Sample records for streams draining catchments

  1. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments

    Treesearch

    Matt R. Whiles; J. Bruce Wallace

    1997-01-01

    Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...

  2. USE OF MACROINVERTEBRATE METRICS TO DIFFERENTIATE BETWEEN THE EFFECTS OF DECREASED CANOPY AND INCREASED EMBEDDEDNESS IN STREAMS IN DRAINING AGRICULTURAL CATCHMENTS

    EPA Science Inventory

    Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...

  3. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were statistically un-mixed using FR2000, an uncertainty-inclusive algorithm, and combined with sediment yield data. Results showed sediment contributions from channel, field and road groups were 70%, 25% and 5% in the poorly-drained catchment, 59%, 22% and 19% in the well-drained catchment, and 17%, 74% and 9% in the moderately-drained catchment. Higher channel contributions in the poorly-drained catchment were attributed to bank erosion accelerated by the rapid diversion of surface runoff into channels, facilitated by surface and sub-surface artificial drainage networks, and bank seepage from lateral pressure gradients due to confined groundwater. Despite the greatest proportion of arable soils in the well-drained catchment, this source was frequently hydrologically disconnected as well-drained soils largely infiltrated rainfall and prevented surface soil erosion. Periods of high and intense rainfall were associated with greater proportions of field losses in the well-drained catchment likely due to infiltration exceeding the saturated hydraulic conductivity of soils and establishment of surface hydrological connectivity. Losses from field topsoils dominated in the moderately-drained catchment as antecedent soil wetness maintained surface flow pathways and coincided with low groundcover on arable soils. For cost-effective management of sediment pressures to aquatic ecosystems, catchment specific variations in sediment sources must be considered.

  4. CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS

    EPA Science Inventory

    The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...

  5. DOM in stream water and soil solution in two small, bordering catchments in central Sweden

    NASA Astrophysics Data System (ADS)

    Norström, Sara H.; Bylund, Dan

    2013-04-01

    Seasonal variations in dissolved organic matter (DOM) and the influence of wood ash application on DOM were studied in two first order streams draining two small, bordering forested catchments. The catchments, 40 and 50 h respectively, were situated in Bispgården (63°07N, 16°70E), central Sweden with forest consisting of mainly 50 to 80 year-old Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Seasonal variations in the stream water were measured during 2003-2007, and wood ash was applied in one of the catchments in the fall of 2004. In addition to stream water samples, sampling of soil solution in the riparian zone was made in one of the catchments during 2003-2006. The quantity of DOM differed between the streams, but the seasonal patterns for the two streams were correlated during 2003 and 2004. After wood ash treatment, dissolved organic carbon (DOC) increased significantly in the stream draining the treated catchment. 17 different low molecular mass organic acids (LMMOAs) were measured in the stream water during the whole study period. The most abundant LMMOAs were oxalic- and lactic acid, of which peak concentrations of oxalic acid coincided with those of DOC, while no such relation between the concentrations of DOC and lactic acid could be seen in either of the streams. Some of the most common acids in the soil solution, shikimic acid, citric acid and malic acid were rarely found in the stream water and only then in very low concentrations, thus appearing not to have made the transition from soil to stream water in the same manner as oxalic acid. The wood ash application did not affect the total LMMOA concentration and there was no difference during the investigated period. Of the 17 analysed LMMOAs, only malonic acid appeared affected by wood ash application, with a significant increase during both 2005 and 2006.

  6. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  7. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fluvial dissolved organic carbon composition varies spatially and seasonally in a small catchment draining a wind farm and felled forestry.

    PubMed

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2018-06-01

    Assessing whether land use, from activities such as wind farm construction and tree-felling, impacts on terrestrial C delivery to rivers has focused on quantifying the loss of dissolved organic carbon (DOC), and not the composition changes. Here we explore how land use influences DOC composition by considering fluvial DOC concentration, [DOC], and spectrophotometric composition of a river draining a peat-rich catchment. We find that in this 5.7km 2 catchment differences occur in both the concentration and composition of the DOC in its sub-catchments. This is attributed to differences in how land was used: one tributary (D-WF) drains an area with wind farm construction and forestry in the headwaters, and one tributary (D-FF) drains an area with felled plantation trees. Generally, [DOC] in both streams showed similar seasonal variation, and autumn maxima. However, the felled catchment had greater mean [DOC] than the wind farm catchment. The SUVA 254 and E 4 /E 6 indicated DOC in both streams had similar aromaticity and fulvic:humic acid for most of the time, but SUVA 410 and E 2 /E 4 indicated less DOC humification in the felled catchment. This may be due to young DOC from the breakdown of residual branches and roots, or more humification in soils in the wind farm area. During the dry months, DOC composition showed more spatial variation: the D-WF DOC had smaller SUVA 254 (less total aromatic material) and SUVA 410 (fewer humic substances). The decreased E 2 /E 4 in both streams indicated the total aromatic carbon decreased more than humic substances content. Moreover, the larger E 4 /E 6 for D-WF in summer indicated that the humic substances were richer in fulvic acids than humic acids. Soil disturbance associated with forestry-felling likely contributed to the higher [DOC] and release of less-humified material in D-FF. This research indicates drivers of different DOC concentration and composition can exist even in small catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. User-inspired Research Quantifies How Floodplain Restoration Paired With Cover Crops Reduces Nutrient Export From an Agricultural Catchment Translating to Conservation Success in the Midwestern Cornbelt.

    NASA Astrophysics Data System (ADS)

    Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Mahl, U. H.; Royer, T. V.

    2017-12-01

    The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter agricultural streams, which degrades both local and downstream water quality. We are quantifying the nutrient reduction benefits of two conservation practices implemented at the catchment scale. In partnership with The Nature Conservancy, in a small Indiana catchment, we have quantified how 600m of floodplain restoration (i.e., a two-stage ditch) increased nitrate-N removal via denitrification and reduced sediment export, but impacts on stream nutrient concentrations were negligible due to very high catchment loading relative to the short implementation reach. Requests from state and federal partners led to development and parameterization of a new two-stage ditch module in the SWAT model to determine the potential catchment-scale benefits when implementation lengths were extended. More recently, in partnership with state SWCD managers, we have added a landscape practice to quantify how winter cover crops reduce nutrient loss from fields, sampling year-round nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel. Nitrate-N and dissolved P fluxes were significantly lower in tiles draining fields with cover crops compared to those without. At the urging of farmers and federal NRCS partners, we also linked tile drain nutrient reductions to changes in soil chemistry. Both soil nitrate-N and dissolved P were lower in cover cropped fields, and we found significant correlations between soil and tile drain nutrients, which may encourage future adoption of the conservation practice as soil health benefits appeal to farmers. As biogeochemists, this research has provided valuable insights on how floodplains and land cover change can alter patterns of catchment-scale nutrient export. The translation of successful soil and water quality outcomes through this significant regional demonstration project make it a potentially powerful agent of change for advancing conservation success.

  10. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-07-01

    During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel) for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes such as overland and macropore flow reduce the influence of the herbicide's chemical properties on transport due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These observations on the role of herbicide properties contradict previous findings to some degree. Furthermore, they demonstrate that valuable insight can be gained by making spatially detailed observations along the flow paths.

  11. The impact of urbanization on subsurface flow paths - A paired-catchment isotopic study

    NASA Astrophysics Data System (ADS)

    Bonneau, Jeremie; Burns, Matthew J.; Fletcher, Tim D.; Witt, Roman; Drysdale, Russell N.; Costelloe, Justin F.

    2018-06-01

    Urbanization disturbs groundwater flow through the sealing of native soils with impervious surfaces and through modifications to the subsoil by constructed drainage and other infrastructure (trenches and excavations, e.g. water supply). The impact of these disturbances on groundwater contributions to urban streams (i.e. baseflow) is poorly understood. While high flows caused by impervious runoff to streams are a common focus of urban studies, the route taken by groundwater to become streamflow in urban landscapes is not generally considered. To assess the impact of urbanization on groundwater sources to streams, both rainfall and baseflow were sampled weekly for stable isotopes of water in two nearby streams-one draining a peri-urban catchment and the other draining a forested, natural catchment. In addition, to study the rate of groundwater discharge to the stream, monthly baseflow recession behavior was investigated. We found that baseflow in the forested catchment was constant in stable isotope values (δ18O = -5.73‰ ± 0.14‰) throughout the year. Monthly baseflow recession constants were close to 1 and had little variation (ranging 0.951-0.992), indicating a well-mixed groundwater store and long residence times. In contrast, the urban baseflow isotopic composition featured distinct seasonal variations (δ18O = -3.35‰ ± 1.20‰ from October to March and δ18O = -4.54‰ ± 0.43‰ from April to September) and high week-to-week variability in summer, reflecting a contribution of recent rainfall to baseflow. Recession constants were lower (ranging 0.727-0.955) with pronounced seasonal variations, suggesting shorter residence times and the likely presence of a variety of stores and pathways. These results provide evidence that the urban catchment has diversified groundwater pathways, and its groundwater storage is drained faster than that of the forested catchment. It highlights some of the subsurface hydrological consequences of urbanization. Restoring low-flow aspects of the flow regime through nature-mimicking stormwater management requires careful consideration of how the behavior of natural groundwater pathways can be restored or replicated using innovative stormwater control measures.

  12. The nitrate response of a lowland catchment and groundwater travel times

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface water network.

  13. Streams in the urban heat island: spatial and temporal variability in temperature

    USGS Publications Warehouse

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization, and stream thermal regimes.

  14. Microbial Enzyme Activity, Nutrient Uptake, and Nutrient Limitation in Forested Streams

    EPA Science Inventory

    We measured NH4 + and PO4 -3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm enzyme activity (BEA), and channel geomorphology in streams draining forested catchments in the Northwestern (Northern California Coast Range and Cascade Mountains) and Southeastern (A...

  15. Partitioning Hydrologic and Biological Drivers of Discharge Loss in Arctic Headwater Streams

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Carey, M.; O'Donnell, J. A.; Records, M. K.; Sjoberg, Y.; Zimmerman, C. E.

    2017-12-01

    The Arctic-Boreal transition (ABT) zone of Alaska is experiencing unprecedented warming, leading to permafrost thaw and vegetation change. Both of these processes are likely to affect streams and stream ecosystems, but there is little direct empirical evidence regarding the magnitude of these effects and their relative importance. To understand how permafrost thaw and vegetation are affecting streams at the ABT, we monitored 8 first-order streams that drain catchments varying in elevation, aspect, and vegetation cover. Data were obtained from meteorological stations, continuous stream discharge, seepage runs, and stream tracer experiments. Hydrograph analysis indicated that runoff ratios in south-facing catchments were lower than north-facing catchments and decreased over the season. Seepage runs indicated that south-facing catchments lost a large portion of water (up to 50% per km stream reach) in the late summer, while north-facing catchments were gaining water. All streams displayed diel variability in discharge, but with different daily and seasonal trends related to aspect and elevation. South-facing, forested catchment streams showed diel discharge timing consistent with cycles in evapotranspiration rates, while the signal in north-facing catchments and those dominated by tundra was more consistent with thermal controls on water viscosity and groundwater discharge to streams. Together, these signals indicate that the warmer, south-facing catchments are losing a large portion of water to a combination of infiltration and evapotranspiration. The seasonal trends are consistent with higher infiltration rates beneath south-facing streams as the ground thaws over the summer. The magnitude and seasonal dynamics of the diel signatures help separate biological (i.e. evapotranspiration) vs. physical controls (i.e. frozen ground hydrology) on stream-catchment interactions, which vary depending on aspect, elevation, and vegetation cover. Warming, and subsequent increases in infiltration and evapotranspiration rates may cause some south-facing streams to become ephemeral in the near future. This infiltration feeds aquifers and ultimately larger rivers, potentially explaining hydrograph shifts observed on the larger, river scale in permafrost environments.

  16. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently confirming the robust cross-validation of these results. Average annual SSCs and SSYs were higher in poorly drained catchments (17-27 t km-2 yr-1) than those with well drained soils (8-10 t km-2 yr-1). Catchments with both poorly-drained soils and land use dominated by tillage were most susceptible to field-scale soil erosion due to rapid establishment of overland flow pathways and periods of bare soils during cropping cycles. However results suggest that relatively high SSY may also occur in grassland catchments, particularly on poorly drained soils and with higher stocking densities and greater likelihood of channel bank erosion. Whilst the mean SSY rates are low by international standards, inter-annual variability was significant highlighting the spatial and temporal fluctuations in runoff and soil erosion risk. Such issues are of particular concern as Ireland pursues an agricultural policy of sustainable intensification. Effective soil erosion and sediment management should address catchment specific characteristics.

  17. Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment.

    PubMed

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2018-01-01

    A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Is the blocking of drainage channels in upland peats an effective means of reducing DOC loss at the catchment scale?

    NASA Astrophysics Data System (ADS)

    Turner, Kate; Worrall, Fred

    2010-05-01

    Only 3% of the earths land surface is covered by peatland yet boreal and subarctic peatlands store approximately 15-30% of the World's soil carbon as peat (Limpens et al. 2008). In comparison British bogs store carbon equivalent to 20 years worth of national emissions. The loss of carbon from these areas in the form of dissolved organic carbon (DOC) is increasing and it is expected to have grown by up to 40% by 2018. Extensive drainage of UK peatlands has been associated with dehydration of the peat, an increase in water colour and a loss of carbon storage. It has been considered that the blocking of these drainage channels represents a means of peat restoration and a way of reducing DOC loss. This study aims to assess the effectiveness of this drain blocking at both an individual drain scale and at a larger catchment scale. Gibson et al. (2009) considered the effects of blocking at a solely individual drain scale finding that a 20% drop in DOC export was recorded post blocking however this decrease was due to a reduction in water yield rather than a reduction in DOC concentration with the concentration record showing no significant reduction. The effect of external parameters become more pronounced as the DOC record is examined at larger scales. The catchment is an open system and water chemistry will be influence by mixing with water from other sources. Also it is likely that at some point the drains will cut across slope leading to the flow of any highly coloured water down slope, bypassing the blockages, and entering the surface waters downstream. Degradation of DOC will occur naturally downstream due to the effects of light and microbial activity. There is, consequently, a need to examine the wider effects of drain blocking at a catchment scale to ensure that what is observed for one drain transfers to the whole catchment. A series of blocked and unblocked catchments were studied in Upper Teesdale, Northern England. Drain water samples were taken at least daily at nine localities. These sites were located such that individual drains could be monitored in the context of a larger catchment. Water table depth, flow and weather parameters were recorded along with the collection of runoff and soil water samples. A detailed sampling programme was undertaken in which a series of drains were studied in the 12 months prior to and post blocking. This approach has allowed the effects of blocking on the carbon budget, water balance and flow pathways to be considered. Results indicate that the blocking of zero order drainage channels leads to a decrease in DOC export on an individual drain scale. However, this is due to a reduction in water yield rather than concentration. Concentrations are seen to rise by a small yet statistically significant amount in blocked zero order streams. The effect at a larger scale is more complex. Annual export values in the unblocked control catchment show a rise from zero to first order streams indicating that water is being added to the system at this scale from external spatially variable sources. This pattern is also recognised in the blocked catchment. The DOC concentration record in blocked drains at this larger scale however indicated a reduction relative to the unblocked catchment. This reduction points to a change in flow pathways post blocking as highly coloured water re-navigates its way downstream. References: Gibson H, Worrall F, Burt TP, Adamson JK (2009) DOC budgets of drained peat catchments: implications for DOC production in peat soils, Hydrological Processes 23(13) 1901-1911 Limpens J (2008) Peatlands and the carbon cycle: from local processes to global implications- a synthesis, Biogeosciences 5 1475-1491

  19. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Treesearch

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  20. Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment

    Treesearch

    Scott W. Bailey; Patricia A. Brousseau; Kevin J. McGuire; Donald S. Ross

    2014-01-01

    Upland headwater catchments, such as those in the AppalachianMountain region, are typified by coarse textured soils, flashy hydrologic response, and low baseflow of streams, suggesting well drained soils and minimal groundwater storage. Model formulations of soil genesis, nutrient cycling, critical loads and rainfall/runoff response are typically based on vertical...

  1. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  2. Long-term recovery of a Mountain Stream from Clearcut Logging: The Effects of Forest Succession on Benthic Invertebrate Community Structure

    Treesearch

    Michael K. Stone; J. Bruce Wallace

    1998-01-01

    Summary1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher,...

  3. Acid neutralization capacity measurements in surface and ground waters in the Upper River Severn, Plynlimon: from hydrograph splitting to water flow pathways

    NASA Astrophysics Data System (ADS)

    Neal, C.; Hill, T.; Hill, S.; Reynolds, B.

    Acid Neutralization Capacity (ANC) data for ephemeral stream and shallow groundwater for the catchments of the upper River Severn show a highly heterogeneous system of within-catchment water flow pathways and chemical weathering on scales of less than 100m. Ephemeral streams draining permeable soils seem to be supplied mainly from shallow groundwater sources. For these streams, large systematic differences in pH and alkalinity occur due to the variability of the groundwater sources and variability in water residence times. However, the variability cannot be gauged on the basis of broad based physical information collected in the field as geology, catchment gradients and forest structure are very similar. In contrast, ephemeral streams draining impermeable soils are of more uniform chemistry as surface runoff is mainly supplied from the soil zone. Groundwater ANC varies considerably over space and time. In general, the groundwaters have higher ANCs than the ephemeral streams. This is due to increased chemical weathering from the inorganic materials in the lower soils and groundwater areas and possibly longer residence times. However, during the winter months the groundwater ANCs tend to be at their lowest due to additional event driven acidic soil water contributions and intermediate groundwater residence times. The results indicate the inappropriateness of a blanket approach to classifying stream vulnerability to acidification simply on the basis of soil sensitivity. However, the results may well indicate good news for the environmental management of acidic and acid sensitive systems. For example, they clearly indicate a large potential supply of weathering components within the groundwater zone to reduce or mitigate the acidifying effects of land use change and acidic deposition without the environmental needs for Aiming. Furthermore, the high variability of ephemeral stream runoff means that certain areas of catchments where there are specific problems associated with acidification can be identified for focused remediation work for the situation where liming is required. The case for focused field campaigns and caution against over reliance on blanket modelling approaches is suggested. The results negate the conventional generalizations within hydrology of how water moves through catchments to generate streamflow events (from Hortonian overland flow to catchment contributing areas).

  4. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-02-01

    During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel) with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and catch basins for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes like overland and macropore flow reduce the influence of herbicide properties due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These two observations on the role of herbicide properties contradict, to some degrees, previous findings. They demonstrate that valuable insight can be gained by spatially detailed observations along the flow paths.

  5. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    PubMed

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  6. Runoff generation through ephemeral streams in south-east Italy

    NASA Astrophysics Data System (ADS)

    Doglioni, A.; Simeone, V.; Giustolisi, O.

    2012-04-01

    Ephemeral streams are morphological elements, typical of karst areas, characterized by relatively large and flat bottom transects (Camarasa & Tilford, 2002). These occasionally drain runoff generated by extreme rainfall events, characterized by high return periods. The activation of these streams was investigated by several authors for the Mediterranean regions, and in particular for south Spain and north Africa (Camarasa & Segura, 2001; De Vera, 1984). However, there are few analyses for karst areas of south-east of Italy (Cotecchia, 2006; Polemio, 2010). South-east of Italy, in particular the central part of Apulia, is characterized by a karst morphology, with a moderately elevated plateau, namely Murgia, which is drained by a network of ephemeral streams. These are normally dry, relatively short-length and straights, and their main outlets are on the coast. They normally drain water after extraordinary rainfall events, which can generate very high discharges, which can potentially flood the areas close to the streams. For this reason, the definition of an activation threshold for ephemeral streams is a paramount problem, even if this constitutes a complex problem, since the dynamics of the catchment drained by these streams in highly non-linear and biased by multiple variables (e.g. urbanization, land use, etc.). The main problem affecting the analysis and prediction of flood events in karst semi-arid regions is the almost complete absence of discharge time-series, measured at the outlets of the ephemeral streams. This prevents from the identification of accurate statistics of flood events and on the determination of rainfall events, which may potentially generate floods. Indeed, floods and in general flash floods are relatively rare events for semi-arid karst regions, however they can be really severe and disruptive, causing serious damages to people and infrastructures. This work presents an analysis of the ephemeral stream activation in karst semi-arid areas, in a partially urbanized catchment located in Apulia (south east of Italy). The analysis is based on full 2D simulation of the behaviour of a network of ephemeral streams. A full 2D approach integrates the hydrological and hydraulic models, in order to account first for the dynamic of catchment response to rainfall and activation of the streams, and then for the hydraulic behaviour of the streams. This analysis entails the simulation of extreme events corresponding to low, medium and high return periods, in order to identify which event presumably activate the ephemeral streams. Camarasa, A.M. and Tilford, K.A. (2002). "Rainfall-runoff modelling of ephemeral streams in the Valencia region (eastern Spain)". Hydrological Processes, 16: 3329-3344. Camarasa Belmonte, A.M, and Segura Beltran, F. (2001). "Flood events in Mediterranean ephemeral stream (ramblas) in Valencia Region, Spain". Catena, 45: 229-249. Cotecchia, V. (2006). "Il disordine idraulico evidenziato in Bari dall'evento pluviometrico dell'Ottobre 2005 e il caso dell' ex cava di Maso". Continuità - Rassegna Tecnica Pugliese, 1-2.2006: 25-76. De Vera M. (1984). "Rainfall-Runoff relationship of some catchments with karstic geomorphology under arid to semi-arid conditions". Journal of Hydrology, 68(1-4): 85-93. Polemio, M., (2010). "Historical floods and a recent extreme rainfall event in the Murgia karstic environment (Southern Italy)". Zeitschrift für Geomorphologie, 54(2): 195-219.

  7. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  8. Characterising and classifying agricultural drainage channels for sediment and phosphorus management

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice

    2016-04-01

    In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were over-engineered, which likely reduces downstream P transfer. Streams had the greatest potential to convey fine sediment and associated P during event flows. Optimising these linear features for eutrophication management in headwaters, periodic removal of fine sediment and maintenance of channel vegetation in net attenuating and transferring channels, respectively, would help to minimise sediment and P transfers from these catchments.

  9. Effect of Land Use, Seasonality, and Hydrometeorological Conditions on the K+ Concentration-Discharge Relationship During Different Types of Floods in Carpathian Foothills Catchments (Poland).

    PubMed

    Siwek, Joanna P; Żelazny, Mirosław; Siwek, Janusz; Szymański, Wojciech

    2017-01-01

    The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K + ) concentration and discharge during different types of floods-short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K + concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K + out of the soil in the summer. In the stream draining woodland catchment, higher K + concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K + hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K + in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.

  10. Thermal Fluxes and Temperatures in Small Urban Headwater Streams of the BES LTER: Landscape Forest and Impervious Patches and the Importance of Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.

    2006-05-01

    Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.

  11. C, N, P export regimes from headwater catchments to downstream reaches

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  12. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  13. High frequency Analysis of Stream Chemistry to Establish Elemental Cycling Regimes of High latitude Catchments

    DTIC Science & Technology

    2017-02-13

    NUMBER 6. AUTHOR(S) Tamara Harms 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME... ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Strategic Environmental... organic matter, temperature, turbidity, conductivity, and optical properties of organic matter were deployed in two streams draining the US Army’s

  14. Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient

    DOE PAGES

    Harms, Tamara K.; Edmonds, Jennifer W.; Genet, Hélène; ...

    2016-01-10

    Spatial patterns in carbon (C) and nitrogen (N) cycles of high-latitude catchments have been linked to climate and permafrost and used to infer potential changes in biogeochemical cycles under climate warming. However, inconsistent spatial patterns across regions indicate that factors in addition to permafrost and regional climate may shape responses of C and N cycles to climate change. In this paper, we hypothesized that physical attributes of catchments modify responses of C and N cycles to climate and permafrost. We measured dissolved organic C (DOC) and nitrate (NO 3 ¯) concentrations, and composition of dissolved organic matter (DOM) in 21more » streams spanning boreal to arctic Alaska, and assessed permafrost, topography, and attributes of soils and vegetation as predictors of stream chemistry. Multiple regression analyses indicated that catchment slope is a primary driver, with lower DOC and higher NO 3 ¯ concentration in streams draining steeper catchments, respectively. Depth of the active layer explained additional variation in concentration of DOC and NO 3 ¯. Vegetation type explained regional variation in concentration and composition of DOM, which was characterized by optical methods. Composition of DOM was further correlated with attributes of soils, including moisture, temperature, and thickness of the organic layer. Finally, regional patterns of DOC and NO 3 ¯ concentrations in boreal to arctic Alaska were driven primarily by catchment topography and modified by permafrost, whereas composition of DOM was driven by attributes of soils and vegetation, suggesting that predicting changes to C and N cycling from permafrost-influenced regions should consider catchment setting in addition to dynamics of climate and permafrost.« less

  15. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters

    NASA Astrophysics Data System (ADS)

    Kronvang, Brian; Jeppesen, Erik; Conley, Daniel J.; Søndergaard, Martin; Larsen, Søren E.; Ovesen, Niels B.; Carstensen, Jacob

    2005-03-01

    The Danish National Aquatic Monitoring and Assessment Programme (NOVA) was launched in 1988 following the adoption of the first Danish Action Plan on the Aquatic Environment in 1987 with the aim to reduce by 50% the nitrogen (N) loading and by 80% the phosphorus (P) loading to the aquatic environment. The 14 years of experience gathered from NOVA have shown that discharges of total N (TN) and P (TP) from point sources to the Danish Aquatic Environment have been reduced by 69% (N) and 82% (P) during the period 1989 2002. Consequently, the P concentration has decreased markedly in most Danish lakes and estuaries. Considerable changes in agricultural practice have resulted in a reduction of the net N-surplus from 136 to 88 kg N ha-1 yr-1 (41%) and the net P-surplus from 19 to 11 kg P ha-1 yr-1 (42%) during the period 1985 2002. Despite these efforts Danish agriculture is today the major source of both N (>80%) and P (>50%) in Danish streams, lakes and coastal waters. A non-parametric statistical trend analysis of TN concentrations in streams draining dominantly agricultural catchments has shown a significant (p<0.05) downward trend in 48 streams with the downward trend being stronger in loamy compared to sandy catchments, and more pronounced with increasing dominance of agricultural exploitation in the catchments. In contrast, a statistical trend analysis of TP concentrations in streams draining agricultural catchments did not reveal any significant trends. The large reduction in nutrient loading from point and non-point sources has in general improved the ecological conditions of Danish lakes in the form of increased summer Secchi depth, decreased chlorophyll a and reduced phytoplankton biomass. Major changes have also occurred in the fish communities in lakes, with positive cascading effects on water quality. In Danish estuaries and coastal waters only a few significant improvements in the ecological quality have been observed, although it is expected that the observed reduced nutrient concentrations are likely to improve the ecological quality of estuaries and coastal waters in Denmark in the long term.

  16. Test of a simplified modeling approach for nitrogen transfer in agricultural subsurface-drained catchments

    NASA Astrophysics Data System (ADS)

    Henine, Hocine; Julien, Tournebize; Jaan, Pärn; Ülo, Mander

    2017-04-01

    In agricultural areas, nitrogen (N) pollution load to surface waters depends on land use, agricultural practices, harvested N output, as well as the hydrology and climate of the catchment. Most of N transfer models need to use large complex data sets, which are generally difficult to collect at larger scale (>km2). The main objective of this study is to carry out a hydrological and a geochemistry modeling by using a simplified data set (land use/crop, fertilizer input, N losses from plots). The modelling approach was tested in the subsurface-drained Orgeval catchment (Paris Basin, France) based on following assumptions: Subsurface tile drains are considered as a giant lysimeter system. N concentration in drain outlets is representative for agricultural practices upstream. Analysis of observed N load (90% of total N) shows 62% of export during the winter. We considered prewinter nitrate (NO3) pool (PWNP) in soils at the beginning of hydrological drainage season as a driving factor for N losses. PWNP results from the part of NO3 not used by crops or the mineralization part of organic matter during the preceding summer and autumn. Considering these assumptions, we used PWNP as simplified input data for the modelling of N transport. Thus, NO3 losses are mainly influenced by the denitrification capacity of soils and stream water. The well-known HYPE model was used to perform water and N losses modelling. The hydrological simulation was calibrated with the observation data at different sub-catchments. We performed a hydrograph separation validated on the thermal and isotopic tracer studies and the general knowledge of the behavior of Orgeval catchment. Our results show a good correlation between the model and the observations (a Nash-Sutcliffe coefficient of 0.75 for water discharge and 0.7 for N flux). Likewise, comparison of calibrated PWNP values with the results from a field survey (annual PWNP campaign) showed significant positive correlation. One can conclude that the simplified modeling approach using PWNP as a driving factor for the evaluation of N losses from drained agricultural catchments gave satisfactory results and we can propose this approach for a wider use.

  17. Decoupling of stream and vegetation solutes during the late stages of weathering: insights from elemental and Mg isotope trends at the Luquillo Critical Zone Observatory, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Chapela Lara, M.; Schuessler, J. A.; Buss, H. L.; McDowell, W. H.

    2017-12-01

    During the evolution of the critical zone, the predominant source of nutrients to the vegetation changes from bedrock weathering to atmospheric inputs and biological recycling. In parallel, the architecture of the critical zone changes with time, promoting a change in water flow regime from near-surface porous flow during early weathering stages to more complex flow regimes modulated by clay-rich regolith during the late stages of weathering. As a consequence of these two concurrent processes, we can expect the predominant sources and pathways of solutes to the streams to also change during critical zone evolution. If this is true, we would observe a decoupling between the solutes used by the vegetation and those that determine the composition of the streams during the late stages of weathering, represented by geomorphically stable tropical settings. To test these hypotheses, we are analyzing the elemental and Mg isotopic composition of regolith and streams at the humid tropical Luquillo Critical Zone Observatory. We aim to trace the relative contributions of the surficial, biologically mediated pathways and the deeper, weathering controlled nutrient pathways. We also investigate the role of lithology on the solute decoupling between the vegetation and the stream, by examining two similar headwater catchments draining two different bedrocks (andesitic volcaniclastic and granitic). Our preliminary elemental and Mg isotope results are consistent with atmospheric inputs in the upper 2 m of regolith in both lithologies and with bedrock weathering at depth. During a short storm event ( 6 h), a headwater stream draining volcaniclastic bedrock showed a large variation in Mg and δ26Mg, correlated with total suspended solids, while another similar headwater granitic stream showed a much narrower variation. A larger stream draining volcaniclastic bedrock showed changes in Mg concentration in response to rain during the same storm event, but did not change in δ26Mg, suggesting the surficial-deep decoupling of solutes we observe in regolith profiles and headwater catchments might be overwhelmed by storage effects at increasing water residence times.

  18. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  19. Stream Mercury Export in Response to Contemporary Timber Harvesting Methods (Pacific Coastal Mountains, Oregon, USA).

    PubMed

    Eckley, Chris S; Eagles-Smith, Collin; Tate, Michael T; Kowalski, Brandon; Danehy, Robert; Johnson, Sherri L; Krabbenhoft, David P

    2018-02-20

    Land-use activities can alter hydrological and biogeochemical processes that can affect the fate, transformation, and transport of mercury (Hg). Previous studies in boreal forests have shown that forestry operations can have profound but variable effects on Hg export and methylmercury (MeHg) formation. The Pacific Northwest is an important timber producing region that receives large atmospheric Hg loads, but the impact of forest harvesting on Hg mobilization has not been directly studied and was the focus of our investigation. Stream discharge was measured continuously, and Hg and MeHg concentrations were measured monthly for 1.5 years following logging in three paired harvested and unharvested (control) catchments. There was no significant difference in particulate-bound Hg concentrations or loads in the harvested and unharvested catchments which may have resulted from forestry practices aimed at minimizing erosion. However, the harvested catchments had significantly higher discharge (32%), filtered Hg concentrations (28%), filtered Hg loads (80%), and dissolved organic carbon (DOC) loads (40%) compared to forested catchments. MeHg concentrations were low (mostly <0.05 ng L -1 ) in harvested, unharvested, and downstream samples due to well-drained/unsaturated soil conditions and steep slopes with high energy eroding stream channels that were not conducive to the development of anoxic conditions that support methylation. These results have important implications for the role forestry operations have in affecting catchment retention and export of Hg pollution.

  20. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    USDA-ARS?s Scientific Manuscript database

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  1. Water quality and streamflow in the Caribou-Poker Creeks Research Watershed, central Alaska, 1978.

    Treesearch

    Jerry W. Hilgert; Charles W. Slaughter

    1983-01-01

    Baseline data from 1978 are presented on precipitation, streamflow, and chemical and biological water quality in a subarctic, taiga watershed. First-, second-, and third-order streams that drain undisturbed catchments embracing permafrost-underlain and permafrost-free landscapes were monitored; results are being used in analysis of the natural, undisturbed condition of...

  2. Water quality and streamflow in the Caribou-Poker Creeks Research Watershed, central Alaska, 1979.

    Treesearch

    Jerry W. Hilgert; Charles W. Slaughter

    1987-01-01

    Baseline data from 1979 are presented on precipitation, streamflow, occurrence of permafrost, and physical and chemical water quality in a subarctic, tiaga watershed. First- to third-order streams drain catchments embracing permafrost-underlain and permafrost-free landscapes in the undisturbed research watershed. The data are compared to those from a fourth-order...

  3. Geostatistical methods in the assessment of the spatial variability of the quality of river water

    NASA Astrophysics Data System (ADS)

    Krasowska, Małgorzata; Banaszuk, Piotr

    2017-11-01

    The research was conducted in the agricultural catchment in north-eastern Poland. The aim of this study was to check how geostatistical analysis can be useful for the detection zones and forms of supply stream by water from different sources. The work was included the implementation of hydrochemical profiles. These profiles were made by measuring the electrical conductivity (EC) values and temperature along the river. On the basis of these results, the authors calculated the coefficient of Moran I and performed semivariogram and found that the EC values are correlated on a stretch of about 140 m. This means that the spatial correlation between samples of water in the stream is readable over a distance of about 140 meters. Therefore it is believed that the degree of water mineralization on this section is shaped by water entering the river channel migration in different ways: through tributaries, leachate drainage and surface runoff. In the case of the analyzed catchment, the potential sources of pollution were drainage systems. Therefore, the spatial analysis allowed the identification pollution sources in a catchment, especially in drained agricultural catchments.

  4. Using hydrochemical tracers to conceptualise hydrological function in a larger scale catchment draining contrasting geologic provinces

    NASA Astrophysics Data System (ADS)

    Capell, R.; Tetzlaff, D.; Malcolm, I. A.; Hartley, A. J.; Soulsby, C.

    2011-09-01

    SummaryA year-long multivariate tracer study in the 749 km 2 catchment of the North-Esk in north east Scotland was carried out to infer the dominant runoff generation processes in two markedly different geologic provinces. The upper 60% of the catchment has montane headwaters dominated by impermeable metamorphic rocks, steep topography, peaty soils and a sub-arctic climate with over 1400 mm of precipitation. The lowlands of the catchment are underlain by a major sandstone aquifer, and mainly have freely draining, fertile soils that support intensive arable farming under a drier climate with around 800 mm of precipitation. Storm runoff in the uplands is dominated by near-surface processes in soils and sedimentary layers which generate around 60% of annual stream flows with water of low alkalinity and ionic strength. In contrast, tributaries in the lower parts of the catchment are dominated by groundwater-fed base flows which account for 75% of annual runoff and are characterised by alkaline waters with high concentrations of base cations and high levels of nitrate. Multivariate statistical methods were used to derive a generic typology of catchment source waters, their spatial and temporal dynamics and particularly, how they integrate together at the larger catchment scale. The uplands dominate the winter high flow response of the whole catchment. The influence of lowland groundwater from major aquifers becomes more apparent under low flows. However, groundwater from small upland aquifers plays a critical role for ecosystem service in dry periods providing baseflows which dilute pollutant inputs from lowland areas at the large catchment scale.

  5. Development and validation of a runoff and erosion model for lowland drained catchments

    NASA Astrophysics Data System (ADS)

    Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier

    2017-04-01

    Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.

  6. Monitoring and modeling of runoff from a natural and an urbanized part of a small stream catchment

    NASA Astrophysics Data System (ADS)

    Kalicz, P.; Kucsara, M.; Gribovszki, Z.; Erős, M.; Csáfordi, P.

    2012-04-01

    Runoff processes in natural catchments are significantly different compared to urbanized areas. Human impacts are manifested in high amount of paved surfaces like roofs, roads, parking plots and the compacted soils of quasi natural areas like public gardens and parks. Decay of permeability and storage capacity both induce higher amount of runoff. The common practice to treat the increased volume of runoff is to collect in pipes and drain to a stream as soon as possible. These interventions induce flash floods with smaller time of concentration and higher flood peaks as normal food waves therefore strongly load discharge capacity of stream channel. Streams in urban areas are strongly modified and regulated. Sometimes the stream channel are dredged out to increase the discharge capacity. In worst case some smaller brooks are crowded with lid to increase urbanized habitat. Many climate change scenarios predict higher probability of heavy storm events, therefore increasing volume of runoff induces higher demands of strongly modified and enormous concrete channels. This study presents one year monitoring of a small stream comparing runoff from natural, rural and urban sections. In this paper we also introduce the process of a model setup and an evaluation to investigate the weak points of a stream section in urbanized areas. The pilot area of this research is the Rák Brook which is the second largest stream of city Sopron (western Hungary). The natural headwater catchment is long-term research area of Hidegvíz Valley Project, therefore we had a good basis to extend the research catchment monitoring in the direction of urbanized lower part of the stream. Seven monitoring points are established along the longitudinal section of the stream. In each point the water stage is recorded continuously beside several other water quality parameters. These data sets help the later validation of the hydrodynamic model.

  7. USE OF TRACER INJECTION EXPERIMENTS TO QUANTIFY NITRATE LOSS IN TWO ADJACENT WETLAND STREAMS DRAINING AN AGRICULTURAL FIELD IN THE GEORGIA PIEDMONT

    EPA Science Inventory

    This study investigated the extent to which nitrate was removed from and/or stored in a small wetland depression downgradient of a 10-ha cattle rotational grazing pasture and a 2.5-ha cropped catchment at the USDA-ARS J. Phil Campbell Sr. Natural Resource Conservation Center in W...

  8. Effects of suburban development on runoff generation in the Croton River basin, New York, USA

    USGS Publications Warehouse

    Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.

    2005-01-01

    The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.

  9. Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill Mountains, U.S.A.

    USGS Publications Warehouse

    Ashby, J.A.; Bowden, W.B.; Murdoch, Peter S.

    1998-01-01

    Denitrification in riparian soils is thought to be an important factor that reduces hydrologic export of nitrate from forested and agricultural catchments. A 2-y study to identify the soil factors most closely associated with denitrification in riparian soils in headwater catchments within the Catskill Mountains of New York, included field surveys of surface and subsurface denitrification rates, and an amendment experiment to assess the relative effects of increases in available carbon and substrate NO-/3 on denitrification rates. Denitrification rates were measured by acetylene inhibition during incubation of intact soil cores from eight soil types representing a range of drainage classes. Soil cores were analyzed for organic matter, total P, extractable NO-/3-N and NH+/4-N, organic N, pH, moisture, porosity, and water-filled pore space, to determine which of these factors were most closely associated with denitrification. The distribution of denitrification rates found during the field surveys was highly skewed, with many low or zero values and few high values. Denitrification rates were positively associated with high soil organic matter, total P, and water-filled pore space, and were highest in seep (poorly-drained) soils, toeslope (seasonally-drained) soils, and stream-edge (poorly- to moderately well-drained) soils in which these three soil characteristics were typically high. Denitrification rates in these wet locations were also positively associated with soil NH+/4-N concentration and pH, but not with NO-/3-N concentration, suggesting that the rate of NO-/3 supply (via nitrification or hydrologic transport) was more important than the instantaneous concentration of NO-/3-N in the soils. The amendment experiment indicated that denitrification in soil types studied was most responsive to added glucose alone or with NO-/3. Thus, in these soils, a combination of slow rates of NO-/3 supply and low available carbon appears to limit denitrification. Annual denitrification rates in spring-fed soils (0.74 to 1.43 kg N ha-1 y-1) were up to 5 times greater than in other surface soils, yet these soils accounted for only 1.8% of the catchment's N loss through denitrification because they represent less than 3% of the catchment area. Dry upland soils constituted 71% of the catchment area and accounted for 91% of the catchment's N loss through denitrification. Annual denitrification in the catchment equaled about 65% of stream NO-/3-N and NH+/4-N export and 14% of precipitation NO-/3-N and NH+/4-N inputs. Denitrification appears to be important relative to N input and export in these Catskill catchments.

  10. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  11. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Conrad, Marcus; Aizinger, Vadym; Prechtel, Alexander; van Geldern, Robert; Barth, Johannes A. C.

    2018-05-01

    A large portion of terrestrially derived carbon outgasses as carbon dioxide (CO2) from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams is highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e. 0.93 petagrams (Pg) C yr-1) of total CO2 outgassing from all fluvial ecosystems on the globe. In this study, stream pCO2, dissolved inorganic carbon (DIC), and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlířská catchment (Czech Republic). This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle that the 13C / 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k), which is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed more than 80 % to the annual stream inorganic carbon loss in the Uhlířská catchment. This translated to a CO2 outgassing rate from the stream of 34.9 kg C m-2 yr-1 when normalised to the stream surface area. Large temporal variations with maximum values shortly before spring snowmelt and in summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.

  12. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables automatic delineation of a simulation basin of any size (area) and having any level of stream-network complexity. WATER then automatically identifies the presence of sinkholes catchments within the simulation basin boundaries; extracts and compiles the necessary climatic, topographic, and basin characteristics datasets; and runs the SDP-TOPMODEL approach to estimate daily mean discharges (streamflow).

  13. Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage.

    PubMed

    Sunohara, M D; Gottschall, N; Wilkes, G; Craiovan, E; Topp, E; Que, Z; Seidou, O; Frey, S K; Lapen, D R

    2015-09-01

    Controlled tile drainage (CTD) regulates water and nutrient export from tile drainage systems. Observations of the effects of CTD imposed en masse at watershed scales are needed to determine the effect on downstream receptors. A paired-watershed approach was used to evaluate the effect of field-to-field CTD at the watershed scale on fluxes and flow-weighted mean concentrations (FWMCs) of N and P during multiple growing seasons. One watershed (467-ha catchment area) was under CTD management (treatment [CTD] watershed); the other (250-ha catchment area) had freely draining or uncontrolled tile drainage (UCTD) (reference [UCTD] watershed). The paired agricultural watersheds are located in eastern Ontario, Canada. Analysis of covariance and paired tests were used to assess daily fluxes and FWMCs during a calibration period when CTD intervention on the treatment watershed was minimal (2005-2006, when only 4-10% of the tile-drained area was under CTD) and a treatment period when the treatment (CTD) watershed had prolific CTD intervention (2007-2011 when 82% of tile drained fields were controlled, occupying >70% of catchment area). Significant linear regression slope changes assessed using ANCOVA ( ≤ 0.1) for daily fluxes from upstream and downstream monitoring sites pooled by calibration and treatment period were -0.06 and -0.20 (stream water) (negative values represent flux declines in CTD watershed), -0.59 and -0.77 (NH-N), -0.14 and -0.15 (NO-N), -1.77 and -2.10 (dissolved reactive P), and -0.28 and 0.45 (total P). Total P results for one site comparison contrasted with other findings likely due to unknown in-stream processes affecting total P loading, not efficacy of CTD. The FWMC results were mixed and inconclusive but suggest physical abatement by CTD is the means by which nutrient fluxes are predominantly reduced at these scales. Overall, our study results indicate that CTD is an effective practice for reducing watershed scale fluxes of stream water, N, and P during the growing season. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    PubMed

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Factors controlling stream water nitrate and phosphor loads during precipitation events

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; van der Velde, Y.; van Geer, F. G.; de Rooij, G. H.; Broers, H. P.; Bierkens, M. F. P.

    2009-04-01

    Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Fro regional surface water quality monitoring, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because natural surface water quality variability is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous N and P records of stream water to variations in precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment continuous measurements of precipitation, groundwater levels and tube drain discharges were collected. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis was used to identify relations between the continuous N and P records and characteristics of the dynamics of discharge, precipitation, groundwater level and tube drain discharge. From this study, we conclude that generally available and easy to measure explanatory data (such as continuous records of discharge, precipitation and groundwater level) can reduce uncertainty in estimations of N and P loads and mean concentrations. However, for capturing the observed short load pulses of P, continuous or discharge proportional sampling is needed.

  16. Curve number derivation for watersheds draining two headwater streams in lower coastal plain South Carolina, USA

    Treesearch

    Thomas H. Epps; Daniel R. Hitchcock; Anand D. Jayakaran; Drake R. Loflin; Thomas M. Williams; Devendra M. Amatya

    2013-01-01

    The objective of this study was to assess curve number (CN) values derived for two forested headwater catchments in the Lower Coastal Plain (LCP) of South Carolina using a three-year period of storm event rainfall and runoff data in comparison with results obtained from CN method calculations. Derived CNs from rainfall/runoff pairs ranged from 46 to 90 for the Upper...

  17. The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Collins, Robert; Jenkins, Alan

    1996-11-01

    The chemistry of streams draining agricultural and forested catchments in the Middle Hills of Nepal is described. Differences between mean streamwater chemistry are attributable to the effects of the terraced agriculture and land management practices. The agricultural catchments were found to exhibit higher mean concentrations of base cations (Na, Mg, K), bicarbonate, acid anions (SO 4, Cl), metals (Al, Fe) and nutrients (NO 3, PO 4). Increased base cations apparently result from tillage practices exposing fresh soil material to weathering. Increased acid anions result from inputs of inorganic fertiliser, notably ammonium sulphate, and from an apparent increase in evapotranspiration from the flooded terraces in the agricultural catchments. Increased metal concentrations may be promoted by increased weathering and erosion rates, and this is further supported by observations of dramatically higher turbidity in the streamwater draining the agricultural catchments. Higher levels of nutrients are the direct result of fertiliser input but concentrations are generally low from all catchments as a result of denitrification, indicating that eutrophication downstream is not a likely consequence of land use change. The major dynamics of water chemistry occur during the monsoon, which is also the main season for agricultural production. Mean wet season concentrations of base cations tend to be lower than in the dry season at all catchments as higher flow dilutes the relatively constant weathering input. Ammonium concentrations are higher from the agricultural catchments in the wet season as a result of direct washout of fertiliser. Detailed monitoring through storm periods at one agricultural catchment indicates that the chemistry responds very rapidly to changing flow, with cations decreasing and acid anions increasing followed by equally rapid recovery as flow recedes. Bicarbonate concentrations also decline markedly but are still sufficiently high to maintain pH near neutral throughout the storm event. The impacts of agricultural land use on streamwater chemistry are unlikely to lead to potentially damaging consequences for the aquatic biota at present or in the short-term future. The potential for acidity generation as a result of the high loads of nitrogenous fertilisers applied is apparently buffered by the land tillage practices, which promote higher weathering and so higher concentrations of base cations.

  18. Stable isotope analysis of energy dynamics in aquatic ecosystems suggests trophic shifts following severe wildfire

    NASA Astrophysics Data System (ADS)

    Martens, A. M.; Silins, U.; Bladon, K. D.; Williams, C.; Wagner, M. J.; Luchkow, E.

    2015-12-01

    Wildfire alters landscapes and can have significant impacts on stream ecosystems. The 2003 Lost Creek wildfire was one of the most severe on Alberta's eastern rocky mountain slopes, resulting in elevated sediment production and nutrient (phosphorus, nitrogen, and carbon) export in impacted streams. These resulted in increased algal productivity and macroinvertebrate abundance and diversity, and as a result, fish in watersheds draining wildfire affected catchments were larger than those in the same age class from reference (unburned) watersheds. In the present investigation, stable isotope analysis of C and N was utilized to evaluate ecosystem energy dynamics and describe trophic relationships in those watersheds. Aquatic invertebrates from burned catchments showed enrichment in δ13C and δ15N relative to algae suggesting a reliance on algae (autochthony) as a primary source of energy. Invertebrates from unburned systems were depleted in δ13C relative to algae indicating reliance on allochthonous or terrestrial primary energy sources. Preliminary analysis of δ15N in macroinvertebrates showed slight enrichment in burned catchments suggesting a trophic shift. More comprehensive macroinvertebrate sampling and identification has been conducted; isotopic analysis will provide greater resolution of how specific families within feeding guilds have been affected by wildfire. This will provide more robust insights into how wildfires may impact stream ecology in mountain environments.

  19. Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments.

    PubMed

    McAleer, E B; Coxon, C E; Richards, K G; Jahangir, M M R; Grant, J; Mellander, Per E

    2017-05-15

    At the catchment scale, a complex mosaic of environmental, hydrogeological and physicochemical characteristics combine to regulate the distribution of groundwater and stream nitrate (NO 3 - ). The efficiency of NO 3 - removal (via denitrification) versus the ratio of accumulated reaction products, dinitrogen (excess N 2 ) & nitrous oxide (N 2 O), remains poorly understood. Groundwater was investigated in two well drained agricultural catchments (10km 2 ) in Ireland with contrasting subsurface lithologies (sandstone vs. slate) and landuse. Denitrification capacity was assessed by measuring concentration and distribution patterns of nitrogen (N) species, aquifer hydrogeochemistry, stable isotope signatures and aquifer hydraulic properties. A hierarchy of scale whereby physical factors including agronomy, water table elevation and permeability determined the hydrogeochemical signature of the aquifers was observed. This hydrogeochemical signature acted as the dominant control on denitrification reaction progress. High permeability, aerobic conditions and a lack of bacterial energy sources in the slate catchment resulted in low denitrification reaction progress (0-32%), high NO 3 - and comparatively low N 2 O emission factors (EF 5g 1). In the sandstone catchment denitrification progress ranged from 4 to 94% and was highly dependent on permeability, water table elevation, dissolved oxygen concentration solid phase bacterial energy sources. Denitrification of NO 3 - to N 2 occurred in anaerobic conditions, while at intermediate dissolved oxygen; N 2 O was the dominant reaction product. EF 5g 1 (mean: 0.0018) in the denitrifying sandstone catchment was 32% less than the IPCC default. The denitrification observations across catchments were supported by stable isotope signatures. Stream NO 3 - occurrence was 32% lower in the sandstone catchment even though N loading was substantially higher than the slate catchment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A nested observation and model approach to non linear groundwater surface water interactions.

