. Increased concentrations of metals (cadmium, chromium, iron, lead, nickel, and zinc) in rainfall were observed in samples collected near the highway and in samples collected approximately one-half mile away. Material loading due to dustfall was greater than loading due to rainfall. Loading due to saltated particles, those heavier particles bounced along the highway surface, was higher than loading due to dustfall. Saltation loads were greatest during the winter months because of highway deicing and sanding, which supplied an estimated two-thirds of the saltated materials. The remaining one-third of the saltated load came primarily from the deposition of particles from vehicles. Some of the greatest constituent concentrations were measured in the soil water sampled from the lysimeters located adjacent to the highway.
Statewide water-quality network for Massachusetts
Desimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James
2001-01-01
A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the reporting requirements [Section 305(b)] of the Clean Water Act (CWA). Geographic Information System (GIS)-based procedures were developed to inventory streams and lakes in a basin for these purposes. Several monitoring approaches for this tier and their associated resource requirements were investigated. Analysis of the Neponset Basin for this purpose demonstrated that the large number of sites needed in order for all the small streams in a basin to be sampled (about half of stream miles in the basin were headwater or first-order streams) pose substantial resource-based problems for a comprehensive assessment of existing conditions. The many lakes pose similar problems. Thus, a design is presented in which probabilistic monitoring of small streams is combined with deterministic or targeted monitoring of large streams and lakes to meet CWA requirements and to provide data for other information needs of Massachusetts regulatory agencies and MWI teams.The fixed-station network is designed to permit the determination of contaminant loads carried by the State's major rivers to sensitive inland and coastal receiving waters and across State boundaries. Sampling at 19 proposed sites in 17 of the 27 major basins in Massachusetts would provide information on contaminant loads from 67 percent of the total land area of the State; unsampled areas are primarily coastal areas drained by many small streams that would be impossible to sample within realistic resource limitations. Strategies for hot-spot monitoring, a targeted monitoring program focused on identifying contaminant sources, are described with reference to an analysis of the bacteria sampling program of the 1994 Neponset Basin assessment. Finally, major discharge sites permitted under the National Pollutant Discharge Elimination System (NPDES) were evaluated as a basis for ambient water-quality monitoring. The discharge sites are well distributed geographically among basins, but are primarily on large rivers (two-thirds or more
Geochemistry of the Mattole River in Northern California
Kennedy, Vance C.; Malcolm, Ronald L.
1977-01-01
The chemical composition of streams can vary greatly with changing discharge during storm runoff. These chemical changes are related to the pathways of various water parcels from the time they fall as rain until they enter the stream, and to the interactions between water and sediment during transport downstream. In order to understand better the chemical variations during storms, an extensive investigation was made of the Mattole River, a chemically clean coastal stream in Mendocino County, California. The Mattole drains a topographically mature basin of 620 sw km which has relief of about 1200 m, a long summer dry season, and mean annual rainfall of about 2300 mm. The stream flow is composed of seasonally varying proportions of four flow components, namely, surface runoff, quick-return flow (rainfall having brief and intimate contact with the soil before entering the surface drainage), delayed-return flow, and base runoff. Each component is identified by its characteristic chemistry and by the time delay between rainfall and entrance into the stream. Information is also presented on rain chemistry, adsorption reactions of suspended sediments in the fresh and brackish environments, and compositional variation of river sediments with particle size. (Woodard-USGS)
Temporal dynamics of suspended sediment transport in a glacierized Andean basin
NASA Astrophysics Data System (ADS)
Mao, Luca; Carrillo, Ricardo
2017-06-01
Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.
An integrated remote sensing and GIS analysis of the Kufrah Paleoriver, Eastern Sahara
NASA Astrophysics Data System (ADS)
Ghoneim, Eman; Benedetti, Michael; El-Baz, Farouk
2012-02-01
A combined remote sensing (optical and radar imagery) and GIS (hydrologic network delineation) analysis allows mapping of the Kufrah Paleoriver of Libya and sheds light on its geomorphic evolution during the Neogene. The Kufrah system, which is now largely buried beneath the windblown sands of the Eastern Sahara, drained an area of about 236,000 km 2 in central and southern Libya. The river discharged across a large inland delta to the Al-Jaghbub depression in northern Libya, and ultimately through the Sirt Basin to the Mediterranean Sea. Radar imagery reveals buried features of the landscape including drainage divides, locations of possible stream capture, deeply-incised valleys, and the distal margins of the inland delta. Previous studies have shown that the Kufrah Paleoriver is the successor of the Sahabi River, which drained most of central Libya during the late Tertiary. Satellite imagery supports the concept of large-scale drainage rearrangement in the Quaternary, driven by tectonic subsidence that diverted streamflow and sediment discharge away from the Sahabi basin toward the inland delta of the lower Kufrah basin. Paleochannels crossing the delta suggest that at various times during the Quaternary, the Kufrah Paleoriver either drained externally through the deeply-incised Sahabi Paleochannel to the Mediterranean Sea, or drained internally to paleolakes in the Al-Jaghbub depression. Thick alluvial deposits on the delta and lake margins likely provided a major sediment source to build the Great Sand Sea, which covers the region today. The southwestern branch of the Kufrah drainage is aligned with an elongated trough that connects to the Amatinga River system in Chad. Thus the Kufrah watershed may have served as an outlet from Megalake Chad to the Mediterranean Sea during humid phases of the Neogene. If so, the combined Amatinga/Kufrah system may have served as one of the proposed natural corridors used by human and animal populations to cross the Sahara during the Pleistocene. These findings hold promise for modeling past lake levels and paleoclimates, locating groundwater sources in the region, and exploring for reservoirs of oil and natural gas in the region.
Lindsey, D.A.; Langer, W.H.; Van Gosen, B. S.
2007-01-01
Clast populations in piedmont fluvial systems are products of complex histories that complicate provenance interpretation. Although pebble counts of lithology are widely used, the information provided by a pebble count has been filtered by a potentially large number of processes and circumstances. Counts of pebble lithology and roundness together offer more power than lithology alone for the interpretation of provenance. In this study we analyze pebble counts of lithology and roundness in two contrasting fluvial systems of Pleistocene age to see how provenance varies with drainage size. The two systems are 1) a group of small high-gradient incised streams that formed alluvial fans and terraces and 2) a piedmont river that formed terraces in response to climate-driven cycles of aggradation and incision. We first analyze the data from these systems within their geographic and geologic context. After this is done, we employ contingency table analysis to complete the interpretation of pebble provenance. Small tributary streams that drain rugged mountains on both sides of the Santa Cruz River, southeast Arizona, deposited gravel in fan and terrace deposits of Pleistocene age. Volcanic, plutonic and, to a lesser extent, sedimentary rocks are the predominant pebble lithologies. Large contrasts in gravel lithology are evident among adjacent fans. Subangular to subrounded pebbles predominate. Contingency table analysis shows that hard volcanic rocks tend to remain angular and, even though transport distances have been short, soft tuff and sedimentary rocks tend to become rounded. The Wind River, a major piedmont stream in Wyoming, drains rugged mountains surrounding the northwest part of the Wind River basin. Under the influence of climate change and glaciation during the Pleistocene, the river deposited an extensive series of terrace gravels. In contrast to Santa Cruz tributary gravel, most of the Wind River gravel is relatively homogenous in lithology and is rounded to well-rounded. Detailed analysis reveals a multitude of sources in the headwaters and the basin itself, but lithologies from these sources are combined downstream. Well-rounded volcanic and recycled quartzite clasts were derived from the headwaters. Precambrian igneous and metamorphic clasts were brought down tributary valleys to the Wind River by glaciers, and sandstone was added where the river enters the Wind River structural basin.
NASA Astrophysics Data System (ADS)
DA Silva, L. M.
2015-12-01
Landscapes are mainly driven by river processes that control the dynamic reorganization of networks. Discovering and identifying whether river basins are in geometric equilibrium or disequilibrium requires an analysis of water divides, channels that shift laterally or expand upstream and river captures. Issues specifically discussed include the variation of drainage area change and erosion rates of the basins. In southeastern Brazil there are two main escarpments with extensive geomorphic surfaces: Serra do Mar and Serra da Mantiqueira Mountains. These landscapes are constituted of Neoproterozoic and early Paleozoic rocks, presenting steep escarpments with low-elevation coastal plains and higher elevation interior plateaus. To identify whether river basins and river profiles are in equilibrium or disequilibrium in Serra do Mar and Serra da Mantiqueira Mountains, we used the proxy (χ), evaluating the effect of drainage area change and erosion rates. We selected basins that drain both sides of these two main escarpments (oceanic and continental sides) and have denudation rates derived from pre-existing cosmogenic isotopes data (Rio de Janeiro, Paraná and Minas Gerais). Despite being an ancient and tectonically stable landscape, part of the coastal plain of Serra do Mar Mountain in Rio de Janeiro and Paraná is in geometric disequilibrium, with water divides moving in the direction of higher χ values. To achieve equilibrium, some basins located in the continental side are retracting and disappearing, losing area to the coastal basins. On the contrary, there are some adjacent sub-basins that are close to equilibrium, without strong contrasts in χ values. The same pattern was observed in Serra da Mantiqueira (Minas Gerais state), with stream captures and river network reorganization in its main rivers. The initial results suggest a strong contrast between erosion rates in the continental and the oceanic portions of the escarpments.
Boucher, P.R.
1984-01-01
Suspended sediment, water discharges, and water temperatures were monitored in four small drains in the DID-18 basin of the Sulphur Creek basin, a tributary to the Yakima River, Washington. Water outflow, inflow, and miscellaneous sites were also monitored. The information was used to evaluate the effectiveness of management practices in reducing sediment loads in irrigated areas. This study was one of seven Model Implementation Plan projects selected by the U.S. Soil Conservation Service and the U.S. Environmental Protection Agency to demonstrate the effectiveness of institutional and administrative implementation of management plans. Sediment discharges from the four basins could not be correlated with changes in management practices, because Imhoff Cone readings collected for the study showed no statistical differences between the three irrigation seasons. However, one drain acted as a sink for sediment where more lands were sprinkler irrigated; this drain had a smaller proportion of row crops than did the other three drains. (USGS)
Cravotta,, Charles A.
2004-01-01
This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish species in Mahanoy Creek decreased progressively upstream from 13 species at Gowen City to only 2 species each at Ashland and Girardville. White sucker (Catostomus commersoni), a pollution-tolerant species, was present at each of the surveyed reaches. The presence of fish at Girardville was unexpected because of the poor water quality and iron-encrusted streambed at this location. Generally, macroinvertebrate diversity and abundance at these sites were diminished compared to Schwaben Creek and other tributaries draining unmined basins, consistent with the observed quality of streamwater and streambed sediment. Data on the flow rate and chemistry for 35 AMD sources and 31 stream sites throughout the Mahanoy Creek Basin were collected by the USGS during high base-flow conditions in March 2001 and low base-flow conditions in August 2001. A majority of the base-flow streamwater samples met water-quality standards for pH (6.0 to 9.0); however, few samples downstream from AMD sources met criteria for acidity less than alkalinity (net alkalinity = 20 milligrams per liter as CaCO3) and concentrations of dissolved iron (0.3 milligram per liter) and total manganese (1.0 milligram per liter). Iron, aluminum, and various trace elements including cobalt, copper, lead, nickel, and zinc, were present in many streamwater samples at concentrations at which continuous exposure can not be tolerated by aquatic organisms without an unacceptable effect. Furthermore, concentrations of sulfate, iron, manganese, aluminum, and (or) beryllium in some samples exceeded drinking-water standards. Other trace elements, including antimony, arsenic, barium, cadmium, chromium, selenium, silver, and thallium, did not exceed water-quality criteria for protection of aquatic organisms or human health. Nevertheless, when considered together, concentrations of iron, manganese, arsenic, cadmium, chromium, copper, lead, nickel, and zinc in a majority of the streambed sediment samples from Mahanoy Creek and
NASA Astrophysics Data System (ADS)
Daraio, J. A.
2014-12-01
Climate change is projected to have an impact on precipitation patterns across the Mid-Atlantic with the likelihood of an increase in the frequency and magnitude of extreme precipitation events. A greater proportion of total annual precipitation could fall in larger events with the potential to impact flooding, storm water infrastructure, and water supply. The watersheds of the coastal plain of New Jersey draining to the Atlantic and Delaware Bay have mild slopes are underlain by very sandy soils. These areas serve as sources of recharge to the Kirkwood-Cohansey aquifer, which is an important water supply for the region. The Precipitation-Runoff Modeling System (PRMS) was used to simulate the potential impacts of climate change on stream flow and groundwater recharge in two watersheds located within the New Jersey coastal plain. The Batsto River watershed includes parts of the Pinelands Reserve with relatively little development in some its headwater areas, primarily small towns and agricultural land use. The Maurice River watershed includes several urbanized areas along with some agricultural land, but population is expecting to increase within the next 10-20 years. The Maurice River basin is outside the Pinelands Reserve but has significant area that contains Pine Barrens. Models were calibrated using observed stream flow from USGS gages and gridded meteorological data from 1995-2002 and validated with observed data from 2002-2005. The calibrated models were forced using an ensemble of three bias-corrected downscaled climate projections (CMIP5, NOAA NCEP, and ECHAM) to assess and compare the potential response of these two watersheds. All meteorological data were obtained online from the GeoData Portal. Preliminary results indicate that climate change is likely to have a greater impact on stream flow in the developed Maurice River basin than in the undeveloped Batsto River basin. More detailed analyses of stream flow and the potential impacts on groundwater recharge are ongoing. These models will serve as the basis of further research that will examine the potential impacts of land-use change and climate change on stream flow, stream temperature, and groundwater recharge.
NASA Astrophysics Data System (ADS)
Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola
2014-05-01
The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial deposition within the Middle Aterno River Valley. These fluvial deposits are deeply embedded into the lacustrine sequence, thus suggesting the happening of a hydrographic connection among the originally separated tectonic depressions. This was probably due to the headward erosion by streams draining the Sulmona depression that progressively captured the hydrological networks of the Subequana basin, the Middle Aterno Valley, the L'Aquila and Paganica-Castelnuovo-San Demetrio basins to the North. Stream piracy was probably helped by an increase of the regional uplift rate, occurred between the Lower and the Middle Pleistocene. To reconstruct the paleo-landscape that characterised the early stages of these basins formation we sampled the remnants of the Quaternary erosinal/depositional surfaces and reconstructed the ancient topographic surfaces using the Topo to Raster tool of ArcGIS 10.0 package. Finally we have cross-checked the geological and geomorphological data with the model of the Middle Aterno River paleo-drainage basin obtained through the GIS based method. References Falcucci E., Scardia G., Nomade S., Gori S., Giaccio B., Guillou H., Fredi P. (2012). Geomorphological and Quaternary tectonic evolution of the Subequana basin and the Middle Aterno Valley (central Apennines).16th Joint Geomorphological Meeting Morphoevolution of Tectonically Active Belts Rome, July 1-5, 2012
Robinson, James L.; Journey, Celeste A.; Atkins, J. Brian
1997-01-01
Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Tallapoosa (ACT) River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availability in the Coosa River basin of Georgia and Alabama, Subarea 6 of the ACF and ACT River basins, and estimate the possible effects of increased ground-water use within the basin. Subarea 6 encompasses about 10,060 square miles in Georgia and Alabama, totaling all but about 100 mi2 of the total area of the Coosa River basin; the remainder of the basin is in Tennessee. Subarea 6 encompasses parts of the Piedmont, Blue Ridge, Cumberland Plateau, Valley and Ridge, and Coastal Plain physiographic provinces. The major rivers of the subarea are the Oostanaula, Etowah, and Coosa. The Etowah and Oostanaula join in Floyd County, Ga., to form the Coosa River. The Coosa River flows southwestward and joins with the Tallapoosa River near Wetumpka, Ala., to form the Alabama River. The Piedmont and Blue Ridge Provinces are underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which generally behaves as a porous-media aquifer. The Valley and Ridge and Cumberland Plateau Provinces are underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont and Blue Ridge Provinces. Fracture-conduit aquifers predominate in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers predominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground-water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Coosa River, and in upstream areas, to the Etowah and Oostanaula Rivers. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an automated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be about 4,000 cubic feet per second (ft3/s) (from the headwaters to the Georgia-Alabama State Line), 5,360 ft3/s in Alabama, and 9,960 ft3/s for all of Subarea 6 (at the Subarea 7-Subarea 8 boundary). Mean annual baseflow represented about 60 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Coosa River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the ACF-ACT area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of the individual drought years ranged from about 11 to 27 percent of the estimated mean-annual baseflow in Subarea 6. The potential exists for the development of ground-water resources on a regional scale throughout Su
Presley, Todd K.; Jamison, Marcael T.J.; Young, Stacie T.M.
2008-01-01
Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at four stations, and water-quality data at six stations, which include the four continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2007, and June 30, 2008. A total of 16 environmental samples were collected over two storms during July 1, 2007, to June 30, 2008, within the Halawa Stream drainage area. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some samples were analyzed for only a partial list of these analytes because an insufficient volume of sample was collected by the automatic samplers. Three additional quality-assurance/quality-control samples were collected concurrently with the storm samples. A total of 16 environmental samples were collected over four storms during July 1, 2007, to June 30, 2008 at the H-1 Storm Drain. All samples at this site were collected using an automatic sampler. Samples generally were analyzed for total suspended solids, nutrients, chemical oxygen demand, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc), although some samples were analyzed for only a partial list of these analytes. During the storm of January 29, 2008, 10 discrete samples were collected. Varying constituent concentrations were detected for the samples collected at different times during this storm event. Two quality-assurance/quality-control samples were collected concurrently with the storm samples. Three additional quality-assurance/quality-control samples were collected during routine sampler maintenance to check the effectiveness of equipment-cleaning procedures.
Gregory, M. Brian; Stamey, Timothy C.; Wellborn, John B.
2001-01-01
The U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Ga., documented the ecological condition of selected water-bodies on the Fort Gordon military installation from June 1999 to May 2000. This study includes stream-habitat assessments, aquatic invertebrate and fish-community surveys in selected stream reaches, and analyses of mercury and lead concentrations in largemouth bass (Micropterous salmoides) muscle tissue from three impoundments. Assessment surveys indicate lower habitat value scores in some streams draining the more developed areas on Fort Gordon. A small tributary to Butler Creek--which drains parking lots associated with military motor pools and other impervious surfaces--is characterized by moderate levels of bank erosion and excess sediment in the stream channel compared to reference sites. Four other stream reaches are more similar to reference streams in respect to habitat conditions. Invertebrate communities in streams draining these urbanized watersheds are inhabited by 13 to 16 taxa per reach; whereas, 23 and 33 taxa were collected from the two reference stream reaches. Measures of invertebrate abundance, taxa richness, Ephemeroptera, Plecoptera, and Tricoptera Index are lower in streams draining urbanized watersheds. Measures of community similarity also indicate differences between streams draining urbanized areas and reference streams. Streams draining developed areas on Fort Gordon are inhabited by 3 to 10 fish species and included more species regarded as tolerant of degraded water-quality conditions; whereas, the two reference stream reaches support 4 and 10 species, respectively, including one species considered intolerant of degraded water-quality conditions. Mercury was detected in all largemouth bass collected from three impoundments on Fort Gordon. Wet-weight mercury concentrations in fish tissue analyzed from all sites range from 0.08 micrograms per gram to 1.33 micrograms per gram. Median mercury concentrations in fish tissue are 0.83 micrograms per gram at Soil Erosion Lake, 0.72 micrograms per gram at Lower Leitner Lake, and 0.22 micrograms per gram at Gordon Lake. Median mercury concentrations in fish tissue analyzed from Soil Erosion Lake and Lower Leitner Lake are more than two times higher than U.S. Environmental Protection Agency recommendation of 0.3 micrograms per gram for fish consumption. Lead concentrations are below the minimum reporting limit for all specimens analyzed from reservoirs sampled at Fort Gordon.
Ground-water hydrology of the Willamette basin, Oregon
Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.
2005-01-01
The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple productive water-bearing zones. A basement confining unit of older marine and volcanic rocks of low permeability underlies the basin and occurs at land surface in the Coast Range and western part of the Cascade Range. Most recharge in the basin is from infiltration of precipitation, and the spatial distribution of recharge mimics the distribution of precipitation, which increases with elevation. Basinwide annual mean recharge is estimated to be 22 inches. Rain and snowmelt easily recharge into the permeable High Cascade unit and discharge within the High Cascade area. Most recharge in the Coast Range and western part of the Cascade Range follows short flowpaths through the upper part of the low permeability material and discharges to streams within the mountains. Consequently, recharge in the Coast and Ranges is not available as lateral ground-water flow into the lowland, where most ground-water use occurs. Within the lowland, annual mean recharge is 16 inches and most recharge occurs from November to April, when rainfall is large and evapotranspiration is small. From May to October recharge is negligible because precipitation is small and evapotranspiration is large. Discharge of ground water is mainly to streams. Ground-water discharge is a relatively large component of flow in streams that drain the High Cascade unit and parts of the Portland Basin where permeable units are at the surface. In streams that do not head in the High Cascade area, streamflow is generally dominated by runoff of precipitation. Ground-water in the permeable units in the lowland discharges to the major streams where there is a good hydraulic connection between aquifers and streams. Ground-water discharge to smaller streams, which flow on the less permeable Willamette silt unit, is small and mostly from the Willamette silt unit. Most ground-water withdrawals occur within the lowland. Irrigation is the largest use of ground water, accounting for 240,000 acre feet of withdrawals, or 81 p
Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania
Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.
1997-01-01
The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18.5 inches in 1990 and 13.7 inches in 1991. Ground-water quality in the basin reflects differences in lithology and has been affected by human activities. Ground water in the carbonate rocks is naturally hard, has a near neutral pH, and contains more dissolved solids and less dissolved iron, manganese, and radon-222 than ground water in the noncarbonate rocks, which is soft, with moderately acidic to acidic pH. Regional contamination by chloride and nitrate and local contamination by organic compounds and metals was detected. Natural background concentrations are estimated to be about 1 milligram per liter for nitrate as nitrogen and less than 3 milligrams per liter for chloride. Ground water in unsewered areas and agricultural areas of the basin has median concentrations of nitrate that are greater than those in ground water from other areas; septic system effluent and fertilizer are probable sources of elevated nitrate. Water samples from wells in urbanized areas contain greater concentrations of chloride than samples from wells in residential areas; road salt is the probable source of elevated chloride. Organic solvents, especially trichloroethylene, were detected in 30 percent of the wells sampled in the urbanized carbonate valley. Most of the organic solvents and some of the metals in ground water were detected near old industrial sites.Base-flow stream quality of West Valley Creek was determined at 15 sites from monthly sampling for 1 year. Differences in stream quality reflect differences in lithology, land use, and point sources in tributary subbasins and mainstem reaches. The chemical composition of base flow in the mainstem is dominated by ground-water discharge from carbonate rocks. Elevated concentrations of nitrate (greater than 3 milligrams per liter as nitrogen) in base flow were measured in a tributary draining agricultural land and in a tributary draining an unsewered residential area. Elevated concentrations of phosphate (greater than 0.5 milligrams per liter as phosphorus) were measured in a stream that receives treated sewage effluent. Discharge of water containing elevated sulfate (about 250 milligrams per liter) from quarry dewatering operations contributes to die increase in sulfate concentration (of 10 to 40 milligrams per liter) in base flow downstream from the quarry. The chloride load at all stream sites is greater than the load contributed by precipitation and mineral weathering to the basin, indicating anthropogenic sources of chloride throughout the basin. The diversity index of the benthic invertebrate community has increased since 1973 at the longterm biological monitoring site on West Valley Creek, indicating an improvement in stream quality. The improvement probably is related to controls on discharges and banning of pesticides, such as DOT, in the 1970's. Concentrations of dissolved constituents, except for chloride, determined for base flow in the autumn do not appear to have changed since 1971. Application of the seasonal Kendall test for trend indicates that concentrations of chloride in base flow have increased since 1971; this increase may be related to the increase in urbanization in the basin. The benthic community structure at the West Valley Creek site in 1991 indicates slight nutrient enrichment.Lithium was detected in ground water and surface water downgradient from two lithiumprocessing facilities. Until 1991, lithium was discharged into a losing reach of West Valley Creek, thus introducing lithium into the ground-water system. The potential for cross-contamination between the ground-water and surface-water systems is great, as demonstrated by the detection of lithium in ground water and surface water downstream and downgradient from the two lithium-processing facilities. The lithium that was discharged into the creek acts as a conservative tracer in gaining reaches of West Valley Creek, maintaining a mass balance and characteristic isotopic signature. Lithium-7/lithium-6 ratios were greater in streams that are affected by sewage and by lithium-processing discharges and in ground water downgradient from the lithium-processing facilities than natural background lithium isotopic ratios.
Williams-Sether, Tara; Gross, Tara A.
2016-02-09
Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.
Larson, Steven J.; Gilliom, Robert J.; Capel, Paul D.
1999-01-01
Water samples from 58 rivers and streams across the United States were analyzed for pesticides as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. The sampling sites represent 37 diverse agricultural basins, 11 urban basins, and 10 basins with mixed land use. Forty-six pesticides and pesticide degradation products were analyzed in approximately 2,200 samples collected from 1992 to 1995. The target compounds account for approximately 70 percent of national agricultural use in terms of the mass of pesticides applied annually. All the target compounds were detected in one or more samples. Herbicides generally were detected more frequently and at higher concentrations than insecticides. Nationally, 11 herbicides, 1 herbicide degradation product, and 3 insecticides were detected in more than 10 percent of samples. The number of target compounds detected at each site ranged from 7 to 37. The herbicides atrazine, metolachlor, prometon, and simazine were detected most frequently; among the insecticides, carbaryl, chlorpyrifos, and diazinon were detected the most frequently. Distinct differences in pesticide occurrence were observed in streams draining the various agricultural settings. Relatively high levels of several herbicides occurred as seasonal pulses in corn-growing areas. Several insecticides were frequently detected in areas where the dominant crops consist of orchards and vegetables. The number of pesticides detected and their concentrations were lower in wheat-growing areas than in most other agricultural areas. In most urban areas, the herbicides prometon and simazine and the insecticides carbaryl, chlorpyrifos, diazinon, and malathion were commonly detected. Concentrations of pesticides rarely exceeded standards and criteria established for drinking water, but some pesticides commonly exceeded criteria established for the protection of aquatic life.
Magnitude and frequency of floods in small drainage basins in Idaho
Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.
1973-01-01
A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.
Hunchak-Kariouk, Kathryn
1999-01-01
The influence of land use on the water quality of four tributaries to the Toms River, which drains nearly one-half of the Barnegat Bay wateshed, was studied during the initial phase of a multiyear investigation. Water samples were collected from and streamflows were measured in Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Creek during periods of base flow and stormflow in the growing and nongrowing seasons during May 1994 to October 1995. The drainage areas upstream from the seven measurement sites were characterized as highly developed, moderately developed, slightly developed, or undeveloped. Concentrations were determined and area-normalized instantaneous loads (yields) were estimated for total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthosphosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria in the water samples. Specific conductance, pH, temperature, and dissolved oxygen were measured. Yields of total nitrogen, nitrate, and organic nitrogen at sites on Wrangel Brook, which drains moderately developed areas, were either larger than or similar to yields at the site on Long Swamp Creek, which drains a highly developed area. The magnitude of these yields probably was not related directly to the intensity of land development, but more likely was influenced by the type of development, the amount of base flow, and historical land use in the basin. The large concentrations of total nitrogen and nitrate in base flow in Wrangel Brook could have resulted from fertilizers that were applied to high-maintenance lawns and from agricultural runoff that has remained in the ground water since the 1950's and eventually was discharged to streams. Yields of ammonia appear to be partly related to the intensity of land development and storm runoff. Yields of ammonia at the site on Long Swamp Creek (a highly developed area) were either larger than or similar to yields at sites on Wrangel Brook (moderately developed areas). Yields were smallest at the site on Davenport Branch, which drains a slightly developed area. Yields of hydrolyzable phosphorus plus orthophosphorus and yields of orthophosphorus appear to be related to the intensity of development. Concentrations of hydrolyzable phosphorus plus orthophosphorus were greater in Long Swamp Creek (highly developed areas) than in Wrangel Brook (moderately developed areas). Concentrations of orthophosphorus were largest in Wrangel Brook (moderately developed) and Long Swamp Creek (highly developed). Total suspended solids and bacteria were somewhat related to intensity of development. Yields of total suspended solids were greater at sites downstream from highly and moderately developed areas than from slightly developed areas. Yields of bacteria were strongly related to streamflow and season. Specific conductance appears to be related to streamflow. pH probably was related to intensity of land development; pH was greater (more basic) in streams draining highly developed areas than in those draining other areas. Concentrations of dissolved oxygen were affected more by water temperature than by intensity of development or streamflow.
Mooty, Will S.; Kidd, Robert E.
1997-01-01
Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahooochee-Flint and Alabama-Coosa-Tallapoosa River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availablity in the Cahaba River basin in Alabama, Subarea 7 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basins, and to estimate the possible effects of increased ground-water use within the basin. Subarea 7 encompasses about 1,030 square miles in north-central Alabama. Subarea 7 encompasses parts of the Piedmont, Valley and Ridge, and Coastal Plain physiographic provinces. The Piedmont Province is underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which can behave as a porous-media aquifer. The Valley and Ridge Province is underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont Province. Fracture-conduit aquifers predominante in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers dedominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground- water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Cahaba River. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an atuomated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be 763 cubic feet per second at Centreville, Ala., where the Cahaba River exits Subarea 7 into Subarea 8. Mean-annual baseflow represented about 48 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Cahaba River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basin area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of these droughts averaged about 21 percent of the estimated mean-annual baseflow in Subarea 7 (ranged from about 16 to 25 percent for individual drought years). The potential exists for the development of ground-water resources on a regional scale throughout Subarea 7. Estimated ground-water use in 1990 was about 2 percent of the estimated mean-annual baseflow, and 9.7 percent of the average drought baseflow near the end of the droughts of 1941, 1954, and 1986. Because ground- water use in Subarea 7 represents a relatively minor percentage of ground- water recharge, even a large increase in ground-water use in Subarea 7 is likely to have little effect on ground-water and surface-water occurrernce in Alabama. Indications of long-term ground-water dec
Anning, David W.
2003-01-01
Stream properties and water-chemistry constituent concentrations from data collected by the National Water-Quality Assessment and other U.S. Geological Survey water-quality programs were analyzed to (1) assess water quality, (2) determine natural and human factors affecting water quality, and (3) compute stream loads for the surface-water resources in the Central Arizona Basins study area. Stream temperature, pH, dissolved-oxygen concentration and percent saturation, and dissolved-solids, suspended-sediment, and nutrient concentration data collected at 41 stream-water quality monitoring stations through water year 1998 were used in this assessment. Water-quality standards applicable to the stream properties and water-chemistry constituent concentration data for the stations investigated in this study generally were met, although there were some exceedences. In a few samples from the White River, the Black River, and the Salt River below Stewart Mountain Dam, the pH in reaches designated as a domestic drinking water source was higher than the State of Arizona standard. More than half of the samples from the Salt River below Stewart Mountain Dam and almost all of the samples from the stations on the Central Arizona Project Canal?two of the three most important surface-water sources used for drinking water in the Central Arizona Basins study area?exceeded the U.S. Environmental Protection Agency drinking water Secondary Maximum Contaminant Level for dissolved solids. Two reach-specific standards for nutrients established by the State of Arizona were exceeded many times: (1) the annual mean concentration of total phosphorus was exceeded during several years at stations on the main stems of the Salt and Verde Rivers, and (2) the annual mean concentration of total nitrogen was exceeded during several years at the Salt River near Roosevelt and at the Salt River below Stewart Mountain Dam. Stream properties and water-chemistry constituent concentrations were related to streamflow, season, water management, stream permanence, and land and water use. Dissolved-oxygen percent saturation, pH, and nutrient concentrations were dependent on stream regulation, stream permanence, and upstream disposal of wastewater. Seasonality and correlation with streamflow were dependant on stream regulation, stream permanence, and upstream disposal of wastewater. Temporal trends in streamflow, stream properties, and water-chemistry constituent concentrations were common in streams in the Central Arizona Basins study area. Temporal trends in the streamflow of unregulated perennial reaches in the Central Highlands tended to be higher from 1900 through the 1930s, lower from the 1940s through the 1970s, and high again after the 1970s. This is similar to the pattern observed for the mean annual precipitation for the Southwestern United States and indicates long-term trends in flow of streams draining the Central Highlands were driven by long-term trends in climate. Streamflow increased over the period of record at stations on effluent-dependent reaches as a result of the increase in the urban population and associated wastewater returns to the Salt and Gila Rivers in the Phoenix metropolitan area and the Santa Cruz River in the Tucson metropolitan area. Concentrations of dissolved solids decreased in the Salt River below Stewart Mountain Dam and in the Verde River below Bartlett Dam. This decrease represents an improvement in the water quality and resulted from a concurrent increase in the amount of runoff entering the reservoirs. Stream loads of water-chemistry constituents were compared at different locations along the streams with one another, and stream loads were compared to upstream inputs of the constituent from natural and anthropogenic sources to determine the relative importance of different sources and to determine the fate of the water-chemistry constituent. Of the dissolved solids transported into the Basin and Range Lowlands each year
Channel structure and transient storage were correlated with nutrient uptake length in streams draining old-growth and harvested watersheds in the Cascade Mountains of Oregon, and the redwood forests of northwestern California. Channel width and riparian canopy were measured at 1...
1. LOOKING TOWARD PLANE 9 WEST. BASIN HAS BEEN DRAINED ...
1. LOOKING TOWARD PLANE 9 WEST. BASIN HAS BEEN DRAINED AND SLOPE OF PLANE 9 IS VISIBLE BETWEEN ROW OF TREES IN BACKGROUND. STONEWORK ON LEFT IS ABUTMENT TO BRIDGE THAT CROSSED OVER THE CANAL. - Morris Canal, Inclined Plane 9 West, Port Warren, Warren County, NJ
Modeling Antarctic Subglacial Lake Filling and Drainage Cycles
NASA Technical Reports Server (NTRS)
Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.
2016-01-01
The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.
The Great Lakes Hydrography Dataset: Consistent, binational ...
Ecosystem-based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation by using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great
Outline of the water resources of the Status Creek basin, Yakima Indian Reservation, Washington
Molenaar, Dee
1976-01-01
On the Yakima Indian Reservation, Washington, only about 5 percent of the Satus Creek basin--in the relatively flat eastern lowland adjacent to and including part of the Yakima River lowland--is agriculturally developed, mostly through irrigation. Because the basin 's streams do not contain adequate water for irrigation, most irrigation is by canal diversion from the adjoining Toppenish Creek basin. Irrigation application of as much as 9.25 acre-feet per acre per year, combined with the presence of poorly drained silt and clay layers in this area, and the natural upward discharge of ground water from deeper aquifers (water-bearing layers), has contributed to a waterlogging problem, which has affected about 10,500 acres, or about 25 percent of the irrigated area. In the upland of the basin, a large average annual base flow of about 30 cubic feet per second in Logy Creek indicates the presence of a potentially highly productive aquifer in young (shallow) basalt lavas underlying the higher western parts of the upland. This aquifer may provide a reservoir from which streamflow may be augmented by ground-water pumping or, alternatively, it may be used as a source of ground water for irrigation of upland areas directly. (Woodard-USGS)
Appalachian Piedmont landscapes from the Permian to the Holocene
Cleaves, E.T.
1989-01-01
Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast past Baltimore. The Late Triassic landscape was influenced by rift basin development. Streams drained into a hydrologically closed basin: no through-flowing rivers seem to have been present. A limestone escarpment along the Blue Ridge may have existed as a consequence of a semi-arid climate. The Permian may have been a time of Himalayan-like mountains and mountain glaciers. Streams (and glaciers) generally flowed southwest and west. ?? 1989.
Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania
McCarren, Edward F.; Keighton, Walter B.
1969-01-01
The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since May 1966 an instrument installed by the U.S. Geological Survey at Easton, Pa., has continuously recorded such water-quality parameters as specific conductance, temperature, and dissolved oxygen content.
Bent, Gardner C.; Steeves, Peter A.
2006-01-01
A revised logistic regression equation and an automated procedure were developed for mapping the probability of a stream flowing perennially in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection a method for assessing whether streams are intermittent or perennial at a specific site in Massachusetts by estimating the probability of a stream flowing perennially at that site. This information could assist the environmental agencies who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending from the mean annual high-water line along each side of a perennial stream, with exceptions for some urban areas. The equation was developed by relating the observed intermittent or perennial status of a stream site to selected basin characteristics of naturally flowing streams (defined as having no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, wastewater discharge, and so forth) in Massachusetts. This revised equation differs from the equation developed in a previous U.S. Geological Survey study in that it is solely based on visual observations of the intermittent or perennial status of stream sites across Massachusetts and on the evaluation of several additional basin and land-use characteristics as potential explanatory variables in the logistic regression analysis. The revised equation estimated more accurately the intermittent or perennial status of the observed stream sites than the equation from the previous study. Stream sites used in the analysis were identified as intermittent or perennial based on visual observation during low-flow periods from late July through early September 2001. The database of intermittent and perennial streams included a total of 351 naturally flowing (no regulation) sites, of which 85 were observed to be intermittent and 266 perennial. Stream sites included in the database had drainage areas that ranged from 0.04 to 10.96 square miles. Of the 66 stream sites with drainage areas greater than 2.00 square miles, 2 sites were intermittent and 64 sites were perennial. Thus, stream sites with drainage areas greater than 2.00 square miles were assumed to flow perennially, and the database used to develop the logistic regression equation included only those stream sites with drainage areas less than 2.00 square miles. The database for the equation included 285 stream sites that had drainage areas less than 2.00 square miles, of which 83 sites were intermittent and 202 sites were perennial. Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of four explanatory variables: (1) drainage area (natural logarithm), (2) areal percentage of sand and gravel deposits, (3) areal percentage of forest land, and (4) region of the state (eastern region or western region). Although the equation provides an objective means of determining the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used in its development. The equation is not recommended for (1) losing stream reaches or (2) streams whose ground-water contributing areas do not coincide with their surface-water drainage areas, such as many streams draining the Southeast Coastal Region-the southern part of the South Coastal Basin, the eastern part of the Buzzards Bay Basin, and the entire area of the Cape Cod and the Islands Basins. If the equation were used on a regulated stream site, the estimated intermittent or perennial status would reflect the natural flow conditions for that site. An automated mapping procedure was developed to determine the intermittent or perennial status of stream sites along reaches throughout a basin. The procedure delineates the drainage area boundaries, determines values for the four explanatory variables, and solves the equation for estimating the probability of a stream flowing perennially at two locations on a headwater (first-order) stream reach-one near its confluence or end point and one near its headwaters or start point. The automated procedure then determines the intermittent or perennial status of the reach on the basis of the calculated probability values and a probability cutpoint (a stream is considered to flow perennially at a cutpoint of 0.56 or greater for this study) for the two locations or continues to loop upstream or downstream between locations less than and greater than the cutpoint of 0.56 to determine the transition point from an intermittent to a perennial stream. If the first-order stream reach is determined to be intermittent, the procedure moves to the next downstream reach and repeats the same process. The automated procedure then moves to the next first-order stream and repeats the process until the entire basin is mapped. A map of the intermittent and perennial stream reaches in the Shawsheen River Basin is provided on a CD-ROM that accompanies this report. The CD-ROM also contains ArcReader 9.0, a freeware product, that allows a user to zoom in and out, set a scale, pan, turn on and off map layers (such as a USGS topographic map), and print a map of the stream site with a scale bar. Maps of the intermittent and perennial stream reaches in Massachusetts will provide city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing the intermittent or perennial status of stream sites.
Water quality of streams in the Neshaminy Creek basin, Pennsylvania
McCarren, Edward F.
1972-01-01
The Neshaminy has carved a scenic route on its way to the Delaware River, thereby helping to increase the value of land. The unabated growth of nearby metropolitan areas and the multiplying needs for water and open space for water storage and recreation in southeastern Pennsylvania have become impelling forces that mark the Neshaminy valley watershed for continued development of its land and water resources. Toward this end the Neshaminy Valley Watershed Association, Inc., which came into existence June 13, 1956, is one of several organizations dedicated to land and water-resources development in the Neshaminy Creek basin. The principal objectives of the Neshaminy Valley Watershed Association are (1) to provide for future water-supply and recreation needs, (2) to safeguard against flood and drought damage, (3) to decrease stream pollution, (4) to preserve wildlife and natural beauty, (5) to reduce soil erosion and siltation, 96) to reforest marginal land, and (7) to improve and protect existing woodland. This study shows that there is a wide variance in water quality between the West Branch and the North Branch of the Neshaminy. However, the study shows no significant difference between the chemical composition of the Little Neshaminy Creek and the main stream before they come together at Rushland. Just beyond their confluence the main stream has drained more than half its total drainage area. The average flow of the stream at this location is about 85 percent of the average flow at Langhorne. The continued presence of game fish in most of Neshaminy Creek indicates a degree of water purity that characterizes this stream as suitable for recreation. However, during the summer and early fall, several small streams feeding the Neshaminy go dry. The diminished flow during these periods and during prolonged drought impairs stream quality by causing a greater concentration of dissolved solids in water. The relatively inferior water during low-flow periods, therefore, necessitates providing more water of good quality to reservoirs for emergency releases, not only to augment supply to users in needful downstream areas but also to improve stream quality by dilution.
Analysis of water-surface profiles in Leon County and the city of Tallahassee, Florida
Franklin, M.A.; Orr, R.A.
1987-01-01
Water surface profiles for the 10-, 25-, 50-, and 100-yr recurrence interval floods for most of the streams that drain developing areas of Leon County and the city of Tallahassee are presented. The principal streams studied are in the Lake Munson, Lake Lafayette, and Lake Jackson basins Peak discharges were computed from regression equations based on information gained from 15 streamflow stations in the area. Standard step-backwater procedures were used to determine the water-surface elevations for the streams. The flood elevations were generally higher than those in the Flood Insurance Studies for Tallahassee (1976) and Leon County (1982). The primary reason for the higher profiles is that peak discharges used in this report are larger than those used previously, largely due to changes in land use. The flood profiles for Bradford Brook, North Branch Gum Creek, and West Branch Gum Creek generally match those in the Leon County Flood Insurance Studies. Channel improvements in some areas would lower the flood elevation in that area, but would probably increase flooding downstream. (Lantz-PTT)
Sorenson, Stephen K.
1994-01-01
Approximately 418,000 pounds of triazine herbicides are applied annually to control weeds in crops grown in the Albemarle-Pamilico Sound drainage basin, located in North Carolina and Virginia. An enzyme-linked immunosorbent assay was used to detect concentrations of total triazine herbicides in streams draining into Albemarle-Pamlico Sound. Water samples were collected in May and June during the application of triazine herbicides and in early September during low streamflows at approximately 40 sites on streams in the Coastal Plain and Piedmont Physiographic Provinces. Triazine concentrations exceeded 0.2 ?g/L (micrograms per liter) in 67 percent of the water samples collected In June, and 13 percent of the water samples exceeded 0.2 ?g/L in September during low streamflows. The enzyme-linked immunosorbent assay for total triazine herbicides provides a low-cost and rapid analytical method for screening water samples prior to sending them to a laboratory and for semiquantitatively assessing seasonal concentrations of triazine herbicides in streams throughout a large region.
Classical and generalized Horton laws for peak flows in rainfall-runoff events.
Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F
2015-07-01
The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.
NASA Astrophysics Data System (ADS)
Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.
2015-12-01
An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater contamination was also suggested by additional tracer measurements including fluoride (added to drinking water) and iodide (contained in dietary salt). Our results suggest that integrating stream restoration with restoration of aging sanitary infrastructure can be critical to more effectively minimize watershed nutrient export. Given that both stream restoration and sanitary pipe repairs both involve extensive channel manipulation, they can be considered simultaneously in management strategies. In addition, ground water can be a major source of nutrient fluxes in urban watersheds, which has been less considered compared with upland sources and storm drains. Goundwater sources, fluxes, and flowpath should also be targeted in efforts to improve stream restoration strategies and prioritize hydrologic "hot spots" along watersheds where stream restoration is most likely to succeed.
NASA Astrophysics Data System (ADS)
Crook, K. E.; Pringle, C. M.; Freeman, M. C.; Scatena, F. N.
2005-05-01
Massive water withdrawals from streams draining the Caribbean National Forest (CNF), Puerto Rico, are threatening their biotic integrity. Migratory tropical shrimps are ideal indicator species to measure water withdrawal effects on riverine connectivity and biointegrity because: (1) their migratory range encompasses the stream network from estuaries to headwater streams; (2) they represent greater than 90% of biomass in streams draining the CNF; and (3) they facilitate important in-stream ecological processes. We developed an index to evaluate individual and cumulative effects of water intakes on each stage of the shrimp's life-cycle. Effect of water withdrawal on longitudinal connectivity was evaluated by combining effects of water withdrawal on larval and juvenile shrimps. Larvae require downstream transport to the estuary for advancement to the next life-stage, and juveniles similarly require access to headwater streams. Therefore, these two life-stages represent the bi-directional connectivity of streams from headwaters to estuaries. Seventeen water intakes were evaluated in and around the CNF. Larger intakes cause a greater decrease in connectivity than smaller intakes; however, several small, high elevation intakes had very low connectivity. Also, intakes with alternative designs, such as a French drain, have reduced effects on connectivity.
Storms and flooding in California in December 2005 and January 2006 - a preliminary assessment
Parrett, Charles; Hunrichs, Richard A.
2006-01-01
A series of storms beginning before Christmas 2005 and ending after New Year's Day 2006 produced significant runoff over much of northern California. The storms resulted in an estimated $300 million in damages and Federal disaster declarations in 10 counties. Several precipitation stations in the Sierra Nevada had precipitation totals greater than 20 inches for the period December 24 through January 3, and several stations in the Coastal Range had precipitation totals greater than 18 inches. The peak stream discharges resulting from the storms in the north coast area generally had recurrence intervals in the 10- to 25-year range, although the recurrence interval for peak discharge at one station on Sonoma Creek near Agua Caliente was greater than 100 years. In the San Francisco Bay area, peak discharges also generally had recurrence intervals in the 10- to 25-year range. Further south along the central coast and in southern California, peak discharges had smaller recurrence intervals, in the 2- to 5-year range. Upper Sacramento River tributaries draining from the west had peak flows with recurrence intervals in the 2- to 5-year range, whereas upper tributaries draining from the east side had recurrence intervals in the 5- to 10-year range. Further south, Sacramento River tributaries such as the Yuba and American Rivers had peak discharges with recurrence intervals in the 10- to 25-year range. On the east side of the central Sierra around Lake Tahoe, peak discharges had recurrence intervals in the 10- to 25-year range. Further south in the Sierra, streams draining into the San Joaquin River Basin had flows with recurrence intervals ranging from 2 to 5 years.
Quantity and quality of phosphorus losses from an artificially drained lowland catchment
NASA Astrophysics Data System (ADS)
Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd
2017-04-01
Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.
We compared measures of channel structure and riparian canopy with estimates of transient storage in 32 streams draining old-growth and harvested watersheds in the Southern Appalachian Mountains of North Carolina (n=4), the Ouachita Mountains of Arkansas (n=5), the Cascade Mounta...
Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...
Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.
2010-01-01
We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.
NASA Astrophysics Data System (ADS)
Prokushkin, Anatoly
2016-04-01
Wildfires transform boreal and subarctic forested landscapes leading to the changes in organic matter and inorganic nutrient turnover in terrestrial ecosystems. To get an insight to the fire effect on C fluxes and general hydrochemical characteristics of streams draining continuous permafrost terrains of Central Siberian Plateau (64o N 100o E), we have selected the chronosequence of basins (n = 17) which were severely affected by fires (>80% of basin area) in the time range from 1 to 116 years ago. Stream waters were sampled continuously during frost free seasons (May-September) of 2006-2015. Four streams have been equipped with water level, temperature and conductivity probes for continuous monitoring. The strongest negative effect of wildfires on dissolved organic carbon (DOC) concentrations in streams has occurred right after a fire event, and minimum mean annual concentrations of DOC appeared between 15 and 20 years elapsed after a fire. The most pronounced decrease in DOC concentrations during an annual cycle found in freshet period (May-June) and summer-fall storm events: differences of DOC concentrations among "intact" (>100 years after fire) and recent fire basins (<6 years) reached as much as 2-fold. Less differentiation among basins appears under lowflow conditions, as DOC-depleted solutes from deeper soil layers become dominating in stream flow. Following the post-fire forest recovery, the seasonal mean DOC concentrations in streams demonstrated linear growth at the rate of ca. 0.11 mgC/l/a and approached the initial values already after ca. 60 years after fire disturbance. An opposite trend (i.e. increasing load to streams after fire impact) was observed for dissolved inorganic carbon, major anions and cations. Sulfate was found to be a good tracer of fire affect as increased 200-fold in stream waters right after a fire and steady decreased at the rate [SO42-] = 3.65 x (year after fire)^-0.75 as terrestrial ecosystems were recovering after a fire. For study area, Na+ and Cl- in streams appear to be good indicators of permafrost degradation as they reflect talik formation and connection of a stream to underlying evaporitic deposits. While evidence of permafrost degradation is currently not apparent in the region, we expect increasing concentrations of Na+ and Cl- in streams of Central Siberian Plateau as permafrost degrades due to decreased fire return interval and warming temperatures. The generalized data of active layer thickness (ALT) within analyzed watersheds have demonstrated that fire-driven deepening of ALT results in increasing stream inorganic compounds concentrations. The inverse relationship found between DOC and ALT might be attributed to deeper infiltration of solutions, sorption of DOC on clay minerals, and an increasing rate of DOC microbiological mineralization to CO2 due to increased soil temperatures. Post-fire forest recovery and, particularly, the accumulation of organic mater in the moss-lichen layer and soil organic horizon on watersheds accounted for increasing mean DOC concentrations in the streams. In opposite, increased insulation of soils by organic matter accumulating on the soil surface leads to steadily decreasing ALT and constrains an infiltration of solutes to subsoil. As a result, inorganic solute loading to stream channels is tended to decrease during post-fire forest succession in permafrost affected terrains.
Streamflow from the United States into the Atlantic Ocean during 1931-1960
Bue, Conrad D.
1970-01-01
Streamflow from the United States into the Atlantic Ocean, between the international stream St. Croix River, inclusive, and Cape Sable, Fla., averaged about 355,000 cfs (cubic feet per second) during the 30-year period 1931-60, or roughly 20 percent of the water that, on the average flows out of the conterminous United States. The area drained by streams flowing into the Atlantic Ocean is about 288,000 square miles, including the Canadian part of the St. Croix and Connecticut River basins, or a little less than 10 percent of the area of the conterminous United States. Hence, the average streamflow into the Atlantic Ocean, in terms of cubic feet per second per square mile, is about twice the national average of the flow that leaves the conterminous United States. Flow from about three-fourths of the area draining into the Atlantic Ocean is gaged at streamflow measuring stations of the U.S. Geological Survey. The remaining one-fourth of the drainage area consists mostly of low-lying coastal areas from which the flow was estimated, largely on the basis of nearby gaging stations. Streamflow, in terms of cubic feet per second per square mile, decreases rather progressively from north to south. It averages nearly 2 cfs along the Maine coast, about 1 cfs along the North Carolina coast, and about 0.9 cfs along the Florida coast.
Comparison of evaporation at two central Florida lakes, April 2005–November 2007
Swancar, Amy
2015-09-25
Both lakes are seepage lakes (no surface-water inflow or outflows) that are dependent on groundwater inflow from their basins to offset an atmospheric deficit, because long-term rainfall in this area is less than evaporation. The Lake Starr basin, where sandy, well-drained ridges surround the lake, has a greater capacity to store infiltrating rain than the Lake Calm basin, which is flat and has poorly drained soils. The storage capacities of the basins affect groundwater exchange with the lakes. Rainfall and net groundwater exchange, which is related to basin characteristics, varied more between these two lakes than did evaporation during this study.
Pesticide Occurrence and Distribution in the Lower Clackamas River Basin, Oregon, 2000-2005
Carpenter, Kurt D.; Sobieszczyk, Steven; Arnsberg, Andrew J.; Rinella, Frank A.
2008-01-01
Pesticide occurrence and distribution in the lower Clackamas River basin was evaluated in 2000?2005, when 119 water samples were analyzed for a suite of 86?198 dissolved pesticides. Sampling included the lower-basin tributaries and the Clackamas River mainstem, along with paired samples of pre- and post-treatment drinking water (source and finished water) from one of four drinking water-treatment plants that draw water from the lower river. Most of the sampling in the tributaries occurred during storms, whereas most of the source and finished water samples from the study drinking-water treatment plant were obtained at regular intervals, and targeted one storm event in 2005. In all, 63 pesticide compounds were detected, including 33 herbicides, 15 insecticides, 6 fungicides, and 9 pesticide degradation products. Atrazine and simazine were detected in about half of samples, and atrazine and one of its degradates (deethylatrazine) were detected together in 30 percent of samples. Other high-use herbicides such as glyphosate, triclopyr, 2,4-D, and metolachlor also were frequently detected, particularly in the lower-basin tributaries. Pesticides were detected in all eight of the lower-basin tributaries sampled, and were also frequently detected in the lower Clackamas River. Although pesticides were detected in all of the lower basin tributaries, the highest pesticide loads (amounts) were found in Deep and Rock Creeks. These medium-sized streams drain a mix of agricultural land (row crops and nurseries), pastureland, and rural residential areas. The highest pesticide loads were found in Rock Creek at 172nd Avenue and in two Deep Creek tributaries, North Fork Deep and Noyer Creeks, where 15?18 pesticides were detected. Pesticide yields (loads per unit area) were highest in Cow and Carli Creeks, two small streams that drain the highly urban and industrial northwestern part of the lower basin. Other sites having relatively high pesticide yields included middle Rock Creek and upper Noyer Creek, which drain basins having nurseries, pasture, and rural residential land. Some concentrations of insecticides (diazinon, chlorpyrifos, azinphos-methyl, and p,p?-DDE) exceeded U.S. Environmental Protection Agency (USEPA) aquatic-life benchmarks in Carli, Sieben, Rock, Noyer, Doane, and North Fork Deep Creeks. One azinphos-methyl concentration in Doane Creek (0.21 micrograms per liter [?g/L]) exceeded Federal and State of Oregon benchmarks for the protection of fish and benthic invertebrates. Concentrations of several other pesticide compounds exceeded non-USEPA benchmarks. Twenty-six pesticides or degradates were detected in the Clackamas River mainstem, typically at much lower concentrations than those detected in the lower-basin tributaries. At least 1 pesticide was detected in 65 percent of 34 samples collected from the Clackamas River, with an average of 2?3 pesticides per sample. Pesticides were detected in 9 (or 60 percent) of the 15 finished water samples collected from the study water-treatment plant during 2003?2005. These included 10 herbicides, 1 insecticide, 1 fungicide, 1 insect repellent, and 2 pesticide degradates. The herbicides diuron and simazine were the most frequently detected (four times each during the study), at concentrations far below human-health benchmarks?USEPA Maximum Contaminant Levels or U.S. Geological Survey human Health-Based Screening Levels (HBSLs). The highest pesticide concentration in finished drinking water was 0.18 ?g/L of diuron, which was 11 times lower than its low HBSL benchmark. Although 0?2 pesticides were detected in most finished water samples, 9 and 6 pesticides were detected in 2 storm-associated samples from May and September 2005, respectively. Three of the unregulated compounds detected in finished drinking water (diazinon-oxon, deethylatrazine [CIAT], and N, N-diethyl-m-toluamide [DEET]) do not have human-health benchmarks available for comparison. Although most of the 51 curren
Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.
1998-01-01
This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de
Environmental setting of the San Joaquin-Tulare basins, California
Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.
1998-01-01
The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities among basins and specific land use settings, as well as within and among study units at the national level.
We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...
Suspended sediment yield of New Jersey coastal plain streams draining into the Delaware estuary
Mansue, Lawrence J.
1972-01-01
The purpose of this report is to summarize sediment data collected at selected stream-sampling sites in southern New Jersey. Computations of excepted average annual yields at each sampling site were made and utilized to estimate the annual yield at ungaged sites. Similar data currently are being compiled for streams draining Pennsylvania and Delaware. It is planned to report on the combined information at a later date in the Geological Survey's Water-Supply Paper series.
Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey
2012-01-01
Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.
Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.
2007-01-01
Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.
Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.
2017-07-10
Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the northeastern part of the basin where agricultural activity is prominent. All of the total nitrogen (N) and a majority of the total phosphorus (P) concentrations in the main stem exceeded regional nutrient criteria levels of 0.31 and 0.01 milligrams per liter (mg/L), respectively. The highest total N and total P concentrations in the main stem were 1.42 and 0.06 mg/L, respectively. Tributary sites with the highest nutrient concentrations are in subbasins where treated wastewater is discharged, such as Kooser Run and Lost Creek. The highest total N and total P concentrations in subbasins were 3.45 and 0.11 mg/L, respectively. Dissolved chloride and sodium concentrations were highest in the upper part of the basin downstream from Interstate 76 because of road deicing salts. The mean base-flow concentrations of dissolved chloride and sodium were 117 and 77 mg/L, respectively, in samples from the main stem just below Interstate 76, and the mean concentrations in Clear Run were 210 and 118 mg/L, compared to concentrations less than 15 mg/L in tributaries that were not affected by highway runoff. Water quality in forested tributary subbasins underlain by the Allegheny and Pottsville Formations was influenced by acidic precipitation and, to a lesser extent, the underlying geology as indicated by pH values less than 5.0 and corresponding specific conductance ranging from 26 to 288 microsiemens per centimeter at 25 degrees Celsius for some samples; in contrast, pH values for main stem sites ranged from 6.6 to 8.5. Manganese (Mn) was the only dissolved constituent in the surface-water samples that exceeded the secondary maximum contaminant level (SMCL). More than one-half the samples from the main stem had Mn concentrations exceeding the SMCL level of 50 micrograms per liter (μg/L), whereas only 19 percent of samples from tributaries exceeded the SMCL for Mn.Stream temperatures along the main stem of Laurel Hill Creek became higher moving downstream. During the summer months of June through August, the daily mean temperatures at the five sites exceeded the limit of 18.9 degrees Celsius (°C) for a cold-water fishery. The maximum instantaneous values for each site ranged from 27.2 to 32.8 °C.Water-quality samples collected at groundwater sites (wells and springs) indicate that wells developed within the Mauch Chunk Formation had the best water quality, whereas wells developed within the Allegheny and Pottsville Formations yielded the poorest water quality. Waters from the Mauch Chunk Formation had the highest median pH (7.6) and alkalinity (80 mg/L calcium carbonate) values. The lowest pH and alkalinity median values were in waters from the Allegheny and Pottsville Formations. Groundwater samples collected from wells in the Allegheny and Pottsville Formations also had the highest concentrations of dissolved iron (Fe) and dissolved Mn. Seventy-eight percent of the groundwater samples collected from the Allegheny Formation exceeded the SMCL of 300 μg/L for Fe and 50 μg/L for Mn. Forty-three and 62 percent of the groundwater samples collected from the Pottsville Formation exceeded the SMCL for iron and Mn, respectively. The highest Fe and Mn concentrations for surface waters were measured for tributaries draining the Pottsville Formation. The highest median Fe concentration for tributaries was in samples from streams draining the Allegheny Formation.During base-flow conditions, the streamflow per unit area along the main stem of Laurel Hill Creek was lowest in the upper parts of the basin [farthest upstream site 0.07 cubic foot per second per square mile (ft3/s/mi2)] and highest (two sites averaging about 0.20 (ft3/s/mi2) immediately downstream from Laurel Hill Lake in the center of the basin. Tributaries with the highest streamflow per unit area were those subbasins that drain the western ridge of the Laurel Hill Creek Basin. The mean streamflow per unit area for tributaries draining areas that extend into the western ridge and draining eastern or central sections was 0.24 and 0.05 ft3/s/mi2, respectively. In general, as the drainage area increased for tributary basins, the streamflow per unit area increased.Criteria established by the Pennsylvania Department of Environmental Protection indicate that the safe yield of water withdrawals from the Laurel Hill Creek Basin is 1.43 million gallons per day (Mgal/d). Water-use data for 2009 indicate that net (water withdrawals subtracted by water discharges) water withdrawals from groundwater and surface-water sources in the basin were approximately 1.93 Mgal/d. Water withdrawals were concentrated in the upper part of the basin with approximately 80 percent of the withdrawals occurring in the upper 36 mi2 of the basin. Three subbasins—Allen Creek, Kooser Run, and Shafer Run— in the upper part were affected the most by water withdrawals such that safe yields were exceeded by more than 1,000 percent in the first two and more than 500 percent in the other. In the subbasin of Shafer Run, intermittent streamflow characterizes sections that historically have been perennial.The GSFLOW model of the Laurel Hill Creek Basin is a simple one-layer representation of the groundwater flow system. The GSFLOW model was primarily calibrated to reduce the error term associated with base-flow periods. The total amount of observed streamflow at the Laurel Hill Creek at Ursina, Pa. streamflow-gaging station and the simulated streamflow were within 0.1 percent over the entire modeled period; however, annual differences between simulated and observed streamflow showed a range of -27 to 24 percent from 1992 to 2007 with nine of the years having less than a 10-percent difference. The primary source of simulated streamflow in the GSFLOW model was the subsurface (interflow; 62 percent), followed by groundwater (25 percent) and surface runoff (13 percent). Most of the simulated subsurface flow that reached the stream was in the form of slow flow as opposed to preferential (fast) interflow.
Modeling hydrology and in-stream transport on drained forested lands in coastal Carolinas, U.S.A.
Devendra Amatya
2005-01-01
This study summarizes the successional development and testing of forest hydrologic models based on DRAINMOD that predicts the hydrology of low-gradient poorly drained watersheds as affected by land management and climatic variation. The field scale (DRAINLOB) and watershed-scale in-stream routing (DRAINWAT) models were successfully tested with water table and outflow...
Takashi Gomi; Adelaide C. Johnson; Robert L. Deal; Paul E. Hennon; Ewa H. Orlikowska; Mark S. Wipfli
2006-01-01
Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.)-conifer riparian forests (40 years old) in southeast Alaska. More riparian red alder were found along...
X-DRAIN and XDS: a simplified road erosion prediction method
William J. Elliot; David E. Hall; S. R. Graves
1998-01-01
To develop a simple road sediment delivery tool, the WEPP program modeled sedimentation from forest roads for more than 50,000 combinations of distance between cross drains, road gradient, soil texture, distance from stream, steepness of the buffer between the road and the stream, and climate. The sediment yield prediction from each of these runs was stored in a data...
Madej, Mary Ann; Bundros, Greg; Klein, Randy
2011-01-01
Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal California. We compute land use statistics, analyze suspended sediment discharge rating curves, and compare sediment yields in Panther Creek to a control (unlogged) stream, Little Lost Man Creek. From 1978 to 2008, 8.2 km2 (over half the watershed) was clearcut and other timber management activities (thinning, selection cuts, and so forth) affected an additional 5.9 km2. Since 1984, 40.7 km of streams in harvest units received riparian buffer strip protection. Between 2000 and 2009, 22 km of roads were upgraded and 9.7 km were decommissioned, reducing potential sediment production by an estimated 40,000 m3. Road density is currently 3.1 km/km2. Sediment rating curves from 2005 to 2010 indicate a decrease in suspended sediment concentrations when compared to the pre-1996 period, although Panther Creek still has a higher sediment yield on a per unit area basis than the control stream.
ASSESSING HEADWATER STREAMS: LINKING LANDSCAPES TO STREAM NETWORKS
Headwater streams represent a significant land-water boundary and drain 70-80% of the landscape. Headwater streams are vital components to drainage systems and are directly linked to our downstream rivers and lakes. However, alteration and loss of headwater streams have occurre...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
Leopold, Luna Bergere
1970-01-01
Perhaps the most lamentable mistake that one can make is to be right too soon. This was the story of the Brandywine Plan, an attempt to organize local people for the permanent protection of the environmental amenities of their own land.The Upper East Branch of Brandywine Creek drains a rolling basin of farms, fields, woodlands, and a sprinkling of residential areas. Because it lies at the far edge of the commuting range to the population centers of Philadelphia and Wilmington, the basin's natural beauty has barely been touched by the blight of suburban sprawl. The waters of its streams are clear; its ample woodlands and fields are filled with wildlife. Driving slowly through the basin's winding roads and across its narrow bridges evokes the feeling of a pastoral painting, of the ideal landscape of rural eastern America.For two years, I had the privilege of working closely with a group preparing a land plan for the Brandywine area. The plan was designed to offer the inhabitants of the basin a feasible way to preserve forever the natural qualities of their region from the inevitable wave of urbanization. A report in Science magazine called it the perfect plan that failed.
Ubiquity and persistance of Escherichia coli in a midwestern coastal stream
Byappanahalli, Muruleedhara N.; Fowler, Melanie; Shively, Dawn; Whitman, Richard
2003-01-01
Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources ofE. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coliconcentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. colicounts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.
Senior, Lisa A.; Koerkle, Edward H.
2003-01-01
The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin.The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek subbasin are agricultural, forested, residential, and urban.The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data from three U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Daily precipitation data from one National Oceanic and Atmospheric Administration (NOAA) gage and hourly data from one NOAA gage were used for model input. The difference between observed and simulated stream- flow volume ranged from -0.8 to 2.1 percent for the 4-year period at the three calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error for the 4-year period. For example, at a site near Stanton, Del., near the bottom of the basin (drainage area of 50.2 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 6.0 percent and the overall error for the 4-year period was -0.8 percent. Calibration errors for 36 storm periods at the three calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using nonpoint-source monitoring data collected in 1998 at one USGS streamflowmeasurement station and other water-quality monitoring data collected at three USGS streamflowmeasurement stations. The period of record for waterquality monitoring was variable at the stations, with an end date of October 1998 but the start date ranging from October 1994 to January 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspendedsediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for five storms in 1998 at the one nonpoint-source monitoring site at Wooddale, Del., indicates that simulation error commonly is as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved utrients than particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual storm events. Assessment of the accuracy of the water-quality calibration under stormflow conditions is limited by the sparsity of available water-quality data in the basin.Users of the Red Clay Creek HSPF model should be aware of model limitations and consider the following when predictive scenarios are desired: streamflow-duration curves indicate the model simulates stream-flow reasonably well when evaluated over a broad range of conditions and time, although streamflow and the corresponding water quality for individual storm events may not be well simulated; streamflow-duration curves for the simulation period compare well with duration curves for the 57.5-year period ending in 2001 at Wooddale, Del., and include all but the extreme high-flow and low-flow events; calibration for water quality was based on sparse data, with the result of increasing uncertainty in the water-quality simulation.
Effects of suburban development on runoff generation in the Croton River basin, New York, USA
Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.
2005-01-01
The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.
Wasiolek, Maryann
1995-01-01
Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.
Application of the precipitation-runoff model in the Warrior coal field, Alabama
Kidd, Robert E.; Bossong, C.R.
1987-01-01
A deterministic precipitation-runoff model, the Precipitation-Runoff Modeling System, was applied in two small basins located in the Warrior coal field, Alabama. Each basin has distinct geologic, hydrologic, and land-use characteristics. Bear Creek basin (15.03 square miles) is undisturbed, is underlain almost entirely by consolidated coal-bearing rocks of Pennsylvanian age (Pottsville Formation), and is drained by an intermittent stream. Turkey Creek basin (6.08 square miles) contains a surface coal mine and is underlain by both the Pottsville Formation and unconsolidated clay, sand, and gravel deposits of Cretaceous age (Coker Formation). Aquifers in the Coker Formation sustain flow through extended rainless periods. Preliminary daily and storm calibrations were developed for each basin. Initial parameter and variable values were determined according to techniques recommended in the user's manual for the modeling system and through field reconnaissance. Parameters with meaningful sensitivity were identified and adjusted to match hydrograph shapes and to compute realistic water year budgets. When the developed calibrations were applied to data exclusive of the calibration period as a verification exercise, results were comparable to those for the calibration period. The model calibrations included preliminary parameter values for the various categories of geology and land use in each basin. The parameter values for areas underlain by the Pottsville Formation in the Bear Creek basin were transferred directly to similar areas in the Turkey Creek basin, and these parameter values were held constant throughout the model calibration. Parameter values for all geologic and land-use categories addressed in the two calibrations can probably be used in ungaged basins where similar conditions exist. The parameter transfer worked well, as a good calibration was obtained for Turkey Creek basin.
Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica
Hodge, S.M.; Doppelhammer, S.K.
1996-01-01
Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Mohammad; Foufoula-Georgiou, Efi; Karwan, Diana L.; Botter, Gianluca
2016-10-01
Climatic trends and anthropogenic changes in land cover and land use are impacting the hydrology and water quality of streams at the field, watershed, and regional scales in complex ways. In poorly drained agricultural landscapes, subsurface drainage systems have been successful in increasing crop productivity by removing excess soil moisture. However, their hydroecological consequences are still debated in view of the observed increased concentrations of nitrate, phosphorus, and pesticides in many streams, as well as altered runoff volumes and timing. In this study, we employ the recently developed theory of time-variant travel time distributions within the StorAge Selection function framework to quantify changes in water cycle dynamics resulting from the combined climate and land use changes. Our results from analysis of a subbasin in the Minnesota River Basin indicate a significant decrease in the mean travel time of water in the shallow subsurface layer during the growing season under current conditions compared to the pre-1970s conditions. We also find highly damped year-to-year fluctuations in the mean travel time, which we attribute to the "homogenization" of the hydrologic response due to artificial drainage. The dependence of the mean travel time on the spatial heterogeneity of some soil characteristics as well as on the basin scale is further explored via numerical experiments. Simulations indicate that the mean travel time is independent of scale for spatial scales larger than approximately 200 km2, suggesting that hydrologic data from larger basins may be used to infer the average of smaller-scale-driven changes in water cycle dynamics.
Feinstein, Daniel T.; Buchwald, Cheryl A.; Dunning, Charles P.; Hunt, Randall J.
2006-01-01
A series of databases and an accompanying screening model were constructed by the U.S. Geological Survey, in cooperation with the National Park Service, to better understand the regional ground-water-flow system and its relation to stream drainage in the St. Croix River Basin. The St. Croix River and its tributaries drain about 8,000 square miles in northeastern Minnesota and northwestern Wisconsin. The databases contain information for the entire St. Croix River Basin pertaining to well logs, lithology, thickness of lithologic groups, ground-water levels, streamflow, and well pumpage. Maps and generalized cross sections created from the compiled data show the lithologic groups, extending from the water table to the crystalline bedrock, through which ground water flows. These lithologic groups are: fine-grained unconsolidated deposits; coarse-grained unconsolidated deposits; sandstone bedrock; carbonate bedrock; and other bedrock lithologies including shale, siltstone, conglomerate, and igneous intrusions. The steady-state screening model treats the ground-water-flow system as a single layer with transmissivity zones that reflect the distribution of lithologic groups, and with recharge zones that correspond to general areas of high or low evapotranspiration. The model includes representation of second- and higher-order streams and municipal and other high-capacity production wells. The analytic-element model code GFLOW was used to simulate the regional ground-water flow, the water-table surface across the St. Croix River Basin, and base-flow contributions from ground water to streams. In addition, the model routes tributary base flow through the stream network to the St. Croix River. The parameter-estimation inverse model UCODE was linked to the GFLOW model to select the combination of parameter values best able to match over 5,000 water-level measurements and base-flow estimates at 22 streamflow-gaging stations. Results from the calibrated screening model show ground-water contributing areas for selected stream reaches within the basin. The delineation of these areas is useful to water-resource managers concerned with protection of fisheries and other resources. The model results also identify the areas of the basin where ground-water travel time from the water table to streams and wells is relatively short (less than 50 years). Ninety percent of the simulated ground-water pathlines require travel times between 3 and 260 years. The median pathline distance traversed and the median pathline velocity were 1.7 mi and 177 ft/y, respectively. It is important to recognize the limitations of this screening model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale (hundreds to thousands of feet) flow systems associated with minor water bodies are neglected, and as a result, the model is not useful for simulating typical site-specific problems. Despite its limitations, the model serves as a framework for understanding the regional pattern of ground-water flow and as a starting point for a generation of more targeted and detailed ground-water models that would be needed to address emerging water-supply and water-quality concerns in the St. Croix River Basin.
Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi
Harned, D.A.; Atkins, J.B.; Harvill, J.S.
2004-01-01
A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkin, Joshuah S.; Troia, Matthew J.; Shaw, Dustin C. R.
Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third-order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream-associated and impoundment-associated habitat guilds. Watershed impoundment density increased from west to east inmore » both basins, while per cent altered terrestrial landscape (urbanisation + row-crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream-species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.« less
Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten C.; Sadorf, Eric M.; Harned, Douglas A.
2010-01-01
Water-quality data from selected surface-water monitoring sites in the Southeastern United States were assessed for trends in concentrations of nutrients, suspended sediment, and major constituents and for in-stream nutrient and suspended-sediment loads for the period 1973-2005. The area of interest includes river basins draining into the southern Atlantic Ocean, the Gulf of Mexico, and the Tennessee River-drainage basins in Hydrologic Regions 03 (South Atlantic - Gulf) and 06 (Tennessee). This data assessment is related to studies of several major river basins as part of the U.S. Geological Survey National Water-Quality Assessment Program, which was designed to assess national water-quality trends during a common time period (1993-2004). Included in this report are data on which trend tests could be performed from 44 U.S. Geological Survey National Water Information System (NWIS) sampling sites. The constituents examined include major ions, nutrients, and suspended sediment; the physical properties examined include pH, specific conductance, dissolved oxygen, and streamflow. Also included are data that were tested for trends from an additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval (STORET) database. The trend analyses of the STORET data were limited to total nitrogen and total phosphorus concentrations. Data from 48 U.S. Geological Survey NWIS sampling sites with sufficient water-quality and continuous streamflow data for estimating nutrient and sediment loads are included. The methods of data compilation and modification used prior to performing trend tests and load estimation are described. Results of the seasonal Kendall trend test and the Tobit trend test are given for the 334 monitoring sites, and in-stream load estimates are given for the 48 monitoring sites. Basin characteristics are provided, including regional landscape variables and agricultural nutrient sources (annual variations in cropping and fertilizer use). The data and results presented in this report are in tabular format and can be downloaded and used by environmental researchers and water managers, particularly in the Southeast.
Floods of March 1982, Indiana, Michigan, and Ohio
Glatfelter, D.R.; Butch, G.K.; Stewart, J.A.
1984-01-01
Rapid melting of a snowpack containing 2 to 6 inches of water equivalent coinciding with moderate rainfall caused flooding in March 1982 across northern Indiana, southern Michigan, and northwestern Ohio. Millions of dollars in property damage and the loss of four lives resulted from the flooding. Peak discharges at several gaging stations in each of the following river basins have recurrence intervals of 50 to greater than 100 years: Wabash, St. Joseph, River Raisin, Maumee, and Kankakee. Flooding in the Wabash River basin was confined to major tributaries draining from the north. The St. Joseph River experienced flooding having a recurrence interval of about 50 years. Peak discharges having recurrence intervals of 50 to greater than 100 years were recorded on the River Raisin. Flooding on most large streams in the Maumee River basin was the worst since 1913. The Kankakee River and its major tributary, Yellow River, recorded peak discharges having recurrence intervals greater than 100 years. Hydrologic data have been tabulated for 83 gaging stations and partial-record sites. Maps are presented to emphasize the severity and untimely sequence of meteorological conditions that provided the potential and triggered the floods. Hydrographs are shown for 32 gaging stations.
Connolly, P.J.; Hall, J.D.
1999-01-01
Populations of coastal cutthroat trout Oncorhynchus clarki clarki were sampled in 16 Oregon headwater streams during 1991-1993. These streams were above upstream migration barriers and distributed among basins that had been logged 20-30 and 40-60 years ago and basins that had not been logged but had burned 125-150 years ago. The objective of our study was to characterize the populations and habitats of age-1 or older cutthroat trout within these three forest management types. Streams within unlogged basins had relatively low levels and a small range of trout biomass (g/m2). Streams in basins logged 40-60 years ago supported low levels but an intermediate range of trout biomass. Streams in basins logged 20-30 years ago supported the widest range of biomass, including the lowest and highest biomasses among all streams sampled. The variable thai best explained the variation of trout biomass among all 16 streams was the amount of large woody debris (LWD). All streams were heavily shaded during at least part of the year by mostly closed tree canopies. Deciduous trees were more prominent in canopies over streams in logged basins, while conifers were more prominent in the stream canopies of unlogged basins. Our results suggest that trout production in basins extensively clear-cut 20-60 years ago may generally decrease or remain low over the next 50 or more years because of decreasing loads of remnant LWD, persistent low recruitment potential for new LWD, and persistent heavy shading by conifers. These logged basins are not likely to show an increase in trout biomass over the next 50 years unless reset by favorable natural disturbances or by habitat restoration efforts.
Connolly, P.J.; Hall, J.D.
1999-01-01
Populations of coastal cutthroat trout Oncorhynchus clarki clarki were sampled in 16 Oregon headwater streams during 1991–1993. These streams were above upstream migration barriers and distributed among basins that had been logged 20–30 and 40–60 years ago and basins that had not been logged but had burned 125–150 years ago. The objective of our study was to characterize the populations and habitats of age-1 or older cutthroat trout within these three forest management types. Streams within unlogged basins had relatively low levels and a small range of trout biomass (g/m2). Streams in basins logged 40–60 years ago supported low levels but an intermediate range of trout biomass. Streams in basins logged 20–30 years ago supported the widest range of biomass, including the lowest and highest biomasses among all streams sampled. The variable that best explained the variation of trout biomass among all 16 streams was the amount of large woody debris (LWD). All streams were heavily shaded during at least part of the year by mostly closed tree canopies. Deciduous trees were more prominent in canopies over streams in logged basins, while conifers were more prominent in the stream canopies of unlogged basins. Our results suggest that trout production in basins extensively clear-cut 20–60 years ago may generally decrease or remain low over the next 50 or more years because of decreasing loads of remnant LWD, persistent low recruitment potential for new LWD, and persistent heavy shading by conifers. These logged basins are not likely to show an increase in trout biomass over the next 50 years unless reset by favorable natural disturbances or by habitat restoration efforts.
NASA Astrophysics Data System (ADS)
Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.
2016-08-01
An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.
Fujioka, R S
2001-01-01
The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.
J.L. Michael; S.S. Ruiz-Cordova
2006-01-01
Five watersheds drained by first-order streams and containing timber that was 80+ years old were selected to study the impacts of clearcutting and planting site preparation on water quality in the presence and absence of streamside management zones (SMZs). One watershed was maintained as a reference with no treatment while the remaining 4 were clear cut harvested. Two...
Williamson, Tanja N.; Taylor, Charles J.; Newson, Jeremy K.
2013-01-01
The Water Availability Tool for Environmental Resources (WATER) is a TOPMODEL-based hydrologic model that depends on spatially accurate soils data to function in diverse terranes. In Kentucky, this includes mountainous regions, karstic plateau, and alluvial plains. Soils data are critical because they quantify the space to store water, as well as how water moves through the soil to the stream during storm events. We compared how the model performs using two different sources of soils data--Soil Survey Geographic Database (SSURGO) and State Soil Geographic Database laboratory data (STATSGO)--for 21 basins ranging in size from 17 to 1564 km2. Model results were consistently better when SSURGO data were used, likely due to the higher field capacity, porosity, and available-water holding capacity, which cause the model to store more soil-water in the landscape and improve streamflow estimates for both low- and high-flow conditions. In addition, there were significant differences in the conductivity multiplier and scaling parameter values that describe how water moves vertically and laterally, respectively, as quantified by TOPMODEL. We also evaluated whether partitioning areas that drain to streams via sinkholes in karstic basins as separate hydrologic modeling units (HMUs) improved model performance. There were significant differences between HMUs in properties that control soil-water storage in the model, although the effect of partitioning these HMUs on streamflow simulation was inconclusive.
Low flow of streams in the Susquehanna River basin of New York
Randall, Allan D.