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential of nested-scale, high frequency observations. The distributed hydrological model results will be used to show transient catchment scale relations between groundwater levels and discharges. These analyses lead to a simple expression that can describe catchment scale groundwater surface water interactions.

  1. Erosion Processes of Streambed in the Channelized River Draining Into the Kushiro Mire, Hokkaido, Northern Japan

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Yoshida, K.; Kojima, Y.; Araya, T.

    2004-12-01

    In Japan, the wetlands have shrunk markedly since 1950s due to land-use development from wetland to urban and agricultural land. Rapid sedimentation in the Kushiro Mire, Hokkaido, northern Japan, was caused by extensive land-use development and stream channel rationalization during the 1960s and 1970s. In the Kuchoro River catchment, draining into the Kushiro Mire, the meandering stream was channelized in the mid- and downstream associated with land-use development between 1966 and 1980. Prominent degradation of a streambed due to channelization has occurred over 2 km in the midstream since channelization was finished. Bare slope has occurred due to streambed degradation, and produced fine sediment through the freeze-thaw process in late fall season. Following snowmelt and/or typhoon flood events in spring and summer season could transport fine sediment on the bare slope into the wetland. During a flood event, stream flow eroded the streambed laterally and vertically, resulting in the overhang of riverbank and the dropping down the clods into the stream. These erosion processes has occurred and produced the sediment of 7500 m3/year in average between 2000 and 2003. The upstream portion of a channelized reach is often degraded because of high flow velocities associated with a steeper streambed. On the other hand, the annual sediment production on the streamside bare slopes in the mountain area was measured by erosion pins and estimated as 4500 m3/year. Thus, the reach of streambed degradation is considered a major point-source of suspended sediment in the Kuchoro River catchment for the past 20 years, leading to the recent rapid sedimentation in the marginal area of the wetland.

  2. Temporal changes in photoreactivity of dissolved organic carbon and implications for aquatic carbon fluxes from peatlands

    NASA Astrophysics Data System (ADS)

    Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.

    2017-04-01

    Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.

  3. Topographic effects on flow path and surface water chemistry of the Llyn Brianne catchments in Wales

    USGS Publications Warehouse

    Wolock, D.M.; Hornberger, G.M.; Musgrove, T.J.

    1990-01-01

    Topographic shape is a watershed attribute thought to influence the flow path followed by water as it traverses a catchment. Flow path, in turn, may affect the chemical composition of surface waters. Topography is quantified in the hydrological model TOPMODEL as the relative frequency distribution of the index ln( a tanB), where a is the upslope area per unit contour that drains past a point and tanB is the local surface slope. Spatial distributions of ln( a tanB) were calculated for eight catchments in Wales on a 25 m ?? 25 m grid. Among the catchments, mean observed stream H+ concentration during high flow periods was highly correlated with the mean of the ln( a tanB) distribution. The steady-state gain of a transfer function (time series) model relating H+ to discharge was positively correlated with the mean of the ln( a tanB) distribution. These results suggest that during high flow periods, both the average stream acidity and the magnitude of fluctuations in H+ are conditioned by the topographic shape of the catchment. By performing a sensitivity analysis on TOPMODEL, we also show that as the mean of the ln( a tanB) distribution for a catchment increases, so does its theoretical likelihood to produce significant quantities of surface and near-surface runoff. Our observed results in the Llyn Brianne catchments are consistent with this theoretical expectation in that surface or near-surface runoff is often higher in acidity than are deeper sources of hillslope runoff. ?? 1990.

  4. Contrasting Patterns of Fine Fluvial Sediment Delivery in Two Adjacent Upland Catchments

    NASA Astrophysics Data System (ADS)

    Perks, M.; Bracken, L.; Warburton, J.

    2010-12-01

    Quantifying patterns of fine suspended sediment transfer in UK upland rivers is of vital importance in combating the damaging effects of elevated fluxes of suspended sediment, and sediment associated transport of contaminants, on in-stream biota. In many catchments of the UK there is still a lack of catchment-wide understanding of both the spatial patterns and temporal variation in fine sediment delivery. This poster describes the spatial and temporal distribution of in-stream fine sediment delivery from a network of 44 time-integrated mass flux samplers (TIMs) in two adjacent upland catchments. The two catchments are the Esk (210 km2) and Upper Derwent (236 km2) which drain the North York Moors National Park. Annual suspended sediment loads in the Upper Derwent are 1273 t, whereas in the Esk catchment they are greater at 1778 t. Maximum yields of 22 t km-2 yr -1 were measured in the headwater tributaries of the Rye River (Derwent), whereas peak yields in the Esk are four times greater (98 t km-2 yr-1) on the Butter Beck subcatchment. Analysis of the within-storm sediment dynamics, indicates that the sediment sources within the Upper Derwent catchment are from distal locations possibly mobilised by hillslope runoff processes, whereas in the Esk, sediment sources are more proximal to the channel e.g. within channel stores or bank failures. These estimates of suspended sediment flux are compared with the diffuse pollution potential generated by a risk-based model of sediment transfer (SCIMAP) in order to assess the similarity between the model predictions and observed fluxes.

  5. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    USGS Publications Warehouse

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the GHG balance of wetland systems.

  6. An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport

    USGS Publications Warehouse

    Stieglitz, M.; Shaman, J.; McNamara, J.; Engel, V.; Shanley, J.; Kling, G.W.

    2003-01-01

    Hydrologic processes control much of the export of organic matter and nutrients from the land surface. It is the variability of these hydrologic processes that produces variable patterns of nutrient transport in both space and time. In this paper, we explore how hydrologic "connectivity" potentially affects nutrient transport. Hydrologic connectivity is defined as the condition by which disparate regions on the hillslope are linked via subsurface water flow. We present simulations that suggest that for much of the year, water draining through a catchment is spatially isolated. Only rarely, during storm and snowmelt events when antecedent soil moisture is high, do our simulations suggest that mid-slope saturation (or near saturation) occurs and that a catchment connects from ridge to valley. Observations during snowmelt at a small headwater catchment in Idaho are consistent with these model simulations. During early season discharge episodes, in which the mid-slope soil column is not saturated, the electrical conductivity in the stream remains low, reflecting a restricted, local (lower slope) source of stream water and the continued isolation of upper and mid-slope soil water and nutrients from the stream system. Increased streamflow and higher stream water electrical conductivity, presumably reflecting the release of water from the upper reaches of the catchment, are simultaneously observed when the mid-slope becomes sufficiently wet. This study provides preliminary evidence that the seasonal timing of hydrologic connectivity may affect a range of ecological processes, including downslope nutrient transport, C/N cycling, and biological productivity along the toposequence. A better elucidation of hydrologic connectivity will be necessary for understanding local processes as well as material export from land to water at regional and global scales. Copyright 2003 by the American Geophysical Union.

  7. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly contribute to storm runoff as well as sustain base flows. Water from steeper hillslopes appears to primarily recharge valley bottom aquifers. Fluxes from the drift aquifers into the stream bed were investigated using hydrometric and tracer techniques. Groundwater fluxes through the stream bed appear to be relatively localized relating to geological boundaries or changes in drift characteristics. How- ever, these fluxes are also controlled by morphological features in the river channel which exert a strong control on localized groundwater U surface water interactions. 1 If catchment hydrology is to contribute to a functional understanding of freshwater ecosystems it is argued that integrated tracer studies, at different scales and incorpo- rating both observations from field work and modelling applications, have a key role to play. 2

  8. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.

  9. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer strips can reduce the delivery of NH3-N and PO4-P by overland flow to stream channels during storm events, the management of N-rich storm runoff as NO3 via sub-surface drains would require significant interference with the drainage network. This could have a negative impact on agricultural production in the catchment.

  10. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; p<0.05). Lignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.

  11. Co-evolution of Climate, Soil, and Vegetation and their interplay with Hydrological Partitioning at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Zapata-Rios, X.; Brooks, P. D.; Troch, P. A. A.; McIntosh, J. C.

    2014-12-01

    Landscape, climate, and vegetation interactions play a fundamental role in controlling the distribution of available water in hillslopes and catchments. In mid-latitudes, terrain aspect can regulate surface and subsurface hydrological processes, which not only affect the partitioning of energy and precipitation on short time scales, but also soil development, vegetation characteristics on long time scales. In Redondo Peak in northern New Mexico, a volcanic resurgent dome, first order streams drain different slopes around the mountain. In this setting, we study three adjacent first order catchments that share similar physical characteristics, but drain different aspects, allowing for an empirical study of how topographically controlled microclimate and soil influence the integrated hydrological and vegetation response. From 2008 to 2012, catchments were compared for the way they partition precipitation and how vegetation responds to variable water fluxes. Meteorological variables were monitored in 5 stations around Redondo Peak and surface runoff was monitored at the catchments' outlets. Hydrological partitioning at the catchment scale was estimated with the Horton Index, defined as the ratio between vaporization and wetting and it represents a measure of catchment-scale vegetation water use. Vegetation response was estimated using remotely sensed vegetation greenness (NDVI) derived from MODIS every 16 days with a spatial resolution of 250 m. Results show that the predominantly north facing catchment has the largest and least variable baseflow and discharge, consistent with greater mineral weathering fluxes and longer water transit times. In addition, vaporization, wetting and Horton Index, as well as NDVI, are smaller in the north facing catchment compared to the south east facing catchments. The predominant terrain aspect controls soil development, which affects the partitioning of precipitation and vegetation response at the catchment scale. These results also demonstrate how landscape evolution (e.g. depth of weathering profile) can affect various hydrologic processes, including streamflow response to precipitation and water residence time. In turn these processes are first-order controls on the sensitivity of the landscape to land use and climate change.

  12. Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos

    NASA Astrophysics Data System (ADS)

    Gourdin, E.; Huon, S.; Evrard, O.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.

    2015-02-01

    The yields of the tropical rivers of Southeast Asia supply large quantities of carbon to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. This cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was conducted at the 1 m2 plot scale during a storm. The composition of particulate organic matter (total organic carbon and total nitrogen concentrations, δ13C and δ15N) was determined for suspended sediment, soil surface (top 2 cm) and soil subsurface (gullies and riverbanks) samples collected in the catchment (n = 57, 65 and 11, respectively). Hydrograph separation of event water was achieved using water electric conductivity and δ18O measurements for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations). In contrast, channel banks characterized by C4 vegetation (Napier grass) supplied significant quantities of sediment to the river during the flood rising stage at the upstream station as well as in downstream river sections. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha-1), total organic carbon specific yield (8.3 kg C ha-1) and overland flow contribution (78-100%) were found downstream of reforested areas planted with teaks. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended organic matter. Total organic carbon specific yields were particularly high because they occurred during the first erosive storm of the rainy season, just after the period of slash-and-burn operations in the catchment.

  13. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration and CSIA data and advocates the use of travel-time distributions for assessing pesticide fate and transport on catchment scale.

  14. Spatial and temporal variation in dissolved organic carbon composition in a peaty catchment draining a windfarm

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2015-04-01

    Peatlands are an important terrestrial carbon reserve and a principal source of dissolved organic carbon (DOC) to the fluvial environment (Wallage et al. 2006). Recently it has been observed that DOC concentrations [DOC] in surface waters have increased in Europe and North America (Monteith et al. 2007). This has been attributed primarily to reduced acid deposition. However, land use change can also release C from peat soils. A significant land use change in Scotland is hosting windfarms. Whether windfarm construction causes such impacts has been a research focus, particularly considering fluvial losses, but usually assessing if there are changes in DOC concentration rather than composition. Our study area is a peaty catchment that hosts wind turbines, has peat restoration activities and forest felling and is drained by two streams. We are using UV-visible and fluorescence spectrophotometry to assess if there are differences between the two steams or temporal changes in DOC composition. We will present data from samples collected since February 2014. The parameters we are focusing on are SUVA254, E4/E6 and E2/E4 ratios as these are indicators of DOC aromaticity, humic acid (HA): fulvic acid (FA) ratio and the proportion of humic substances in DOC (Weishaar, 2003; Spencer et al. 2007; Graham et al. 2012). To assess these we have measured UV-visible absorbance spectra from 200 nm to 800 nm. Meanwhile sample fluorescence emission and excitation matrix (EEM) will be applied with the PARAFAC model to obtain more information about the variations in humic substances in this catchment. Our current analysis indicates spatial differences not only in DOC concentration but also in composition. For example, the mainstem draining the windfarm area had a smaller [DOC] but higher E4/E6 and lower E2/E4 ratio values than the tributary draining an area of felled forestry. This may be indicative of more HAs in the mainstem DOC. Seasonal variations have also been observed. Both streams had high [DOC] in summer and autumn compared to spring. While E2/E4 ratios were steady in both streams, a more variable E4/E6 ratio in the mainstem may suggest DOC composition changed more over time than in the tributary which had a relatively stable E4/E6 ratio. [DOC] fell in both streams during the summer drought period but a corresponding fall in SUVA254 in the mainstem but not the tributary is further evidence of differences in DOC composition between the two streams. Such spatial and temporal understanding is needed to understand if, and how, land use influences the composition of the DOC exported. References: Graham M. C. et al. 2012. Processes controlling manganese distributions and associations in organic-rich freshwater aquatic systems: The example of Loch Bradan, Scotland. Science of the Total Environment, 424, 239-250. Monteith D. et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric chemistry. Nature,450, 537-540. Spencer R.G.M, Bolton L. and Baker A. 2007. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations.Water Research, 41 (13):2941-2950. Wallage Z.E., Holden, J. and McDonald, A.T. 2006. Drain blocking: An effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the total environment, 367, 811-821. Weishaar J.L. et al. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37(20): 4702-4708.

  15. Differential behaviour of Escherichia coli and Campylobacter spp. in a stream draining dairy pasture.

    PubMed

    Stott, Rebecca; Davies-Colley, Robert; Nagels, John; Donnison, Andrea; Ross, Colleen; Muirhead, Richard

    2011-03-01

    The faecal indicator bacterium Escherichia coli and thermotolerant Campylobacter spp., which are potentially pathogenic, were investigated in the Toenepi Stream draining a pastoral catchment dominated by dairying. Bacteria concentrations were monitored routinely at fortnightly intervals over 12 months and intensively during storm events to compare the transport dynamics of bacterial indicator and pathogen under varying hydro-meteorological conditions. Routine monitoring indicated median concentrations of 345 E. coli MPN 100 ml(-1) and relatively low concentrations of 2.3 Campylobacter MPN 100 ml(-1). The bacterial flux was three orders of magnitude greater under elevated stream flow compared with base-flow. E. coli peak concentrations occurred very close to the turbidity peak and consistently ahead of the Campylobacter spp. peak (which was close to the hydrograph peak). We postulate that, under flood conditions, the E. coli peak reflects the entrainment and mobilisation of in-stream stores on the flood wave front. In contrast, Campylobacter spp. are derived from wash-in from land stores upstream and have travelled at the mean water velocity which is slower than the speed of the flood wave. Our findings of different dynamics for E. coli and Campylobacter spp. suggest that mitigation to reduce faecal microbial impacts from farms will need to take account of these differences.

  16. Contaminant Dynamics and Trends in Hyperalkaline Urban Streams

    NASA Astrophysics Data System (ADS)

    Riley, Alex; Mayes, William

    2015-04-01

    Streams in post-industrial urban areas can have multiple contemporary and historic pressures impacting upon their chemical and ecological status. This paper presents analysis of long term data series (up to 36 years in length) from two small streams in northern England (catchment areas 0.5-0.6km2). Around 3.5 million m3 of steel making slags and other wastes were deposited in the headwater areas of the Howden Burn and Dene Burn in northeast England up to the closure of the workings in the early 1980s. This has led to streams draining from the former workings which have a hyperalkaline ambient pH (mean of 10.3 in both streams), elevated alkalinity (up to 487 mg/L as CaCO3) from leaching of lime and other calcium oxides / silicates within the slag, and enrichment of some trace elements (e.g. aluminium (Al), lithium (Li) and zinc (Zn)) including those which form oxyanions mobile at high pH such as vanadium (V). The high ionic strength of the waters and calcium enrichment also leads to waters highly supersaturated with calcium carbonate. Trace contaminant concentrations are strongly positively correlated, and concentrations generally diminish with increased flow rate suggesting the key source of metals in the system is the highly alkaline groundwater draining from the slag mounds. Some contaminants (notably Cr and ammonium) increase with high flow suggesting sources related to urban runoff and drainage from combined sewer overflows into one of the catchments. Loading estimates instream show that many of the contaminants (e.g. Al, V and Zn) are rapidly attenuated in secondary calcium carbonate-dominated deposits that precipitate vigorously on the streambeds with rates of up to 250 g CaCO3/m2/day. These secondary sinks limit the mobility of many contaminants in the water column, while concentrations in secondary deposits are relatively low given the rapid rates at which Ca is also attenuated. Long-term trend analysis showed modest declines in calcium and alkalinity over the monitoring period and these are not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible. The data show the value of long-term water quality datasets in managing post-industrial catchments where there may be multiple pressures on water quality.

  17. Prediction of phosphorus loads in an artificially drained lowland catchment using a modified SWAT model

    NASA Astrophysics Data System (ADS)

    Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd

    2017-04-01

    Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of P in rivers are groundwater and tile flow. P was also released by surface runoff during large storm events when sediment was eroded into the rivers. The contributions of point sources in terms of waste water treatment plants to the overall P loading were low. The modifications made in the SWAT source code should be considered as a starting point to simulate P loads in artificially drained landscapes more precisely. Further testing and development of the code is required.

  18. Hydrological controls on DOC  :  nitrate resource stoichiometry in a lowland, agricultural catchment, southern UK

    NASA Astrophysics Data System (ADS)

    Heppell, Catherine M.; Binley, Andrew; Trimmer, Mark; Darch, Tegan; Jones, Ashley; Malone, Ed; Collins, Adrian L.; Johnes, Penny J.; Freer, Jim E.; Lloyd, Charlotte E. M.

    2017-09-01

    The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (p < 0. 0001), and a significant negative relationship between DOC and BFI (p < 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios > 5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (< 0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting.

  19. Aquatic ecosystems in Central Colorado are influenced by mineral forming processes and historical mining

    USGS Publications Warehouse

    Schmidt, T.S.; Church, S.E.; Clements, W.H.; Mitchell, K.A.; Fey, D. L.; Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Klein, T.L.; deWitt, E.H.; Rockwell, B.W.

    2009-01-01

    Stream water and sediment toxicity to aquatic insects were quantified from central Colorado catchments to distinguish the effect of geologic processes which result in high background metals concentrations from historical mining. Our sampling design targeted small catchments underlain by rocks of a single lithology, which allowed the development of biological and geochemical baselines without the complication of multiple rock types exposed in the catchment. By accounting for geologic sources of metals to the environment, we were able to distinguish between the environmental effects caused by mining and the weathering of different mineralized areas. Elevated metal concentrations in water and sediment were not restricted to mined catchments. Impairment of aquatic communities also occurred in unmined catchments influenced by hydrothermal alteration. Hydrothermal alteration style, deposit type, and mining were important determinants of water and sediment quality and aquatic community structure. Weathering of unmined porphyry Cu-Mo occurrences resulted in water (median toxic unit (TU) = 108) and sediment quality (TU = 1.9) that exceeded concentrations thought to be safe for aquatic ecosystems (TU = 1). Metalsensitive aquatic insects were virtually absent from streams draining catchments with porphyry Cu-Mo occurrences (1.1 individuals/0.1 m2 ). However, water and sediment quality (TU = 0.1, 0.5 water and sediment, respectively) and presence of metalsensitive aquatic insects (204 individuals/0.1 m2 ) for unmined polymetallic vein occurrences were indistinguishable from that for unmined and unaltered streams (TU = 0.1, 0.5 water and sediment, respectively; 201 individuals/0.1 m2 ). In catchments with mined quartz-sericite-pyrite altered polymetallic vein deposits, water (TU = 8.4) and sediment quality (TU = 3.1) were degraded and more toxic to aquatic insects (36 individuals/0.1 m2 ) than water (TU = 0.4) and sediment quality (TU = 1.7) from mined propylitically altered polymetallic vein deposits. The sampling approach taken in this study distinguishes the effects of different mineral deposits on ecosystems and can be used to more accurately quantify the effect of mining on the environment. 

  20. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  1. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  2. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions.

    PubMed

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-02-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.

  3. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  4. Do storage dynamics in hydropedological units control hydrological connectivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Birkel, C.; Dick, J.; Geris, J.; Soulsby, C.

    2013-12-01

    In many northern landscapes, peat-dominated riparian wetlands often characterise the zone of connection between terrestrial drainage and the river network. In order to understand the relationship between connectivity and stream flow generation in a montane headwater catchment, we examined the storage dynamics and isotopic composition of soil water in major hydropedological units. These formed a classic catena sequence for northern catchments from free-draining podzols on steep upper hillslopes through to peaty gleysols in lower receiving slopes to deeper peats (Histosols) in the riparian zone. The peaty gleys and peats remained saturated throughout the year, whilst the podzols showed distinct wetting and drying cycles. In this climatic region, most precipitation events are less than 10mm in magnitude, storm runoff is mainly generated from the Histosols and Gleysols, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich surface horizons of the soils due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the strongly reflects that of the near surface waters in the riparian peats. Old 'pre-event' water generally accounts for >80% of flow, even in large events, mainly reflecting the displacement of water stored in the riparian peats and peaty gleys. These riparian areas appear to be the dominant zone where different catchment source waters mix; acting as an 'isostat' that regulates the isotopic composition of stream waters and integrates the Transit Time Distribution (TTD) for the catchment.

  5. Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality.

    PubMed

    Klaminder, Jonatan; Bindler, Richard; Laudon, Hjalmar; Bishop, Kevin; Emteryd, Ove; Renberg, Ingemar

    2006-08-01

    It is not well-known how the accumulated pool of atmospheric lead pollution in the boreal forest soil will affect the groundwater and surface water chemistry in the future as this lead migrates through the soil profile. This study uses stable lead isotopes (206Pb/207Pb and 208Pb/ 207Pb ratios) to trace the transport of atmospheric lead pollution within the soil of a small catchment and predict future lead level changes in a stream draining the catchment. Low 206Pb/207Pb and 208Pb/207Pb ratios for the lead in the soil water (1.16 +/- 0.02; 2.43 +/- 0.03) and streamwater (1.18 +/- 0.03; 2.42 +/- 0.03) in comparison to that of the mineral soil (>1.4; >2.5) suggest that atmospheric pollution contributes by about 90% (65-100%) to the lead pool found in these matrixes. Calculated transport rates of atmospheric lead along a soil transect indicate that the mean residence time of lead in organic and mineral soil layers is at a centennial to millennial time scale. A maximum release of the present pool of lead pollution in the soil to the stream is predicted to occur within 200-800 years. Even though the uncertainty of the prediction is large, it emphasizes the magnitude of the time lag between the accumulation of atmospheric lead pollution in soils and the subsequent response in streamwater quality.

  6. Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

    2007-01-01

    Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

  7. Determination of trunk streams via using flow accumulation values

    NASA Astrophysics Data System (ADS)

    Farek, Vladimir

    2013-04-01

    There is often a problem, with schematisation of catchments and a channel networks in a broken relief like sandstone landscape (with high vertical segmentation, narrow valley lines, crags, sheer rocks, endorheic hollows etc.). Usual hydrological parameters (subcatchment areas, altitude of highest point of subcatchment, water discharge), which are mostly used for determination of trunk stream upstream the junction, are frequently not utilizable very well in this kind of relief. We found, that for small, relatively homogeneous catchments (within the meaning of land-use, geological subsurface, anthropogenic influence etc.), which are extremely shaped, the value called "flow accumulation" (FA) could be very useful. This value gives the number of cells of the Digital Elevation Model (DEM) grid, which are drained to each cell of the catchment. We can predict that the stream channel with higher values of flow accumulation represents the main stream. There are three crucial issues with this theory. At first it is necessary to find the most suitable algorithm for calculation flow accumulation in a broken relief. Various algorithms could have complications with correct flow routing (representation of divergent or convergent character of the flow), or with keeping the flow paths uninterrupted. Relief with high curvature changes (alternating concave/convex shapes, high steepness changes) causes interrupting of flow lines in many algorithms used for hydrological computing. Second - set down limits of this theory (e.g. the size and character of a surveyed catchment). Third - verify this theory in reality. We tested this theory on sandstone landscape of National park Czech Switzerland. The main data source were high-resolution LIDAR (Light Detection and Ranging) DEM snapshots of surveyed area. This data comes from TU Dresden project called Genesis (Geoinformation Networks For The Cross- Border National Park Region Saxon- Bohemian Switzerland). In order to solve these issues GIS applications (e. g. GIS GRASS and its hydrological modules like r.terraflow, r.watershed, r.flow etc.) are very useful. Key words: channel network, flow accumulation, Digital Elevation Model, LIDAR, broken relief, GIS GRASS

  8. Internal Catchment Process Simulation in a Snow-Dominated Basin: Performance Evaluation with Spatiotemporally Variable Runoff Generation and Groundwater Dynamics

    NASA Astrophysics Data System (ADS)

    Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.

    2006-12-01

    Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.

  9. Modelling rapid flow response of a tile drained hillslope with explicit representation of preferential flow paths and consideration of equifinal model structures

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Zehe, Erwin

    2010-05-01

    Rapid water flow along spatially connected - often biologically mediated - flow paths of minimum flow resistance is widely acknowledged to play a key role in runoff generation at the hillslope and small catchment scales but also in the transport of solutes like agro chemicals and nutrients in cohesive soils. Especially at tile drained fields site connected vertical flow structures such as worm burrows, roots or shrinkage cracks act as short cuts allowing water flow to bypass the soil matrix. In the present study we propose a spatially explicit approach to represent worm burrows as connected structures of high conductivity and low retention capacity in a 2D physically model. With this approach tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment were modelled. The model parameters derived from measurements and are considered to be uncertain. Given this uncertainty of key factors that organise flow and transport at tile drained sites the main objectives of the present studies are to shed light on the following three questions: 1. Does a simplified approach that explicitly represents worm burrows as continuous flow paths of small flow resistance and low retention properties in a 2D physically model allow successful reproduction of event flow response at a tile drained field site in the Weiherbach catchment? 2. Does the above described uncertainty in key factors cause equifinality i.e. are there several model structural setups that reproduce event flow response in an acceptable manner without compromising our physical understanding of the system? 3. If so, what are the key factors that have to be known at high accuracy to reduce the equifinality of model structures? The issue of equifinality is usually discussed in catchment modelling to indicate that often a large set of conceptual model parameter sets allows acceptable reproduction of the behaviour of the system of interest - in many cases catchment stream flow response. Beven and Binley (1992) suggest that these model structures should be considered to be equally likely to account for predictive uncertainty. In this study we show that the above outline approach allows successful prediction of the tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment flow event. Strikingly we a found a considerable equifinality in the model structural setup, when key parameters such as the area density of worm burrows, their hydraulic conductivity and the conductivity of the tile drains were varied within the ranges of either our measurements or measurements reported in the literature. Thirteen different model setups yielded a normalised time-shifted Nash-Sutcliffe of more than 0.9, which means that more than 90% of the flow variability is explained by the model. Also the flow volumes were in good accordance and timing errors were less or equal than 20 min (which corresponds to two simulation output time steps). It is elaborated that this uncertainty/equifinality could be reduced when more precise data on initial states of the subsurface and on the drainage area of a single drainage tube could be made available. However, such data are currently most difficult to assess even at very well investigated site as the one that is dealt with here. We thus suggest non uniqueness of process based model structures seems thus to be an important factor causing predictive uncertainty at many sites where preferential flow dominates systems response. References Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6, p.279-298.

  10. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    NASA Astrophysics Data System (ADS)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  11. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer precipitation, while 2007/08 was considerably drier than average (P = 554 mm). We will present concentrations and losses of all nitrogen fractions and their relationship to the dominating soil type, precipitation characteristics, discharge, and fertilization practice. Furthermore, we will assess whether the determination of DON helps to improve the correlation between nitrogen input and nitrogen losses.

  12. Factors controlling stream water nitrate and phosphor loads during precipitation events

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; van der Velde, Y.; van Geer, F.; de Rooij, G. H.; Broers, H.; Bierkens, M. F.

    2009-12-01

    Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Within regional surface water quality monitoring networks, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because this natural variability in surface water quality is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous records of stream water N and P concentrations to easier and cheaper to collect quantitative data on precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment we collected continuous measurements of precipitation, groundwater levels and tube drain discharges. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis were used to identify relations between the N and P response to the rainfall events and the quantitative event characteristics. We successfully used these relations to predict the N and P responses to events and to improve the interpolation between low frequency grab sample measurements. Incorporating the predicted concentration changes during high discharge events dramatically improved the precision of our load estimations.

  13. Regulation of stream water dissolved organic carbon concentrations ([DOC]) during snowmelt in forest streams; the role of discharge, winter climate and memory effects

    NASA Astrophysics Data System (ADS)

    Ågren, A.; Haei, M.; Öquist, M.; Buffam, I.; Ottosson-Löfvenius, M.; Kohler, S.; Bishop, K.; Blomkvist, P.; Laudon, H.

    2011-12-01

    Using 15 year stream records from two forested northern boreal catchments, coupled with soil frost experiments in the riparian zone, we demonstrate the complex inter-annual control on [DOC] and export during snowmelt. Stream [DOC] varied by a factor of 2 during those 15 years with no consistent trend. Based on our long-term analysis, we demonstrate, for the first time, that stream water [DOC] is strongly linked to the climatic conditions during the preceding winter, but that there is also a long-term memory effect in the catchment soils, related to the extent of the previous export from the catchment. Hydrology had a first order control on the inter-annual variation in concentrations, and the length of the winter was more important than the memory effect. By removing the effect of discharge on [DOC], using a conceptual hydrological model, we could detect processes that would otherwise have been overshadowed. A short and intense snowmelt gave higher [DOC] in the stream. During a prolonged snowmelt, one soil layer at the time might have been "flushed" from easily exported DOC, resulting in slightly lower stream [DOC] during such years. We found that longer and colder winters resulted in higher [DOC] during the subsequent snowmelt. A soil frost manipulation experiment in the riparian soils of the study catchment showed that the DOC concentrations in the soil water increased with the duration of the soil frost. A high antecedent DOC export during the preceding summer and autumn resulted in lower concentrations during the following spring, indicating a long-term "memory effect" of the catchment soils. In a nearby stream draining mire, we found a different response to hydrology but similar response to climate and memory effect. The inter-annual variation in snowmelt DOC exports was mostly controlled by the amount of runoff, but the variability in [DOC] also exerted a significant control on the exports, accounting for 15% of the variance in exports. We conclude that winter climatic conditions can play a substantial role in controlling stream [DOC] in ways not previously understood. These findings are especially important for northern latitude regions expected to be most affected by climate change. It's difficult to directly translate this to a future climate change prediction. If warmer winters with less insulating snow cover increase the soil frost, the results from the soil frost manipulation experiment then suggest increasing [DOC] in a future climate. At the same time the statistical analysis of the stream records suggest that a shorter and warmer winter would decrease the [DOC]. Our results do, however, highlight the role of winter climate for regulating DOC in areas with seasonally frozen soils which should be considered when resolving the sensitivity of stream [DOC] to global environmental change.

  14. Contribution of bank erosion to the sediment budget of a drained agricultural lowland catchment

    NASA Astrophysics Data System (ADS)

    Cerdan, Olivier; Foucher, Anthony; Vandromme, Rosalie; Salvador-Blanes, Sébastien; Gay, Aurore; Landemaine, Valentin; Evrard, Olivier

    2017-04-01

    Following the shift towards more intensive agriculture in cultivated lowlands in Europe, field sizes have increased and stream valley meanderings have been removed and realigned along new straight field borders. These modifications have led to profound alterations of the hydromorphology of the streams. To test the impact of these modifications, the long-term and current volumes of sediment originating from stream banks were calculated as they provided potential sources of sediment in a large pond located at the outlet of a small agricultural lowland basin under strong anthropogenic pressure. Bank erosion was measured using several methodologies, i) over a short period using a set of erosion pins along a small stream (1400 m long) to quantify the material exported during a single winter season (2012/2013); ii) over the last 69 years using an original approach involving the comparison of a compilation of three-dimensional historical stream redesign plans from 1944 vs. new measurements conducted in 2013 (DGPS and LiDAR data); iii) over several decades by using tracers (137Cs) that can differentiate between surface and subsoil erosion. At the catchment scale, total sediment exports were estimated from 1945 to 2013 combining seismic imagery and core dating in the lake. Sediment exports decreased with time, from 300 t. km-2.yr-between 1954 and 1980 to 95 t. km-2.yr-1 between 1980 and 2013. Today, erosion rates recorded at the outlet of the catchment vary between 90-102 t.km-2.yr-1. Therefore, the order of magnitude of the mean export rate is approximately 180 t. km-2.yr-1 for the last 70 years. The contribution of channel banks to this sediment export was the highest ( 30%) between 1954 and 1980 when the ditches were constructed. For the entire period since the landscape modification, the contribution of bank erosion is lower but still reaches 20%. Bank erosion can therefore be considered as a significant contributor to the sediment budget of the lowland catchments that have been redesigned after the 2nd world war in Western Europe.

  15. Isotopic signals from precipitation and denitrification in nitrate in a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Wexller, S.

    2012-12-01

    Denitrification can represent an important term in the nitrogen budget of small catchments; however, this process varies greatly over space and time and is notoriously difficult to quantify. Measurements of the natural abundance of stable isotopes of nitrogen and oxygen in dissolved nitrate in stream- and river water can sometimes provide evidence of denitrification, particularly in large river basins or agriculturally impacted catchments. To date, however, this approach has provided little to no evidence of denitrification in catchments in temperate forests. Here, we examined d15N and d18O of nitrate in water samples collected during summer 2011 not only from streams and precipitation, but also from groundwater from the hydrologic reference watershed (W3) drained by Paradise Brook, at the Hubbard Brook Experimental Forest, in the White Mountains, New Hampshire. Despite low nitrate concentrations (< 0.5 to 8.8 uM nitrate) dual-isotopic signals of nitrate sources and nitrogen cycle processes were clearly distinguishable, including sources from atmospheric deposition, and from nitrification of atmospheric ammonium and from or soil organic nitrogen, as well as nitrate affected by soil denitrification. An atmospheric signal from nitrate in precipitation (enriched with 18O) was observed immediately following a precipitation event in mid-July contributing roughly 22% of stream nitrate export on this date. Stream samples the day following this and other storms showed this export of event nitrate to be short-lived. Hillslope piezometers showed low nitrate concentrations and high d15N- and d18O-nitrate values (averaging 12 and 18 per mil, repectively) indicating denitrification, which preferentially removes isotopically light N and O in N gases and leaves isotopically heavy nitrate behind. These samples showed a positive relationship between nitrogen and oxygen isotopic composition with a regression line slope of 0.76 (R2 = 0.68), and an isotope enrichment factor -12.7 per mil for denitrification removal of nitrate in these hillslope soils. The isotopic composition of a time series of samples from three riparian piezometers crossing Paradise Brook shows strong connections between the riparian soil water and the stream, as well as a different dominant source of nitrate in each piezometer. Repeated surveys of stream nitrate show modest positive enrichment in N and O isotopes with a slope between 18O and 15N of 0.96, indicating either in- or near-stream denitrification or mixing between stream and hillslope water bearing a stronger denitrification signal. The dual isotope approach provides detailed information on nitrogen cycling dynamics during the summer in a northern hardwood forested catchment. Together, these observations provide strong isotopic evidence for rapid rates of denitrification during summer in the soils of this small forested catchment.

  16. Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed

    USGS Publications Warehouse

    Schuster, P.F.; Shanley, J.B.; Marvin-DiPasquale, M.; Reddy, M.M.; Aiken, G.R.; Roth, D.A.; Taylor, Howard E.; Krabbenhoft, D.P.; DeWild, J.F.

    2008-01-01

    Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41-98% of the variability of DHg concentration while DOC flux explained 68-85% of the variability in DHg flux, indicating both quality and quantity of the DOC substantially influenced the transport and fate of DHg. Particulate organic carbon (POC) concentrations explained 50% of the PHg variability, indicating that POC is an important transport mechanism for PHg. Despite available sources of DHg and wetlands in the upland catchments, dissolved methylmercury (DmeHg) concentrations in streamwaters were below detection limit (0.04 ng/L). PHg and particulate methylmercury (PmeHg) had a strong positive correlation (r 2 = 0.84, p < 0.0001), suggesting a common source; likely in-stream or near-stream POC eroded or re-suspended during spring snowmelt and summer storms. Ratios of PmeHg to THg were low and fairly constant despite an apparent higher methylmercury (meHg) production potential in the summer. Methylmercury production in soils and stream sediments was below detection during snowmelt in April and highest in stream sediments (compared to forest and wetland soils) sampled in July. Using the watershed approach, the correlation of the percent of wetland cover to TmeHg concentrations in streamwater indicates that poorly drained wetland soils are a source of meHg and the relatively high concentrations found in stream surface sediments in July indicate these zones are a meHg sink. ?? 2007 Springer Science+Business Media B.V.

  17. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

  18. Influence of catchment-scale military land use on stream physical and organic matter variables in small Southeaster Plains Catchments (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Kelly

    2005-01-01

    We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less

  19. Ptaquiloside from bracken in stream water at base flow and during storm events.

    PubMed

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr B; Strobel, Bjarne W

    2016-12-01

    The bracken fern (Pteridium spp.) densely populates both open and woodland vegetation types around the globe. Bracken is toxic to livestock when consumed, and a group of potent illudane-type carcinogens have been identified, of which the compound ptaquiloside (PTA) is the most abundant. The highly water soluble PTA has been shown to be leachable from bracken fronds, and present in the soil and water below bracken stands. This has raised concerns over whether the compound might pose a risk to drinking water sources. We investigated PTA concentrations in a small stream draining a bracken-infested catchment at base flow and in response to storm events during a growth season, and included sampling of the bracken canopy throughfall. Streams in other bracken-dominated areas were also sampled at base flow for comparison, and a controlled pulse experiment was conducted in the field to study the in-stream dynamics of PTA. Ptaquiloside concentrations in the stream never exceeded 61 ng L -1 in the base flow samples, but peaked at 2.2 μg L -1 during the studied storm events. The mass of PTA in the stream, per storm event, was 7.5-93 mg from this catchment. A clear temporal connection was observed between rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl - ) in the pulse experiment over a relative short time scale (minutes-hours) reflecting no PTA sorption, and dispersion and dilution considerably lowered the observed PTA concentrations downstream. Bracken throughfall revealed a potent and lasting source of PTA during rainfall, with concentrations up to 169 μg L -1 , that did not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA observed in the receiving stream, as well as the distance from bracken, but time since precipitation seems most important. Studying PTA loads and transport in surface streams fed by bracken-infested catchments, simply taking occasional grab samples will not capture the precipitation-linked pulses. The place and time of sampling governs the findings, and including event-based sampling is essential to provide a more complete picture of PTA loads to surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    EPA Science Inventory

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  1. Transport of sediment through a channel network during a post-fire debris flow

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So debris flows are really effective at removing sediment from headwaters, but at some scale (between 3th and 4th order channels) they are equally effective at depositing sediment. In these lower reaches the geomorphic legacy of the post-wildfire debris flow is about how channel sediment is distributed rather than how much volume is stored.

  2. Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study.

    PubMed

    Baken, Stijn; Regelink, Inge C; Comans, Rob N J; Smolders, Erik; Koopmans, Gerwin F

    2016-08-01

    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition

    NASA Astrophysics Data System (ADS)

    Crouch, Tia; Walker, Jonathan

    2013-04-01

    Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition Tia Crouch and Jonathan Walker (Moors for the Future Partnership) Upland locations are significant water supply sources providing over 70% of fresh water in Great Britain. However, the peatlands of the Peak District, Southern Pennines are highly contaminated with anthropogenically derived, atmospherically deposited pollutants, such as heavy metals. This is due to their location between the cities of Manchester and Sheffield, the centre of the 19th century English Industrial Revolution. These peatlands are also severely eroded; therefore erosion could be releasing these pollutants into the fluvial system, representing a threat to both aquatic ecosystems and drinking water supplies. These threats are regulated under the Water Framework Directive (WFD) and the Water Supply Regulations respectively. There are two aims of this project. The first aim is to identify spatial and temporal variability of water quality within the Bamford water treatment works (WTW) catchment. This was achieved by fortnightly spot sampling at eight of the tributaries into the reservoir system. The second aim is to assess the contribution of moorland condition to water quality within the Bamford WTW catchment. Similarly, this was achieved by fortnightly spot sampling at eight moorland streams, draining from a variety of peatland conditions (bare peat, restoration, intact and heather burn). Water samples were analysed for carbon (DOC, POC & TOC), pH, hardness and a suite of heavy metals, including copper, iron and zinc. In addition, stream temperature and stage height was recorded. Preliminary results highlight a number of issues within the Bamford WTW catchment: under the WFD streams are not achieving 'good' status for pH, copper and zinc, and under the Drinking Water Standards (DWS) streams are not achieving targets for aluminium, iron and colour. For example, the DWS for colour is 20 hazen units; however, mean values for streams within the Bamford WTW catchment range from 40 to 742 Hazen Units. Further analysis of the results will identify where spatial issues and priorities exist in space and time, as well as in relation to WFD objectives and DWS. The relationships between heavy metals and carbon (DOC, POC & TOC), pH, temperature and stage height will also be investigated, and the impacts of moorland restoration on carbon and heavy metals in water supplies will be discussed. Overall, this project is intended to provide evidence of the links between moorland restoration and management and DWS and WFD objectives; therefore, enabling continued support for moorland restoration work. This project was funded by the Environment Agency and Severn Trent Water Limited.

  4. Predicting alpine headwater stream intermittency: a case study in the northern Rocky Mountains

    USGS Publications Warehouse

    Sando, Thomas R.; Blasch, Kyle W.

    2015-01-01

    This investigation used climatic, geological, and environmental data coupled with observational stream intermittency data to predict alpine headwater stream intermittency. Prediction was made using a random forest classification model. Results showed that the most important variables in the prediction model were snowpack persistence, represented by average snow extent from March through July, mean annual mean monthly minimum temperature, and surface geology types. For stream catchments with intermittent headwater streams, snowpack, on average, persisted until early June, whereas for stream catchments with perennial headwater streams, snowpack, on average, persisted until early July. Additionally, on average, stream catchments with intermittent headwater streams were about 0.7 °C warmer than stream catchments with perennial headwater streams. Finally, headwater stream catchments primarily underlain by coarse, permeable sediment are significantly more likely to have intermittent headwater streams than those primarily underlain by impermeable bedrock. Comparison of the predicted streamflow classification with observed stream status indicated a four percent classification error for first-order streams and a 21 percent classification error for all stream orders in the study area.

  5. Physiographic and land cover attributes of the Puget Lowland and the active streamflow gaging network, Puget Sound Basin

    USGS Publications Warehouse

    Konrad, Christopher; Sevier, Maria

    2014-01-01

    Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.

  6. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  7. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  8. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  9. Seasonal Variability of Riverine Geochemistry (87Sr/86Sr, δ13CDIC, δ44/40Ca, and major ions) in Permafrost Watersheds on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2014-12-01

    Global climate models predict amplified warming at high latitudes, where permafrost soils have historically acted as a carbon sink. As warming occurs, the seasonally thawed active layer will propagate downward into previously frozen mineral-rich soil, releasing carbon and introducing unique chemical weathering signatures into rivers. We use variations in the 87Sr/86Sr, δ13CDIC, δ44/40Ca, and major ion geochemistry of rivers to track seasonal active layer dynamics. We collected water from six streams on the North Slope of Alaska between May and October, 2009 and 2010. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain steeper bedrock catchments with minor tundra coverage. In tundra streams, elevated 87Sr/86Sr ratios, low δ13CDIC values and major ions ([Na+]+[K+]/ [Ca+2]+[Mg+2]) in spring melt runoff suggest flushing of shallow soils with relatively low carbonate content. By July, 87Sr/86Sr ratios stabilize at relatively low values and δ13CDIC at relatively higher values, indicating the active layer thawed into deeper carbonate-rich soils. In bedrock streams, elevated 87Sr/86Sr ratios correlate with high discharge. By late fall, bedrock stream 87Sr/86Sr ratios decrease steadily, consistent with increased carbonate weathering. Nearly constant δ13CDIC values and high [SO4-2] for most of the melt season imply significant sulfuric acid-carbonate weathering in bedrock streams. δ13CDIC values suggest a shift to carbonic acid-carbonate weathering in late 2010, possibly due to limited oxygen for pyrite oxidation during freezing of the active layer. δ44/40Ca values in both tundra and bedrock streams increase during the seasons, suggesting increased uptake of 40Ca by plants. δ44/40Ca values of rivers are at least 0.1-0.2‰ higher than their watershed soils, rocks and sediments, suggesting significant plant uptake. Our findings show how seasonal changes in mineral weathering have potential for tracking active layer dynamics.

  10. Identifying the impacts of land use on water and nutrient cycling in the South-West Mau, Kenya

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana

    2016-04-01

    The Mau Forest is the largest closed canopy forest system and indigenous montane forest in Kenya, covering approximately 400,000 ha. It is the source of twelve major rivers in the Rift Valley and Western Kenya and one of Kenya's five 'water towers' that provide around 10 million people with fresh water. Significant areas have been affected by deforestation and land use changes in the past decades, resulting in a loss of approx. 25% of the forest area. Recent changes in downstream water supply are discussed to be attributed to land use change, though compelling scientific evidence is still lacking. The study area is located in the South-West Mau as a part of the Sondu River basin that drains into Lake Victoria. This area has suffered a forest loss of 25% through conversion of natural forest to smallholder agriculture and tea/tree plantations. A nested catchment approach has been applied, whereby automatic measurement equipment for monitoring discharge, turbidity, nitrate, total and dissolved organic carbon, electrical conductivity and water temperature at a 10 minute interval has been set up at the outlets of three sub-catchments of 27 - 36 km² and the outlet of the 1023 km² major catchment. The dominant land use in the sub-catchments is either natural forest, tea/tree plantation or smallholder agriculture. The river data is complemented by six precipitation gauging stations and three climate stations, that all measure at the same interval. Installed during October 2014, the systems have collected high resolution data for one and a half year now. The high resolution dataset is being analysed for patterns in stream flow and water quality during dry and wet seasons as well as diurnal cycling of nitrate. The results of the different sub-catchments are compared to identify the role of land use in water and nutrient cycling. First results of the high temporal resolution data already indicate that the different types of land use affect the stream nitrate concentration. In addition to that the high resolution allows to investigate diurnal patterns, showing a shift in nitrate concentrations between wet and dry seasons. Additional spatial stream water snapshot sampling campaigns within the major catchment, as well as sampling for End Member Mixing Analysis (EMMA) and analysis of stable isotopes of precipitation, throughfall, stream water and soil and ground water is ongoing and will provide further information to increase our understanding of hydrological and biogeochemical processes and how these are affected by land use in the Mau Forest. We will report results from six snapshot sampling campaigns that depict the impact of tea/tree plantations on nitrate concentrations and an influence of land use on catchment specific discharge.

  11. The effects of de-icing in Helsinki urban streams, southern Finland.

    PubMed

    Ruth, O

    2003-01-01

    The environmental effects of road salt have been studied in Finland mainly in order to monitor and reduce groundwater contamination. In urban areas the road salt used for road maintenance in winter ends up in the storm water drains and receiving water bodies. We report here on water samples taken in 1998-1999 from three urban streams with catchments varying in area 1.7 to 24.4 km2 in different parts of the City of Helsinki. Despite efforts to reduce the amount of road salt, high concentrations were found in the urban stream water. Sudden variations in water quality were very marked during the spring flood period, with sodium and chloride concentrations varying over nine-fold within one day. Some 35-50% of the salt used on the roads in Helsinki passes into natural streams and from there into the sea. The significant positive correlation between NaCl and dissolved zinc in stream water was observed. The results show that it is important to monitor water quality, especially at the beginning of the spring flood period, when road salt and other contaminant levels are markedly high in urban streams.

  12. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  13. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring

    NASA Astrophysics Data System (ADS)

    Wade, A. J.; Palmer-Felgate, E. J.; Halliday, S. J.; Skeffington, R. A.; Loewenthal, M.; Jarvie, H. P.; Bowes, M. J.; Greenway, G. M.; Haswell, S. J.; Bell, I. M.; Joly, E.; Fallatah, A.; Neal, C.; Williams, R. J.; Gozzard, E.; Newman, J. R.

    2012-11-01

    This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames - one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

  14. Overland flow dynamics through visual observation using time-lapse photographs

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2016-04-01

    Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber-optic network. Exterior orientation is required to project the observed saturation patterns in the photographs onto orthographic map. This was done by georeferencing the on-field GPS points taken throughout the camera field of view to the orthographic map obtained from an airborne laser scanning (ALS) campaign. Based on the projected saturation patterns, the patterns dynamics were analyzed in relation to soil moisture state and rainfall magnitude for events in autumn and winter 2014. From the observed events during saturated soil condition, tile drain flow reacted within one hour after the rain started, while no sign of saturation pattern evolving into overland flow was observed. Within two hours after the rain started, overland flow was fully formed along the thalweg which flowed to the erosion gully and created signal at the discharge station almost immediately. From the surface roughness aspect, field management is an important factor of overland flow development as surface runoff was formed faster along the tractor tracks. In overall, time-lapse photographs have potentials to qualitatively assess the saturation patterns dynamics during rainfall events with high time resolution and wide area coverage.

  15. Seasonal Variability of Major Ions and δ13CDIC in Permafrost Watersheds of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2011-12-01

    Models and observations predict that climate change will have more severe effects at higher latitudes. Many effects may already be underway. Increasing temperatures are expected to thaw permafrost soils, changing the hydrology and biogeochemistry of Arctic watersheds. These changes are particularly important because permafrost thaw could destabilize a large carbon reservoir, potentially leading to sizable greenhouse gas emissions. Tracking soil thaw and concomitant changes in carbon export are therefore critical to predicting feedbacks between Arctic climate change and global warming. As the climate warms, the seasonally thawed active layer will extend into deeper, previously frozen, mineral-rich soils, increasing the signal of chemical weathering in streams. Historical methods of monitoring active layer thaw depth are labor intensive and may not capture the heterogeneity of Arctic soils, whereas stream geochemistry provides a unique opportunity to integrate signals across vast spatial distances. We present major ion geochemistry and δ13C of dissolved inorganic carbon (DIC) variations that relate to seasonal changes in permafrost thaw depths. Samples were collected from six watersheds on the North Slope of Alaska. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain bare bedrock catchments with minor tundra influences. Water samples were collected from April until October in 2009 and 2010. The major ion and δ13CDIC trends of tundra streams suggest that silicate weathering dominates during the spring melt while carbonate weathering dominates as the active layer deepens in the summer. In tundra streams, early season δ13CDIC values indicate carbonic acid-silicate weathering. Summer δ13CDIC values indicate carbonic acid-carbonate weathering. In both cases, carbonic acid forms from CO2 produced by the microbial decomposition of C3 organic matter. Bedrock streams have nearly constant δ13CDIC values and high dissolved sulfate concentrations through the year, indicating sulfuric acid-carbonate weathering. In late fall of 2010, δ13CDIC decreases in all streams suggest increased CO2 from a source with relatively negative δ13C values, possibly methane oxidation in soils. The difference between the tundra and bedrock streams allows us to clearly isolate the effect of soil thaw on stream geochemistry. Our initial findings illustrate how seasonal changes in mineral weathering have potential for tracking active layer dynamics.