2011-01-01
The principal source of streamflow during periods of low flow in the Susquehanna River basin of New York is the discharge of groundwater from sand-and-gravel deposits. Spatial variation in low flow is mostly a function of differences in three watershed properties: the amount of water that is introduced to the watershed and available for runoff, the extent of surficial sand and gravel relative to till-mantled bedrock, and the extent of wetlands. These three properties were consistently significant in regression equations that were developed to estimate several indices of low flow expressed in cubic feet per second or in cubic feet per second per square mile. The equations explain 90 to 99 percent of the spatial variation in low flow. A few equations indicate that underflow that bypasses streamflow-measurement sites through permeable sand and gravel can significantly decrease low flows. Analytical and numerical groundwater-flow models indicate that spatial extent, hydraulic conductivity and thickness, storage capacity, and topography of stratified sandand- gravel deposits affect low-flow yields from those deposits. Model-simulated discharge of groundwater to streams at low flow reaches a maximum where hydraulic-conductivity values are about 15 feet per day (in valleys 0.5 mile wide) to 60 feet per day (in valleys 1 mile wide). These hydraulic-conductivity values are much larger than those that are considered typical of till and bedrock, but smaller than values reported for productive sand-and-gravel aquifers in some valley reaches in New York. Differences in the properties of till and bedrock and in land-surface slope or relief within the Susquehanna River basin of New York apparently have little effect on low flow. Three regression equations were selected for practical application in estimating 7-day mean low flows in cubic feet per second with 10-year and 2-year recurrence intervals, and 90-percent flow duration, at ungaged sites draining more than 30 square miles; standard errors were 0.88, 1.40, and 1.95 cubic feet per second, respectively. Equations that express low flows in cubic feet per second per square mile were selected for estimating these three indices at ungaged sites draining less than 30 square miles; standard errors were 0.012, 0.018, and 0.022 cubic feet per second per square mile, respectively.
Use of BasinTemp to model summer stream temperatures in the south fork of Ten Mile River, CA
Rafael Real de Asua; Ethan Bell; Bruce Orr; Peter Baker; Kevin Faucher
2012-01-01
We used BasinTemp to predict summer stream temperatures in South Fork Ten Mile River (SFTMR), Mendocino County. BasinTemp is a temperature model that attempts to quantify the basin-wide effects of high summer stream temperatures in basins where the data inputs are scarce. It assumes that direct solar radiation is the chief...
Detention basin alternative outlet design study.
DOT National Transportation Integrated Search
2016-10-01
This study examines the outlets structures CDOT has historically employed to drain water quality treatment detention basins and flood control basins, presents two new methods of metering the water quality capture volume (WQCV), namely 1) the Elliptic...
Large-Scale Effects of Timber Harvesting on Stream Systems in the Ouachita Mountains, Arkansas, USA
NASA Astrophysics Data System (ADS)
Williams, Lance R.; Taylor, Christopher M.; Warren, Melvin L., Jr.; Clingenpeel, J. Alan
2002-01-01
Using Basin Area Stream Survey (BASS) data from the United States Forest Service, we evaluated how timber harvesting influenced patterns of variation in physical stream features and regional fish and macroinvertebrate assemblages. Data were collected for three years (1990-1992) from six hydrologically variable streams in the Ouachita Mountains, Arkansas, USA that were paired by management regime within three drainage basins. Specifically, we used multivariate techniques to partition variability in assemblage structure (taxonomic and trophic) that could be explained by timber harvesting, drainage basin differences, year-to-year variability, and their shared variance components. Most of the variation in fish assemblages was explained by drainage basin differences, and both basin and year-of-sampling influenced macroinvertebrate assemblages. All three factors modeled, including interactions between drainage basins and timber harvesting, influenced variability in physical stream features. Interactions between timber harvesting and drainage basins indicated that differences in physical stream features were important in determining the effects of logging within a basin. The lack of a logging effect on the biota contradicts predictions for these small, hydrologically variable streams. We believe this pattern is related to the large scale of this study and the high levels of natural variability in the streams. Alternatively, there may be time-specific effects we were unable to detect with our sampling design and analyses.
Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality
NASA Astrophysics Data System (ADS)
Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.
2016-03-01
A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.
Heavy metals and organic carbon in sediments from the Tuy River basin, Venezuela.
Mogollón, J L; Ramirez, A J; Guillén, R B; Bifano, C
1990-12-01
The Tuy River basin, located in north-central Venezuela with an annual average temperature of 27°C and precipitation of 140 cm, was selected to conduct a geochemical study of bottom sediments, with the object of establishing the natural and human influences in the abundance and distribution of Fe, Mn, Cr, Co, Cu, Ni, Pb, Zn and organic carbon. The basin is lithologically divided into two sub-basins, north and south. The north sub-basin drains a iow-grade metasedimentary terrain with a population density of 800 persons km(-2) and approximateiy 600 industrial sites, while the south sub-basin in underlain by metavolcanic and ultramafic rocks, with a population density of less than 10 persons km(-2).Stream bottom sediment samples (150) were collected during the years of 1979-1986 in 16 unpolluted sites and 13 polluted sites. The sediments were air dried at room temperature and sieved through a 120 stainless steel mesh (125 μm). Samples of grain size smaller than 125 μm were analysed, the heavy metals being determined by atomic absorption spectrometry and the organic carbon (Corg) by dry combustion.The higher concentrations of heavy metals and organic carbon found in the pristine areas were in the south sub-basin, especially in those areas with higher annual precipitation and tropical forest. This indicated that the metavolcanic and ultramafic rocks yield higher concentrations of heavy metals than the metasedimentary rocks. It was also noted that the higher concentrations of Cr and Ni are associated with the ultramafic rocks. The results obtained from the sediment samples collected in the polluted sites showed that the elements Pb, Zn and Corg are enriched up to 4 times as a result of ail the human activities taking place in the basin. Organic carbon is an excellent indicator of domestic wastewater, Pb and Zn are good indicators of the automotive traffic and industrial effluents. The concentrations of each heavy metal did not show any significant correlation with grain size fractions; however, the concentration of organic carbon did show a negative correlation with grain size. The lithological, climatic and vegetation influence in the abundance of heavy metals and organic carbon in stream sediments clearly indicates the necessity of establishing background levels for the area under study when carrying out studies in environmental geochemistry.
NASA Astrophysics Data System (ADS)
Flores-Pena, S.; Suarez-Plascencia, C.
2014-12-01
The Atenquique river basin drains the eastern sector of the Volcanic Complex (VC) Volcan-Nevado de Colima, located on the border of the states of Jalisco and Colima. To use the digital geomorphological analysis 1:50000 scale mapping provided by INEGI and Landsat images, manipulating it in ArcGIS 10.2 developing the DEM that was the basis for morphometric characterization. The results show that the basin is divided into five sub-basins, with the main Atenquique (SAT) and Arroyo Seco (SAS), calculating the compactness coefficient (Kc) and the coefficient of sinuosity indicate that SAT is the most prone to floods due to straight and slightly sinuous channels. However, the density of dissection shows a more developed drainage network on the SAT, with slopes up to 84° and 600 m deep. The drainage basin has its source at an altitude of 4260 m and its mouth is in the Tuxpan River at 1040 m, which has a relative height of 2800 m; has a funnel-shaped elongated west-east, its outstanding average in the sector are Mountain 44° and 10° the piedmont. The SAT has a total area of 81.8 km2, with a dendritic river network, where the first order streams reach an 82.99%, and second order streams are the 13.4% of the total, these values show that most of the slopes of the basin have incipient development valleys and steep slopes. The basin has had 3 debris flows in recent 58 years; these are formed by large volumes of rock and mud that covered the town of Atenquique and paper mill located at the mouth of the Tuxpan River, caused deaths and significant economic damage. Its genesis is associated with the end of the summer rainy season, so he also worked in the hydrological analysis in order to determine the volume of runoff in the basin. The results of this work are used as input for the determining the risk levels in the study area, and may also be used by the municipality of Tuxpan, in order to define policies to manage risk and reduce future risks to the industrial town of Atenquique.
Diel cycling of trace elements in streams draining mineralized areas: a review
Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.
2015-01-01
Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.
NASA Astrophysics Data System (ADS)
Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.
2017-12-01
Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.
Water resources in the Blackstone River basin, Massachusetts
Walker, Eugene H.; Krejmas, Bruce E.
1983-01-01
The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.
Historical changes in pool habitats in the Columbia River basin
Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler
1995-01-01
Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...
Giraldo, Lina Paola; Chará, Julián; Zúñiga, Maria del Carmen; Chará-Serna, Ana Marcela; Pedraza, Gloria
2014-04-01
The expansion of the agricultural frontier in Colombia has exerted significant pressure on its aquatic ecosystems during the last few decades. In order to determine the impacts of different agricultural land uses on the biotic and abiotic characteristics of first and second order streams of La Vieja river watershed, we evaluated 21 streams located between 1,060 and 1,534 m asl in the municipalities of Alcalá, Ulloa, and Cartago (Valle del Cauca, Colombia). Seven streams were protected by native vegetation buffers, eight had influence of coffee and plantain crops, and six were influenced by cattle ranching. Habitat conditions, channel dimensions, water quality, and aquatic macroinvertebrates were studied in each stream. Streams draining cattle ranching areas had significantly higher dissolved solids, higher phosphorus, higher alkalinity, higher conductivity, and lower dissolved oxygen than those covered by cropland and forests. Coarse substrates and diversity of flow regimes were significantly higher in cropland and protected streams when compared to streams affected by cattle ranching, whereas the percent of silt and slow currents was significantly higher in the latter. A total of 26,777 macroinvertebrates belonging to 17 orders, 72 families and 95 genera were collected. The most abundant groups were Diptera 62.8%, (Chironomidae 49.6%, Ceratopogonidae 6.7%), Mollusca 18.8% (Hydrobiidae 7.2%, Sphaeriidae 9.6%) and Trichoptera 5.7% (Hydropsychidae 3.7%). The Ephemeroptera, Trichoptera, and Plecoptera orders, known for their low tolerance to habitat perturbation, had high abundance in cropland and forested streams, whereas Diptera and Mollusca were more abundant in those impacted by cattle ranching. Results indicate that streams draining forests and croplands have better physical and biological conditions than those draining pastures, and highlight the need to implement protective measures to restore the latter.
Quantifying Sediment Transport in a Premontane Transitional Cloud Forest
NASA Astrophysics Data System (ADS)
Waring, E. R.; Brumbelow, J. K.
2013-12-01
Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.
Pesticides in Streams in Central Nebraska
Stamer, J.K.; Wieczorek, Michael
1995-01-01
Contamination of surface and ground water from non-point sources is a national issue. Examples of nonpoint-source contaminants from agricultural activities are pesticides, which include fungicides, herbicides, and insecticides; sediment; nutrients (nitrogen and phosphorus); and fecal bacteria. Of these contaminants, pesticides receive the most attention because of the potential toxicity to aquatic life and to humans. Most farmers use pesticides to increase crop yields and values. Herbicides prevent or inhibit the growth of weeds that compete for nutrients and moisture needed by the crops. Herbicides are applied before, during, or following planting. In addition to agricultural use, herbicides are used in urban areas, often in larger rates of application, for weed control such as among rights-of-way. Alachlor, atrazine, cyanazine, and metolachlor, which are referred to as organonitrogen herbicides, were the four most commonly applied herbicides (1991) in the Central Nebraska Basins (CNB). These herbicides are used for corn, sorghum, and soybean production. Atrazine was the most extensively applied pesticide (1991) in central Nebraska. Insecticides are used to protect the crop seeds in storage prior to planting and also to protect the plants from destruction once the seeds have germinated. Like herbicides, insecticides are also used in urban areas to protect lawns, trees, and ornamentals. Many of the 46 pesticides shown in the table have either a Maximum Contaminant Level (MCL) of Health Advisory Level (HAL) established by the U.S. Environmental Protection Agency (USEPA) for public water supplies. The purposes of this Fact Sheet are to (1) to provide water-utility managers, water-resources planners and managers, and State regulators an improved understanding of the distributions of concentrations of pesticides in streams and their relation to respective drinking-water regulations or criteria, and (2) to describe concentrations of pesticides in streams draining a selected small agricultural basin and a large agricultural area.
Water-resources appraisal of the Lake Traverse Indian Reservation in South Dakota
Lawrence, S.J.
1989-01-01
The water resources within the Lake Traverse Indian Reservation consist of streams, lakes, wetlands, and groundwater stored in alluvium and glacial outwash deposits. Streamflow may cease during dry periods and during the winter. Lakes and ponds within the reservation are found predominantly within an internally drained basin. Dissolved-solids concentrations in the lakes generally range from 500 to 10,000 mg/L. Dissolved-solids concentrations in the streams generally ranging from 500 to 1 ,000 mg/L. However, nutrient concentrations tend to be larger than natural background levels in both lakes and streams and indicate unidentified sources of nutrients that effect the quality of water. Major development of surface-water resources is hindered by the lack of storage capacity within the numerous lakes, the lack of sustained streamflow, and the lack of suitable sites for construction or reservoirs. Water within the Coteau des Prairies, a glacial upland, occurs in outwash deposits. The sand and gravel deposits in the Coteau may be as thick as 70 ft. The quality of water from these aquifers generally is suitable for most uses, with calcium, magnesium, and bicarbonate the dominant ions. Water in sand and gravel deposits within the Red River and Minnesota River lowlands tends to have larger concentrations of dissolved solids than the sand and gravel deposits in the Coteau des Prairies. The quality of water in these deposits tends to be more mineralized than water in the sand and gravel deposits in the Coteau des Prairies. The regional flow of groundwater generally is to the east towards the Minnesota and Red River basins and west in the Coteau des Prairies. (USGS)
Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York
Kappel, W.M.; Harding, W.E.
1987-01-01
Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)
Bevans, Hugh E.; Diaz, Arthur M.
1980-01-01
Summaries of descriptive statistics are compiled for 14 data-collection sites located on streams draining areas that have been shaft mined and strip mined for coal in Cherokee and Crawford Counties in southeastern Kansas. These summaries include water-quality data collected from October 1976 through April 1979. Regression equations relating specific conductance and instantaneous streamflow to concentrations of bicarbonate, sulfate, chloride, fluoride, calcium, magnesium, sodium, potassium, silica, and dissolved solids are presented.
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
NASA Astrophysics Data System (ADS)
Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.
2012-02-01
During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel) with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and catch basins for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes like overland and macropore flow reduce the influence of herbicide properties due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These two observations on the role of herbicide properties contradict, to some degrees, previous findings. They demonstrate that valuable insight can be gained by spatially detailed observations along the flow paths.
Aquatic Community Colonization Within Riparian Headwater Corridors
USDA-ARS?s Scientific Manuscript database
Headwater streams are the smallest streams in a watershed. Their small size and high frequency of occurrence make them susceptible to anthropogenic habitat alterations. Many headwater streams in the Midwestern US have been channelized to drain agricultural fields. Aquatic macroinvertebrate communiti...
Low-head hydropower assessment of the Brazilian State of São Paulo
Artan, Guleid A.; Cushing, W. Matthew; Mathis, Melissa L.; Tieszen, Larry L.
2014-01-01
This study produced a comprehensive estimate of the magnitude of hydropower potential available in the streams that drain watersheds entirely within the State of São Paulo, Brazil. Because a large part of the contributing area is outside of São Paulo, the main stem of the Paraná River was excluded from the assessment. Potential head drops were calculated from the Digital Terrain Elevation Data,which has a 1-arc-second resolution (approximately 30-meter resolution at the equator). For the conditioning and validation of synthetic stream channels derived from the Digital Elevation Model datasets, hydrography data (in digital format) supplied by the São Paulo State Department of Energy and the Agência Nacional de Águas were used. Within the study area there were 1,424 rain gages and 123 streamgages with long-term data records. To estimate average yearly streamflow, a hydrologic regionalization system that divides the State into 21 homogeneous basins was used. Stream segments, upstream areas, and mean annual rainfall were estimated using geographic information systems techniques. The accuracy of the flows estimated with the regionalization models was validated. Overall, simulated streamflows were significantly correlated with the observed flows but with a consistent underestimation bias. When the annual mean flows from the regionalization models were adjusted upward by 10 percent, average streamflow estimation bias was reduced from -13 percent to -4 percent. The sum of all the validated stream reach mean annual hydropower potentials in the 21 basins is 7,000 megawatts (MW). Hydropower potential is mainly concentrated near the Serra do Mar mountain range and along the Tietê River. The power potential along the Tietê River is mainly at sites with medium and high potentials, sites where hydropower has already been harnessed. In addition to the annual mean hydropower estimates, potential hydropower estimates with flow rates with exceedance probabilities of 40 percent, 60 percent, and 90 percent were made.
Quality of surface waters in the lower Columbia River Basin
Santos, John F.
1965-01-01
This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the chemical composition of the streams. The maximum dissolved-solids concentration and hardness of water observed in major irrigation areas were 507 and 262 parts per million, respectively, for the. Walla Walla River near Touchet, Wash. In terms of the U.S. Salinity Laboratory Staff classification (1954, p. 80), water in most streams in the basin has low salinity and sodium hazards and is suitable for irrigation. A salt-balance problem does exist in the Hermiston-Stanfield, Oreg., area of the Umatilla River basin, and because of poor drainage, improper irrigation practices could cause salt-balance problems in the Willamette River Valley, Oreg., in which irrigation is rapidly increasing. Pollution by sewage disposal has reached undesirable levels in the Walla Walla River, in the Willamette River from Eugene to Portland, Oreg., and in the Columbia River from Portland to Puget Island. In the lower reaches of the Willamette River, the pollution load from sewage and industrial-waste disposal at times depletes the dissolved oxygen in the water to concentrations below what is considered necessary for aquatic life. Water in most of the tributaries to the lower Columbia River is of excellent quality and after some treatment could be used for industrial and municipal supplies. The principal treatment required would be disinfection and turbidity removal.
Wirt, Laurie
1994-01-01
This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.
Quantifying nitrogen inputs to the Choptank River estuary
NASA Astrophysics Data System (ADS)
Mccarty, G.; Hapeman, C. J.; Sadeghi, A. M.; Hively, W. D.; Denver, J. M.; Lang, M. W.; Downey, P. M.; Rice, C. P.
2015-12-01
The Chesapeake Bay is the largest estuary in the US, and over 50% of its streams have been rated as poor or very poor, based on the biological integrity yearly index. The Choptank River, a Bay tributary on the Delmarva Peninsula, is dominated by intensive corn and soybean farming associated with poultry and some dairy production. The Choptank River is under Environmental Protection Agency (USEPA) total maximum daily load restrictions. However, reducing nonpoint source pollution contributions from agriculture requires that source predictions be improved and that mitigation and conservation measures be properly targeted. Therefore, new measurement strategies have been implemented. In-situ sensors have been deployed adjacent to US Geological Survey gauging stations in the Tuckahoe and Greensboro sub-basins of the Choptank River watershed. These sensors measure stream water concentrations of nitrate along and water quality parameters every 30 min. Initial results indicate that ~40% less nitrate is exported from the Greensboro sub-basin, even though the total amount of agricultural land use is similar to that in the Tuckahoe sub-basin. This is most likely due to more efficient nitrate processing in the Greensboro sub-basin where the amount of cropland on poorly-drained soils is much larger. Another potential nitrogen source to the Choptank River estuary is atmospheric deposition of ammonia. Over 550 million broilers are produced yearly on the Delmarva Peninsula potentially leading to the release of 20,000 Mtons of ammonia. USEPA recently estimated that as much as 22% of nitrogen in the Bay is due to ammonia deposition. We have initiated a collaborative effort within the LTAR network to increase coverage of ammonia sampling and to explore the spatial and temporal variability of ammonia, particularly in the Choptank River watershed. All these measurements will be useful in improving the handling of nitrogen sources and its fate and transport in the Chesapeake Bay model.
Masoner, Jason R.; March, Ferrella
2006-01-01
Geographic Information Systems have many uses, one of which includes the reproducible computation of environmental characteristics that can be used to categorize hydrologic features. The Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality are investigating Geographic Information Systems techniques to determine partial drainage-basin areas, stream-buffer areas, stream length, and land uses (drainage basin and stream characteristics) in northeastern Oklahoma. The U.S Geological Survey, in cooperation with Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality, documented the methods used to determine drainage-basin and stream characteristics for the Neosho and Spring Rivers above Grand Lake Of the Cherokees in northeastern Oklahoma and calculated the characteristics. The drainage basin and stream characteristics can be used by the Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality to aid in natural-resource assessments.
Unionville, Pennsylvania School's Stream Restoration Project
NASA Astrophysics Data System (ADS)
Madsen, S. M.
2004-12-01
For the past three years, students and Earth Club members of C.F. Patton Middle School and Unionville High School have been involved in a stream restoration and monitoring project along a tributary to the East Branch of the Red Clay Creek in Pennsylvania. The Red Clay is within the larger Christina River Basin watershed which drains to Delaware Bay. Total funding of \\$962.00 was awarded by the Unionville-Chadds Ford Education Foundation to purchase both stream monitoring equipment and native plant species for stream restoration. Nine science teachers in the school district received certification in stream monitoring by the Pennsylvania State Parks Division. Certification enables the science faculty and their students to enter monitoring data in a statewide stream database. The stream data includes: temperature, levels of dissolved oxygen and nutrients, pH, alkalinity, conductivity, and a complete biosurvey of invertebrates. In addition to ongoing monitoring, the Earth Club sponsored a name-the-stream contest. Quartz Creek was chosen for this previously unnamed tributary. Its' name was approved by the East Marlborough Township Supervisor in May, 2004 and was then submitted to the USGS' Board on Geographic Names. The Earth Club has also sponsored a stream restoration contest. Students in the middle school were encouraged to design a habitat along the stream banks that would keep sediment in-place, while encouraging wildlife. The stream was originally crowded with invasive multi-flora rose but this was removed with the help of parents and students over a two year period. The winning student poster was outstanding and native species were purchased and planted following the poster's design. The planting took place in May, 2004 with over 40 persons involved including 25 middle school and 8 high school students, teachers from the schools, administrators and employees of the Brandywine Conservancy, and Red Clay Valley and Brandywine Valley Associations, and graduate students from the University of Delaware.
Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003
Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.
2012-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to ecoregion-based nutrient criteria proposed by the U.S. Environmental Protection Agency. Instream concentrations of total nitrogen and total phosphorus persist at levels higher than proposed criteria at more than one-third and about one-half, respectively, of the 46 stations analyzed. Long-term trends in nutrient loads were primarily downward, with downward trends in total nitrogen and total phosphorus loads detected at 12 and 17 of 32 stations, respectively. Upward trends were rare, with one upward trend for total nitrogen loads and none for total phosphorus. Trends in loads of nitrite-plus-nitrate nitrogen included 7 upward and 8 downward trends among 32 stations. Downward trends in loads of ammonia nitrogen and total Kjeldahl nitrogen were detected at all six stations evaluated. Long-term downward trends detected in four of the five largest drainage basins evaluated include: total nitrogen loads for the Connecticut, Delaware, and James Rivers; total Kjeldahl nitrogen and ammonia nitrogen loads for the Susquehanna River; ammonia nitrogen and nitrite-plus-nitrate nitrogen loads for the James River; and total phosphorus loads for the Connecticut and Delaware Rivers. No trends in load were detected for the Potomac River. Nutrient yields were evaluated relative to the extent of land development in 93 drainage basins. The undeveloped land-use category included forested drainage basins with undeveloped land ranging from 75 to 100 percent of basin area. Median total nitrogen yields for the 27 undeveloped drainage basins evaluated, including 9 basins evaluated in a national NAWQA study, ranged from 290 to 4,800 pounds per square mile per year (lb/mi2/yr). Total nitrogen yields even in the most pristine drainage basins may be elevated relative to natural conditions, because of high rates of atmospheric deposition of nitrogen in parts of the northeastern United States. Median total phosphorus yields ranged from 12 to 330 lb/mi2/yr for the 26 undeveloped basins evaluated. The undeveloped category includes some large drainage basins with point-source discharges and small percentages of developed land; in these basins, streamflow from undeveloped headwater areas dilutes streamflow in more urbanized reaches, and dampens but does not eliminate the point-source "signal" of higher nutrient loads. Median total nitrogen yields generally do not exceed 1,700 lb/mi2/yr, and median total phosphorus yields generally do not exceed 100 lb/mi2/yr, in the drainage basins that are least affected by human land-use and waste-disposal practices. Agricultural and urban land use has increased nutrient yields substantially relative to undeveloped drainage basins. Median total nitrogen yields for 24 agricultural basins ranged from 1,700 to 26,000 lb/mi2/yr, and median total phosphorus yields ranged from 94 to 1,000 lb/mi2/yr. The maximum estimated total nitrogen and total phosphorus yields, 32,000 and 16,000 lb/mi2/yr, respectively, for all stations in the region were in small (less than 50 square miles (mi2)) agricultural drainage basins. Median total nitrogen yields ranged from 1,400 to 17,000 lb/mi2/yr in 26 urbanized drainage basins, and median total phosphorus yields ranged from 43 to 1,900 lb/mi2/yr. Urbanized drainage basins with the highest nutrient yields are generally small (less than 300 mi2) and are drained by streams that receive major point-source discharges. Instream nutrient loads were evaluated relative to loads from point-source discharges in four drainage basins: the Quinebaug River Basin in Connecticut, Massachusetts, and Rhode Island; the Raritan River Basin in New Jersey; the Patuxent River Basin in Maryland; and the James River Basin in Virginia. Long-term downward trends in nutrient loads, coupled with similar trends in flow-adjusted nutrient concentrations, indicate long-term reductions in the delivery of most nutrients to these streams. However, the absence of recent downward trends in load for most nutrients, coupled with instream concentrations that exceed proposed nutrient criteria in several of these waste-receiving streams, indicates that challenges remain in reducing delivery of nutrients to streams from point sources. During dry years, the total nutrient load from point sources in some of the drainage basins approached or equaled the nutrient load transported by the stream.
Anderson, Chauncey W.; Rounds, Stewart A.
2010-01-01
Management of water quality in streams of the United States is becoming increasingly complex as regulators seek to control aquatic pollution and ecological problems through Total Maximum Daily Load programs that target reductions in the concentrations of certain constituents. Sediment, nutrients, and bacteria, for example, are constituents that regulators target for reduction nationally and in the Tualatin River basin, Oregon. These constituents require laboratory analysis of discrete samples for definitive determinations of concentrations in streams. Recent technological advances in the nearly continuous, in situ monitoring of related water-quality parameters has fostered the use of these parameters as surrogates for the labor intensive, laboratory-analyzed constituents. Although these correlative techniques have been successful in large rivers, it was unclear whether they could be applied successfully in tributaries of the Tualatin River, primarily because these streams tend to be small, have rapid hydrologic response to rainfall and high streamflow variability, and may contain unique sources of sediment, nutrients, and bacteria. This report evaluates the feasibility of developing correlative regression models for predicting dependent variables (concentrations of total suspended solids, total phosphorus, and Escherichia coli bacteria) in two Tualatin River basin streams: one draining highly urbanized land (Fanno Creek near Durham, Oregon) and one draining rural agricultural land (Dairy Creek at Highway 8 near Hillsboro, Oregon), during 2002-04. An important difference between these two streams is their response to storm runoff; Fanno Creek has a relatively rapid response due to extensive upstream impervious areas and Dairy Creek has a relatively slow response because of the large amount of undeveloped upstream land. Four other stream sites also were evaluated, but in less detail. Potential explanatory variables included continuously monitored streamflow (discharge), stream stage, specific conductance, turbidity, and time (to account for seasonal processes). Preliminary multiple-regression models were identified using stepwise regression and Mallow's Cp, which maximizes regression correlation coefficients and accounts for the loss of additional degrees of freedom when extra explanatory variables are used. Several data scenarios were created and evaluated for each site to assess the representativeness of existing monitoring data and autosampler-derived data, and to assess the utility of the available data to develop robust predictive models. The goodness-of-fit of candidate predictive models was assessed with diagnostic statistics from validation exercises that compared predictions against a subset of the available data. The regression modeling met with mixed success. Functional model forms that have a high likelihood of success were identified for most (but not all) dependent variables at each site, but there were limitations in the available datasets, notably the lack of samples from high-flows. These limitations increase the uncertainty in the predictions of the models and suggest that the models are not yet ready for use in assessing these streams, particularly under high-flow conditions, without additional data collection and recalibration of model coefficients. Nonetheless, the results reveal opportunities to use existing resources more efficiently. Baseline conditions are well represented in the available data, and, for the most part, the models reproduced these conditions well. Future sampling might therefore focus on high flow conditions, without much loss of ability to characterize the baseline. Seasonal cycles, as represented by trigonometric functions of time, were not significant in the evaluated models, perhaps because the baseline conditions are well characterized in the datasets or because the other explanatory variables indirectly incorporate seasonal aspects. Multicollinearity among independent variabl
Ourso, R.T.; Frenzel, S.A.
2003-01-01
We examined biotic and physiochemical responses in urbanized Anchorage, Alaska, to the percent of impervious area within stream basins, as determined by high-resolution IKONOS satellite imagery and aerial photography. Eighteen of the 86 variables examined, including riparian and instream habitat, macroinvertebrate communities, and water/sediment chemistry, were significantly correlated with percent impervious area. Variables related to channel condition, instream substrate, water chemistry, and residential and transportation right-of-way land uses were identified by principal components analysis as significant factors separating site groups. Detrended canonical correspondence analysis indicated that the macroinvertebrate communities responded to an urbanization gradient closely paralleling the percent of impervious area within the subbasin. A sliding regression analysis of variables significantly correlated with percent impervious area revealed 8 variables exhibiting threshold responses that correspond to a mean of 4.4-5.8% impervious area, much lower than mean values reported in other, similar investigations. As contributing factors to a subbasin's impervious area, storm drains and roads appeared to be important elements influencing the degradation of water quality with respect to the biota.
NASA Astrophysics Data System (ADS)
Li, Xiangying; He, Xiaobo; Kang, Shichang; Mika, Sillanpää; Ding, Yongjian; Han, Tianding; Wu, Qingbai; Yu, Zhongbo
2017-12-01
The authors regret: At the Dongkemadi Glacier (DG) basin, daily and annual meltwater discharge at gauging section S1 should be corrected. Namely, annual discharge should be 2.74 × 107 m3 throughout 1 June to 30 September of 2013. Thus, variation in solute exports is controlled by changes in discharge and specific solute concentration (Fig. 9), and the estimated solute export, cation denudation rates (CDR) and discharge-normalized CDR are 417 tons, 185 Σ∗meq+m-2 and 189 Σ∗meq+m-3 (with annual specific discharge of 0.98 m) respectively in 2013 (Table 4). In comparison, the CDR at the DG basin is within the scope of previously published CDR (94-4200 Σ∗meq+m-2) from glacial catchments (Hodson et al., 2010). The discharge-normalized CDR is lower than the rates from most glacial catchments, but is higher than those from Mittivakkat (Greenland), S Cascade (N American) and Lewis River (Arctic) (Yde et al., 2004, 2014; Hodson et al., 2000, 2010).
Quality of surface water at selected sites in the Suwannee River basin, Florida
Coffin, J.E.
1982-01-01
This report presents the results of analyses of water-quality samples collected from 14 surface-water sites in the Suwannee River basin in Florida from January through December 1980. The analyses of samples collected routinely included: nutrients, total organic carbon, and 5-day biochemical oxygen demand, bimonthly; and trace metals, annually. The array of constituents sampled was expanded in October 1978 at three of the original nine stations to provide quality-of-water information for streams draining an industrial area: Rocky Creek near Belmont, Hunter Creek near Belmont, and Swift Creek at Facil. Data collected at these three sites now include: major chemical constituents, six times per year: radium-226, two times per year; and trace metals, one time per year. These constituents are determined in addition to nutrients, total organic carbon, and bio-chemical oxygen demand which continue to be analyzed six times per year. All results of analyses of the water-quality samples collected from January through December 1980 remained within, or near, previously measured ranges and water-quality fluctuations were similar to those noted from data collected since 1971. (USGS)
NASA Astrophysics Data System (ADS)
Wright, O.; Istanbulluoglu, E.
2012-12-01
The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.
Defining chemical status of a temporary Mediterranean River.
Skoulikidis, Nikolaos Th
2008-07-01
Although the majority of rivers and streams in the Mediterranean area are temporary, no particular attention is being paid for such systems in the Water Framework Directive (WFD). A typical temporal Mediterranean river, draining an intensively cultivated basin, was assessed for its chemical status. Elevated concentrations of nitrates and salts in river water as well as nutrients and heavy metals in river sediments have been attributed to agricultural land uses and practices and point sources of organic pollution. A scheme for the classification of the river's chemical status (within the ecological quality classification procedure) was applied by combining pollution parameters in groups according to related pressures. In light of the temporal hydrological regime and anthropogenic impacts, sediment chemical quality elements were considered, in addition to hydrochemical ones. Despite the extensive agricultural activities in the basin, the majority of the sites examined showed a good quality and only three of them were classified as moderate. For the classification of the chemical quality of temporary water bodies, there is a need to develop ecologically relevant salinity and sediment quality standards.
Maret, T.R.; Robinson, C.T.; Minshall, G.W.
1997-01-01
Fish assemblages and environmental variables were evaluated from 37 least-disturbed, 1st- through 6th-order streams and springs in the upper Snake River basin, western USA. Data were collected as part of the efforts by the U.S. Geological Survey National Water Quality Assessment Program and the Idaho State University Stream Ecology Center to characterize aquatic biota and associated habitats in least-disturbed coldwater streams. Geographically, the basin comprises four ecoregions. Environmental variables constituting various spatial scales, from watershed characteristics to in stream habitat measures, were used to examine distribution patterns in fish assemblages. Nineteen fish species in the families Salmonidae, Cottidae, Cyprinidae, and Catostemidae were collected. Multivariate analyses showed high overlap in stream fish assemblages among the ecoregions. Major environmental factors determining species distributions in the basin were stream gradient, watershed size, conductivity, and percentage of the watershed covered by forest. Lowland streams (below 1,600 m in elevation), located mostly in the Snake River Basin/High Desert ecoregion, displayed different fish assemblages than upland streams (above 2,000 m elevation) in the Northern Rockies, Middle Rockies, and Northern Basin and Range ecoregions. For example, cotrids were not found in streams above 2,000 m in elevation. In addition, distinct fish assemblages were found in tributaries upstream and downstream from the large waterfall, Shoshone Falls, on the Snake River. Fish metrics explaining most of the variation among sites included the total number of species, number of native species, number of salmonid species, percent introduced species, percent cottids, and percent salmonids. Springs also exhibited different habitat conditions and fish assemblages than streams. The data suggest that the evolutionary consequences of geographic features and fish species introductions transcend the importance of ecoregion boundaries on fish distributions in the upper Snake River basin.
Environmental Education: Non-point Source Pollution
This activity is designed to demonstrate to students what an average storm drain collects during a rainfall event and how the water from storm drains can impact the water quality and aquatic environments of local streams, rivers, and bays.
Local and Cumulative Impervious Cover of Massachusetts Stream Basins
Brandt, Sara L.; Steeves, Peter A.
2009-01-01
Impervious surfaces such as paved roads, parking lots, and building roofs can affect the natural streamflow patterns and ecosystems of nearby streams. This dataset summarizes the percentage of impervious area for watersheds across Massachusetts by using a newly available statewide 1-m binary raster dataset of impervious surface for 2005. In order to accurately capture the wide spatial variability of impervious surface, it was necessary to delineate a new set of finely discretized basin boundaries for Massachusetts. This new set of basins was delineated at a scale finer than that of the existing 12-digit Hydrologic Unit Code basins (HUC-12s) of the national Watershed Boundary Dataset. The dataset consists of three GIS shapefiles. The Massachusetts nested subbasins and the hydrologic units data layers consist of topographically delineated boundaries and their associated percentage of impervious cover for all of Massachusetts except Cape Cod, the Islands, and the Plymouth-Carver region. The Massachusetts groundwater-contributing areas data layer consists of groundwater contributing-area boundaries for streams and coastal areas of Cape Cod and the Plymouth-Carver region. These boundaries were delineated by using groundwater-flow models previously published by the U.S. Geological Survey. Subbasin and hydrologic unit boundaries were delineated statewide with the exception of Cape Cod and the Plymouth-Carver Region. For the purpose of this study, a subbasin is defined as the entire drainage area upstream of an outlet point. Subbasins draining to multiple outlet points on the same stream are nested. That is, a large downstream subbasin polygon comprises all of the smaller upstream subbasin polygons. A hydrologic unit is the intervening drainage area between a given outlet point and the outlet point of the next upstream unit (Fig. 1). Hydrologic units divide subbasins into discrete, nonoverlapping areas. Each hydrologic unit corresponds to a subbasin delineated from the same outlet point; the hydrologic unit and the subbasin share the same unique identifier attribute. Because the same set of outlet points was used for the delineation of subbasins and hydrologic units, the linework for both data layers is identical; however, polygon attributes differ because for a given outlet point, the subbasin polygon area is the sum of all the upstream hydrologic units. Impervious surface summarized for a subbasin represents the percentage of impervious surface area of the entire upstream watershed, whereas the impervious surface for a hydrologic unit represents the percentage of impervious surface area for the intervening drainage area between two outlet points.
Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, Donald H.
2001-01-01
Nitrate (NO3) and other nutrients discharged by the Mississippi River combined with seasonal stratification of the water column are known to cause a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. About 120 water and suspended sediment samples collected in 1997 and 1998 from 24 locations in the Mississippi River Basin were analyzed for the isotope ratios δ15N and δ18O of dissolved NO3, and δ15N and δ13C of suspended particulate organic material (POM). Sampling stations include both large rivers (drainage areas more than 30,000 square kilometers) that integrate the effects of many land uses, and smaller streams (drainage areas less than 2,500 square kilometers) that have relatively uniform land use within their drainage areas. The data are used to determine sources and transformations of NO3 in the Mississippi River.Results of this study demonstrate that much of the NO3 in the Mississippi River originates in the agriculturally dominated basins of the upper midwestern United States and is transported without significant transformation or other loss to the Gulf of Mexico. Results from major tributaries that drain into the Mississippi River suggest that NO3 is not significantly altered by denitrification in its journey, ultimately, to the Gulf of Mexico. The spatial variability of isotope ratios among the smaller streams appears to be related to the dominant nitrogen source in the basins. There are some distinct isotope differences among land-use types. For example, for both NO3 and POM, the majority of δ15N isotope ratio values from basins dominated by urban and undeveloped land are less than +5 per mil, whereas the majority of values from basins dominated by row crops and row crops and/or livestock production are greater than +5 per mil. Also, the median δ18O of NO3 isotope ratio value (+14.0 per mil) from undeveloped basins is more than 6 per mil higher than the median value (+7.3 per mil) from the row crop dominated basins and 5 per mil higher than the median value (+9.0 per mil) from the row crop and/or livestock production dominated basins. The median δ18O of NO3 isotope ratio value (+21.5 per mil) from urban basins is 6.5 per mil higher than the median value (+14.0 per mil) from the undeveloped basins. The majority of NO3 concentrations are greater than 3 milligrams per liter (mg/L) in basins dominated by row crops and row crops and/or livestock production, whereas all NO3 concentrations are less than 2 mg/L in basins dominated by urban and undeveloped land.
Presley, Todd K.; Jamison, Marcael T.J.
2009-01-01
Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream, and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at five stations, and water-quality data at six stations, which include the five continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2008, and June 30, 2009. Within the Halawa Stream drainage area, three storms (October 25 and December 11, 2008, and February 3, 2009) were sampled during July 1, 2008, to June 30, 2009. A total of 43 environmental samples were collected during these three storms. During the storm of October 25, 2009, 31 samples were collected and analyzed individually for metals only. The other 12 samples from the other two storms were analyzed for some or all of the following analytes: total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for some or all of the following analytes: oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some grab and composite samples were analyzed for only a partial list of these analytes, either because samples could not be delivered to the laboratory in a timely manner, or an insufficient volume of sample was collected by the automatic samplers. Two quality-assurance/quality-control samples were collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. Four environmental samples were collected at the H-1 Storm Drain during July 1, 2008, to June 30, 2009. An oil and grease sample and a composite sample were collected during the storm on November 15, 2008, and two composite samples were collected during the January 11, 2009, storm. All samples at this site were collected using an automatic sampler. Samples were analyzed for some or all of the following analytes: total suspended solids, nutrients, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). One qualityassurance/quality-control sample was collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. During the storm of January 11, 2009, the two composite samples collected at H-1 Storm Drain were collected about three hours apart. Higher constituent concentrations were detected in the first 2 composite sample relative to the second composite sample, although the average discharge was higher during the period when the second sample was collected.
Urban drainage control applying rational method and geographic information technologies
NASA Astrophysics Data System (ADS)
Aldalur, Beatriz; Campo, Alicia; Fernández, Sandra
2013-09-01
The objective of this study is to develop a method of controlling urban drainages in the town of Ingeniero White motivated by the problems arising as a result of floods, water logging and the combination of southeasterly and high tides. A Rational Method was applied to control urban watersheds and used tools of Geographic Information Technology (GIT). A Geographic Information System was developed on the basis of 28 panchromatic aerial photographs of 2005. They were georeferenced with control points measured with Global Positioning Systems (basin: 6 km2). Flow rates of basins and sub-basins were calculated and it was verified that the existing open channels have a low slope with the presence of permanent water and generate stagnation of water favored by the presence of trash. It is proposed for the output of storm drains, the use of an existing channel to evacuate the flow. The solution proposed in this work is complemented by the placement of three pumping stations: one on a channel to drain rain water which will allow the drain of the excess water from the lower area where is located the Ingeniero White city and the two others that will drain the excess liquid from the port area.