  16. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  17. Characterising Event-Based DOM Inputs to an Urban Watershed

    NASA Astrophysics Data System (ADS)

    Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.

    2017-12-01

    Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest quality DOM of the sources studied due to the presence of hydrocarbons. In order to prevent storm-derived DOM degradation of water quality of urban streams, greater knowledge of links between these drainage sources, and their pathways to streams is required.

  18. A synoptic survey of ecosystem services from headwater catchments in the United States

    Treesearch

    Brian H. Hill; Randall K. Kolka; Frank H. McCormick; Matthew A. Starry

    2014-01-01

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Results are reported for nine USA ecoregions. Headwater streams represented 74-80% of total catchment stream length. Water supply per unit catchment area was highest in the Northern Appalachian Mountains ecoregion...

  19. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  20. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  1. New aerogeophysical data reveal the extent of the Weddell Sea Rift beneath the Institute and Möller ice streams

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.

    2011-12-01

    Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.

  2. Stream vulnerability to widespread and emergent stressors: a focus on unconventional oil and gas

    USGS Publications Warehouse

    Entrekin, Sally; Maloney, Kelly O.; Katherine E. Kapo,; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.

  3. Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and Gas

    PubMed Central

    Entrekin, Sally A.; Maloney, Kelly O.; Kapo, Katherine E.; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects. PMID:26397727

  4. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    PubMed

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (<2 mm) compared with stream bank soil (<2 mm) and the <75-μm fraction of stream bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport processes.

  5. Intrinsic stream-capture control of stepped fan pediments in the High Atlas piedmont of Ouarzazate (Morocco)

    NASA Astrophysics Data System (ADS)

    Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.

    2012-11-01

    The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.

  6. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Treesearch

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  7. From existing in situ, high-resolution measurement technologies to lab-on-a-chip - the future of water quality monitoring?

    NASA Astrophysics Data System (ADS)

    Wade, A. J.; Palmer-Felgate, E. J.; Halliday, S. J.; Skeffington, R. A.; Loewenthal, M.; Jarvie, H. P.; Bowes, M. J.; Greenway, G. M.; Haswell, S. J.; Bell, I. M.; Joly, E.; Fallatah, A.; Neal, C.; Williams, R. J.; Gozzard, E.; Newman, J. R.

    2012-05-01

    This paper introduces new insights into the hydrochemical functioning of lowland river-systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames, one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex, seemingly chaotic, dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage works in the rural, River Enborne, and that the time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The dominance of respiration over photosynthesis in The Cut indicated a prevalence of heterotrophic algae, and the seasonal patterns in respiration and photosynthesis corresponded with those of temperature and light in this nutrient over-enriched stream. These results highlight the utility of sub-daily water quality measurements but the deployment of modified wet-chemistry technologies into the field was limited by mains electricity availability. A new approach is therefore needed to allow measurement of a wide range of analytes at a broader range of locations for the development of water quality web-sensor networks. The development and field deployment of a miniaturised "lab-on-a-chip" ion chromatograph is proposed and justified.

  8. Export of fine particulate organic carbon from redwood-dominated catchments

    USGS Publications Warehouse

    Madej, Mary Ann

    2015-01-01

    Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old-growth redwood forests has not been evaluated to date. Old-growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km-2 and soil organic carbon can reach 46 800 Mg km-2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old-growth redwood forests. Carbon content, determined through loss-on-ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km-2 yr-1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km-2 yr-1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km-2 yr-1. Because the current extent of old-growth redwood stands is less than 5% of its pre-European-settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    NASA Astrophysics Data System (ADS)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude greater. This indicates a possible tipping point in the stream temperature-water temperature relationship at which increased urbanization overpowers increasing stream thermal inertia.

  10. What if the Hubbard Brook weirs had been built somewhere else? Spatial uncertainty in the application of catchment budgets

    NASA Astrophysics Data System (ADS)

    Bailey, S. W.

    2016-12-01

    Nine catchments are gaged at Hubbard Brook Experimental Forest, Woodstock, NH, USA, with weirs installed on adjacent first-order streams. These catchments have been used as unit ecosystems for analysis of chemical budgets, including evaluation of long term trends and response to disturbance. This study examines uncertainty in the representativeness of these budgets to other nearby catchments, or as representatives of the broader northern hardwood ecosystem, depending on choice of location of the stream gaging station. Within forested northern hardwood catchments across the Hubbard Brook region, there is relatively little spatial variation in amount or chemistry of precipitation inputs or in amount of streamwater outputs. For example, runoff per unit catchment area varies by less than 10% at gaging stations on first to sixth order streams. In contrast, concentrations of major solutes vary by an order of magnitude or more across stream sampling sites, with a similar range in concentrations seen within individual first order catchments as seen across the third order Hubbard Brook valley or across the White Mountain region. These spatial variations in stream chemistry are temporally persistent across a range of flow conditions. Thus first order catchment budgets vary greatly depending on very local variations in stream chemistry driven by choice of the site to develop a stream gage. For example, carbon output in dissolved organic matter varies by a factor of five depending on where the catchment output is defined at Watershed 3. I hypothesize that catchment outputs from first order streams are driven by spatially variable chemistry of shallow groundwater, reflecting local variations in the distribution of soils and vegetation. In contrast, spatial variability in stream chemistry decreases with stream order, hypothesized to reflect deeper groundwater inputs on larger streams, which are more regionally uniform. Thus, choice of a gaging site and definition of an ecosystem as a unit of analysis at a larger scale, such as the Hubbard Brook valley, would have less impact on calculated budgets than at the headwater scale. Monitoring of a larger catchment is more likely to be representative of other similar sized catchments. However, particular research questions may be better studied at the smaller headwater scale.

  11. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  12. Formation of a low-crystalline Zn-silicate in a stream in SW Sardinia, Italy

    USGS Publications Warehouse

    Wanty, Richard B.; De Giudici, G.; Onnis, P.; Rutherford, D.; Kimball, B.A.; Podda, F.; Cidu, R.; Lattanzi, P.; Medas, D.

    2013-01-01

    n southwestern Sardinia, Italy, the Rio Naracauli drains a catchment that includes several abandoned mines. The drainage from the mines and associated waste rocks has led to extreme concentrations of dissolved Zn, but because of the near-neutral pH, concentrations of other metals remain low. In the reach from approximately 2300 to 3000 m downstream from the headwaters area, an amorphous Zn-silicate precipitates from the water. In this reach, concentrations of both Zn and silica remain nearly constant, but the loads (measured in mass/time) of both increase, suggesting that new Zn and silica are supplied to the stream, likely from emerging groundwater. Zinc isotope signatures of the solid are heavier than the dissolved Zn by about 0.5 permil in 66/64Zn, suggesting that an extracellular biologically mediated adsorption process may be involved in the formation of the Zn-silicate.

  13. Enriched groundwater seeps in two Vermont headwater catchments are hotspots of nitrate turnover

    USGS Publications Warehouse

    Kaur, Amninder J.; Ross, Donald S.; Shanley, James B.; Yatzor, Anna R.

    2016-01-01

    Groundwater seeps in upland catchments are often enriched relative to stream waters, higher in pH, Ca2+ and sometimes NO3¯. These seeps could be a NO3¯ sink because of increased denitrification potential but may also be ‘hotspots’ for nitrification because of the relative enrichment. We compared seep soils with nearby well-drained soils in two upland forested watersheds in Vermont that are sites of ongoing biogeochemical studies. Gross N transformation rates were measured over three years along with denitrification rates in the third year. Gross ammonification rates were not different between the seep and upland soils but gross nitrification rates were about 3 × higher in the seep soils. Net nitrification rates trended higher in the upland soils and NO3¯ consumption (gross—net) was 8 times higher in the seep soils. The average denitrification rate for seep soils was about equal to the difference in NO3¯ consumption between seep and upland soils, suggesting denitrification can make up the difference. Temporal variation in seep water NO3¯ concentration was correlated with watershed outlet NO3¯ concentration. However, it is not clear that in-seep processes greatly altered seep water NO3¯ contribution to the streams. Seep soils appear to be hotspots of both nitrification and denitrification.

  14. The Effect of Catchment Urbanization on Nutrient Uptake and Biofilm Enzyme Activity in Lake Superior (USA) Tributary Streams

    EPA Science Inventory

    We used landscape, habitat, and chemistry variables, along with nutrient spiraling metrics and biofilm extracellular enzyme activity (EEA), to assess the response of streams to the level of urbanization within their catchments. For this study nine streams of similar catchment are...

  15. Effects of land use and surficial geology on flow and water quality of streams in the coal-mining region of southwestern Indiana, October 1979 through September 1980

    USGS Publications Warehouse

    Wilber, William G.; Renn, Danny E.; Crawford, Charles G.

    1985-01-01

    The effect of surficial geology on stream quality was evident for several dissolved constituents in forested and agricultural watersheds. In general, pH and concentrations of alkalinity and calcium were significantly higher in streams draining the Wisconsin glacial province than in streams draining the Illinoian glacial province and unglaciated regions. The higher pH and concentrations of these constituents suggests that there is greater dissolution of carbonate minerals in the Wisconsin glacial province than the other regions. Median concentrations of arsenic, lead, and manganese for streams draining the Wisconsin glacial province were significantly lower than for those constituents in streams draining the Illinoian province and unglaciated region. The median cadmium concentration for streams draining the Wisconsin glacial province was lower than for streams draining the unglaciated region. These differences may have been due to lower solubilities of metal and trace elements at higher pH values in the Wisconsin glacial province than in the Illinoian glacial province and the unglaciated region.

  16. Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos

    NASA Astrophysics Data System (ADS)

    Gourdin, E.; Huon, S.; Evrard, O.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.

    2014-06-01

    Tropical rivers of Southeast Asia are characterized by high specific carbon yields and supplies to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. The partly cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was realized at 1 m2 plot scale during a single storm. The composition of particulate organic matter (total organic carbon, total nitrogen, δ13C and δ15N) was determined for suspended sediment, soil surface and subsurface samples collected in the catchment (n = 57, 65 and 11 respectively). Hydrograph separation of event water was conducted using water electric conductivity and δ18O data measured for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments were mainly derived from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations) but that collapsed riverbanks, characterized by C4 vegetation occurrence (Napier grass), significantly contributed to sediment yields during water level rise and at the downstream station. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha-1), total organic carbon specific yield (8.3 kg C ha-1) and overland flow contribution (78-100%) were found for the reforested areas covered by teak plantations. Total organic carbon specific yields were up to 2.6-fold higher (at downstream station) than the annual ones calculated 10 years earlier, before the expansion of teak plantations in the catchment. They may be attributed both to the sampling period at the onset of the rainy season (following field clearing by slash and burn) and to the impact of land use change during the past decade.

  17. The Treatment Train approach to reducing non-point source pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be implemented without impacting on the farm's primary function. The TT has the potential to yield benefits beyond those associated with water quality. Increasing catchment resilience through the use of landscape interventions can provide multiple benefits by mitigating for floods and droughts and creating ecological habitat.

  18. Spatial distribution of dissolved constituents in Icelandic river waters

    NASA Astrophysics Data System (ADS)

    Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún

    2011-02-01

    SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

  19. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    NASA Astrophysics Data System (ADS)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  20. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Lemarie, D.P.; Smith, D.R.

    2002-01-01

    We conducted a comparative study in the Delaware Water Gap National Recreation Area to determine the potential long-term impacts of hemlock forest decline on stream benthic macroinvertebrate assemblages. Hemlock forests throughout eastern North America have been declining because of the hemlock woolly adelgid, an exotic insect pest. We found aquatic invertebrate community structure to be strongly correlated with forest composition. Streams draining hemlock forests supported significantly more total taxa than streams draining mixed hardwood forests, and over 8% of the taxa were strongly associated with hemlock. In addition, invertebrate taxa were more evenly distributed (i.e., higher Simpson's evenness values) in hemlock-drained streams. In contrast, the number of rare species and total densities were significantly lower in streams draining hemlock, suggesting that diversity differences observed between forest types were not related to stochastic factors associated with sampling and that streams draining mixed hardwood forests may be more productive. Analysis of stream habitat data indicated that streams draining hemlock forests had more stable thermal and hydrologic regimes. Our findings suggest that hemlock decline may result in long-term changes in headwater ecosystems leading to reductions in both within-stream (i.e., alpha) and park-wide (i.e., gamma) benthic community diversity.

  1. Coniferous coverage as well as catchment steepness influences local stream nitrate concentrations within a nitrogen-saturated forest in central Japan.

    PubMed

    Watanabe, Mirai; Miura, Shingo; Hasegawa, Shun; Koshikawa, Masami K; Takamatsu, Takejiro; Kohzu, Ayato; Imai, Akio; Hayashi, Seiji

    2018-04-28

    High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L -1 , those in 31 catchments consistently exceeded 1 mgN L -1 , indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment

    USGS Publications Warehouse

    Gannon, John P; Bailey, Scott W.; McGuire, Kevin J.; Shanley, James B.

    2015-01-01

    We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM) at the catchment outlet and the predicted spatial extent of shallow groundwater in soils throughout the catchment. While near-stream soils are generally considered a DOC source in forested catchments, DOC concentrations in near-stream groundwater were low (mean = 2.4 mg/L, standard error = 0.6 mg/L), less than hillslope groundwater farther from the channel (mean = 5.7 mg/L, standard error = 0.4 mg/L). Furthermore, water tables in near-stream soils did not rise into the carbon-rich upper B or O horizons even during events. In contrast, soils below bedrock outcrops near channel heads where lateral soil formation processes dominate had much higher DOC concentrations. Soils immediately downslope of bedrock areas had thick eluvial horizons indicative of leaching of organic materials, Fe, and Al and had similarly high DOC concentrations in groundwater (mean = 14.5 mg/L, standard error = 0.8 mg/L). Flow from bedrock outcrops partially covered by organic soil horizons produced the highest groundwater DOC concentrations (mean = 20.0 mg/L, standard error = 4.6 mg/L) measured in the catchment. Correspondingly, stream water in channel heads sourced in part by shallow soils and bedrock outcrops had the highest stream DOC concentrations measured in the catchment. Variation in FDOM concentrations at the catchment outlet followed water table fluctuations in shallow to bedrock soils near channel heads. We show that shallow hillslope soils receiving runoff from organic matter-covered bedrock outcrops may be a major source of DOC in headwater catchments in forested mountainous regions where catchments have exposed or shallow bedrock near channel heads.

  3. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.

  4. The effect of source material in determining the photoreactivity of DOM in peatland aquatic systems

    NASA Astrophysics Data System (ADS)

    Pickard, Amy; Heal, Kate; McLeod, Andy; Dinsmore, Kerry

    2016-04-01

    Aquatic systems draining peatlands receive a high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the fate of aquatic DOM remains poorly constrained, in part due to lack of knowledge regarding the photoreactivity of DOM and how this changes as a function of variability in source material. In this study water samples were collected monthly for a 13-month period from two contrasting aquatic systems in Scotland: a stream draining a peatland with high DOM concentrations (33.3 ± 14.2 mg DOC L-1) and a reservoir draining a peat catchment with low DOM concentrations (4.16 ± 0.91 mg DOC L-1). Controlled UV irradiation laboratory experiments were conducted on samples filtered to 0.2 μm in order to assess the photoreactivity of the DOM, measured as the unit mass of DOC lost upon irradiation. Experiments took place over 8h in temperature controlled conditions, with unirradiated samples used as controls. After exposure, a range of analytical techniques were used to characterise the DOM to yield information about its source material and to determine how this was related to the observed photoreactivity. Lignin phenol analyses indicate considerable contribution of Sphagnum to DOM at the stream site, particularly during summer, as demonstrated by high P-hydroxy/Vanillyl phenol ratios (P/V). Low P/V ratios were correlated with increased photoreactivity, (Pearson's: -0.410; p = 0.15, n = 13), suggesting that DOM from woody lignin sources within the catchment was more photolabile. Photoreactivity was also negatively correlated with Fluorescence Index (FI) values (Pearson's: -0.555; p = 0.055, n = 13), where low FI values are understood to indicate greater contribution of terrestrially derived material to aquatic DOM. Excitation-emission matrices (EEMs) indicate that DOM at the stream site was primarily comprised of a humic-like peak (Ex/Em = 340, 380/460 nm). However, there was also contribution from a protein-like peak (Ex/Em = 290, 320/350 nm), which was present in samples with lower photoreactivity. DOM at the reservoir site was primarily composed of the same identified protein-like peak, which may account for the lower observed photoreactivity of these samples. Although total DOC concentration is the dominant control on photo-induced DOC losses in peatland aquatic systems, these results show that organic matter characterisation can be used to further comprehend changes to DOM photoreactivity. Increased understanding of DOM processing in aquatic freshwater systems will allow the fate of DOM to be more accurately determined.

  5. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo.

    PubMed

    Luke, Sarah H; Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M; Foster, William A; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C; Walsh, Rory P D; Aldridge, David C

    2017-06-01

    Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.

  6. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  7. Identifying dissolved oxygen variability and stress in tidal freshwater streams of northern New Zealand.

    PubMed

    Wilding, Thomas K; Brown, Edmund; Collier, Kevin J

    2012-10-01

    Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.

  8. Conceptual modelling of E. coli in urban stormwater drains, creeks and rivers

    NASA Astrophysics Data System (ADS)

    Jovanovic, Dusan; Hathaway, Jon; Coleman, Rhys; Deletic, Ana; McCarthy, David T.

    2017-12-01

    Accurate estimation of faecal microorganism levels in water systems, such as stormwater drains, creeks and rivers, is needed for appropriate assessment of impacts on receiving water bodies and the risks to human health. The underlying hypothesis for this work is that a single conceptual model (the MicroOrganism Prediction in Urban Stormwater model - i.e. MOPUS) can adequately simulate microbial dynamics over a variety of water systems and wide range of scales; something which has not been previously tested. Additionally, the application of radar precipitation data for improvement of the model performance at these scales via more accurate areal averaged rainfall intensities was tested. Six comprehensive Escherichia coli (E. coli) datasets collected from five catchments in south-eastern Australia and one catchment in Raleigh, USA, were used to calibrate the model. The MOPUS rainfall-runoff model performed well at all scales (Nash-Sutcliffe E for instantaneous flow rates between 0.70 and 0.93). Sensitivity analysis showed that wet weather urban stormwater flows can be modelled with only three of the five rainfall runoff model parameters: routing coefficient (K), effective imperviousness (IMP) and time of concentration (TOC). The model's performance for representing instantaneous E. coli fluctuations ranged from 0.17 to 0.45 in catchments drained via pipe or open creek, and was the highest for a large riverine catchment (0.64); performing similarly, if not better, than other microbial models in literature. The model could also capture the variability in event mean concentrations (E = 0.17-0.57) and event loads (E = 0.32-0.97) at all scales. Application of weather radar-derived rainfall inputs caused lower overall performance compared to using gauged rainfall inputs in representing both flow and E. coli levels in urban drain catchments, with the performance improving with increasing catchment size and being comparable to the models that use gauged rainfall inputs at the large riverine catchment. These results demonstrate the potential of the MOPUS model and its ability to be applied to a wide range of catchment scales, including large riverine systems.

  9. Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of Peatland

    USGS Publications Warehouse

    Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.

    2000-01-01

    In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.

  10. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize and quantify sources of sediment and particle transport processes within an agricultural catchment.

  11. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Treesearch

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  12. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Treesearch

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  13. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    PubMed

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal pattern, driven by interactive influences on water quantity and quality of climate, geology, and terrestrial vegetation. Because climatic and vegetation dynamics vary annually in a seasonal, cyclic manner, a periodic function can be used to fit a sinusoidal model to the salinity pattern. The model framework used here is broadly applicable in systems with streamflow-dependent chronic salinity stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification products (excess N2 mean: 1.57 mg/l, N2O mean: 1.61µg/l). Groundwater in the sandstone catchment had a comparable mean NO3--N concentration to that of the slate site (6.24mg/l) and while temporal variation was low (SD: 0.9 mg/l), spatial variation was substantially greater (SD: 3.63 mg/l). The accumulation of denitrification products in the sandstone catchment showed a large contrast to that of the slate with excess N2 ranging from 0.16-8.77 mg/l and N2O from 0.07-66.42 µg/l. Mean dissolved oxygen concentration and redox potential were 5.6mg/l and 67.5mV respectively. The near stream zones in particular were marked by favourable denitrifying conditions: hydraulic conductivity (<2m/day), Eh (<50mV) and DO (<5mg/l). Winter recharge had a diluting effect, increasing the concentration of DO and Eh with a concurrent decrease in excess N2 and N2O. The evolution of groundwater geochemistry along a subsurface flow path is a function of residence time. While both catchments are characterised as permeable, the slate catchment exhibits greater hydraulic conductivity values, particularly at depth, with groundwater geochemistry in all horizons reflective of recently recharged water. The deeper groundwater pathways and near stream zones in the sandstone catchment have a lower hydraulic conductivity. As such, dissolved oxygen and redox gradients occur with depth, causing the development of NO3- reducing zones.

  15. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    NASA Technical Reports Server (NTRS)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  16. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference

    NASA Astrophysics Data System (ADS)

    Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland

    2017-09-01

    The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.

  17. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.

    PubMed

    Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  18. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    NASA Astrophysics Data System (ADS)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  19. A perspective on stream-catchment connections

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1993-01-01

    Ecological study of the hyporheic zone is leading to recognition of a need for additional hydrologic understanding. Some of this understanding can be obtained by viewing the hyporheic zone as a succession of isolated boxes adjacent to the stream. Further understanding, particularly relevant to catchment-scale ecology, may come from studies focussed on the fluid mechanics of the flow-path connections between streams and their catchments.

  20. Cross-regional prediction of long-term trajectory of stream water DOC response to climate change

    Treesearch

    H. Laudon; J.M. Buttle; S.K. Carey; J.J. McDonnell; K.J. McGuire; J. Seibert; J. Shanley; C. Soulsby; D. Tetzlaff

    2012-01-01

    There is no scientific consensus about how dissolved organic carbon (DOC) in surface waters is regulated. Here we combine recent literature data from 49 catchments with detailed stream and catchment process information from nine well established research catchments at mid- to high latitudes to examine the question of how climate controls stream water DOC. We show for...

  1. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    NASA Astrophysics Data System (ADS)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  2. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    USGS Publications Warehouse

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  3. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Weynell, Marc; Wiechert, Uwe; Schuessler, Jan A.

    2017-09-01

    This study presents lithium (Li) isotope ratios (δ7Li) for rocks, sediments, suspended particulate material, and dissolved Li from the Lake Donggi Cona catchment, located on the northeastern Tibetan Plateau, China. The average δ7Li = +1.9‰ of the bedrocks is estimated from local loess. δ7Li values decrease progressively within the sediment cascade from loess, to river and lake floor sediments. The lake floor sediments average at -0.7‰. The difference between bedrock and lake sediments reflects the preferential fractionation of dissolved 6Li into clay minerals (mostly illite) in the weathering zone and grain-size sorting during fluvial sediment transport. The δ7Li values of stream and lake water samples range from +13.6 to +20.8‰, whereas thermal waters fall between +5.9 and +11.6‰. The δ7Li values of lake water samples are close to +17‰ and reflect mixing of waters from two perennial inflows and thermal waters. Dissolved Li in streams represents an integrated isotopic signal derived from soil solutions in the weathering zone. An apparent isotopic fractionation of -17.8 ± 1.6‰ (αsec-sol ∼ 0.982) between secondary minerals and solution was determined. An inflow that drains a sub-catchment in the north carries a high proportion of thermal waters. Despite of the high proportion of admixed thermal waters with high Li concentrations and low δ7Li, this stream has the highest δ7Li values of about +21‰. This is consistent with admixing of thermal waters to solutions in the weathering zone and subsequent fractionation by preferential uptake of isotopically light dissolved Li into secondary phases. Based on Li isotope ratios of the dissolved and solid export flux from the weathering zone we calculated that around five times more Li is exported in particles than dissolved in streams. An average δ7Li value of about +17‰ of most streams and the lake is reflecting a low weathering intensity and chemical weathering rate of about 4 t/km2/a. Low weathering rates and an erosion dominated weathering system are consistent with moderate precipitations, the cold climate, and the high relief of the study area.

  4. Cumulative impacts of mountaintop mining on an Appalachian watershed

    PubMed Central

    Lindberg, T. Ty; Bernhardt, Emily S.; Bier, Raven; Helton, A. M.; Merola, R. Brittany; Vengosh, Avner; Di Giulio, Richard T.

    2011-01-01

    Mountaintop mining is the dominant form of coal mining and the largest driver of land cover change in the central Appalachians. The waste rock from these surface mines is disposed of in the adjacent river valleys, leading to a burial of headwater streams and dramatic increases in salinity and trace metal concentrations immediately downstream. In this synoptic study we document the cumulative impact of more than 100 mining discharge outlets and approximately 28 km2 of active and reclaimed surface coal mines on the Upper Mud River of West Virginia. We measured the concentrations of major and trace elements within the tributaries and the mainstem and found that upstream of the mines water quality was equivalent to state reference sites. However, as eight separate mining-impacted tributaries contributed their flow, conductivity and the concentrations of selenium, sulfate, magnesium, and other inorganic solutes increased at a rate directly proportional to the upstream areal extent of mining. We found strong linear correlations between the concentrations of these contaminants in the river and the proportion of the contributing watershed in surface mines. All tributaries draining mountaintop-mining-impacted catchments were characterized by high conductivity and increased sulfate concentration, while concentrations of some solutes such as Se, Sr, and N were lower in the two tributaries draining reclaimed mines. Our results demonstrate the cumulative impact of multiple mines within a single catchment and provide evidence that mines reclaimed nearly two decades ago continue to contribute significantly to water quality degradation within this watershed. PMID:22160676

  5. Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment

    NASA Astrophysics Data System (ADS)

    Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip

    2014-05-01

    Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.

  6. Is Fractal 1/f Scaling in Stream Chemistry Universal?

    NASA Astrophysics Data System (ADS)

    Hrachowitz, M.

    2016-12-01

    Stream water chemistry data from catchments worldwide suggest that catchments act as filters that transform white noise, i.e. random input signals such as in precipitation, into 1/fαnoise whose slope in a power spectrum typically ranges between -0.5>α> -1.5. This previously lead to the hypothesis that catchments act as fractal filters, i.e. a slope of α=-1 may be a universal and intrinsic property of catchments. That would have considerable implications on the predictability of stream water chemistry, as both, temporal short- and long-range interdependence control the system response. While short memories and thus flatter slopes with α closer to 0 indicate poor short term but good long-term predictability, steeper slopes (α <<-1) indicate the opposite. In fractal systems, i.e. α=-1, this therefore leads to inherent problems of predicting both, short and long-term response patterns. The hypothesis of catchments acting as fractal filters remains to be tested more profoundly. It is not yet clear, if observed inter-catchment variations in α need to be interpreted as noise in the signal or if the variations underlie a systematic pattern and can be explained by some characteristic of catchment function. Here we will test the hypothesis that the spectral slope of stream water chemistry is not necessarily α=-1 and that catchments therefore do not inherently act as fractal filters. Further, it will be tested if closer links between the variations in spectral slope and hydrological function of catchments can be identified. The combined data-analysis and modelling study uses hydrochemical data (i.e. Cl-) from a wide range of catchments worldwide. The study catchments are physically contrasting, from distinct climate zones, and with distinct landscapes and vegetation. To identify patterns in the variations of α, firstly the power spectra of observed stream chemistry are compared with physical catchment characteristics using methods such as cluster analysis. In a subsequent step, the stream water dynamics of the study catchments are modelled using integrated catchment-scale models. Catchments for which the observed spectral signature can be meaningfully reproduced by the model, are used for further analysis, relating the modelled flux and state dynamics to variations in α, to explore links between flow processes α.

  7. The road to NHDPlus — Advancements in digital stream networks and associated catchments

    USGS Publications Warehouse

    Moore, Richard B.; Dewald, Thomas A.

    2016-01-01

    A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.

  8. Evaluating changes in stream fish species richness over a 50-year time-period within a landscape context

    USGS Publications Warehouse

    Midway, Stephen R.; Wagner, Tyler; Tracy, Bryn H.; Hogue, Gabriela M.; Starnes, Wayne C.

    2015-01-01

    Worldwide, streams and rivers are facing a suite of pressures that alter water quality and degrade physical habitat, both of which can lead to changes in the composition and richness of fish populations. These potential changes are of particular importance in the Southeast USA, home to one of the richest stream fish assemblages in North America. Using data from 83 stream sites in North Carolina sampled in the 1960’s and the past decade, we used hierarchical Bayesian models to evaluate relationships between species richness and catchment land use and land cover (e.g., agriculture and forest cover). In addition, we examined how the rate of change in species richness over 50 years was related to catchment land use and land cover. We found a negative and positive correlation between forest land cover and agricultural land use and average species richness, respectively. After controlling for introduced species, most (66 %) stream sites showed an increase in native fish species richness, and the magnitude of the rate of increase was positively correlated to the amount of forested land cover in the catchment. Site-specific trends in species richness were not positive, on average, until the percentage forest cover in the network catchment exceeded about 55 %. These results suggest that streams with catchments that have moderate to high (>55 %) levels of forested land in upstream network catchments may be better able to increase the number of native species at a faster rate compared to less-forested catchments.

  9. A low cost strategy to monitor the expansion and contraction of the flowing stream network in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan

    2017-04-01

    Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.

  10. Identification of internal flow dynamics in two experimental catchments

    USGS Publications Warehouse

    Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

    1997-01-01

    Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

  11. EFFECT OF A WHOLE-CATCHMENT N ADDITION ON STREAM DETRITUS PROCESSING

    EPA Science Inventory

    The Bear Brook Watershed in Maine (BBWM) is a paired catchment study investigating ecosystem effects of N and S deposition. Because of the decade long (NH4)2SO4 addition, the treatment catchment has higher stream NO3 and enriched foliar N concentrations compared to the reference ...

  12. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest gains were observed downstream of where the Selke River leaves the Harz Mountains and enters the alluvial plains. At this location, land use, hydrogeological setup and river slope as well as average slope of the contributing catchment area change significantly. Downstream of this point 15N isotope values were also significantly higher, suggesting higher denitrification activity in the deeper aquifers of lower catchment. While specific discharge (discharge per catchment area) was 3 times higher in the upper catchment, nitrate mass flux per area was more than 3 times higher in lower catchment compared to the respective other part of the catchment. We conclude that catchment morphology, (hydro)geology and hydrology control river-groundwater connectivity while the interplay with land use controls in stream nitrate concentrations. Repeated sampling campaigns will allow assessing seasonal changes in solute inputs and turnover. References Frei, S. & Gilfedder, B.S. (2015): FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resources Research, DOI: 10.1002/2015WR017212.

  13. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This mechanism may be as important as changes in hydrological flow pathways within the peat in mobilising aged carbon from the systems.

  14. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    PubMed

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  15. Deforestation and Benthic Indicators: How Much Vegetation Cover Is Needed to Sustain Healthy Andean Streams?

    PubMed Central

    Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941

  16. Corrigendum to ;Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications; [J. Hydrol. 541 (2016) 1104-1118

    NASA Astrophysics Data System (ADS)

    Li, Xiangying; He, Xiaobo; Kang, Shichang; Mika, Sillanpää; Ding, Yongjian; Han, Tianding; Wu, Qingbai; Yu, Zhongbo

    2017-12-01

    The authors regret: At the Dongkemadi Glacier (DG) basin, daily and annual meltwater discharge at gauging section S1 should be corrected. Namely, annual discharge should be 2.74 × 107 m3 throughout 1 June to 30 September of 2013. Thus, variation in solute exports is controlled by changes in discharge and specific solute concentration (Fig. 9), and the estimated solute export, cation denudation rates (CDR) and discharge-normalized CDR are 417 tons, 185 Σ∗meq+m-2 and 189 Σ∗meq+m-3 (with annual specific discharge of 0.98 m) respectively in 2013 (Table 4). In comparison, the CDR at the DG basin is within the scope of previously published CDR (94-4200 Σ∗meq+m-2) from glacial catchments (Hodson et al., 2010). The discharge-normalized CDR is lower than the rates from most glacial catchments, but is higher than those from Mittivakkat (Greenland), S Cascade (N American) and Lewis River (Arctic) (Yde et al., 2004, 2014; Hodson et al., 2000, 2010).

  17. Sulfur Mass Balances of Forested Catchments: Improving Predictions of Stream Sulfate Concentrations Through Better Representation of Soil Storage and Release

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Rice, K. C.; Riscassi, A.; Cosby, B. J., Jr.

    2015-12-01

    Sulfur dioxide (SO2) emissions in the eastern United States have declined by more than 80% since 1970, when the Clean Air Act first established limits on emissions from stationary and mobile sources. In many areas throughout the northeastern U.S., the resulting declines in sulfate (SO42-) deposition have been accompanied by declines in stream SO42- concentrations. In the southeastern U.S., however, declines in stream SO42- concentrations have not been observed on a widespread basis. In fact, SO42- concentrations continue to increase in many southeastern streams despite decades of declining deposition. This difference in behavior between northeastern and southeastern streams, owing to the distinct geological histories of their catchment soils, was anticipated by the Direct/Delayed Response Project initiated by the U.S. EPA during the early 1980s. At that time, understanding of how catchments store and release SO42- was mostly grounded in theory. Now, with the accumulation of long-term stream chemistry and hydrological datasets in forested catchments, we may develop an empirical basis for characterizing catchment storage and release of SO42-. In particular, are whole-catchment isotherms that described the partitioning between adsorbed and dissolved SO42- (1) linear or non-linear and (2) reversible or irreversible? How do these isotherms vary on a geographical basis? We apply mass balance combined with a simple theoretical framework to infer whole-catchment SO42- isotherms in Virginia and New England. Knowledge of this key soil geochemical property is needed to improve predictions of how catchments will store and export SO42- under changing levels of atmospheric deposition.

  18. Spatial and temporal variations in landscape evolution: historic and longer-term sediment flux through global catchments

    USGS Publications Warehouse

    Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur

    2013-01-01

    Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (<500 km) exhibit broad similarity ( stream gauge samples; CRN samples). Nearly two-thirds of CRN-derived sediment loads exceed historic loads measured at the same locations (). Excessive longer-term sediment loads likely are a result of longer-term recurrence of large-magnitude sediment-transport events. Nearly 80% of sediment loads measured at approximately the same locations exhibit stream gauge loads that are within an order of magnitude of CRN loads, likely as a result of the buffering capacity of large flood plains. Catchments in which space for deposition exceeds sediment supply have greater buffering capacity. Superior locations in which to evaluate anthropogenic influences on landscape evolution might be buffered catchments, in which temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.

  19. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Road and Stream Intersections

    EPA Pesticide Factsheets

    This dataset represents the density of road and stream crossings within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and then accumulated to provide watershed-level metrics. (see Data Sources for links to NHDPlusV2 data and metadata) The landscape layer (raster) was developed by James Falcone of the USGS. US Census TIGER 2000 line files of roads and the NHDPlusV1 line files of all streams were converted to 30-meter grids where the presence of a street or stream was a 1 and everything else a 0. These were intersected and anything that was a 1 in both grids is the result. The density of road and stream crossings (crossings / square kilometer) were summarized to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  20. Is fractal 1/f scaling in stream chemistry universal?

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus

    2016-04-01

    Stream water chemistry data from catchments worldwide suggest that catchments act as filters that transform white noise, i.e. random, input signals such as in precipitation, into 1/f^α noise whose slope in a power spectrum typically ranges between -0.5>α>-1.5. This previously lead to the hypothesis that catchments act as fractal filters. In other words, it was posed that considering uncertainty, a slope of α=-1 may be a universal and intrinsic property of catchments. Such fractal scaling characteristics would have considerable implications on the predictability of stream water chemistry, as both, temporal short- and long-range interdependence and memory control the system response. While short memories and thus flatter slopes with α closer to 0 indicate poor short term but good long-term predictability, steeper slopes with values of α <<-1 indicate the opposite. In fractal systems, i.e. where α=-1, this therefore leads to inherent problems of robustly predicting both, short and long-term response patterns. The hypothesis of catchments acting as fractal filters (α=-1), however, remains to be tested more profoundly. It is, for example, not yet clear, if the observed inter-catchment variations in α indeed need to be interpreted as uncertainty and noise in the signal or if the variations underlie a systematic pattern and can be explained by some characteristic of catchment function, as was recently suggested in a modelling study based two experimental catchments (Hrachowitz et al., 2015). Here we will therefore further test the hypothesis that the spectral slope of stream water chemistry is not necessarily α=-1 and that catchments therefore do not inherently act as fractal filters. Further, it will be tested if closer links between the variations in spectral slope and hydrological function of catchments can be identified. The combined data-analysis and modelling study uses hydrochemical data (i.e. Cl- and O-18) from a wide range of catchments worldwide to allow a robust inter-comparison of response characteristics. The high number of study catchments is chosen to represent physically contrasting catchments in distinct climate zones, distinct landscape types and with distinct vegetation patterns. To identify potential patterns in the variations of α, firstly the power spectra of the observed stream chemistry in the study catchments are compared with physical catchment characteristics using statistical methods such as cluster analysis. In a subsequent step, the stream water dynamics of the study catchments are modeled using integrated catchment-scale conceptual models. Catchments for which the observed spectral signature can be meaningfully reproduced by the model, are used for further analysis, relating the model-internal flux and state dynamics to variations in α, to explore if systematic links between different flow processes and a can be established.

  1. A catchment scale evaluation of multiple stressor effects in headwater streams.

    PubMed

    Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian

    2013-01-01

    Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded problematic thresholds, suggesting that more holistic approaches should be preferred. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.

  3. Landuse legacies and small streams: Identifying relationships between historical land use and contemporary stream conditions

    USGS Publications Warehouse

    Maloney, K.O.; Feminella, J.W.; Mitchell, R.M.; Miller, S.A.; Mulholland, P.J.; Houser, J.N.

    2008-01-01

    The concept of landscape legacies has been examined extensively in terrestrial ecosystems and has led to a greater understanding of contemporary ecosystem processes. However, although stream ecosystems are tightly coupled with their catchments and, thus, probably are affected strongly by historical catchment conditions, few studies have directly examined the importance of landuse legacies on streams. We examined relationships between historical land use (1944) and contemporary (2000-2003) stream physical, chemical, and biological conditions after accounting for the influences of contemporary land use (1999) and natural landscape (catchment size) variation in 12 small streams at Fort Benning, Georgia, USA. Most stream variables showed strong relationships with contemporary land use and catchment size; however, after accounting for these factors, residual variation in many variables remained significantly related to historical land use. Residual variation in benthic particulate organic matter, diatom density, % of diatoms in Eunotia spp., fish density in runs, and whole-stream gross primary productivity correlated negatively, whereas streamwater pH correlated positively, with residual variation in fraction of disturbed land in catchments in 1944 (i.e., bare ground and unpaved road cover). Residual variation in % recovering land (i.e., early successional vegetation) in 1944 was correlated positively with residual variation in streambed instability, a macroinvertebrate biotic index, and fish richness, but correlated negatively with residual variation in most benthic macroinvertebrate metrics examined (e.g., Chironomidae and total richness, Shannon diversity). In contrast, residual variation in whole-stream respiration rates was not explained by historical land use. Our results suggest that historical land use continues to influence important physical and chemical variables in these streams, and in turn, probably influences associated biota. Beyond providing insight into biotic interactions and their associations with environmental conditions, identification of landuse legacies also will improve understanding of stream impairment in contemporary minimally disturbed catchments, enabling more accurate assessment of reference conditions in studies of biotic integrity and restoration. ?? 2008 by The North American Benthological Society.

  4. A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A.

    USGS Publications Warehouse

    Maloney, Kelly O.; Young, John A.; Faulkner, Stephen; Hailegiorgis, Atesmachew; Slonecker, E. Terrence; Milheim, Lesley

    2018-01-01

    The development of unconventional oil and gas (UOG) involves infrastructure development (well pads, roads and pipelines), well drilling and stimulation (hydraulic fracturing), and production; all of which have the potential to affect stream ecosystems. Here, we developed a fine-scaled (1:24,000) catchment-level disturbance intensity index (DII) that included 17 measures of UOG capturing all steps in the development process (infrastructure, water withdrawals, probabilistic spills) that could affect headwater streams (< 200 km2 in upstream catchment) in the Upper Susquehanna River Basin in Pennsylvania, U.S.A. The DII ranged from 0 (no UOG disturbance) to 100 (the catchment with the highest UOG disturbance in the study area) and it was most sensitive to removal of pipeline cover, road cover and well pad cover metrics. We related this DII to three measures of high quality streams: Pennsylvania State Exceptional Value (EV) streams, Class A brook trout streams and Eastern Brook Trout Joint Venture brook trout patches. Overall only 3.8% of all catchments and 2.7% of EV stream length, 1.9% of Class A streams and 1.2% of patches were classified as having medium to high level DII scores (> 50). Well density, often used as a proxy for development, only correlated strongly with well pad coverage and produced materials, and therefore may miss potential effects associated with roads and pipelines, water withdrawals and spills. When analyzed with a future development scenario, 91.1% of EV stream length, 68.7% of Class A streams and 80.0% of patches were in catchments with a moderate to high probability of development. Our method incorporated the cumulative effects of UOG on streams and can be used to identify catchments and reaches at risk to existing stressors or future development.

  5. Nutrient transport to the Swan-Canning Estuary, Western Australia

    NASA Astrophysics Data System (ADS)

    Peters, Norman E.; Donohue, Robert

    2001-09-01

    Catchment nutrient availability in Western Australia is primarily controlled by the disposal of animal waste and the type and rate of fertilizer application, particularly on the relatively narrow (25 km wide), sandy coastal plain. Nitrogen (N) and phosphorus (P) concentrations and fluxes during the wet season of 15 tributaries, including four urban drains to the Swan-Canning Estuary, were evaluated from 1986 to 1992 and additionally concentrations only were evaluated throughout the year from 1993 to 1996. Concentrations of filtered reactive P (FRP) and total P (TP) were generally low, with the volume-weighted means for all sites being 0·06 mg l-1 and 0·12 mg l-1 respectively. The urban drains had higher TP concentrations (volume-weighted mean of 0·21 mg l-1) than the streams (0·12 mg l-1), with the high concentrations associated with particulate matter. Total inorganic N (TIN, NH4N plus NO3N) and total N (TN), which is of interest to eutrophic status of the N-limited estuary, were likewise low, compared with other developed areas having a similar climate. Both TIN and TN were higher in the urban drains (0·76 mg l-1 and 1·5 mg l-1 respectively) than the streams (0·31 mg l-1 and 1·2 mg l-1 respectively). The Avon River, which drains 98·5% of the 121 000 km2 catchment area, contributes most of the N (0·03 kg ha-1 year-1 or 65%) and a high percentage of the P (<0·01 kg ha-1

  6. Nutrient transport to the Swan - Canning Estuary, Western Australia

    USGS Publications Warehouse

    Peters, N.E.; Donohue, R.

    2001-01-01

    Catchment nutrient availability in Western Australia is primarily controlled by the disposal of animal waste and the type and rate of fertilizer application, particularly on the relatively narrow (~25 km wide), sandy coastal plain. Nitrogen (N) and phosphorous (P) concentrations and fluxes during the wet season of 15 tributaries, including four urban drains to the Swan-Canning Estuary, were evaluated from 1986 to 1992 and additionally concentrations only were evaluated throughout the year from 1993 to 1996. Concentrations of filtered reactive P (FRP) and total P (TP) were generally low, with the volume-weighted means for all sites being 0.06 mg 1-1 and 0.12 mg 1-1 respectively. The urban drains had higher TP concentrations (volume-weighted mean of 0.21 mg 1-1) than the streams (0.12 mg 1-1), with the high concentrations associated with particulate matter. Total inorganic N (TIN, NH4N plus NO3N) and total N (TN), which is of interest to eutrophic status of the N-limited estuary, were likewise low, compared with other developed areas having a similar climate. Both TIN and TN were higher in the urban drains (0.76 mg 1-1 and 1.5 mg 1-1 respectively) than the streams (0.31 mg 1-1 and 1.2 mg 1-1 respectively). The Avon River, which drains 98.5% of the 121 000 km2 catchment area, contributes most of the N (0.03 kg ha-1 year-1 or 65%) and a high percentage of the P (<0.01 kg ha-1 year-1 or 32%) to the estuaries. The Avon River nutrient fluxes are much less than other tributaries closer to the estuary. The coastal plain receives significantly higher rainfall (1,200 mm year-1) and has more intense horticulture and animal production than inland areas (<300 mm year-1). Annual rainfall is seasonal, occuring primarily from May through December. The surficial aquifers on the coastal plain generally are sandy with a low nutrient retention capacity, and rapidly transmit soluble and colloidal material in subsurface flow. Ellen Brook, on the coastal plain, drains pastures treated with superphosphate and has the highest FRP (0.51 mg 1-1), TP (0.7 mg 1-1) and TN (2.1 mg 1-1) of any tributary to the estuary. The coastal plain is also undergoing urbanization, particularly in areas adjacent to the estuary. Nutrients are subsequently available for transport during the onset of seasonal wet weather. Perennial baseflow from urban areas is an important source of nutrients. Water yield from the urban areas was high, being as much as 50% of annual rainfall. The timing of the nutrients delivered by the tributaries may be an important control on estuarine ecology. Copyright ?? 2001 John Wiley and Sons, Ltd.

  7. Tracing seasonal groundwater contributions to stream flow using a suite of environmental isotopes

    NASA Astrophysics Data System (ADS)

    Pritchard, J. L.; Herczeg, A. L.; Lamontagne, S.

    2003-04-01

    Groundwater discharge to streams is important for delivering essential solutes to maintain ecosystem health and flow throughout dry seasons. However, managing the groundwater components of stream flow is difficult because several sources of water can contribute, including delayed drainage from bank storage and regional groundwater. In this study we assessed the potential for a variety of environmental tracers to discriminate between different sources of water to stream flow. A case study comparing Cl-, delta O-18 &delta H-2, Rn-222 and 87Sr/86Sr to investigate the spatial and temporal variability of groundwater inputs to stream flow was conducted in the Wollombi Brook Catchment (SE Australia). The objectives were to characterise the three potential sources of water to stream flow (surface water, groundwater from the near-stream sandy alluvial aquifer system, and groundwater from the regional sandstone aquifer system) and estimate their relative contributions to stream discharge at flood recession and baseflow. Surface water was sampled at various locations along the Wollombi Brook and from its tributaries during flood recession (Mar-01) and under baseflow conditions (Oct-01). Alluvial groundwater was sampled from a piezometer network and regional groundwater from deeper bores in the lower to mid-catchment biannually over two years to characterise these potential sources of water to stream flow. Chloride identified specific reaches of the catchment that were either subjected to evaporation or received regional groundwater contributions to stream flow. The water isotopes verified which of these reaches were dominated by evaporation versus groundwater contributions. They also revealed that the predominant sources of water to stream flow during flood recession were either rainfall and storm runoff or regional groundwater, and that during baseflow the predominant source of water to stream flow was alluvial groundwater. Radon showed that there was a greater proportion of groundwater contributing to stream flow in the upper part of the catchment than the lower catchment during both flood recession and baseflow. Strontium isotopes showed that regional groundwater contributed less than 10% to stream flow in all parts of the catchment under baseflow conditions.

  8. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments.

    PubMed

    Sarkkola, Sakari; Koivusalo, Harri; Laurén, Ari; Kortelainen, Pirkko; Mattsson, Tuija; Palviainen, Marjo; Piirainen, Sirpa; Starr, Mike; Finér, Leena

    2009-12-15

    Temporal trends in stream water total organic carbon (TOC) concentration and export were studied in 8 forested headwater catchments situated in eastern Finland. The Seasonal Kendall test was conducted to identify the trends and a mixed model regression analysis was used to describe how catchment characteristics and hydrometeorological variables (e.g. precipitation, air and stream water temperatures, and atmospheric deposition) related to the variation in the concentration and export of stream water TOC. The 8 catchments varied in size from 29 to 494 ha and in the proportion of peatland they contained, from 8 to 70%. Runoff and TOC concentration were monitored for 15-29 years (1979-2006). Trends and variation in TOC levels were analysed from annual and seasonal time series. Mean annual TOC concentration increased significantly in seven of the eight catchments. The trends were the strongest in spring and most apparent during the last decade of the study period. The slopes of the trends were generally smaller than the variation in TOC concentration between years and seasons and between catchments. The annual TOC export showed no clear trends and values were largely determined by the temporal variability in runoff. Annual runoff showed a decreasing trend in two of the eight catchments. Mean annual air and stream water temperatures showed increasing trends, most clearly seen in the summer and autumn series. According to our modeling results, stream water temperature, precipitation and peatland percentage were the most important variables explaining annual and most seasonal TOC concentrations. The atmospheric deposition of SO4, NH4, and NO3 decreased significantly over the study period, but no significant link with TOC concentration was found. Precipitation was the main hydrometeorological driver of the TOC export. We concluded that stream water TOC concentrations and exports are mainly driven by catchment characteristics and hydrometeorological factors rather than trends in atmospheric acid deposition.

  9. River Ecosystem Response to Prescribed Vegetation Burning on Blanket peatland

    PubMed Central

    Brown, Lee E.; Johnston, Kerrylyn; Palmer, Sheila M.; Aspray, Katie L.; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson’s diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems. PMID:24278367

  10. River ecosystem response to prescribed vegetation burning on Blanket Peatland.

    PubMed

    Brown, Lee E; Johnston, Kerrylyn; Palmer, Sheila M; Aspray, Katie L; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.

  11. Effects of Atmospheric Nitrate on an Upland Stream of the Northeastern USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2009-05-01

    Excess nitrogen cascades through terrestrial biogeochemical cycles and affects stream nitrate concentrations in upland forests where atmospheric deposition is an important source of anthropogenic nitrogen. We will discuss approaches including high-frequency sampling, isotopic tracers, and end-member mixing analysis that can be used to decipher the sources, transformations, and hydrological processes that affect nitrate transport through forested upland catchments to streams. We present results of studies at the Sleepers River Research Watershed in Vermont, USA, a site where we have intensively measured stream nitrate concentrations during baseflow and stormflow. Stream nitrate concentrations are typically low and nearly 75% of annual inorganic N inputs from atmospheric deposition are retained within the catchment. However, high concentrations and stream loadings of nitrate occur during storm events due to source variation and hydrological flushing of nitrate from catchment soils. Using isotopic tracers and end-member mixing analysis, we have quantified source inputs of unprocessed atmospheric nitrate and show that this stream is directly affected by nitrogen pollution. Using a long-term record of stream hydrochemistry and our findings on event- scale nitrate flushing dynamics, we then explore how stream nitrate loading may respond to anthropogenic climate forcing during the next century. Results suggest that stream runoff and nitrate loadings will change during future emission scenarios (i.e. longer growing seasons and higher winter precipitation rates). Understanding the timing and magnitude of hydrological and hydrochemical responses is important because climate change effects on catchment hydrology may alter how nitrate is retained, produced, and hydrologically flushed in headwater ecosystems with implications for aquatic metabolism, nutrient export from catchments, and downstream eutrophication.

  12. Factors influencing stream baseflow transit times in tropical montane watersheds

    NASA Astrophysics Data System (ADS)

    Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.

    2016-04-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.

  13. Time series and recurrence interval models to predict the vulnerability of streams to episodic acidification in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Deviney, Frank A.; Rice, Karen C.; Hornberger, George M.

    2006-01-01

    Acid rain affects headwater streams by temporarily reducing the acid‐neutralizing capacity (ANC) of the water, a process termed episodic acidification. The increase in acidic components in stream water can have deleterious effects on the aquatic biota. Although acidic deposition is uniform across Shenandoah National Park (SNP) in north central Virginia, the stream water quality response during rain events varies substantially. This response is a function of the catchment's underlying geology and topography. Geologic and topographic data for SNP's 231 catchments are readily available; however, long‐term measurements (tens of years) of ANC and accompanying discharge are not and would be prohibitively expensive to collect. Transfer function time series models were developed to predict hourly ANC from discharge for five SNP catchments with long‐term water‐quality and discharge records. Hourly ANC predictions over short time periods (≤1 week) were averaged, and distributions of the recurrence intervals of annual water‐year minimum ANC values were model‐simulated for periods of 6, 24, 72, and 168 hours. The distributions were extrapolated to the rest of the SNP catchments on the basis of catchment geology and topography. On the basis of the models, large numbers of SNP streams have 6‐ to 168‐hour periods of low‐ANC values, which may stress resident fish populations. Smaller catchments are more vulnerable to episodic acidification than larger catchments underlain by the same bedrock. Catchments with similar topography and size are more vulnerable if underlain by less basaltic/carbonate bedrock. Many catchments are predicted to have successive years of low‐ANC values potentially sufficient to extirpate some species.

  14. The Stream-Catchment (StreamCat) and Lake-Catchment (LakeCat) Datasets: leveraging existing geospatial frameworks and data to characterize lotic and lentic ecosystems across the conterminous US for ecological and environmental modeling

    EPA Science Inventory

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditi...

  15. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As mineralization were added to anomaly class and also one catchment basin with known As occurrence was highlighted as anomalous using new approach. The results demonstrated the usefulness of considering geomorphological parameters in dealing with dilution phenomenon in a catchment basin.

  16. Environmental Factors Affecting Brook Trout Occurrence in Headwater Stream Segments

    Treesearch

    Yoichiro Kanno; Benjamin H. Letcher; Ana L. Rosner; Kyle P. O' Neil; Keith H. Nislow

    2015-01-01

    We analyzed the associations of catchment-scale and riparian-scale environmental factors with occurrence of Brook Trout Salvelinus fontinalis in Connecticut headwater stream segments with catchment areas of 15 < km2. A hierarchical Bayesian approach was applied to a statewide stream survey data set, in which Brook...

  17. Climatic and Catchment-Scale Predictors of Chinese Stream Insect Richness Differ between Taxonomic Groups

    PubMed Central

    Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.

    2015-01-01

    Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190

  18. Assessing the response of Emerald Lake, an alpine watershed in Sequoia National Park, California, to acidification during snowmelt by using a simple hydrochemical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R.P.; West, C.T.; Peters, N.E.

    1990-01-01

    A sparsely parameterized hydrochemical model has been developed by using data from Emerald Lake watershed, which is a 120-ha alpine catchment in Sequoia National Park, California. Greater than 90% of the precipitation to this watershed is snow; hence, snowmelt is the dominant hydrologic event. A model which uses a single alkalinity-generating mechanism, primary mineral weathering, was able to capture the pattern of solute concentrations in surface waters during snowmelt. An empirical representation of the weathering reaction, which is based on rock weathering stoichiometry and which uses discharge as a measure of residence time, was included in the model. Results ofmore » the model indicate that current deposition levels would have to be increased between three-fold and eight-fold to exhaust the alkalinity of the lake during snowmelt if their is a mild acidic pulse in the stream at the beginning of snowmelt as was observed during the study period. The acidic pulse in the inflow stream at the onset of snowmelt was less pronounced than acidic pulses observed in the meltwater draining the snowpack at a point using snow lysimeters or in the laboratory. Sulfate concentrations in the stream water were the most constant; chloride and nitrate concentrations increased slightly at the beginning of snowmelt. Additional field work is required to resolve whether an acidic meltwater pulse occurs over a large area as well as at a point or whether, due to physical and chemical processes within the snowpack, the acidic meltwater pulse is attenuated at the catchment scale. The modest data requirements of the model permit its applications to other alpine watersheds that are much less intensively studied than Emerald Lake watershed.« less

  19. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.

    PubMed

    Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien

    2017-02-01

    Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.

  20. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?

    NASA Astrophysics Data System (ADS)

    Callow, John Nikolaus; Van Niel, Kimberly P.; Boggs, Guy S.

    2007-01-01

    SummaryMany digital elevation models (DEMs) have difficulty replicating hydrological patterns in flat landscapes. Efforts to improve DEM performance in replicating known hydrology have included a variety of soft (i.e. algorithm-based approaches) and hard techniques, such as " Stream burning" or "surface reconditioning" (e.g. Agree or ANUDEM). Using a representation of the known stream network, these methods trench or mathematically warp the original DEM to improve how accurately stream position, stream length and catchment boundaries replicate known hydrological conditions. However, these techniques permanently alter the DEM and may affect further analyses (e.g. slope). This paper explores the impact that commonly used hydrological correction methods ( Stream burning, Agree.aml and ANUDEM v4.6.3 and ANUDEM v5.1) have on the overall nature of a DEM, finding that different methods produce non-convergent outcomes for catchment parameters (such as catchment boundaries, stream position and length), and differentially compromise secondary terrain analysis. All hydrological correction methods successfully improved calculation of catchment area, stream position and length as compared to using the DEM without any modification, but they all increased catchment slope. No single method performing best across all categories. Different hydrological correction methods changed elevation and slope in different spatial patterns and magnitudes, compromising the ability to derive catchment parameters and conduct secondary terrain analysis from a single DEM. Modification of a DEM to better reflect known hydrology can be useful, however knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  1. Fluoroquinolones in the Wenyu River catchment, China: Occurrence simulation and risk assessment.

    PubMed

    Hao, Xuewen; Cao, Yan; Zhang, Lai; Zhang, Yongyong; Liu, Jianguo

    2015-12-01

    Concern is increasing regarding the environmental impact of the high usage rate and intensive release of antibiotics used for human and animal therapy in major urban areas of China. In the present study, regional environmental distribution simulations and risk assessments for 3 commonly used fluoroquinolones in the Wenyu River catchment were conducted using a typical catchment model widely used in Europe. The fluoroquinolone antibiotics investigated (ofloxacin, norfloxacin, and ciprofloxacin) are consumed at high levels for personal health care in China. These antibiotics were simulated in the aquatic environment of the Wenyu River catchment across the Beijing City area for annual average concentrations, with regional predicted environmental concentrations (PECs) of approximately 711 ng/L, 55.3 ng/L, and 22.2 ng/L and local PECs up to 1.8 µg/L, 116 ng/L, and 43 ng/L, respectively. Apart from hydrological conditions, the concentrations of fluoroquinolones were associated closely with the sewage treatment plants (STPs) and their serving population, as well as hospital distributions. The presence of these fluoroquinolones in the catchment area of the present study showed significant characteristics of the occurrence of pharmaceuticals in the aquatic environment in an urban river, with typical "down-the-drain" chemicals. Significantly high concentrations of specific antibiotics indicated non-negligible risks caused by the intensive use in the local aquatic environment in a metropolitan area, particularly ofloxacin in upstream Shahe Reservoir, middle stream and downstream Qing River, and Liangma River to the Ba River segment. Specific treatment measures for these pharmaceuticals and personal care products in STPs are required for such metropolitan areas. © 2015 SETAC.

  2. Time changes in radiocesium wash-off from various land uses after the Fukushima Daiichi NPP accident

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Kato, Hiroaki; Yoshimura, Kazuya; Tsujimura, Maki; Wakiyama, Yoshifumi; Taniguchi, Keisuke; Sakaguchi, Aya; Yamamoto, Masayoshi

    2014-05-01

    A number of studies have been conducted to monitor and model the time series change of radiocesium transfer through aquatic systems after significant fallout, especially from the Chernobyl disaster. However, no data is available for the temporal changes of radiocesium concentration in environmental materials such as soil and water after the Fukushima Daiichi nuclear power plant accident. Our research team has been monitoring the environmental consequences of radioactive contamination just after the Fukushima Daiichi NPP accident in Yamakiya-district, Kawamata town, Fukushima prefecture. Research items are listed below. 1. Radiocesium wash-off from the runoff-erosion plot under different land use. 2. Measurement of radiocesium transfer in forest environment, in association with hydrological pathways such as throughfall and overlandflow on hillslope. 3. Monitoring on radiocesium concentration in soil water, ground water, and spring water. 4. Monitoring of dissolved and particulate radiocesium concentration in river water, and stream water from the forested catchment. 5.Measurement of radiocesium content in drain water and suspended sediment from paddy field. Our monitoring result demonstrated that the Cs-137 concentration in eroded sediment from the runoff-erosion plot has been almost constant for the past 3 years, however the Cs-137 concentration of suspended sediment from the forested catchment showed slight decrease through time. On the other hand, the suspended sediment from paddy field and those in river water from large catchments exhibited rapid decrease in Cs-137 concentration with time. The decreasing trend of Cs-137 concentration were fitted by the two-component exponential model, differences in decreasing rate of the model were compared and discussed among various land uses and catchment scales. Such analysis can provide important insights into the future prediction of the radiocesium wash-off from catchments with different land uses.

  3. Flocculation of organic carbon from headwaters to estuary - the impact of soil erosion, water quality and land use on carbon transformation processes in eight streams draining Exmoor, UK

    NASA Astrophysics Data System (ADS)

    Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.

    2017-12-01

    Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.

  4. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  5. Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream

    NASA Astrophysics Data System (ADS)

    Caruso, Brian S.; Downs, Peter W.

    2007-08-01

    This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.

  6. Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in upper Vistula Basin, Poland and lowland catchment in South Carolina, U.S.A

    Treesearch

    A. Walega; A. Cupak; D.M. Amatya; E. Drozdzal

    2017-01-01

    The aim of the study is to compare direct outflow from storm events estimated using modifications of original SCS-CN procedure. The study was conducted in a mountainous catchment of Kamienica River and a highland catchment draining Stobnica River located in Upper Vistula water region, both in Poland, and a headwater lowland watershed WS80 located at the Santee...

  7. Stream water quality in the coal region of West Virginia and Maryland

    Treesearch

    Kenneth L. Dyer

    1982-01-01

    This report is a compilation of water quality data for 118 small streams sampled in 27 counties of West Virginia and nine streams in two counties of western Maryland. Forty-eight of these streams drain unmined watersheds; 79 drain areas where coal has been surface mined. Most of these streams were sampled at approximate monthly intervals. The water quality data from...

  8. SPARROW modeling of nitrogen sources and transport in rivers and streams of California and adjacent states, U.S.

    USGS Publications Warehouse

    Saleh, Dina; Domagalski, Joseph L.

    2015-01-01

    The SPARROW (SPAtially Referenced Regressions On Watershed attributes) model was used to evaluate the spatial distribution of total nitrogen (TN) sources, loads, watershed yields, and factors affecting transport and decay in the stream network of California and portions of adjacent states for the year 2002. The two major TN sources to local catchments on a mass basis were fertilizers and manure (51.7%) and wastewater discharge (15.9%). Other sources contributed < 12%. Fertilizer use is widespread in the Central Valley region of California, and also important in several other regions because of the diversity of California agriculture. Precipitation, sand content of surficial soils, wetlands, and tile drains were important for TN movement to stream reaches. Median streamflow in the study area is about 0.04 m3/s. Aquatic losses of nitrogen were found to be most important in intermittent and small to medium sized streams (0.2-14 m3/s), while larger streams showed less loss, and therefore are important for TN transport. Nitrogen loss in reservoirs was found to be insignificant, possibly because most of the larger ones are located upstream of nitrogen sources. The model was used to show loadings, sources, and tributary inputs to several major rivers. The information provided by the SPARROW model is useful for determining both the major sources contributing nitrogen to streams and the specific tributaries that transport the load.

  9. Signs of lateral transport of CO2 and CH4 in freshwater systems in boreal zone

    NASA Astrophysics Data System (ADS)

    Ojala, A.; Pumpanen, J. S.

    2013-12-01

    The numerous waterbodies and their riparian zones in the boreal zone are important to lateral carbon transport of terrestrial origin. These freshwater systems are also significant for carbon cycling on the landscape level. However, the lateral signals of carbon gases can be difficult to detect and thus, we used here different approaches to verify the phenomenon. We installed continuous measurement systems with CO2 probes in the riparian zone soil matrix around a small pristine headwater lake, in the lake, and in the outflowing stream and followed up the seasonal variation in CO2 concentration and in rain event-driven changes. We also used the probes in a second-order stream discharging a catchment of managed forest. The conventional weekly sampling protocol on water column CO2 and CH4 concentrations as well as gas fluxes was applied in three lakes surrounded by managed forests and some crop land but having different size and water quality. In two of the lakes most drastic changes in gas fluxes occurred not in spring but during or just after the summer rains when the clear water lake changed from a small carbon sink to carbon source and in the humic lake almost half of the CO2 and CH4 fluxes occurred during or just after the rainy period. Gas concentrations in the water columns revealed that the high surface water concentrations resulting in peak fluxes were not due to transport from hypolimnia rich in gases, but were due to soil processes and export from the flooded catchments. In the third lake, seasonal peak fluxes took place just after ice out, but again this was not a result of carbon gases accumulated under the ice, but gases originated from the surrounding catchment. In this lake, ca. 30 % of the annual CO2 flux occurred in May and 13 % of CH4 was emitted during one single week in May. In general, CH4 appeared as a good tracer for lateral transport. In the soil-lake-stream continuum, seasonal variation in CO2 was greatest and concentrations highest deep in the soil and in the lake itself, but also in the stream, especially further down from the lake. In the stream, the influence of the riparian zone superseded that of the lake at less than 150 m distance, which resulted in wider variation and higher concentrations of CO2. After a spell of heavy rain, the CO2 concentration in the soil increased and supposedly, a considerable amount of CO2 of terrestrial origin entered the lake annually. However, since the rain event was combined with exceptionally high winds mixing the water column, the riparian CO2 load was diluted and could not be properly tracked down. The second-order stream draining a small lake had an unresponsive catchment with high base flow contribution and the low flow was important for the total annual CO2 export. In general, CO2 export was controlled by runoff. There was no concentration-discharge relationship which was different from four other catchments in Canada, UK and Sweden. The only exception was snowmelt event in spring when CO2 concentrations were high. This high concentration could be tracked down in the downstream lake. The studies thus revealed the importance of hydrological events such as high spring discharge after snowmelt and extreme rain events in summer for lateral carbon gas transport.

  10. THE INFLUENCE OF CATCHMENT LAND USE ON HYDROGRAPH DYNAMICS AND IMPLICATIONS FOR STREAM BIOLOGICAL ASSEMBLAGES

    EPA Science Inventory

    Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...

  11. The Age of Terrestrial Carbon Export and Rainfall Intensity in a Temperate River Headwater System

    NASA Astrophysics Data System (ADS)

    Tittel, J.; Büttner, O.; Freier, K.; Heiser, A.; Sudbrack, R.; Ollesch, G.

    2013-12-01

    Riverine dissolved organic carbon (DOC) supports the production of estuaries and coastal ecosystems, constituting one of the most actively recycled pools of the global carbon cycle. A substantial proportion of DOC entering oceans is highly aged, but its origins remain unclear. Significant fluxes of old DOC have never been observed in temperate headwaters where terrestrial imports take place. Here, we studied the radiocarbon age of DOC in three streams draining forested headwater catchments of the river Mulde (Ore Mountains, Germany). We found modern DOC at moderately dry and moderately wet conditions as well as at high discharges during snowmelt. Old groundwater carbon contributed to stream DOC during the summer drought, although the yield was negligible. However, in a four-week summer precipitation event DOC aged at between 160 and 270 years was delivered into the watershed. In one stream, the DOC was modern but depleted in radiocarbon compared to other hydrological conditions. The yield was substantial and corresponded to 20 to 52% of the annual DOC yields in wet and dry years, respectively. Time-integrating samples of a downstream reservoir also revealed modern DOC ages under moderate conditions and old DOC from the rainfall event. Earlier studies suggested that increasing precipitation escalates the contribution of modern DOC from topsoil layers to surface runoff. Our results demonstrate a step change occurring if rainfall intensities increase and become extreme; then the consequences lead to the mobilization of old carbon in exceptionally high concentrations. The runoff/precipitation ratios of rainfall events indicated that during extreme events upland areas of the catchments were hydrologically connected to the stream and upland DOC was activated. Furthermore, the analysis of long-term data suggested that the DOC export in extreme precipitation events added to the annual yield and was not compensated for by lower exports in remaining periods. We conclude that climate change, along with additional processes associated with human activities, channels old soil carbon into more rapidly cycled carbon pools of the hydrosphere.

  12. Principles for urban stormwater management to protect stream ecosystems

    USGS Publications Warehouse

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly insurmountable historical constraints, which guarantee future, ongoing degradation.

  13. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.

  14. Dissolved nitrogen seasonal dynamics in Alaskan Arctic streams & rivers

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.; Douglas, T. A.; Jacobson, A. D.; Barker, A. J.; Lehn, G. O.

    2011-12-01

    Over the coming century, continued warming in the Arctic is expected to bring about many changes to the region including altered precipitation regimes, earlier snowmelt, and degradation of permafrost. These alterations are likely to modify the hydrology within the region, including changes in the quantity, seasonality, and flow paths of water; all of which may impact biogeochemical processes within Arctic catchments. The anticipated responses to warming in the Arctic are likely to become most apparent during the spring snowmelt period, and in the late summer to early fall when the seasonally-thawed active layer reaches its maximum depth. While our knowledge of the seasonal dynamics of water-borne constituents in Arctic rivers is improving, the spring snowmelt and the late summer/early fall are times of the year that Arctic rivers have historically been under sampled. An improved understanding of the mechanisms that control the seasonal variability of water chemistry may help us to better understand how these systems will respond to further warming. Between May and October of 2009 and 2010 we collected surface water samples from six different rivers/streams in the Alaskan Arctic, with particular emphasis placed on sampling during the spring snowmelt and during the late summer until fall freeze-up. These rivers were selected because they represent end-member physical characteristics ranging from high gradient rivers draining predominantly bedrock to low gradient rivers draining predominantly tundra. The catchments of all six rivers are underlain by continuous permafrost and range in size from 1.6 km2 to 610 km2. Samples were analyzed for total dissolved nitrogen (TDN), nitrate (NO3-), and ammonium (NH4+). Dissolved organic nitrogen (DON) was calculated as [TDN] - [NO3-] - [NH4+]. TDN concentrations exhibited maxima in the spring and fall, but the prevailing forms of nitrogen differed markedly between the early and late periods. There were also marked differences between the tundra and bedrock dominated streams. The DON fraction comprised the majority of TDN (>90%) in all of the rivers during the spring, but the tundra-dominated sites had higher DON concentrations. Additionally, DON concentrations in the bedrock-dominated streams declined more sharply after the spring freshet than DON concentrations in the tundra-dominated streams. Beginning in mid-late July and extending through freeze-up in the fall, DIN concentrations (predominantly nitrate) increased dramatically in the bedrock-dominated streams. Indeed, by late summer and early fall DIN made up the majority of TDN (often >90%) observed at the bedrock-dominated sites. A similar trend of increasing DIN was also seen at the tundra-dominated sites, but the increase occurred later in the year (mid to late September) and the magnitude of change was smaller than that observed in the bedrock-dominated sites. Observed increases in DIN starting in mid to late summer may suggest a decrease in nitrogen assimilation rates as vegetation senesces and/or water flow paths move through deeper mineral soils.

  15. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    NASA Astrophysics Data System (ADS)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  16. Hierarchical multi-taxa models inform riparian vs. hydrologic restoration of urban streams in a permeable landscape.

    PubMed

    Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M

    2018-03-01

    The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.

  17. Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California.

    Treesearch

    Hartwell Welsh; Garth Hodgson

    2010-01-01

    We investigated the aquatic and riparian herpetofauna in a 789 km² river catchment in northwest California to examine competing theories of biotic community structuring in catchment stream networks. Research in fluvial geomorphology has resulted in multi-scale models of dynamic processes that cyclically create, maintain, and destroy environments in stream...

  18. Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment

    PubMed Central

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2017-01-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments. PMID:28169335

  19. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons why nitrate was transported, and that atmospheric nitrate pollution had a direct effect on a stream in a peatland catchment. Furthermore, this work illustrates how long-term monitoring when coupled with shorter-duration studies allows contemporary questions to be addressed within legacy catchment studies.

  20. Recovery of particulate organic matter dynamics in a stream draining a logged watershed

    Treesearch

    Jackson Webster; E.J. Benfield; Stephen W. Golladay; Matthew E. McTammany

    2014-01-01

    Watershed (WS) 7 at Coweeta was logged in 1977. The stream draining this watershed, Big Hurricane Branch, was affected in many ways. While the stream has recovered in some characteristics, the continuing press disturbance limits many aspects of recovery. In this chapter, we report the long-term pattern of recovery of the organic matter dynamics of this stream.

  1. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    PubMed

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality protection and treatment in subtropical central China.

  2. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE, TRANSIENT STORAGE AND NUTRIENT UPTAKE IN STREAMS DRAINING MANAGED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...

  3. Filling Gaps in Biogeochemical Understanding of Wildfire Effects on Watersheds and Water Quality

    NASA Astrophysics Data System (ADS)

    Rhoades, Charles; Covino, Timothy; Chow, Alex

    2017-04-01

    Large, high-severity wildfires alter the biogeochemical conditions that determine how watersheds retain and release nutrients and influence stream water quality. These effects are commonly expected to abate within a few years, but recent studies show that post-fire watershed changes can have persistent, but poorly-understood biogeochemical consequences. Owing to the increased frequency and extent of high-severity wildfires predicted for western North America, and the growing awareness of the links between wildfire and clean water supply, there is a need to address these knowledge gaps. For the past 15 years we have tracked stream nutrients, chemistry, temperature, and sediment after the 2002 Hayman Fire, the largest wildfire in Colorado history. Our earlier work showed that headwater catchments that experienced extensive, high-severity forest fires had elevated stream nitrate, temperature, and turbidity for five post-fire years. Recent sampling, conducted 13 and 14 years after the fire, found that turbidity had largely returned to pretreatment levels, but that stream nitrate remained an order of magnitude above pre-fire levels in catchments with extensive high-severity wildfire. Stream temperature and total dissolved nitrogen concentration also remained higher in those catchments compared to unburned streams. Decreased plant demand is the mechanism commonly credited for post-fire nutrient losses, though our current work is evaluating the implications of soil and stream nutrient uptake and supply on persistent nitrogen (N) export from severely-burned catchments. For example, we have measured higher total soil N and higher net N mineralization in severely-burned portions of the Hayman Fire compared to moderately or unburned areas, indicating that higher soil N supply may contribute to N losses from upland soils. Conversely, using a nutrient tracer approach we found reduced N uptake in burned streams, which suggests a switch from the N-limited conditions typical of pristine catchments. Low stream dissolved organic carbon (DOC) in severely-burned catchments suggests greater carbon limitation on in-stream biological activity. This is the likely result of organic matter losses during the wildfire compounded by low allochthonous inputs from uplands or riparian zones. We also find that catchments with severely-burned headwater reaches and sparse riparian vegetation have high stream nitrate. Our findings regarding soil N supply and in-stream N retention coupled with the persistent N losses from burned headwaters and exposed riparian zones help prioritize restoration efforts aimed at mitigating long-term water quality effects of severe wildfires.

  4. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Base Flow Index

    EPA Pesticide Factsheets

    This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Source_Information). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The bfi (%) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  5. Baseline Q-values for streams in intensive agricultural catchments in Ireland

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Wall, David; Mellander, Per-Erik; Mechan, Sarah; Shortle, Ger

    2010-05-01

    The effectiveness of regulations introduced in Ireland in 2006 in response to the European Union Nitrates Directives for minimising nutrient loss to waterways from farms is being studied by Teagasc, the Irish Agriculture and Food Development Authority as part of an Agricultural Catchments Programme from 2008 - 2011. The regulations in Ireland require that during winter, green cover is established and maintained on arable farms, manure is stored and not spread, ploughing is not conducted and that chemical fertiliser is not spread. The regulations also require buffer zones between fields and water courses when applying organic or chemical fertilisers and that nutrient application rates and timing match crop requirements. An upper limit for livestock manure loading of 170 kg ha-1 organic N each year is also set. The biophysical research component of the Agricultural Catchments Programme is focussed on quantifying nutrient source availability, surface and subsurface transport pathways and stream chemical water quality. A baseline description of stream ecological quality was also sought. Stream ecology was measured in autumn 2009 at 3-5 locations within four surface water catchments and at the spring emergence of a catchment underlain by karst limestone. Landuse in each catchment is dominated by medium to high intensity grassland or cereal farming and annual average rainfall ranges from 900 - 1200 mm. Surveys were conducted in 1st to 3rd order streams throughout each catchment at locations which had minimal observed point source inputs for 100m upstream, incomplete shade, a hard streambed substrate and riffle conditions suitable for the sampling methods. Benthic macroinvertebrates were identified and quantified and used to calculate the biological indices Small Stream Risk Score, Q-value, Biological Monitoring Working Party (BMWP), Average Score Per Taxa (ASPT) and EQR (Observed Q-value/Reference Q-value). Diatom community assemblages were identified from samples collected by scraping submerged cobbles and a Trophic Diatom Index and EQR were calculated. Hydromorphology of each sample location was assessed using the River Hydromorphology Assessment Technique (RHAT). Stream water chemistry (nitrate-N, total N, total phosphorus, reactive phosphorus, electrical conductivity, suspended sediments, major cations, pH) was measured at monthly intervals near each ecological survey location. The ecology measurements will be repeated in summer and autumn 2010 to provide a baseline indication of Q-values in the catchments. A fish survey will also be conducted in 2010. The ecological surveys were conducted by the Aquatic Services Unit at University College Cork, Ireland. This paper describes the major farming and stream chemical characteristics of the five catchments and reports on results of the 2009 ecological surveys.

  6. The topographic wetness index as a predictor for hot spots of DOC export from catchments

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Oosterwoud, Marieke; Tittel, Jörg; Selle, Benny; Fleckenstein, Jan H.

    2015-04-01

    Dissolved organic carbon (DOC) concentrations in the discharge of many catchments in Europe and North America are rising. This increase is of concern for the drinking water supply from reservoirs since high DOC concentrations cause additional costs in water treatment and potentially the formation of harmful disinfection by-products. A prerequisite for understanding this increase is the knowledge on the spatial distribution of dominant soil DOC sources within catchments and on mobilization as well as transfer processes to the surface water. A number of studies identified wetland soils as the dominant source with fast mobilization and short transit times to the receiving surface water. However, most studies have either focussed on smaller, hillslope and single catchment or on larger scale multi-catchment assessments. Moreover, information on the distribution of soil types in catchments is not always readily available. This study brings together both types of assessment in a data-driven top-down approach: (i) a detailed survey on DOC concentration and loads over the course of one year within two paired data-rich catchments discharging into a large drinking water reservoir in central Germany and (ii) a database of hydrochemistry and physio-geographic characteristics of 113 catchments draining into 58 reservoirs across Germany over the course of 16 years. The objective is to define hot spots of DOC export within the catchments for both types of assessments (i, ii) and to test the suitability of the topographic wetness index (TWI) as a proxy for well-connected wetland soils at various spatial scales. In the sub-catchments of assessment (i) the spatial variability of concentrations and loads was much smaller than expected. None of the studied sub-catchments was a predominant producer of the total DOC loads exported from the catchments. We found the mean concentrations and loads to be positively correlated with the share of groundwater-dominated soils in the sub-catchments. These soils are distributed in riparian wetlands along all streams within the catchments. As a readily available proxy for wetland soils percentiles of the probability distribution of the TWI in the sub-catchments were found to be good predictors for mean DOC concentrations in catchment outlet as well as for loads. In the larger dataset across Germany (ii) we also found a surprisingly good correlation between the TWI within the catchments and mean DOC concentrations. Thus we can show that, despite the wide range of topographies, land use types, geological setups and climatic conditions within this dataset the dominant source zones of DOC export is well captured by the TWI as a proxy for the share of wetland soils and DOC source zones within the catchments.

  7. New insights into agricultural pesticide pollution through a complete and continuous pesticide screening during one growing season in five small Swiss streams

    NASA Astrophysics Data System (ADS)

    Mangold, Simon; Doppler, Tobias; Spycher, Simon; Langer, Miriam; Junghans, Marion; Kunz, Manuel; Stamm, Christian; Singer, Heinz

    2017-04-01

    Agricultural pesticides are regularly found in many surface waters draining agricultural areas. Due to large fluctuations in concentration over time and the potentially high number of pesticides, it is difficult to obtain a complete overview of the real pollution level. This collaborative project between research, federal and cantonal authorities in Switzerland aimed for a comprehensive assessment of pesticide pollution in five small agricultural streams to tackle this knowledge gap. The five streams are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops including vegetables, vineyards and orchards. Twelve-hour composite samples were collected continuously from March until the end of August 2015 with automatic sampling devices, yielding 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples from discharge events where measured individually whereas samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 34 - 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry involved a target screening of about 220 pesticides. The measured concentrations were compared to chronic and acute environmental quality standards (EQS values) resulting in risk quotients RQs, which are the ratios between measured concentrations and the respective EQS values. Despite the small size of the catchments, we observed a large pesticide diversity in all of them with 68 to 103 detected compounds per study area. At all sites, chronic EQS values were exceeded. However, the exposure levels varied substantially among catchments. Maximum chronic RQs per site ranged between 1.1 and 48.8 and the duration of EQS exceedance varied between 2 weeks and 5.5 months. Additionally, the data reveal (very) high concentration peaks reaching up to 40 μg L-1 for single active ingredients. Of 15 compounds measured at high concentrations, several measured concentrations exceeded acute EQS values in three of the five areas for a duration of up to 2.5 months. Concentration peaks were often linked to discharge events but not exclusively. These findings demonstrate that rain driven processes were important causes of the observed concentration levels but that additional (possibly point) sources need to be considered for a comprehensive understanding of pesticide exposure. Overall, the results from these five catchments provide an unique insight into the diversity of pesticide pollution of small streams across a wide range of natural conditions in Switzerland. The spatial differences indicate that the intensity of pesticide use alone cannot explain the level of exposure but point to the influence of landscape characteristics such as topography, the connectivity of field to the stream network or the number of connected farmyards.

  8. Integrated modeling of storm drain and natural channel networks for real-time flash flood forecasting in large urban areas

    NASA Astrophysics Data System (ADS)

    Habibi, H.; Norouzi, A.; Habib, A.; Seo, D. J.

    2016-12-01

    To produce accurate predictions of flooding in urban areas, it is necessary to model both natural channel and storm drain networks. While there exist many urban hydraulic models of varying sophistication, most of them are not practical for real-time application for large urban areas. On the other hand, most distributed hydrologic models developed for real-time applications lack the ability to explicitly simulate storm drains. In this work, we develop a storm drain model that can be coupled with distributed hydrologic models such as the National Weather Service Hydrology Laboratory's Distributed Hydrologic Model, for real-time flash flood prediction in large urban areas to improve prediction and to advance the understanding of integrated response of natural channels and storm drains to rainfall events of varying magnitude and spatiotemporal extent in urban catchments of varying sizes. The initial study area is the Johnson Creek Catchment (40.1 km2) in the City of Arlington, TX. For observed rainfall, the high-resolution (500 m, 1 min) precipitation data from the Dallas-Fort Worth Demonstration Network of the Collaborative Adaptive Sensing of the Atmosphere radars is used.

  9. Complex Catchment Processes that Control Stream Nitrogen and Organic Matter Concentrations in a Northeastern USA Upland Catchment

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2009-05-01

    There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.

  10. The GREAT-ER model in China: Evaluating the risk of both treated and untreated wastewater discharges and a consideration to the future.

    NASA Astrophysics Data System (ADS)

    Jackson, Benjamin; Jones, Kevin; Sweetman, Andrew

    2016-04-01

    As a result of rapid economic development, the production and usage of chemicals in China has risen significantly. This has resulted in China's environment becoming degraded. The Chinese government has attempted to ease these problems with significant investment towards upgrading the wastewater network. These efforts have initially focused upon large cities; progressing towards smaller populations within the most recent 5 year plan. However rural populations were largely overlooked, ~90% of rural settlements do not have treatment facilities for their wastewater. The next (13th) five year plan is a great opportunity to improve upon wastewater infrastructure. This transition is particularly important and it is essential for the government to prioritise settlements to provide treatment facilities and to improve water quality in receiving waters. This study focuses upon the use of a catchment model in order make progress towards this goal. A reliable model which can capture the complexity of the catchment is needed, but one without complexity in itself, in order for it to be developed and validated without an excessive requirement for data. The Geo-referenced Regional Exposure Assessment Tool for European Rivers (GREAT-ER) model is a catchment-scale stochastic-deterministic GIS model. It is primarily used for higher-tier chemical risk assessment. Emissions are from point source only and are calculated based upon population and calculated emission rates per capita. Dilution and transportation are determined using low-flow statistics within each stretch; calculated based upon catchment soil and topographic properties. Removal of the contaminant can occur prior to emission and in-stream. The lowest tier methodology applies a simple 1st-order removal rate and a flat percentage removal for in-stream and sewage treatment work removal respectively. The data requirements are relatively low, although still challenging for many situations. Many authors have reported reasonable agreement between modelled and observed concentrations. Unlike many other water quality models, GREAT-ER is relatively simple to setup and use. This provides value for catchment managers, and for chemical end-users and manufacturers alike. As of yet, GREAT-ER has not been used in Chinese catchments, but there is much potential. Our study involves the creation and validation of a model for the Dongjiang catchment, South China. The Dongjiang catchment is a highly populated area, draining into Guangzhou and the Pearl River delta. The catchment area is 25,325 km2 (above Boluo gauging station), of which approximately 90% resides in Guangdong Province. The downstream section of the catchment is densely populated, whilst upstream there is a more significant rural population. This study focuses upon chemical ingredients found in personal care products and pharmaceuticals and the potential risk they may impose upon the catchment. The relative impact of rural discharges has also been examined along with the potential effect of a range of future wastewater upgrade scenarios. The model has been validated with measurement data collected over a number of sampling campaigns. We believe that this study provides insights into the challenges faced by China as it drives to improve water quality.

  11. Identifying evidence of climate change impact on extreme events in permeable chalk catchments

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Nubert, S.

    2009-12-01

    The permeable chalk catchments of southern England are vital for the economy and well being of the UK. Not only important as a water resource, their freely draining soils support intensive agricultural production, and the rolling downs and chalk streams provide important habitants for many protected plant and animal species. Consequently, there are concerns about the potential impact of climate change on such catchments, particularly in relation to groundwater recharge. Of major concern are possible changes in extreme events, such as groundwater floods and droughts, as any increase in the frequency and/or severity of these has important consequences for water resources, ecological systems and local infrastructure. Studies of climate change impact on extreme events for such catchments have indicated that, under medium and high emissions scenarios, droughts are likely to become more severe whilst floods less so. However, given the uncertainties in such predictions and the inherent variability in historic data, producing definitive evidence of changes in flood/drought frequency/severity poses a significant challenge. Thus, there is a need for specific extreme event statistics that can be used as indicators of actual climate change in streamflow and groundwater level observations. Identifying such indicators that are sufficiently robust requires catchments with long historic time series data. One such catchment is the River Lavant, an intermittent chalk stream in West Sussex, UK. Located within this catchment is Chilgrove House, the site of the UK’s longest groundwater monitoring well (with a continuous record of water level observations of varying frequency dating back to 1836). Using a variety of meteorological datasets, the behaviour of the catchment has been modelled, from 1855 to present, using a 'leaky aquifer' conceptual model. Model calibration was based on observed daily streamflow, at a gauging station just outside the town of Chichester, from 1970. Long-term performance was assessed using groundwater levels at various long period observation wells, including Chilgrove. Extreme event analyses (annual maximum daily flow, annual minimum groundwater level) based on historic model runs, looking at successive 30 year time periods, show high variability in the values of extreme events, However, there is far less (by an order of magnitude) variation in more frequent (i.e. less extreme) events with a recurrence interval of around 0.6 (i.e. a return period of around 1.67 years). Simulations of climate change impact for 2020 emission scenarios using UKCIP02 data give 0.6 recurrence estimates that are significantly different (at the 1% confidence level) than those obtained from historic data, which is not the case for more extreme events. It is proposed that, at least for such permeable catchments, deviations from historic values of this relatively frequent recurrence interval provide a more robust indicator for detecting evidence of climate change than focusing on much rarer, albeit more dramatic, events.

  12. Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters

    NASA Astrophysics Data System (ADS)

    Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee

    2013-04-01

    In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.

  13. Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment

    Treesearch

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire; James B. Shanley

    2015-01-01

    We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM)...

  14. A Compilation of Provisional Karst Geospatial Data for the Interior Low Plateaus Physiographic Region, Central United States

    USGS Publications Warehouse

    Taylor, Charles J.; Nelson, Hugh L.

    2008-01-01

    Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.

  15. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France)

    NASA Astrophysics Data System (ADS)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-03-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions. It appears that the (234U/238U) AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating hydrological conditions. This study further highlights the important impact of different and independent water pathways in fractured granite controlling the different geochemical and isotopic signatures of the waters.

  16. Changes in stream nitrate concentrations due to land management practices, ecological succession, and climate: Developing a system approach to integrated catchment response

    Treesearch

    F. Worrall; Wayne T. Swank; T. P. Burt

    2003-01-01

    This study uses time series analysis to examine long-term stream water nitrate concentration records from a pair of forested catchments at the Coweeta Hydrologic Laboratory, North Carolina, USA. Monthly average concentrations were available from 1970 through 1997 for two forested catchments, one of which was clear-felled in 1977 and the other maintained as a control....

  17. Influences of upland and riparian land use patterns on stream biotic integrity

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Villella, R.; Lemarie, D.P.

    2003-01-01

    We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.

  18. A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds

    NASA Astrophysics Data System (ADS)

    Doten, Colleen O.; Bowling, Laura C.; Lanini, Jordan S.; Maurer, Edwin P.; Lettenmaier, Dennis P.

    2006-04-01

    Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment model that represents the main sources of sediment generation in forested environments (mass wasting, hillslope erosion, and road surface erosion) within the distributed hydrology-soil-vegetation model (DHSVM) environment. The model produces slope failures on the basis of a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. A simple channel routing scheme is implemented to predict basin sediment yield. We demonstrate through an initial application of this model to the Rainy Creek catchment, a tributary of the Wenatchee River, which drains the east slopes of the Cascade Mountains, that the model produces plausible sediment yield and ratios of landsliding and surface erosion when compared to published rates for similar catchments in the Pacific Northwest. A road removal scenario and a basin-wide fire scenario are both evaluated with the model.

  19. Estimating retention potential of headwater catchment using Tritium time series

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe

    2018-06-01

    Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.

  20. Catchment disturbance and stream metabolism: Patterns in ecosystem respiration and gross primary production along a gradient of upland soil and vegetation disturbance

    USGS Publications Warehouse

    Houser, J.N.; Mulholland, P.J.; Maloney, K.O.

    2005-01-01

    Catchment characteristics determine the inputs of sediments and nutrients to streams. As a result, natural or anthropogenic disturbance of upland soil and vegetation can affect instream processes. The Fort Benning Military Installation (near Columbus, Georgia) exhibits a wide range of upland disturbance levels because of spatial variability in the intensity of military training. This gradient of disturbance was used to investigate the effect of upland soil and vegetation disturbance on rates of stream metabolism (ecosystem respiration rate [ER] and gross primary production rate [GPP]). Stream metabolism was measured using an open-system, single-station approach. All streams were net heterotrophic during all seasons. ER was highest in winter and spring and lowest in summer and autumn. ER was negatively correlated with catchment disturbance level in winter, spring, and summer, but not in autumn. ER was positively correlated with abundance of coarse woody debris, but not significantly related to % benthic organic matter. GPP was low in all streams and generally not significantly correlated with disturbance level. Our results suggest that the generally intact riparian zones of these streams were not sufficient to protect them from the effect of upland disturbance, and they emphasize the role of the entire catchment in determining stream structure and function. ?? 2005 by The North American Benthological Society.

  1. Exploring landscapes and ecosystems by studying their streams

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-12-01

    Streams integrate fluxes of water, solutes, and sediment from their catchments, and thus they act as mirrors of the surrounding landscape. Patterns of streamflow, chemistry, and sediment flux can therefore shed light on physical, chemical, and biological processes at the scale of whole ecosystems. However, landscapes also exhibit preferential flow and pervasive heterogeneity on all scales, and therefore store waters over a wide spectrum of time scales, complicating efforts to interpret hydrological and geochemical signals in streamwaters. Here I review current and recent research exploring how landscapes store, mix, and release water and solutes to streams. Groundwater levels and stream flows exhibit diurnal cycles in response to snowmelt in springtime and transpiration during the growing season. These cycles vividly illustrate how aquifers and streams mirror ecological processes in their surrounding landscapes. Stream networks extend and retract, both seasonally and in response to individual rainfall events, dynamically mapping out variations in subsurface transmissivity and in the balance between precipitation and transpiration. Water quality time series spanning the periodic table, from H+ to U, exhibit universal fractal scaling on time scales from hours to decades. This scaling behavior is a temporal expression of the spatial heterogeneity that pervades the subsurface, and it confounds efforts to identify water quality trends. Isotope tracers such as 18O, 2H, 3H, and 14C can used to quantify water ages over seven orders of magnitude, from hours to thousands of years. These tracers show that substantial fractions of streamflow are hours, days, and months old, even in streams fed by aquifers with significant proportions of pre-Holocene groundwater. Examples such as these will be presented to illustrate the close coupling between landscapes and the waters that drain them, and to demonstrate how streams can be used as windows into landscape processes.

  2. Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality

    NASA Astrophysics Data System (ADS)

    Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.

    2016-03-01

    A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.

  3. How misapplication of the hydrologic unit framework diminishes the meaning of watersheds

    USGS Publications Warehouse

    Omernik, James M.; Griffith, Glenn E.; Hughes, Robert M.; Glover, James B.; Weber, Marc H.

    2017-01-01

    Hydrologic units provide a convenient but problematic nationwide set of geographic polygons based on subjectively determined subdivisions of land surface areas at several hierarchical levels. The problem is that it is impossible to map watersheds, basins, or catchments of relatively equal size and cover the whole country. The hydrologic unit framework is in fact composed mostly of watersheds and pieces of watersheds. The pieces include units that drain to segments of streams, remnant areas, noncontributing areas, and coastal or frontal units that can include multiple watersheds draining to an ocean or large lake. Hence, half or more of the hydrologic units are not watersheds as the name of the framework “Watershed Boundary Dataset” implies. Nonetheless, hydrologic units and watersheds are commonly treated as synonymous, and this misapplication and misunderstanding can have some serious scientific and management consequences. We discuss some of the strengths and limitations of watersheds and hydrologic units as spatial frameworks. Using examples from the Northwest and Southeast United States, we explain how the misapplication of the hydrologic unit framework has altered the meaning of watersheds and can impair understanding associations between spatial geographic characteristics and surface water conditions.

  4. Interaction between different groundwaters in brittany catchments (france): characterizing multiple sources through Sr- and S isotope tracing

    NASA Astrophysics Data System (ADS)

    Negrel, Ph; Pauwels, H.

    2003-04-01

    Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Sr- and S-isotope data as well as major ions, from shallow and deep groundwater in three granite and Brioverian "schist" areas of the Armorican Massif (NW France) with intensive agriculture covering large parts are presented. The stable-isotope signatures of the waters plot close to the general meteoric-water line, reflecting a meteoric origin and the lack of significant evaporation or water-rock interaction. The water chemistry from the different catchments shows large variation in the major-element contents. Plotting Na, Mg, NO_3, K, SO_4 and Sr vs. Cl contents concentrations reflect agricultural input from hog and livestock farming and fertilizer applications, with local sewage-effluent influence, although some water samples are clearly unpolluted. The δ34S(SO_4) is controlled by several potential sources (atmospheric sulphate, pyrite-derived sulphates, fertilizer sulphates). Some δ18O and δ34S values are expected to increase through sulphate reduction, with higher effect on δ34S for the dissimilatory processes and on δ18O for assimilatory processes. The range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are related to agricultural practises. As in granite-gneiss watersheds in France, 87Sr/86Sr ratios range from 0.71265 to 0.72009. The relationship between 87Sr/86Sr and Mg/Sr ratios defines the different end-members (rain, agricultural practise, water-rock interaction) both in the three Brittany catchments and elsewhere in France such as the Margeride mountains (S Massif Central), the Hérault watershed (S France), the Morvan (SE Paris Basin), the Cantal (E Massif Central) and the Vosges massif (NE France). Sr-isotope tracing defines and identifies the relative signature of groundwater circulation in alterite and underlying weathered-fissured and fractured bedrock.

  5. Qcritical as a Geomorphically and Biologically Relevant Flow Threshold for Stormwater Management and Catchment-scale Stream Restoration

    NASA Astrophysics Data System (ADS)

    Hawley, R. J.; Vietz, G. J.; Wooten, M. S.

    2016-12-01

    The threshold discharge that initiates streambed mobilization (Qcritical) is one of the most mechanistically-important flows for geomorphic function and biological integrity in stream ecosystems. Increased frequency and duration of flows that exceed Qcritical are a dominant driver of geomorphic instability and excess benthic disturbance in urban/suburban streams (i.e. the urban disturbance regime). Qcritical frequency also corresponds to measures of stream integrity in reference streams, with both geomorphic stability and biological indices significantly correlated to time since a Qcritical event in one 7-y study. Indeed, reference site macroinvertebrate communities during years with atypically frequent Qcritical events were more similar to sites draining watersheds with 30% imperviousness than to reference site communities of more typical rainfall years. Despite its biophysical relevance to stream ecosystems, Qcritical is one of the most overlooked and misunderstood flows in the stormwater management and stream restoration fields. Regional stormwater policies and stream restoration design guidance are often based on the misplaced assumption that streambed erosion does not occur at sub-bankfull events (often assumed to correspond to the 1-y recurrence discharge). Using an international database of nearly 200 sites we show that Qcritical varies by several orders of magnitude as a function of streambed particle size. Qcritical in sand-dominated streams is likely to be orders of magnitude less than the 1-yr discharge, whereas Qcritical in cobble/boulder dominated streams could be much larger than the 1-yr discharge, implying that stormwater/restoration policies focused on the 1-yr event could lack efficacy in many stream settings. Qcritical is a geomorphically- and biologically-relevant discharge threshold when developing stormwater management policies intended to protect streams from excess erosion, designing watershed-scale restoration efforts to restore a more natural disturbance regime, or reconstructing stream reaches designed to restore sediment continuity. Incorporation of Qcritical into such restoration and management efforts ensures that designs are actually tailored to the mechanisms that drive channel erosion and disturbance to the benthos.

  6. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  7. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  8. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  9. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  10. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.

    2002-02-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.

  11. Mean transit times in headwater catchments: insights from the Otway Ranges, Australia

    NASA Astrophysics Data System (ADS)

    Howcroft, William; Cartwright, Ian; Morgenstern, Uwe

    2018-01-01

    Understanding the timescales of water flow through catchments and the sources of stream water at different flow conditions is critical for understanding catchment behaviour and managing water resources. Here, tritium (3H) activities, major ion geochemistry and streamflow data were used in conjunction with lumped parameter models (LPMs) to investigate mean transit times (MTTs) and the stores of water in six headwater catchments in the Otway Ranges of southeastern Australia. 3H activities of stream water ranged from 0.20 to 2.14 TU, which are significantly lower than the annual average 3H activity of modern local rainfall, which is between 2.4 and 3.2 TU. The 3H activities of the stream water are lowest during low summer flows and increase with increasing streamflow. The concentrations of most major ions vary little with streamflow, which together with the low 3H activities imply that there is no significant direct input of recent rainfall at the streamflows sampled in this study. Instead, shallow younger water stores in the soils and regolith are most likely mobilised during the wetter months. MTTs vary from approximately 7 to 230 years. Despite uncertainties of several years in the MTTs that arise from having to assume an appropriate LPM, macroscopic mixing, and uncertainties in the 3H activities of rainfall, the conclusion that they range from years to decades is robust. Additionally, the relative differences in MTTs at different streamflows in the same catchment are estimated with more certainty. The MTTs in these and similar headwater catchments in southeastern Australia are longer than in many catchments globally. These differences may reflect the relatively low rainfall and high evapotranspiration rates in southeastern Australia compared with headwater catchments elsewhere. The long MTTs imply that there is a long-lived store of water in these catchments that can sustain the streams over drought periods lasting several years. However, the catchments are likely to be vulnerable to decadal changes in land use or climate. Additionally, there may be considerable delay in contaminants reaching the stream. An increase in nitrate and sulfate concentrations in several catchments at high streamflows may represent the input of contaminants through the shallow groundwater that contributes to streamflow during the wetter months. Poor correlations between 3H activities and catchment area, drainage density, land use, and average slope imply that the MTTs are not controlled by a single parameter but a variety of factors, including catchment geomorphology and the hydraulic properties of the soils and aquifers.