THE URBAN STREAM SYNDROME: CURRENT KNOWLEDGE AND THE SEARCH FOR A CURE
The term "urban stream syndrome" describes the consistently observed ecological degradation of streams draining urban land. This paper reviews recent literature to describe symptoms of the syndrome, explores mechanisms driving the syndrome, and identifies appropriate goals and me...
Developing Ecological Indicators for Nutrients and Urban Impacts to Streams in Coastal Watersheds
Increased nutrient loads associated with human activities are among leading causes of impairment to streams and receiving waterbodies. For streams draining to the environmentally and economically important Narragansett Bay estuary, we developed indicators based on (1) nitrogen an...
How misapplication of the hydrologic unit framework diminishes the meaning of watersheds
Omernik, James M.; Griffith, Glenn E.; Hughes, Robert M.; Glover, James B.; Weber, Marc H.
2017-01-01
Hydrologic units provide a convenient but problematic nationwide set of geographic polygons based on subjectively determined subdivisions of land surface areas at several hierarchical levels. The problem is that it is impossible to map watersheds, basins, or catchments of relatively equal size and cover the whole country. The hydrologic unit framework is in fact composed mostly of watersheds and pieces of watersheds. The pieces include units that drain to segments of streams, remnant areas, noncontributing areas, and coastal or frontal units that can include multiple watersheds draining to an ocean or large lake. Hence, half or more of the hydrologic units are not watersheds as the name of the framework “Watershed Boundary Dataset” implies. Nonetheless, hydrologic units and watersheds are commonly treated as synonymous, and this misapplication and misunderstanding can have some serious scientific and management consequences. We discuss some of the strengths and limitations of watersheds and hydrologic units as spatial frameworks. Using examples from the Northwest and Southeast United States, we explain how the misapplication of the hydrologic unit framework has altered the meaning of watersheds and can impair understanding associations between spatial geographic characteristics and surface water conditions.
Spatio-temporal variation in stream water chemistry in a tropical urban watershed
A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez
2014-01-01
Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...
Water-quality assessment of the Cook Inlet basin, Alaska : summary of data through 1997
Glass, Roy L.
1999-01-01
Among the first activities undertaken in each National Water-Quality Assessment (NAWQA) investigation are the compilation, screening, and statistical summary of available data concerning water-quality conditions in the study unit. The water-quality conditions of interest are those that are representative of the general ambient water quality of a given stream reach or area of an aquifer. This report identifies which existing water-quality data are suitable for characterizing general conditions in a nationally consistent manner and describes, to the extent possible, general water-quality conditions in the Cook Inlet Basin in southcentral Alaska. The study unit consists of all lands that drain into Cook Inlet, but not the marine environment itself. Surface-water-quality data are summarized for 31 sites on streams. Ground-water quality data are summarized for four regions using analyses from about 550 wells that yield water from unconsolidated glacial and alluvial deposits and analyses from 17 wells in western Cook Inlet, some of which may yield water from coal or weakly consolidated sandstone or conglomerate. The summaries focus on the central tendencies and typical variations in the data and use nonparametric statistics such as frequencies and percentile values. Few surface- and ground-water sites have long-term water-quality records and very few data are available for dissolved oxygen, nutrients, metals, trace elements, organic compounds, and radionuclides. In general, most waters in streams and wells have small concentrations of major inorganic constituents, nutrients, trace elements, and organic compounds. Most streams have water that is generally suitable for drinking-water supply, the growth and propagation of cold-water anadromous fish, and water-contact recreation. However, suspended-sediment concentrations in glacier-fed streams are naturally high and can make water from glacier-fed streams unsuitable for many uses unless the water is treated to remove the suspended sediment. Several streams and lakes in Anchorage have fecal coliform bacteria concentrations higher than allowed for drinking or water-contact recreation. Ground water in the major withdrawal regions is generally suitable for drinking and most other purposes, but some wells yield water having nitrate, iron, or arsenic concentrations higher than drinking-water criteria. Ground-water quality has been degraded in several areas as the result of leaks or spills of petroleum products.
Compliance Testing of the Eglin AFB Asphalt Concrete Batch Plant, Eglin AFB, Florida
1989-06-01
the fan, contactor and separator. A schematic of the scrubber showing these components is presented in Figure 4. Particulate-laden air is blown into...the contactor at high speed by the scrubber fan. In the contactor , the gas stream passes through a fine water mist where particulates are wetted and...and wetted particulates are separated from the gas stream by centrifugal action and drain to the bottom of the separator. Water and sludge are drained
Recovery of a tropical stream after a harvest-related chlorine poisoning event.
EFFIE A. GREATHOUSE; JAMES G. MARCH; PRINGLE; CATHERINE M.
2005-01-01
1. Harvest-related poisoning events are common in tropical streams, yet research on stream recovery has largely been limited to temperate streams and generally does not include any measures of ecosystem function, such as leaf breakdown. 2. We assessed recovery of a second-order, high-gradient stream draining the Luquillo Experimental Forest, Puerto Rico, 3 months after...
Availability of water in Kalamazoo County, southwestern Michigan
Allen, William Burrows; Miller, John B.; Wood, Warren W.
1972-01-01
Kalamazoo County comprises an area of 572 square miles in the southwestern part of Michigan. It includes parts of the Kalamazoo, St. Joseph, and Paw Paw River basins, which drain into Lake Michigan. The northern two-thirds of the county is drained by the Kalamazoo River and its tributaries. A small area in the western piart of the county is drained by the Paw Paw River, and the rest, by tributaries of the St. Joseph River. Glacial deposits, containing sand and gravel, form an upper aquifer and a lower aquifer underlying large parts of the county. Areas of high transmissibility and thick saturated deposits are sufficiently localized to be considered as separate ground-water reservoirs having limited areal extent and definite hydrologic boundaries. Ground-water runoff from the basins constitutes a large part of the streamflow. Hydrograph separation shows that ground-water runoff composed 65 and 73 percent of the discharge of Kalamazoo River at Comstock and 75 and 79 percent of the discharge of Portage River near Vicksburg in 1965 and 1966, respectively. Based on the hydrologic budgets for the same years, ground-water recharge was 9.1 and 9.0 inches in the Kalamazoo River basin and 12.2 and 11.6 inches in the St. Joseph River basin. Ground-water recharge in the Kalamazoo River basin extrapolated for the 34-year period 1933-66 ranged from 4 to 13 inches and averaged 9 inches. In the St. Joseph River basin average recharge was about 9 inches for the same period. There is a wide range in runoff in the county. Augusta Creek, Portage Creek near Kalamazoo, and Gourdneck Creek have the highest annual runoff and maintain high yields even during periods of deficient precipitation. Spring Brook also reflects large ground-water contributions to streamflow. Storage in these basins could provide additional water during low flows for municipal and industrial needs. The primary use of lakes in the county is for recreational and esthetic purposes. Maintaining lake levels is therefore of the utmost importance. Levels at Crooked and Eagle Lakes have been maintained by pumping from lower aquifers. Diversion of water from Gourdneck Creek to West and Austin Lakes has helped in maintaining levels. Several relatively undeveloped lakes could be utilized as reservoirs whose storage could be used to augment streamflow or for water supply.Water in streams is generally of good chemical quality; however, several streams, including the Kalamazoo River downstream from Kalamazoo, have been degraded by municipal and industrial waste disposal. Water in the lakes is generally of good chemical quality with the exception of Barton Lake, which has been degraded by waste disposal. There is sufficient surface water available in Kalamazoo County to meet requirements for development of large quantities of water. The total available supply (average discharge of a stream) is about 680 mgd (million gallons per day). The dependable supply (7-day Q2, or average 7-day low flow having a recurrence interval of 2 years) is about 303 mgd. By developing artificial recharge facilities, surface runoff during winter and spring could be utilized to recharge ground-water reservoirs. Surface-water withdrawal in 1966 was about 58 mgd, of which 33 mgd was withdrawn from the Kalamazoo River. The quantity of water now being withdrawn from the ground and surface sources is small compared to the total that may be obtained in the area through full utilization of these resources. Mathematical models were used to simulate hydrologic conditions in the ground-water reservoirs and to evaluate maximum drawdowns for periods of little or no recharge. The practical limits of development as determined for the ground-water reservoirs are estimated to be at the following average withdrawal rates: Kalamazoo, 39 .mgd; Schoolcraft, 17 mgd; Kalamazoo-Portage, 24 mgd; and several small reservoirs, 67 mgd. These total 147 mgd. Further development would require additional artificial recharge facilities. Average ground-water withdrawal in 1966 was about 54 mgd. The Kalamazoo River ground-water reservoir furnished about 28 mgd, the Kalamazoo-Portage ground-water reservoir, about 21 mgd, and the other reservoirs, about 5 mgd. Thus, further development without artificial recharge is estimated to be about 11 mgd in the Kalamazoo River reservoir, 17 mgd in the Schoolcraft reservoir, 62 mgd in the several small reservoirs, and only 3 mgd in the Kalamazoo-Portage reservoir.The ground water is generally of good chemical quality and is suitable for most uses; however, it is Usually very hard and may contain objectionable amounts of iron. Some deterioration of water quality- has .been observed in several areas because of seepage from stockpiles of industrial minerals. The presence of many inland lakes, streams having high ground-water runoff, and, in places, relatively undeveloped ground-water reservoirs provides -flexibility in water management.
May, Christine L.; Gresswell, Robert E.
2003-01-01
Large wood recruitment and redistribution mechanisms were investigated in a 3.9 km2 basin with an old-growth Pseudotsuga menziesii (Mirb.) Franco and Tsuga heterophylla (Raf.) Sarg. forest, located in the southern Coast Range of Oregon. Stream size and topographic setting strongly influenced processes that delivered wood to the channel network. In small colluvial channels draining steep hillslopes, processes associated with slope instability dominated large wood recruitment. In the larger alluvial channel, windthrow was the dominant recruitment process from the local riparian area. Consequently, colluvial channels received wood from further upslope than the alluvial channel. Input and redistribution processes influenced piece location relative to the direction of flow and thus, affected the functional role of wood. Wood recruited directly from local hillslopes and riparian areas was typically positioned adjacent to the channel or spanned its full width, and trapped sediment and wood in transport. In contrast, wood that had been fluvially redistributed was commonly located in mid-channel positions and was associated with scouring of the streambed and banks. Debris flows were a unique mechanism for creating large accumulations of wood in small streams that lacked the capacity for abundant fluvial transport of wood, and for transporting wood that was longer than the bank-full width of the channel.
NASA Astrophysics Data System (ADS)
Donahoe, R. J.; Hawkins, P. D.
2017-12-01
The Lake Harris watershed was the site of legacy surface mining of coal conducted from approximately 1969 to 1976. The mine site was abandoned and finally reclaimed in 1986. Water quality in the stream draining the mined area is still severely impacted by acid mine drainage (AMD), despite the reclamation effort. Lake Harris is used as a source of industrial water, but shows no negative water quality effects from the legacy mining activities despite receiving drainage from the AMD-impacted stream. Water samples were collected monthly between October 2016 and September 2017 from a first-order stream impacted by acid mine drainage (AMD), a nearby first-order control stream, and Lake Harris. Stream water chemistry was observed to vary both spatially and seasonally, as monitored at five sample stations in each stream over the study period. Comparison of the two streams shows the expected elevated concentrations of AMD-indicator solutes (sulfate and iron), as well as significant increases in conductivity and acidity for the stream draining the reclaimed mine site. In addition, dramatic (1-2 orders of magnitude) increases in major element (Al, Ca, Mg, K), minor element (Mn, Sr) and trace element (Co, Ni) concentrations are also observed for the AMD-impacted stream compared to the control stream. The AMD-impacted stream also shows elevated (2-4 times) levels of other stream water solutes (Cl, Na, Si, Zn), compared to the control stream. As the result of continuing AMD input, the stream draining the reclaimed mine site is essentially sterile, in contrast to the lake and control stream, which support robust aquatic ecosystems. A quantitative model, constrained by isotopic data (δD and δ18O), will be presented that seeks to explain the observed temporal differences in water quality for the AMD-impacted stream as a function of variable meteoric water, groundwater, and AMD inputs. Similar models may be developed for other AMD-impacted streams to better understand and predict temporal variations in water quality parameters and their effect on aquatic ecosystems.
Pringle, C.M.; Triska, F.J.; Browder, G.
1990-01-01
Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24-25 ??C in streams draining lower elevations (35-250 m) in tropical wet forest, to 10 ??C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60-300 ??g SRP L-1; 66-405 ??g TP L-1) were high at sites within six pristine drainages at elevations between 35-350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 ??g SRP L-1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain. ?? 1990 Kluwer Academic Publishers.
Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin
Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...
McPherson, Ann K.; Moreland, Richard S.; Atkins, J. Brian
2003-01-01
The Mobile River Basin is one of more than 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States and the fourth largest in terms of streamflow. The Mobile River Basin encompasses parts of Alabama, Georgia, Mississippi, and Tennessee, and almost two-thirds of the 44,0000-square-mile basin is located in Alabama. The extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors, which impart unique and variable qualities to the streams, rivers, and aquifers and provide abundant habitat to sustain the diverse aquatic life in the basin. From January 1999 to December 2001, a study was conducted of the occurrence and distribution of nutrients, suspended sediment, and pesticides in surface water of the Mobile River Basin. Nine sampling sites were selected on the basis of land use. The nine sites included two streams draining agricultural areas, two urban streams, and five large rivers with mixed land use. Surface-water samples were collected from one to four times each month to characterize the spatial and temporal variation in nutrient and pesticide concentrations. Nutrient and suspended-sediment concentrations were highest in watersheds dominated by urban or agricultural land uses. Forty-two percent of the total phosphorus concentrations at all nine sites exceeded the U.S. Environmental Protection Agency's recommended maximum concentration of 0.1 milligram per liter. Flow-weighted mean concentrations at the Mobile River Basin sites generally were in the lower to middle percentile ranges compared with data from other NAWQA studies across the Nation. However, flow-weighted mean concentrations of ammonia, total nitrogen, orthophosphate, and total phosphorus at Bogue Chitto Creek, an agricultural watershed, ranked in the upper 20th percentile of agricultural sites sampled across the Nation as part of the NAWQA Program. Nutrient loads in the Tombigbee River were nearly twice as high compared with nutrient loads in the Alabama River. Nutrient yields were highest in Bogue Chitto Creek, Cahaba Valley Creek, and Threemile Branch because of agricultural and urban land uses in these watersheds. Of the 104 pesticides and degradation products analyzed in the stream samples, 69 were detected in one or more samples. Of the 69 detected pesticides, 51 were herbicides, 15 were insecticides, and 3 were fungicides. A relatively small number of heavily used herbicides accounted for most of the detections, including atrazine and its metabolites (deethylatrazine, 2-hydroxyatrazine, deisopropylatrazine, and deethyldeisopropylatrazine), simazine, metolachlor, tebuthiuron, prometon, diuron, and 2,4-D. Diazinon, chlorpyrifos, and carbaryl were the most frequently detected insecticides; metalaxyl was the most frequently detected fungicide in the Mobile River Basin. Concentrations of pesticides detected in surface water of the Mobile River Basin were among the highest concentrations recorded nationally by the NAWQA Program during 1991 to 2001. The three highest concentrations of atrazine detected at sites across the country were recorded at Bogue Chitto Creek; the highest concentrations of 2,4-D, imazaquin, and malathion recorded nationally were detected at Threemile Branch. Aquatic-life criteria were exceeded by concentrations of five herbicides (2,4-D, atrazine, cyanazine, diuron, and metolachlor), six insecticides (carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and p,p'-DDE), and one fungicide (chlorothalonil). Drinking-water standards were exceeded by concentrations of four herbicides (2,4-D, atrazine, cyanazine, and simazine), three insecticides (alpha- HCH, diazinon, and dieldrin), and one fungicide (chlorothalonil). The types and concentrations of pesticides found in surface water are linked to land use and to the types of pesti
NGEE Arctic TIR and Digital Photos, Drained Thaw Lake Basin, Barrow, Alaska, July 2015
Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely; Alistair Rogers
2016-11-01
FLIR thermal infrared (TIR), digital camera photos, and plot notes across the Barrow, Alaska DTLB site. Data were collected together with measurements of canopy spectral reflectance (see associated metadata record (NGEE Arctic HR1024i Canopy Spectral Reflectance, Drained Thaw Lake Basin, Barrow, Alaska, July 2015 ). Data contained within this archive include exported FLIR images (analyzed with FLIR-Tools), digital photos, TIR report, and sample notes. Further TIR image analysis can be conducted in FLIR-Tools.
Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.
Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune
2010-10-01
Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. © 2010 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.
2015-12-01
Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information could inform future studies, such as investigations into stream network scale thresholds in DOM cycling, carbon cycling modelling for the study region, or understanding the impact of wetlands sometimes considered geographically isolated on downstream ecosystems.
Skinner, Kenneth D.
2013-01-01
A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.
MODULATING STORM DRAIN FLOWS TO REDUCE STREAM POLLUTANT CONCENTRATIONS
Pathogen and toxic chemical concentrations above the chemical and toxicity water quality standards in creeks and rivers pose risks to human health and aquatic ecosystems. Storm drains discharging into these watercourses often contribute significantly to elevating pollutant concen...
Lateral and subsurface flows impact arctic coastal plain lake water budgets
Koch, Joshua C.
2016-01-01
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.
Hinkel, Kenneth M.; Jones, Benjamin M.; Eisner, Wendy R.; Cuomo, Chris J.; Beck, R.A.; Frohn, R.
2007-01-01
Thousands of lakes are found on the Arctic Coastal Plain of northern Alaska and northwestern Canada. Developed atop continuous permafrost, these thaw lakes and associated drained thaw lake basins are the dominant landscape elements and together cover 46% of the 34,570 km2western Arctic Coastal Plain (WACP). Lakes drain by a variety of episodic processes, including coastal erosion, stream meandering, and headward erosion, bank overtopping, and lake coalescence. Comparison of Landsat multispectral scanner (MSS) imagery from the mid-1970s to Landsat 7 enhanced thematic mapper (ETM+) imagery from around 2000 shows that 50 lakes completely or partially drained over the approximately 25 year period, indicating landscape stability. The lake-specific drainage mechanism can be inferred in some cases and is partially dependant on geographic settings conducive to active erosion such as riparian and coastal zones. In many cases, however, the cause of drainage is unknown. The availability of high-resolution aerial photographs for the Barrow Peninsula extends the record back to circa 1950; mapping spatial time series illustrates the dynamic nature of lake expansion, coalescence, and drainage. Analysis of these historical images suggests that humans have intentionally or inadvertently triggered lake drainage near the village of Barrow. Efforts to understand landscape processes and identify events have been enhanced by interviewing Iñupiaq elders and others practicing traditional subsistence lifestyles. They can often identify the year and process by which individual lakes drained, thereby providing greater dating precision and accuracy in assessing the causal mechanism. Indigenous knowledge has provided insights into events, landforms, and processes not previously identified or considered.
Agricultural land use alters the seasonality and magnitude of stream metabolism
Streams are active processors of organic carbon; however, spatial and temporal variation in the rates and controls on metabolism are not well quantified in streams draining intensively-farmed landscapes. We present a comprehensive dataset of gross primary production (GPP) and ec...
NITRATE AND NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT
We are measuring dissolved nitrate and nitrous oxide concentrations and related parameters in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, residential, or mixed...
NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT
We are measuring the dissolved nitrous oxide concentration in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, developed, or mixed land uses. Nitrous oxide concentr...
Eash, D.A.
1993-01-01
Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.
NASA Astrophysics Data System (ADS)
Huh, Youngsook; Tsoi, Mai-Yin; Zaitsev, Alexandr; Edmond, John M.
1998-05-01
The response of continental weathering rates to changing climate and atmospheric PCO 2 is of considerable importance both to the interpretation of the geological sedimentary record and to predictions of the effects of future anthropogenic influences. While comprehensive work on the controlling mechanisms of contemporary chemical and mechanical weathering has been carried out in the tropics and, to a lesser extent, in the strongly perturbed northern temperate latitudes, very little is known about the peri-glacial environments in the subarctic and arctic. Thus, the effects of climate, essentially temperature and runoff, on the rates of atmospheric CO 2 consumption by weathering are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large rivers of Eastern Siberia, the Lena, Yana, Indigirka, Kolyma, Anadyr, and numerous lesser streams which drain a pristine, high-latitude region that has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts common to western Eurasia and North America. The scale of the terrain sampled, in terms of area, is comparable to that of the continental United States or the Amazon/Orinoco and includes a similarly diverse range of geologic and climatic environments. In this paper the chemical fluxes from the western region, the very large, ancient, and geologically stable sedimentary basin, Precambrian to Quaternary, of the Siberian Platform will be presented and compared to published results from analogous terrains in the tropical basins of China. While the range in the chemical signatures of the various tributaries included here (˜60 sampled) is large, this mainly reflects lithology rather than the weathering environment. The areal chemical fluxes are comparable to those of the Chinese rivers, being dominated by the dissolution of carbonates and evaporites. The net consumption of atmospheric CO 2 by aluminosilicate weathering is minor, as it is in the tropical basins. It is much smaller than in active orogenic belts in similar latitudes, e.g., the Fraser and Yukon, but comparable to those of the Mackenzie tributaries that drain the eastern slope of the Rockies. Lithology exerts the dominant influence in determining the weathering yield from sedimentary terrains, and for a largely carbonate/evaporite terrain climate does not have a direct effect.
Domagalski, Joseph L.; Alpers, Charles N.; Slotton, Darrell G.; Suchanek, Thomas H.; Ayers, Shaun M.
2004-01-01
Concentrations and mass loads of total mercury and methylmercury in streams draining abandoned mercury mines and near geothermal discharge in Cache Creek Basin, California, were measured during a 17-month period from January 2000 through May 2001. Rainfall and runoff averages during the study period were lower than long-term averages. Mass loads of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, were generally the highest during or after winter rainfall events. During the study period, mass loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas because of a lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a source of mercury and methylmercury to downstream receiving bodies of water such as the Delta of the San Joaquin and Sacramento Rivers. Much of the mercury in these sediments was deposited over the last 150 years by erosion and stream discharge from abandoned mines or by continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas. These constituents included aqueous concentrations of boron, chloride, lithium, and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges were enriched with more oxygen-18 relative to oxygen-16 than meteoric waters, whereas the enrichment by stable isotopes of water from much of the runoff from abandoned mines was similar to that of meteoric water. Geochemical signatures from stable isotopes and trace-element concentrations may be useful as tracers of total mercury or methylmercury from specific locations; however, mercury and methylmercury are not conservatively transported. A distinct mixing trend of trace elements and stable isotopes of hydrogen and oxygen from geothermal waters was apparent in Sulphur Creek and lower Bear Creek (tributaries to Cache Creek), but the signals are lost upon mixing with Cache Creek because of dilution.
NASA Astrophysics Data System (ADS)
Morrish, S.; Marshall, J. S.
2013-12-01
The Nicoya Peninsula lies within the Costa Rican forearc where the Cocos plate subducts under the Caribbean plate at ~8.5 cm/yr. Rapid plate convergence produces frequent large earthquakes (~50yr recurrence interval) and pronounced crustal deformation (0.1-2.0m/ky uplift). Seven uplifted segments have been identified in previous studies using broad geomorphic surfaces (Hare & Gardner 1984) and late Quaternary marine terraces (Marshall et al. 2010). These surfaces suggest long term net uplift and segmentation of the peninsula in response to contrasting domains of subducting seafloor (EPR, CNS-1, CNS-2). In this study, newer 10m contour digital topographic data (CENIGA- Terra Project) will be used to characterize and delineate this segmentation using morphotectonic analysis of drainage basins and correlation of fluvial terrace/ geomorphic surface elevations. The peninsula has six primary watersheds which drain into the Pacific Ocean; the Río Andamojo, Río Tabaco, Río Nosara, Río Ora, Río Bongo, and Río Ario which range in area from 200 km2 to 350 km2. The trunk rivers follow major lineaments that define morphotectonic segment boundaries and in turn their drainage basins are bisected by them. Morphometric analysis of the lower (1st and 2nd) order drainage basins will provide insight into segmented tectonic uplift and deformation by comparing values of drainage basin asymmetry, stream length gradient, and hypsometry with respect to margin segmentation and subducting seafloor domain. A general geomorphic analysis will be conducted alongside the morphometric analysis to map previously recognized (Morrish et al. 2010) but poorly characterized late Quaternary fluvial terraces. Stream capture and drainage divide migration are common processes throughout the peninsula in response to the ongoing deformation. Identification and characterization of basin piracy throughout the peninsula will provide insight into the history of landscape evolution in response to differential uplift. Conducting this morphotectonic analysis of the Nicoya Peninsula will provide further constraints on rates of segment uplift, location of segment boundaries, and advance the understanding of the long term deformation of the region in relation to subduction.
Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin
NASA Astrophysics Data System (ADS)
Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.
2017-12-01
The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.
Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butz, T.R.; Dean, N.E.; Bard, C.S.
1980-05-31
Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less
Powell, Jeffrey R.
2003-01-01
Response of fish communities to cropland density and natural environmental setting were evaluated at 20 streams in the Eastern Highland Rim Ecoregion of the lower Tennessee River Basin during the spring of 1999. Sites were selected to represent a gradient of cropland densities in basins draining about 30 to 100 square miles. Fish communities were sampled by using a combination of seining and electrofishing techniques. A total of 10,550 individual fish, representing 63 species and 15 families, were collected during the study and included the families Cyprinidae (minnows), 18 species; Percidae (perch and darters), 12 species; and Centrarchidae (sunfish), 12 species. Assessments of environmental characteristics, including instream and terrestrial data and land-cover data, were conducted for each site. Instream measurements, such as depth, velocity, substrate type, and embeddedness, were recorded at 3 points across 11 equidistant transects at each site. Terrestrial measurements, such as bank angle, canopy angle, and canopy closure percentage, were made along the stream bank and midchannel areas. Water-quality data collected included pH, dissolved oxygen, specific conductivity, water temperature, nutrients, and fecal-indicator bacteria. Substrate embeddedness was the only variable correlated with both cropland density and fish communities (as characterized by ordination scores and several community level metrics). Multivariate and nonparametric correlation techniques were used to evaluate fish-community responses to physical and chemical factors associated with a cropland-density gradient, where the gradient was defined as the percentage of the basin in row crops. Principal component analysis and correspondence analysis suggest that the Eastern Highland Rim Ecoregion is composed of three subgroups of sites based on inherent physical and biological differences. Data for the subgroup containing the largest number of sites were then re-analyzed, revealing that several environmental variables, such as nutrient concentrations, stream gradient, bankfull width, and substrate embeddedness, were related to cropland density; however, only a subset of those variables (substrate embeddedness, elevation, and streamflow) were related to fish communities. Results from this analysis suggest that although many water-quality and habitat variables are covariant with cropland density, most of the variables do not significantly affect fish-community composition; instead, fish communities primarily respond to the cumulative effects of sedimentation.
Senior, Lisa A.; Koerkle, Edward H.
2003-01-01
The Christina River Basin drains 565 mi2 (square miles) in Pennsylvania and Delaware. Water from the basin is used for recreation, drinking-water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Brandywine Creek is the largest of the subbasins and drains an area of 327 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on streamwater quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at six sites in the Brandywine Creek subbasin and five sites in the other subbasins.The HSPF model for the Brandywine Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 35 reaches draining areas that ranged from 0.6 to 18 mi2. Three of the reaches contain regulated reservoir. Eleven different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the basin are forested, agricultural, residential, and urban. The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data for eight U.S. Geological Survey (USGS) stream-flow-measurement stations for the period of January 1, 1994, through October 29, 1998. Daily precipitation data for three National Oceanic and Atmospheric Administration (NOAA) gages and hourly data for one NOAA gage were used for model input. The difference between observed and simulated streamflow volume ranged from -2.7 to 3.9 percent for the nearly 5-year period at the eight calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 237 mi2), annual differences between observed and simulated streamflow ranged from -14.0 to 18.8 percent and the overall error for the 5-year period was 1.0 percent. Calibration errors for 36 storm periods at the eight calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using monitoring data collected at six USGS streamflow-measurement stations with variable water quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended-solids data may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for two to six individual storms in 1998 at each of the six monitoring sites indicate that simulation error is commonly as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved nutrients than for particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual events. Assessment of the water-quality calibration under stormflow conditions is limited by the relatively small amount of available water-quality data in the basin. Duration curves for simulated and reported sediment concentration at Brandywine Creek at Wilmington, Del., are similar, indicating model performance is better when evaluated over longer periods than when evaluated on individual storm events.
Weaver, T.L.; Healy, D.; Sabin, T.G.
2005-01-01
The Nottawaseppi Huron Band of Potawatomi Indians in Calhoun County, Michigan is concerned about the water quality and quantity of streams in and around tribal lands and of shallow ground water. The tribe wanted to establish a database that included streamflow, stage, and water quality of local streams and quality of ground water from wells belonging to the tribe and its members. Concerned about the effects of long-term agricultural activity and increasing numbers of singlefamily dwellings being constructed within the watershed both on and off the reservation, the tribe wants to develop a water-resources management plan.U.S. Geological Survey (USGS) measured streamflow and installed staff gages tied into local datum on three tributaries of the St. Joseph River that cross tribal lands. Water-quality samples were collected from the sites under a variety of flow regimes from spring to fall during 2000-03. Stage-streamflow rating curves were constructed for Pine Creek and Athens & Indian Creek Drain after a number of discharge measurements were made and a thorough basin analysis was completed. Daily streamflow for Pine Creek near Athens was estimated for the period from May 2000 through September 2003.USGS collected 12 water samples at Pine Creek near Athens, Athens & Indian Creek Drain, and an unnamed tributary to Pine Creek during October 2000 through September 2003. Physical properties were measured, and the streams were sampled for major ions, nutrients, trace elements, caffeine, and herbicides/pesticides and their breakdown products (degradates). The tribe also measured physical properties weekly at the three sites during each growing season for the study period. Surface water at the three sites can be classified as hard, with calcium carbonate concentrations exceeding 180 milligrams per liter (mg/L). Concentrations of calcium, magnesium, chloride, and dissolved solids are typical of the area. There were 68 detections of 17 pesticides, degradates, and caffeine. Atrazine and metolachlor were detected in all samples, and the atrazine degradate deethylatrazine was detected in all samples from Pine Creek and Athens & Indian Creek Drain. Another atrazine degradate (2-hydroxy-atrazine, or OIET) was detected five of the six times that it was included in the analyses. A single sample collected from Athens & Indian Creek Drain in May 2001 had relatively higher concentrations of acetochlor, atrazine, CIAT (deethylatrazine), and diuron than the other sampling sites did during the study. Analysis for various species of mercury was completed on samples collected at Pine Creek and Athens & Indian Creek Drain in July 2003, and results were similar to those typical of unimpaired streams in the Midwest. None of the surface-water sites had major ion, nutrient, or trace-element concentrations that exceeded Michigan Department of Environmental Quality standards for nonpotable surface water.USGS also collected 11 ground-water samples from 7 wells on or adjacent to the traditional reservation in 2003. Two wells were sampled twice, and a single well was sampled three times, in order to document any chemical changes that might have occurred as a result of aquifer recharge, which most typically occurs in late winter to spring in the southern Lower Peninsula of Michigan. Samples were analyzed for 184 pesticides and degradates and caffeine. There were five detections of four pesticides or degradates, but none of the detected chemicals are included in current U.S. Environmental Protection Agency drinking-water standards. The remaining 181 analytes were below laboratory reporting limits.
Historical changes in pool habitats in the Columbia River basin
Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler
2000-01-01
An historical stream survey (1934-1945) was compared with current surveys (1987-1997) to assess changes in pool frequencies in the Columbia River Basin. We surveyed 2267 km of 122 streams across the basin, representing a wide range of lithologies, stream sizes, land use histories, ownerships, and ecoregions. Based on pool classes inherited from the historical surveys,...
Slip stream apparatus and method for treating water in a circulating water system
Cleveland, J.R.
1997-03-18
An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.
Metolachlor and its metabolites in tile drain and stream runoff in the canajoharie creek watershed
Phillips, P.J.; Wall, G.R.; Thurman, E.M.; Eckhardt, D.A.; Vanhoesen, J.
1999-01-01
Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid) can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200 1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2 45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid)-can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200-1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2-45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.
El Muntasar, Ahmed; Oudit, Deems
2017-01-01
Malignant melanoma (MM) on the trunk, because of its anatomical location, has multiple potential lymphatic basins to which to drain. The aim of this study is to map the location of the sentinel lymph node (SLN) on the basis of the anatomical location of the primary malignant melanoma on the trunk. Patients diagnosed with MM on the trunk who had undergone a SLN biopsy from January 2006 to March 2015 were identified in the Christie NHS Foundation Trust through a computer database search. The anterior and posterior surfaces of the trunk were divided into four sections each. A total of 212 patients were evaluated. MM was more common on the posterior trunk, accounting for 73% of cases, and 57% of melanomas were on the right side of the trunk. The axillary basins were involved in drainage in 91.5% of all truncal melanomas. Drainage was to a single lymphatic basin in 68.3% of cases. The incidence of drainage to multiple lymphatic basins was not uniform for the anterior and posterior surfaces of the trunks. One-third of MM on the posterior surface of the trunk will drain to multiple basins. Around 50% of the melanomas of the upper back drain to a contralateral basin. Independent of the location of the MM, the axillary basins were the most common location of drainage, with a total of 91% of the cohort. Therefore, the location of the SLN could be predicted, depending on the location of the MM on the trunk. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Brigham, Allison R.; Sadorf, Eric M.
2001-01-01
Stream size, a reflection of basin area, was a principal influence in categorizing the benthic invertebrate assemblages, with sites that have the largest basin areas forming a separate group. Although it is difficult to distinguish among the contributions of large basin area, increased concentrations of nutrients and pesticides, and decreasing instream habitat diversity, the resulting invertebrate assemblage described was distinct. The remaining sites were headwater or tributary streams that reflected conditions more common to smaller streams, such as higher gradients and the potential for more diverse or extensive riparian habitat, but were distinguished by landform. Following basin area in importance, landform contributed to the differences observed among the benthic invertebrate communities at the remaining sites.
Monitoring Supraglacial Streams over Three Months in Southwest Greenland
NASA Astrophysics Data System (ADS)
Muthyala, R.; Rennermalm, A.; Leidman, S. Z.; Cooper, M. G.; Cooley, S. W.; Smith, L. C.; van As, D.
2017-12-01
Supraglacial river networks are the most efficient conduits for evacuation of meltwater runoff produced on Greenland ice sheet. These rivers are prominent features on the ablation zone of southwest Greenland. However, little is known about the transport of meltwater through supraglacial stream network and most of the in-situ observations only capture a few days of streamflow. Here we report three months of observations of water level and discharge collected during summer of 2016, in two small supraglacial streams near the ice sheet margin in southwest Greenland. We also compare streamflow observations with meteorological data from a nearby automatic weather station. The two sites are very different, with the lower basin relatively steep, smooth and dark while the upper basin has rugged terrain and deeply incised stream channels. These catchment characteristics propagate to different relationships with meteorological parameters. For example, upper basin stream water levels show a strong covariance with surface temperature while the lower basin water levels do not. We also find differences in temporal variation of supraglacial stream water level, with the upper basin having two distinct peaks, in mid-June and mid-July, while the lower basin shows gradual decrease from June to August. Long-term supraglacial stream observations such as these will ultimately help assess how well surface mass balance models can simulate ice sheet runoff.
Smith, S. Jerrod; Esralew, Rachel A.
2010-01-01
The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.
Li-Zn-Pb multi isotopic characterization of the Loire River Basin, France
NASA Astrophysics Data System (ADS)
Millot, R.; Desaulty, A.; Widory, D.; Bourrain, X.
2013-12-01
The Loire River in France is approximately 1010 km long and drains an area of 117 800 km2. Upstream, the Loire River flows following a south to north direction from the Massif Central down to the city of Orléans, 650 km from its source. The Loire River is one of the main European riverine inputs to the Atlantic Ocean. Over time, its basin has been exposed to numerous sources of anthropogenic metal pollutions, such as metal mining, industry, agriculture and domestic inputs. The Loire River basin is thus an excellent study site to develop new isotope systematics for tracking anthropogenic sources of metal pollutions (Zn and Pb) and also to investigate Li isotope tracing that can provide key information on the nature of weathering processes at the Loire River Basin scale. Preliminary data show that Li-Zn-Pb concentrations and isotopic compositions span a wide range in river waters of the Loire River main stream and the main tributaries. There is a clear contrast between the headwaters upstream and rivers located downstream in the lowlands. In addition, one of the major tributaries within the Massif Central (the Allier River) is clearly influenced by inputs resulting from mineralizations and thermomineral waters. The results showed that, on their own, each of these isotope systematics reveals important information about the geogenic or anthropogenic origin Li-Zn-Pb. Considered together, they are however providing a more integrated understanding of the overall budgets of these elements at the scale of the Loire River Basin.
Water resources in the Big Lost River Basin, south-central Idaho
Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.
1970-01-01
The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the ground into the surface streams. Large quantities of water disappear in the Chilly, Darlington, and other sinks and reappear above Mackay Narrows, above Moore Canal heading, and in other reaches. A cumulative summary of water yield upstream from selected points in the basin is as follows : Above Howell Ranch: water yield: 345 cfs; surface water: 310 cfs; ground water: 35 cfs Above. Mackay Narrows water yield: 450 cfs; surface water: 325 cfs; ground water: 75 cfs; crop evapotranspiration: 50 cfs Above Arco: water yield: 650 cfs; surface water: 75 cfs; ground water: 425 cfs; crop evapotranspiration: 150 cfs Ground-water pumping affects streamflow in reaches , where the stream and water table are continuous, but the effects of pumping were not measured except locally. Pumping depletes the total water supply by the. amount of the pumped water that is evapotranspired by crops. The part of the pumped water that is not consumed percolates into the ground or runs off over the land surface to the stream. The estimated 425 cfs that leaves the basin as ground-water flow is more than adequate for present and foreseeable needs. However because much of the outflow occurs at considerable depth, the quantity that is salvageable is unknown. Both the surface and ground waters are of good quality and are suitable for most uses. Although these waters are low in total dissolved solids, they tend to be hard or very hard.
Chris L. Burcher; E.F. Benfield
2006-01-01
We investigated whether suburbanization influenced the physical and biological characteristics of ten 3rd-0r 4th-order streams that drain historically agricultural watersheds in the southern Appalachians near Asheville, North Carolina. Five watersheds had areas of recent suburban development proximal to stream sites, and 5...
The effect of timber harvesting on streams is assessed using two measures of ecosystem function: nutrient ad community metabolism. This research is being conducted in streams of the southern Appalachian Mountains of North Carolina, the Ouachita Mountains of Arkansas, the Cascad...
Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas
Hughes, Leon S.; Leifeste, Donald K.
1967-01-01
The kinds and quantities of minerals dissolved in the surface water of the Neches River basin result from such environmental factors as geology, streamflow patterns and characteristics, and industrial influences. As a result of high rainfall in the basin, much of the readily soluble material has been leached from the surface rocks and soils. Consequently, the water in the streams is usually low in concentrations of dissolved minerals and meets the U.S. Public Health Service drinking-water standards. In most streams the concentration of dissolved solids is less than 250 ppm (parts per million). The Neches River drains an area of about 10,000 square miles in eastern Texas. From its source in southeast Van Zandt County the river flows in a general southeasterly direction and empties into Sabine Lake, an arm of the Gulf of Mexico. In the basin the climate ranges from moist subhumid to humid, and the average annual rainfall ranges from 46 inches is the northwest to more than 52 inches in the southeast. Annual runoff from the basin has averaged 11 inches; however, runoff rates vary widely from year to year. The yearly mean discharge of the Neches River at Evadale has ranged from 994 to 12,720 cubic feet per second. The rocks exposed in the Neches River basin are of the Quaternary and Tertiary Systems and range in age from Eocene to Recent. Throughout most of the basin the geologic formations dip generally south and southeast toward the gulf coast. The rate of dip is greater than that of the land surface; and as a result, the older formations crop out to the north of the younger formations. Water from the outcrop areas of the Wilcox Group and from the older formations of the Claiborne Group generally has dissolved-solids concentrations ranging from 100 to 250 ppm; water from the younger formations has concentrations less than 100 ppm. The northern half of the basin has soft water, with less than 60 ppm hardness. The southern half of .the basin has very soft water, usually with less than 30 ppm hardness. The chloride concentrations are less than 20 ppm in surface water in the southern half of the basin and usually range from 20 to 100 ppm in the northern half of the basin. Concentrations greater than 100 ppm are found only where pollution is occurring. The Neches River basin has an abundance of surface water, but uneven distribution of runoff makes storage projects necessary to provide dependable water supplies. The principal existing reservoirs, with the exception of Striker Creek Reservoir, contain water of excellent quality. Chemical-quality data for the Striker Creek drainage area indicate that its streams are affected by .the disposal of brines associated with oil production. Sam Rayburn Reservoir began impounding water in 1965. The water impounded should prove of acceptable quality for most uses, but municipal and industrial wastes released into the Angelina River near Lufkin may have a degrading effect on the quality of the water, especially during extended periods of low flows. Water available for storage at the many potential reservoir sites will be of good quality; but, if the proposed salt-water barrier is to impound acceptable water, the disposal of oilfield brine into Pine Island Bayou should be discontinued.