  12. Modes of supraglacial lake drainage and dynamic ice sheet response

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.

  13. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland.

    PubMed

    Wallage, Zoe E; Holden, Joseph; McDonald, Adrian T

    2006-08-31

    Peatlands are an important terrestrial carbon store. However, heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) and an associated rise in the level of discolouration in catchment waters. A significant threat to peatland sustainability has been the installation of artificial drainage ditches. However, recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation, fluvial carbon loss and water discolouration. This paper investigates the effect of open cut drainage and the impact of drain blocking on DOC and colour dynamics in blanket peat soil-water solutions. Three treatments (intact peat, drained peat and drain-blocked peat) were monitored in an upland blanket peat catchment in the UK. DOC and colour values were significantly higher on the drained slopes compared with those of the intact peat, which in turn had greater DOC and colour values than the drain-blocked slopes. Consequently, drain blocking is shown to be a highly successful technique in reducing both the DOC concentration and level of discolouration in soil waters, even to values lower than those observed for the intact site, which suggests a process of store exhaustion and flushing may operate. The colour per carbon unit (C/C) ratio was significantly higher at the drain-blocked site than either the intact or the drained treatments, while the E4/E6 ratio (fulvic acid/humic acid) was significantly lower at the blocked site compared to the two other treatments. The high C/C and low E4/E6 ratios indicate that drain blocking also modifies the composition of DOC, such that darker-coloured humic substances become more dominant compared to the intact site. This implies disturbance to DOC production and/or transportation processes operating within the peat.

  14. Perennial flow through convergent hillslopes explains chemodynamic solute behavior in a shale headwater catchment

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Steinhoefel, G.; Dere, A. L. D.; Sullivan, P. L.

    2017-12-01

    Streams experience changing hydrologic connectivity to heterogeneous water sources under different flow regimes. It remains unclear how seasonal flow paths link these different sources and regulate concentration-discharge behavior. Previous research at the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA identified chemostatic solutes (e.g., K, Mg, Na, Cl) whose concentrations varied little across a wide range of discharge values and chemodynamic solutes (e.g., Fe and Mn) whose concentrations decreased sharply with increasing stream discharge. To elucidate inputs to the stream when concentrations of chemodynamic solutes were high, we investigated stream water and shallow groundwater (< 4 m) chemistry at the SSHCZO in early autumn when discharge was negligible. The stream consisted of isolated puddles that were chemically variable along the length of the channel but similar to underlying shallow groundwater. Chemodynamic solute concentrations in the stream and groundwater were high in the upper catchment but decreased by an order of magnitude towards the outlet. In contrast, chemostatic solute concentrations varied little. Groundwater was minimally connected to the stream in an area of upwelling near the stream headwaters; however, the water table remained over a meter below the stream bed along the rest of the channel. We conclude that well water sampled from the upper catchment is young, shallow interflow that upwells to generate metal-rich stream headwaters during the dry season. High concentrations of chemodynamic solutes measured during low discharge occur when metal-rich headwaters are flushed to the catchment outlet during periodic rain events. Interflow during the dry season originates from water that infiltrates through organic-rich swales; thus, metals in the stream at low flow are ultimately derived from convergent hillslopes where biological processes have concentrated chemodynamic elements. We infer that chemodynamic solutes are diluted at high discharge due to increased flow through planar hillslopes and inputs from regional groundwater that rises to enter the stream. This study highlights how spatially heterogeneous biogeochemistry and seasonally variable flow paths regulate concentration-discharge behavior within catchments.

  15. Suspended sediment load, climate and relief in the central Pamirs

    NASA Astrophysics Data System (ADS)

    Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Schön, Ariane

    2013-04-01

    Relief and climate affect the generation of sediment transport. While relief and climate also affect each other, their influence on sediment transport can be investigated separately to determine their direct impact on this matter. Taking into account the complex topography of the central Pamirs and the fact that this region marks the transition zone of the Westerlies and the northward Indian Summer Monsoon, this region provides an excellent basis to investigate the interrelationship between sediment transport, climate and relief. The Panj River and its tributaries are representative for the hydrological setting of the central Pamirs as they drain most of the region. We first present suspended sediment characteristics from historical archive data for the whole river catchment and for the sub-catchments. We show the dynamics of the relationship between suspended sediment concentration and discharge on an annual basis for the different catchment sizes. The uppermost catchments are characterized by a transport-limited situation, showing a simple power-law relationship between discharge and sediment concentration for the entire year. The lowermost catchments show a strong hysteresis effect, especially in spring, which is related to the onset of snowmelt. The result is a differentiated power-law relationship within a year. As snow and glacier melt control the discharge in the central Pamirs, we investigate the climatological conditions derived from remote sensing data. We do this with respect to the different sub-catchments and with a special focus on the temporal variability. Results from the previous steps are finally interrelated with calculated geomorphological features at different catchment scales to characterize the suspended sediment load in the context of both relief and climatic conditions. Our results suggest climate to play the first-order determinant for the generation of suspended sediment load. This is in particular due to the Westerlies that provide the bulk of precipitation as snow in winter. Eventually temperature triggers snowmelt and causes high sediment loads. Still, relief causes the sediment load indirectly by forcing the climatic setting and providing the potential energy for stream flow.

  16. A synoptic survey of ecosystem services from headwater catchments in the United States

    EPA Science Inventory

    We combined data collected from 568 headwater streams as a part of the US Environmental Protection Agency’s National Rivers and Streams Assessment (NRSA) with catchment attributes related to the production of the ecosystem services of water supply, carbon, nitrogen, and phosphoru...

  17. Significance of floods in metal dynamics and export in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Roussiez, Vincent; Probst, Anne; Probst, Jean-Luc

    2013-08-01

    High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72-82%) and moderate for dissolved elements (0-20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals - enriched by anthropogenic sources - associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.

  18. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  19. Use of geochemical and isotope tracers to assess groundwater dependency of a terrestrial ecosystem: case study from southern Poland

    NASA Astrophysics Data System (ADS)

    Zurek, Anna J.; Witczak, Stanislaw; Kania, Jaroslaw; Rozanski, Kazimierz; Dulinski, Marek; Wachniew, Przemyslaw

    2015-04-01

    The presented study was aimed at better understanding of the functioning of groundwater dependent terrestrial ecosystem (GDTE) located in the south of Poland. The studied GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Bloto fen). It relies not only on shallow, unconfined aquifer but indirectly also on groundwater originating from the deeper confined aquifer, underlying the Quaternary cover and separated from it by an aquitard of variable thickness. The main objective of the study was to evaluate the contribution of groundwater to the water balance of the studied GDTE and thereby assess the potential risk to this system associated with intense exploitation of the deeper aquifer. The Wielkie Błoto fen area and the adjacent parts of Niepolomice Forest are drained by the Dluga Woda stream with 8.2 km2 of gauged catchment area. Hydrometric measurements, carried out on the Dluga Woda stream over two-year period (August 2011 - August 2013) were supplemented by chemical and isotope analyses of stream water, monitored on monthly basis. Physico-chemical parameters of the stream water (SEC, pH, Na content, Na/Cl molar ratio) and isotope tracers (deuterium, oxygen-18 and tritium) were used to quantify the expected contribution of groundwater seepage from the deeper aquifer to the water balance of the Dluga Woda catchment. The mean transit time of water through the catchment, derived from temporal variations of δ18O and tritium content in the Dluga Woda stream, was in the order of three months. This fast component of the total discharge of Dluga Woda stream is associated surface runoff and groundwater flow paths through the Quaternary cover. The slow component devoid of tritium and probably originated from the deeper Neogene aquifer is equal to approximately 30% of the total discharge. The relationships between the physico-chemical parameters of the stream water and the flow rate of Dluga Woda clearly indicate that the monitored parameters approach distinct values characteristic for groundwater in the deeper aquifer for the lowest discharge rates of the stream. These low flow rates are also accompanied by low tritium contents in the stream water. This collective evidence strongly suggest that discharge of Dluga Woda stream at low stands carries significant contribution of groundwater seeping from Neogene aquifer in the area of Wielkie Bloto fen. Modelling of long-term impact on the regional groundwater flow field of groundwater abstraction by the nearby cluster of water-supply wells suggests that temporal disappearance of stream flow during summer months may occur, with potentially severe consequences for the status of the studied GDTE. Acknowledgements. The study was supported by the GENESIS project funded by the European Commission 7FP (project contract 226536) and by statutory funds of the AGH University of Science and Technology (projects no. 11.11.220.01 and 11.11.140.026). References: Zurek A.J., Witczak S., Dulinski M., Wachniew P., Rozanski K., Kania J., Postawa A., Karczewski J., and Moscicki W.J.: Quantification of anthropogenic impact on groundwater dependent terrestrial ecosystem using geochemical and isotope tools combined with 3D flow and transport modeling, Hydrol. Earth Syst. Sci. Discuss., 11, 9671-9713, 2014

  20. Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.

  1. Vertical Stability of Ephemeral Step-Pool Streams Largely Controlled By Tree Roots, Central Kentucky, USA

    NASA Astrophysics Data System (ADS)

    Macmannis, K. R.; Hawley, R. J.

    2013-12-01

    The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel characteristics (e.g., step height was positively correlated to slope while pool spacing was inversely correlated to slope). Most importantly, we assessed the step-forming materials with respect to channel stability. LWD has been widely documented as an important component of geomorphic stability and habitat diversity across many settings; however, our research highlights the importance of roots in providing bed stability in steep, first and second-order ephemeral streams, as 40 percent of the steps in these step-pool systems were controlled by tree roots. Similar to the key member in naturally-occurring log jams, lateral tree roots frequently served as the anchor for channel steps that were often supplemented by rocks or LWD. Assessment of the trees throughout the riparian zone suggested average tree densities of 0.30 trees/square meter or 0.40 trees/meter could provide adequate riparian zone coverage to promote channel stability. These results have implications to land use planning and stormwater management. For example, on developments draining to step-pool systems, maintaining the integrity of the riparian zone would seem to be as important as ensuring hydrologic mimicry if channel integrity is to be preserved.

  2. Catchment-scale variation in the nitrate concentrations of groundwater seeps in the Catskill Mountains, New York, U.S.A.

    USGS Publications Warehouse

    West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.

    2001-01-01

    Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.

  3. Hyporheic zone influences on concentration-discharge relationships in a headwater sandstone stream

    NASA Astrophysics Data System (ADS)

    Hoagland, Beth; Russo, Tess A.; Gu, Xin; Hill, Lillian; Kaye, Jason; Forsythe, Brandon; Brantley, Susan L.

    2017-06-01

    Complex subsurface flow dynamics impact the storage, routing, and transport of water and solutes to streams in headwater catchments. Many of these hydrogeologic processes are indirectly reflected in observations of stream chemistry responses to rain events, also known as concentration-discharge (CQ) relations. Identifying the relative importance of subsurface flows to stream CQ relationships is often challenging in headwater environments due to spatial and temporal variability. Therefore, this study combines a diverse set of methods, including tracer injection tests, cation exchange experiments, geochemical analyses, and numerical modeling, to map groundwater-surface water interactions along a first-order, sandstone stream (Garner Run) in the Appalachian Mountains of central Pennsylvania. The primary flow paths to the stream include preferential flow through the unsaturated zone ("interflow"), flow discharging from a spring, and groundwater discharge. Garner Run stream inherits geochemical signatures from geochemical reactions occurring along each of these flow paths. In addition to end-member mixing effects on CQ, we find that the exchange of solutes, nutrients, and water between the hyporheic zone and the main stream channel is a relevant control on the chemistry of Garner Run. CQ relationships for Garner Run were compared to prior results from a nearby headwater catchment overlying shale bedrock (Shale Hills). At the sandstone site, solutes associated with organo-mineral associations in the hyporheic zone influence CQ, while CQ trends in the shale catchment are affected by preferential flow through hillslope swales. The difference in CQ trends document how the lithology and catchment hydrology control CQ relationships.

  4. The hydrologic and fluvial processes in urban and agricultural atchments (Kielce, Poland)

    NASA Astrophysics Data System (ADS)

    Ciupa, T.

    2003-04-01

    The aim of the study is to elucidate the bahavior of river-beds system in conditions of environmental stress, and particularly in the urbanized landscape in the Kielce vicinity (Central Poland). Two neighboring catchments were selected for the study, both located in the urbanized landscape, namely those of Silnica and Sufraganiec streams. These catchments have similar surfaces nevertheless they differ each other in the area of land use patterns. Silnica catchment embraces mainly build-up area however the Sufraganiec one consists largely of open agricultural spaces and woodland. Quite different situation has been noticed along the middle and lower part of Silnica, that is to say in the urbanized area. The high water waves last there for no more than one hour but their heights are much more greater. Water infiltration in these areas is strongly limited due to the fact that the area is mostly paved. Below the Kielce storage reservoir, the Silnica river constitutes the mere drain channel. Decrease in water velocity below the city center as well as an unnaturally huge charge of the transported matter is the reason that the materials from the city is accumulated in form of sand banks, shoals and oxbows. These forms are seasonally covered with vegetation that additionally intercepts the matters transported during high water stages. Intensity of human induced changes in river beds and fluvial processes shows to be proportional to the level of modification in the urbanized landscape. Silnica catchment has been modified mainly due to the growth of paved surfaces and the drainage network development. As a consequence, the surface runoff has been accelerated and the energy of fluvial processes enlarged.

  5. Runoff and solute mobilization processes in a semiarid headwater catchment

    NASA Astrophysics Data System (ADS)

    Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

    2007-09-01

    Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

  6. Multiple-resolution Modeling of flood processes in urban catchments using WRF-Hydro: A Case Study in south Louisiana.

    NASA Astrophysics Data System (ADS)

    Saad, H.; Habib, E. H.

    2017-12-01

    In August 2016, the city of Lafayette and many other urban centers in south Louisiana experienced catastrophic flooding resulting from prolonged rainfall. Statewide, this historic storm displaced more than 30,000 people from their homes, resulted in damages up to $8.7 billion, put rescue workers at risk, interrupted institutions of education and business, and worst of all, resulted in the loss of life of at least 13 Louisiana residents. With growing population and increasing signs of climate change, the frequency of major floods and severe storms is expected to increase, as will the impacts of these events on our communities. Local communities need improved capabilities for forecasting flood events, monitoring of flood impacts on roads and key infrastructure, and effectively communicating real-time flood dangers at scales that are useful to the public. The current study presents the application of the WRF-Hydro modeling system to represent integrated hydrologic, hydraulic and hydrometeorological processes that drive flooding in urban basins at temporal and spatial scales that can be useful to local communities. The study site is the 25- mile2 Coulee mine catchment in Lafayette, south Louisiana. The catchment includes two tributaries with natural streams located within mostly agricultural lands. The catchment crosses the I-10 highway and through the metropolitan area of the City of Lafayette into a man-made channel, which eventually drains into the Vermilion River and the Gulf of Mexico. Due to its hydrogeomorphic setting, local and rapid diversification of land uses, low elevation, and interdependent infrastructure, the integrated modeling of this coulee is considered a challenge. A nested multi-scale model is being built using the WRF-HYDRO, with 500m and 10m resolutions for the NOAH land-surface model and diffusive wave terrain routing grids, respectively.

  7. Prediction of Mass Wasting, Erosion, and Sediment Transport With the Distributed Hydrology-Soil-Vegetation Model

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Lanini, J. S.; Bowling, L. C.; Lettenmaier, D. P.

    2004-12-01

    Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment module linked to the Distributed Hydrology-Soil-Vegetation Model (DHSVM). The DHSVM sediment module represents the main sources of sediment generation in forested environments: mass wasting, hillslope erosion and road surface erosion. It produces failures based on a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. Basin sediment yield is predicted with a simple channel sediment routing scheme. The model was applied to the Rainy Creek catchment, a tributary of the Wenatchee River which drains the east slopes of the Cascade Mountains, and Hard and Ware Creeks on the west slopes of the Cascades. In these initial applications, the model produced plausible sediment yield and ratios of landsliding and surface erosion , when compared to published rates for similar catchments in the Pacific Northwest. We have also used the model to examine the implications of fires and logging road removal on sediment generation in the Rainy Creek catchment. Generally, in absolute value, the predicted changes (increased sediment generation) following fires, which are primarily associated with increased slope failures, are much larger than the modest changes (reductions in sediment yield) associated with road obliteration, although the small sensitivity to forest road obliteration may be due in part to the relatively low road density in the Rainy Creek catchment, and to mechanisms, such as culvert failure, that are not represented in the model.

  8. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    NASA Astrophysics Data System (ADS)

    Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-11-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.

  9. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    USGS Publications Warehouse

    Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.

  10. In-stream wetlands and their significance for channel filling and the catchment sediment budget, Jugiong Creek, New South Wales

    NASA Astrophysics Data System (ADS)

    Zierholz, C.; Prosser, I. P.; Fogarty, P. J.; Rustomji, P.

    2001-06-01

    Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km 2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands. Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km 2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.

  11. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    NASA Astrophysics Data System (ADS)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  12. LANDSCAPE INFLUENCES ON IN-STREAM BIOTIC INTEGRITY: USE OF MACROINVERTEBRATE METRICS TO IDENTIFY LANDSCAPE STRESSORS IN HEADWATER CATCHMENTS

    EPA Science Inventory

    The biotic integrity of streams is profoundly influenced by quantitative and qualitative features in the landscape of the surrounding catchment. In this study, aquatic macroinvertebrate metrics (e.g., relative abundance of Ephemeroptera, Trichoptera, and/or Plecoptera taxa, or t...

  13. An investigation of the stable isotopes, geochemistry and morphology of major streams in Dominica, Lesser Antilles: 2014 - 2017

    NASA Astrophysics Data System (ADS)

    Kopas, D. C.; Joseph, E. P.; Frey, H. M.

    2017-12-01

    The island of Dominica is a recently active (<200 ka) volcanic island located in the Lesser Antilles, with nine potentially active centers. Of the volcanic islands of the Lesser Antilles, it is the most rugged and has one the greatest stream densities (350 over 750 km2) and precipitation rates (up to 10,000 mm/yr in the mountainous interior). Sixty-seven meteoric streams across the island have been sampled annually over the last 4 years. Field measurements including pictures, pH and temperature, were recorded and water samples taken and analyzed for alkalinity, major elements (cations and anions), trace elements and stable isotopes (carbon, deuterium, and oxygen). Variations in water chemistry and river morphology were compared to various parameters, including precipitation, landslide locations, and lithology for each of the catchments. Within the study period, on August 27th, 2015, a significant tropical storm, Erika, made landfall in Dominica, depositing more than 500 mm of rainfall in 10 hours. There was little infiltration of the rainwater (over 50-60% run-off), which resulted in significant landslides, flash floods and damage to infrastructure and loss of life. Despite the obvious morphologic changes to the streams and high discharge during the storm event, preliminary analysis has shown little change in major stream geochemistry following the passage of Tropical Storm Erika. The 10-month time gap between the storm and the post-storm field sampling in June 2016 may be a factor of why geochemical changes were not observed. One of the most significant variations of stream composition during the study period was annual shifts in δD between -1.3 to -5.8 ‰ and δ18O between -1.98 to -2.61 ‰. A possible factor influencing the δ18O of surface waters is seasonal variation in rainfall. The dominant control on precipitation δ18O values is the amount effect, whereby rainfall amount and δ18O are inversely correlated. This relationship is a proxy for changes in δ18O values of surface waters. The data also suggest that hydrothermal fluids are not a prominent contributor to Dominican rivers, despite the presence of active volcanism and numerous hydrothermal systems on the island. The exceptions are the White River, which drains the Valley of Desolation and Boiling Lake and the Lamothe River, which drains the Cold Soufrierre.

  14. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.

    PubMed

    Zajíček, Antonín; Fučík, Petr; Kaplická, Markéta; Liška, Marek; Maxová, Jana; Dobiáš, Jakub

    2018-04-01

    Dynamics of pesticides and their metabolites in drainage waters during baseflow periods and rainfall-runoff events (RREs) were studied from 2014 to 2016 at three small, tile-drained agricultural catchments in Bohemian-Moravian Highlands, Czech Republic. Drainage systems in this region are typically built in slopes with considerable proportion of drainage runoff originating outside the drained area itself. Continuous monitoring was performed by automated samplers, and the event hydrograph was separated using 18 O and 2 H isotopes and drainage water temperature. Results showed that drainage systems represent a significant source for pesticides leaching from agricultural land. Leaching of pesticide metabolites was mainly associated with baseflow and shallow interflow. Water from causal precipitation diluted their concentrations. The prerequisites for the leaching of parental compounds were a rainfall-runoff event occurring shortly after spraying, and the presence of event water in the runoff. When such situations happened consequently, pesticides concentrations in drainage water were high and the pesticide load reached several grams in a few hours. Presented results introduce new insights into the processes of pesticides movement in small, tile-drained catchments and emphasizes the need to incorporate drainage hydrology and flow-triggered sampling into monitoring programmes in larger catchments as well as in environment-conservation policy.

  15. The effect of topography and rock type on soil cation contents and stream solute and phosphorus concentrations of streams in the southwestern Brazilian Amazon basin.

    NASA Astrophysics Data System (ADS)

    Biggs, T. W.; Dunne, T.; Holmes, K.; Martinelli, L. A.

    2001-12-01

    Topography plays an important role in determining soil properties, stream solute concentrations and landscape denudation rates. Stallard (1985) suggested that catchment denudation rates should depend on soil thickness. Areas with low slopes are limited by the rate of transport of sediment, and typically contain thick soils that prevent interaction of stream waters with underlying bedrock [Stallard 1985]. Steep areas typically have thin soils, but a lower hydrologic residence time that may prevent soil water from coming into thermodynamic equilibrium with the soil-rock complex. In a survey of streams in the Brazilian Amazon basin, Biggs et al. (2001) found that stream solute concentrations correlate with soil cation contents in the humid tropics, but the mechanism underlying the correlation has not been determined. We combine chemical analyses of water samples from ~40 different streams with soil surveys, geology maps, and a 100m resolution DEM to examine the relationship between topography, rock type, soil cation contents, and stream solute concentrations in the Brazilian Amazon state of Rondônia. The basins are all more than 60% forested at the time of stream sampling and lie on granite-gneiss rocks, tertiary sediments, or sandstone. The catchment-averaged slope correlates positively with both soil cation contents and stream concentrations of P, Na, Ca, Mg, K, Si, ANC, and pH. Though we have no data about the relationship between soil depth and average slope, we assume an inverse correlation, so the data demonstrates that thick soils yield lower solute concentrations. Stream concentrations of Ca, Mg, ANC and pH reach a maximum at intermediate average slopes (3 degrees), suggesting that denudation rates may increase with slope up to a maximum, when the catchment becomes limited by the weathering rate of the basement rock. Catchments on mica-schists or mafic rocks have low average slopes and higher concentrations of Ca, Mg, Si, ANC, and pH than catchments on granite-gneiss, tertiary sediments or sandstone.

  16. Ecological characterization of streams, and fish-tissue analysis for mercury and lead at selected locations, Fort Gordon, Georgia, June 1999 to May 2000

    USGS Publications Warehouse

    Gregory, M. Brian; Stamey, Timothy C.; Wellborn, John B.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Ga., documented the ecological condition of selected water-bodies on the Fort Gordon military installation from June 1999 to May 2000. This study includes stream-habitat assessments, aquatic invertebrate and fish-community surveys in selected stream reaches, and analyses of mercury and lead concentrations in largemouth bass (Micropterous salmoides) muscle tissue from three impoundments. Assessment surveys indicate lower habitat value scores in some streams draining the more developed areas on Fort Gordon. A small tributary to Butler Creek--which drains parking lots associated with military motor pools and other impervious surfaces--is characterized by moderate levels of bank erosion and excess sediment in the stream channel compared to reference sites. Four other stream reaches are more similar to reference streams in respect to habitat conditions. Invertebrate communities in streams draining these urbanized watersheds are inhabited by 13 to 16 taxa per reach; whereas, 23 and 33 taxa were collected from the two reference stream reaches. Measures of invertebrate abundance, taxa richness, Ephemeroptera, Plecoptera, and Tricoptera Index are lower in streams draining urbanized watersheds. Measures of community similarity also indicate differences between streams draining urbanized areas and reference streams. Streams draining developed areas on Fort Gordon are inhabited by 3 to 10 fish species and included more species regarded as tolerant of degraded water-quality conditions; whereas, the two reference stream reaches support 4 and 10 species, respectively, including one species considered intolerant of degraded water-quality conditions. Mercury was detected in all largemouth bass collected from three impoundments on Fort Gordon. Wet-weight mercury concentrations in fish tissue analyzed from all sites range from 0.08 micrograms per gram to 1.33 micrograms per gram. Median mercury concentrations in fish tissue are 0.83 micrograms per gram at Soil Erosion Lake, 0.72 micrograms per gram at Lower Leitner Lake, and 0.22 micrograms per gram at Gordon Lake. Median mercury concentrations in fish tissue analyzed from Soil Erosion Lake and Lower Leitner Lake are more than two times higher than U.S. Environmental Protection Agency recommendation of 0.3 micrograms per gram for fish consumption. Lead concentrations are below the minimum reporting limit for all specimens analyzed from reservoirs sampled at Fort Gordon.

  17. Where does boreal stream DOC come from? - Quantifying the contribution from different landscape compartments using stable C isotope ratios.

    NASA Astrophysics Data System (ADS)

    Brink Bylund, J.; Bastviken, D.; Morth, C.; Laudon, H.; Giesler, R.; Buffam, I.

    2007-12-01

    Stable carbon isotope (δ13C) ratios are frequently used as a source tracer of e.g. organic matter (OM) produced in terrestrial versus aquatic environments. To our knowledge there has been no previous attempt to quantify the relative contribution of dissolved organic carbon (DOC) from various landscape compartments in catchments of different sizes. Here, we test to what extent δ13C values can be used also to quantify the relative contribution of DOC from wetlands/riparian zones along streams, and off stream forest habitats, respectively. We present data on spatial and temporal variability of DOC concentrations and δ13C-DOC values, during the year of 2005 in Krycklan catchment, a boreal stream network in northern Sweden. Ten stream sites, ranging from order 1 to 4, were monitored in sub catchments with different wetland coverage. Spatial variation of DOC concentration showed a weak but statistically significant relationship with wetland area, with higher concentration with increasing percent of wetland in the drainage area. During base flow the difference in δ13C-DOC values was significantly different between forest (-27.5‰) and wetland (-28.1‰). This spatial pattern disappears during spring peak flow when higher discharge flushing upper soil layer and the riparian zone on DOC in the catchments. A simple mixing model using DOC and δ13C-DOC showed that stream water DOC could be describe as a mixture of DOC coming from forest (deep) groundwater and wetland/riparian zone water. The result indicates that during spring peak flow almost all stream DOC (84-100%) is derived from wetlands and riparian zones. The wetland/riparian water dominates the stream DOC flux at all hydrological events, except for two sites, one forest dominated and one mixed catchment, where the forest groundwater dominated the DOC transport during base flow. Although the total wetland area in Krycklan catchment only represent 8.3%, it contributed, together with riparian zones, to as much as 83% of the yearly DOC transport. This study shows that there is a great potential in using stable carbon isotopes to quantify the relative contribution of DOC from various landscape compartments in catchments. Quantitative patterns are crucial for several reasons. It is for example necessary in predicting the response to global warming which will result in a changed hydrology and shifts in the relative area of the landscape compartments in boreal environments. KEY WORDS carbon isotopes; dissolved organic carbon; streams; boreal; landscape compartments; wetland; groundwater

  18. Improving catchment discharge predictions by inferring flow route contributions from a nested-scale monitoring and model setup

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2011-03-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for the estimation of flow route volumes and for predictions of catchment discharge. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from the hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements improves simulations of nitrate loads and predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  19. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo

    PubMed Central

    Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M.; Foster, William A.; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C.; Walsh, Rory P. D.; Aldridge, David C.

    2017-01-01

    Abstract Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian‐scale disturbance. We studied 16 streams in Sabah, Borneo, including old‐growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment‐scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate‐N levels compared to streams with the lowest catchment‐scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest‐like stream conditions. In addition, logged forest streams still showed signs of disturbance 10–15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment‐scale forest management also need to be considered. PMID:28706573

  20. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  1. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    NASA Astrophysics Data System (ADS)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  2. Questa baseline and pre-mining ground-water quality investigation. 23. Quantification of mass loading from mined and unmined areas along the Red River, New Mexico

    USGS Publications Warehouse

    Kimball, Briant A.; Nordstrom, D. Kirk; Runkel, Robert L.; Vincent, Kirk R.; Verplanck, Phillip L.

    2006-01-01

    Along the course of the Red River, between the town of Red River, New Mexico, and the U.S. Geological Survey streamflow-gaging station near Questa, New Mexico, there are several catchments that contain hydrothermally altered bedrock. Some of these alteration zones have been mined and others have not, presenting an opportunity to evaluate differences that may exist in the mass loading of metals from mined and unmined sections. Such differences may help to define pre-mining conditions. Spatially detailed chemical sampling at stream and inflow sites occurred during low-flow conditions in 2001 and 2002, and during the synoptic sampling, stream discharge was calculated by tracer dilution. Discharge from most catchments, particularly those with alteration scars, occurred as ground water in large debris fans, which generally traveled downstream in an alluvial aquifer until geomorphic constraints caused it to discharge at several locations along the study reach. Locations of discharge zones were indicated by the occurrence of numerous inflows as seeps and springs. Inflows were classified into four groups, based on differences in chemical character, which ranged from near-neutral water showing no influence of mining or alteration weathering to acidic water with high concentrations of metals and sulfate. Acidic, metal-rich inflows occurred from mined and unmined areas, but the most-acidic inflow water that had the highest concentrations of metals and sulfate only occurred downstream from the mine. Locations of ground-water inflow also corresponded to substantial changes in stream chemistry and mass loading of metals and sulfate. The greatest loading occurred in the Cabin Springs, Thunder Bridge, and Capulin Canyon sections, which all occur downstream from the mine. A distinct chemical character and substantially greater loading in water downstream from the mine suggest that there could be impacts from mining that can be distinguished from the water draining from unmined areas.

  3. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Geochemical responses of forested catchments to bark beetle infestation: Evidence from high frequency in-stream electrical conductivity monitoring

    NASA Astrophysics Data System (ADS)

    Su, Ye; Langhammer, Jakub; Jarsjö, Jerker

    2017-07-01

    Under the present conditions of climate warming, there has been an increased frequency of bark beetle-induced tree mortality in Asia, Europe, and North America. This study analyzed seven years of high frequency monitoring of in-stream electrical conductivity (EC), hydro-climatic conditions, and vegetation dynamics in four experimental catchments located in headwaters of the Sumava Mountains, Central Europe. The aim was to determine the effects of insect-induced forest disturbance on in-stream EC at multiple timescales, including annual and seasonal average conditions, daily variability, and responses to individual rainfall events. Results showed increased annual average in-stream EC values in the bark beetle-infected catchments, with particularly elevated EC values during baseflow conditions. This is likely caused by the cumulative loading of soil water and groundwater that discharge excess amounts of substances such as nitrogen and carbon, which are released via the decomposition of the needles, branches, and trunks of dead trees, into streams. Furthermore, we concluded that infestation-induced changes in event-scale dynamics may be largely responsible for the observed shifts in annual average conditions. For example, systematic EC differences between baseflow conditions and event flow conditions in relatively undisturbed catchments were essentially eliminated in catchments that were highly disturbed by bark beetles. These changes developed relatively rapidly after infestation and have long-lasting (decadal-scale) effects, implying that cumulative impacts of increasingly frequent bark beetle outbreaks may contribute to alterations of the hydrogeochemical conditions in more vulnerable mountain regions.

  5. A Comparative Analysis of the Influence of Surface Mining on Hydrological and Geochemical Response of Selected Headwater Streams in the Elk Valley, British Columbia, Canada.

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Shatilla, N. J.; Szmudrowska, B.; Rastelli, J.; Wellen, C.

    2014-12-01

    Surface mining is a common method of accessing coal. Blasting of overburden rock allows access to mineable ore. In high-elevation environments, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. As part of a multi-year R&D program examining the influence of surface mining on watershed hydrological and water quality responses in the Elk Valley, British Columbia, this study reports on how surface mining affects streamflow hydrological and geochemical response at four reference and four mine-influenced catchments. The hydrology of this environment is dominated by snowmelt and steep topographic gradients. Flows were attenuated in mine-influenced catchments, with spring freshet delayed and more muted responses to precipitation events observed. Dissolved ions were an order of magnitude greater in mine-influenced streams, with more dilution-based responses to flows compared with chemostatic behavior observed in reference streams. Stable isotope signatures in stream water suggested that in both mine-influenced and reference watersheds, stream water was derived from well mixed groundwater as annual variability of stream isotope signatures was dampened compared with precipitation signatures. However, deflection of stream isotopes in response to precipitation were more apparent in reference watersheds. As a group, mine influenced catchments had a heavier isotope signature than reference watersheds, suggesting an enhanced influence of rainfall on recharge. Transit time distributions indicate existing waste rock spoils increase the average time water takes to move through the catchment.

  6. A method of estimating in-stream residence time of water in rivers

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2014-05-01

    This study develops a method for estimating the average in-stream residence time of water in a river channel and across large catchments, i.e. the time between water entering a river and reaching a downstream monitoring point. The methodology uses river flow gauging data to integrate Manning's equation along a length of channel for different percentile flows. The method was developed and tested for the River Tees in northern England and then applied across the United Kingdom (UK). The study developed methods to predict channel width and main channel length from catchment area. For an 818 km2 catchment with a channel length of 79 km, the in-stream residence time at the 50% exceedence flow was 13.8 h. The method was applied to nine UK river basins and the results showed that in-stream residence time was related to the average slope of a basin and its average annual rainfall. For the UK as a whole, the discharge-weighted in-stream residence time was 26.7 h for the median flow. At median flow, 50% of the discharge-weighted in-stream residence time was due to only 6 out of the 323 catchments considered. Since only a few large rivers dominate the in-stream residence time, these rivers will dominate key biogeochemical processes controlling export at the national scale. The implications of the results for biogeochemistry, especially the turnover of carbon in rivers, are discussed.

  7. The spatial structure and temporal synchrony of water quality in stream networks

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles

    2017-04-01

    To feed nine billion people in 2050 while maintaining viable aquatic ecosystems will require an understanding of nutrient pollution dynamics throughout stream networks. Most regulatory frameworks such as the European Water Framework Directive and U.S. Clean Water Act, focus on nutrient concentrations in medium to large rivers. This strategy is appealing because large rivers integrate many small catchments and total nutrient loads drive eutrophication in estuarine and oceanic ecosystems. However, there is growing evidence that to understand and reduce downstream nutrient fluxes we need to look upstream. While headwater streams receive the bulk of nutrients in river networks, the relationship between land cover and nutrient flux often breaks down for small catchments, representing an important ecological unknown since 90% of global stream length occurs in catchments smaller than 15 km2. Though continuous monitoring of thousands of small streams is not feasible, what if we could learn what we needed about where and when to implement monitoring and conservation efforts with periodic sampling of headwater catchments? To address this question we performed repeat synoptic sampling of 56 nested catchments ranging in size from 1 to 370 km2 in western France. Spatial variability in carbon and nutrient concentrations decreased non-linearly as catchment size increased, with thresholds in variance for organic carbon and nutrients occurring between 36 and 68 km2. While it is widely held that temporal variance is higher in smaller streams, we observed consistent temporal variance across spatial scales and the ranking of catchments based on water quality showed strong synchrony in the water chemistry response to seasonal variation and hydrological events. We used these observations to develop two simple management frameworks. The subcatchment leverage concept proposes that mitigation and restoration efforts are more likely to succeed when implemented at spatial scales expressing high variability in the target parameter, which indicates decreased system inertia and demonstrates that alternative system responses are possible. The subcatchment synchrony concept suggests that periodic sampling of headwaters can provide valuable information about pollutant sources and inherent resilience in subcatchments and that if agricultural activity were redistributed based on this assessment of catchment vulnerability to nutrient loading, water quality could be improved while maintaining crop yields.

  8. Environmental impacts on the hydrology of ephemeral streams and alluvial aquifers

    NASA Astrophysics Data System (ADS)

    Kuells, C.; Marx, V.; Bittner, A.; Ellmies, R.; Seely, M.

    2009-04-01

    In arid and semi-arid regions alluvial groundwater resources of ephemeral streams are highly important for water supplies and ecosystems. Recent projects have studied processes of indirect recharge in situ and in detail (Dahan et al., 2008; Klaus et al., 2008). Still, little is known about the vulnerability of these aquifers to environmental impacts like surface dam constructions, land-use changes and climatic conditions as well as the time and type of response to such external impacts. With a catchment size of about 30.000 km² the Swakop River in Namibia is the largest of the country's twelve major ephemeral streams draining westwards into the Atlantic Ocean. The alluvial groundwater resources have been affected by the construction of two major surface water dams in the upper catchment as well as by abstractions for rural water supply, farming and mining downstream of the constructed dams (referred to as lower catchment). The determination of environmental impacts in the Swakop River catchment is difficult due to scarce hydrometric and water quality data. In order to obtain a better understanding of the hydrological system under changing environmental conditions a spatially distributed environmental tracer approach was applied. A longitudinal profile of groundwater samples was taken within a field study along the alluvial aquifer of the Swakop River. The samples were analysed for stable isotopes (18O, 2H), major ions and trace elements as well as for the residence time indicators CFC and SF6. The combined application of groundwater residence time analysis, stable isotope measurements and hydrochemical characterisation was used in order to associate a time scale with groundwater quality data. This method provides dated information on recharge and water quality before and after dam construction and can be used to detect environmental impacts on the hydrological system. CFC-12 analysis resulted in recharge years ranging from 1950 (0.01 pmol/l) to 1992 (1.4 pmol/l). Seven of 14 groundwater samples represent mainly groundwater recharged before or between the construction of surface water dams (1970 and 1978), the remaining samples represent groundwater recharge after dam construction. The groundwater residence time is generally short (recharge mainly after 1980) in the upper catchment and much higher (recharge mainly before 1980 and before dam construction) in the lower part of the catchment. Combining the age and isotope information shows how the surface water dams modified the pattern of groundwater recharge. The lower catchment has been partly cut off from the upper part in terms of indirect groundwater recharge by floods which means that most large floods originating in the headwaters of the Swakop River do not reach the lower alluvial aquifer anymore. The relationship between groundwater age and groundwater constituents helped to define baselines of hydrological properties (origin of water, recharge altitude) and of hydrochemical composition prior to the construction of dams (and other anthropogenic impacts). The well defined relationship between groundwater age and altitude of the river further helps to assess how fast different segments will be affected by these environmental impacts. References Dahan, O., Tatarsky, B., Enzel, Y., Kuells, C., Seely, M., Benito, G. (2008) Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid Desert. Ground Water, Vol. 46, 3. (6-2008), pp. 450-461. Klaus, J., Kuells, C., Dahan, O. (2008): Evaluating the recharge mechanism of the Lower Kuiseb Dune Area using mixing cell modeling and residence time data. Journal of Hydrology, v. 358, p. 304-316.

  9. A Physical Model for Shallow Groundwater Studies and the Simulation of Land Drain Performance.

    ERIC Educational Resources Information Center

    Parkinson, Robert; Reid, Ian

    1987-01-01

    Describes a two-dimensional sand-tank model that illustrates the influence of ground slope on tile drain discharge and the movement of groundwater in general. The model can be used to demonstrate the effect of topography on sub-surface water movement in agricultural catchments, thus it is a useful hydrological teaching aid. (Author/BSR)

  10. Tracing the spatial and temporal variability of different water sources in a glacierized Alpine catchment (Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Comiti, Francesco; Vignoli, Gianluca; Simoni, Silvia; Dinale, Roberto

    2016-04-01

    Glacierized catchments are important sources of fresh water. Although recent tracer-based studies have been carried out in these environments, more investigations are needed to understand more in detail the complex dynamics of snowmelt, glacier melt and groundwater contributions to stream water, the spatial and temporal variability of these sources of runoff and suspended sediment. In this study we used stable isotopes of water and electrical conductivity (EC) as tracers to identify the origin of different waters in the glacierized Sulden/Solda catchment (130 km², Eastern Italian Alps). The site ranges in elevation between 1112 and 3905 m a.s.l. and includes two major sub-catchments. Rainfall samples were taken from bulk collectors placed along an elevation gradient (905-2585 m a.s.l.). Winter-integrated snowmelt samples were collected from passive capillary samplers installed at different elevations (1600-2825 m a.s.l.), whereas snowmelt was sampled from dripping snow patches. Glacier melt samples were taken in summer from small rivulets on the glacier surface. Samples from the two main streams were collected monthly in 2014 and 2015 at different stream sections, major tributaries and springs. At the outlet, stream water was sampled daily by an automatic sampler, and EC, turbidity and water stage were measured every 5 minutes. Meteorological data were measured by two weather stations at 1600 and 2825 m a.s.l.. Manual samples were taken from February 2014 to November 2015 while the automatic sampling at the outlet was carried out from May to October 2014 and 2015. Results indicate that precipitation originated from air masses coming from the Atlantic Ocean, with limited influence of Mediterrean air masses. Snowmelt showed a pronounced isotopic enrichment during summer, which was also found for glacier melt, but less strong. Spring water from both sub-catchments seemed to be affected by infiltrating snowmelt during summer and represented the major stream component during winter baseflow. The tracer-based comparison of stream locations in both sub-catchments showed similar isotopic and EC dynamics during summer, highlighting that meltwater dynamics may hide the hydrochemical impact of different geology in both sub-catchments. However, EC dynamics in the left sub-catchment during winter indicated a spatial gradient of increasing solute concentrations along the stream. In contrast, an inverse spatial gradient of solute concentrations was found in the right sub-catchment, revealing a different geological setting and highlighting the impact of intensive subglacial weathering. At the outlet, EC and isotopic composition could identify clear seasonal melt water dynamics with periods of pronounced snowmelt contributions in early summer followed by dominant glacier melt contributions. Rainfall events seemed to play a major role on stream water composition in autumn. Also the impact of early snowfall and its melting in autumn 2015 could be traced and well distinguished from early summer snowmelt water. Turbidity showed strong oscillations at the daily scale during summer melt periods and markedly responded to rainfall events, which could be attributed to rapid mobilization of fine sediments and suspended sediment transport in the study catchment.

  11. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    PubMed

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  12. How old is streamwater? Open questions in catchment transit time conceptualization, modeling and analysis

    Treesearch

    J.J. McDonnell; K. McGuire; P. Aggarwal; K.J. Beven; D. Biondi; G. Destouni; S. Dunn; A. James; J. Kirchner; P. Kraft; S. Lyon; P. Maloszewski; B. Newman; L. Pfister; A. Rinaldo; A. Rodhe; T. Sayama; J. Seibert; K. Solomon; C. Soulsby; M. Stewart; D. Tetzlaff; C. Tobin; P. Troch; M. Weiler; A. Western; A. Wörman; S. Wrede

    2010-01-01

    The time water spends travelling subsurface through a catchment to the stream network (i.e. the catchment water transit time) fundamentally describes the storage, flow pathway heterogeneity and sources of water in a catchment. The distribution of transit times reflects how catchments retain and release water and solutes that in turn set biogeochemical conditions and...

  13. Mapping Active Stream Lengths as a Tool for Understanding Spatial Variations in Runoff Generation

    NASA Astrophysics Data System (ADS)

    Erwin, E. G.; Gannon, J. P.; Zimmer, M. A.

    2016-12-01

    Recent studies have shown temporary stream channels respond in complex ways to precipitation. By investigating how stream networks expand and recede throughout rain events, we may further develop our understanding of runoff generation. This study focused on mapping the expansion and contraction of the stream network in two headwater catchments characterized by differing soil depths and slopes, located in North Carolina, USA. The first is a 43 ha catchment located in the Southern Appalachian region, characterized by incised, steep slopes and soils of varying thickness. The second is a 3.3 ha catchment located in the Piedmont region, characterized as low relief with deep, highly weathered soils. Over a variety of flow conditions, surveys of the entire stream network were conducted at 10 m intervals to determine presence or absence of surface water. These surveys revealed several reaches within the networks that were intermittent, with perennial flow upstream and downstream. Furthermore, in some tributaries, the active stream head moved up the channel in response to precipitation and at others it remained anchored in place. Moreover, when repeat surveys were performed during the same storm, hysteresis was observed in active stream length variations: stream length was not the same on the rising limb and falling limb of the hydrograph. These observations suggest there are different geomorphological controls or runoff generation processes occurring spatially throughout these catchments. Observations of wide spatial and temporal variability of active stream length over a variety of flow conditions suggest runoff dynamics, generation mechanisms, and contributing flowpath depths producing streamflow may be highly variable and not easily predicted from streamflow observations at a fixed point. Finally, the observation of similar patterns in differing geomorphic regions suggests these processes extend beyond unique site characterizations.

  14. Twelve year interannual and seasonal variability of stream carbon export from a boreal peatland catchment

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Larsson, A.; Wallin, M. B.; Nilsson, M. B.; Laudon, H.

    2016-07-01

    Understanding stream carbon export dynamics is needed to accurately predict how the carbon balance of peatland catchments will respond to climatic and environmental change. We used a 12 year record (2003-2014) of continuous streamflow and manual spot measurements of total organic carbon (TOC), dissolved inorganic carbon (DIC), methane (CH4), and organic carbon quality (carbon-specific ultraviolet absorbance at 254 nm per dissolved organic carbon) to assess interannual and seasonal variability in stream carbon export for a peatland catchment (70% mire and 30% forest cover) in northern Sweden. Mean annual total carbon export for the 12 year period was 12.2 gCm-2 yr-1, but individual years ranged between 6 and 18 gCm-2 yr-1. TOC, which was primarily composed of dissolved organic carbon (>99%), was the dominant form of carbon being exported, comprising 63% to 79% of total annual exports, and DIC contributed between 19% and 33%. CH4 made up less than 5% of total export. When compared to previously published annual net ecosystem exchange (NEE) for the studied peatland system, stream carbon export typically accounted for 12 to 50% of NEE for most years. However, in 2006 stream carbon export accounted for 63 to 90% (estimated uncertainty range) of NEE due to a dry summer which suppressed NEE, followed by a wet autumn that resulted in considerable stream export. Runoff exerted a primary control on stream carbon export from this catchment; however, our findings suggest that seasonal variations in biologic and hydrologic processes responsible for production and transport of carbon within the peatland were secondary influences on stream carbon export. Consideration of these seasonal dynamics is needed when predicting stream carbon export response to environmental change.

  15. Modeling nonlinear responses of DOC transport in boreal catchments in Sweden

    NASA Astrophysics Data System (ADS)

    Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank

    2016-07-01

    Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.

  16. NUTRIENT UPTAKE LENGTH, CHANNEL STRUCTURE, AND TRANSIENT STORAGE IN STREAMS DRAINING HARVESTED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    Channel structure and transient storage were correlated with nutrient uptake length in streams draining old-growth and harvested watersheds in the Cascade Mountains of Oregon, and the redwood forests of northwestern California. Channel width and riparian canopy were measured at 1...

  17. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome.

    PubMed

    Askarizadeh, Asal; Rippy, Megan A; Fletcher, Tim D; Feldman, David L; Peng, Jian; Bowler, Peter; Mehring, Andrew S; Winfrey, Brandon K; Vrugt, Jasper A; AghaKouchak, Amir; Jiang, Sunny C; Sanders, Brett F; Levin, Lisa A; Taylor, Scott; Grant, Stanley B

    2015-10-06

    Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover. For all but the wettest regions of the world, a much larger volume of stormwater runoff should be harvested than infiltrated to maintain stream hydrology in a preurban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of stormwater harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential cobenefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.

  18. Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale

    USGS Publications Warehouse

    Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.

  19. Time changes in radiocesium concentration in aquatic systems affected by the Fukushima Daiichi NPP accident

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Taniguchi, Keisuke; Kato, Hiroaki; Yoshimura, Kazuya; Wakiyama, Yoshifumi; Iwagami, Sho; Tsujimura, Maki; Sakaguchi, Aya; Yamamoto, Masatoshi

    2015-04-01

    Due to Fukushima Daiichi Nuclear Power Plant accident, radioactive materials including Cs-134 and Cs-137 were widely distributed in surrounded area. The radiocesiums have been transported in river networks. The monitoring started at 6 sites from June 2011. Subsequently, additional 24 monitoring sites were installed between October 2012 and January 2013. Flow and turbidity (for calculation of suspended sediment concentration) were measured at each site, while suspended sediments and river water were collected every one or half month to measure Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Also detailed field monitoring has been condcuted in Yamakiya-district, Kawamata town, Fukushima prefecture. These monitoring includes, 1) Radiocesium wash-off from the runoff-erosion plot under different land use, 2) 2. Measurement of radiocesium transfer in forest environment, in association with hydrological pathways such as throughfall and overlandflow on hillslope, 3) Monitoring on radiocesium concentration in soil water, ground water, and spring water, 4)Monitoring of dissolved and particulate radiocesium concentration in river water, and stream water from the forested catchment, and 5)Measurement of radiocesium content in drain water and suspended sediment from paddy field. Our monitoring result demonstrated that the Cs-137 concentration in eroded sediment from the runoff-erosion plot has been almost constant for the past 3 years, however the Cs-137 concentration of suspended sediment from the forested catchment showed slight decrease through time. On the other hand, the suspended sediment from paddy field and those in river water from large catchments exhibited rapid decrease in Cs-137 concentration with time. The decreasing trend of Cs-137 concentration were fitted by the two-component exponential model, differences in decreasing rate of the model were compared and discussed among various land uses and catchment scales. Such analysis can provide important insights into the future prediction of the radiocesium wash-off from catchments from different land uses. The decerasing trend of river system vaired with catchments. Our analysis suggest that these differences can be explained by upstream landuse with different decreasing trend.

  20. Stream restoration and sanitary infrastructure alter sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.

    2015-12-01

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater contamination was also suggested by additional tracer measurements including fluoride (added to drinking water) and iodide (contained in dietary salt). Our results suggest that integrating stream restoration with restoration of aging sanitary infrastructure can be critical to more effectively minimize watershed nutrient export. Given that both stream restoration and sanitary pipe repairs both involve extensive channel manipulation, they can be considered simultaneously in management strategies. In addition, ground water can be a major source of nutrient fluxes in urban watersheds, which has been less considered compared with upland sources and storm drains. Goundwater sources, fluxes, and flowpath should also be targeted in efforts to improve stream restoration strategies and prioritize hydrologic "hot spots" along watersheds where stream restoration is most likely to succeed.

  1. An Index of Longitudinal Hydrologic Connectivity to Evaluate Effects of Water Abstraction on Streams Dominated by Migratory Shrimps

    NASA Astrophysics Data System (ADS)

    Crook, K. E.; Pringle, C. M.; Freeman, M. C.; Scatena, F. N.

    2005-05-01

    Massive water withdrawals from streams draining the Caribbean National Forest (CNF), Puerto Rico, are threatening their biotic integrity. Migratory tropical shrimps are ideal indicator species to measure water withdrawal effects on riverine connectivity and biointegrity because: (1) their migratory range encompasses the stream network from estuaries to headwater streams; (2) they represent greater than 90% of biomass in streams draining the CNF; and (3) they facilitate important in-stream ecological processes. We developed an index to evaluate individual and cumulative effects of water intakes on each stage of the shrimp's life-cycle. Effect of water withdrawal on longitudinal connectivity was evaluated by combining effects of water withdrawal on larval and juvenile shrimps. Larvae require downstream transport to the estuary for advancement to the next life-stage, and juveniles similarly require access to headwater streams. Therefore, these two life-stages represent the bi-directional connectivity of streams from headwaters to estuaries. Seventeen water intakes were evaluated in and around the CNF. Larger intakes cause a greater decrease in connectivity than smaller intakes; however, several small, high elevation intakes had very low connectivity. Also, intakes with alternative designs, such as a French drain, have reduced effects on connectivity.

  2. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  3. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    NASA Astrophysics Data System (ADS)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the catchments. We used the Global Likelihood Uncertainty Estimations (GLUE) approach [Beven and Binley, 1992] to assess the parameter uncertainties and the subsequent error in model outputs and residence times. Reasonably low parameter uncertainties were obtained by calibrating simultaneously the two paired catchments with two outlets time series of stream flow and nitrate concentrations. Finally, only one parameter controlled the contrast in nitrogen residence times between the catchments. Therefore, this approach provided a promising metric for classifying the variability of catchment response to agricultural nitrogen inputs. Beven, K., and A. Binley (1992), THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION, Hydrological Processes, 6(3), 279-298. Kirchner, J. W., X. Feng, and C. Neal (2001), Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations, Journal of Hydrology, 254(1-4), 82-101. Ruiz, L., S. Abiven, C. Martin, P. Durand, V. Beaujouan, and J. Molenat (2002), Effect on nitrate concentration in stream water of agricultural practices in small catchments in Brittany : II. Temporal variations and mixing processes, Hydrology and Earth System Sciences, 6(3), 507-513.

  4. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  5. Ca isotopes reveal weak control of tectonic uplift on long-term climate change

    NASA Astrophysics Data System (ADS)

    Moore, J.; Jacobson, A. D.; Holmden, C. E.; Craw, D.

    2010-12-01

    Ca-Mg silicate weathering consumes atmospheric CO2 over geological timescales (≥106 yr) whereas carbonate weathering has no effect. High Ca fluxes from active orogens have been used to argue that mountain uplift is a disproportionately large CO2 sink. To test this hypothesis, it is essential to determine proportions of Ca from silicate versus carbonate weathering. High precision measurement of Ca isotopes (δ44/40Ca) provides a novel method to directly quantify Ca sources. To this end, we examined δ44/40Ca in rivers draining the Southern Alps of New Zealand. The Southern Alps have large tectonic and climatic gradients but nearly constant bedrock chemistry. West of the main topographic divide, uplift and precipitation rates are high, and steep, fast-flowing rivers drain schist. East of the divide, uplift and precipitation rates are low, and low-gradient, braided rivers drain either schist or greywacke. Both schist and greywacke contain up to 3% hydrothermal and metamorphic calcite. Glaciers feed several schist and greywacke catchments. Examined as δ44/40Ca versus Sr/Ca, values measured for carbonate and silicate end-members define two-component mixing envelopes. Rivers west of the divide plot within the envelope, ruling out isotopic fractionation as a factor for these streams. Several rivers east of the divide are 40Ca enriched relative to the envelope. In-situ fractionation of stream water Ca cannot explain this pattern because fractionation is expected to preferentially remove 40Ca. We measured δ42/44Ca ratios to test if chemical weathering preferentially releases 40Ca. When examined as δ40/44Ca versus δ42/44Ca, the data only display mass-dependent isotope effects. Ca in grass and the exchangeable pool of shallow soils is enriched in 40Ca relative to waters and bedrock. This Ca defines a third mixing end-member that contributes 15-30% of the Ca in rivers east of the divide. Evidence of the plant-fractionated signal likely reflects water residence times, which are longer on the eastern side of the main divide. After correcting for this input, we apportion Ca in all rivers to silicate versus carbonate weathering using a two-component mixing equation. For non-glaciated streams, the δ44/40Ca method and a conventional Ca/Na method agree within 2%. Silicate weathering contributes less Ca west of the main divide where uplift rates are highest. For actively glaciated catchments, the δ44/40Ca method attributes 26% more Ca to silicate weathering than the Ca/Na method. We ascribe this difference to non-stoichiometric leaching of Ca from freshly cleaved rock surfaces. This reaction must occur even faster than carbonate weathering, which dominates in adjacent non-glaciated watersheds. Our results support the assertion that mountain uplift does not dramatically elevate long-term atmospheric CO2 consumption rates compared to tectonically stable landscapes. However, δ44/40Ca reveals that glaciation, which is genetically linked to mountain uplift, yields moderately higher CO2 consumption rates than previously realized. Additionally, our study highlights how biological processes can influence the terrestrial Ca cycle.

  6. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Shakespeare, B.; Gooseff, M. N.

    2005-12-01

    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  7. Spatial variability of mountain stream dynamics along the Ethiopian Rift Valley escarpment

    NASA Astrophysics Data System (ADS)

    Asfaha, Tesfaalem-Ghebreyohannes; Frankl, Amaury; Zenebe, Amanuel; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Changes in hydrogeomorphic characteristics of mountain streams are generally deemed to be controlled mainly by land use/cover changes and rainfall variability. This study investigates the spatial variability of peak discharge in relation to land cover, rainfall and topographic variables in eleven catchments of the Ethiopian Rift Valley escarpment (average slope gradient = 48% (± 13%). Rapid deforestation of the escarpment in the second half of the 20th century resulted in the occurrence of strong flash floods, transporting large amounts of discharge and sediment to the lower graben bottom. Due to integrated reforestation interventions as of the 1980s, many of these catchments do show improvement in vegetation cover at various degrees. Daily rainfall was measured using seven non-recording rain gauges, while peak stage discharges were measured after floods using crest stage gauges installed at eleven stream reaches. Peak discharges were calculated using the Manning's equation. Daily area-weighted rainfall was computed for each catchment using the Thiessen Polygon method. To estimate the vegetation cover of each catchment, the Normalized Difference Vegetation Index was calculated from Landsat TM imagery (mean = 0.14 ± 0.05). In the rainy season of 2012, there was a positive correlation between daily rainfall and peak discharge in each of the monitored catchments. In a multiple linear regression analysis (R² = 0.83; P<0.01), average daily peak discharge in all rivers was positively related with rainfall depth and catchment size and negatively with vegetation cover (as represented by average NDVI values). Average slope gradient of the catchments and Gravelius's compactness index did not show a statistically significant relation with peak discharge. This study shows that though the average vegetation cover of the catchments is still relatively low, differences in vegetation cover, together with rainfall variability plays a determining role in the amount of peak discharges in flashy mountain streams.

  8. Runoff Generation Mechanisms and Mean Transit Time in a High-Elevation Tropical Ecosystem

    NASA Astrophysics Data System (ADS)

    Mosquera, G.

    2015-12-01

    Understanding runoff generation processes in tropical mountainous regions remains poorly understood, particularly in ecosystems above the tree line. Here, we provide insights on the process dominating the ecohydrology of the tropical alpine biome (i.e., páramo) of the Zhurucay River Ecohydrological Observatory. The study site is located in south Ecuador between 3400-3900 m in elevation. We used a nested monitoring system with eight catchments (20-753 ha) to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water at low tension were collected for three years (May 2011-May2014) and analyzed for water stable isotopes. We conducted an isotopic characterization of rainfall, streamflow, and soil waters to investigate runoff generation. These data were also integrated into a lumped model to estimate the mean transit time (MTT) and to investigate landscape features that control its variability. The isotopic characterization evidenced that the water stored in the shallow organic horizon of the Histosol soils (Andean wetlands) located near the streams is the major contributor of water to the streams year-round, whereas the water draining through the hillslope soils, the Andosols, regulates discharge by recharging the wetlands at the valley bottoms. The MTT evaluation indicated relatively short MTTs (0.15-0.73 yr) linked to short subsurface flow paths of water. We also found evidence for topographic controls on the MTT variability. These results reveal that: 1) the ecohydrology of this ecosystem is dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Andean wetlands and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.

  9. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ 2H = 7.15 · δ 18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  10. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE PAGES

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; ...

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ 2H = 7.15 · δ 18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  11. Mercury in a stream-lake network of Andean Patagonia (Southern Volcanic Zone): Partitioning and interaction with dissolved organic matter.

    PubMed

    Soto Cárdenas, Carolina; Diéguez, María Del Carmen; Queimaliños, Claudia; Rizzo, Andrea; Fajon, Vesna; Kotnik, Jože; Horvat, Milena; Ribeiro Guevara, Sergio

    2018-04-01

    Lake Nahuel Huapi (NH) is a large, ultraoligotrophic deep system located in Nahuel Huapi National Park (NHNP) and collecting a major headwater network of Northwestern Patagonia (Argentina). Brazo Rincón (BR), the westernmost branch of NH, is close to the active volcanic formation Puyehue-Cordón Caulle. In BR, aquatic biota and sediments display high levels of total Hg (THg), ranging in contamination levels although it is an unpolluted region. In this survey, Hg species and fractionation were assessed in association with dissolved organic matter (DOM) in several aquatic systems draining to BR. THg varied between 16.8 and 363 ng L -1 , with inorganic Hg (Hg 2+ ) contributing up to 99.8% and methyl mercury (MeHg) up to 2.10%. DOC levels were low (0.31-1.02 mg L -1 ) resulting in high THg:DOC and reflecting in high Hg 2+ availability for binding particles (partitioning coefficient log K d up to 6.03). In streams, Hg fractionation and speciation related directly with DOM terrestrial prints, indicating coupled Hg-DOM inputs from the catchment. In the lake, DOM quality and photochemical and biological processing drive Hg fractionation, speciation and vertical levels. Dissolved gaseous Hg (Hg 0 ) reached higher values in BR (up to 3.8%), particularly in upper lake layers where solar radiation enhances the photoreduction of Hg 2+ and Hg-DOM complexes. The environmental conditions in BR catchment promote Hg 2+ binding to abiotic particles and bioaccumulation and the production of Hg 0 , features enhancing Hg mobilization among ecosystem compartments. Overall, the aquatic network studied can be considered a "natural Hg hotspot" within NHNP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Factors controlling mercury transport in an upland forested catchment

    USGS Publications Warehouse

    Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

    1998-01-01

    Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

  13. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE WITH TRANSIENT STORAGE IN STREAMS DRAINING HARVESTED AND OLD-GROWTH WATERSHEDS

    EPA Science Inventory

    We compared measures of channel structure and riparian canopy with estimates of transient storage in 32 streams draining old-growth and harvested watersheds in the Southern Appalachian Mountains of North Carolina (n=4), the Ouachita Mountains of Arkansas (n=5), the Cascade Mounta...

  14. Memory of the Lake Rotorua catchment - time lag of the water in the catchment and delayed arrival of contaminants from past land use activities

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Daughney, Christopher J.; Stewart, Michael K.; McDonnell, Jeffrey J.

    2013-04-01

    The transit time distribution of streamflow is a fundamental descriptor of the flowpaths of water through a catchment and the storage of water within it, controlling its response to landuse change, pollution, ecological degradation, and climate change. Significant time lags (catchment memory) in the responses of streams to these stressors and their amelioration or restoration have been observed. Lag time can be quantified via water transit time of the catchment discharge. Mean transit times can be in the order of years and decades (Stewart et al 2012, Morgenstern et al., 2010). If the water passes through large groundwater reservoirs, it is difficult to quantify and predict the lag time. A pulse shaped tracer that moves with the water can allow quantification of the mean transit time. Environmental tritium is the ideal tracer of the water cycle. Tritium is part of the water molecule, is not affected by chemical reactions in the aquifer, and the bomb tritium from the atmospheric nuclear weapons testing represents a pulse shaped tracer input that allows for very accurate measurement of the age distribution parameters of the water in the catchment discharge. Tritium time series data from all catchment discharges (streams and springs) into Lake Rotorua, New Zealand, allow for accurate determination of the age distribution parameters. The Lake Rotorua catchment tritium data from streams and springs are unique, with high-quality tritium data available over more than four decades, encompassing the time when the bomb-tritium moved through the groundwater system, and from a very high number of streams and springs. Together with the well-defined tritium input into the Rotorua catchment, this data set allows for the best understanding of the water dynamics through a large scale catchment, including validation of complicated water mixing models. Mean transit times of the main streams into the lake range between 27 and 170 years. With such old water discharging into the lake, most of the water inflows into the lake are not yet fully representing the nitrate loading in their sub-catchments from current land use practises. These water inflows are still 'diluted' by pristine old water, but over time, the full amount of nitrate load will arrive at the lake. With the age distribution parameters, it is possible to predict the increase in nitrate load to the lake via the groundwater discharges. All sub-catchments have different mean transit times. The mean transit times are not necessarily correlated with observable hydrogeologic properties like hydraulic conductivity and catchment size. Without such age tracer data, it is therefore difficult to predict mean transit times (lag times, memory) of water transfer through catchments. References: Stewart, M.K., Morgenstern, U., McDonnell, J.J., Pfister, L. (2012). The 'hidden streamflow' challenge in catchment hydrology: A call to action for streamwater transit time analysis. Hydrol. Process. 26,2061-2066, Invited commentary. DOI: 10.1002/hyp.9262 Morgenstern, U., Stewart, M.K., and Stenger, R. (2010) Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow, Hydrol. Earth Syst. Sci, 14, 2289-2301

  15. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow

    Treesearch

    C.B. Graham; H.R. Barnard; K.L. Kavanagh; J.P. McNamara

    2012-01-01

    Diel fluctuations can comprise a significant portion of summer discharge in small to medium catchments. The source of these signals and the manner in which they are propagated to stream gauging sites is poorly understood. In this work, we analysed stream discharge from 15 subcatchments in Dry Creek, Idaho, Reynolds Creek, Idaho, and HJ Andrews, Oregon. We identified...

  16. Patch occupancy of stream fauna across a land cover gradient in the southern Appalachians, USA

    USGS Publications Warehouse

    Frisch, John R.; Peterson, James T.; Cecala, Kristen K.; Maerz, John C.; Jackson, C. Rhett; Gragson, Ted L.; Pringle, Catherine M.

    2016-01-01

    We modeled patch occupancy to examine factors that best predicted the prevalence of four functionally important focal stream consumers (Tallaperla spp., Cambarus spp.,Pleurocera proxima, and Cottus bairdi) among 37 reaches within the Little Tennessee River basin of the southern Appalachian Mountains, USA. We compared 34 models of patch occupancy to examine the association of catchment and reach scale factors that varied as a result of converting forest to agricultural or urban land use. Occupancy of our taxa was linked to parameters reflecting both catchment and reach extent characteristics. At the catchment level, forest cover or its conversion to agriculture was a major determinant of occupancy for all four taxa. Patch occupancies of Tallaperla, Cambarus, and C. bairdi were positively, and Pleurocera negatively, correlated with forest cover. Secondarily at the reach level, local availability of large woody debris was important forCambarus, availability of large cobble substrate was important for C. bairdi, and stream calcium concentration was important for P. proxima. Our results show the abundance of stream organisms was determined by the taxon-dependent interplay between catchment- and reach-level factors.

  17. Evaluation of catchment delineation methods for the medium-resolution National Hydrography Dataset

    USGS Publications Warehouse

    Johnston, Craig M.; Dewald, Thomas G.; Bondelid, Timothy R.; Worstell, Bruce B.; McKay, Lucinda D.; Rea, Alan; Moore, Richard B.; Goodall, Jonathan L.

    2009-01-01

    Different methods for determining catchments (incremental drainage areas) for stream segments of the medium-resolution (1:100,000-scale) National Hydrography Dataset (NHD) were evaluated by the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA). The NHD is a comprehensive set of digital spatial data that contains information about surface-water features (such as lakes, ponds, streams, and rivers) of the United States. The need for NHD catchments was driven primarily by the goal to estimate NHD streamflow and velocity to support water-quality modeling. The application of catchments for this purpose also demonstrates the broader value of NHD catchments for supporting landscape characterization and analysis. Five catchment delineation methods were evaluated. Four of the methods use topographic information for the delineation of the NHD catchments. These methods include the Raster Seeding Method; two variants of a method first used in a USGS New England study-one used the Watershed Boundary Dataset (WBD) and the other did not-termed the 'New England Methods'; and the Outlet Matching Method. For these topographically based methods, the elevation data source was the 30-meter (m) resolution National Elevation Dataset (NED), as this was the highest resolution available for the conterminous United States and Hawaii. The fifth method evaluated, the Thiessen Polygon Method, uses distance to the nearest NHD stream segments to determine catchment boundaries. Catchments were generated using each method for NHD stream segments within six hydrologically and geographically distinct Subbasins to evaluate the applicability of the method across the United States. The five methods were evaluated by comparing the resulting catchments with the boundaries and the computed area measurements available from several verification datasets that were developed independently using manual methods. The results of the evaluation indicated that the two New England Methods provided the most accurate catchment boundaries. The New England Method with the WBD provided the most accurate results. The time and cost to implement and apply these automated methods were also considered in ultimately selecting the methods used to produce NHD catchments for the conterminous United States and Hawaii. This study was conducted by a joint USGS-USEPA team during the 2-year period that ended in September 2004. During the following 2-year period ending in the fall of 2006, the New England Methods were used to produce NHD catchments as part of a multiagency effort to generate the NHD streamflow and velocity estimates for a suite of integrated geospatial products known as 'NHDPlus.'

  18. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- andmore » intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.« less

  19. Changes in stream chemistry and nutrient export following a partial harvest in the Catskill Mountains, New York, USA

    USGS Publications Warehouse

    Wang, X.; Burns, Douglas A.; Yanai, R.D.; Briggs, R.D.; Germain, R.H.

    2006-01-01

    Clearcut forest harvesting typically results in large changes in stream water chemistry in northeastern North America. The effects of partial forest harvests on stream chemistry have not received as much attention, even though partial cutting is a more common forestry practice than clearcutting in this region. Changes in stream water chemistry following a partial cut are reported here from a 10 ha study catchment in a northern hardwood forest in the Catskill Mountains of southern New York, and are compared to those of a nearby 48 ha reference catchment. The lower two thirds of the treatment catchment was harvested in February-April 2002 by a shelterwood method, such that 33% of the basal area of the catchment was removed. Stream NO3-, NH4+, Ca2+, K+, and total dissolved aluminum (Alto) concentrations increased significantly after the harvest. Stream Ca2+, Mg2+ and NH4+ concentrations peaked 5 months after the initiation of the harvest, NO 3- and K+ concentrations peaked 6 months after cutting, and Alto concentrations peaked 1 year after cutting. Streamflow was not significantly affected by the harvest when compared to the flow of three nearby streams. Export of NO3- in stream water increased five-fold the year after the cut, and briefly exceeded atmospheric inputs of inorganic nitrogen during 4 months in the fall of 2002. Changes in stream NO3- and K+ concentrations were less than predicted by the relative basal area removed compared with those of a recent nearby clearcut. In contrast, changes in Ca2+, Mg 2+ and Alto concentrations were approximately proportional to basal area removal in these two cuts. Stream chemistry returned to values close to those of the pre-cut period and to reference values by early spring of 2003, just over a year after the initiation of the harvest, except for NO 3- concentrations, which remained elevated above background 18-20 months after completion of the cut.

  20. Extreme Events in Urban Streams Leading to Extreme Temperatures in Birmingham, UK

    NASA Astrophysics Data System (ADS)

    Rangecroft, S.; Croghan, D.; Van Loon, A.; Sadler, J. P.; Hannah, D. M.

    2016-12-01

    Extreme flows and high water temperature events act as critical stressors on the ecological health of rivers. Urban headwater streams are considered particularly vulnerable to the effects of these extreme events. Despite this, such catchments remain poorly characterised and the effect of differences in land use is rarely quantified, especially in relation to water temperature. Thus a key research gap has emerged in understanding the patterns of water temperature during extreme events within contrasting urban, headwater catchments. We studied the headwaters of two bordering urban catchments of contrasting land use within Birmingham, UK. To characterise response to extreme events, precipitation and flow were analysed for the period of 1970-2016. To analyse the effects of extreme events on water temperature, 10 temperature loggers recording at 15 minute intervals were placed within each catchment covering a range of land use for the period May 2016 - present. During peak over threshold flood events higher average peaks were observed in the less urbanised catchment; however highest maximum flow peaks took place in the more densely urbanised catchment. Very similar average drought durations were observed between the two catchments with average flow drought durations of 27 days in the most urbanised catchment, and 29 in the less urbanised catchment. Flashier water temperature regimes were observed within the more urbanised catchment and increases of up to 5 degrees were apparent within 30 minutes during certain storms at the most upstream sites. Only in the most extreme events did the more densely urban stream appear more susceptible to both extreme high flows and extreme water temperature events, possibly resultant from overland flow emerging as the dominant flow pathway during intense precipitation events. Water temperature surges tended to be highly spatially variable indicating the importance of local land use. During smaller events, water temperature was less changeable and spatially variable, suggesting that overland flow may not the dominant flow pathway in such events. During drought events, the effect of catchment land use on water temperature was less apparent.

  1. Water-quality assessment of the Trinity River Basin, Texas - Nutrients in streams draining an agricultural and an urban area, 1993-95

    USGS Publications Warehouse

    Land, Larry F.; Shipp, Allison A.

    1996-01-01

    Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.

  2. Evaluating the perennial stream using logistic regression in central Taiwan

    NASA Astrophysics Data System (ADS)

    Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.

    2014-12-01

    This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.

  3. Sensitivity of stream water age to climatic variability and land use change: implications for water quality

    NASA Astrophysics Data System (ADS)

    Soulsby, Chris; Birkel, Christian; Geris, Josie; Tetzlaff, Doerthe

    2016-04-01

    Advances in the use of hydrological tracers and their integration into rainfall runoff models is facilitating improved quantification of stream water age distributions. This is of fundamental importance to understanding water quality dynamics over both short- and long-time scales, particularly as water quality parameters are often associated with water sources of markedly different ages. For example, legacy nitrate pollution may reflect deeper waters that have resided in catchments for decades, whilst more dynamics parameters from anthropogenic sources (e.g. P, pathogens etc) are mobilised by very young (<1 day) near-surface water sources. It is increasingly recognised that water age distributions of stream water is non-stationary in both the short (i.e. event dynamics) and longer-term (i.e. in relation to hydroclimatic variability). This provides a crucial context for interpreting water quality time series. Here, we will use longer-term (>5 year), high resolution (daily) isotope time series in modelling studies for different catchments to show how variable stream water age distributions can be a result of hydroclimatic variability and the implications for understanding water quality. We will also use examples from catchments undergoing rapid urbanisation, how the resulting age distributions of stream water change in a predictable way as a result of modified flow paths. The implication for the management of water quality in urban catchments will be discussed.

  4. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain research watershed (Georgia, USA)

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.

    2001-01-01

    The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.

  5. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome

    NASA Astrophysics Data System (ADS)

    Grant, S. B.

    2015-12-01

    Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of storm water that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and pre-urban land cover. For all but the wettest regions of the world, the water balance predicts a much larger volume of storm water runoff should be harvested than infiltrated to restore stream hydrology to a pre-urban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of storm water harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential co-benefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.

  6. Assessing the controls and uncertainties on mean transit times in contrasting headwater catchments

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Irvine, Dylan; Burton, Chad; Morgenstern, Uwe

    2018-02-01

    Estimating the time required for water to travel through headwater catchments from where it recharges to where it discharges into streams (the transit time) is important for understanding catchment behaviour. This study uses tritium (3H) activities of stream water to estimate the mean transit times of water in the upper Latrobe and Yarra catchments, southeast Australia, at different flow conditions. The 3H activities of the stream water were between 1.26 and 1.99 TU, which are lower than those of local rainfall (2.6 to 3.0 TU). 3H activities in individual subcatchments are almost invariably lowest at low streamflows. Mean transit times calculated from the 3H activities using a range of lumped parameter models are between 7 and 62 years and are longest during low streamflows. Uncertainties in the estimated mean transit times result from uncertainties in the geometry of the flow systems, uncertainties in the 3H input, and macroscopic mixing. In addition, simulation of 3H activities in FEFLOW indicates that heterogeneous hydraulic conductivities increase the range of mean transit times corresponding to a specific 3H activity. The absolute uncertainties in the mean transit times may be up to ±30 years. However, differences between mean transit times at different streamflows in the same catchment or between different subcatchments in the same area are more reliably estimated. Despite the uncertainties, the conclusions that the mean transit times are years to decades and decrease with increasing streamflow are robust. The seasonal variation in major ion geochemistry and 3H activities indicate that the higher general streamflows in winter are sustained by water displaced from shallower younger stores (e.g., soils or regolith). Poor correlations between 3H activities and catchment area, drainage density, mean slope, distance to stream, and landuse, imply that mean transit times are controlled by a variety of factors including the hydraulic properties of the soils and aquifers that are difficult to characterise spatially. The long mean transit times imply that there are long-lived stores of water in these catchments that may sustain streamflow over drought periods. Additionally, there may be considerable delay in contaminants reaching the stream.

  7. The impacts of prescribed moorland burning on water colour and dissolved organic carbon: a critical synthesis.

    PubMed

    Holden, J; Chapman, P J; Palmer, S M; Kay, P; Grayson, R

    2012-06-30

    Discolouration of natural surface waters due to the humic component of dissolved organic carbon (DOC) is a costly problem for water supply companies. This paper reviews what is known about the impacts of prescribed moorland vegetation burning on water colour. Relevant research has taken place at three scales: laboratory experiments on peat cores, plot scale sampling of soil waters and catchment scale sampling of stream waters. While laboratory studies suggest burning increases colour production, the evidence from catchment and plot studies is contradictory. Plot studies suggest colour production may decrease or remain unchanged following burning although there is evidence for some transient changes. Catchment studies suggest prescribed moorland burning causes stream water colour to increase, although in most cases the evidence is not clear cut since most studies could not clearly disentangle the effects of burning from those of vegetation cover. The differences in findings between plot and catchment studies may be explained by: i) the short-term nature of some studies which do not measure long-term response and recovery times to burning; ii) the lack of colour measurements from shallow soil depths which contribute more to streamflow than soil water from deeper in the peat; and iii) the possibility of hydrological interactions occurring between different experimental plots at some sites. Additionally, the increase in recent patch burning in some catchments that has been statistically attributed by some authors to increases in stream water colour cannot be reconciled with theoretical calculations. When dilution with waters derived from other parts of the catchment are taken into account, large values of colour have to be theoretically derived from those recently burnt areas that occupy a small proportion of the catchment area in order to balance the change in stream water colour observed in recent years. Therefore, much further process-based work is required to properly investigate whether prescribed vegetation burning is a direct driver of enhanced colour and DOC in upland streams, rivers and lakes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Suspended sediment yield of New Jersey coastal plain streams draining into the Delaware estuary

    USGS Publications Warehouse

    Mansue, Lawrence J.

    1972-01-01

    The purpose of this report is to summarize sediment data collected at selected stream-sampling sites in southern New Jersey. Computations of excepted average annual yields at each sampling site were made and utilized to estimate the annual yield at ungaged sites. Similar data currently are being compiled for streams draining Pennsylvania and Delaware. It is planned to report on the combined information at a later date in the Geological Survey's Water-Supply Paper series.

  9. A synoptic survey of ecosystem services from headwater catchments in the United States (presentation)

    EPA Science Inventory

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...

  10. A synoptic survey of ecosystem services from headwater catchments in the United States- webinar

    EPA Science Inventory

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...

  11. Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale.

    PubMed

    Johnson, Erica; Austin, Bradley J; Inlander, Ethan; Gallipeau, Cory; Evans-White, Michelle A; Entrekin, Sally

    2015-10-15

    Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6 wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, p<0.001). Relatively tolerant mayflies Baetis and Caenis (r=0.64, p=0.04), filtering hydropsychid caddisflies (r=0.73, p=0.01), and chironomid midge densities (r=0.79, p=0.008) also increased in streams where more well pads were closer to stream channels. Macroinvertebrate trophic structure reflected environmental conditions with greater sediment and primary production in streams with more gas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, p<0.001) were the only in-stream variables correlated with gas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  13. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis

    NASA Astrophysics Data System (ADS)

    Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik

    2017-06-01

    Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.

  14. Lateral, vertical, and longitudinal connectivity of runoff source areas drive stream hydro-biogeochemical signals across a low relief drainage network

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2017-12-01

    Our understanding of the balance between longitudinal, lateral, and vertical expansion and contraction of reactive flowpaths and source areas in headwater catchments is limited. To address this, we utilized an ephemeral-to-perennial stream network in the Piedmont region of North Carolina, USA to gain new understanding about critical zone mechanisms that drive runoff generation and biogeochemical signals in both groundwater and stream water. Here, we used chemical and hydrometric data collected from zero through second order catchments to characterize spatial and temporal runoff and overland, shallow soil, and deep subsurface flow across characteristic landscape positions. Our results showed that the active stream network was driven by two superimposed runoff generation regimes that produced distinct hydro-biogeochemical signals at the catchment outlet. The baseflow runoff generation regime expanded and contracted the stream network seasonally through the rise and fall of the seasonal water table. Superimposed on this, event-activated source area contributions were driven by surficial and shallow subsurface flowpaths. The subsurface critical zone stratigraphy in this landscape coupled with the precipitation regime activated these shallow flowpaths frequently. This drove an increase in dissolved organic carbon (DOC) concentrations with increases in runoff across catchment scales. DOC-runoff relationship variability and spread was driven by the balance between runoff regimes as well as a seasonal depletion of DOC from shallow subsurface flowpath activation and annual replenishment from litterfall. From this, we suggest that the hydro-biogeochemical signals at larger catchment outlets can be driven by a balance of longitudinal, lateral, and vertical source area contributions, critical zone structure, and complex hydrological processes.

  15. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  16. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil).

    PubMed

    Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E

    2018-05-01

    Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Urban Stormwater Runoff: A New Class of Environmental Flow Problem

    PubMed Central

    Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.

    2012-01-01

    Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257

  18. Simulating Streamflow and Dissolved Organic Matter Export from small Forested Watersheds

    NASA Astrophysics Data System (ADS)

    Xu, N.; Wilson, H.; Saiers, J. E.

    2010-12-01

    Coupling the rainfall-runoff process and solute transport in catchment models is important for understanding the dynamics of water-quality-relevant constituents in a watershed. To simulate the hydrologic and biogeochemical processes in a parametrically parsimonious way remains challenging. The purpose of this study is to quantify the export of water and dissolved organic matter (DOM) from a forested catchment by developing and testing a coupled model for rainfall-runoff and soil-water flushing of DOM. Natural DOM plays an important role in terrestrial and aquatic systems by affecting nutrient cycling, contaminant mobility and toxicity, and drinking water quality. Stream-water discharge and DOM concentrations were measured in a first-order stream in Harvard Forest, Massachusetts. These measurements show that stream water DOM concentrations are greatest during hydrologic events induced by rainfall or snowmelt and decline to low, steady levels during periods of baseflow. Comparison of the stream-discharge data to calculations of a simple rainfall-runoff model reveals a hysteretic relationship between stream-flow rates and the storage of water within the catchment. A modified version of the rainfall-runoff model that accounts for hysteresis in the storage-discharge relationship in a parametrically simple way is capable of describing much, but not all, of the variation in the time-series data on stream discharge. Our ongoing research is aimed at linking the new rainfall-runoff formulation with coupled equations that predict soil-flushing and stream-water concentrations of DOM as functions of the temporal change in catchment water storage. This model will provide a predictive tool for examining how changes in climatic variables would affect the runoff generation and DOM fluxes from terrestrial landscape.

  19. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.

  20. Experimental reductions in stream flow alter litter processing and consumer subsidies in headwater streams

    Treesearch

    Robert M. Northington; Jackson R. Webster

    2017-01-01

    SummaryForested headwater streams are connected to their surrounding catchments by a reliance on terrestrial subsidies. Changes in precipitation patterns and stream flow represent a potential disruption in stream ecosystem function, as the delivery of terrestrial detritus to aquatic consumers and...

  1. Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, lower Taylor Valley, Victoria Land, Antarctica, 1990-92

    USGS Publications Warehouse

    Von Guerard, Paul; McKnight, Diane M.; Harnish, R.A.; Gartner, J.W.; Andrews, E.D.

    1995-01-01

    During the 1990-91 and 1991-92 field seasons in Antarctica, streamflow, water-temperature, and specific-conductance data were collected on the major streams draining into Lake Fryxell. Lake Fryxell is a permanently ice-covered, closed-basin lake with 13 tributary streams. Continuous streamflow data were collected at eight sites, and periodic streamflow measurements were made at three sites. Continuous water-temperature and specific- conductance data were collected at seven sites, and periodic water-temperature and specific-conductance data were collected at all sites. Streamflow for all streams measured ranged from 0 to 0.651 cubic meter per second. Water temperatures for all streams measured ranged from 0 to 14.3 degrees Celsius. Specific conductance for all streams measured ranged from 11 to 491 microsiemens per centimeter at 25 degrees Celsius. It is probable that stream- flow in the Lake Fryxell Basin during 1990-92 was greater than average. Examination of the 22-year streamflow record in the Onyx River in the Wright Valley revealed that in 1990 streamflow began earlier than for any previous year recorded and that the peak streamflow of record was exceeded. Similar high-flow conditions occurred during the 1991-92 field season. Thus, the data collected on streams draining into Lake Fryxell during 1990-92 are representative of greater than average stream- flow conditions.

  2. The Stream-Catchment (StreamCat) Dataset

    EPA Science Inventory

    Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream landscape features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hund...

  3. Modeling hydrology and in-stream transport on drained forested lands in coastal Carolinas, U.S.A.

    Treesearch

    Devendra Amatya

    2005-01-01

    This study summarizes the successional development and testing of forest hydrologic models based on DRAINMOD that predicts the hydrology of low-gradient poorly drained watersheds as affected by land management and climatic variation. The field scale (DRAINLOB) and watershed-scale in-stream routing (DRAINWAT) models were successfully tested with water table and outflow...

  4. Factors affecting distribution of wood, detritus, and sediment in headwater streams draining managed young-growth red alder-conifer forests in southeast Alaska

    Treesearch

    Takashi Gomi; Adelaide C. Johnson; Robert L. Deal; Paul E. Hennon; Ewa H. Orlikowska; Mark S. Wipfli

    2006-01-01

    Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.)-conifer riparian forests (40 years old) in southeast Alaska. More riparian red alder were found along...

  5. X-DRAIN and XDS: a simplified road erosion prediction method

    Treesearch

    William J. Elliot; David E. Hall; S. R. Graves

    1998-01-01

    To develop a simple road sediment delivery tool, the WEPP program modeled sedimentation from forest roads for more than 50,000 combinations of distance between cross drains, road gradient, soil texture, distance from stream, steepness of the buffer between the road and the stream, and climate. The sediment yield prediction from each of these runs was stored in a data...

  6. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  7. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the role that functional feeding groups may have on results. Initial results on invertebrate community structure in response to land use indicate the importance of geographical site location over land use effects. We suggest that SIA results should be interpreted together with benthic macroinvertebrate community analyses to get more insight into ecological impacts of different peatland uses with respect to changed food quality. Further, we will assess whether CH4 and CO2 could be used as an indicator of basal resource change. In future studies, we will address the role of the quality and quantity of the basal resources in more detail, which is likely to provide more insight into the effects of different forms of peatland use on aquatic ecosystems.

  8. Effects of the H-3 Highway Stormwater Runoff on the Water Quality of Halawa Stream, Oahu, Hawaii, November 1998 to August 2004

    USGS Publications Warehouse

    Wolff, Reuben H.; Wong, Michael F.

    2008-01-01

    Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were analyzed to determine concentrations and loads at a particular point in time. Flow-weighted time composite samples from the automated point samplers were analyzed to determine mean constituent concentrations or loads during a storm. Chemical analysis of individual grab samples from the automated point sampler at Storm Drain C demonstrated the ?first flush? phenomenon?higher constituent concentrations at the beginning of runoff events?for the trace metals cadmium, lead, zinc, and copper, whose concentrations were initially high during the period of increasing discharge and gradually decreased over the duration of the storm. Water-quality data from Storm Drain C and four stream sites were compared to the State of Hawaii Department of Health (HDOH) water-quality standards to determine the effects of highway storm runoff on the water quality of Halawa Stream. The geometric-mean standards and the 10- and 2-percent-of-the-time concentration standards for total nitrogen, nitrite plus nitrate, total phosphorus, total suspended solids, and turbidity were exceeded in many of the comparisons. However, these standards were not designed for stormwater sampling, in which constituent concentrations would be expected to increase for short periods of time. With the aim of enhancing the usefulness of the water-quality data, several modifications to the stormwater monitoring program are suggested. These suggestions include (1) the periodic analyzing of discrete samples from the automated point samplers over the course of a storm to get a clearer profile of the storm, from first flush to the end of the receding discharge; (2) adding an analysis of the dissolved fractions of metals to the sampling plan; (3) installation of an automatic sampler at Bridge 8 to enable sampling earlier in the storms; (4) a one-time sampling and analysis of soils upstream of Bridge 8 for base-line contaminant concentrations; (5) collection of samples from Halawa Stream during low-flow conditions

  9. ASSESSING HEADWATER STREAMS: LINKING LANDSCAPES TO STREAM NETWORKS

    EPA Science Inventory

    Headwater streams represent a significant land-water boundary and drain 70-80% of the landscape. Headwater streams are vital components to drainage systems and are directly linked to our downstream rivers and lakes. However, alteration and loss of headwater streams have occurre...

  10. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  11. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  12. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  13. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  14. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  15. Determining Solute Sources and Water Flowpaths in a Forested Headwater Catchment: Advances With the Ca-Sr-Ba Multi-tracer

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.

    2011-12-01

    Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide evidence of the spatial distribution of water flowpaths feeding the streams. In addition, we are exploring the use of Sr and Ba stable isotope ratios (88Sr/86Sr, 138Ba/134Ba) as novel tracers of Sr and Ba sources in catchments. Initial results indicate that both Sr and Ba stable isotopes are fractionated by plants similarly to patterns observed globally for Ca stable isotopes. We hypothesize that while biologically-cycled Ca is efficiently retained in the organic soil-plant system, biologically-cycled Sr and especially Ba will be more easily leached by soil waters and delivered to the streams and thus their stable isotope ratios may provide an additional means to distinguish between shallow and deep water flowpaths in forested catchments.

  16. TERMINAL ELECTRON ACCEPTING PROCESSES IN THE ALLUVIAL SEDIMENTS OF A HEADWATER STREAM

    EPA Science Inventory

    Chemical fluxes between catchments and streams are influenced by biochemical processes in the groundwater-stream water (GW-SW) ecotone, the interface between stream surface water and groundwater. Terminal electron accepting processes (TEAPs) that are utilized in respiration of ...

  17. ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS

    EPA Science Inventory

    Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...

  18. Environmental Energy and Mass Transfer: Key to Understanding Catchment Evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Rasmussen, C.; Broxton, P. D.; Heidbuechel, I.

    2010-12-01

    While a lot is now known about catchment behavior of many study sites around the world, the ability to generalize these findings for predictions in unmonitored sites remains difficult. This is largely due to the fact that the link between climate, hydrologic response and how the landscape is structured is poorly understood. Notwithstanding, such understanding is fundamental to advancing new hydrological theory and useful model structures that can be used in ungauged sites. In this paper we will present a theoretical framework based on open systems thermodynamics to study catchment evolution. This framework is referred to as Environmental Energy and Mass Transfer (EEMT) and relates long-term energy and mass fluxes through the catchment to its internal structure and functioning. We will illustrate this concept using recent results from field investigations in two semi-arid environments in southwest USA:, the Valles Caldera National Preserve (VCNP) near Los Alamos, NM and the Santa Catalina Mountains (SCM) near Tucson, AZ. In VCNP we have designed an experiment that involves calculating transit times for a number of catchments that drain from a large dome called Redondo Peak. These catchments have different orientations and therefore receive different amounts of solar radiation. In general, we found that there was a correlation between mean transit times and aspect for these streams. At the same time, other topographic characteristics, which are typically considered as controls over catchment mean transit times, such as catchment area, elevation, and the ratio of flowpath length to slope gradient, exhibit limited predictive power with respect to mean transit times. The relationship between mean transit times and aspect suggests that in the Valles Caldera, transit times might be affected by a variety of features that are influenced by aspect, such as slope steepness, vegetation patterns, and soil depth. In SCM we have monitored the hydrological response in two hillslopes since 2006 using an array of hydrometric and hydrochemical instruments, in an attempt to estimate the mean transit time of water in those hillslopes. The two hillslope are different in their lithology (granite versus schist) and plan form (oval versus V-shaped), but receive on average the same amount of energy because they are both north facing. We find that the granite-oval hillslope has a mean transit time 5 times shorter than the schist-V-shaped hillslope. The parent material and the prevailing climate are responsible for very different soil characteristics and thus storage capacities, leading to important differences in transit time distributions, illustrating how geology leaves fingerprints on catchment’s evolution.

  19. Forest clearfelling effects on dissolved oxygen and metabolism in peatland streams.

    PubMed

    O'Driscoll, Connie; O'Connor, Mark; Asam, Zaki-Ul-Zaman; de Eyto, Elvira; Brown, Lee E; Xiao, Liwen

    2016-01-15

    Peatlands cover ∼3% of the world's landmass and large expanses have been altered significantly as a consequence of land use change. Forestry activities are a key pressure on these catchments increasing suspended sediment and nutrient export to receiving waters. The aim of this study was to investigate stream dissolved oxygen (DO) and metabolic activity response following clearfelling of a 39-year-old lodgepole pine and Sitka spruce forestry in an upland peat catchment. Significant effects of clearfelling on water temperature, flows, DO and stream metabolic (photosynthesis, respiration) rates were revealed. Stream temperature and discharge significantly increased in the study stream following clearfelling. Instream ecosystem respiration increased significantly following clearfelling, indicating an increase in the net consumption of organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Spatio-Temporal Variability of Dissolved Metals in the Surface Waters of an Agroforestry Catchment with Low Levels of Anthropogenic Activity

    NASA Astrophysics Data System (ADS)

    Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2017-12-01

    Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.

  1. Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes

    NASA Astrophysics Data System (ADS)

    Simião-Ferreira, Juliana; Nogueira, Denis Silva; Santos, Anna Claudia; De Marco, Paulo; Angelini, Ronaldo

    2018-04-01

    The multiple scale of stream networks spatial organization reflects the hierarchical arrangement of streams habitats with increasingly levels of complexity from sub-catchments until entire hydrographic basins. Through these multiple spatial scales, local stream habitats form nested subsets of increasingly landscape scale and habitat size with varying contributions of both alpha and beta diversity for the regional diversity. Here, we aimed to test the relative importance of multiple nested hierarchical levels of spatial scales while determining alpha and beta diversity of caddisflies in regions with different levels of landscape degradation in a core Cerrado area in Brazil. We used quantitative environmental variables to test the hypothesis that landscape homogenization affects the contribution of alpha and beta diversity of caddisflies to regional diversity. We found that the contribution of alpha and beta diversity for gamma diversity varied according to landscape degradation. Sub-catchments with more intense agriculture had lower diversity at multiple levels, markedly alpha and beta diversities. We have also found that environmental predictors mainly associated with water quality, channel size, and habitat integrity (lower scores indicate stream degradation) were related to community dissimilarity at the catchment scale. For an effective management of the headwater biodiversity of caddisfly, towards the conservation of these catchments, heterogeneous streams with more pristine riparian vegetation found within the river basin need to be preserved in protected areas. Additionally, in the most degraded areas the restoration of riparian vegetation and size increase of protected areas will be needed to accomplish such effort.

  2. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.

    PubMed

    Kronvang, Brian; Audet, Joachim; Baattrup-Pedersen, Annette; Jensen, Henning S; Larsen, Søren E

    2012-01-01

    Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( < 0.05) influence on bank erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( < 0.05) lower than in buffer strips dominated by grass and herbs. Gross and net P input from bank erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Phosphorus transport and retention in a channel draining an urban, tropical catchment with informal settlements

    NASA Astrophysics Data System (ADS)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2014-03-01

    Urban catchments in sub-Saharan Africa (SSA) are increasingly becoming a major source of phosphorus (P) to downstream ecosystems. This is primarily due to large inputs of untreated wastewater to urban drainage channels, especially in informal settlements (or slums). However, the processes governing the fate of P in these catchments are largely unknown. In this study, these processes are investigated. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining a 28 km2 slum-dominated catchment in Kampala, Uganda, and from a tertiary channel draining one of the contributing slum areas (0.54 km2). The samples were analysed for orthophosphate (PO4-P), particulate P (PP), total P (TP), suspended solids (SS) and hydrochemistry. We also collected channel bed and suspended sediments to determine their geo-available metals, sorption characteristics and the dominant phosphorus forms. Our results showed that the catchment exported high fluxes of P (0.3 kg km2 d-1 for PO4-P and 0.95 for TP), which were several orders of magnitude higher than values normally reported in literature. A large proportion of P exported was particulate (56% of TP) and we inferred that most of it was retained along the channel bed. The retained sediment P was predominantly inorganic (> 63% of total sediment P) and consisted of mostly Ca and Fe-bound P, which were present in almost equal proportions. Ca-bound sediment P was attributed to the adsorption of P to calcite because surface water was near saturation with respect to calcite in all the events sampled. Fe-bound sediment P was attributed to the adsorption of P to iron oxides in suspended sediment during runoff events given that surface water was undersaturated with respect to iron phosphates. We also found that the bed sediments were P-saturated and showed a tendency to release P by mineralisation and desorption. During rain events, there was a flushing of PP which we attributed to the resuspension of P-rich bed sediment that accumulated in the channel during low flows. However, first-flush effects were not observed. Our findings provide useful insights into the processes governing the fate and transport of P in urban slum catchments in SSA.

  4. Quantifying the magnitude and spatiotemporal variation of aquatic CO2 fluxes in a sub-tropical karst catchment, Southwest China

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Waldron, Susan; Newton, Jason; Garnett, Mark H.

    2017-04-01

    The role played by rivers in regional and global C budgets is receiving increasing attention. A large portion of the carbon transported via inland waters is returned to the atmosphere by carbon dioxide evasion from rivers and lakes. Karst landscapes represent an important C store on land, and are also considered to play an important role in climate regulation by consuming atmospheric CO2 during chemical weathering. However, we cannot be certain how effective this sink is if we do not know how efficiently the rivers draining karst landscapes remobilise weathered C to the atmosphere as CO2. pCO2 in karst waters is generally greater than atmospheric equilibrium, indicating that there can be a net CO2 efflux to the atmosphere. However, measurement confirming this and quantifying flux rates has been rarely conducted. Using a floating chamber method, in 2016 we directly measured CO2 fluxes from spatially distributed freshwaters (springs, sinkholes, streams and reservoirs/ponds) in the Houzhai Catchment, a karst region in SW China. Fluxes ranged from -0.5 to +267.4 μmol CO2 m-2s-1, and most sites showed seasonal variations with higher CO2 efflux rates in the wet (April - September) than dry season (October - March). There was a significant positive relationship between CO2 efflux and flow velocity, indicating that hydraulic controls on CO2 efflux from flowing water are important, while for water with little movement (sinkholes and reservoirs/ponds), pCO2 appears a more important control on efflux rates. Conditions similar to this study area may exist in many sub-tropical rivers that drain karst landscapes in South China. These waters are rich in DIC which can be an order of magnitude greater than some non-karst catchments. The large DIC pool has the potential to be a considerable source of free CO2 to the atmosphere. Considering that carbonate lithology covers a significant part of the Earth's surface, CO2 evasion in fluvial water from these regions is expected to contribute notably to the annual carbon dioxide release from global freshwater systems, thus must be better represented in global spatial analyses of CO2 evasion. This research advances this need.

  5. Stream Communities Along a Catchment Land-Use Gradient: Subsidy-Stress Responses to Pastoral Development

    NASA Astrophysics Data System (ADS)

    Niyogi, Dev K.; Koren, Mark; Arbuckle, Chris J.; Townsend, Colin R.

    2007-02-01

    When native grassland catchments are converted to pasture, the main effects on stream physicochemistry are usually related to increased nutrient concentrations and fine-sediment input. We predicted that increasing nutrient concentrations would produce a subsidy-stress response (where several ecological metrics first increase and then decrease at higher concentrations) and that increasing sediment cover of the streambed would produce a linear decline in stream health. We predicted that the net effect of agricultural development, estimated as percentage pastoral land cover, would have a nonlinear subsidy-stress or threshold pattern. In our suite of 21 New Zealand streams, epilithic algal biomass and invertebrate density and biomass were higher in catchments with a higher proportion of pastoral land cover, responding mainly to increased nutrient concentration. Invertebrate species richness had a linear, negative relationship with fine-sediment cover but was unrelated to nutrients or pastoral land cover. In accord with our predictions, several invertebrate stream health metrics (Ephemeroptera-Plecoptera-Trichoptera density and richness, New Zealand Macroinvertebrate Community Index, and percent abundance of noninsect taxa) had nonlinear relationships with pastoral land cover and nutrients. Most invertebrate health metrics usually had linear negative relationships with fine-sediment cover. In this region, stream health, as indicated by macroinvertebrates, primarily followed a subsidy-stress pattern with increasing pastoral development; management of these streams should focus on limiting development beyond the point where negative effects are seen.