Kelepertzis, Efstratios; Argyraki, Ariadne; Valakos, Efstratios; Daftsis, Emmanouil
2012-10-01
The present study investigates the accumulation of heavy metals [copper (Cu), lead (Pb), zinc (Zn), magnesium (Mn), cadmium (Cd), nickel (Ni), and chromium (Cr)] in tadpoles inhabiting the metalliferous streams flowing within the Asprolakkas River basin (northeast Chalkidiki peninsula, Greece) and the effect of potentially harmful elements in stream water and sediment on the corresponding levels in their tissue. Animals were collected from six sampling sites influenced by a wide range of surface water and stream sediment trace element concentrations. The results of the chemical analyses showed that tadpoles accumulated significant levels of all of the examined metals. The range of whole-body mean measured concentrations were (in dry mass) as follows: Cu (46-182 mg/kg), Pb (103-4,490 mg/kg), Zn (494-11,460 mg/kg), Mn (1,620-13,310 mg/kg), Cd (1.2-82 mg/kg), Ni (57-163 mg/kg), and Cr (38-272 mg/kg). The mean concentrations of Pb, Zn, Mn, Ni, Cr, and Cd in Kokkinolakkas stream, which drains a currently active mining area, were the highest ever reported in tadpoles. Our results indicate that whole-body levels of Pb, Zn, Cu, and Cd increase with stream sediment concentrations and that these organisms tend to accumulate metals bound to Fe and Mn oxides. In addition, high dissolved concentrations and significant concentrations associated with more labile geochemical phases of sediments for specific metals were contributing factors determining whole-body levels. Given the observed bioconcentration factors, as well as the correlation with sediment concentrations, it is proposed that these organisms could be considered as bioindicators of environmental contamination and may be used for monitoring purposes within this metal-rich zone and, perhaps, within other rivers affected by metal mining.
Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon
Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.
2017-10-20
This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.
Geomorphic constraints on the evolution of the Kern Gorge, southern Sierra Nevada, California.
NASA Astrophysics Data System (ADS)
Foreshee, B. C.; Krugh, W. C.
2016-12-01
The Kern River is uniquely positioned to respond to tectonic activity that occurs within the southern Sierra Nevada and southern San Joaquin Basin, CA. The North and South forks of the upper Kern River (above Lake Isabella) are fed by tributaries that primarily drain the high-elevation low-relief landscape of the Kern Plateau. These south flowing trunk streams switch to a dominantly southwest flow direction at the Lake Isabella Reservoir and South Lake Valley respectively. Downstream from Lake Isabella, the Kern River steepens as it flows through the Kern Gorge and then crosses the Kern Arch region of the San Joaquin Basin. Clark et al., (2005) used low-temperature thermochronometry and trunk and tributary channel profiles from the upper Kern River catchment to identify two periods of rapid incision that occurred from 32.0 to 3.5 Ma and from 3.5 Ma to present. Cecil et al., (2014) used low-temperature thermochronometry from well cores of Oligocene-Miocene sandstones to investigate the time-temperature history of the Kern Arch and identified a period of subsidence and sedimentation between 6.0 and 1.0 Ma that was immediately followed by rapid exhumation. They attributed these results to the northwest migration of a delaminating lithospheric root. In this study we examine the erosional and depositional history within the Kern Gorge to investigate the response of the Kern River to Pliocene-Pleistocene tectonic activity within the Kern Arch and southern Sierra Nevada. Quantitative stream profile analyses and geomorphic mapping within the Kern Gorge are being conducted using USGS 10m DEM data, satellite and aerial imagery, and field based observations and measurements. Reconnaissance mapping efforts have so far identified several strath terraces, alluvial fill terraces, colluvial deposits, and multiple debris flow and landslide deposits that have been incised by the Kern River and are now preserved above the active channel. These geomorphic landforms are currently being targeted for geochronologic analyses to help constrain depositional ages as well as the timing and rate of incision along the lower Kern River. Combined methods of stream profile analysis, field investigation and geochronometry will shed light on transient signals propagating through the lower Kern River drainage basin.
NASA Astrophysics Data System (ADS)
Censier, Claude; Lang, Jacques
1999-08-01
The depositional environment, provenance and processes of emplacement of the detrital material of the Mesozoic Carnot Formation are defined, by bedding and sedimentological analysis of its main facies, and are reconstructed within the palaeogeographic framework of Central Africa. The clastic material was laid down between probably the Albian and the end of the Cretaceous, in a NNW-oriented braided stream fluvial system that drained into the Doba Trough (Chad) and probably also into the Touboro Basin (Cameroon). The material was derived from weathering of the underlying Devonian-Carboniferous Mambéré Glacial Formation and of the Precambrian schist-quartzite complex located to the south of the Carnot Formation. These results provide useful indications as to the provenance of diamonds mined in the southwest Central African Republic.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-09-02
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-01-01
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Physical aquatic habitat assessment data, Ozark plateaus, Missouri and Arkansas
Jacobson, Robert B.; Johnson, Harold E.; Reuter, Joanna M.; Wright, Maria Panfil
2004-01-01
This report presents data from two related studies on physical habitat in small streams in the Ozark Plateaus Physiographic Province of Missouri and Arkansas. Seventy stream reaches and their contributing drainage basins were assessed using a physical habitat protocol designed to optimize understanding of how stream reach characteristics relate to drainage-basin characteristics. Drainage-basin characteristics were evaluated using geographic information system (GIS) techniques and datasets designed to evaluate the geologic, physiographic, and land-use characteristics of encompassing drainage basins. Reach characteristics were evaluated using a field-based geomorphology and habitat protocol. The data are intended to complement ecological studies on Ozark Plateaus streams.
Logistic model of nitrate in streams of the upper-midwestern United States
Mueller, D.K.; Ruddy, B.C.; Battaglin, W.A.
1997-01-01
Nitrate in surface water can have adverse effects on aquatic life and, in drinking-water supplies, can be a risk to human health. As part of a regional study, nitrates as N (NO3-N) was analyzed in water samples collected from streams throughout 10 Midwestern states during synoptic surveys in 1989, 1990, and 1994. Data from the period immediately following crop planting at 124 sites were analyzed during logistic regression to relate discrete categories of NO3-N concentrations to characteristics of the basins upstream from the sites. The NO3-N data were divided into three categories representing probable background concentrations (10 mg L-1). Nitrate-N concentrations were positively correlated to streamflow, upstream area planted in corn (Zea mays L.), and upstream N- fertilizers application rates. Elevated NO3-N concentrations were associated with poorly drained soils and were weakly correlated with population density. Nitrate-N and streamflow data collected during 1989 and 1990 were used to calibrate the model, and data collected during 1994 were used for verification. The model correctly estimated NO3-N concentration categories for 79% of the samples in the calibration data set and 60% of the samples in the verification data set. The model was used to indicate where NO3-N concentrations might be elevated or exceed the NO3-N MCL in streams throughout the study area. The potential for elevated NO3-N concentrations was predicted to be greatest for streams in Illinois, Indiana, Iowa, and western Ohio.
Cravotta, Charles A.; Ward, S.J.; Koury, Daniel J.; Koch, R.D.
2004-01-01
Limestone drains were constructed in 1995, 1997, and 2000 to treat acidic mine drainage (AMD) from the Orchard, Buck Mtn., and Hegins discharges, respectively, in the Swatara Creek Basin, Southern Anthracite Coalfield, east-central Pennsylvania. This report summarizes the construction characteristics and performance of each of the limestone drains on the basis of influent and effluent quality and laboratory tests of variables affecting limestone dissolution rates. Data for influent and effluent indicate substantial alkalinity production by the Orchard and Buck Mtn. limestone drains and only marginal benefits from the Hegins drain. Nevertheless, the annual alkalinity loading rates have progressively declined with age of all three systems. Collapsible-container (cubitainer) testing was conducted to evaluate current scenarios and possible options for reconstruction and maintenance of the limestone drains to optimize their long-term performance. The cubitainer tests indicated dissolution rates for the current configurations that were in agreement with field flux data (net loading) for alkalinity and dissolved calcium. The dissolution rates in cubitainers were larger for closed conditions than open conditions, but the rates were comparable for coated and uncoated limestone for a given condition. Models developed on the basis of the cubitainer testing indicate (1) exponential declines in limestone mass and corresponding alkalinity loading rates with increased age of limestone drains and (2) potential for improved performance with enlargement, complete burial, and/or regular flushing of the systems.
Slip stream apparatus and method for treating water in a circulating water system
Cleveland, Joe R.
1997-01-01
An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).
Agro-hydrologic landscapes in the Upper Mississippi and Ohio River basins.
Schilling, Keith E; Wolter, Calvin F; McLellan, Eileen
2015-03-01
A critical part of increasing conservation effectiveness is targeting the "right practice" to the "right place" where it can intercept pollutant flowpaths. Conceptually, these flowpaths can be inferred from soil and slope characteristics, and in this study, we developed an agro-hydrologic classification to identify N and P loss pathways and priority conservation practices in small watersheds in the U.S. Midwest. We developed a GIS framework to classify 11,010 small watersheds in the Upper Mississippi and Ohio River basins based on soil permeability and slope characteristics of agricultural cropland areas in each watershed. The amount of cropland in any given watershed varied from <10 to >60 %. Cropland areas were classified into five main categories, with slope classes of <2, 2-5, and >5 %, and soil drainage classes of poorly and well drained. Watersheds in the Upper Mississippi River basin (UMRB) were dominated by cropland areas in low slopes and poorly drained soils, whereas less-intensively cropped watersheds in Wisconsin and Minnesota (in the UMRB) and throughout the Ohio River basin were overwhelmingly well drained. Hydrologic differences in cropped systems indicate that a one-size-fits-all approach to conservation selection will not work. Consulting the classification scheme proposed herein may be an appropriate first-step in identifying those conservation practices that might be most appropriate for small watersheds in the basin.
Baker, Ronald J.; Esralew, Rachel A.
2010-01-01
Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).
Status of natural resources in Redwood Creek basin, Redwood National Park
Milton Kolipinski; Ed Helley; Luna Leopold; Steve Viers; Gerard Witucki; Robert Ziemer
1975-01-01
Redwood Creek drains a 280 square mile basin which is located in a region of high winter rainfall and high natural rates of erosion. Forests of commercial quality formerly covered about 238 square miles of the basin. Parklands, including a portion of Redwood National Park, occupy approximately 10% of the lower basin and include, amount other values, several of the...
A synthesis and comparative evaluation of drainage water management
USDA-ARS?s Scientific Manuscript database
Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...
Long-Term Trends in Nutrient Concentrations and Fluxes in Streams Draining to Lake Tahoe, California
NASA Astrophysics Data System (ADS)
Domagalski, J. L.
2017-12-01
Lake Tahoe, situated in the rain shadow of the eastern Sierra Nevada at an elevation of 1,897 meters, has numerous small to medium sized tributaries that are sources of nutrients and fine sediment. The Tahoe watershed is relatively small and the surface area of the lake occupies about 38% of the total watershed area (1,313 km2). Each stream contributing water to the lake therefore also occupies a small watershed, mostly forested, with typical trees being Jeffrey, Ponderosa, or Sugar Pine and White Fir. Outflow from the lake contributes to downstream uses such as water supply and ecological resources. Only about 6% of the watershed is urbanized or residential land, and wastewater is exported to adjacent basins and not discharged to the lake as part of a plan to maintain water clarity. The lake's exceptional clarity has been diminishing due to phytoplankton and fine sediment, prompting development of management plans to improve water quality. Much of the annual discharge and flux of nutrients to the lake results from snowmelt in the spring and summer months, and climatic changes have begun to shift this melt to earlier time frames. Winter rains on urbanized land also contribute to nutrient loads. To understand the relative importance of land use, climate, and other factors affecting stream concentrations and fluxes, a Weighted Regression on Time Discharge and Season (WRTDS) model documented trends over a time frame of greater than 25 years. Ten streams have records of discharge, nutrient (NO3, NH3, OP, TP, TKN) and sediment data to complete this analysis. Both urbanized and non-urbanized locations generally show NO3 trending down in the 1980s. Some locations show initially decreasing orthophosphate trends, followed by small significant increases in concentration and fluxes starting around 2000 to 2005. Although no wastewater enters the streams, ammonia concentrations mimic those of orthophosphate, with initially negative trends in concentration and flux followed by positive trends after 2005 through 2015. Those trends in ammonia are observed at most sites irrespective of the degree of urbanization and may be related to atmospheric transport of ammonia from outside of the basin. Continued monitoring of these streams is necessary to understand the implications of various management options on the lake.
Wolock, D.M.; Fan, J.; Lawrence, G.B.
1997-01-01
The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0.2 to 166.3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0.2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0.2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. ?? 1997 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
van Sickle, J.; Baker, J.; Herlihy, A.
2005-05-01
We built multiple regression models for Emphemeroptera/ Plecoptera/ Tricoptera (EPT) taxon richness and other indicators of biological condition in streams of the Willamette River Basin, Oregon, USA. The models were used to project the changes in condition that would be expected in all 2-4th order streams of the 30000 sq km basin under alternative scenarios of future land use. In formulating the models, we invoked the theory of limiting factors to express the interactive effects of stream power and watershed land use on EPT richness. The resulting models were parsimonious, and they fit the data in our wedge-shaped scatterplots slightly better than did a naive additive-effects model. Just as theory helped formulate our regression models, the models in turn helped us identify a new research need for the Basin's streams. Our future scenarios project that conversions of agricultural to urban uses may dominate landscape dynamics in the basin over the next 50 years. But our models could not detect any difference between the effects of agricultural and urban development in watersheds on stream biota. This result points to an increased need for understanding how agricultural and urban land uses in the Basin differentially influence stream ecosystems.
Bales, Jerad D.; Weaver, J. Curtis; Robinson, Jerald B.
1999-01-01
Streamflow and water-quality data were collected at nine sites in the city of Charlotte and Mecklenburg County, North Carolina, during 1993–97. Six of the basins drained areas having relatively homogeneous land use and were less than 0.3 square mile in size; the other three basins had mixed land use. Atmospheric wet-deposition data were collected in three of the basins during 1997–98.Streamflow yield varied by a factor of six among the sites, despite the fact that sites were in close proximity to one another. The lowest yield occurred in a residential basin having no curbs and gutters. The variability in mean flow from these small, relatively homogeneous basins is much greater than is found in streams draining basins that are 10 square miles in size or larger. The ratio of runoff to rainfall in the developing basin appears to have increased during the study period.Low-flow suspended-sediment concentrations in the study basins were about the same magnitude as median stormflow concentrations in Piedmont agricultural basins. Sediment concentrations were higher in the mixed land-use basins and in the developing basin. Median suspended-sediment concentrations in these basins generally were an order of magnitude greater than median concentrations in the other five basins, which had stable land use.Some of the highest total nitrogen concentrations occurred in residential basins. Total nitrogen concentrations detected in this study were about twice as high as concentrations in small Piedmont streams affected by agriculture and urbanization. Most of the total nitrogen consisted of organic nitrogen at all of the sites except in two residential land- use basins. The high ammonia content of lawn fertilizer may explain the higher ammonia concentration in stormflow from residential basins.The two basins with the highest median suspended-sediment concentrations also had the highest total phosphorus concentrations. Median total phosphorus concentrations measured in this study were several times greater than median concentrations in small Piedmont streams but almost an order of magnitude less than total phosphorus concentrations in Charlotte streams during the late 1970's.Bacteria concentrations are not correlated to streamflow. The highest bacteria levels were found in 'first-flush' samples. Higher fecal coliform concentrations were associated with residential land use.Chromium, copper, lead, and zinc occurred at all sites in concentrations that exceeded the North Carolina ambient water-quality standards. The median chromium concentration in the developing basin was more than double the median concentration at any other site. As with chromium, the maximum copper concentration in the developing basin was almost an order of magnitude greater than maximum concentrations at other sites. The highest zinc concentration also occurred in the developing basin. Samples were analyzed for 121 organic compounds and 57 volatile organic compounds. Forty-five organic compounds and seven volatile organic compounds were detected. At least five compounds were detected at all sites, and 15 or more compounds were detected at all sites except two mixed land-use basins. Atrazine, carbaryl, and metolachlor were detected at eight sites, and 90 percent of all samples had measurable amounts of atrazine. About 60 percent of the samples had detectable levels of carbaryl and metolachlor. Diazinon and malathion were measured in samples from seven sites, and methyl parathion, chlorpyrifos, alachlor, and 2,4-D were detected at four or more sites. The fewest compounds were detected in the larger, mixed land-use basins. Residential basins and the developing basin had the greatest number of detections of organic compounds.The pH of wet atmospheric deposition in three Charlotte basins was more variable than the pH measured at a National Atmospheric Deposition Program (NADP)site in Rowan County. Summer pH values were significantly lower than pH measured during the remainder of the year, probably as a result of poorer air quality and different weather patterns during the summer.Concentrations of ammonia and nitrate at the Charlotte sites generally were lower than those measured at the NADP site. Summer concentrations of ammonia and nitrate at both the Charlotte and the NADP sites were significantly greater than concentrations measured during the remainder of the year, again probably reflecting poorer summertime air-quality conditions.Sediment yields at the nine sites ranged from 77 tons per square mile per year in a residential basin to 4,700 tons per square mile per year at the developing basin. Residential areas that have been built-out for several years and industrial areas appear, in general, to have the lowest sediment yields for the Charlotte study sites.Average annual yields of total nitrogen loads ranged from about 1.7 tons per square mile to 6.6 tons per square mile. Average annual total phosphorus yields for all sites except the developing basin were less than 1.4 tons per square mile. Phosphorus yield at the developing basin was 13 .4 tons per square mile per year.Biochemical oxygen demand loading in 1993 from all of the permitted wastewater-treatment facilities in Charlotte and Mecklenburg County was about 1.5 tons per day or 548 tons per year. Converting this point-source loading to an annual yield for the 528 square-mile area of Mecklenburg County is equivalent to 1.03 tons per square mile per year, or a yield much lower than any of the yields measured at the nine study sites. In other words, biochemical oxygen demand loading from nonpoint sources in Mecklenburg County probably exceeds loading from all point sources by a large amount.Loads and average annual yields were computed for five metals-chromium, copper, lead, nickel, and zinc. The highest annual average yields for all five of these metals were in the developing basin, which also had the highest annual average suspended-sediment yield of all the sites. Estimated wet-deposition watershed loadings suggest that atmospheric deposition may be an important source of some metals, including chromium, copper, lead, and zinc, in Charlotte storm water.Storm water from residential land-use basins has higher concentrations of total nitrogen, fecal coliform bacteria, and organic compounds than do other land-use types. Reductions in suspended-sediment concentrations should generally result in reduced export of phosphorus and metals. Stable land uses, such as industrial areas and built-out residential basins, have lower sediment concentrations in stormwater than do mixed land use and developing basins. Finally, atmospheric deposition may be an important source of nitrogen and some metals in Charlotte stormwater.
Chang, Ming; Kennen, Jonathan G.; Del Corso, Ellyn
2000-01-01
An index of biotic integrity (!B!) modified for New Jersey streams was used to compare changes in stream condition from the 1970s to the 1990s in Delaware, Passaic, and Raritan River Basins. Stream condition was assessed at 88 sampling locations. Mean IBI scores for all basins increased from the 1970s to the 1990s, but the stream-condition category improved (from fair to good) only for the Delaware River Basin. The number of benthic insectivores and the proportion of insectivorous cyprinds increased in all three basins; however, the number of white suckers decreased significantly only in the Delaware River Basin. Results of linear-regression analysis indicate a significant correlation between the percentage of altered land in the basin and change in IBI score (1970s to 1990s) for Delaware River sites. Results of analysis of variance of the rank-transformed IBI scores for the 1970s and 1990s indicate that the three basins was equal in the 1970s. Results of a multiple-comparison test demonstrated that the 1990s IBI values for the Delaware River Basin differed significantly from those for the Passaic and Raritan River Basins. Many factors, such as the imposition of the more stringent standards on water-water and industrial discharges during the 1980s and changes in land-use practices, likely contributed to the change in the Delaware River Basin. A general increase in IBI values for the Passaic, Raritan, and Delaware River Basins over the past 25 years appears to reflect overall improvements in water quality.
Douglas Allen; William Dietrich; Peter Baker; Frank Ligon; Bruce Orr
2007-01-01
We describe a mechanistically-based stream model, BasinTemp, which assumes that direct shortwave radiation moderated by riparian and topographic shading, controls stream temperatures during the hottest part of the year. The model was developed to support a temperature TMDL for the South Fork Eel basin in Northern California and couples a GIS and a 1-D energy balance...
Brightbill, Robin A.; Munn, Mark D.
2008-01-01
In 2000, the U.S. Environmental Protection Agency began the process of developing regional nutrient criteria for streams and rivers. In response to concerns about nutrients by the U.S. Environmental Protection Agency and others, the U.S. Geological Survey National Water Quality Assessment Program began studying the effects of nutrient enrichment on agricultural stream ecosystems to aid in the understanding of how nutrients affect the biota in agricultural streams. Streams within five study areas were sampled either in 2003 or 2004. These five study areas were located within six NAWQA study units: the combined Apalachicola-Chattahoochee-Flint River Basin (ACFB) and Georgia-Florida Coastal Plain Drainages (GAFL), Central Columbia Plateau?Yakima River Basin (CCYK), Central Nebraska Basins (CNBR), Potomac River?Delmarva Peninsula (PODL), and the White-Miami River Basin (WHMI). Data collected included nutrients (nitrogen and phosphorous) and other chemical parameters, biological samples (chlorophyll, algal assemblages, invertebrate assemblages, and some fish assemblages), stream habitat, and riparian and basin information. This report describes and presents the data collected from these study areas.
Jaesoon Hwang; Steven W. Oak; Steven Jeffers
2008-01-01
Phytophthora spp. occur widely in forest and other natural ecosystems. Because these straminipiles are well adapted to aquatic environments, monitoring strategically selected streams may reflect occurrence and distribution of Phytophthora spp. over the relatively large area drained by these streams. The mountain region of western...
Culture- and PCR-based measurements of fecal pollution were determined and compared to hydrologic and land use indicators. Stream water samples (n = 235) were collected monthly over a two year period from ten streams draining headwatersheds with different land use intensities ra...
Yager, R.M.
1987-01-01
A two-dimensional finite-difference model was developed to simulate groundwater flow in a surficial sand and gravel deposit underlying the nuclear fuel reprocessing facility at Western New York Nuclear Service Center near West Valley, N.Y. The sand and gravel deposit overlies a till plateau that abuts an upland area of siltstone and shale on its west side, and is bounded on the other three sides by deeply incised stream channels that drain to Buttermilk Creek, a tributary to Cattaraugus Creek. Radioactive materials are stored within the reprocessing plant and are also buried within a till deposit at the facility. Tritiated water is stored in a lagoon system near the plant and released under permit to Franks Creek, a tributary to Buttermilk Creek. Groundwater levels predicted by steady-state simulations closely matched those measured in 23 observation wells, with an average error of 0.5 meter. Simulated groundwater discharges to two stream channels and a subsurface drain were within 5% of recorded values. Steady-state simulations used an average annual recharge rate of 46 cm/yr; predicted evapotranspiration loss from the ground was 20 cm/yr. The lateral range in hydraulic conductivity obtained through model calibration was 0.6 to 10 m/day. Model simulations indicated that 33% of the groundwater discharged from the sand and gravel unit (2.6 L/sec) is lost by evapotranspiration, 3% (3.0 L/sec) flows to seepage faces at the periphery of the plateau, 20% (1.6 L/sec) discharges to stream channels that drain a large wetland area near the center of the plateau, and the remaining 8% (0.6 L/sec) discharges to a subsurface french drain and to a wastewater treatment system. Groundwater levels computed by a transient-state simulation of an annual climatic cycle, including seasonal variation in recharge and evapotranspiration, closely matched water levels measured in eight observation wells. The model predicted that the subsurface drain and the stream channel that drains the wetland would intercept most of the recharge originating near the reprocessing plant. (Lantz-PTT)
Drainage areas in the Vermillion River basin in eastern South Dakota
Benson, Rick D.; Freese, M.D.; Amundson, Frank D.
1988-01-01
Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)
Kimbrough, Robert A.
2001-01-01
Information on streamflow and surface-water and ground-water quality in Park County, Colorado, was compiled from several Federal, State, and local agencies. The data were reviewed and analyzed to provide a perspective of recent (1962-98) water-resource conditions and to help identify current and future water-quantity and water-quality concerns. Streamflow has been monitored at more than 40 sites in the county, and data for some sites date back to the early 1900's. Existing data indicate a need for increased archival of streamflow data for future use and analysis. In 1998, streamflow was continuously monitored at about 30 sites, but data were stored in a data base for only 10 sites. Water-quality data were compiled for 125 surface-water sites, 398 wells, and 30 springs. The amount of data varied considerably among sites; however, the available information provided a general indication of where water-quality constituent concentrations met or exceeded water-quality standards. Park County is primarily drained by streams in the South Platte River Basin and to a lesser extent by streams in the Arkansas River Basin. In the South Platte River Basin in Park County, more than one-half the annual streamflow occurs in May, June, and July in response to snowmelt in the mountainous headwaters. The annual snowpack is comparatively less in the Arkansas River Basin in Park County, and mean monthly streamflow is more consistent throughout the year. In some streams, the timing and magnitude of streamflow have been altered by main-stem reservoirs or by interbasin water transfers. Most values of surface-water temperature, dissolved oxygen, and pH were within recommended limits set by the Colorado Department of Public Health and Environment. Specific conductance (an indirect measure of the dissolved-solids concentration) generally was lowest in streams of the upper South Platte River Basin and higher in the southern one-half of the county in the Arkansas River Basin and in the South Platte River downstream from Antero Reservoir. Historical nitrogen concentrations in surface water were small. Nitrite was not detected, most un-ionized ammonia concentrations were less than 0.02 milligram per liter, and all nitrate concentrations were less than 1.2 milligrams per liter. Nitrate concentrations were higher in urban and built-up areas than in rangeland and forest areas. Most median concentrations of total phosphorus at individual sites were less than 0.05 milligram per liter, and concentrations were not significantly different among urban and built-up, rangeland, and forest areas. An upward trend in total phosphorus concentration was determined for flow from the East Portal of the Harold D. Roberts Tunnel, but the slope of the trend line was small and the concentrations were equal or nearly equal to the detection limit of 0.01 milligram per liter. Using median phosphorus loads for two South Platte River sites, the annual phosphorus load transported out of Park County in the South Platte River was calculated to be about 10,000 pounds. Median iron and manganese concentrations for most areas of Park County were less than in-stream water-quality standards, even though several individual concentrations were one to two orders of magnitude larger than the standards. The largest concentrations of aluminum, cadmium, chromium, copper, iron, manganese, nickel, and zinc were from the upper North Fork South Platte River Basin or the Mosquito Creek Basin. All ground-water concentrations of chloride and most ground-water concentrations of sulfate were less than the U.S. Environmental Protection Agency (USEPA) drinking-water standard of 250 milligrams per liter. Median dissolved-solids concentrations in ground water ranged from 160 milligrams per liter in the crystalline-rock aquifers to 257 milligrams per liter in the sedimentary-rock aquifers. Dissolved-solids concentrations greater than the USEPA drinking-water standard of 500 milligrams per liter were detected in abo
Drainage water phosphorus losses in the great lakes basin
USDA-ARS?s Scientific Manuscript database
The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...
Scaling Stream Flow Response to Forest Disturbance: the SID Project
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.
2004-05-01
We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.
Wilson, M.W.
1979-01-01
Drainage areas were determined for 61 basins in the Twelvepole Creek basin, West Virginia; 11 basins of the Big Sandy River Basin, West Virginia; and 210 basins in the Tug Fork basin of Virginia, Kentucky, and West Virginia. Most basins with areas greater than 5 square miles were included. Drainage areas were measured with electronic digitizing equipment, and supplementary measurements were made with a hand planimeter. Stream mileages were determined by measuring, with a graduated plastic strip, distances from the mouth of each stream to the measuring point on that stream. Mileages were reported to the nearest one-hundredth of a mile in all cases. The latitude and longitude of each measuring point was determined with electronic digitizing equipment and is reported to the nearest second. The information is listed in tabular form in downstream order. Measuring points for the basins are located in the tables by intersecting tributaries, by counties, by map quadrangles, or by latitude and longitude. (Woodard-USGS)
Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.
2017-11-01
The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.
Proglacial hydrology in the tropical Andes: lessons from the Cordillera Blanca, Peru (Invited)
NASA Astrophysics Data System (ADS)
McKenzie, J. M.; Mark, B. G.; Baraer, M.
2009-12-01
Understanding the complexities of tropical Andean hydrology is critical for managing modern water resources and interpreting paleohydrologic records. Glaciers are the most visible component of these systems, responding to global climate change and acting as critical hydrologic reservoirs. Tropical Andean glaciers are undergoing rapid retreat with complex impacts on the downstream hydrology. Groundwater is also an important component of the Andean regional hydrologic system, but its contribution is difficult to assess due to remote site access, minimal baseline data, and lack of continuous historical discharge and precipitation measurements. We have synthesized hydrochemical data from synoptically sampled glacial melt water, groundwater, precipitation, and stream discharge collected intermittently between 1998 and July 2008 throughout the Callejon de Huaylas, a 5000 km2 watershed that drains the western side of the Cordillera Blanca in northern Perú. Our data from 2004 to 2006 show systematic annual shifts in the isotopic ratios (δ18O and δ2H) of river water, indicating an increase in glacial melt water input, and we are able to use these changes across the Cordillera Blanca to estimate an average increase of 1.6 (± 1.1) % in the specific discharge of the glacierized basins. Enhanced total stream discharge in more glacierized catchments (>20% glacier area) is demonstrated by a significant positive trend in a 43-year discharge anomaly record. Our hydrochemical basin characterization method (HBCM) uses chemical mass balance mixing to quantify the contribution of glacial melt water, groundwater, and surface runoff to streams for different valleys and nested watersheds in the Callejon de Huaylas. The Yanamarey basin (7% glaciated) has been observed since 1998 and the HBCM results show good agreement with measured stream discharge (maximum R2 of 0.99) for monthly cumulative values. These results suggest that for most of the studied years groundwater is the main contributor (median value = 59%) to basin outflow during the dry season and also that it is subject to large flux variations. The groundwater system appears to have two flow components with 3- and 18-to-36- month residence times. The pro-glacial area in the Callejon de Huaylas has extensive long, relatively low-relief valleys that connect to the main Rio Santa Valley. We have assessed groundwater contributions to river outflow using HBCM from four of these valleys with differing geomorphic features (e.g., lakes, wetlands, glacial cover) and bedrock lithology, and find that there is a connection between increasing glacial cover and decreasing relative groundwater contributions. The groundwater is stored and flows through the heterogeneous unconsolidated valley fill materials (e.g., glacial-lacustrine and landslide deposits) deposited since the local last glacial maximum. The results from this study have important implications for interpreting high resolution paleohydrologic records from Andean glacial valleys. Groundwater is a critical component of the hydrologic system, in particular for high elevation watersheds, and the resulting outflow from these basins is already partially time-integrated due to groundwater mixing and storage.
Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers.
Hibbs, Barry J; Darling, Bruce K
2005-01-01
Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic playa that also serves as a focal point of ground water discharge. Our evidence suggests that El Cuervo Aquifer may lose a smaller portion of its discharge by interbasin ground water flow to Indian Hot Springs, near the Rio Grande. Thus, El Cuervo Aquifer is a topographically closed basin that is either partially drained if a component of its ground water discharge reaches Indian Hot Springs or undrained if all its natural ground water discharge is to Laguna El Cuervo.
Are big basins just the sum of small catchments?
Shaman, J.; Stieglitz, M.; Burns, D.
2004-01-01
Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.
Water resources inventory of Connecticut Part 7: upper Connecticut River basin
Ryder, Robert B.; Thomas, Mendall P.; Weiss, Lawrence A.
1981-01-01
The 508 square miles of the upper Connecticut River basin in north-central Connecticut include the basins of four major tributaries: the Scantic, Park, and Hockanum Rivers, and the Farmington River downstream from Tariffville. Precipitation over this area averaged 44 inches per year during 1931-60. In this period, an additional 3,800 billion gallons of water per year entered the basin in the main stem of the Connecticut River at the Massachusetts state line, about 230 billion gallons per year in the Farmington River at Tariffville, and about 10 billion gallons per year in the Seantic River at the Massachusetts state line. Some water was also imported from outside the basin by water-supply systems. About half the precipitation, 22.2 inches, was lost from the basin by evapotranspiration; the remainder flowed out of the study area in the Connecticut River at Portland. Variations in streamflow at 41 long-term continuous-record gaging stations are summarized in standardized graphs and tables that can be used to estimate streamflow characteristics at other sites. For example, mean-flow and two low-flow characteristics: (1) the 7-day annual minimum flow for 2-year and (2) 10-year recurrence intervals, have been determined for many partial-record stations throughout the basin. Of the 30 principal lakes, ponds, and reservoirs, two have usable storage capacities of more than 1 billion gallons. The maximum safe draft rate (regulated flow) of the largest of these, Shenipsit Lake at Rockville, is 6.5 million gallons per day for the 2-year and 30-year recurrence intervals (median and lowest annual flow). Floods have occurred within each month of the year but in different years. The greatest known flood on the Connecticut River was in March 1936; it had a peak flow of 130,000 cubic feet per second at Hartford. Since then, major floods have been reduced by flood-control measures. The major aquifers underlying the basin are composed of unconsolidated materials (stratified drift and till) and bedrock. Stratified drift overlies till and bedrock in valleys and lowlands in the eastern and western parts and in most of the broad central valley. The stratified drift generally ranges in thickness from 10 feet in small valleys to more than 200 feet in the Connecticut River Valley. Bedrock underlies the entire basin and is composed of (1) interbedded sedimentary and igneous rocks and (2) crystalline rocks. Ground-water sources yield from several million gallons per day from large well fields to 1 gallon per minute from single wells. Yields of 100 gal/min or more are most commonly obtained from screened wells tapping stratified-drift aquifers; amounts can be calculated by use of a series of graphs in conjunction with estimates of aquifer transmissivity and thickness. Eighteen areas underlain by good aquifers are selected as the most favorable locations for large-scale development of ground water. Selection of these areas is based on estimates of aquifer characteristics and the amount of water potentially available from induced infiltration of streamflow at low-flow conditions. Small to moderate water supplies can generally be obtained from any of the aquifers. Wells in bedrock yield at least a few gallons per minute at most sites. The probability of obtaining an adequate yield for domestic supply is greater in sedimentary than in crystalline bedrock and is also greater in stratified-drift overburden than in till. Where unaffected by man's activities, the water is of the calcium magnesium bicarbonate type, is generally low to moderate in dissolved-solids concentration, and ranges from soft to hard. In general, streamflow is less mineralized than ground water, particularly when it consists largely of direct runoff. However, streams become more highly mineralized during low-flow conditions, when most flow consists of more highly mineralized water discharged from aquifers. The median dissolved-solids concentration in water from 25 stream sites was 113 mg/L (milligrams per liter) during high flow, and 148 mg/L during low flow within the study period. Iron and manganese occur naturally in objectionable concentrations in some streams draining swamps and in some waters draining from sedimentary bedrock which contains iron- and manganese-bearing minerals. Man's activities have affected the water quality of streams in much of the area, particularly in the Hockanum and Park River basins. The degradation in quality in these streams is shown by wide and erratic changes in dissolved-solids concentration, excessive amounts of trace elements, a low dissolved-oxygen content, and abnormally high temperatures. Ground water within this area is degraded principally by induced infiltration of surface water that contains chemical wastes, by leachate from wastes stored or disposed of on the ground, and by effluents discharged from septic tanks. The quantity and quality of water are satisfactory for a wide variety of uses, and, with suitable treatment, the water may be used for most purposes. The total amount of water used in 1968 was more than 100 billion gallons. About 80 percent of this was used for industrial purposes, and 90 percent of the industrial water was obtained from surface-water sources. About 85 percent of the population was supplied with water for domestic use by 15 major public and municipal systems and 25 private associations. Analyses of water from the 13 largest systems show generally good quality.
Water resources and the hydrologic effects of coal mining in Washington County, Pennsylvania
Williams, Donald R.; Felbinger, John K.; Squillace, Paul J.
1993-01-01
Washington County occupies an area of 864 square miles in southwestern Pennsylvania and lies within the Pittsburgh Plateaus Section of the Appalachian Plateaus physiographic province. About 69 percent of the county population is served by public water-supply systems, and the Monongahela River is the source for 78 percent of the public-supply systems. The remaining 31 percent of the population depends on wells, springs, and cisterns for its domestic water supply. The sedimentary rocks of Pennsylvanian and Permian age that underlie the county include sandstone, siltstone, limestone, shale, and coal. The mean reported yield of bedrock wells ranges from 8.8 gallons per minute in the Pittsburgh .Formation to 46 gallons per minute in the Casselman Formation. Annual water-level fluctuations usually range from less than 3 ft (feet) beneath a valley to about 16 ft beneath a hilltop. Average hydraulic conductivity ranges from 0.01 to 18 ft per day. Water-level fluctuations and aquifer-test results suggest that most ground water circulates within 150 ft of land surface. A three-dimensional computer flow-model analysis indicates 96 percent of the total ground-water recharge remains in the upper 80 to 110 ft of bedrock (shallow aquifer system). The regional flow system (more than 250ft deep in the main valley) receives less than 0.1 percent of the total ground-water recharge from the Brush Run basin. The predominance of the shallow aquifer system is substantiated by driller's reports, which show almost all water bearing zones are less than 150ft below land surface. The modeling of an unmined basin showed that the hydrologic factors that govern regional groundwater flow can differ widely spatially but have little effect on the shallow aquifers that supply water to most domestic wells. However, the shallow aquifers are sensitive to hydrologic factors within this shallow aquifer system (such as ground-water recharge, hydraulic conductivity of the streamaquifer interface, and hydraulic conductivity of the aquifer). A vertical fracture zone would probably increase ground-water availability within the zone and would probably result in a lower head in the shallow aquifers in an upland draw area and an increased head in a valley. l Streams in the northern and western parts of the county drain to the Ohio River and streams in the eastern and southern parts of the county drain to the Monongahela River. The computed 7-day, 10-year low-flow frequencies for the surface-water sites ranged from 0.0 to 55 x 10-3 cubic feet per second per square mile. The lowest low-flow discharges per square mile were in the south-central and southwestern parts of the county. The highest low-flow discharges per square mile were in the eastern and northern parts of the county. The annual water loss at five gaged streams ranged from 52 to 75 percent of the total precipitation. The loss resulted from evaporation, transpiration, diversion, mines, ground-water outflow from the system, and plant and animal consumption. The major ground-water-quality problems are elevated concentrations of iron, manganese, and dissolved solids, and very hard water. Minor groundwater-quality problems include elevated concentrations of fluoride, chloride, and sulfate. Downgradient along the ground-water flow path, principal ions change from mostly calcium, magnesium, sulfate, and bicarbonate to sodium and chloride. Dissolyed-solids concentrations generally increase with residence time .. Elevated concentrations of sulfate and total dissolved solids were common at the surface-water sites in the northern and eastern parts of the county where most of the active and abandohed coal mines are located and where acid mine drainage is most prevalent. However, measured alkalinity at most of the surface-water sites ranged from 86 to 345 milligrams per liter, indicating that these streams would have a neutralizing effect on most inflows of acid mine drainage. The model of the hypothetically mined Brush Run basin shows that the vertical hydraulic conductivity (either existing or induced by mine subsidence) between the shallow ground-water system and the mine, and the depth to the mine are critical controls on the amount of ground water entering the mine. When the vertical hydraulic conductivity was increased by a factor of four for a mine about 250 ft deep in the main valley, inflow to the mine increased almost by the same factor. The model also shows that increasing the depth to a mine by 200 ft (mine about 450 ft deep in main valley) would cause mine inflow to decrease one order of magnitude. Comparisons between stream discharges during low base-flow conditions in a mined basin (Daniels Run) and an unrnined basin (Brush Run) indicated that the deep mining did not substantially lower streamflow. Although streamflow decreased and, at times, completely disappeared in the middle and lower parts of Daniels Run basin, it reappeared again downstream as ground-water discharge and was part of the flow at the mouth of Daniels Run. Comparison of the water-quality characteristics of the two basins showed that concentrations of dissolved solids, sulfate, sodium, chloride, fluoride, and manganese were greater in the mined basin than in the unmined basin. The pH and iron concentrations were similar in both basins.