  6. The need for an improved risk index for phosphorus losses to water from tile-drained agricultural land

    NASA Astrophysics Data System (ADS)

    Ulén, Barbro; Djodjic, Faruk; Etana, Araso; Johansson, Göran; Lindström, Jan

    2011-03-01

    SummaryA refined version of a conditional phosphorus risk index (PRI) for P losses to waters was developed based on monitoring and analyses of PRI factors from an agricultural catchment in Sweden. The catchment has a hummocky landscape of heavy glacial till overlying moraine and an overall balanced soil P level. Single P source factors and combinations of factors were tested and discussed together with water movement and water management factors important for catchments dominated by drained clay soils. An empirical relationship was established (Pearson correlation coefficient 0.861, p < 0.001) between phosphorus sorption index (PSI-CaCl 2), measured in a weak calcium chloride solution, and iron (Fe-AL) aluminium (Al-AL) and phosphorus (P-AL) in soil extract with acid ammonium lactate. Differing relationships were found for a field that had not received any manure in the last 15 years and a field that had received chicken litter very recently. In addition, a general relationship (Pearson correlation coefficient 0.839, p < 0.001) was found between the ratio of phosphorus extracted from fresh soil in water (Pw) to PSI-CaCl 2 and the degree of phosphorus saturation in lactate extract (DPS-AL). One exception was a single field, representing 7% of agricultural land in the catchment, that had been treated with glyphosate shortly before soil sampling. Saturated hydraulic conductivity (SHC) in heavy clay in contact with the moraine base (at 1 m depth) was on average 0.06 m day -1. In clay not in contact with moraine, SHC was significantly lower (mean 0.007 m day -1). A reduction in the present tile drain spacing (from 14-16 m to 11 m) is theoretically required to maintain satisfactory water discharge and groundwater level. Up to 10% of the arable land was estimated to be a potential source area for P, based on different indices. Parts of a few fields close to farm buildings (1% of total arable land) were identified as essential P source areas, with high DPS-AL values and low PSI-CaCl 2 values throughout the soil profile. A further 2% of arable land was identified as potential important transport areas, based on visible surface water rills or frequent water-ponded conditions. Fields comprising 10% of the total arable land in the catchment should be re-drained in the near future to improve water infiltration and avoid unnecessary channelised water flow. The need for an improved PRI for erosion and water transport is discussed.

  7. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    USGS Publications Warehouse

    Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.

  8. Assessing the role of large wood entrained in the 2013 Colorado Front Range flood in ongoing channel response and reservoir management

    NASA Astrophysics Data System (ADS)

    Bennett, Georgina; Rathburn, Sara; Ryan, Sandra; Wohl, Ellen; Blair, Aaron

    2016-04-01

    Considerable quantities of large wood (LW) may be entrained during floods with long lasting impacts on channel morphology, sediment and LW export, and downstream reservoir management. Here we present an analysis of LW entrained by an extensive flood in Colorado, USA. Over a 5 day period commencing 9th September 2013, up to 450 mm of rain, or ~1000% of the monthly average, fell in catchments spanning a 100-km-wide swath of the Colorado Front Range resulting in major flooding. Catchment response was dramatic, with reports of 100s - 1000s of years of erosion, destruction of infrastructure and homes, and sediment and LW loading within reservoirs. One heavily impacted catchment is the North St Vrain, draining 250km2 of the South Platte drainage basin. In addition to widespread channel enlargement, remote imagery reveals hundreds of landslides that delivered sediment and LW to the channel and ultimately to Ralph Price Reservoir, which provides municipal water to Longmont. The City of Longmont facilitated the removal of ~1050 m3 of wood deposited at the reservoir inlet by the flood but the potential for continued movement of large wood in the catchment presents an on-going concern for reservoir management. In collaboration with the City of Longmont, our objectives are (1) to quantify the volume of wood entrained by the flood and still stored along the channel, (2) characterize the size and distribution of LW deposits and (3) determine their role in ongoing catchment flood response and recovery. We utilize freely available pre and post flood NAIP 4-band imagery to calculate a normalized differential vegetation index (NDVI) difference map with which we calculate the area of vegetation entrained by the flood. We combine this with field assessments and a map of vegetation type automatically classified from optical satellite imagery to estimate the total flood-entrained volume of wood. Preliminary testing of 'stream selfies' - structure from motion imaging of LW deposits using a hand-held GoPro camera on an extended platform, demonstrates the potential of this technique to characterize LW deposits and monitor their role in ongoing channel response and recovery.

  9. Character, quality and bioavailability of Dissolved Organic Carbon (DOC) in a boreal stream network (Invited)

    NASA Astrophysics Data System (ADS)

    Laudon, H.; Berggren, M.; Agren, A.; Jansson, M.

    2010-12-01

    The conceptual understanding of the role of terrestrially derived dissolved organic carbon (DOC) in freshwaters has been changing rapidly. While it was once considered mainly a pool of recalcitrant compounds, DOC is now better known for its interactivity and ability to affect both the biogeochemistry and ecology of streams, rivers and lakes. Here we summarize the recent work from the multi-investigatory project conducted in the Krycklan Catchment Study in Sweden with an emphasis on the spatial and temporal variability of the character and bioavailability of DOC. In total, 15 streams and their adjacent soils have been investigated. The streams cover a forest-wetland gradient, spanning from 0% to 69% wetland coverage (hence with a 100% to 31% forest cover). Lower values of the ratio between absorbance measured at 254 nm and 365 nm (A254/A365), in both soil plots and streams, indicated that wetland-derived DOC has a higher average molecular weight than forest DOC. Higher SUVA254 (DOC specific ultraviolet absorption at 254 nm) in wetland runoff indicated more aromatic DOC from wetlands than forests. In accordance, low molecular weight non-aromatic compounds such as free organic acids (OA), amino acids (AA) and carbohydrates (CH) had higher quantities in the forested streams. We have shown that a variety of the OA, AA and CH compounds can be significantly assimilated by bacteria, meeting 15-100% of the bacterial carbon demand and explaining most of the observed variance in bacterial growth efficiency. We can now also show that in small homogenous catchments, the hydrological functioning provides a first order control on the temporal variability of stream water DOC and its quality. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment of 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions whereas the major source of DOC originates from forested areas of the catchment during high flow resulting in dramatic shifts in the character and bioavailability of DOC during different flow conditions. By connecting knowledge about the sources and quality of DOC with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. This work also illustrates that the sensitivity of stream water DOC in the boreal landscape ultimately depends on how individual landscape elements are affected, the proportion of these landscape elements and how these changes are propagated downstream.

  10. Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2004-12-01

    Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.

  11. Using (1)(0)Be cosmogenic isotopes to estimate erosion rates and landscape changes during the Plio-Pleistocene in the Cradle of Humankind, South Africa.

    PubMed

    Dirks, Paul H G M; Placzek, Christa J; Fink, David; Dosseto, Anthony; Roberts, Eric

    2016-07-01

    Concentrations of cosmogenic (10)Be, measured in quartz from chert and river sediment around the Cradle of Humankind (CoH), are used to determine basin-averaged erosion rates and estimate incision rates for local river valleys. This study focusses on the catchment area that hosts Malapa cave with Australopithecus sediba, in order to compare regional versus localized erosion rates, and better constrain the timing of cave formation and fossil entrapment. Basin-averaged erosion rates for six sub-catchments draining the CoH show a narrow range (3.00 ± 0.28 to 4.15 ± 0.37 m/Mega-annum [Ma]; ±1σ) regardless of catchment size or underlying geology; e.g. the sub-catchment with Malapa Cave (3 km(2)) underlain by dolomite erodes at the same rate (3.30 ± 0.30 m/Ma) as the upper Skeerpoort River catchment (87 km(2)) underlain by shale, chert and conglomerate (3.23 ± 0.30 m/Ma). Likewise, the Skeerpoort River catchment (147 km(2)) draining the northern CoH erodes at a rate (3.00 ± 0.28 m/Ma) similar to the Bloubank-Crocodile River catchment (627 km(2)) that drains the southern CoH (at 3.62 ± 0.33 to 4.15 ± 0.37 m/Ma). Dolomite- and siliciclastic-dominated catchments erode at similar rates, consistent with physical weathering as the rate controlling process, and a relatively dry climate in more recent times. Erosion resistant chert dykes along the Grootvleispruit River below Malapa yield an incision rate of ∼8 m/Ma at steady-state erosion rates for chert of 0.86 ± 0.54 m/Ma. Results provide better palaeo-depth estimates for Malapa Cave of 7-16 m at the time of deposition of A. sediba. Low basin-averaged erosion rates and concave river profiles indicate that the landscape across the CoH is old, and eroding slowly; i.e. the physical character of the landscape changed little in the last 3-4 Ma, and dolomite was exposed on surface probably well into the Miocene. The apparent absence of early Pliocene- or Miocene-aged cave deposits and fossils in the CoH suggests that caves only started forming from 4 Ma onwards. Therefore, whilst the landscape in the CoH is old, cavities are a relatively young phenomenon, thus controlling the maximum age of fossils that can potentially be preserved in caves in the CoH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identification of the dominant runoff pathways from data-based mechanistic modelling of nested catchments in temperate UK

    NASA Astrophysics Data System (ADS)

    Ockenden, M. C.; Chappell, N. A.

    2011-05-01

    SummaryUnderstanding hydrological flow pathways is important for modelling stream response, in order to address a range of environmental problems such as flood prediction, prediction of chemical loads and identification of contaminant pathways for subsequent remediation. This paper describes the use of parametrically efficient, low order models to identify the dominant modes of stream response for catchments within the Upper Eden, UK. A first order linear model adequately identified the dominant mode in all but one of the sub-catchments. A consistent pattern of time constants and pure time delays between catchments was observed over different periods of data. In the nested catchments, time constants increased as the catchment size increased from 1.1 km 2 at Gais Gill (2-7 h) to 69.4 km 2 at Kirkby Stephen (5-10 h) to 223.4 km 2 at Great Musgrave (7-16 h) to 616.4 km 2 at Temple Sowerby (11-22 h), but Blind Beck (a small catchment 8.8 km 2, time constants 11-21 h) had time constants most similar to Temple Sowerby. This was attributed to a combination of the storage role of permeable rock strata, where present, and the effect of scale on sub-surface and channel routing. A first order model could not be identified for the 1.0 km 2 Low Hall catchment, which comprises permeable sandstone overlain by Quaternary sediments. A second-order model of Low Hall stream showed a higher proportion of water taking a slower pathway (76% via a slow pathway; time constant 252 h) than a model with the same structure for the 8.8 km 2 Blind Beck (46% via slow pathway; time constant 60 h), where only 38% of the basin was underlain by the same permeable sandstone. This highlights the need to quantify the role of deep pathways through permeable rock, where present, in addition to the effect of catchment size on response times.

  13. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate

    NASA Astrophysics Data System (ADS)

    Godsey, Sarah; Kirchner, James

    2017-04-01

    Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration-discharge relationships are important signatures of catchment (bio)geochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, Godsey et al. (2009) showed that concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments were much flatter than this simple dilution model would predict. Instead, their analysis showed that these catchments behaved almost like chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 km2 in drainage area, and spanning a wide range of lithologic and climatic settings. Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described by Godsey et al. (2009). Among these same catchments, however, site-to-site variations in mean concentrations are strongly (negatively) correlated with long-term average precipitation and discharge, suggesting strong dilution of stream concentrations under long-term leaching of the critical zone. The picture that emerges is one in which, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. Examples illustrating the different influences of (short-term) weather and (long-term) climate on water quality will be presented, and their implications will be discussed. Godsey, S.E., J.W. Kirchner and D.W. Clow, Concentration-discharge relationships reflect chemostatic characteristics of US catchments, Hydrological Processes, 23, 1844-1864, 2009.

  14. Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Runkel, R. L.; Striegl, R.; McKnight, D. M.

    2013-06-01

    ecosystems represent a large carbon (C) reservoir and a substantial source of greenhouse gases. Hydrologic conditions dictate whether C leached from boreal soils is processed in catchments or flushed to less productive environments via the stream. This study quantified hydrologic and biogeochemical C loss from a boreal catchment underlain by frozen silt, where flowpaths may deepen as the active layer thaws over the summer. We hypothesized a decrease in the magnitude of C mineralization over the summer associated with changing flowpaths and decreasing hydrologic connectivity, organic matter lability, and nitrogen (N) availability. Conservative tracers were used to partition C and N loss between catchment export and biogeochemical processing. Coupling tracers with tributary and porewater chemistry indicated C and N cycling in soil flowpaths, with an exponential decrease over the summer. Nitrate was primarily reduced in hillslope flowpaths and the lack of N reaching the stream appeared to limit C mineralization. Stream export accounted for the greatest loss of C, removing 247 and 113 mol hr-1 in the early and late summer, respectively. Reactivity was related to hydrologic connectivity between the soils and stream, which was greatest early in the summer and following a large flood. While a warming climate may increase storage potential in thawed soils, the early-season flush of labile material and late-season runoff through mineral flowpaths may maintain high C export rates. Therefore, we highlight physical export as a dominant cause of aqueous C loss from silty catchments as the Arctic continues to thaw.

  15. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    NASA Astrophysics Data System (ADS)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  16. Historical land-use influences the long-term stream turbidity response to a wildfire.

    PubMed

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  17. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and hydrothermally altered rhyolitic tuff, with an intrusion of Paleozoic sandstone. Smectite content was generally greater in areas underlain by the tuff and likely represent a combination of both diagenic smectite formed by hydrothermal alteration of volcanic glass and authigenic smectites formed in the soils via chemical weathering.

  18. Mercury methylation in forested uplands; how important is it?

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Marvin-Dipasquale, M.; Schuster, P. F.; Chalmers, A.; Reddy, M. M.

    2004-05-01

    Episodic fluxes of mercury during high flows at the headwater catchment at the Sleepers River Research Watershed in Vermont indicate that uplands are an important source of total mercury (Hg) to known downstream methylation sites (i.e. large wetlands). Methylmercury (MeHg) behavior in streamwater, soil water, and sediment porewater coupled with high potential methylation rates suggests that forested uplands may be significant source areas for MeHg as well. In a July 2003 incubation, potential Hg methylation rates exceeded potential demethylation rates by factors of 1.6 each in shallow (0-4 cm) swamp and riparian soils and by 19.6 in anoxic stream sediments. The stream sediment had the greatest methylation rate of 7.5 ng/ g of wet sediment / day. However, MeHg concentrations in filtered (0.4 um) porewater at these sites ranged only from 0.07 to 0.37 ng/ L, similar to the range at low-lying wetland sites elsewhere in Vermont (0.06 to 0.56 ng/L). In Sleepers River headwaters as well as larger Vermont rivers, most of the MeHg export occurs during snowmelt and summer / fall storms, with nearly all of the MeHg occurring in the particulate phase. Stream total Hg and MeHg concentrations were consistently correlated, suggesting a common source, probably soil organic matter. The methylation efficiency (ratio MeHg / total Hg) was near 2% in the Sleepers River headwaters, similar to that in Vermont rivers draining large wetland systems, indicating that the methylation process originates in the headwaters.

  19. Short-term microbial release during rain events from on-site sewers and cattle in a surface water source.

    PubMed

    Aström, Johan; Pettersson, Thomas J R; Reischer, Georg H; Hermansson, Malte

    2013-09-01

    The protection of drinking water from pathogens such as Cryptosporidium and Giardia requires an understanding of the short-term microbial release from faecal contamination sources in the catchment. Flow-weighted samples were collected during two rainfall events in a stream draining an area with on-site sewers and during two rainfall events in surface runoff from a bovine cattle pasture. Samples were analysed for human (BacH) and ruminant (BacR) Bacteroidales genetic markers through quantitative polymerase chain reaction (qPCR) and for sorbitol-fermenting bifidobacteria through culturing as a complement to traditional faecal indicator bacteria, somatic coliphages and the parasitic protozoa Cryptosporidium spp. and Giardia spp. analysed by standard methods. Significant positive correlations were observed between BacH, Escherichia coli, intestinal enterococci, sulphite-reducing Clostridia, turbidity, conductivity and UV254 in the stream contaminated by on-site sewers. For the cattle pasture, no correlation was found between any of the genetic markers and the other parameters. Although parasitic protozoa were not detected, the analysis for genetic markers provided baseline data on the short-term faecal contamination due to these potential sources of parasites. Background levels of BacH and BacR makers in soil emphasise the need to including soil reference samples in qPCR-based analyses for Bacteroidales genetic markers.

  20. Spiraling in Urban Streams: A Novel Approach to Link Geomorphic Structure with Ecosystem Function

    NASA Astrophysics Data System (ADS)

    Bean, R. A.; Lafrenz, M. D.

    2011-12-01

    The goal of this study is to quantify the relationship between channel complexity and nutrient spiraling along several reaches of an urbanized watershed in Portland, Oregon. Much research points to the effect urbanization has on watershed hydrology and nutrient loading at the watershed scale for various sized catchments. However the flux of nutrients over short reaches within a stream channel has been less studied because of the effort and costs associated with fieldwork and subsequent laboratory analysis of both surface and hyporheic water samples. In this study we explore a novel approach at capturing connectivity though nutrient spiraling along several short reaches (less than 100-meter) within the highly urbanized Fanno Creek watershed (4400 hectares). We measure channel complexity-sinuosity, bed material texture, organic matter-and use these measurements to determine spatial autocorrelation of 50 reaches in Fanno Creek, a small, urban watershed in Portland, Oregon. Using ion-selective electrodes, the fluxes of nitrate and ammonia are measured within each reach, which when combined with channel geometry and velocity measurements allow us to transform the values of nitrate and ammonia fluxes into spiraling metrics. Along each sampled reach, we collected three surface water samples to characterize nutrient amounts at the upstream, midstream, and downstream position of the reach. Two additional water samples were taken from the left and right bank hyporheic zones at a depth just below the armor layer of the channel bed using mini-piezometers and a hand-pumped vacuum device, which we constructed for this purpose. Adjacent to the hyporheic samples soil cores were collected and analyzed for organic matter composition, bulk density, and texture. We hypothesize that spiral metrics will respond significantly to the measured channel complexity values and will be a more robust predictor of nutrient flux than land cover characteristics in the area draining to each reach. Initial results show significant differences in hyporheic and surface water concentrations within the same reach indicating that sources and sinks of mineral nitrogen can be found within stream channels over very short distances. The implication of this study is that channel complexity is an important driver of nutrient flux in a watershed, and that this technique can be applied in future studies to better characterize the ecosystem services of stream channels over short reaches to entire catchments.

  1. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    NASA Astrophysics Data System (ADS)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or sink. Overall, these sensors show promise for collecting continuous data for high gradient, forested, mountain streams. Additional benefits include their relatively low cost both monetarily (under $1000) and in labor compared to traditional methods as well as not requiring the trade-off between temporal resolution and length of study that traditional methods do.

  2. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.

    PubMed

    Fujioka, R S

    2001-01-01

    The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.

  3. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study.

    PubMed

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from in-stream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the in-stream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty(-1) of sand (8.764 million ty(-1) of in-stream sand and 2.763 million ty(-1) of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its biophysical environment.

  4. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    NASA Astrophysics Data System (ADS)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  5. Data set: weather, snow, and streamflow data from four western juniper-dominated experimental catchments in southwestern Idaho, USA

    USDA-ARS?s Scientific Manuscript database

    Data set on weather, snow, stream, topographic, and vegetation data from the South Mountain Experimental Catchments from water years 2007-2013 (10-1-2007 to 9-30-2013). The data provide detailed information on the weather and hydrologic response for four highly instrumented catchments in the late st...

  6. Can structural and functional characteristics be used to identify riparian zone width in southern Appalachian headwater catchments?

    Treesearch

    Barton Clinton; James Vose; Jennifer Knoepp; Katherine Elliott; Barbara Reynolds; Stanley Zarnock

    2010-01-01

    We characterized structural and functional attributes along hillslope gradients in headwater catchments. We endeavored to identify parameters that described significant transitions along the hillslope. On each of four catchments, we installed eight 50 m transects perpendicular to the stream. Structural attributes included woody and herbaceous vegetation; woody debris...

  7. Physical, chemical, and biological impacts of intensive forest management on streams draining watersheds in the coastal plain of Alabama

    Treesearch

    J.L. Michael; S.S. Ruiz-Cordova

    2006-01-01

    Five watersheds drained by first-order streams and containing timber that was 80+ years old were selected to study the impacts of clearcutting and planting site preparation on water quality in the presence and absence of streamside management zones (SMZs). One watershed was maintained as a reference with no treatment while the remaining 4 were clear cut harvested. Two...

  8. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia experienced a prolonged summer drought. A significant increase in EC was observed in the bores towards the end of the summer, which suggest that the lack of bank recharge from the river resulted in draining of the banks and connection between the regional groundwater and the river. The long-term river salinity dataset showed that when flow events are infrequent and of low magnitude (i.e. drought conditions), salinities increase significantly. Similarly this is thought to be due to draining of the banks and connection with the regional groundwater system. Thus an increase in extended dry periods is expected to result in higher salinities in Australian waterways as the climate changes.

  9. Modeling the effects of tile drain placement on the hydrologic function of farmed prairie wetlands

    USGS Publications Warehouse

    Werner, Brett; Tracy, John; Johnson, W. Carter; Voldseth, Richard A.; Guntenspergen, Glenn R.; Millett, Bruce

    2016-01-01

    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.

  10. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    USGS Publications Warehouse

    Roberts, B.J.; Mulholland, P.J.; Houser, J.N.

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to 1/2 of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity, with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD. ?? 2007 by The North American Benthological Society.

  11. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    NASA Astrophysics Data System (ADS)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of diffuse agrochemical pollutants in a relatively simple hydrological system. The simulated shifts in isotopic signals are within a range that could be detected with current isotope analytics. Concentrations in the stream vary significantly only for a short period during and after intense rainfall events. In contrast, CSIA values reveal longer response times such that isotopic shifts are likely to be detected in samples with a coarser temporal resolution. Rainfall events which result in fast lateral subsurface transport from the pollution source to the stream can be separated from those that lead to pollution migration through deeper subsurface zones with much longer travel times. Two-dimensional CSIA highlights an increasing importance of the oxic reaction in the topsoil during the wetter period of the year. In order to examine to which extent CSIA is applicable for more complex hydrological systems, it is projected to simulate isotope fractionation in a 3-dimensional catchment featuring additional processes such as migration from several pollution sources or in-stream degradation.

  12. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow-covered, and negatively correlated with solar flux when the whole catchment is snow-free. The correlation with solar flux gradually shifts from positive to negative over several weeks, as the snow-covered area contracts higher and higher in the basin. The dates at which the snowmelt and ET signals in the stream cancel each other out occur systematically later at higher altitudes along the stream's longitudinal profile. At these particular dates, it may be possible to infer spatially averaged rates of ET (which are difficult to measure accurately) from spatially averaged rates of snowmelt (which can be estimated somewhat more straightforwardly from energy balance). These observations illustrate how groundwater and stream stage fluctuations are mirrors of the landscape, reflecting the energetics of snowmelt and evapotranspiration at the plot and catchment scale.

  13. COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES

    EPA Science Inventory

    Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...

  14. Towards national mapping of aquatic condition (I): The Stream-Catchment (StreamCat) Dataset

    EPA Science Inventory

    Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hundreds to th...

  15. Adoption of Stream Fencing Among Dairy Farmers in Four New Zealand Catchments

    NASA Astrophysics Data System (ADS)

    Bewsell, Denise; Monaghan, Ross M.; Kaine, Geoff

    2007-08-01

    The effect of dairy farming on water quality in New Zealand streams has been identified as an important environmental issue. Stream fencing, to keep cattle out of streams, is seen as a way to improve water quality. Fencing ensures that cattle cannot defecate in the stream, prevents bank erosion, and protects the aquatic habitat. Stream fencing targets have been set by the dairy industry. In this paper the results of a study to identify the factors influencing dairy farmers’ decisions to adopt stream fencing are outlined. Qualitative methods were used to gather data from 30 dairy farmers in four New Zealand catchments. Results suggest that farm contextual factors influenced farmers’ decision making when considering stream fencing. Farmers were classified into four segments based on their reasons for investing in stream fencing. These reasons were fencing boundaries, fencing for stock control, fencing to protect animal health, and fencing because of pressure to conform to local government guidelines or industry codes of practice. This suggests that adoption may be slow in the absence of on-farm benefits, that promotion of stream fencing needs to be strongly linked to on-farm benefits, and that regulation could play a role in ensuring greater adoption of stream fencing.

  16. Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwater catchments of the Upper Susquehanna basin

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Thomas, S. A.; Fredriksen, G.; Elliott, E. M.; Flinn, K. M.; Butler, T. J.

    2008-12-01

    The Susquehanna River provides two-thirds of the annual nitrogen (N) load to the Chesapeake Bay, and atmospheric deposition is a major contributor to the basin's N inputs. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna's forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (del18O- and del15N-nitrate), and seasonality of stream N over two years from 8-15 small forested headwater catchments of the Susquehanna Basin. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season peaks and growing season minima. Annual nitrate exports were approximately 0.1-0.7 kg N ha-1 y-1, and correlated positively with the percent of catchment free from historical agriculture. DON export averaged 0.6 +/- 0.1 kg N ha-1 y-1. All catchments had high rates of N retention but with atypical seasonal nitrate patterns, consisting of summer peaks, fall crashes, and modest rebounds during the dormant season. The fall nitrate crash coincided with carbon inputs at leaffall, indicating in-stream heterotrophic uptake. Stream del18O-nitrate values indicated microbial nitrification as the dominant source of stream nitrate, with modest contributions directly from precipitation in early stages of snowmelt. Three hypothesized sources of summer nitrate peaks include: delayed release of nitrate flushed to groundwater at snowmelt, weathering of geologic N, and increased net nitrate production. Measurements of shale del15N as well as soil, well-, and springwater nitrate within one catchment point toward a summer increase in net nitrification in surface soils. Rather than plant demand, processes governing the production, retention, and hydrologic transport of nitrate in surface mineral soils may drive the unusual nitrate seasonality in this and other systems, and provide insights on N retention in general.

  17. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Urbanization causes stream degradation in various ways, but perhaps the most extreme example is the burial of streams in underground storm drains to facilitate above ground development or to promote the rapid conveyance of stormwater. Stream burial is extensive in urban basins (...

  18. Nitrogen budgets on Appalachian forest catchments

    Treesearch

    David R. DeWalle

    1997-01-01

    Variations in nitrogen losses in streamflow on catchments in the Appalachians suggests that the level of nitrogen retention in hardwood forests varies widely. Stream losses of dissolved nitrate-N on several small experimental forested catchments range from about 0.2 to 8.5 kg ha-1 y-1. This wide range of losses is equivalent to less than 10% to nearly 100% of measured...

  19. Fluxes of inorganic carbon from two forested catchments in the Appalachian mountains

    Treesearch

    Fred Worrall; Wayne T. Swank; Tim Burt

    2005-01-01

    This study uses long-term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved C02 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear-felled during the period of the study. The study shows that: (1...

  20. Cattle-derived microbial input to source water catchments: An experimental assessment of stream crossing modification.

    PubMed

    Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark

    2015-06-01

    The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Stream Nitrate Concentrations in a Small Catchment in South West England over a Period of 35 Years (1970-2005)

    NASA Astrophysics Data System (ADS)

    Burt, T.; Worrall, F.

    2008-12-01

    A 35-year record of nitrate concentration for the Slapton Wood stream, a small agricultural catchment in south west England, is presented. The study reconsiders earlier work in order to assess whether upward trends have been maintained and how controls on catchment nitrate processes have altered. The study has shown that: (i) the catchment has reached a new position of equilibrium and increases in nitrate concentration have levelled off; (ii) the occurrence of severe droughts means that records of less than a decade are misleading and only longer records can illustrate changes of system state; (iii) the change of state observed in the catchment is illustrated in the switching of long-term memory effects from a negative to a positive annual memory; (iv) a significant long-term impulsivity relationship with rainfall becomes insignificant over the course of the study period. The study shows the importance of long records in exposing changes in state in catchment systems and understanding the time constants of a range of driving processes. The study by its very nature also demonstrates the importance of maintaining long-term monitoring programmes.

  2. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).

    PubMed

    Mayaud, C; Wagner, T; Benischke, R; Birk, S

    2014-04-16

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems.

  3. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    PubMed Central

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-01-01

    Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems. PMID:24748687

  4. Organic carbon transport through a discontinuous fluvial system in a Mediterranean catchment after a greening-up process

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Almagro, María; Díaz-Pereira, Elvira; Pérez-Cutillas, Pedro; de Vente, Joris; Martínez-Mena, María

    2017-04-01

    Quantification of different organic carbon pools mobilized by lateral fluxes is important to close organic carbon (OC) budgets at the catchment scale. This quantification helps to identify in which forms OC is transferred, deposited, and mineralized during the erosion cycle. Many Mediterranean mountain catchments have experienced important land use changes in the last 50 years leading to a recovery of the vegetation in many cases. Furthermore, many of them are characterized by stream discontinuity with high runoff rates responding to intensive hydrological pulses. There is a current lack of knowledge on fluvial OC fluxes and their relation to soil organic carbon stocks in these systems. The objective of this research was to quantify the amount of organic carbon transported by these systems in a catchment representative of Mediterranean conditions and to explore how intermittent fluvial systems can affect organic carbon transported by lateral flows. During six years OC fluvial fluxes in a catchment of 77 km2 in SE Spain were monitored. The catchment experienced a greening-up process in the last 50 years through a conversion mainly from agricultural use (decrease 44%) to forest (increase 45%). Data on water discharge, sediment concentration, total organic carbon (OC) of suspended sediments and dissolved organic carbon (DOC) were collected throughout 32 rainfall events and 13 sampling periods with base flow conditions. The data were collected from two monitoring stations located on two nested subcatchments covering permanent and ephemeral flow conditions. We found no significant differences in OC concentrations in suspended sediments (10.1 ± 5 g kg-1) and DOC (0.014 ± 0.010 g kg-1) between the ephemeral and the permanent streams. However, sediment concentration, index of aggregation and silt content of suspended load were significantly higher in the ephemeral stream than in the permanent one. OC concentration of suspended sediments was much lower than OC concentration of the catchment soils (20.5 ± 7 g kg-1), and it showed a strong positive correlation with clay content. DOC concentrations were quite high, being in the upper limit of the mean values reported for European rivers and close to DOC values of runoff generated in natural forests from similar areas. A strong positive correlation between DOC and sediment concentration was also observed. DOC represents a 20% and 12% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. OC in suspended solids represents an 80% and 88% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. The ephemeral stream (with a contribution of 70% to the total catchment area) provides up to 20% to the total transported OC downstream. The OC transported to the catchment outlet (1.97 g C m-2 year-1) constitutes 33 % of the OC lateral flux mobilized in the upper subcatchment areas (6 g C m-2 year-1). These findings highlight the strong dynamic character of organic carbon during transport in these fluvial systems and the important role of the hydrological regime for carbon transport and stability.

  5. Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow

    NASA Astrophysics Data System (ADS)

    Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.

    1997-12-01

    Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and benefits of the sampling exercise are reviewed.

  6. Exploring the long-term response of undisturbed Mediterranean catchments to changes in atmospheric inputs through time series analysis.

    PubMed

    Bernal, S; Belillas, C; Ibáñez, J J; Àvila, A

    2013-08-01

    The aim of this study was to gain insights on the potential hydrological and biogeochemical mechanisms controlling the response of two nested Mediterranean catchments to long-term changes in atmospheric inorganic nitrogen and sulphate deposition. One catchment was steep and fully forested (TM9, 5.9 ha) and the other one had gentler slopes and heathlands in the upper part while side slopes were steep and forested (TM0, 205 ha). Both catchments were highly responsive to the 45% decline in sulphate concentration measured in atmospheric deposition during the 1980s and 1990s, with stream concentrations decreasing by 1.4 to 3.4 μeq L(-1) y(-1). Long-term changes in inorganic nitrogen in both, atmospheric deposition and stream water were small compared to sulphate. The quick response to changes in atmospheric inputs could be explained by the small residence time of water (4-5 months) in these catchments (inferred from chloride time series variance analysis), which was attributed to steep slopes and the role of macropore flow bypassing the soil matrix during wet periods. The estimated residence time for sulphate (1.5-3 months) was substantially lower than for chloride suggesting unaccounted sources of sulphate (i.e., dry deposition, or depletion of soil adsorbed sulphate). In both catchments, inorganic nitrogen concentration in stream water was strongly damped compared to precipitation and its residence time was of the order of decades, indicating that this essential nutrient was strongly retained in these catchments. Inorganic nitrogen concentration tended to be higher at TM0 than at TM9 which was attributed to the presence of nitrogen fixing species in the heathlands. Our results indicate that these Mediterranean catchments react rapidly to environmental changes, which make them especially vulnerable to changes in atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment.

    PubMed

    Zhang, Wei; Li, Yong; Zhu, Bo; Zheng, Xunhua; Liu, Chunyan; Tang, Jialiang; Su, Fang; Zhang, Chong; Ju, Xiaotang; Deng, Jia

    2018-03-01

    Quantification of nitrogen losses and net greenhouse gas (GHG) emissions from catchments is essential for evaluating the sustainability of ecosystems. However, the hydrologic processes without lateral flows hinder the application of biogeochemical models to this challenging task. To solve this issue, we developed a coupled hydrological and biogeochemical model, Catchment Nutrients Management Model - DeNitrification-DeComposition Model (CNMM-DNDC), to include both vertical and lateral mass flows. By incorporating the core biogeochemical processes (including decomposition, nitrification, denitrification and fermentation) of the DNDC into the spatially distributed hydrologic framework of the CNMM, the simulation of lateral water flows and their influences on nitrogen transportation can be realized. The CNMM-DNDC was then calibrated and validated in a small subtropical catchment belonged to Yanting station with comprehensive field observations. Except for the calibration of water flows (surface runoff and leaching water) in 2005, stream discharges of water and nitrate in 2007, the model validations of soil temperature, soil moisture, crop yield, water flows in 2006 and associated nitrate loss, fluxes of methane, ammonia, nitric oxide and nitrous oxide, and stream discharges of water and nitrate in 2008 were statistically in good agreement with the observations. Meanwhile, our initial simulation of the catchment showed scientific predictions. For instance, it revealed the following: (i) dominant ammonia volatilization among the losses of nitrogenous gases (accounting for 11-21% of the applied annual fertilizer nitrogen in croplands); (ii) hotspots of nitrate leaching near the main stream; and (iii) a net GHG sink function of the catchment. These results implicate the model's promising capability of predicting ecosystem productivity, hydrologic nitrogen loads, losses of gaseous nitrogen and emissions of GHGs, which could be used to provide strategies for establishing sustainable catchments. In addition, the model's capability would be further proved by applying in other catchments with different backgrounds. Copyright © 2017. Published by Elsevier B.V.

  8. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    PubMed

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds

    USDA-ARS?s Scientific Manuscript database

    In many headwater catchments, stream flow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water wer...

  10. A MULTIDISCIPLINARY APPROACH TO STORMWATER MANAGEMENT AT THE catchment SCALE

    EPA Science Inventory

    Stormwater runoff from extensive impervious surfaces in urban and suburban areas has led to human safety risks and stream ecosystem impairment, triggering an interest in catchment-scale retrofit stormwater management. Such stormwater management is of multidisciplinary relevance, ...

  11. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas, but was 21-fold higher in winter than in summer in the least urbanized sub-catchment, indicating greater flow connectivity in winter, enhanced by increased soil moisture. Lithology also played an important role on hydrology, with sandstone sub-catchments exhibiting greater annual baseflow index values (23-46%) than found in limestone ones (<5%). For sub-catchments underlain by both lithologies, linear relationships were found between storm runoff coefficients and percentage urban and percentage impervious area, but with greater runoff responses in the sandstone ones. Nevertheless, linear regression lines for both lithologies get close to each other when the extent of urban areas reached about 50%. The proximity of urban areas to the stream network and whether urban storm runoff is directly piped to the stream network were important parameters influencing peak flows and response time. Landscape mosaics that include land-use patches of high soil permeability tend to provide locations of surface water retention and enhanced infiltration, thereby breaking flow connectivity between hillslope urban surfaces and the stream network. This kind of spatial pattern should be considered for urban planning, in order to minimize flood hazards.

  12. Variation in stream diatom communities in relation to water quality and catchment variables in a boreal, urbanized region.

    PubMed

    Teittinen, Anette; Taka, Maija; Ruth, Olli; Soininen, Janne

    2015-10-15

    Intensive anthropogenic land use such as urbanization alters the hydrological cycle, water chemistry and physical habitat characteristics, thus impairing stream physicochemical and biological quality. Diatoms are widely used to assess stream water quality as they integrate water chemistry temporally and reflect the joint influence of multiple stressors on stream biota. However, knowledge of the major community patterns of diatoms in urban streams remains limited especially in boreal regions. The aim of this study was to examine the effects of water chemistry and catchment characteristics on stream diatom communities, and to test the performance of the Index of Pollution Sensitivity (IPS) as a stream water quality indicator across an urban-to-rural gradient in southern Finland. Diatom community structure and species richness were related to local-scale variables such as water temperature, aluminium concentration, and electrical conductivity, which were in turn influenced by patterns in catchment land use and land cover. Diatoms reflected the intensity of human activities as more intensive land use increased the occurrence of pollution-tolerant species. The change in community structure along the land use intensity gradient was accompanied by a distinct decline in species richness. On the contrary, the IPS index failed to indicate differences in water quality along the urban-to-rural gradient as no consistent differences in the IPS values were found. Our results highlight the joint influence of multifaceted factors that underlie diatom patterns, and show that diatom biodiversity can be used as cost-effective metric indicating urban stream conditions. However, the IPS index turned out to be an unsuitable tool for assessing water quality among these streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António

    2016-04-01

    Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, p<0.05). Porto Bordalo exhibited the highest median concentrations of Zn (0.14 mgL-1), possibly derived from the major road, and dissolved phosphorus (0.07 mgL-1). The latter may be linked to human activities, such as terrace and car washing, as overland flow from impervious surfaces was observed to discharge directly into the stream, whereas in other sub-catchments it mostly disperses into pervious soils. Pastoral activities in agricultural fields adjacent to the stream led to highest median concentrations of N-Nk and N-NH4 recorded at ESAC (1.34 mgL-1and 0.41 mgL-1, respectively). Hydrological regime exerted a major influence on water quality dynamics. COD and nutrient variables (N-Nk, N-NH4, N-NO3 and P) attained highest concentrations after the summer. Low discharges led to high pollutant concentrations at baseflow of N-NH4 in ESAC and Porto Bordalo (up to 1.63 mgL-1 and 1.04 mgL-1, respectively). The first storm events after the summer led to flushing of accumulated pollutants to produce serious concentrations of N-Nk in Porto Bordalo (2.05 mgL-1) and Zn at ESAC and Porto Bordalo (up to 0.55 mgL-1 and 0.59 mgL-1, respectively), all recorded at peak flows. In wettest periods, greater flow connectivity over the hillslopes led to pollutant concentrations of N-Nk at ESAC, Espírito Santo and Quinta (up to 2.07 mgL-1, 2.54 mgL-1 and 2.83 mgL-1, respectively). Also high levels of Cu and Zn occurred at ESAC (1.74 mgL-1and 0.77 mgL-1) during the falling limb. Baseflow chemistry was influenced by bedrock, with highest median concentrations of Ca and Mg, lowest values of Na, and higher pH recorded in limestone (p<0.05). Information about the spatio-temporal dynamics of pollutants, linked to urban patterns and storm drainage system, should help enable urban planners to minimize adverse impacts of urbanization on water quality.

  14. The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States

    USGS Publications Warehouse

    Wolock, D.M.; Hornberger, G.M.; Beven, K.J.; Campbell, W.G.

    1989-01-01

    We undertook the task of determining whether base flow alkalinity of surface waters in the northeastern United States is related to indices of soil contact time and flow path partitioning that are derived from topographic and soils information. The influence of topography and soils on catchment hydrology has been incorporated previously in the variable source area model TOPMODEL as the relative frequency distribution of ln (a/Kb tan B), where ln is the Naperian logarithm, “a” is the area drained per unit contour, K is the saturated hydraulic conductivity, b is the soil depth, and tan B is the slope. Using digital elevation and soil survey data, we calculated the ln (a/Kb tan B) distribution for 145 catchments. Indices of flow path partitioning and soil contact time were derived from the ln (a/Kb tan B) distributions and compared to measurements of alkalinity in lakes to which the catchments drain. We found that alkalinity was, in general, positively correlated with the index of soil contact time, whereas the correlation between alkalinity and the flow path partitioning index was weak at best. A portion of the correlation between the soil contact time index and alkalinity was attributable to covariation with soil base saturation and cation exchange capacity, while another portion was found to be independent of these factors. Although our results indicate that catchments with long soil contact time indices are most likely to produce high alkalinity base flow, a sensitivity analysis of TOPMODEL suggests that surface waters of these same watersheds may be susceptible to alkalinity depressions during storm events, due to the role of flow paths.

  15. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  16. Macroinvertebrate assemblages associated with patterns in land use and water quality

    USGS Publications Warehouse

    Carlisle, Daren M.; Stewart, Paul M.; Butcher, Jason T.; Simon, Thomas P.

    2003-01-01

    Most national parks were designated to preserve significant natural resources. Park borders often reflect political rather than ecological boundaries. Consequently, catchments of many streams are only partially within park boundaries, and are therefore subject to land use changes and potential contamination from non-point sources outside the park. The National Park Service has initiated a program to monitor natural resources, particularly those at risk from land use changes surrounding the parks. This effort requires the identification of response signatures indicative of the ecological effects of human activities. The goal of this chapter is to identify a biological response signature (e.g., indicator assemblages) for tributary streams in Cuyahoga Valley National Park. More than 20 first to fourth order tributary streams enter the Cuyahoga River within park boundaries. Many of these catchments are outside park boundaries and under suburban development. The purpose of this research is to provide park managers with a monitoring tool for identifying the extent and degree of aquatic resource degradation due to land use changes in tributary catchments.

  17. Influence of geomorphological properties and stage on in-stream travel time

    NASA Astrophysics Data System (ADS)

    Åkesson, Anna; Wörman, Anders

    2014-05-01

    The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.

  18. Effect of whole catchment liming on the episodic acidification of two adirondack streams

    USGS Publications Warehouse

    Newton, R.M.; Burns, Douglas A.; Blette, V.L.; Driscoll, C.T.

    1996-01-01

    During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 ??eq/L in one of the streams and more than 1000 ??eq/L in the other, from pre-liming values which ranged from -25 to +40 ??eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO3- concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO3- concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO3- concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much higher than in stream WO4 because of the dissolution of calcite which fell directly into the upstream beaver pond and its associated wetlands. Calcium concentrations decreased as both NO3- concentrations and stream discharge increased, due to the dilution of Ca-enriched beaver pond water by shallow interflow. Despite this dilution, Ca2+ concentrations were high enough to more than balance strong acid anion (SO42-, NO3-, Cl-) concentrations, resulting in a positive ANC in this stream throughout the year. These data indicate that liming of wetlands and beaver ponds is more effective than whole catchment liming in neutralizing acidic surface waters. ?? 1996 Kluwer Academic Publishers.

  19. Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine

    2010-05-01

    From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in Belford only two houses were flooded. Data from the catchment and mitigation features showed that the defence measures resulted in an increase in travel time of the peak and attenuated high flows which would have usually travelled quickly down the channel to the village. For example, the pilot feature appears to have increased the travel time of a flood peak at the top of the catchment from 20 minutes to 35 minutes over a 1 km stretch of channel. There are currently ten active mitigation features present in the catchment. More features are planned for construction this year. Early data from the catchment indicates that the runoff attenuation features are having an impact on reducing flood flows in the channel and also slowing down the flood peak. At the same time the multi-purpose aspects of the features are apparent.

  20. Ecosystem Services Derived from Headwater Catchments

    EPA Science Inventory

    We used data from the USEPA’s wadeable streams assessment (WSA), US Forest Service’s forest inventory and analysis (FIA), and select USFS experimental forests (EF) to investigate potential ecosystems services derived from headwater catchments. C, N, and P inputs to these catchmen...

  1. [Agricultural land use impacts on aquatic macroinvertebrates in small streams from La Vieja river (Valle del Cauca, Colombia].

    PubMed

    Giraldo, Lina Paola; Chará, Julián; Zúñiga, Maria del Carmen; Chará-Serna, Ana Marcela; Pedraza, Gloria

    2014-04-01

    The expansion of the agricultural frontier in Colombia has exerted significant pressure on its aquatic ecosystems during the last few decades. In order to determine the impacts of different agricultural land uses on the biotic and abiotic characteristics of first and second order streams of La Vieja river watershed, we evaluated 21 streams located between 1,060 and 1,534 m asl in the municipalities of Alcalá, Ulloa, and Cartago (Valle del Cauca, Colombia). Seven streams were protected by native vegetation buffers, eight had influence of coffee and plantain crops, and six were influenced by cattle ranching. Habitat conditions, channel dimensions, water quality, and aquatic macroinvertebrates were studied in each stream. Streams draining cattle ranching areas had significantly higher dissolved solids, higher phosphorus, higher alkalinity, higher conductivity, and lower dissolved oxygen than those covered by cropland and forests. Coarse substrates and diversity of flow regimes were significantly higher in cropland and protected streams when compared to streams affected by cattle ranching, whereas the percent of silt and slow currents was significantly higher in the latter. A total of 26,777 macroinvertebrates belonging to 17 orders, 72 families and 95 genera were collected. The most abundant groups were Diptera 62.8%, (Chironomidae 49.6%, Ceratopogonidae 6.7%), Mollusca 18.8% (Hydrobiidae 7.2%, Sphaeriidae 9.6%) and Trichoptera 5.7% (Hydropsychidae 3.7%). The Ephemeroptera, Trichoptera, and Plecoptera orders, known for their low tolerance to habitat perturbation, had high abundance in cropland and forested streams, whereas Diptera and Mollusca were more abundant in those impacted by cattle ranching. Results indicate that streams draining forests and croplands have better physical and biological conditions than those draining pastures, and highlight the need to implement protective measures to restore the latter.

  2. Projection of invertebrate populations in the headwater streams of a temperate catchment under a changing climate.

    PubMed

    Nukazawa, Kei; Arai, Ryosuke; Kazama, So; Takemon, Yasuhiro

    2018-06-14

    Climate change places considerable stress on riverine ecosystems by altering flow regimes and increasing water temperature. This study evaluated how water temperature increases under climate change scenarios will affect stream invertebrates in pristine headwater streams. The studied headwater-stream sites were distributed within a temperate catchment of Japan and had similar hydraulic-geographical conditions, but were subject to varying temperature conditions due to altitudinal differences (100 to 850 m). We adopted eight general circulation models (GCMs) to project air temperature under conservative (RCP2.6), intermediate (RCP4.5), and extreme climate scenarios (RCP8.5) during the near (2031-2050) and far (2081-2100) future. Using the water temperature of headwater streams computed by a distributed hydrological-thermal model as a predictor variable, we projected the population density of stream invertebrates in the future scenarios based on generalized linear models. The mean decrease in the temporally averaged population density of Plecoptera was 61.3% among the GCMs, even under RCP2.6 in the near future, whereas density deteriorated even further (90.7%) under RCP8.5 in the far future. Trichoptera density was also projected to greatly deteriorate under RCP8.5 in the far future. We defined taxa that exhibited temperature-sensitive declines under climate change as cold stenotherms and found that most Plecoptera taxa were cold stenotherms in comparison to other orders. Specifically, the taxonomic families that only distribute in Palearctic realm (e.g., Megarcys ochracea and Scopura longa) were selectively assigned, suggesting that Plecoptera family with its restricted distribution in the Palearctic might be a sensitive indicator of climate change. Plecoptera and Trichoptera populations in the headwaters are expected/anticipated to decrease over the considerable geographical range of the catchment, even under the RCP2.6 in the near future. Given headwater invertebrates play important roles in streams, such as contributing to watershed productivity, our results provide useful information for managing streams at the catchment-level. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Statistical summaries of water-quality data for streams draining coal-mined areas, southeastern Kansas

    USGS Publications Warehouse

    Bevans, Hugh E.; Diaz, Arthur M.

    1980-01-01

    Summaries of descriptive statistics are compiled for 14 data-collection sites located on streams draining areas that have been shaft mined and strip mined for coal in Cherokee and Crawford Counties in southeastern Kansas. These summaries include water-quality data collected from October 1976 through April 1979. Regression equations relating specific conductance and instantaneous streamflow to concentrations of bicarbonate, sulfate, chloride, fluoride, calcium, magnesium, sodium, potassium, silica, and dissolved solids are presented.

  4. Power-law scaling in daily rainfall patterns and consequences in urban stream discharges

    NASA Astrophysics Data System (ADS)

    Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.

    2016-04-01

    Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.

  5. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  6. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  7. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  8. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  9. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  10. Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting

    Treesearch

    Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey; Thomas D. Bullen; Kevin J. McGuire; John P. Gannon

    2017-01-01

    Emerging evidence shows that interactions between soils and subsurface flow paths contribute to spatial variations in stream water chemistry in headwater catchments. However, few have yet attempted to quantify chemical variations in soils at catchment and hillslope scales. Watershed 3 (WS3) at Hubbard Brook Experimental Forest, New Hampshire, USA, was studied in order...

  11. Aquatic Community Colonization Within Riparian Headwater Corridors

    USDA-ARS?s Scientific Manuscript database

    Headwater streams are the smallest streams in a watershed. Their small size and high frequency of occurrence make them susceptible to anthropogenic habitat alterations. Many headwater streams in the Midwestern US have been channelized to drain agricultural fields. Aquatic macroinvertebrate communiti...

  12. Illuminating the hydrology of a high-elevation tropical ecosystem: Runoff generation in the páramo

    NASA Astrophysics Data System (ADS)

    Mosquera, G.; Lazo, P. X.; Célleri, R.; Vache, K. B.; Segura, C.; Crespo, P.

    2016-12-01

    A high-elevation tropical ecosystem that develops above the three line, the páramo, is known as the "water tower" of South America. However, rainfall-runoff processes and the influence of landscape structure in the hydrologic behavior of this ecosystem remain unknown. Here, we provide a process-based interpretation of runoff generation and insights into the landscape features controlling the hydrology in the páramo of the Zhurucay River Ecohydrological Observatory located in south Ecuador between 3400-3900 m a.s.l. A nested monitoring system of seven catchments (0.20-7.53 km2) was used to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water were collected for 3 years (May 2011-May2014) and analyzed for water stable isotopes. A combined assessment of hydrometric and isotopic data was used to investigate runoff generation. Mean transit times (MTTs) of baseflow were estimated by integrating the isotopic data into a lumped model. Isotope signals evidenced that water stored in the shallow organic horizon of the páramo soils located at the bottom of the valley near the streams (Histosols) is the major contributor to runoff generation year-round, whereas water draining through the hillslope soils (Andosols) regulates discharge by recharging the Histosols at the valley bottoms. The MTT evaluation showed relatively short MTTs (6.1±2.0 months) linked to short subsurface flow paths of water towards the stream network. We also found evidence of vegetation cover controls on water yield and runoff generation and topographic controls on baseflow MTT variability. These results reveal that 1) the runoff generation mechanisms of this ecosystem are dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Histosols and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.

  13. Migratory patterns of hatchery and stream-reared Atlantic salmon Salmo salar smolts in the Connecticut River, U.S.A.

    USGS Publications Warehouse

    McCormick, Stephen D.; Haro, Alexander; Lerner, Darren T.; O'Dea, Michael F.; Regish, Amy M.

    2014-01-01

    The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na+/K+-ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261–551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.

  14. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McDonnell, J. J.; Shanley, J. B.; Kendall, C.

    1999-09-01

    The hydrology of the near-stream riparian zone in upland humid catchments is poorly understood. We examined the spatial and temporal aspects of riparian flowpaths during snowmelt in a headwater catchment within the Sleepers River catchment in northern Vermont. A transect of 15 piezometers was sampled for Ca, Si, DOC, other major cations, and δ18O. Daily piezometric head values reflected variations in the stream hydrograph induced by melt and rainfall. The riparian zone exhibited strong upward discharge gradients. An impeding layer was identified between the till and surficial organic soil. Water solute concentrations increased toward the stream throughout the melt. Ca concentrations increased with depth and DOC concentrations decreased with depth. The concentrations of Ca in all piezometers were lower during active snowmelt than during post-melt low flow. Ca data suggest snowmelt infiltration to depth; however, only upslope piezometers exhibited snowmelt infiltration and consequent low δ18O values,(while δ18O values varied less than 0.5‰ in the deep riparian piezometers throughout the study period. Ca and δ18O values in upslope piezometers during low streamflow were comparable to Ca and δ18O in riparian piezometers during high streamflow. The upland water Ca and δ18O may explain the deep riparian Ca dilution and consistent δ18O composition. The temporal pattern in Ca and δ18O indicate that upland water moves to the stream via a lateral displacement mechanism that is enhanced by the presence of distinct soil/textural layers. Snowmelt thus initiates the flux of pre-melt, low Ca upland water to depth in the riparian zone, but itself does not appear at depth in the riparian zone during spring melt. This is despite the coincident response of upland groundwater and stream discharge.

  15. Revisiting Horton's laws with considerations of the directly drained VS source area

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock

    2015-04-01

    River networks have been regarded as excellent examples of self-similar patterns in nature. Fractal characteristics of river networks have been quantified through scaling relations between several morphologic variables (e.g., Hack, 1957; Flint, 1974). In particular, Horton's legendary study on scaling properties between numbers and lengths of streams in different orders (Horton, 1945) has significantly influenced research studies in this subject. Today, Horton's laws are referred to the log-linear relationships of three variables across stream orders, i.e., number, length, and area which is later added by Schumm (1956). In a closer look, there is a conceptual inconsistency between their definitions though. While length is defined as the length of stream of a specific order only, area by its definition includes drainage area of lower order streams. To deal with this inconsistency, there was an attempt to distinguish the average area drained directly by the stream of a particular order in the Hortonian formulation (Marani et al., 1991; Beer and Borgas, 1993). Nevertheless, there remains an interesting problem in the definition of directly drained area for 1st order and for the rest orders in these studies. While the whole area of 1st order stream is regarded as the directly drained area in these studies, for a channel to form it needs the minimum drainage area named source area. In this study, we evaluate how significant considering this zero order area separately is in understanding overall river network organization. To this end, we define new expression for the directly drained area and revisit Horton's laws with a generalized formulation. To test the proposed ideas, several river networks extracted from digital elevation models (DEMs) are analyzed. References Beer, T., & Borgas, M. (1993). Horton's laws and the fractal nature of streams. Water Resources Research, 29(5), 1475-1487. Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10(5), 969-973. Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370. Marani, A., Rigon, R., & Rinaldo, A. (1991). A note on fractal channel networks. Water Resources Research, 27(12), 3041-3049. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597-646.

  16. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their hydrological differences and the impact that annual and inter-annual climate and hydrological processes have on nutrient delivery. In the arable catchment total reactive P (TRP) concentrations in interpreted pathways declined across the quickflow, interflow and shallow groundwater of the slowflow, while TRP concentrations in the deeper groundwater, mostly contributing to baseflow, remained the same. However, the complexity of the flow pathways in the grassland catchment made it difficult to determine any trends in P concentrations as a result of changes in P source pressures. Additionally, although there were some inter annual trends, there was no clear indication of improvement in the ecological quality status in either catchment. Overall, a positive response to NAP measures (high soil P declines) was more clearly observable in the source component of the P transfer continuum for both catchments over the study period. This highlights the careful balance required for consideration between lag-time (policy implementation and water quality response) and agronomic sustainability (soil P fertility) in agricultural catchments.

  17. Microbial Enzyme Stoichiometry and Nutrient Limitation in US Streams and Rivers

    EPA Science Inventory

    We analyzed water and sediment chemistry, catchment land cover, and extracellular enzymes (ecoenzymes) activities related to microbial C, N, and P acquisition in more than 2100 1st- 10th order streams. Streams were selected from a probability design to represent the entire popula...

  18. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Treesearch

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  19. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Soil Erodibility (KFFACT)

    EPA Pesticide Factsheets

    This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The STATSGO Layer table specifies two soil erodibility factors for each component layer, KFFACT and KFACT. The STATSGO documentation describes KFFACT as a soil erodibility factor which quanitifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to caluculate soil loss by water. KFACT is described as a soil erodibility factor which is adjusted for the effect of rock fragments. The average value of each of these soil erodibility factors was determined for the top (surface) layer for each map unit of each state.The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Data Source). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The soil erodibility factor was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metri

  20. Nutrient Flux from Mediterranean Coastal Streams: Carpinteria Valley, California

    NASA Astrophysics Data System (ADS)

    Robinson, T. H.; Leydecker, A.; Melack, J. M.; Keller, A. A.

    2003-12-01

    Along the southern California coast, near Santa Barbara, California, we are measuring nutrient export from specific land uses and developing a model to predict nutrient export at a watershed scale. The area is characterized by a Mediterranean-like climate and short steep catchments producing flashy runoff. The six land uses include chaparral, avocado orchards, greenhouse agriculture, open-field nurseries, and residential and commercial development. Sampling sites are located on defined drainages or storm drains that collect runoff from relatively homogeneous areas representing each land use. Stream water samples are taken once a week during the rainy season, every two weeks during the dry season and every one to four hours during storms. Samples are analyzed for ammonium, nitrate, phosphate, total dissolved nitrogen and particulate nitrogen and phosphorus. Intensive sampling at the thirteen sites of the study was conducted throughout Water Year (WY) 2002 and 2003. We determine discharge from measurements of stage derived from pressure transducers at all sampling sites. This information is then converted to flux at a high temporal resolution. Wet and dry season sampling has shown that nitrate baseflow concentrations vary over three orders of magnitude, from a few micromoles per liter in undeveloped catchments, to a few 100 æmol/L in agricultural and urban watersheds, to 1000 æmol/L where intensive "greenhouse" agriculture dominates. Nitrate loading ranged from a few moles per hectare per storm at undeveloped and residential sites to hundreds at the greenhouse site. Phosphate concentrations show a similar, but smaller, variation from 1 to 100 æmol/L, although the loading is comparable at 1-100 moles/ha-storm. Stormflow concentrations fluctuate with the storm hydrograph: phosphate increases with flow, while nitrate typically decreases due to dilution from runoff probably from impervious surfaces. Nitrate export patterns indicate a marked difference between land use type (1, 10, 100 g ha-1mm-1 for undisturbed, urban, and greenhouse sites respectively) and show little variance storm to storm during WY2002 and WY2003. The phosphate export pattern with successive storms is not as clear. Cumulative rainfall and/or runoff/rainfall ratios for nitrate and phosphate show promise as variables to simulate the magnitude of nutrient export for individual storms in non-monitored catchments.

  1. Origin of carbon released from ecosystems affected by permafrost degradation in Northern Siberia

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Hoyt, A.; Xu, X.; Hatte, C.; Teisserenc, R.; Tananaev, N.

    2016-12-01

    Permafrost soils and peatlands store half of the soil organic carbon stock worldwide, and are rapidly evolving as a result of permafrost thaw. Determining the origin (permafrost or recent photosynthesis) of carbon which is released to surface waters and the atmosphere is crucial to assess Arctic ecosystems' potential feedback to climate change. In order to evaluate it, we investigated the stable and radioactive content of carbon in solid organic matter, dissolved organic matter (DOM) and dissolved CO2 and CH4 in a discontinuous permafrost area of Siberia affected by permafrost degradation (Igarka, Graviyka catchment (67°27'11''N, 86°32'07''E)). We collected samples from the active layer, permafrost, surface water and bubbles from thermokarst lakes. We further investigated DOM and dissolved CO2 and CH4 in porewater profiles, streams and the catchment outlet. In thermokarst lakes, DOM of surface water as well as CO2 and CH4 from bubbles from lake sediments predominantly originate from modern carbon. In two locations, CO2 and CH4 from bubbles have relatively low 14C contents, with ages greater than 700 yr BP, but still younger that what was previously reported in Eastern Siberia. In all samples the Δ14C of CH4 and CO2 were strongly correlated, with CH4 being consistently older than CO2, indicating strong interrelation between CO2 and CH4 cycles. In our study, permafrost influenced CO2 and CH4 is found in small ponds where palsa collapse and the resulting bank erosion has mobilized sequestered carbon. In peatland porewater, the Δ14C of DOM, CO2 and CH4 increases with depth (DOM: 1385 ±45 yr BP at 2m), indicating a contribution from Holocene peatlands affected by permafrost. In deep layers, CO2 reduction is the dominant pathway of CH4 production, whereas acetate fermentation dominates in thermokarst lakes. In summary, the majority of dissolved CO2 and CH4 analyzed from thermokarst lakes and degraded peatlands is modern and originates from recently fixed carbon. Additionally, the DOM exported in small streams draining peatlands is also modern. However, at the catchment scale, an additional contribution from deep groundwater or thawing permafrost results in an intermediate Δ14C of DOM (300-400 yr BP) at the outlet of the Graviyka River.

  2. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Overview

    EPA Pesticide Factsheets

    Introduction to urbanization and its effects of streams, a summary of the urban stream syndrome,an overview of the effects of urbanization on biotic integrity, a summary of catchment vs. riparian urbanization.

  3. Environmental Education: Non-point Source Pollution

    EPA Pesticide Factsheets

    This activity is designed to demonstrate to students what an average storm drain collects during a rainfall event and how the water from storm drains can impact the water quality and aquatic environments of local streams, rivers, and bays.

  4. Linking river management to species conservation using dynamic landscape scale models

    USGS Publications Warehouse

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  5. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Dam Density and Storage Volume

    EPA Pesticide Factsheets

    This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National Inventory of Dams (NID) data. Attributes were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics.(See Supplementary Info for Glossary of Terms) The NID database contains information about the dam??s location, size, purpose, type, last inspection, regulatory facts, and other technical data. Structures on streams reduce the longitudinal and lateral hydrologic connectivity of the system. For example, impoundments above dams slow stream flow, cause deposition of sediment and reduce peak flows. Dams change both the discharge and sediment supply of streams, causing channel incision and bed coarsening downstream. Downstream areas are often sediment deprived, resulting in degradation, i.e., erosion of the stream bed and stream banks. This database was improved upon by locations verified by work from the USGS National Map (Jeff Simley Group). It was observed that some dams, some of them major and which do exist, were not part of the 2009 NID, but were represented in the USGS National Map dataset, and had been in the 2006 NID. Approximately 1,100 such dams were added, based on the USGS National Map lat/long and the 2006 NID attributes (dam height, storage, etc.) Finally, as clean-up, a) about 600 records with duplicate NIDID were removed, and b) about 300 reco

  6. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    EPA Pesticide Factsheets

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  7. Relationships between stream nitrate concentration and spatially distributed snowmelt in high-elevation catchments of the western U.S.

    NASA Astrophysics Data System (ADS)

    Perrot, Danielle; Molotch, Noah P.; Williams, Mark W.; Jepsen, Steven M.; Sickman, James O.

    2014-11-01

    This study compares stream nitrate (NO3-) concentrations to spatially distributed snowmelt in two alpine catchments, the Green Lakes Valley, Colorado (GLV4) and Tokopah Basin, California (TOK). A snow water equivalent reconstruction model and Landsat 5 and 7 snow cover data were used to estimate daily snowmelt at 30 m spatial resolution in order to derive indices of new snowmelt areas (NSAs). Estimates of NSA were then used to explain the NO3- flushing behavior for each basin over a 12 year period (1996-2007). To identify the optimal method for defining NSAs and elucidate mechanisms underlying catchment NO3- flushing, we conducted a series of regression analyses using multiple thresholds of snowmelt based on temporal and volumetric metrics. NSA indices defined by volume of snowmelt (e.g., snowmelt ≤ 30 cm) rather than snowmelt duration (e.g., snowmelt ≤ 9 days) were the best predictors of stream NO3- concentrations. The NSA indices were better correlated with stream NO3- concentration in TOK (average R2= 0.68) versus GLV4 (average R2= 0.44). Positive relationships between NSA and stream NO3- concentration were observed in TOK with peak stream NO3- concentration occurring on the rising limb of snowmelt. Positive and negative relationships between NSA and stream NO3- concentration were found in GLV4 with peak stream NO3- concentration occurring as NSA expands. Consistent with previous works, the contrasting NO3- flushing behavior suggests that streamflow in TOK was primarily influenced by overland flow and shallow subsurface flow, whereas GLV4 appeared to be more strongly influenced by deeper subsurface flow paths.

  8. Shuttle radar DEM hydrological correction for erosion modelling in small catchments

    NASA Astrophysics Data System (ADS)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca

    2016-04-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  9. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  10. Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison

    NASA Astrophysics Data System (ADS)

    Hale, V. Cody; McDonnell, Jeffrey J.

    2016-02-01

    The effect of bedrock permeability and underlying catchment boundaries on stream base flow mean transit time (MTT) and MTT scaling relationships in headwater catchments is poorly understood. Here we examine the effect of bedrock permeability on MTT and MTT scaling relations by comparing 15 nested research catchments in western Oregon; half within the HJ Andrews Experimental Forest and half at the site of the Alsea Watershed Study. The two sites share remarkably similar vegetation, topography, and climate and differ only in bedrock permeability (one poorly permeable volcanic rock and the other more permeable sandstone). We found longer MTTs in the catchments with more permeable fractured and weathered sandstone bedrock than in the catchments with tight, volcanic bedrock (on average, 6.2 versus 1.8 years, respectively). At the permeable bedrock site, 67% of the variance in MTT across catchments scales was explained by drainage area, with no significant correlation to topographic characteristics. The poorly permeable site had opposite scaling relations, where MTT showed no correlation to drainage area but the ratio of median flow path length to median flow path gradient explained 91% of the variance in MTT across seven catchment scales. Despite these differences, hydrometric analyses, including flow duration and recession analysis, and storm response analysis, show that the two sites share relatively indistinguishable hydrodynamic behavior. These results show that similar catchment forms and hydrologic regimes hide different subsurface routing, storage, and scaling behavior—a major issue if only hydrometric data are used to define hydrological similarity for assessing land use or climate change response.

  11. Investigating low flow process controls, through complex modelling, in a UK chalk catchment

    NASA Astrophysics Data System (ADS)

    Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas

    2017-04-01

    The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.

  12. THE URBAN STREAM SYNDROME: CURRENT KNOWLEDGE AND THE SEARCH FOR A CURE

    EPA Science Inventory

    The term "urban stream syndrome" describes the consistently observed ecological degradation of streams draining urban land. This paper reviews recent literature to describe symptoms of the syndrome, explores mechanisms driving the syndrome, and identifies appropriate goals and me...

  13. Developing Ecological Indicators for Nutrients and Urban Impacts to Streams in Coastal Watersheds

    EPA Science Inventory

    Increased nutrient loads associated with human activities are among leading causes of impairment to streams and receiving waterbodies. For streams draining to the environmentally and economically important Narragansett Bay estuary, we developed indicators based on (1) nitrogen an...

  14. Landscape types and pH control organic matter mediated mobilization of Al, Fe, U and La in boreal catchments

    NASA Astrophysics Data System (ADS)

    Köhler, Stephan J.; Lidman, Fredrik; Laudon, Hjalmar

    2014-06-01

    In this study we present data from a seven-year time series from 15 nested streams within a 68 km2 catchment, covering a pH gradient of almost three units. We demonstrate that the two landscape types, forest and wetlands, control the relative mobilization of Al and Fe in this boreal landscape. The La/U ratio is almost constant across the whole catchment despite large variations in pH, Al/Fe and TOC, whereas U and La mobilization increases with increasing contribution of deeper soils and groundwater further downstream. High Al/TOC ratios in the forested catchments suggest that Al originates from the underlying mineral soils, and low Al/TOC ratios derive from wetlands where Al is retained. We observe a competition effect on the binding to TOC between Al and La and also that the relationship between TOC, Al and La changes from the smaller (0.05-2 km2) catchments to larger (3-68 km2) downstream locations. As pH increase downstream, Al and Fe are gradually removed from the aqueous phase by precipitation of particulate gibbsite-like phases and ferrihydrite. This selective removal of Al and Fe from TOC binding sites results in higher La, and U concentrations downstream. Observed element patterns (U, La) and the range of upper continental crust normalized (La/Nd)UCC and (La/Yb)UCC in the near stream, riparian zone were very similar to the observed ratios across the whole catchment. The rising (La/Nd)UCC over (La/Yb)UCC may be due to a selective removal of REE binding to ferrihydrate in the riparian soil, the result of two distinctly different end-members but most probably not due to the in-stream precipitation of ferrihydrate or gibbsite-like phases.

  15. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Treesearch

    A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez

    2014-01-01

    Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...

  16. A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia

    NASA Astrophysics Data System (ADS)

    Oliver, Allison A.; Tank, Suzanne E.; Giesbrecht, Ian; Korver, Maartje C.; Floyd, William C.; Sanborn, Paul; Bulmer, Chuck; Lertzman, Ken P.

    2017-08-01

    The perhumid region of the coastal temperate rainforest (CTR) of Pacific North America is one of the wettest places on Earth and contains numerous small catchments that discharge freshwater and high concentrations of dissolved organic carbon (DOC) directly to the coastal ocean. However, empirical data on the flux and composition of DOC exported from these watersheds are scarce. We established monitoring stations at the outlets of seven catchments on Calvert and Hecate islands, British Columbia, which represent the rain-dominated hypermaritime region of the perhumid CTR. Over several years, we measured stream discharge, stream water DOC concentration, and stream water dissolved organic-matter (DOM) composition. Discharge and DOC concentrations were used to calculate DOC fluxes and yields, and DOM composition was characterized using absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). The areal estimate of annual DOC yield in water year 2015 was 33.3 Mg C km-2 yr-1, with individual watersheds ranging from an average of 24.1 to 37.7 Mg C km-2 yr-1. This represents some of the highest DOC yields to be measured at the coastal margin. We observed seasonality in the quantity and composition of exports, with the majority of DOC export occurring during the extended wet period (September-April). Stream flow from catchments reacted quickly to rain inputs, resulting in rapid export of relatively fresh, highly terrestrial-like DOM. DOC concentration and measures of DOM composition were related to stream discharge and stream temperature and correlated with watershed attributes, including the extent of lakes and wetlands, and the thickness of organic and mineral soil horizons. Our discovery of high DOC yields from these small catchments in the CTR is especially compelling as they deliver relatively fresh, highly terrestrial organic matter directly to the coastal ocean. Hypermaritime landscapes are common on the British Columbia coast, suggesting that this coastal margin may play an important role in the regional processing of carbon and in linking terrestrial carbon to marine ecosystems.

  17. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change

    PubMed Central

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier

    2015-01-01

    Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853

  18. The combined effects of topography and vegetation on catchment connectivity

    NASA Astrophysics Data System (ADS)

    Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.

    2012-12-01

    The deconvolution of whole catchment runoff response into its temporally dynamic source areas is a grand challenge in hydrology. The extent to which the intersection of static and dynamic catchment characteristics (e.g. topography and vegetation) influences water redistribution within a catchment and the hydrologic connectivity of hillslopes to the riparian and stream system is largely unknown. Over time, patterns of catchment storage shift and, because of threshold connectivity behavior, catchment areas become disconnected from the stream network. We developed a simple but spatially distributed modeling framework that explicitly incorporates static (topography) and dynamic (vegetation) catchment structure to document the evolution of catchment connectivity over the course of a water year. We employed directly measured eddy-covariance evapotranspiration data co-located within a highly instrumented (>150 recording groundwater wells) and gauged catchment to parse the effect of current and zero vegetation scenarios on the temporal evolution of hydrologic connectivity. In the absence of vegetation, and thus in the absence of evapotranspiration, modeled absolute connectivity was 4.5% greater during peak flow and 3.9% greater during late summer baseflow when compared to the actual vegetation scenario. The most significant differences in connected catchment area between current and zero vegetation (14.9%) occurred during the recession period in early July, when water and energy availability were at an optimum. However, the greatest relative difference in connected area occurs during the late summer baseflow period when the absence of evapotranspiration results in a connected area approximately 500% greater than when vegetation is present, while the relative increase during peak flow is just 6%. Changes in connected areas ultimately lead to propose a biologically modified geomorphic width function. This biogeomorphic width function is the result of lateral water redistribution driven by topography and water uptake by vegetation.

  19. Quantifying the sources and the transit times of sediment using fallout radionuclides (7Be, 137Cs, 210Pbxs) in contrasted cultivated catchments across the world

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Le Gall, M.; Laceby, J. P.; Foucher, A.; Lefèvre, I.; Salvador-Blanes, S.; Morera, S.; Ribolzi, O.

    2017-12-01

    Soil erosion and fine sediment supply to rivers are exacerbated in intensively cultivated catchments. Information on the sediment sources and transit times in rivers is required to improve our understanding of these processes and to guide the implementation of effective conservation measures. Accordingly, natural (7Be, 210Pb) and artificial (137Cs) fallout radionuclide concentrations were measured in overland flow and suspended sediment collected during the erosive season in contrasted cultivated catchments. In Laos, samples were collected in a steep catchment (Houay Pano, 12 km²) covered with cropland and teak plantations during the first flood of the monsoon in 2014. Cropland surface sources dominated the supply of sediment at the upstream sampling location (55%), whereas subsurface sources (channel, landslides) contributed the majority of material at the outlet (60%). Furthermore, the material exported from the catchment mainly consisted of re-suspended sediment. In Central France, the study was conducted in a flat and drained cultivated catchment (Louroux, 25 km²) during a sequence of winter events in 2013-2014 and 2016. Only surface material enriched in 137Cs was found to transit through the river during floods. The results demonstrated the initial re-suspension of material accumulated in the river channel during the first winter flood before the direct supply of sediment recently eroded from the hillslopes during the next events. In Peru, sediment was collected during a series of summer flood events (2017) in a river draining páramos (Ronquillo, 42 km²) that were recently put in cultivation. Preliminary results show that subsurface re-suspended material dominates the exports from this catchment. These results confirmed the utility of coupling continuous river monitoring and fallout radionuclide measurements on sediment collected in both tropical and temperate rivers to better understand sediment dynamics in these endangered habitats. The main challenges for the future application of this technique are related to the availability of detectors to analyze a large set of samples rapidly after collection, as well as the access to ultra-low background gamma spectrometry facilities.

  20. Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds

    USDA-ARS?s Scientific Manuscript database

    In many headwater catchments, streamflow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water were...

  1. Influence of catchment land cover on stoichiometry and stable isotope compositions of basal resources and macroinvertebrate consumers in headwater streams

    EPA Science Inventory

    Anthropogenic land use affects aquatic landscapes. For example, landscape-level conversion to urban or agricultural land can heavily influence nutrient cycles in headwater streams via increased nutrient loading and altered hydrologic patterns. Recent studies in headwater streams ...

  2. LAND USE AND LOTIC DIATOM ASSEMBLAGES: A MULTI-SPATIAL AND TEMPORAL ASSESSMENT

    EPA Science Inventory

    We assessed the effects of land-use at multiple spatial scales (e.g., catchment, stream network, and stream reach) on periphyton from 25 wadeable streams along a land-use gradient in the Willamette River Basin, Oregon, in a dry season. Additional water chemistry samples were col...

  3. Compliance Testing of the Eglin AFB Asphalt Concrete Batch Plant, Eglin AFB, Florida

    DTIC Science & Technology

    1989-06-01

    the fan, contactor and separator. A schematic of the scrubber showing these components is presented in Figure 4. Particulate-laden air is blown into...the contactor at high speed by the scrubber fan. In the contactor , the gas stream passes through a fine water mist where particulates are wetted and...and wetted particulates are separated from the gas stream by centrifugal action and drain to the bottom of the separator. Water and sludge are drained

  4. Recovery of a tropical stream after a harvest-related chlorine poisoning event.

    Treesearch

    EFFIE A. GREATHOUSE; JAMES G. MARCH; PRINGLE; CATHERINE M.

    2005-01-01

    1. Harvest-related poisoning events are common in tropical streams, yet research on stream recovery has largely been limited to temperate streams and generally does not include any measures of ecosystem function, such as leaf breakdown. 2. We assessed recovery of a second-order, high-gradient stream draining the Luquillo Experimental Forest, Puerto Rico, 3 months after...

  5. Impact of Legacy Surface Mining on Water Quality in the Lake Harris Watershed, Tuscaloosa County, Alabama.

    NASA Astrophysics Data System (ADS)

    Donahoe, R. J.; Hawkins, P. D.

    2017-12-01

    The Lake Harris watershed was the site of legacy surface mining of coal conducted from approximately 1969 to 1976. The mine site was abandoned and finally reclaimed in 1986. Water quality in the stream draining the mined area is still severely impacted by acid mine drainage (AMD), despite the reclamation effort. Lake Harris is used as a source of industrial water, but shows no negative water quality effects from the legacy mining activities despite receiving drainage from the AMD-impacted stream. Water samples were collected monthly between October 2016 and September 2017 from a first-order stream impacted by acid mine drainage (AMD), a nearby first-order control stream, and Lake Harris. Stream water chemistry was observed to vary both spatially and seasonally, as monitored at five sample stations in each stream over the study period. Comparison of the two streams shows the expected elevated concentrations of AMD-indicator solutes (sulfate and iron), as well as significant increases in conductivity and acidity for the stream draining the reclaimed mine site. In addition, dramatic (1-2 orders of magnitude) increases in major element (Al, Ca, Mg, K), minor element (Mn, Sr) and trace element (Co, Ni) concentrations are also observed for the AMD-impacted stream compared to the control stream. The AMD-impacted stream also shows elevated (2-4 times) levels of other stream water solutes (Cl, Na, Si, Zn), compared to the control stream. As the result of continuing AMD input, the stream draining the reclaimed mine site is essentially sterile, in contrast to the lake and control stream, which support robust aquatic ecosystems. A quantitative model, constrained by isotopic data (δD and δ18O), will be presented that seeks to explain the observed temporal differences in water quality for the AMD-impacted stream as a function of variable meteoric water, groundwater, and AMD inputs. Similar models may be developed for other AMD-impacted streams to better understand and predict temporal variations in water quality parameters and their effect on aquatic ecosystems.

  6. Spatial variation in basic chemistry of streams draining a volcanic landscape on Costa Rica's Caribbean slope

    USGS Publications Warehouse

    Pringle, C.M.; Triska, F.J.; Browder, G.

    1990-01-01

    Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24-25 ??C in streams draining lower elevations (35-250 m) in tropical wet forest, to 10 ??C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60-300 ??g SRP L-1; 66-405 ??g TP L-1) were high at sites within six pristine drainages at elevations between 35-350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 ??g SRP L-1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain. ?? 1990 Kluwer Academic Publishers.

  7. Origin of particulate organic matter exported during storm events in a forested headwater catchment.

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.

    2016-04-01

    Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.

  8. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  9. Concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River basin, Washington, 1999-2000 [electronic resource] : with an analysis of trends in concentrations

    USGS Publications Warehouse

    Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.

    2003-01-01

    Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the shallow ground-water system. The average concentration of total nitrogen in drains and streams discharging to the Yakima River from RM 103.7 to RM 72 in August 1999 was 2.63 mg/L, and in July 1988 was 3.16 mg/L; average concentrations of total phosphorus were 0.20 and 0.26 mg/L. After irrigation season, streamflow in agricultural drains decreases because irrigation water is no longer diverted from the Yakima and Naches Rivers. As a result, concentrations of total nitrogen in drains increase because nitrate, which constitutes much of total nitrogen, continues to enter the drains from subsurface drains and shallow ground water. Concentrations of total phosphorus and suspended sediment often decrease, because they are transported to the drains in runoff of irrigation water from fields. In Granger Drain, concentrations of total nitrogen ranged from 2-4 mg/L during irrigation season and increased to about 6 mg/L after irrigation season, and concentrations of total phosphorus, as high as 1 mg/L, decreased to about 0.2 mg/L. In calendar year 1999, Moxee Drain transported an average of 28,000 lb/d (pounds per day) of suspended sediment, 380 lb/d of total nitrogen, and 46 lb/d of total phosphorus to the Yakima River. These loads were about half the average loads transported by Granger Drain during the same period. Average streamflows were similar for the two drains, so the difference in loads was due to differences in constituent concentrations: those in Moxee Drain were about 40-60 percent less than those in Granger Drain. Loads of suspended sediment and total phosphorus in Moxee and Granger Drains were nearly four times higher during irrigation season than during the non-irrigation season because with increased flow during irrigation season, concentrations of suspended sediment and total phosphorus are usually higher. Loads of nitrate in the drains were about the same in both seasons because nitrate concentrations are higher during the non-irrigation season.

  10. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    EPA Pesticide Factsheets

    This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on 2010 US Census data. Densities are calculated for every block group and watershed averages are calculated for every local NHDPlusV2 catchment(see Data Sources for links to NHDPlusV2 data and Census Data). This data set is derived from The TIGER/Line Files and related database (.dbf) files for the conterminous USA. It was downloaded as Block Group-Level Census 2010 SF1 Data in File Geodatabase Format (ArcGIS version 10.0). The landscape raster (LR) was produced based on the data compiled from the questions asked of all people and about every housing unit. The (block-group population / block group area) and (block-group housing units / block group area) were summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description). Using a riparian buffer(see Process Steps), statistics were generated for areas within each catchment that are within 100 meters of the stream reach in an attempt to evaluate for the riparian zone.

  11. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  12. Chemical and U-Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France)

    NASA Astrophysics Data System (ADS)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-10-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca / Na, Mg / Na, and Sr / Na ratios, but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals, and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system, and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured bedrock depleted in 234U), implying (234U/238U) AR below 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the - over time - homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs, depending on the hydrological conditions. It appears that the (234U/238U) AR are a very appropriate, important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale, because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating hydrological conditions. This study further highlights the important impact of different and independent water pathways on fractured granite controlling the different geochemical and isotopic signatures of the waters. Despite the fact that soils and vegetation cover have a great influence on the water cycle balance (evapotranspiration, drainage, runoff), the chemical compositions of waters are strongly modified by processes occurring in deep saprolite and bedrock rather than in soils along the specific water pathways.

  13. Tracking Changes in Dissolved Organic Matter Patterns in Perennial Headwater Streams Throughout a Hydrologic Year Using In-situ Sensors and Optical Properties

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.

    2015-12-01

    Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information could inform future studies, such as investigations into stream network scale thresholds in DOM cycling, carbon cycling modelling for the study region, or understanding the impact of wetlands sometimes considered geographically isolated on downstream ecosystems.

  14. MODULATING STORM DRAIN FLOWS TO REDUCE STREAM POLLUTANT CONCENTRATIONS

    EPA Science Inventory

    Pathogen and toxic chemical concentrations above the chemical and toxicity water quality standards in creeks and rivers pose risks to human health and aquatic ecosystems. Storm drains discharging into these watercourses often contribute significantly to elevating pollutant concen...

  15. Time-Scales of Storm Flow Response in the Stream and Hyporheic Zone of a Small, Steep Forested Catchment - Contrasting the Potential Contributions from the Hillslope, Riparian-Hyporheic Zones, and the Stream Channel

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-rikert, H.; Haggerty, R.

    2016-12-01

    Storm-flow responses of small catchments are widely studied to identify water sources and mechanisms routing water through catchments. These studies typically observe rapid responses to rainfall with peak concentrations of many chemical constituents occurring on rising leg of the hydrograph. To explain this, some conceptual models suggest that stream water early in storm periods is dominated by riparian water sources with hillslope water sources dominating later in the storm. We examined changes in both stream and hyporheic water chemistry during a small, autumn storm in a forested mountain catchment to test this conceptual model. Our study site was located in WS01 at the H.J. Andrews Experimental Forest, in Oregon, USA. The watershed has a narrow valley floor, always less than 15 m wide and occasionally interrupted by narrow, constrained bedrock sections. The valley floor has a longitudinal gradient of approximately 14%. Hyporheic water tends to flow parallel the valley axis and flow paths change little with changes in stream discharge, even during storm events. A well network is located in a 30-m reach near the bottom of the watershed. We sampled the stream, 9 hyporheic wells, and a hillslope well for DOC, DIC, Cl-, and NO3- during the storm. As expected, concentrations of DOC and NO3- increased rapidly on the rising leg of the hydrograph in both the stream and the hyporheic wells. However, the stream always had higher concentrations of DOC, and lower concentrations of NO3-, than did either the hillslope well or the hyporheic wells. These data suggest that the riparian/hyporheic zone is not a likely source of water influencing stream water chemistry on the rising leg of the hydrograph. These data agree with median travel time estimates of water flowing along hyporheic flow paths - it takes many 10s of hours for water to move from the riparian/hyporheic zone to the stream - a time scale that is far too slow to explain the rapid changes observed on the rising leg of the hydrograph. These data suggest that much of the early storm responses in stream chemistry may be generated by in-channel processes, or processes occurring in the shallow streambed with very short hyporheic residence times; the influence of the riparian zone, most of the hyporheic zone, or hillslopes must occur much later in the storm event.

  16. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes

    NASA Astrophysics Data System (ADS)

    Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.

    1994-12-01

    The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.

  17. Magnetic minerals in three Asian rivers draining into the South China Sea: Pearl, Red, and Mekong Rivers

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Liu, Zhifei; Li, Jinhua; Wandres, Camille

    2016-05-01

    The use of the marine sedimentary magnetic properties, as tracers for changes in precipitation rate and in oceanic water masses transport and exchanges, implies to identify and to characterize the different sources of the detrital fraction. This is of particular importance in closed and/or marginal seas such as the South China Sea. We report on the magnetic properties of sedimentary samples collected in three main Asian rivers draining into the South China Sea: the Pearl, Red, and Mekong Rivers. The geological formations as well as the present climatic conditions are different from one catchment to another. The entire set of performed magnetic analyses (low-field magnetic susceptibility, ARM acquisition and decay, IRM acquisition and decay, back-field acquisition, thermal demagnetization of three-axes IRM, hysteresis parameters, FORC diagrams, and low-temperature magnetic measurements) allow us to identify the magnetic mineralogy and the grain-size distribution when magnetite is dominant. Some degree of variability is observed in each basin, illustrating different parent rocks and degree of weathering. On average it appears that the Pearl River is rich in magnetite along the main stream while the Mekong River is rich in hematite. The Red River is a mixture of the two. Compared to clay mineral assemblages and major element contents previously determined on the same samples, these new findings indicate that the magnetic fraction brings complementary information of great interest for environmental reconstructions based on marine sediments from the South China Sea.

  18. Woody plant communities along urban, suburban, and rural streams in Louisville, Kentucky, USA

    Treesearch

    R. Jonathan White; Margaret M. Carreiro; Wayne C. Zipperer

    2014-01-01

    Anthropogenic changes in land use and cover (LULC) in stream catchments can alter the composition of riparian plant communities, which can affect ecosystem functions of riparian areas and streams from local to landscape scales.We conducted a study to determine if woody plant species composition and abundance along headwater streams were correlated with categorical and...

  19. Agricultural land use alters the seasonality and magnitude of stream metabolism

    EPA Science Inventory

    Streams are active processors of organic carbon; however, spatial and temporal variation in the rates and controls on metabolism are not well quantified in streams draining intensively-farmed landscapes. We present a comprehensive dataset of gross primary production (GPP) and ec...

  20. NITRATE AND NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    We are measuring dissolved nitrate and nitrous oxide concentrations and related parameters in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, residential, or mixed...

  1. NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    We are measuring the dissolved nitrous oxide concentration in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, developed, or mixed land uses. Nitrous oxide concentr...

  2. Urban stormwater runoff drives denitrifying community composition through changes in sediment texture and carbon content.

    PubMed

    Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R

    2011-05-01

    The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.

  3. Persistent Influences of the 2002 Hayman Fire on Stream Nitrate and Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Rhoades, C.; Pierson, D. N.; Fegel, T. S., II; Chow, A. T.; Covino, T. P.

    2016-12-01

    Large, high severity wildfires alter the physical and biological conditions that determine how watersheds retain and release nutrients and regulate stream water quality. For five years after the 2002 Hayman Fire burned in Colorado conifer forests, stream nitrate concentrations and export increased steadily in watersheds with extensive high-severity burning. Stream temperature and turbidity also increased in relation to the extent of high-severity burning and remained elevated above background levels throughout the initial five year post-fire period. Our recent sampling documents that 14 years after the Hayman Fire stream nitrate remains an order of magnitude higher in extensively-burned (35-90%) compared to unburned watersheds (0.2 vs 2.8 mg L-1). Nitrate represents 83% of the total dissolved N in extensively-burned watersheds compared to 29% in unburned watersheds. In contrast, dissolved organic carbon (DOC), was highest in watersheds that burned to a moderate extent (10-20%) and lowest in those with extensive burning. Catchments with a moderate extent burned had DOC concentrations 2.5 and 1.7 times more than those with extensive burning and unburned catchments, respectively. Peak concentrations of DOC and nitrate track the rising limb of the streamflow hydrograph and reach a maximum in May, but patterns among burn extent categories were seasonally consistent. Current riparian conditions are linked to stream nitrate in burned watersheds. For example, stream nitrate increases proportionally to the extent of riparian zones with low shrub cover (R2 = 0.76). We found signs of watershed recovery compared to the initial post-fire period; stream temperature and turbidity remained elevated in extensively burned catchments, but increases were only significant during the spring season. The persistent stream nitrate concentrations as well as the relation between riparian cover and post-fire stream nitrate may help prioritize restoration planting efforts and mitigate chronic, elevated nitrate export from burned watersheds.

  4. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30'-22°S

    NASA Astrophysics Data System (ADS)

    Hoke, Gregory D.; Isacks, Bryan L.; Jordan, Teresa E.; Blanco, NicoláS.; Tomlinson, Andrew J.; Ramezani, Jahandar

    2007-10-01

    The western Andean mountain front forms the western edge of the central Andean Plateau. Between 18.5° and 22°S latitude, the mountain front has ˜3000 m of relief over ˜50 km horizontal distance that has developed in the absence of major local Neogene deformation. Models of the evolution of the plateau, as well as paleoaltimetry estimates, all call for continued large-magnitude uplift of the plateau surface into the late Miocene (i.e., younger than 10 Ma). Longitudinal river profiles from 20 catchments that drain the western Andean mountain front contain several streams with knickpoint-bounded segments that we use to reconstruct the history of post-10 Ma surface uplift of the western flank of the central Andean Plateau. The generation of knickpoints is attributed to tectonic processes and is not a consequence of base level change related to Pacific Ocean capture, eustatic change, or climate change as causes for creating the knickpoint-bounded stream segments observed. Minor valley-filling alluvial gravels intercalated with the 5.4 Ma Carcote ignimbrite suggest uplift related river incision was well under way by 5.4 Ma. The maximum age of river incision is provided by the regionally extensive, approximately 10 Ma El Diablo-Altos de Pica paleosurface. The river profiles reveal that relative surface uplift of at least1 km occurred after 10 Ma.

  5. Two tales of legacy effects on stream nutrient behaviour

    NASA Astrophysics Data System (ADS)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high historical loads of nutrients) has different effects on nutrients stream responses, depending on their dominant sources and pathways. Both types of time lags, biogeochemical for phosphorus and hydrologic for nitrate, need to be taken into account when designing and evaluating the effectiveness of the agri-environmental mitigation measures.

  6. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    NASA Astrophysics Data System (ADS)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect our P measurements at Trib 3 basin, a considerably smaller basin compared to Mauvais Coulee, provide an opportunity to investigate the impacts of watershed scales on nutrient exports and c-q relationship. Finally, our study will lay a strong foundation for future nutrient modeling studies in the Devils Lake basin.

  7. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  8. Land use, spatial scale, and stream systems: Lessons from an agricultural region

    USGS Publications Warehouse

    Vondracek, B.; Blann, K.L.; Cox, C.B.; Nerbonne, J.F.; Mumford, K.G.; Nerbonne, B.A.; Sovell, L.A.; Zimmerman, J.K.H.

    2005-01-01

    We synthesized nine studies that examined the influence of land use at different spatial scales in structuring biotic assemblages and stream channel characteristics in southeastern Minnesota streams. Recent studies have disagreed about the relative importance of catchment versus local characteristics in explaining variation in fish assemblages. Our synthesis indicates that both riparian- and catchment-scale land use explained significant variation in water quality, channel morphology, and fish distribution and density. Fish and macroinvertebrate assemblages can be positively affected by increasing the extent of perennial riparian and upland vegetation. Our synthesis is robust; more than 425 stream reaches were examined in an area that includes a portion of three ecoregions. Fishes ranged from coldwater to warmwater adapted. We suggest that efforts to rehabilitate stream system form and function over the long term should focus on increasing perennial vegetation in both riparian areas and uplands and on managing vegetation in large, contiguous blocks. ?? 2005 Springer Science+Business Media, Inc.

  9. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2017-04-01

    The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.

  10. Explicit modeling of groundwater-surface water interactions using a simple bucket-type model

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan

    2017-04-01

    Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes that occur in different spatial settings within the catchment are translated to functional relationships and effective parameter values for the conceptual exchange box can be extracted. Here, we show the development and evaluation of the HBV exchange box. We further show a first application in real catchments and evaluate the model performance by comparing the simulations to benchmark models that do not consider groundwater surface water interaction.

  11. Using maximum entropy to predict suitable habitat for the endangered dwarf wedgemussel in the Maryland Coastal Plain

    USGS Publications Warehouse

    Campbell, Cara; Hilderbrand, Robert H.

    2017-01-01

    Species distribution modelling can be useful for the conservation of rare and endangered species. Freshwater mussel declines have thinned species ranges producing spatially fragmented distributions across large areas. Spatial fragmentation in combination with a complex life history and heterogeneous environment makes predictive modelling difficult.A machine learning approach (maximum entropy) was used to model occurrences and suitable habitat for the federally endangered dwarf wedgemussel, Alasmidonta heterodon, in Maryland's Coastal Plain catchments. Landscape-scale predictors (e.g. land cover, land use, soil characteristics, geology, flow characteristics, and climate) were used to predict the suitability of individual stream segments for A. heterodon.The best model contained variables at three scales: minimum elevation (segment scale), percentage Tertiary deposits, low intensity development, and woody wetlands (sub-catchment), and percentage low intensity development, pasture/hay agriculture, and average depth to the water table (catchment). Despite a very small sample size owing to the rarity of A. heterodon, cross-validated prediction accuracy was 91%.Most predicted suitable segments occur in catchments not known to contain A. heterodon, which provides opportunities for new discoveries or population restoration. These model predictions can guide surveys toward the streams with the best chance of containing the species or, alternatively, away from those streams with little chance of containing A. heterodon.Developed reaches had low predicted suitability for A. heterodon in the Coastal Plain. Urban and exurban sprawl continues to modify stream ecosystems in the region, underscoring the need to preserve existing populations and to discover and protect new populations.

  12. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of landscape-based green infrastructure on stormwater ...

    EPA Pesticide Factsheets

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul

  14. Accounting for Ecohydrologic Separation Alters Interpreted Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Cain, M. R.; Ward, A. S.; Hrachowitz, M.

    2017-12-01

    Recent studies have demonstrated that in in some catchments, compartmentalized pools of water supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water), a phenomenon referred to as ecohydrologic separation. Although the literature has acknowledged that omission of ecohydrologic separation in hydrological models may influence estimates of residence times of water and solutes, no study has investigated how and when this compartmentalization might alter interpretations of fluxes and storages within a catchment. In this study, we develop two hydrochemical lumped rainfall-runoff models, one which incorporates ecohydrologic separation and one which does not for a watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the study site where ecohydrologic separation was first observed. The models are calibrated against stream discharge, as well as stream chloride concentration. The objectives of this study are (1) to compare calibrated parameters and identifiability across models, (2) to determine how and when compartmentalization of water in the vadose zone might alter interpretations of fluxes and stores within the catchment, and (3) to identify how and when these changes alter residence times. Preliminary results suggest that compartmentalization of the vadose zone alters interpretations of fluxes and storages in the catchment and improves our ability to simulate solute transport.

  15. An Investigation into Groundwater Recharge Dynamics and Hydrologic Connectivity in an Alpine/Subalpine Mountainous Headwater Catchment, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dailey, K. R.; Hughes, H.; Williams, M. W.

    2015-12-01

    Geochemical surface and groundwater data were used to examine groundwater recharge dynamics and hydrologic connectivity in the dominantly subalpine Como Creek headwater catchment within the Boulder Creek Watershed in the Colorado Front Range. Streamwater chemistry along an elevational gradient of Como Creek showed strong responses to variations in precipitation inputs spanning 2011-2014. Elevation effects on δ18O were apparent, with more depleted values indicative of snowmelt influence observed at the higher elevation sites. Results from one-way ANOVA indicated that the highest elevation stream site, situated right below treeline, was significantly different from the lower three sites with regards to DOC, δ18O, and Ca2+ (p < 0.05) over May-October 2011-2014. Additionally, the second highest site in elevation was found to be significantly different from all other sites with respect to Ca2+ concentrations. Soil moisture sensor and geochemical data from soil tension lysimeters co-located with subalpine groundwater wells revealed a disconnect between soil and surface water chemistry during snowmelt and that of deeper, underlying groundwater. The initial results of this study provide insight on where groundwater recharge and discharge may be occurring in the catchment and help us to evaluate the large September 2013 rain event in the Colorado Front Range, a once in a 1000 year event. Water isotopes were enriched, Ca2+ decreased, and DOC was enriched, showing that new event water had flowed through near-surface soils but not deeper, recharging groundwater, with all values returning to normal within six months. The event was also observable compared to a long-term geochemical and stream stage record at the stream site near the catchment outlet, with the most enriched δ18O value on record of -13.41‰ corresponding to the flood. Remaining questions concerning groundwater dynamics in the catchment include constraining the tradeoffs between forest ET, groundwater recharge, and streamflow under a warming climate in order to forecast future water yield from the catchment. Further research quantifying where and when groundwater is recharging in the catchment will be conducted to determine how hydrological resilience of the catchment will change under varying climatic conditions.

  16. Seasonal exports of phosphorus from intensively fertilised nested grassland catchments.

    PubMed

    Lewis, Ciaran; Rafique, Rashad; Foley, Nelius; Leahy, Paul; Morgan, Gerard; Albertson, John; Kumar, Sandeep; Kiely, Gerard

    2013-09-01

    We carried out a one year (2002) study of phosphorus (P) loss from soil to water in three nested grassland catchments with known P input in chemical fertilizer and animal liquid slurry applications. Chemical fertilizer was applied to the grasslands between March and September and animal slurry was applied over the twelve months. The annual chemical P fertilizer applications for the 17 and 211 ha catchments were 16.4 and 23.7 kg P/ha respectively and the annual slurry applications were 10.7 and 14.0 kg P/ha, respectively. The annual total phosphorus (TP) export in stream-flow was 2.61, 2.48 and 1.61 kg P/ha for the 17, 211 and 1524 ha catchments, respectively, compared with a maximum permissible (by regulation) annual export of ca. 0.35 kg P/ha. The export rate (ratio of P export to P in land applications) was 9.6% and 6.6% from the 17 and 211 ha catchments, respectively. On average, 70% of stream flow and 85% of the P export occurred during the five wet months (October to February) indicating that when precipitation is much greater than evaporation, the hydrological conditions are most favourable for P export. However the soil quality and land use history may vary the results. Particulate P made up 22%, 43% and 37% of the TP export at the 17, 211 and 1524 ha catchment areas, respectively. As the chemical fertilizer was spread during the grass growth months (March to September), it has less immediate impact on stream water quality than the slurry applications. We also show that as the catchment scale increases, the P concentrations and P export decrease, confirming dilution due to increasing rural catchment size. In the longer term, the excess P from fertilizer maintains high soil P levels, an antecedent condition favourable to P loss from soil to water. This study confirms the significant negative water quality impact of excess P applications, particularly liquid animal slurry applications in wet winter months. The findings suggest that restricted P application in wet months can largely reduce the P losses from soil to water.

  17. Temporal and spatial variability in North Carolina piedmont stream temperature

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  18. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Treesearch

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  19. Stable isotope analysis of stream organisms - a useful tool for monitoring changes in catchment conditions and effects on stream ecosystems?

    EPA Science Inventory

    Stable isotope analyses of stream organisms usually are performed as discrete site experiments (e.g., to study the effect of a direct manipulation), synoptically (e.g. to illustrate effects of longitudinal variation of influencing factors), or, less frequently, over the course of...

  20. Stable Isotope Analysis of stream organisms -- a potential tool for monitoring changes in catchment conditions and effects on stream ecosystems

    EPA Science Inventory

    Stable isotope analyses of stream organisms are performed usually as discrete site experiments (e.g., to study the effect of a direct manipulation), synoptically (e.g. to illustrate effects of longitudinal variation of influencing factors), or, less frequently, over the course of...

Top