Instream large wood: Denitrification hotspots with low N2O production
We examined the effect of instream large wood on denitrification capacity in two contrasting, lower order streams — one that drains an agricultural watershed with no riparian forest and minimal stores of instream large wood and another that drains a forested watershed with an ext...
Corn yield under subirrigation and future climate scenarios in the Maumee river basin
USDA-ARS?s Scientific Manuscript database
Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...
Drainage water management effects on tile discharge and water quality
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...
The influence of lithology on surface water sources | Science ...
Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle
Casey, G.D.; Myers, Donna N.; Finnegan, D.P.; ,
1998-01-01
The Lake Erie-Lake St. Clair Basin covers approximately 22,300 mi ?(square miles) in parts of Indiana, Michigan, Ohio, Pennsylvania, and New York. Situated in two major physiographic provinces, the Appalachian Plateaus and the Central Lowland, the basin includes varied topographic and geomorphic features that affect the hydrology. As of 1990, the basin was inhabited by approximately 10.4 million people. Lake effect has a large influence on the temperature and precipitation of the basin, especially along the leeward southeast shore of Lake Erie. Mean annual precipitation generally increases from west to east, ranging from 31.8 inches at Detroit, Mich., to 43.8 inches at Erie, Pa. The rocks that underlie the Lake Erie-Lake St. Clair Basin range in age from Cambrian through Pennsylvanian, but only Silurian through Pennsylvanian rocks are part of the shallow ground-water flow system. The position of the basin on the edge of the Michigan and Appalachian Basins is responsible for the large range in geologic time of the exposed rocks. Rock types range from shales, siltstones, and mudstones to coarse-grained sandstones and conglomerates. Carbonate rocks consisting of limestones, dolomites, and calcareous shales also underlie the basin. All the basin is overlain by Pleistocene deposits- till, fine-grained stratified sediments, and coarse-grained stratified sediments-most of Wisconsinan age. A system of buried river valleys filled with various lacustrine, alluvial, and coarse glacial deposits is present in the basin. The soils of the Lake Erie-Lake St. Clair Basin consist of two dominant soil orders: Alfisols and Inceptisols. Four other soil orders in the basin (Mollisols, Histisols, Entisols, and Spodosols) are of minor significance, making up less than 8 percent of the total area. The estimated water use for the Lake Erie-Lake St. Clair Basin for 1990 was 10,649 Mgal/d (million gallons per day). Power generation accounted for about 77 percent of total water withdrawals for the basin, whereas agriculture accounted for the least water-use withdrawals, at an estimated 38 Mgal/d. About 98 percent of the total water used in the basin was drawn from surface water; the remaining 2 percent was from ground water. Agricultural and urban land are the predominant land covers in the basin. Agriculture makes up approximately 74.7 percent of the total basin area; urban land use accounts for 11.2 percent; forested areas constitute 10.5 percent; and water, wetlands, rangeland, and barren land constitute less than 4.0 percent. The eight principal streams in the basin are the Clinton, Huron, and Raisin Rivers in Michigan, the Maumee, Sandusky, Cuyahoga, and Grand Rivers in Ohio, and Cattaraugus Creek in New York. The Maumee River, the largest stream in the basin, drains 6,609 mi? and discharges just under 24 percent of the streamflow from the basin into Lake Erie. Combined, the eight principal streams discharge approximately 54 percent of the surface water from the basin to the Lake Erie system per year. Average runoff increases from west to east in the basin. The glacial and recent deposits comprise the unconsolidated aquifers and confining units within the basin. Yields of wells completed in tills range from 0 to 20 gal/min (gallon per minute), but yields generally are near the lower part of this range. Fine-grained stratified deposits can be expected to yield from 0 to 3 gal/ min, and coarse-grained stratified deposits can yield 0.3 to 2,050 gal/min. Pennsylvanian sandstones can yield more than 25 gal/min, but they generally yield 10 to 25 gal/min. Mississippian sandstones in the basin generally yield 2 to 100 gal/min. The Mississippian and Devonian shales are considered to be confining units; in places, they produce small quantities of water from fractures at or near the bedrock surface. Wells completed in the Devonian and Silurian carbonates yield 25 to 500 gal/min, but higher yields have been reported in several zones.
Snowpack ion accumulation and loss in a basin draining to Lake Superior
Stottlemyer, Robert
1987-01-01
The objective of this study was to relate winter precipitation ionic inputs, snowpack retention, and change in first-order stream chemistry with spring snowpack melt. During winter 1982–83, measurement of precipitation inputs, snowpack concentration and loading, and streamwater concentration and discharge of Ca2+, K+, H+, NO3−, and SO42− from a 176-ha watershed reveals that only H+ might be lost from the snowpack before first thaw. Above-freezing soil temperature beneath the snowpack may be a factor in H+ loss. An initial 1-d thaw resulted in loss of over one third (6 eq∙ha−1) of the snowpack Ca2+. Over one half the snowpack load of K+, H+, NO3−, and SO42−, was lost in a subsequent midwinter freeze–thaw period. Snowpack loading of ionic species was reduced by 70–90% before peak spring melting and stream discharge. Ecosystem H+ retention and biological uptake of NO3− further mitigate ionic "pulses" in streamwater. Sulfate discharge exceeds bulk inputs, which suggests significant dry deposition input and little forest soil retention of this anion. The snowpack was relatively small, which limits wider application of these results to the region.
Floods of September 6, 1960, in eastern Puerto Rico
Barnes, Harry Hawthorne; Bogart, Dean Butler
1961-01-01
The floods of September 6, 1960, were the greatest known on many streams in eastern Puerto Rico. There were 117 lives lost, 30 persons missing, and 136 injured. Total damage was estimated in excess of $7 million. Several thousand persons were forced from their homes by the floods as 484, houses were destroyed and more than 3,600 others were. damaged. All main highways and most secondary roads were impassable for a short period during the floods and damage to them was heavy. Following the passage of Hurricane Donna off the northeast coast, rains of very high intensity fell over parts of the eastern half of the island, beginning about 9 p.m. September 5. By dawn September 6, rains totaling more than 10 inches over a large area produced floods in every river basin from the Rio Grande de Manati eastward. Flood discharges on the Rio Humacao, Rio Turabo, and Rio Valenciano were the greatest known and rank high among the notable floods on streams that drain from 6 to ]5 square miles. An outstanding feature of the floods was the unusually high magnitude of peak discharges--9 of the 24 peak discharges determined had Myers ratings greater than 80 percent.
NASA Astrophysics Data System (ADS)
Doten, Colleen O.; Bowling, Laura C.; Lanini, Jordan S.; Maurer, Edwin P.; Lettenmaier, Dennis P.
2006-04-01
Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment model that represents the main sources of sediment generation in forested environments (mass wasting, hillslope erosion, and road surface erosion) within the distributed hydrology-soil-vegetation model (DHSVM) environment. The model produces slope failures on the basis of a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. A simple channel routing scheme is implemented to predict basin sediment yield. We demonstrate through an initial application of this model to the Rainy Creek catchment, a tributary of the Wenatchee River, which drains the east slopes of the Cascade Mountains, that the model produces plausible sediment yield and ratios of landsliding and surface erosion when compared to published rates for similar catchments in the Pacific Northwest. A road removal scenario and a basin-wide fire scenario are both evaluated with the model.
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil.
Benvenuti, T; Kieling-Rubio, M A; Klauck, C R; Rodrigues, M A S
2015-05-01
The Sinos River Basin (SRB) is located in the northeastern region of the state of Rio Grande do Sul (29º20' to 30º10'S and 50º15' to 51º20'W), southern Brazil, and covers two geomorphologic provinces: the southern plateau and the central depression. It is part of the Guaíba basin, has an area of approximately 800 km 2 and contains 32 counties. The basin provides drinking water for 1.6 million inhabitants in one of the most important industrial centres in Brazil. This study describes different water quality indices (WQI) used for the sub-basins of three important streams in the SRB: Pampa, Estância Velha/Portão and Schmidt streams. Physical, chemical and microbiological parameters assessed bimonthly using samples collected at each stream source were used to calculate the Horton Index (HI), the Dinius Index (DI) and the water quality index adopted by the US National Sanitation Foundation (NSF WQI) in the additive and multiplicative forms. These indices describe mean water quality levels at the streams sources. The results obtained for these 3 indexes showed a worrying scenario in which water quality has already been negatively affected at the sites where three important sub-basins in the Sinos River Basin begin to form.
Ground-water resources of the Wind River Indian Reservation, Wyoming
McGreevy, Laurence J.; Hodson, Warren Gayler; Rucker, Samuel J.
1969-01-01
The area of this investigation is in the western part of the Wind River Basin and includes parts of the Absaroka, Washakie, Wind River, and Owl Creek Mountains. The purposes of the study were to determine the general hydrologic properties of the rocks in the area and the occurrence and quality c f the water in them. Structurally, the area is a downfolded basin surrounded by upfolded mountain ranges. Igneous and metamorphic rocks of Precambrian age are exposed in the mountains: folded sedimentary rocks representing all geologic periods, except the Silurian, crop out along the margins of the basin; and relatively flat-lying Tertiary rocks are at the surface in the central part of the basin. Surficial sand and gravel deposits of Quaternary age occur along streams and underlie numerous terraces throughout the basin. The potential yield and quality of water from most rocks in the area are poorly known, but estimates are possible, based on local well data and on data concerning similar rocks in nearby areas. Yields of more than 1,000 gpm are possible from the rocks comprising the Bighorn Dolomite (Ordovician), Darby Formation (Devonian), Madison Limestone (Mississippian), and Tensleep Sandstone (Pennsylvanian). Total dissolved solids in the water range from about 300 to 3,000 ppm. Yields of as much as several hundred gallons per minute are possible from the Nugget Sandstone (Jurassic? and Triassic?). Yields of 20 gpm or more are possible from the Crow Mountain Sandstone (Triassic) and Sundance Formation (Jurassic). Dissolved solids are generally high but are less than 1,000 ppm near outcrops in some locations. The Cloverly and Morrison (Cretaceous and Jurassic), Mesaverde (Cretaceous) and Lance(?) (Cretaceous) Formations may yield as much as several hundred gallons per minute, but most wells in Cretaceous rocks yield less than 20 gpm. Dissolved solids generally range from 1,000 to 5,000 ppm but may be higher. In some areas, water with less than 1,000 ppm dissolved solids may be available from the Cloverly and Morrison Formations. Tertiary rocks yield a few to several hundred gallons per minute and dissolved solids generally range from 1,000 to 5,000 ppm. Wells in the Wind River Formation (Eocene) yield about 1.-500 gpm of water having dissolved solids of about 200-5,000 ppm. Yields of a few to several hundred gallons per minute are available from alluvium (Quaternary). Dissolved solids range from about 200 to 5,000 ppm. Many parts of the Wind River Irrigation Project have become waterlogged. The relation of drainage problems to geology and the character and thickness of rocks in the irrigated areas are partly defined by sections drawn on the basis of test drilling. The drainage-problem areas are classified according to geologic similarities into five general groups: flood plains, terraces, underfit-stream valleys, slopes, and transitional areas. Drainage can be improved by open drains, buried drains, relief wells, and pumped wells or by pumping from sumps or drains. The methods that will be most successful depend on the local geologic and hydrologic conditions. In several areas, the most effective means of relieving the drainage problem would be to reduce the amount of infiltration of water by lining canals and ditches and by reducing irrigation water applications to the optimum. Water from underground storage in alluvium could supplement water from surface storage in some areas. A few thousand acre-feet of water per square mile are in storage in some of the alluvium. The use of both surface and underground storage would reduce the need for additional surface-storage facilities and also would alleviate drainage problems in the irrigated areas.
Runkel, Robert L.; Verplanck, Philip; Kimball, Briant; Walton-Day, Katie
2018-01-01
Baseline, premining data for streams draining abandoned mine lands is virtually non existent, and indirect methods for estimating premining conditions are needed to establish realistic, cost effective cleanup goals. One such indirect method is the proximal analog approach, in which premining conditions are estimated using data from nearby mineralized areas that are unaffected by mining. In this paper, we combine the proximal analog approach with a quantitative mass balance framework using data from a spatially-detailed synoptic sampling campaign. The combined approach is applied to Cinnamon Gulch, a headwater stream with numerous draining adits. Synoptic sampling results indicate that three of the top five metal sources are affected by mining activities, and stream segments draining these sources account for a large percentage of overall metal loading within the study reach. These initial calculations overestimate the effects of mining, as the affected stream segments were likely acidic and metal rich prior to mining. Premining loads and concentrations were therefore determined through a replacement approach in which the chemistry of each mining-affected stream segment is revised based on proximal analog concentrations. The revised loading profiles indicate that 15–17% of the Al, Cd, Cu, Mn, Ni, and Zn loads are attributable to mining, whereas the mining contribution for Pb is 40%. Premining concentrations of Al, Cd, Cu, Mn, and Zn are estimated to be in excess of aquatic life standards over the length of the study reach.
Malaspina Glacier: a modern analog to the Laurentide Glacier in New England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavson, T.C.; Boothroyd, J.C.
1985-01-01
The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwatermore » moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.« less
Measurements of aquifer-storage change and specific yield using gravity surveys
Pool, D.R.; Eychaner, J.H.
1995-01-01
Pinal Creek is an intermittent stream that drains a 200-square-mile alluvial basin in central Arizona. Large changes in water levels and aquifer storage occur in an alluvial aquifer near the stream in response to periodic recharge and ground-water withdrawals. Outflow components of the ground-water budget and hydraulic properties of the alluvium are well-defined by field measurements; however, data are insufficient to adequately describe recharge, aquifer-storage change, and specific-yield values. An investigation was begun to assess the utility of temporal-gravity surveys to directly measure aquifer-storage change and estimate values of specific yield.The temporal-gravity surveys measured changes in the differences in gravity between two reference stations on bedrock and six stations at wells; changes are caused by variations in aquifer storage. Specific yield was estimated by dividing storage change by water-level change. Four surveys were done between February 21, 1991, and March 31, 1993. Gravity increased as much as 158 microGal ± 1 to 6 microGal, and water levels rose as much as 58 feet. Average specific yield at wells ranged from 0.16 to 0.21, and variations in specific yield with depth correlate with lithologic variations. Results indicate that temporal-gravity surveys can be used to estimate aquifer-storage change and specific yield of water-table aquifers where significant variations in water levels occur. Direct measurement of aquifer-storage change can eliminate a major unknown from the ground-water budget of arid basins and improve residual estimates of recharge.
The rate and extent of deforestation in watersheds of the southwestern Amazon basin.
Biggs, Trent W; Dunne, Thomas; Roberts, Dar A; Matricardi, E
2008-01-01
The rate and extent of deforestation determine the timing and magnitude of disturbance to both terrestrial and aquatic ecosystems. Rapid change can lead to transient impacts to hydrology and biogeochemistry, while complete and permanent conversion to other land uses can lead to chronic changes. A large population of watershed boundaries (N=4788) and a time series of Landsat TM imagery (1975-1999) in the southwestern Amazon Basin showed that even small watersheds (2.5-15 km2) were deforested relatively slowly over 7-21 years. Less than 1% of all small watersheds were more than 50% cleared in a single year, and clearing rates averaged 5.6%/yr during active clearing. A large proportion (26%) of the small watersheds had a cumulative deforestation extent of more than 75%. The cumulative deforestation extent was highly spatially autocorrelated up to a 100-150 km lag due to the geometry of the agricultural zone and road network, so watersheds as large as approximately 40000 km2 were more than 50% deforested by 1999. The rate of deforestation had minimal spatial autocorrelation beyond a lag of approximately 30 km, and the mean rate decreased rapidly with increasing area. Approximately 85% of the cleared area remained in pasture, so deforestation in watersheds of Rondônia was a relatively slow, permanent, and complete transition to pasture, rather than a rapid, transient, and partial cutting with regrowth. Given the observed landcover transitions, the regional stream biogeochemical response is likely to resemble the chronic changes observed in streams draining established pastures, rather than a temporary pulse from slash-and-burn.
Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo
2012-12-01
Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins could be self-sufficient units so long as the response of the main hydrological components to external forces that produce water scarcity, as climate change or human pressures, is appropriately considered in water resource planning. Copyright © 2012 Elsevier B.V. All rights reserved.
Fish assemblage responses to forest cover
Chris L. Burcher; Matthew E. McTammany; E. Fred Benfield; Gene S. Helfman
2008-01-01
We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd?4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e., reforesting watersheds).
Ladd, David E.; Law, George S.
2007-01-01
The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.
Targeting sediment management strategies using sediment quantification and fingerprinting methods
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.
2016-04-01
Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were statistically un-mixed using FR2000, an uncertainty-inclusive algorithm, and combined with sediment yield data. Results showed sediment contributions from channel, field and road groups were 70%, 25% and 5% in the poorly-drained catchment, 59%, 22% and 19% in the well-drained catchment, and 17%, 74% and 9% in the moderately-drained catchment. Higher channel contributions in the poorly-drained catchment were attributed to bank erosion accelerated by the rapid diversion of surface runoff into channels, facilitated by surface and sub-surface artificial drainage networks, and bank seepage from lateral pressure gradients due to confined groundwater. Despite the greatest proportion of arable soils in the well-drained catchment, this source was frequently hydrologically disconnected as well-drained soils largely infiltrated rainfall and prevented surface soil erosion. Periods of high and intense rainfall were associated with greater proportions of field losses in the well-drained catchment likely due to infiltration exceeding the saturated hydraulic conductivity of soils and establishment of surface hydrological connectivity. Losses from field topsoils dominated in the moderately-drained catchment as antecedent soil wetness maintained surface flow pathways and coincided with low groundcover on arable soils. For cost-effective management of sediment pressures to aquatic ecosystems, catchment specific variations in sediment sources must be considered.
Driscoll, Daniel G.; Zogorski, John S.
1990-01-01
The report presents a summary of basin characteristics affecting streamflow, a history of the U.S. Geological Survey 's stream-gaging program, and a compilation of discharge records and statistical summaries for selected sites within the Rapid Creek basin. It is the first in a series which will investigate surface-water/groundwater relations along Rapid Creek. The summary of basin characteristics includes descriptions of the geology and hydrogeology, physiography and climate, land use and vegetation, reservoirs, and water use within the basin. A recounting of the U.S. Geological Survey 's stream-gaging program and a tabulation of historic stream-gaging stations within the basin are furnished. A compilation of monthly and annual mean discharge values for nine currently operated, long-term, continuous-record, streamflow-gaging stations on Rapid Creek is presented. The statistical summary for each site includes summary statistics on monthly and annual mean values, correlation matrix for monthly values, serial correlation for 1 year lag for monthly values, percentile rankings for monthly and annual mean values, low and high value tables, duration curves, and peak-discharge tables. Records of monthend contents for two reservoirs within the basin also are presented. (USGS)
Pugh, Aaron L.
2014-01-01
Users of streamflow information often require streamflow statistics and basin characteristics at various locations along a stream. The USGS periodically calculates and publishes streamflow statistics and basin characteristics for streamflowgaging stations and partial-record stations, but these data commonly are scattered among many reports that may or may not be readily available to the public. The USGS also provides and periodically updates regional analyses of streamflow statistics that include regression equations and other prediction methods for estimating statistics for ungaged and unregulated streams across the State. Use of these regional predictions for a stream can be complex and often requires the user to determine a number of basin characteristics that may require interpretation. Basin characteristics may include drainage area, classifiers for physical properties, climatic characteristics, and other inputs. Obtaining these input values for gaged and ungaged locations traditionally has been time consuming, subjective, and can lead to inconsistent results.
NASA Astrophysics Data System (ADS)
Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.
2011-12-01
Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.
Predicting geomorphic stability in low-order streams of the western Lake Superior basin
Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...
STREAM FLOW BASIN CHARACTERISTICS FOR THE MID-ATLANTIC INTEGRATED ASSESSMENT (MAIA) STUDY AREA
This data set is a GIS coverage of the stream flow basin characteristics for drainage basins of selected US Geological Survey (USGS) gauging stations the United States Environmental Protection Agency (USEPA) Mid-Atlantic Integrated Assessment (MAIA) Project region. This data se...
Tropical small streams are a consistent source of methane
NASA Astrophysics Data System (ADS)
Vihermaa, Leena; Waldron, Susan
2013-04-01
To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.
Water resources inventory of Connecticut Part 8: Quinnipiac River basin
Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.
1978-01-01
The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers and evaluation of natural and induced recharge. Long-term yields estimated for 14 favorable areas of stratified drift range from 0.8 to 16.1 mgd (million gallons per day), but detailed verification studies are needed before development. The natural quality of water in the report area is good. The water is generally low in dissolved solid and is soft to moderately hard. Surface water is less mineralized than ground water, especially during high flow when it is primarily surface runoff. A median dissolved-solids concentration of 117 mg/l (milligrams per liter) and a median hardness of 58 mg/l was determined for water samples collected at 20 sites on 16 streams during high flow. A median dissolved-solids concentration of 146 mg/l and a median hardness of 82 mg/l was determined for samples collected at the same sites during low flow. In contrast water from 130 wells had a median dissolved-solids concentration of 188 mg/l and a median hardness of 110 mg/l. Iron and manganese occur in objectionable concentrations in parts of the report area, particularly in water from streams draining swamps and in water from aquifers rich in iron- and manganese-bearing minerals. Concentrations of iron in excess of 0.3 mg/l were found in 40 percent of the high-streamflow samples, 59 percent of the low-streamflow samples and 20 percent of the ground-water samples. Human activities have modified the quality of water in much of the basin. Wide and erratic fluctuations in concentration of dissolved solids in streams, high bacterial content of the Quinnipiac River, and locally high nitrate and chloride concentrations in ground water are evidence of man's influence. Streams, wetlands, and some aquifers along the southern boundary of the basin contain salty water. Overpumping has caused extensive saltwater intrusion in aquifers in the southern and eastern parts of New Haven. The total amount of fresh water used in the area during 1970 is estimated at 35,710 million gallons, or 183 gallons per day per capita. Public water-supply systems met the domestic requirements of about 90 percent of the population; all the systems supplied water that met the drinking water standards of the Connecticut Department of Health.
Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.
1999-01-01
The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.
Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.; Gelder, Brian K.
2018-02-14
Basin-characteristic measurements related to stream length, stream slope, stream density, and stream order have been identified as significant variables for estimation of flood, flow-duration, and low-flow discharges in Iowa. The placement of channel initiation points, however, has always been a matter of individual interpretation, leading to differences in stream definitions between analysts.This study investigated five different methods to define stream initiation using 3-meter light detection and ranging (lidar) digital elevation models (DEMs) data for 17 streamgages with drainage areas less than 50 square miles within the Des Moines Lobe landform region in north-central Iowa. Each DEM was hydrologically enforced and the five stream initiation methods were used to define channel initiation points and the downstream flow paths. The five different methods to define stream initiation were tested side-by-side for three watershed delineations: (1) the total drainage-area delineation, (2) an effective drainage-area delineation of basins based on a 2-percent annual exceedance probability (AEP) 12-hour rainfall, and (3) an effective drainage-area delineation based on a 20-percent AEP 12-hour rainfall.Generalized least squares regression analysis was used to develop a set of equations for sites in the Des Moines Lobe landform region for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs. A total of 17 streamgages were included in the development of the regression equations. In addition, geographic information system software was used to measure 58 selected basin-characteristics for each streamgage.Results of the regression analyses of the 15 lidar datasets indicate that the datasets that produce regional regression equations (RREs) with the best overall predictive accuracy are the National Hydrographic Dataset, Iowa Department of Natural Resources, and profile curvature of 0.5 stream initiation methods combined with the 20-percent AEP 12-hour rainfall watershed delineation method. These RREs have a mean average standard error of prediction (SEP) for 4-, 2-, and 1-percent AEP discharges of 53.9 percent and a mean SEP for all eight AEPs of 55.5 percent. Compared to the RREs developed in this study using the basin characteristics from the U.S. Geological Survey StreamStats application, the lidar basin characteristics provide better overall predictive accuracy.
Evaluation of nutrient retention in vegetated filter strips using the SWAT model.
Elçi, Alper
2017-11-01
Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost-benefit perspective.
NASA Astrophysics Data System (ADS)
Shahrestani, Shahed; Mokhtari, Ahmad Reza
2017-04-01
Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As mineralization were added to anomaly class and also one catchment basin with known As occurrence was highlighted as anomalous using new approach. The results demonstrated the usefulness of considering geomorphological parameters in dealing with dilution phenomenon in a catchment basin.
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
StreamStats in North Carolina: a water-resources Web application
Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.
2012-01-01
A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that may affect streamflow conditions. This functionality can be accessed through a map-based interface with the user’s Web browser, or individual functions can be requested remotely through Web services (Ries and others, 2008).
We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...
Management history of eastside ecosystems: changes in fish habitat over 50 years, 1935-1992.
Bruce A. McIntosh; James R. Sedell; Jeanette E. Smith; Robert C. Wissmar; Sharon E. Clarke; Gordon H. Reeves; Lisa A. Brown
1994-01-01
From 1934 to 1942, the Bureau of Fisheries surveyed over 8000 km of streams in the Columbia River basin to determine the condition of fish habitat. To evaluate changes in stream habitat over time, a portion of the historically surveyed streams in the Grande Ronde, Methow, Wenatchee, and Yakima River basins were resurveyed from 1990 to 1992. Streams were chosen where...
Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds
NASA Astrophysics Data System (ADS)
Ford, William I.; King, Kevin; Williams, Mark R.
2018-01-01
In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.
Andrews, William J.; Becker, Mark F.; Mashburn, Shana L.; Smith, S. Jerrod
2009-01-01
The abandoned Tri-State mining district includes 1,188 square miles in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. The most productive part of the Tri-State mining district was the 40-square mile part in Oklahoma, commonly referred to as 'the Picher mining district' in north-central Ottawa County, Oklahoma. The Oklahoma part of the Tri-State mining district was a primary producing area of lead and zinc in the United States during the first half of the 20th century. Sulfide minerals of cadmium, iron, lead, and zinc that remained in flooded underground mine workings and in mine tailings on the land surface oxidized and dissolved with time, forming a variety of oxide, hydroxide, and hydroxycarbonate metallic minerals on the land surface and in streams that drain the district. Metals in water and sediments in streams draining the mining district can potentially impair the habitat and health of many forms of aquatic and terrestrial life. Lakebed, streambed and floodplain sediments and/or stream water were sampled at 30 sites in the Oklahoma part of the Tri-State mining district by the U.S. Geological Survey and the Oklahoma Department of Environmental Quality from 2000 to 2006 in cooperation with the U.S. Environmental Protection Agency, and the Quapaw and Seneca-Cayuga Tribes of Oklahoma. Aluminum and iron concentrations of several thousand milligrams per kilogram were measured in sediments collected from the upstream end of Grand Lake O' the Cherokees. Manganese and zinc concentrations in those sediments were several hundred milligrams per kilogram. Lead and cadmium concentrations in those sediments were about 10 percent and 0.1 percent of zinc concentrations, respectively. Sediment cores collected in a transect across the floodplain of Tar Creek near Miami, Oklahoma, in 2004 had similar or greater concentrations of those metals than sediment cores collected at the upstream end of Grand Lake O' the Cherokees. The greatest concentrations of cadmium, iron, lead, and zinc were detected in sediments beneath an intermittent tributary to Tar Creek, a slough which drains mined areas near Commerce, Oklahoma. In surface water, aluminum and iron concentrations were greatest in the Neosho River, perhaps a result of runoff from areas underlain by shales. The greatest aqueous concentrations of cadmium, lead, manganese, and zinc were measured in water from Tar Creek, the primary small stream draining the Picher mining district with the largest proportion of mined area. Water from the Spring River had greater zinc concentrations than water from the Neosho River, perhaps as a result of a greater proportion of mined area in the Spring River Basin. Dissolved metals concentrations were generally much less than total metals concentrations, except for manganese and zinc at sites on Tar Creek, where seepage of ground water from the mine workings, saturated mine tailings, and/or metalliferous streambed sediments may be sources of these dissolved metals. Iron and lead concentrations generally decreased with increasing streamflow in upstream reaches of Tar Creek, indicating dilution of metals-rich ground water by runoff. Farther downstream in Tar Creek, and in the Neosho and Spring Rivers, metals concentrations tended to increase with increasing streamflow, indicating that most metals in these parts of these streams were associated with runoff and re-suspension of metals precipitated as oxide, hydroxide, and hydroxycarbonate minerals on land surface and streambeds. Estimated total aluminum, cadmium, iron, manganese, and zinc loads generally were greatest in water from the Neosho and Spring Rivers, primarily because of comparatively large streamflows in those rivers. Slight increases in metal loads in the downstream directions on those rivers indicated contributions of metals from inflows of small tributaries such as Tar Creek and from runoff.
Improved age constraints for the retreat of the Irish Sea Ice Stream
NASA Astrophysics Data System (ADS)
Smedley, Rachel; Chiverrell, Richard; Duller, Geoff; Scourse, James; Small, David; Fabel, Derek; Burke, Matthew; Clarke, Chris; McCarroll, Danny; McCarron, Stephen; O'Cofaigh, Colm; Roberts, David
2016-04-01
BRITICE-CHRONO is a large (> 45 researchers) consortium project working to provide an extensive geochronological dataset constraining the rate of retreat of a number of ice streams of the British-Irish Ice Sheet following the Last Glacial Maximum. When complete, the large empirical dataset produced by BRITICE-CHRONO will be integrated into model simulations to better understand the behaviour of the British-Irish Ice Sheet in response to past climate change, and provide an analogue for contemporary ice sheets. A major feature of the British-Irish Ice Sheet was the dynamic Irish Sea Ice Stream, which drained a large proportion of the ice sheet and extended to the proposed southern limit of glaciation upon the Isles of Scilly (Scourse, 1991). This study will focus on a large suite of terrestrial samples that were collected along a transect of the Irish Sea basin, covering the line of ice retreat from the Isles of Scilly (50°N) in the south, to the Isle of Man (54°N) in the north; a distance of 500 km. Ages are determined for both the eastern and western margins of the Irish Sea using single-grain luminescence dating (39 samples) and terrestrial cosmogenic nuclide dating (10 samples). A Bayesian sequence model is then used in combination with the prior information determined for deglaciation to integrate the geochronological datasets, and assess retreat rates for the Irish Sea Ice Stream. Scourse, J.D., 1991. Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly. Philosophical Transactions of the Royal Society of London B334, 405 - 448.
Effects of forest harvesting on large organic debris in coastal streams
Christopher G. Surfleet; Robert R. Ziemer
1996-01-01
Abstract - Large organic debris (LOD) was inventoried in two coastal streams to assess the impacts of forest harvesting on LOD recruitment in 90-year-old, second-growth redwood and fir stands on the Jackson Demonstration State Forest in northern California. One stream, North Fork of Caspar Creek, drained a 508-ha watershed that had been 60% clear-cut, with riparian...
Brian H. Hill; Frank H. McCormick
2004-01-01
The effect of timber harvesting on streams is assessed using two measures of ecosystem function: nutrient spiraling and community metabolism. This research is being conducted in streams of the southern Appalachian Mountains of North Carolina, the Ouachita Mountains of Arkansas, the Cascade Mountains of Oregon, and the redwood forests of northern California, in order to...
Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA
Patterson, C.J.
1997-01-01
Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The ice lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic ice streams has led some glacial geologists to postulate that ice streams drained parts of the marine-based areas of the Laurentide Ice Sheet. I postulate that such ice streams may develop in land-based areas of an ice sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an ice stream. It appears to have been able to advance beyond the Laurentide Ice Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the ice stream, because ice repeatedly advanced into and onto the stagnant margins, stacking ice and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.
NASA Astrophysics Data System (ADS)
Kelly, Sara A.; Takbiri, Zeinab; Belmont, Patrick; Foufoula-Georgiou, Efi
2017-10-01
Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000-69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30-200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Frenzel, Steven A.; Dorava, Joseph M.
1999-01-01
Five streams in the Cook Inlet Basin, Alaska, were sampled in 1998 to provide the National Park Service with baseline information on water quality. Four of these streams drain National Park Service land: Costello and Colorado Creeks in Denali National Park and Preserve, Johnson River in Lake Clark National Park and Preserve, and Kamishak River in Katmai National Park and Preserve. The fifth site was on the Talkeetna River, outside of national park boundaries. Samples of stream water, streambed sediments, and fish tissues were collected for chemical analyses. Biological and geomorphic information was also collected at each site. Nutrient concentrations in stream water were low and commonly were less than analytical detection limits. Analyses of fish tissues for 28 organochlorine compounds at Talkeetna River and Costello Creek produced just one detection. Hexachlorobenzene was detected at a concentration of 5.70 micrograms per kilogram in slimy sculpin from the Talkeetna River. Streambed sediment samples from the Talkeetna River had three organochlorine compounds at detectable levels; hexachlorobenzene was measured at 13 micrograms per kilogram and two other compounds were below the minimum reporting levels. At Colorado Creek, Johnson River, and Kamishak River, where fish samples were not collected, no organochlorine compounds were detected in streambed sediment samples. Several semivolatile organic compounds were detected at Colorado Creek and Costello Creek. Only one compound, dibenzothiophene, detected at Costello Creek at a concentration of 85 micrograms per kilogram was above the minimum reporting limit. No semivolatile organic compounds were detected at the Talkeetna, Kamishak, or Johnson Rivers. Trace elements were detected in both fish tissues and streambed sediments. Macroinvertebrate and fish samples contained few taxa at all sites. Total numbers of macroinvertebrate taxa ranged from 19 at the Johnson River to 38 at the Talkeetna River. Diptera were the most abundant and diverse order of macroinvertebrates at all sites. Total numbers of diptera taxa ranged from 8 at the Kamishak River to 19 at the Talkeetna River. Fish communities were represented by a maximum of nine taxa at the Talkeetna River and were absent at Colorado Creek. The Johnson River sampling site produced small numbers of juvenile Dolly Varden, and Costello Creek produced small numbers of both juvenile Dolly Varden and slimy sculpin.
Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.
2011-01-01
The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls Creek site indicated a statistically significant (p<0.05) decrease in suspended-sediment discharge following in-stream restoration. Stream habitat characteristics were similar at the Bull Creek and Hogan Creek reaches. However, the Pauls Creek reach was distinguished from the other two sites by a lack of pools, greater bankfull widths, greater streamflow and velocity, and larger basin size. Historical changes in the stream channel in the vicinity of the Pauls Creek streamgage are evident in aerial photographs dating from 1936 to 2005 and could have contributed to stream-channel instability. The duration of this study likely was inadequate for detecting changes in stream habitat characteristics. Benthic macroinvertebrate assemblages differed by site and changed during the course of the study. Bull Creek, the best management practices site, stood out as the site having the poorest overall conditions and the greatest improvement in benthic macroinvertebrate communities during the study period. Richness and diversity metrics indicated that benthic macroinvertebrate community conditions at the Hogan Creek and Pauls Creek sites declined during the study, although the status was excellent based on the North Carolina Index of Biotic Integrity. Experiences encountered during this study exemplify the difficulties of attempting to assess the short-term effects of stream-improvement efforts on a watershed scale and, in particular, the difficulty of finding similar basins for a comparative study. Data interpretation was complicated by dry climatic conditions and unanticipated land disturbances that occurred during the study in each of the three study basins. For example, agricultural best management practices were implemented in the drainage basin of the control site prior to and during the study. An impoundment on Bull Creek upstream from the streamgaging station probably influenced water-quality conditions and streamflow. Road construction in the vicinity of the Pauls Creek site potentially masked changes related to stream-improvement efforts. In addition, stream-improvement activities occurred in each of the three study basins over a period of several years prior to and during the study so that there were no discrete before and after periods available for meaningful comparisons. Historical and current land-use activities in each of the three study basins likely affected observed stream conditions. The duration of this study probably was insufficient to detect changes associated with agricultural best management practices and stream-channel restoration.
Microbial Enzyme Activity, Nutrient Uptake, and Nutrient Limitation in Forested Streams
We measured NH4 + and PO4 -3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm enzyme activity (BEA), and channel geomorphology in streams draining forested catchments in the Northwestern (Northern California Coast Range and Cascade Mountains) and Southeastern (A...
NASA Astrophysics Data System (ADS)
Modu, B.; Herbert, B.
2014-11-01
The Chad basin which covers an area of about 2.4 million kilometer square is one of the largest drainage basins in Africa in the centre of Lake Chad .This basin was formed as a result of rifting and drifting episode, as such it has no outlet to the oceans or seas. It contains large area of desert from the north to the west. The basin covers in part seven countries such as Chad, Nigeria, Central African Republic, Cameroun, Niger, Sudan and Algeria. It is named Chad basin because 43.9% falls in Chad republic. Since its formation, the basin continues to experienced water shortage due to the activities of Dams combination, increase in irrigations and general reduction in rainfall. Chad basin needs an external water source for it to be function at sustainable level, hence needs for exploitation of higher east African river basin called Congo basin; which covers an area of 3.7 million square km lies in an astride the equator in west-central Africa-world second largest river basin after Amazon. The Congo River almost pans around republic of Congo, the democratic republic of Congo, the Central African Republic, western Zambia, northern Angola, part of Cameroun, and Tanzania. The remotely sensed imagery analysis and observation revealed that Congo basin is on the elevation of 275 to 460 meters and the Chad basin is on elevation of 240 meters. This implies that water can be drained from Congo basin via headrace down to the Chad basin for the water sustainability.
Campo, Kimberly W.; Flanagan, Sarah M.; Robinson, Keith W.
2003-01-01
Nine rivers were monitored routinely for a variety of field conditions, dissolved ions, and nutrients during 1998-2000 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. The nine rivers, located primarily in the Boston metropolitan area, represented a gradient of increasing urbanization from 1 to 68 percent urban land use. Additional water samples were collected and analyzed for pesticides and volatile organic compounds at two of the nine rivers. Specific conductance data from all rivers were correlated with urban land use; specific conductance values increased during winter at some sites indicating the effect of road de-icing applications. In the more intensely urbanized basins, concentrations of sodium and chloride were high during winter and likely are attributed to road de-icing applications. Concentrations of total nitrogen and the various inorganic and organic nitrogen species were correlated with the percentage of urban land in the drainage basin. Total phosphorus concentrations also were correlated with urbanization in the drainage basin, but only for rivers draining less than 50 square miles. Preliminary U.S. Environmental Protection Agency total nitrogen and total phosphorus criteria for the rivers in the area were frequently exceeded at many of the rivers sampled. At the two sites monitored for pesticides and volatile organic compounds, the Aberjona and Charles Rivers near Boston, greater detection frequencies of pesticides were in samples from the spring and summer when pesticide usage was greatest. At both sites, herbicides were detected more commonly than insecticides. The herbicides prometon and atrazine and the insecticide diazinon were detected in over 50 percent of all samples collected from both rivers. No water samples contained pesticide concentrations exceeding any U.S. Environmental Protection Agency drinking-water standard or criteria for protecting freshwater aquatic life. The volatile organic compounds trichloroethylene, tetrachloroethylene, and cis-1,2- dichloroethylene--all solvents and de-greasers--were detected in all water samples from both rivers. The gasoline oxygenate methyl tert-butyl ether (MTBE) and the disinfection by-product chloroform were detected in all but one water sample from the two rivers. Two water samples from the Charles River had trichloroethylene concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 5 micrograms per liter for drinking water. Selected water-quality data from two NCEB rivers in the Boston metropolitan area were compared to two similarly sized intensely urban rivers in another NAWQA study area in the New York City metropolitan area and to other urban rivers sampled as part of the NAWQA Program nationally. Nutrient total nitrogen and total phosphorus concentrations and yields were less in the NECB study area than in the other study areas. In addition, the pesticides atrazine, carbaryl, diazinon, and prometon were detected less frequently and at lower concentrations in the two NECB rivers than in the New York City area streams or in the other urban NAWQA streams. Concentrations of the insecticides diazinon and carbaryl were detected more frequently and at higher concentrations in the NECB study area than in the other urban rivers sampled by NAWQA nationally. Detection frequency and concentrations of volatile organic compounds generally were higher in the two NECB streams than in the New York City area streams or in other urban NAWQA streams.
Kimmel, Grant E.; Harbaugh, Arlen W.
1976-01-01
By 1995, the water table may fall by as much as 5 metres (16 feet) in east-central Nassau County and as much as 1.8 metres (6 feet) in central Suffolk County as a result of proposed sewerage programs. similar, but generally slightly less, change may occur in the potentiometric head in the Magothy aquifer. Streamflow may decrease by as much as 55 percent in streams draining from Nassau County Sewage Disposal District 3 and as much as 56 percent in streams draining from the Huntington-Northport Sewer District.
We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...
Paybins, Katherine S.
2003-01-01
Characteristics of perennial and intermittent headwater streams were documented in the mountaintop removal coal-mining region of southern West Virginia in 2000?01. The perennial-flow origin points were identified in autumn during low base-flow conditions. The intermittent-flow origin points were identified in late winter and early spring during high base-flow conditions. Results of this investigation indicate that the median drainage area upstream of the origin of intermittent flow was 14.5 acres, and varied by an absolute median of 3.4 acres between the late winter measurements of 2000 and early spring measurements of 2001. Median drainage area in the northeastern part of the study unit was generally larger (20.4 acres), with a lower median basin slope (322 feet per mile) than the southwestern part of the study unit (12.9 acres and 465 feet per mile, respectively). Both of the seasons preceding the annual intermittent flow visits were much drier than normal. The West Virginia Department of Environmental Protection reports that the median size of permitted valley fills in southern West Virginia is 12.0 acres, which is comparable to the median drainage area upstream of the ephemeralintermittent flow point (14.5 acres). The maximum size of permitted fills (480 acres), however, is more than 10 times the observed maximum drainage area upstream of the ephemeral-intermittent flow point (45.3 acres), although a single valley fill may cover more than one drainage area. The median drainage area upstream of the origin of perennial flow was 40.8 acres, and varied by an absolute median of 18.0 acres between two annual autumn measurements. Only basins underlain with mostly sandstone bedrock produced perennial flow. Perennial points in the northeast part of the study unit had a larger median drainage area (70.0 acres) and a smaller median basin slope (416 feet per mile) than perennial points in the southwest part of the study unit (35.5 acres and 567 feet per mile, respectively). Some streams were totally dry for one or both of the annual October visits. Both of the seasons preceding the October visits had near normal to higher than normal precipitation. These dry streams were adjacent to perennial streams draining similarly sized areas, suggesting that local conditions at a firstorder- stream scale determine whether or not there will be perennial flow. Headwater-flow rates varied little from year to year, but there was some variation between late winter and early spring and autumn. Flow rates at intermittent points of flow origin ranged from 0.001 to 0.032 cubic feet per second, with a median of 0.017 cubic feet per second. Flow rates at perennial points of flow origin ranged from 0.001 to 0.14 cubic feet per second, with a median of 0.003 cubic feet per second.
NASA Astrophysics Data System (ADS)
Henine, Hocine; Julien, Tournebize; Jaan, Pärn; Ülo, Mander
2017-04-01
In agricultural areas, nitrogen (N) pollution load to surface waters depends on land use, agricultural practices, harvested N output, as well as the hydrology and climate of the catchment. Most of N transfer models need to use large complex data sets, which are generally difficult to collect at larger scale (>km2). The main objective of this study is to carry out a hydrological and a geochemistry modeling by using a simplified data set (land use/crop, fertilizer input, N losses from plots). The modelling approach was tested in the subsurface-drained Orgeval catchment (Paris Basin, France) based on following assumptions: Subsurface tile drains are considered as a giant lysimeter system. N concentration in drain outlets is representative for agricultural practices upstream. Analysis of observed N load (90% of total N) shows 62% of export during the winter. We considered prewinter nitrate (NO3) pool (PWNP) in soils at the beginning of hydrological drainage season as a driving factor for N losses. PWNP results from the part of NO3 not used by crops or the mineralization part of organic matter during the preceding summer and autumn. Considering these assumptions, we used PWNP as simplified input data for the modelling of N transport. Thus, NO3 losses are mainly influenced by the denitrification capacity of soils and stream water. The well-known HYPE model was used to perform water and N losses modelling. The hydrological simulation was calibrated with the observation data at different sub-catchments. We performed a hydrograph separation validated on the thermal and isotopic tracer studies and the general knowledge of the behavior of Orgeval catchment. Our results show a good correlation between the model and the observations (a Nash-Sutcliffe coefficient of 0.75 for water discharge and 0.7 for N flux). Likewise, comparison of calibrated PWNP values with the results from a field survey (annual PWNP campaign) showed significant positive correlation. One can conclude that the simplified modeling approach using PWNP as a driving factor for the evaluation of N losses from drained agricultural catchments gave satisfactory results and we can propose this approach for a wider use.
Appraisal of operating efficiency of recharge basins on Long Island, New York, in 1969
Aronson, D.A.; Seaburn, G.E.
1974-01-01
Recharge basins on Long Island are unlined pits of various shapes and sizes excavated in surficial deposits of mainly glacial origin. Of the 2,124 recharge basins on Long Island in 1969, approximately 9 percent (194) contain water 5 or more days after a 1-inch rainfall. Basins on Long Island contain water because (1) they intersect the regional water table or a perched water table, (2) they are excavated in material of low hydraulic conductivity, (3) layers of sediment and debris of low hydraulic conductivity accumulate on the basin floor, or (4) a combination of these factors exists. Data obtained as part of this study show that (1) 22 basins contain water because they intersect the regional water table, (2) a larger percentage of the basins excavated in the Harbor Hill and the Ronkonkoma morainal deposits contain water than basins excavated in the outwash deposits, (3) a larger percentage of the basins that drain industrial and commercial areas contain water than basins that drain highways and residential areas, (4) storm runoff from commercial and industrial areas and highway: generally contains high concentrations of asphalt, grease, oil, tar, and rubber particles, whereas runoff from residential areas mainly contains leaves, grass cuttings, and other plant material, and (5) differences in composition of the soils within the drainage areas of the basins on Long Island apparently are not major factors in causing water retention. Water-containing basins dispose of an undetermined amount of storm runoff primarily by the slow infiltration of water through the bottoms and the sides of the basins. The low average specific conductance of water in most such basins suggests that evaporation does not significantly concentrate the chemical constituents and, therefore, that evaporation is not a major mechanism of water disposal from these basins.
Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.
2007-01-01
This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).
Web services in the U.S. geological survey streamstats web application
Guthrie, J.D.; Dartiguenave, C.; Ries, Kernell G.
2009-01-01
StreamStats is a U.S. Geological Survey Web-based GIS application developed as a tool for waterresources planning and management, engineering design, and other applications. StreamStats' primary functionality allows users to obtain drainage-basin boundaries, basin characteristics, and streamflow statistics for gaged and ungaged sites. Recently, Web services have been developed that provide the capability to remote users and applications to access comprehensive GIS tools that are available in StreamStats, including delineating drainage-basin boundaries, computing basin characteristics, estimating streamflow statistics for user-selected locations, and determining point features that coincide with a National Hydrography Dataset (NHD) reach address. For the state of Kentucky, a web service also has been developed that provides users the ability to estimate daily time series of drainage-basin average values of daily precipitation and temperature. The use of web services allows the user to take full advantage of the datasets and processes behind the Stream Stats application without having to develop and maintain them. ?? 2009 IEEE.
Harmonic analyses of stream temperatures in the Upper Colorado River Basin
Steele, T.D.
1985-01-01
Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)
The goal of this research was to evaluate stream ecosystem function in response to different forest harvest intensities and time since harvest. Research was conducted in North Carolina, Arkansas, Oregon, and California.
Beaded streams of Arctic permafrost landscapes
NASA Astrophysics Data System (ADS)
Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.
2014-07-01
Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools. This repeating spatial pattern associated with beaded stream morphology and hydrological dynamics may provide abundant and optimal foraging habitat for fish. Thus, beaded streams may create important ecosystem functions and habitat in many permafrost landscapes and their distribution and dynamics are only beginning to be recognized in Arctic research.
Sandra E. Ryan; Mark K. Dixon
2007-01-01
Sediment transport rates (dissolved, suspended, and bedload) measured over the course of several years are reported for two streams in the Gros Ventre Mountain range in western Wyoming, USA: Little Granite and Cache Creeks. Both streams drain watersheds that are in relatively pristine environments. The sites are about 20km apart, have runoff dominated by snowmelt and...
NASA Astrophysics Data System (ADS)
Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.
2017-12-01
This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords: Precipitation data comparison, IMD, TRMM, river basins, Mann-Kendall test
Water quality of hydrologic bench marks; an indicator of water quality in the natural environment
Biesecker, James E.; Leifeste, Donald K.
1974-01-01
Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical divisions of the United States, except the Central Lowland province of the Interior Plains, the Great Plains province of the Interior Plains, and the Basin and Ridge province of the Intermontane Plateaus. The relationship between dissolved-solids concentration and discharge per unit area is least variable in the New England province and Blue Ridge province of the Appalachian Highlands. The dissolved-solids concentration versus discharge per unit area in the Central Lowland province of the Interior Plains is highly variable. A sample collected from the hydrologic bench-mark station at Bear Den Creek near Mandaree, N. Dak., contained 3,420 milligrams per litre dissolved solids. This high concentration in the 'natural' environment indicates that natural processes can be principal agents in modifying the environment and can cause degradation. Average annual runoff and rock type can be used as predictive tools to determine the maximum dissolved-solids concentration expected in the 'natural' environment.
Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.
1996-01-01
This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem deteriorates downstream because of inflows from tributaries affected by acidic mine discharges. From the upstream mainstem site (site 801) to the outflow mainstem site (site 805), pH decreased from 6.8 to 4.2, alkalinity was completely depleted by inflow acidities, and total-iron discharges increased from 30 to 684 pounds per day. Total-manganese and total-sulfate discharges increased because neither constituent precipitates readily. Also, discharges of manganese and sulfate entering the mainstem from tributary streams have a cumulative effect.Oven Run and Pokeytown Run are two small tributary streams significantly affected by acidic mine drainage (AMD) that flow into the Stonycreek River near the town of Hooversville. The Pokeytown Run inflow is about 0.5 mile downstream from the Oven Run inflow. These two streams are the first major source of AMD flowing into the Stonycreek River. Data collected on the Stonycreek River above the Oven Run inflow and below the Pokeytown Run inflow show a decrease in pH from 7.6 to 5.1, a decrease in alkalinity concentration from 42 to 2 milligrams per liter, an increase in total sulfate discharge from 18 to 41 tons per day, and an increase in total iron discharge from 29 to 1,770 pounds per day. Data collected at three mainstem sites on the Stonycreek River below Oven Run and Pokeytown Run show a progressive deterioration in river water quality from AMD.Shade Creek and Paint Creek are other tributary streams to the Stonycreek River that have a significant negative effect on water quality of the Stonycreek River. One third of the abandoned-mine discharges sampled were in the Shade Creek and Paint Creek Basins.
Water resources of Parowan Valley, Iron County, Utah
Marston, Thomas M.
2017-08-29
Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer. Groundwater flows from the high-altitude recharge areas downward toward the basin-fill aquifer in Parowan Valley. Almost all groundwater discharge occurs as withdrawals from irrigation wells in the valley with a small amount of discharge from phreatophytic evapotranspiration. Subsurface groundwater discharge to Cedar Valley is likely minimal. Withdrawals from wells during 2013 were about 32,000 acre-ft. The estimated withdrawals from wells from 1994 to 2013 have ranged from 22,000 to 39,000 acre-ft per year. Declining water levels are an indication of the estimated average annual decrease in groundwater storage of 15,000 acre-ft from 1994 to 2013.Groundwater and surface-water samples were collected from 46 sites in Parowan Valley and Cedar Valley near the town of Enoch during June 2013. Groundwater samples from 34 wells were submitted for geochemical analysis. The total dissolved-solids concentration in water from these wells ranged from 142 to 886 milligrams per liter. Results of stable isotope analysis of oxygen and deuterium from groundwater and surface-water samples indicate that most of the groundwater in Parowan Valley and in Cedar Valley near Enoch is similar in isotopic composition to water from mountain streams, which reflects meteoric water recharged in high-altitude areas east of the valley. In addition, results of stable isotope analysis of a subset of samples from wells located near Little Salt Lake may indicate recharge of precipitation that occurred during cooler climatic conditions of the Pleistocene Epoch.
Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.
2016-09-06
Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.
Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005
Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.
2009-01-01
The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and stable isotopes of hydrogen and oxygen. Water samples from all 36 wells were analyzed for dissolved-gas concentration including noble gases and tritium/helium-3. Within the basin fill, dissolved-solids concentration generally increases with distance along flowpaths from recharge areas, and shallower flowpaths tend to have higher concentrations than deeper flowpaths. Nitrate concentrations generally are at or below natural background levels. Dissolved-gas recharge temperature data support the conceptual model of the basin-fill aquifers and highlight complexities of recharge patterns in different parts of the valley. Dissolved-gas data indicate that the highest elevation recharge sources for the basin-fill aquifer are subsurface inflow derived from recharge in the adjacent mountain block between the mouths of American Fork and Provo Canyons. Apparent ground-water ages in the basin-fill aquifer, as calculated using tritium/helium-3 data, range from 2 to more than 50 years. The youngest waters in the valley occur near the mountain fronts with apparent ages generally increasing near the valley lowlands and discharge area around Utah Lake. Flowpaths are controlled by aquifer properties and the location of the predominant recharge sources, including subsurface inflow and recharge along the mountain front. Subsurface inflow is distributed over a larger area across the interface of the subsurface mountain block and basin-fill deposits. Subsurface inflow occurs at a depth deeper than that at which mountain-front recharge occurs. Recharge along the mountain front is often localized and focused over areas where streams and creeks enter the valley, and recharge is enhanced by the associated irrigation canals.
Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan
2012-01-01
We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid environments characterized by high topo-climatic variability, land and water managers need indicators of local watershed hydrology response to complement regional temperature and precipitation estimates. Our results also suggest that temperature forcing may generate greater drought stress affecting soils and stream flows than can be estimated by variability in precipitation alone.
Barks, C. Shane; Petersen, James C.; Usrey, Faron D.
2002-01-01
Water-quality and biological samples were collected at several sites in the Boeuf River Basin between November 1994 and December 1996. Water-quality and benthic macroinvertebrate community samples were collected and habitat was measured once at 25 ambient monitoring sites during periods of seasonal low flow. Water-quality storm-runoff samples were collected during 11 storm events at two sites (one draining a cotton field and one draining a forested area). Water-quality samples were collected at one site during the draining of a catfish pond. Water-quality samples from the 25 ambient sites indicate that streams in the Boeuf River Basin typically are turbid and nutrient enriched in late fall during periods of relatively low flow. Most suspended solids concentrations ranged from about 50 to 200 milligrams per liter (mg/L), most total nitrogen concentrations ranged from about 1.1 to 1.8 mg/L, and most total phosphorus concentrations ranged from about 0.25 to 0.40 mg/L. Suspended solids, total nitrogen, total ammonia plus organic nitrogen, total phosphorus, and dissolved orthophosphorus concentrations from samples collected during storm events were typically higher at the cotton field site than at the forested site. Estimated annual yields of suspended solids, nitrogen, and phosphorus were substantially higher from the cotton field than from the forested area. Dissolved chloride concentrations typically were higher at the forested site than from the cotton field site. Typically, the suspended solids and nutrient concentrations from the 25 ambient sites were lower than concentrations in runoff from the cotton field but higher than concentrations in runoff from the forest area. Concentrations of sulfate, chloride, suspended solids, and some nutrients in samples from the catfish pond generally were greater than concentrations in samples from other sites. Total phosphorus, orthophosphorus, and fecal coliform bacteria concentrations from the catfish pond generally were lower than concentrations in samples from other sites. Biological condition scores calculated using macroinvertebrate samples and U.S. Environmental Protection Agency Rapid Bioassessment Protocol II indicated that most of the 25 ambient sites would be in the 'moderately impaired' category. However, substantial uncertainty exists in this rating because bioassessment data were compared with data from a reference site outside of the Boeuf River Basin sampled using different methods. Several metrics indicated that communities at most of the ambient sites are composed of more tolerant macroinvertebrates than the community at the reference site. Habitat assessments (using Rapid Bioassessment Protocol II) indicated the reference site outside the Boeuf River Basin had better habitat than the ambient sites. Physical habitat scores for the 25 ambient sites indicated that most ambient sites had poor bottom substrate cover, embeddedness values, and flow and had poor to fair habitat related to most other factors. Most habitat factors at the reference site were considered good to excellent. Part of the variation in biological condition scores was explained by physical habitat scores and concentrations of suspended solids and dissolved oxygen. However, a considerable amount of variability in biological condition scores is not explained by these factors.
Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland
Pluhowski, E.J.
1981-01-01
Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
Baker, Nancy T.; Stone, Wesley W.; Wilson, John T.; Meyer, Michael T.
2006-01-01
Leary Weber Ditch Basin, Hancock County, Indiana, is one of seven first-order basins selected from across the United States as part of the Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. The nationwide study was designed to increase the understanding of the links between the sources of water and agricultural chemicals (nutrients and pesticides) and the transport and fate of these chemicals through the environment. Agricultural chemicals were detected in Leary Weber Ditch and in every associated hydrologic compartment sampled during 2003 and 2004. Pesticides were detected more frequently in samples collected from overland flow and from the ditch itself and less frequently in ground-water samples. The lowest concentrations of pesticides and nutrients were detected in samples of rain, soil water, and ground water. The highest concentrations of pesticides and nutrients were detected in samples of tile-drain water, overland flow, and water from Leary Weber Ditch. Samples collected from the tile drain, overland flow and Leary Weber Ditch soon after chemical applications to the fields and coincident with rainfall and increased streamflow had higher concentrations of pesticides and nutrients than samples collected a longer time after the chemicals were applied. A mass-balance mixing analysis based on potassium concentrations indicated that tile drains are the primary contributor of water to Leary Weber Ditch, but overland flow is also an important contributor during periods of high-intensity rainfall. When maximum rainfall intensity was 0.5 inches per hour or lower, overland flow contributed about 10 percent and tile drains contributed about 90 percent of the flow to Leary Weber Ditch. When maximum rainfall intensity was 0.75 inches per hour or greater, overland flow contributed about 40 percent and tile drains contributed about 60 percent of the flow to the ditch. Ground-water flow to Leary Weber Ditch was negligible. Tile drains are an important agricultural-chemical transport path to Leary Weber Ditch, based on the hydrologic contributions of overland flow and tile drains to the ditch. Overland flow is also an important agricultural-chemical transport pathway during high-intensity rainfall; however, storms with high-intensity rainfall are sporadic throughout the year. Tile drains and the soil water moving to the tile drains are the primary transport pathway for agricultural-chemical transport to Leary Weber Ditch during most storms as well as between storms.
In summer 1997, we sampled reaches in 24 wadeable, Willamette Valley ecoregion streams draining agriculturally-infiuenced watersheds. Within these reaches, physical habitat, water chemistry, aquatic invertebrate and fish data and samples were collected. Low-level air photos were ...
Culture- and PCR-based methods for characterization of fecal pollution were evaluated in relation to physiographic, biotic, and chemical indicators of stream condition. Stream water samples (n = 235) were collected monthly over a two year period from ten channels draining subwat...
We established two study sites with similar soils and hydrology but contrasting riparian vegetation along Lake Creek, an intermittent stream that drains perennial ryegrass fields in the Willamette Valley of western Oregon. One site had a non-cultivated riparian zone with a plant...
North Fork Caspar Creek stream biology study
Micheal S. Parker
1991-01-01
Timber harvesting is one of the most widespread land-uses in forested watersheds throughout western North America. It has long been recognized that timber removal, primarily through clearcutting, may have significant impacts on some environmental conditions within streams draining forested watersheds. It is also clear that logging related impacts are highly variable...
2006 pilot survey for Phytophthora ramorum in forest streams in the USA
S.W. Oak; J. Hwang; S.N. Jeffers; B.M. Tkacz
2008-01-01
Methods for detecting Phytophthora ramorum and other Phytophthora species with rhododendron leaf baits were pilot tested in high-risk watersheds in 11 states for the purpose of recommending a national survey protocol. Ninety streams, including 14 draining P. ramorum.-endemic areas, yielded 587 baiting chances....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, F.J. Jr.; Fisher, D.W.
Data from sampling stations in the Northeastern United States show that atmosperic precipitation in this region is composed of a dilute calcium-hydrogen sulfate water having additional sodium and chloride near the coast. In the inland and coastal sections, excepting only the highly industrialized areas, variations among the precipitation chemical loads measured at various sites show no systematic differences that suggest sectional changes in precipitation chemistry. In the rural inland section, the average loads of all measured constitutents except sulfate and hydrogen ion are independent of precipitation amount. In the coastal section, sodium and chloride loads vary with precipitation, presumably owingmore » to the effects of sea spray. Limited data show that industrial regions are marked by the presence of higher calcium, sulfate, and nitrate loads. Atmospheric precipitation contributes substantially to the chemical loads of streams, particularly those draining basins underlain by unreactive rock. Essentially all the sulfate- and nitrogen-bearing ions and much of the chloride and potassium in such streams are supplied by precipitation. Even in areas of more chemically reactive rock, the stream loads of the nitrogenous species may still be largely from precipitation. Most ground water contains enough material dissolved from its containing rock to mask the effect of precipitation on its recharge. However, because the Magothy aquifer on Long Island is so unreactive, the chemistry of its water appears to be controlled in large part by the chemistry of the atmospheric precipitation recharging it. 17 references, 7 figures, 3 tables.« less
The Pleistocene rivers of the English Channel region
NASA Astrophysics Data System (ADS)
Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude
2003-02-01
The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.
Schilling, Keith E; Wolter, Calvin F; Isenhart, Thomas M; Schultz, Richard C
2015-11-01
Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.
2006-01-01
Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.
Cecil, C. Blaine; Dulong, Frank T.; Cobb, James C.
1993-01-01
Recent sedimentation patterns in the central Sumatra basin, Republic of Indonesia, may help to explain the cyclic stratigraphy of the Pennsylvanian System of the eastern United States. Modern influx of fluvial siliciclastic sediment to the epeiric seas of the Sunda shelf, including the Strait of Malacca, appears to be highly restricted by rain forest cover within the ever-wet climate belt of equatorial Sumatra. As a result, much of the marine and estuarine environments appear to be erosional or nondepositional except for localized deposition of sediment in slack water areas, such as the down-stream end of islands. Contemporaneously, thick (>13 m), laterally extensive (>70,000 km2), peat deposits are forming on poorly drained coastal lowlands. Modern peat formation in this study, therefore, is not coeval with aggrading fluvial siliciclastic systems, a situation that commonly is assumed in many depositional models of coal formation. The stratigraphy of Pleistocene and Holocene sediments on the Sunda shelf, as well as those of the Pennsylvanian System, appears to be better explained by the allocyclic controls of climate and sea-level change on sediment flux rather than by depositional models that are based on autocyclic processes. The objective of this paper is to evaluate allocyclic and autocyclic controls on sedimentation in an epeiric setting in a humid (ever-wet) tropical region. Of particular interest are the factors that control peat formation and siliciclastic sediment flux in rivers, estuaries, and open marine environments.
Short-term response of Dicamptodon tenebrosus larvae to timber management in southwestern Oregon
Leuthold, Niels; Adams, Michael J.; Hayes, John P.
2012-01-01
In the Pacific Northwest, previous studies have found a negative effect of timber management on the abundance of stream amphibians, but results have been variable and region specific. These studies have generally used survey methods that did not account for differences in capture probability and focused on stands that were harvested under older management practices. We examined the influences of contemporary forest practices on larval Dicamptodon tenebrosus as part of the Hinkle Creek paired watershed study. We used a mark-recapture analysis to estimate D. tenebrosus density at 100 1-m sites spread throughout the basin and used extended linear models that accounted for correlation resulting from the repeated surveys at sites across years. Density was associated with substrate, but we found no evidence of an effect of harvest. While holding other factors constant, the model-averaged estimates indicated; 1) each 10% increase in small cobble or larger substrate increased median density of D. tenebrosus 1.05 times, 2) each 100-ha increase in the upstream area drained decreased median density of D. tenebrosus 0.96 times, and 3) increasing the fish density in the 40 m around a site by 0.01 increased median salamander density 1.01 times. Although this study took place in a single basin, it suggests that timber management in similar third-order basins of the southwestern Oregon Cascade foothills is unlikely to have short-term effects of D. tenebrosus larvae.
Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.
1983-01-01
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.
Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.
1983-02-08
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.
Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic Margins
NASA Astrophysics Data System (ADS)
Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.
Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western margins, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these ice-influenced seas. The dynamics of the glaciers and ice sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental margins of the Norwegian and Greenland seas over the Late Cenozoic. The western margin is influenced by the cold East Greenland Current and the Svalbard margin by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland Ice Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing ice streams, which drain huge basins within the parent ice sheet. Large prograding fans located on the continental slope offshore of these ice streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the margins and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea ice. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.
Late Cretaceous and Paleogene sedimentation along east side of San Joaquin basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, S.A.
1986-04-01
Depositional systems of the Late Cretaceous contrast with those of the Paleogene in the subsurface along the east side of the San Joaquin basin between Bakersfield and Fresno, California. Upper Cretaceous deposits include thick fan-delta and submarine fan facies of the Moreno and Panoche Formations, whereas the paleogene contains extensive nearshore, shelf, slope, and submarine fan deposits of the Lodo, Domengine, and Kreyenhagen Formations. These sediments were deposited on a basement surface having several west-trending ridges and valleys. West-flowing streams draining an ancestral Sierra Nevada of moderate relief formed prograding fan deltas that filled the valleys with thick wedges ofmore » nonmarine channel deposits, creating a bajada along the shoreline. Detrital material moved rapidly from the shoreline through a narrow shelf, into a complex of submarine fans in the subduction trough. During the early Eocene, a low sea level stand plus an end of Sierra Nevada uplift resulted in the erosion of the range to a peneplain. Stream-fed fan deltas were replaced by a major river system, which flowed west on about the present course of the Kern River. Following a rapid sea level increase, sand from the river system was deposited on the now broad shelf along a wide belt roughly coincident with California Highway 99. The river was also the point source for sand in a submarine fan northwest of Bakersfield. Both Upper Cretaceous and Paleogene depositional systems probably continue north along the east edge of the Great Valley. This proposed scenario for the east side of the San Joaquin is analogous to forearc deposits in the San Diego area, including the Cretaceous Rosario fan-delta and submarine fan system and the Eocene La Jolla and Poway nearshore, shelf, and submarine fan systems.« less
Heimann, David C.
2009-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low-flow periods may be a natural phenomenon for small prairie streams in the Osage Plains. Nutrient concentrations including total nitrogen, ammonia, nitrate, and total phosphorus were significantly less in base-flow and runoff samples from prairie streams than from agricultural streams. The total nitrogen concentration at all sites other than one of two prairie sampling sites were, on occasion, above the U.S. Environmental Protection Agency recommended criterion for total nitrogen for the prevention of nutrient enrichment, and typically were above this recommended criterion in runoff samples at all sites. Nitrate and total phosphorus concentrations in samples from the prairie streams generally were below the U.S. Environmental Protection Agency recommended nutrient criteria in base-flow and runoff samples, whereas samples from agricultural sites generally were below the criteria in base-flow samples and generally above in runoff samples. The lower concentrations of nutrient species in prairie streams is likely because prairies are not fertilized like agricultural basins and prairie basins are able to retain nutrients better than agricultural basins. This retention is enhanced by increased infiltration of precipitation into the prairie soils, decreased surface runoff, and likely less erosion than in agricultural basins. Streamflow in the small native prairie streams had more days of zero flow and lower streamflow yields than similar-sized agricultural streams. The prairie streams were at zero flow about 50 percent of the time, and the agricultural streams were at zero flow 25 to 35 percent of the time. Characteristics of the prairie basins that could account for the greater periods of zero flow and lower yields when compared to agricultural streams include greater infiltration, greater interception and evapotranspiration, shallower soils, and possible greater seepage losses in the prairie basins. Another difference between the prairie and agricultural strea
DRAINWAT--Based Methods For Estimating Nitrogen Transport in Poorly Drained Watersheds
Devendra M. Amatya; George M. Chescheir; Glenn P. Fernandez; R. Wayne Skaggs; J.W. Gilliam
2004-01-01
Methods are needed to quantify effects of land use and management practices on nutrient and sediment loads at the watershed scale. Two methods were used to apply a DRAINMOD-based watershed-scale model (DRAINWAT) to estimate total nitrogen (N) transport from a poorly drained, forested watershed. In both methods, in-stream retention or losses of N were calculated with a...
Hydrology and Water Quality of Forested Lands in Eastern North Carolina
George M. Chescheir; M.E. Lebo; Devendra M. Amatya; J. Hughes; J.W. Gilliam; R. Wayne Skaggs; R.B. Hermann
2003-01-01
More than 100 site years of hydrology and water quality data spanning 25 years (1976-2000) were compiled from research and monitoring studies on forest stands with natural vegetation and tracts managed for timber production. A total of 41 watersheds located on poorly drained to very poorly drained soils on flat divides between coastal streams were included ranging in...
1980-08-28
displaced timbers on the downstream face, replace broken timbers, repair of the valve on the drain, and repair of the spalling concrete on the wingwall which...repair of the valve on the drain, and repair of the spalling concrete on the wingwall which extends downstream of the north abutment. In addition, a...long. The gatehouse at the northern end of the dam contains the control mechanism for a valve which regulates flow at the reservoir drain inlet, an 84
Runoff generation through ephemeral streams in south-east Italy
NASA Astrophysics Data System (ADS)
Doglioni, A.; Simeone, V.; Giustolisi, O.
2012-04-01
Ephemeral streams are morphological elements, typical of karst areas, characterized by relatively large and flat bottom transects (Camarasa & Tilford, 2002). These occasionally drain runoff generated by extreme rainfall events, characterized by high return periods. The activation of these streams was investigated by several authors for the Mediterranean regions, and in particular for south Spain and north Africa (Camarasa & Segura, 2001; De Vera, 1984). However, there are few analyses for karst areas of south-east of Italy (Cotecchia, 2006; Polemio, 2010). South-east of Italy, in particular the central part of Apulia, is characterized by a karst morphology, with a moderately elevated plateau, namely Murgia, which is drained by a network of ephemeral streams. These are normally dry, relatively short-length and straights, and their main outlets are on the coast. They normally drain water after extraordinary rainfall events, which can generate very high discharges, which can potentially flood the areas close to the streams. For this reason, the definition of an activation threshold for ephemeral streams is a paramount problem, even if this constitutes a complex problem, since the dynamics of the catchment drained by these streams in highly non-linear and biased by multiple variables (e.g. urbanization, land use, etc.). The main problem affecting the analysis and prediction of flood events in karst semi-arid regions is the almost complete absence of discharge time-series, measured at the outlets of the ephemeral streams. This prevents from the identification of accurate statistics of flood events and on the determination of rainfall events, which may potentially generate floods. Indeed, floods and in general flash floods are relatively rare events for semi-arid karst regions, however they can be really severe and disruptive, causing serious damages to people and infrastructures. This work presents an analysis of the ephemeral stream activation in karst semi-arid areas, in a partially urbanized catchment located in Apulia (south east of Italy). The analysis is based on full 2D simulation of the behaviour of a network of ephemeral streams. A full 2D approach integrates the hydrological and hydraulic models, in order to account first for the dynamic of catchment response to rainfall and activation of the streams, and then for the hydraulic behaviour of the streams. This analysis entails the simulation of extreme events corresponding to low, medium and high return periods, in order to identify which event presumably activate the ephemeral streams. Camarasa, A.M. and Tilford, K.A. (2002). "Rainfall-runoff modelling of ephemeral streams in the Valencia region (eastern Spain)". Hydrological Processes, 16: 3329-3344. Camarasa Belmonte, A.M, and Segura Beltran, F. (2001). "Flood events in Mediterranean ephemeral stream (ramblas) in Valencia Region, Spain". Catena, 45: 229-249. Cotecchia, V. (2006). "Il disordine idraulico evidenziato in Bari dall'evento pluviometrico dell'Ottobre 2005 e il caso dell' ex cava di Maso". Continuità - Rassegna Tecnica Pugliese, 1-2.2006: 25-76. De Vera M. (1984). "Rainfall-Runoff relationship of some catchments with karstic geomorphology under arid to semi-arid conditions". Journal of Hydrology, 68(1-4): 85-93. Polemio, M., (2010). "Historical floods and a recent extreme rainfall event in the Murgia karstic environment (Southern Italy)". Zeitschrift für Geomorphologie, 54(2): 195-219.
Huffman, Raegan L.
2018-05-29
The U.S. Geological Survey, in cooperation with the lower Yakima River Basin Groundwater Management Area (GWMA) group, conducted an intensive groundwater sampling collection effort of collecting nitrate concentration data in drinking water to provide a baseline for future nitrate assessments within the GWMA. About every 6 weeks from April through December 2017, a total of 1,059 samples were collected from 156 wells and 24 surface-water drains. The domestic wells were selected based on known location, completion depth, ability to collect a sample prior to treatment on filtration, and distribution across the GWMA. The drains were pre-selected by the GWMA group, and further assessed based on ability to access sites and obtain a representative sample. More than 20 percent of samples from the domestic wells and 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter established by the U.S. Environmental Protection Agency. At least one nitrate concentration above the MCL was detected in 26 percent of wells and 33 percent of drains sampled. Nitrate was not detected in 13 percent of all samples collected.
Using MODFLOW drains to simulate groundwater flow in a karst environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, J.; Tomasko, D.; Glennon, M.A.
1998-07-01
Modeling groundwater flow in a karst environment is both numerically challenging and highly uncertain because of potentially complex flowpaths and a lack of site-specific information. This study presents the results of MODFLOW numerical modeling in which drain cells in a finite-difference model are used as analogs for preferential flowpaths or conduits in karst environments. In this study, conduits in mixed-flow systems are simulated by assigning connected pathways of drain cells from the locations of tracer releases, sinkholes, or other karst features to outlet springs along inferred flowpaths. These paths are determined by the locations of losing stream segments, ephemeral streammore » beds, geophysical surveys, fracture lineaments, or other surficial characteristics, combined with the results of dye traces. The elevations of the drains at the discharge ends of the inferred flowpaths are estimated from field data and are adjusted when necessary during model calibration. To simulate flow in a free-flowing conduit, a high conductance is assigned to each drain to eliminate the need for drain-specific information that would be very difficult to obtain. Calculations were performed for a site near Hohenfels, Germany. The potentiometric surface produced by the simulations agreed well with field data. The head contours in the vicinity of the karst features behaved in a manner consistent with a flow system having both diffuse and conduit components, and the sum of the volumetric flow out of the drain cells agreed closely with spring discharges and stream flows. Because of the success of this approach, it is recommended for regional studies in which little site-specific information (e.g., location, number, size, and conductivity of fractures and conduits) is available, and general flow characteristics are desired.« less
Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor
2004-01-01
Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...
Chemical character of streams in the Delaware River basin
Anderson, Peter W.; McCarthy, Leo T.
1963-01-01
The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.
Opsahl, Stephen P.
2012-01-01
During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.
Weaver, J. Curtis; Fine, Jason M.
2003-01-01
An understanding of the magnitude and frequency of low-flow discharges is an important part of protecting surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized for 12 continuous-record gaging stations and 44 partial-record measuring sites in the Rocky River basin in North Carolina. Records of discharge collected through the 2002 water year at continuous-record gaging stations and through the 2001 water year at partial-record measuring sites were used. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, which is similar to 7Q10 discharge but is based only on flow during the winter months of November through March; and (5) 7Q2 low-flow discharge. The Rocky River basin drains 1,413 square miles (mi2) of the southern Piedmont Province in North Carolina. The Rocky River is about 91 miles long and merges with the Yadkin River in eastern Stanly County to form the Pee Dee River, which discharges into the Atlantic Ocean in South Carolina. Low-flow characteristics compiled for selected sites in the Rocky River basin indicated that the potential for sustained base flows in the upper half of the basin is relatively higher than for streams in the lower half of the basin. The upper half of the basin is underlain by the Charlotte Belt, where streams have been identified as having moderate potentials for sustained base flows. In the lower half of the basin, many streams were noted as having little to no potential for sustained base flows. Much of the decrease in base-flow potential is attributed to the underlying rock types of the Carolina Slate Belt. Of the 19 sites in the basin having minimal (defined as less than 0.05 cubic foot per second) or zero 7Q10 discharges, 18 sites are located in the lower half of the basin underlain by the Carolina Slate Belt. Assessment of these 18 sites indicates that streams that have drainage areas less than about 25 square miles are likely to have minimal or zero 7Q10 discharges. No drainage-area threshold for minimal or zero 7Q10 discharges was identified for the upper half of the basin, which is underlain by the Charlotte Belt. Tributaries to the Rocky River include the West Branch Rocky River (22.8 mi2), Clarke Creek (28.2 mi2), Mallard Creek (41.2 mi2), Coddle Creek (78.8 mi2), Reedy Creek (43.0 mi2), Irish Buffalo/Coldwater Creeks (110 mi2), Dutch Buffalo Creek (99 mi2), Long Creek (200 mi2), Richardson Creek (234 mi2), and Lanes Creek (135 mi2). In the 20-mile reach upstream from the mouth (about 22 percent of the river length), the drainage area increases by 648 mi2, or about 46 percent of the total drainage area as a result of the confluences with Long Creek, Richardson Creek, and Lanes Creek. Low-flow discharge profiles for the Rocky River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included. At the gaging stations above Irish Buffalo Creek and near Stanfield, the 7Q10 discharges are 25.2 and 42.3 cubic feet per second, corresponding to 0.09 and 0.07 cubic feet per second per square mile, respectively. At the gaging station near Norwood, the 7Q10 discharge is 45.8 cubic feet per second, equivalent to 0.03 cubic foot per second per square mile. Low-flow discharge profiles reflect the presence of several major flow diversions in the reaches upstream from Stanfield and an apparent losing reach between the continuous-record gaging stations near Stanfield and Norwood, North Carolina.
Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska
Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; ...
2015-12-18
We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the activemore » layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.« less
The near steady state landscape of western Namibia
NASA Astrophysics Data System (ADS)
Matmon, A.; Enzel, Y.; Vainer, S.; Grodek, T.; Mushkin, A.; Aster Team
2018-07-01
Quantitative geomorphic field studies and modeling efforts have focused on the margins of southwestern Africa as an example for landscape evolution in prolonged aridity conditions and tectonic quiescence of passive margins. These efforts concluded that this region is a prime example of a steady state landscape, in which relief changes extremely slowly. Using cosmogenic isotopes, these studies suggested overall landscape exhumation rates of 5-10 m Ma-1 over the past 105-106 yrs. Slightly slower rates on flat-lying exposed bedrock surfaces and faster exhumation rates along the Namibian Great Escarpment as well as on steep slopes of granitic inselbergs, such as the Gross Spitzkoppe are also documented. Here we explore the state of "steady state" in central Namibia. Concentrations of 10Be were measured in bedrock and sediment samples collected throughout the watershed of the Ugab River ( 29,000 km2), which drains the highlands of central Namibia and flows to the Atlantic Ocean. Samples were collected from the main stem of the ephemeral Ugab River, from the slopes and streams draining the Brandberg, which is the largest inselberg in the Namib, and from smaller inselbergs around it. We also sampled several other formerly large, but currently subdued, inselbergs such as the Messum Crater. 10Be concentrations in sediment transported along the axial Ugab River indicate that its drainage basin erodes uniformly at 5-6 m Ma-1 and sediment transport from its headwaters source to the ocean is rapid. 10Be concentrations measured in sediment transported in ephemeral streams draining the Brandberg indicate its erosion at 4 m Ma-1. However, slower rates of 1-3 m Ma-1 were measured for bedrock samples collected from (a) flat lying bedrock surfaces within the Brandberg, (b) top of small tors that rise only a few meters above their surroundings, and (c) exhumed and denuded large magmatic complexes such as the Messum Crater. Furthermore, we found that bedrock buried under grus in the hyperarid zone of Namib (<100 mm yr-1) erodes at similar rates as the exposed bedrock. This difference between the rate of bedrock erosion and the overall average erosion rate of drainage basins has been previously attributed to the contribution of sediment weathered from underneath transported sediment and soil on the pediments. Our results do not fully support this explanation. Results from this and earlier studies point to two possible sources of relatively low dosed (i.e. more rapidly eroding) sediment: (a) the steep slopes and cliffs of the large inselbergs and the Great Escarpment, and (b) rock buried under soil in the upper, semi-arid, parts of the drainage systems, where soil and vegetation can promote weathering of plagioclase and biotite and the disintegration of granitic bedrock. We therefore suggest that the "steady state" landscape along the Namibian passive margin be viewed as follows: The entire landscape erodes slowly, generally at 5 m Ma-1 and this maintains the view of steady state. Small differences in erosion rates between the landscape elements result in very slow and only small changes in relief over time scales ≥106 yrs. We find that the large inselbergs and the Great Escarpment erode primarily by retreat of steep slopes and cliffs within the drainage basins while preserving relief over considerable timescales. In the wetter upper reaches of the Namibian drainage systems, erosion of buried rock is most likely increased by the vegetation-covered soil.
Vidon, P.; Wagner, L.E.; Soyeux, E.
2008-01-01
Dissolved organic carbon (DOC) dynamics in streams is important, yet few studies focus on DOC dynamics in Midwestern streams during storms. In this study, stream DOC dynamics during storms in two Midwestern watersheds with contrasting land uses, the change in character of stream DOC during storms, and the usability of DOC as a hydrologic tracer in artificially drained landscapes of the Midwest are investigated. Major cation/DOC concentrations, and DOC specific UV absorbance (SUVA) and fluorescence index (FI) were monitored at 2-4 h intervals during three spring storms. Although DOC is less aromatic in the mixed land use watershed than in the agricultural watershed, land use has little impact on stream DOC concentration during storms. For both watersheds, DOC concentration follows discharge, and SUVA and FI values indicate an increase in stream DOC aromaticity and lignin content during storms. The comparison of DOC/major cation flushing dynamics indicates that DOC is mainly exported via overland flow/macropore flow. In both watersheds, the increase in DOC concentration in the streams during storms corresponds to a shift in the source of DOC from DOC originating from mineral soil layers of the soil profile at baseflow, to DOC originating from surficial soil layers richer in aromatic substances and lignin during storms. Results also suggest that DOC, SUVA and FI could be used as hydrologic tracers in artificially drained landscapes of the Midwest. These results underscore the importance of sampling streams for DOC during high flow periods in order to understand the fate of DOC in streams. ?? 2008 Springer Science+Business Media B.V.
The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.
2017-12-01
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are decreasing salinity in groundwater transported to streams.
McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy
2016-04-05
The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana StreamStats application and the datasets, streamflow-gaging stations, streamflow characteristics, and regression equations (as described fully in Chapters B through G of this report) that are used for development of the StreamStats application for Montana.
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
NASA Astrophysics Data System (ADS)
Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.
2015-01-01
Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium to high ground-ice content permafrost in moderately sloping terrain. In one Arctic coastal plain watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. The comparisons of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform, and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones, effectively insulate channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features that range from 0.7 to 1.6 m. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains cold-water habitats. Snowmelt-generated peak flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.01 to 0.1 m s-1, yet channel runs still move water rapidly between pools. The repeating spatial pattern associated with beaded stream morphology and hydrological dynamics may provide abundant and optimal foraging habitat for fish. Beaded streams may create important ecosystem functions and habitat in many permafrost landscapes and their distribution and dynamics are only beginning to be recognized in Arctic research.
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.
2015-01-01
Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly between pools. The repeating spatial pattern associated with beaded stream morphology and hydrological dynamics may provide abundant and optimal foraging habitat for fish. Thus, beaded streams may create important ecosystem functions and habitat in many permafrost landscapes and their distribution and dynamics are only beginning to be recognized in Arctic research.
Influence of land use on hyporheos in catchment of the Jarama River (central Spain)
NASA Astrophysics Data System (ADS)
Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.
2012-04-01
The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.
NASA Astrophysics Data System (ADS)
Spence, C.
2016-12-01
Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.
Turan, Davut; Doğan, Esra; Kaya, Cüneyt; Kanyılmaz, Mahir
2014-01-01
Abstract Salmo kottelati sp. n., is described from Alakır Stream (Mediterranean basin) in Turkey. It is distinguished from other Anatolian Salmo species by a combination of the following characters (none unique to the species): general body colour greenish to silvery in life; 7–9 parr marks along lateral line; four dark bands on flank absent in both sexes; black ocellated spots few, present only on upper part of flank in individuals smaller than 160 mm SL but in larger both males and females black spots numerous and located on back and middle and upper part of flank; red spots few to numerous, scattered on median, and half of lower and upper part of flank; head long (length 29–33% SL in males, 26–32 in females); mouth large (length of mouth gape 13–19% SL in males, 12–15 in females); maxilla long (length 10–13% SL in males, 8–12 in females); 105–113 lateral line scales; 24–29 scale rows between lateral line and dorsal-fin origin, 17–19 scale rows between lateral line and anal-fin origin; 13–15 scales between lateral line and adipose-fin insertion. PMID:25589858
NASA Astrophysics Data System (ADS)
Chapela Lara, M.; Schuessler, J. A.; Buss, H. L.; McDowell, W. H.
2017-12-01
During the evolution of the critical zone, the predominant source of nutrients to the vegetation changes from bedrock weathering to atmospheric inputs and biological recycling. In parallel, the architecture of the critical zone changes with time, promoting a change in water flow regime from near-surface porous flow during early weathering stages to more complex flow regimes modulated by clay-rich regolith during the late stages of weathering. As a consequence of these two concurrent processes, we can expect the predominant sources and pathways of solutes to the streams to also change during critical zone evolution. If this is true, we would observe a decoupling between the solutes used by the vegetation and those that determine the composition of the streams during the late stages of weathering, represented by geomorphically stable tropical settings. To test these hypotheses, we are analyzing the elemental and Mg isotopic composition of regolith and streams at the humid tropical Luquillo Critical Zone Observatory. We aim to trace the relative contributions of the surficial, biologically mediated pathways and the deeper, weathering controlled nutrient pathways. We also investigate the role of lithology on the solute decoupling between the vegetation and the stream, by examining two similar headwater catchments draining two different bedrocks (andesitic volcaniclastic and granitic). Our preliminary elemental and Mg isotope results are consistent with atmospheric inputs in the upper 2 m of regolith in both lithologies and with bedrock weathering at depth. During a short storm event ( 6 h), a headwater stream draining volcaniclastic bedrock showed a large variation in Mg and δ26Mg, correlated with total suspended solids, while another similar headwater granitic stream showed a much narrower variation. A larger stream draining volcaniclastic bedrock showed changes in Mg concentration in response to rain during the same storm event, but did not change in δ26Mg, suggesting the surficial-deep decoupling of solutes we observe in regolith profiles and headwater catchments might be overwhelmed by storage effects at increasing water residence times.
Variation in watershed nitrogen input and export across the Willamette River Basin
NASA Astrophysics Data System (ADS)
Goodwin, K. E.; Compton, J. E.; Sobota, D. J.
2011-12-01
Nitrogen (N) export from watersheds is influenced by hydrology, land use/cover, and the timing and spatial arrangement of N inputs and removal within basins. We examined the relationship between N input and watershed N export for 25 monitoring stations between 1996 and 2006 within the Willamette River Basin, western Oregon USA. We hypothesized that N export would be strongly correlated with N inputs, and that much of the N inputs comes from agricultural activities located in lowland portions of the basin. We also expected that N export would be strongly seasonal, reflecting the Mediterranean climate of the region. We found a wide range of export from the monitored WRB sub-basins, ranging from 1 to nearly 70 kg N ha-1 yr-1. Lower per unit area N export reflected a high proportion of watershed area in the predominantly forested Cascade Mountains, while the higher N export basins had a greater proportion of agricultural areas, particularly areas dominated by cultivated crops with high N requirements. Export of N varied greatly from year to year (up to nearly 200%), responding to interannual changes in precipitation and runoff. Export was strongly seasonal, with at least 50%, and often 75%, of the N export occurring during the fall and winter months. Snowmelt dominated Cascade Mountain streams tended to maintain flow and N export during the summer, compared with the basins draining Coast-Range and valley areas, which have less snow and spring rain inputs to maintain summer flow. Agricultural N inputs of synthetic and manure fertilizer were strongly correlated with N export from the sub-basins. Across the WRB, N export appears to be more strongly related to fertilizer application rates, as opposed to agricultural areas, indicating the importance of specific crops and crop practices as opposed to considering all agricultural lands the same in analyses of watershed N dynamics. This reinforces the need for careful tracking of N inputs to inform water quality monitoring and management. Annual N export was strongly driven by precipitation and runoff, suggesting that changes in hydrology will have important effects on N export downstream and to coastal areas in the future.
Embrey, S.S.; Block, E.K.
1995-01-01
The reconnaissance investigation results indicated that irrigation drainage generally has not adversely affected biota in the Columbia Basin Project. Hazards to biota from large concentrations of certain trace elements in water and bottom sediment, and caused by high evaporation rates in irrigated arid lands, are reduced by imported, dilute Columbia River water. However, boron concentrations in aquatic plants might affect waterfowl feeding on these plants and arsenic concentrations in juvenile coots were similar to those in mallard ducklings who exhibited abnormalities after being fed an arsenic-supplemented diet. During irrigation season, concentrations of boron, nitrate, and dissolved solids in water were increased in the southern wasteways because of water reuse. During non-irrigation season, constituent concentrations were large when stream flows are sustained by return water from tile drains and ground water. However, concentrations of dissolved constituents typically did not exceed standards or criteria for humans, freshwater life, or beneficial uses of the water. In water, the herbicide 2,4-D was detected more than any other pesticide and in concentrations from 0.01 to 1.0 microgram per liter. In bottom sediment, organochlorine insecticides were detected in samples from 19 of 21 sites. In fish collected from some wasteways, chlordane, DDT, and dieldrin concentrations occasionally exceeded freshwater protection criteria.
Streams in the urban heat island: spatial and temporal variability in temperature
Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.
2013-01-01
Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2 = 0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2 = 0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization, and stream thermal regimes.
Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography
Haefner, Ralph J.; Simonson, Laura A.
2010-01-01
The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute. Although hydraulic connection between the sandstone bedrock and the sands and gravels in valleys is likely, it has not been assessed in the Tuscarawas River Basin. In 2001, the major land uses in the basin were approximately 40 percent forested, 39 percent agricultural, and 17 percent urban/residential. Between 1992 and 2001, forested land use decreased by 2 percent with correspondingly small increases in agricultural and urban land uses, but from 1980 to 2005, the 13-county area that encompasses the basin experienced a 7.1-percent increase in population. Higher population density and percentages of urban land use were typical of the northern, headwaters parts of the basin in and around the cities of Akron, Canton, and New Philadelphia; the southern area was rural. The basin receives approximately 38 inches of precipitation per year that exits the basin through evapotranspiration, streamflow, and groundwater withdrawals. Recharge to groundwater is estimated to range from 6 to 10 inches per year across the basin. In 2000, approximately 89 percent of the 116 million gallons per day of water used in the basin came from groundwater sources, whereas 11 percent came from surface-water sources. To examine directions of groundwater flow in the basin, a new dataset of water-level contours was developed by the Ohio Department of Natural Resources. The contours were compiled on a map that shows that groundwater flows from the uplands towards the valleys and that the water-level surface mimics surface topography; however, there are areas where data were too sparse to adequately map the water-level surface. Additionally, little is known about deep groundwater that may be flowing into the basin from outside the basin and groundwater interactions with surface-water bodies. Many previous reports as well as new data collected as part of this study show that water quality in the streams and aquifers in the Tuscarawas River Basin has been degraded by urban, suburban, and rural
NASA Astrophysics Data System (ADS)
Ramsdale, Jason; Balme, Matthew; Conway, Susan; Gallagher, Colman
2014-05-01
Rahway Vallis is a previously identified shallow v-shaped valley network in the Mars Orbiter Laser Altimeter data, located at 10°N 175°E, within the Cerberus Plains in the Elysium Planitia region of Mars. Rahway Vallis is situated in low-lying terrain bounded to west, north and east by older highlands, and to the south by the flood-carved channel system Marte Vallis. Here we present a study of the low-lying area in which Rahway Vallis sits, which we refer to as the "Rahway basin". The floor of the Rahway basin is extremely flat (sloping at 0.02° south-east) and hosts a branching network of ridge and channel systems. The aim of this project is to determine the genesis of these branching forms, in particular to test the hypothesis that they are glaciofluvial in origin. Using topographic cross-profiles of the channels that are identifiable in CTX 6 m/pixel images, we have found that they are set within broader v-shaped valley that has almost no morphological expression. These valleys have a convex-up, shallow (around 15 metres vertically compared to several kilometres in the horizontal) V-shaped profiles that are consistent in form across the whole Rahway Basin. Long profiles show the channels to deepen with respect to the bank height downslope. Both channels and valley show a consistent downhill gradient from west to east. The channels typically widen down-slope and increase in width at confluences. If these are water-cut channels, they reach Strahler stream orders of 4, consistent with a contributory network with multiple sources. Associated with the channels are sinuous ridges, typically several kilometres long, 20 m across, with heights on the order of 10 m. They sometimes form branching networks leading into the channels but also form individually and parallel to the channels. Possible explanations for the sinuous ridges include inverted fluvial channels and eskers. However despite looking through ca. 250 CTX images across the Rahway basin, no other glacial landform was identified. This makes the esker hypothesis unlikely. We have found that the transition between the older heavily cratered highland terrain and the floor of the Rahway basin is often bounded by near-horizontal topographic terraces. These terraces appear continuous around the basin margin and are present in almost all locations where 6m/pixel resolution CTX images are available. These steps are at altitudes between -3108 m and -2620 m with a mean of -3000 m above the Mars datum and have a standard deviation of 68.7 metres. These properties suggest that the terraces could represent the palaeo-shorelines of a drained/evaporated standing body of water. A since drained standing body of water is consistent with the hypothesis that the channels and ridges are fluvial and inverted fluvial channels respectively.
Drainage areas of the Guyandotte River basin, West Virginia
Mathes, M.V.
1977-01-01
This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. Drainage areas are summed in a downstream direction to provide areas for main channel sites. The site or reference point of each basin can be located by stream miles measured upstream from the mouth of each stream, by county, by quadrangle, and by latitude and longitude.
Abundance and Morphological Effects of Large Woody Debris in Forested Basins of Southern Andes
NASA Astrophysics Data System (ADS)
Andreoli, A.; Comiti, F.; Lenzi, M. A.
2006-12-01
The Southern Andes mountain range represents an ideal location for studying large woody debris (LWD) in streams draining forested basins thanks to the presence of both pristine and managed woodland, and to the general low level of human alteration of stream corridors. However, no published investigations have been performed so far in such a large region. The investigated sites of this research are three basins (9-13 km2 drainage area, third-order channels) covered by Nothofagus forests: two of them are located in the Southern Chilean Andes (the Tres Arroyos in the Malalcahuello National Reserve and the Rio Toro within the Malleco Natural Reserve) and one basin lies in the Argentinean Tierra del Fuego (the Buena Esperanza basin, near the city of Ushuaia). Measured LWD were all wood pieces larger than 10 cm in diameter and 1 m in length, both in the active channel and in the adjacent active floodplain. Pieces forming log jams were all measured and the geometrical dimensions of jams were taken. Jam type was defined based on Abbe and Montgomery (2003) classification. Sediment stored behind log-steps and valley jams was evaluated approximating the sediment accumulated to a solid wedge whose geometrical dimensions were measured. Additional information relative to each LWD piece were recorded during the field survey: type (log, rootwad, log with rootwads attached), orientation to flow, origin (floated, bank erosion, landslide, natural mortality, harvest residuals) and position (log-step, in-channel, channel-bridging, channel margins, bankfull edge). In the Tres Arroyos, the average LWD volume stored within the bankfull channel is 710 m3 ha-1. The average number of pieces is 1,004 per hectare of bankfull channel area. Log-steps represent about 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1,600 m3 of sediment (assuming a porosity of 20%) is stored in the main channel behind LWD structures approximately, i.e. 1,000 m3 per km of channel length, corresponding to approximately 150% of the annual sediment yield. In the Rio Toro, the average LWD volume and number of elements stored are much less, respectively 117 m3 ha-1 and 215 pieces ha-1. Neither log-steps or valley jams were observed and the longitudinal profile appear not affected by LWD, and no sediment storage can be attributed to woody debris. The low LWD storage and impact in this channel is likely due to the general stability of its hillslopes, in contrast to the Tres Arroyos where extensive landslides and debris flows convey a great deal of wood into the stream. Finally, in the Buena Esperanza, the average LWD volume stored in the active channel is quite low (120 m3 ha-1, but the average number of pieces is the highest with 1,397 pieces ha-1. This is due to the smaller dimensions of LWD elements delivered by trees growing in a colder climate as that characterizing the Tierra del Fuego. The morphological influence of wood in this channel is however very important, with the presence of large valley jams and high log-steps imparting the channel a macro-scale stepped profile with a total energy dissipation due to LWD (log-steps and valley jams) of about 24 % of the stream potential energy. The sediment stored behind log-steps and valley jams results to be about 1,290 m3, i.e. 700 m3 km-1, but unfortunately no values of sediment yields are available for this basin.
Clow, David W.; Sueker, Julie K.
2000-01-01
Relations between stream water chemistry and topographic, vegetative, and geologic characteristics of basins were evaluated for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, to identify controlling parameters and to better understand processes governing patterns in stream water chemistry. Fractional amounts of steep slopes (≥30°), unvegetated terrain, and young surficial debris within each basin were positively correlated to each other. These terrain features, which commonly occur on steep valley side slopes underlain by talus, were negatively correlated with concentrations of base cations, silica, and alkalinity and were positively correlated with nitrate, acidity, and runoff. These relations might result from the short residence times of water and limited soil development in the talus environment, which limit chemical weathering and nitrogen uptake. Steep, unvegetated terrains also tend to promote high Ca/Na ratios in stream water, probably because physical weathering rates in those areas are high. Physical weathering exposes fresh bedrock that contains interstitial calcite, which weathers relatively quickly. The fractional amounts of subalpine meadow and, to a lesser extent, old surficial debris in the basins were positively correlated to concentrations of weathering products and were negatively correlated to nitrate and acidity. These relations may reflect more opportunities for silicate weathering and nitrogen uptake in the lower‐energy environments of the valley floor, where soils are finer‐grained, older, and better developed and slopes are relatively flat. These results indicate that in alpine/subalpine basins, slope, vegetation (or lack thereof), and distribution and age of surficial materials are interrelated and can have major effects on stream water chemistry.
NASA Astrophysics Data System (ADS)
Ranatunga, T.; Tong, S.; Yang, J.
2011-12-01
Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.
Estimating future flood frequency and magnitude in basins affected by glacier wastage.
DOT National Transportation Integrated Search
2015-03-01
We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...
Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams
Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen
2010-01-01
The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...
Mountaintop removal and valley filling (MTR/VF) is a method of coal mining used in the Central Appalachians. Regulations require that potential impacts to stream functions must be considered when determining the compensatory mitigation necessary for replacing aquatic resources un...
Kelly L. Balcarczyk; Jeremy B. Jones; Rudolf Jaffe; Nagamitsu Maie
2009-01-01
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. The stream draining the high permafrost watershed had higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOCDON and greater specific...
Clearcutting affects stream chemistry in the White Mountains of New Hampshire
C. Wayne Martin; Robert S. Pierce; Gene E. Likens; F. Herbert Bormann; F. Herbert Bormann
1986-01-01
Commercial clearcutting of northern hardwood forests changed the chemistry of the streams that drained from them. By the second year after cutting, specific conductance doubled, nitrate increased tenfold, calcium tripled, and sodium, magnesium, and potassium doubled. Chloride and ammonium did not change; sulfate decreased. Concentrations of most ions returned to...
Nitrate and herbicide loading in two groundwater basins of Illinois' sinkhole plain
Panno, S.V.; Kelly, W.R.
2004-01-01
This investigation was designed to estimate the mass loading of nitrate (NO3-) and herbicides in spring water discharging from groundwater basins in an agriculturally dominated, mantled karst terrain. The loading was normalized to land use and NO3- and herbicide losses were compared to estimated losses in other agricultural areas of the Midwestern USA. Our study area consisted of two large karst springs that drain two adjoining groundwater basins (total area of 37.7 km2) in southwestern Illinois' sinkhole plain, USA. The springs and stream that they form were monitored for almost 2 years. Nitrate-nitrogen (NO3-N) concentrations at three monitoring sites were almost always above the background concentration (1.9 mg/l). NO3-N concentrations at the two springs ranged from 1.08 to 6.08 with a median concentration of 3.61 mg/l. Atrazine and alachlor concentrations ranged from <0.01 to 34 ??g/l and <0.01 to 0.98 ??g/l, respectively, with median concentrations of 0.48 and 0.12 ??g/l, respectively. Approximately 100,000 kg/yr of NO3-N, 39 kg/yr of atrazine, and 2.8 kg/yr of alachlor were discharged from the two springs. Slightly more than half of the discharged NO3- came from background sources and most of the remainder probably came from fertilizer. This represents a 21-31% loss of fertilizer N from the groundwater basins. The pesticide losses were 3.8-5.8% of the applied atrazine, and 0.05-0.08% of the applied alachlor. The loss of atrazine adsorbed to the suspended solid fraction was about 2 kg/yr, only about 5% of the total mass of atrazine discharged from the springs. ?? 2004 Elsevier B.V. All rights reserved.
Climate Change and Adaptation Planning on the Los Angeles Aqueduct
NASA Astrophysics Data System (ADS)
Roy, S. B.; Bales, R. C.; Costa-Cabral, M. C.; Chen, L.; Maurer, E. P.; Miller, N. L.; Mills, W. B.
2009-12-01
This study provides an assessment of the potential impacts of climate change on the Eastern Sierra Nevada snowpack and snowmelt timing, using a combination of empirical (i.e., data-based) models, and computer simulation models forced by GCM-projected 21st century climatology (IPCC 2007 AR4 projections). Precipitation from the Eastern Sierra Nevada is one of the main water sources for Los Angeles' more than 4 million people - a source whose future availability is critical to the city's growing population and large economy. Precipitation in the region falls mostly in winter and is stored in the large natural reservoir that is the snowpack. Meltwater from the Eastern Sierra is delivered to the city by the 340-mile long Los Angeles Aqueducts. The analysis is focused on the nature of the impact to the LAA water supplies over the 21st century due to potential climate change, including volume of precipitation, the mix of snowfall and rainfall, shifts in the timing of runoff, interannual variability and multi-year droughts. These impacts further affect the adequacy of seasonal and annual carryover water storage, and potentially water treatment. Most of the snow in the 10,000 km^2 Mono-Owens basins that feed the LAA occurs in a relatively narrow, 10-20 km wide, high-elevation band on the steep slopes of 20 smaller basins whose streams drain into the Owens River and thence LAA. Extending over 240 km in the north-south direction, these basins present special challenges for estimating snowpack amounts and downscaling climate-model data. In addition, there are few meteorological stations and snow measurements in the snow-producing parts of the basins to drive physically based hydrologic modeling.
Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1988
Kalkhoff, Stephen J.
1989-01-01
During a baseflow seepage study, June 28 and 29, the discharge lost by streams in the basin was 5.57 cubic feet per second and the dissolved nitrogen load lost was 0.19 tons per day. The discharge and total dissolved nitrogen leaving the basin in streams was 2.93 cubic feet per second and 0.02 tons per day, respectively.
Katie Price; David S. Leigh
2006-01-01
For less-developed regions like the Blue Ridge Mountains. data are limited that link basin-scale land use with stream quality. Two pairs of lightly-impacted (90-100% forested) and moderately-impacted (7&80% forested) sub-basins of the upper Little Tennessee River basin in the southern Blue Ridge were identified for comparison. The pairs contain physically similar...
Moore, B.L.; Evaldi, R.D.
1995-01-01
Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.
HYDROLOGY OF CENTRAL GREAT BASIN MEADOW ECOSYSTEMS – EFFECTS OF STREAM INCISION
Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. Our interdisciplinary group has investigated 1) the interrelationships of geomorphology, hydrology, and vegetation; and 2) ...
NATURAL AND HUMAN FACTORS STRUCTURING FISH ASSEMBLAGES IN WEST VIRGINIA WADEABLE STREAMS
We surveyed fishes and environmental variables in 119 stream basins to identify natural and anthropogenic factors structuring fish assemblages. We collected fishes and physico-chemical variables using standardized EPA methods and compiled basin characteristics (e.g., land cover)...
NASA Astrophysics Data System (ADS)
Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.
2011-12-01
There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.
Degefu, Mekonnen Adnew; Bewket, Woldeamlak
2017-04-01
This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.
The size distribution of organic carbon in headwater streams in the Amazon basin.
de Paula, Joana D'Arc; Luizão, Flávio Jesus; Piedade, Maria Teresa Fernandez
2016-06-01
Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha(-1) month(-1). In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p = 0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.
Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan
NASA Astrophysics Data System (ADS)
Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori
2015-04-01
Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.
Hardiman, Jill M.; Mesa, Matthew G.
2013-01-01
Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2°C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5%. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.
Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements
Simmons, Clyde E.; Aldridge, Mary C.
1980-01-01
Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.
Kent, Robert; Belitz, Kenneth; Altmann, Andrea J.; Wright, Michael T.; Mendez, Gregory O.
2005-01-01
A study of the occurrence and distribution of pesticide compounds in surface water of the highly urbanized Santa Ana Basin, California, was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program (NAWQA). One-hundred and forty-eight samples were collected from 23 sites, and analyzed for pesticide compounds during the study period from November 1998 to September 2001. Sixty-six different pesticide compounds were detected at varying frequencies and concentrations, and one or more pesticides were detected in 92 percent of the samples. All pesticide concentrations were below maximum levels permitted in drinking water. However, two compounds-diazinon and diuron-exceeded nonenforceable drinking water health-advisory levels in at least one stream sample, and five compounds exceeded guidelines to protect aquatic life-carbaryl, chlorpyrifos, diazinon, lindane, and malathion. Twenty-two pesticide compounds were detected in at least 25 percent of the samples collected from any one fixed site. These are identified as 'major' pesticide compounds and are emphasized in this report. The degree to which pesticides were used in the basin, as well as their physical-chemical properties, are important explanatory factors in stream pesticide occurrence, and most pesticides probably enter streams with urban runoff. Stormflow substantially increases urban runoff, and storm effects on stream pesticide concentrations sometimes persist for several days or weeks after the storm. Water sources other than urban runoff also deliver pesticide compounds to surface water in the basin. For example, atrazine may enter streams in gaining reaches where ground water carries high loads as a result of historical use in the basin. Also, the data suggest that lindane, and perhaps bromacil, are present in treated wastewater, the predominant source of water to streams in the Santa Ana Basin.
Regionalization of low-flow characteristics of Tennessee streams
Bingham, R.H.
1986-01-01
Procedures for estimating 3-day 2-year, 3-day 10-year, 3-day 20-year, and 7-day 10-year low flows at ungaged stream sites in Tennessee are based on surface geology and drainage area size. One set of equations applies to west Tennessee streams, and another set applies to central and east Tennessee streams. The equations do not apply to streams where flow is significantly altered by activities of man. Standard errors of estimate of equations for west Tennessee are 24 to 32% and for central and east Tennessee 31 to 35%. Streamflow recession indexes, in days/log cycle, are used to account for effects of geology of the drainage basin on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that sustain streamflows during periods of no surface runoff. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)
Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.
2014-01-01
A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the benefit of hydrological, soil erosion, and coarser ecological modeling. Reach attributes are summarized for each segment. In six subbasins segments are assigned additional attributes about barriers (usually impoundments) to fish migration and stream isolation. Segments in the six sub-basins are also attributed with percent urban area for the watershed upstream from the stream segment for each decade from 2010–2100 from models of urban growth. On a broader scale, for application in a coarse-scale species-response model, the stream-network information is aggregated and summarized by 256 drainage subbasins (Hydrologic Response Units) used for watershed hydrologic and stream-temperature models. A model of soil erodibility based on the Revised Universal Soil Loss Equation also was developed at this scale to parameterize a model to evaluate stream condition. The reach-scale network was classified using multivariate clustering based on modeled channel width, valley width, and mean reach gradient as variables. The resulting classification consists of a 6-cluster and a 12-cluster classification for every reach in the Apalachicola-Chattahoochee-Flint Basin. We present an example of the utility of the classification that was tested using the occurrence of two species of darters and two species of minnows in the Apalachicola-Chattahoochee-Flint River Basin, the blackbanded darter and Halloween darter, and the bluestripe shiner and blacktail shiner.
NASA Astrophysics Data System (ADS)
Vaute, L.; Drogue, C.; Garrelly, L.; Ghelfenstein, M.
1997-12-01
Study of the movement of chemical compounds naturally present in the water, or which result from pollution, are examined according to the reservoir structure in karstic aquifers. Structure is represented by a simple geometrical model; slow flow takes place in blocks with a network of low-permeability cracks. The blocks are separated by highly permeable karstic conduits that allow rapid flow, and these form the aquifer drainage system. The karst studied covers 110 km 2. It is fed by an interrupted stream draining a 35 km 2 non-karstic basin, contaminated at the entry to the karst by effluents from a sewage treatment station. The underground water reappears as a resurgence with an annual average flow of approximately 1 m 3 s -1, after an apparent underground course of 8 km in the karst. Several local sources of pollution (effluent from septic tanks) contaminate the underground water during its course. Sixteen measurement operations were performed at 12 water points, between the interrupted stream and the spring. Some sampling points were at drains, and others were in the low-permeability fissured blocks. Comparison at each point of the concentrations of 14 chemical compounds gave the following results: when pollutant discharge occurs in a permeable zone, movement is rapid in the drainage network formed by the karstic conduits, and does not reach the less permeable fissured blocks which are thus protected; however, if discharge is in a low-permeability zone, the flow does not allow rapid movement of the polluted water, and this increases the pollutant concentration at the discharge. This simple pattern can be upset by a reversal of the apparent piezometric gradient between a block and a conduit during floods or pumping; this may reverse flow directions and hence modify the movement of contaminants. The study made it possible to site five boreholes whose positions in the karstic structure were unknown, showing the interest of such an approach for the forecasting of the impact of potential pollution.
Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth
2008-01-01
This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well-suited for spatial comparisons. The detrended, or normalized, estimates of load are useful for regional-scale assessments but should be used with caution for local-scale interpretations, for which use of loads estimated for actual time periods and employing more detailed regression analysis is suggested. The mean value of the nitrogen yield estimates, normalized to 2002, for 637 stations in the SAGT area is 4.7 kilograms per hectare; the mean value of nitrogen flow-weighted mean concentration is 1.2 milligrams per liter. The mean value of the phosphorus yield estimates, normalized to 2002, for the 747 stations in the SAGT area is 0.66 kilogram per hectare; the mean value of phosphorus flow-weighted mean concentration is 0.17 milligram per liter. Nutrient conditions measured in streams affected by substantial influx or outflux of water and nutrient mass across surface-water basin divides do not reflect nutrient source and transport conditions in the topographic watershed; therefore, inclusion of such streams in the SPARROW modeling approach is considered inappropriate. River basins identified with this concern include south Florida (where surface-water flow paths have been extensively altered) and the Oklawaha, Crystal, Lower Sante Fe, Lower Suwanee, St. Marks, and Chipola River basins in central and northern Florida (where flow exchange with the underlying regional aquifer may represent substantial nitrogen influx to and outflux from the surface-water basins).
Stream carbon dynamics in low-gradient headwaters of a forested watershed
April Bryant-Mason; Y. Jun Xu; Johnny M. Grace
2013-01-01
Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...
Michael K. Stone; J. Bruce Wallace
1998-01-01
Summary1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher,...
Randall, Allan D.; Freehafer, Douglas A.
2017-08-02
A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations use natural values of streamflow and watershed properties; logarithmic transformations yielded less accurate equations inconsistent with some conceptualized relationships.
Urbanization effects on fishes and habitat quality in a southern Piedmont river basin
Walters, D.M.; Freeman, Mary C.; Leigh, D.S.; Freeman, B.J.; Pringle, C.P.; Brown, Larry R.; Gray, Robert H.; Hughes, Robert H.; Meador, Michael
2005-01-01
We quantified the relationships among urban land cover, fishes, and habitat quality to determine how fish assemblages respond to urbanization and if a habitat index can be used as an indirect measure of urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient (5?37% urban land cover) in the Etowah River basin, Georgia. Fish assemblages, sampled by electrofishing standardized stream reaches, were assessed using species richness, density, and species composition metrics. Habitat quality was scored using the Rapid Habitat Assessment Protocol (RHAP) of the U.S. Environmental Protection Agency. Urban land cover (including total, high-, and low-density urban) was estimated for the drainage basin above each reach. A previous study of these sites indicated that stream slope and basin area were strongly related to local variation in assemblage structure. We used multiple linear regression (MLR) analysis to account for this variation and isolate the urban effect on fishes. The MLR models indicated that urbanization lowered species richness and density and led to predictable changes in species composition. Darters and sculpin, cyprinids, and endemics declined along the urban gradient whereas centrarchids persisted and became the dominant group. The RHAP was not a suitable indicator of urban effects because RHAP-urban relationships were confounded by an overriding influence of stream slope on RHAP scores, and urban-related changes in fish assemblage structure preceded gross changes in stream habitat quality. Regression analysis indicated that urban effects on fishes accrue rapidly (<10 years) and are detectable at low levels (~5?10% urbanization). We predict that the decline of endemics and other species will continue and centrarchid-dominated streams will become more common as development proceeds within the Etowah basin.
NASA Astrophysics Data System (ADS)
Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.
2016-12-01
In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.
Gendaszek, Andrew S.
2014-01-01
A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater-flow model of the SF Nooksack River Basin that may be used to investigate the potential effects of future climate change, land use, and groundwater pumping on water resources in the study area. Site-specific hydrologic data, including time series of longitudinal temperature profiles measured with a fiber-optic distributed temperature sensor and continuous monitoring of stream stage and water levels measured in wells in adjacent wetlands and aquifers, also were measured to characterize the interaction among the SF Nooksack River, surficial aquifers, and riparian wetlands.
Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores
Smith, Lesley K.; Voytek, M.A.; Böhlke, J.K.; Harvey, J.W.
2006-01-01
Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3--rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N 2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer ( 15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 lmol N??m -2??h-1 in Sugar Creek and from 0 to 1300 ??mol N??m-2??h-1 in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 ??mol/L during low discharge to 1000 ??mol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO 3-. Denitrification in Sugar Creek removed ???11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low during high flow. ?? 2006 by the Ecological Society of America.
Obtaining Streamflow Statistics for Massachusetts Streams on the World Wide Web
Ries, Kernell G.; Steeves, Peter A.; Freeman, Aleda; Singh, Raj
2000-01-01
A World Wide Web application has been developed to make it easy to obtain streamflow statistics for user-selected locations on Massachusetts streams. The Web application, named STREAMSTATS (available at http://water.usgs.gov/osw/streamstats/massachusetts.html ), can provide peak-flow frequency, low-flow frequency, and flow-duration statistics for most streams in Massachusetts. These statistics describe the magnitude (how much), frequency (how often), and duration (how long) of flow in a stream. The U.S. Geological Survey (USGS) has published streamflow statistics, such as the 100-year peak flow, the 7-day, 10-year low flow, and flow-duration statistics, for its data-collection stations in numerous reports. Federal, State, and local agencies need these statistics to plan and manage use of water resources and to regulate activities in and around streams. Engineering and environmental consulting firms, utilities, industry, and others use the statistics to design and operate water-supply systems, hydropower facilities, industrial facilities, wastewater treatment facilities, and roads, bridges, and other structures. Until now, streamflow statistics for data-collection stations have often been difficult to obtain because they are scattered among many reports, some of which are not readily available to the public. In addition, streamflow statistics are often needed for locations where no data are available. STREAMSTATS helps solve these problems. STREAMSTATS was developed jointly by the USGS and MassGIS, the State Geographic Information Systems (GIS) agency, in cooperation with the Massachusetts Departments of Environmental Management and Environmental Protection. The application consists of three major components: (1) a user interface that displays maps and allows users to select stream locations for which they want streamflow statistics (fig. 1), (2) a data base of previously published streamflow statistics and descriptive information for 725 USGS data-collection stations, and (3) an automated procedure that determines characteristics of the land-surface area (basin) that drains to the stream and inserts those characteristics into equations that estimate the streamflow statistics. Each of these components is described and guidance for using STREAMSTATS is provided below.
Burns, Douglas A.; Boyer, E.W.; Elliott, E.M.; Kendall, C.
2009-01-01
Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO3-) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO3- to determine the dominant sources and processes that affect NO3- concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO3- concentrations, ?? 15NNO3, and ??18ONO3. Samples from two forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three ??18ONO3 values greater than +25???, indicating a large direct contribution of atmospheric NO 3- transported to the stream during some high flows. Two watersheds with large proportions of agricultural land use had many ??15NNO3 values greater than +9???, suggesting an animal waste source consistent with regional dairy farming practices. These data showed a linear seasonal pattern with a ??18O NO3:??15NNO3 of 1:2, consistent with seasonally varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest annual streamflow. The large range of ?? 15NNO3 values (10???) indicates that NO 3- supply was likely not limiting the rate of denitrification, consistent with ground water and/or in-stream denitrification. Mixing of two or more distinct sources may have affected the seasonal isotope patterns observed in these two agricultural streams. In a mixed land use watershed of large drainage area, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at watersheds of a few to a few hundred km2 may be necessary to adequately quantify the relative roles of various NO 3- transport and process patterns that contribute to streamflow in large basins. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferraccioli, Fausto; Armadillo, Egidio; Young, Duncan; Blankenship, Donald; Jordan, Tom; Siegert, Martin
2017-04-01
The Wilkes Subglacial Basin extends for 1,400 km into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet. The deep northern Wilkes Subglacial Basin underlies the catchments of the Matusevich, Cook, Ninnis and Mertz Glaciers, which are largely marine-based and hence potentially particularly sensitive to past and also predicted future ocean and climate warming. Sediment provenance studies suggest that the glaciers flowing in this region may have retreated significantly compared to their modern configuration, as recently as the warm mid-Pliocene interval, potentially contributing several m to global sea level rise (Cook et al.,Nature Geosci., 2013). Here we combine airborne radar, aeromagnetic and airborne gravity observations collected during the international WISE-ISODYN and ICECAP aerogeophysical campaigns with vintage datasets to help unveil subglacial geology and deeper crustal architecture and to assess its influence on bedrock topography and ice sheet dynamics in the northern Wilkes Subglacial Basin. Aeromagnetic images reveal that the Matusevich Glacier is underlain by a ca 480 Ma thrust fault system (the Exiles Thrust), which has also been inferred to have been reactivated in response to intraplate Cenozoic strike-slip faulting. Further to the west, the linear Eastern Basins are controlled by the Prince Albert Fault System. The fault system continues to the south, where it provides structural controls for both the Priestley and Reeves Glaciers. The inland Central Basins continue in the coastal area underlying the fast flowing Cook ice streams, implying that potential ocean-induced changes could propagate further into the interior of the ice sheet. We propose based on an analogy with the Rennick Graben that these deep subglacial basins are controlled by the underlying horst and graben crustal architecture. Given the interpreted subglacial distribution of Beacon sediments and Ferrar tholeiites and uplifted Ross-age basement blocks, we propose that these grabens were reactivated in post-Jurassic times, as observed from geological studies in the Rennick Graben. A remarkable contrast in long-wavelength magnetic anomaly signatures is observed over the coastal and inland segments of the Cook ice stream glacial catchment. We attribute this, to the presence of several km thick early Cambrian to late Neoproterozoic(?) sedimentary basins in the coastal region, in contrast to a prominent Proterozoic basement high at the onset of fast glacial flow further inland. This suggests that there could also be a marked difference in geothermal heat flux at the base of the ice sheet in these two regions, which may in turn exert influences on basal melting and subglacial hydrology networks. Further west, the deep Western Basins provide key topographic controls on the Ninnis Glacier, which is interpreted here, as controlled by a major Paleoproterozoic crustal boundary, separating an inferred linear Archean crustal ribbon from Paleoproterozoic rift basins, which are partially exposed along the coastal segment of the Terre Adelie Craton. The ca 1.7 Ga Mertz Shear Zone flanks the Mertz Glacier, and is interpreted here as a fault splay associated with this major crustal boundary.