Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing
2017-08-01
Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p < .01) and manual dexterous coordination (β = -.52, p < .01) performed better on the time-based hand function test. In comparison, older adults with better grip strength (β = .40, p < .01), arm curl strength (β = .23, p < .05), and manual dexterous coordination (β = .23, p < .05) were associated with better self-report of upper extremity function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.
Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.
Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong
2014-07-01
The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.
Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S
2015-04-01
Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L
2017-12-08
Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. ANZCTR 12610000660088 . Registered 12 August 2010.
Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L
2017-02-01
This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.
Hand Strength, Handwriting, and Functional Skills in Children With Autism.
Alaniz, Michele L; Galit, Eleanor; Necesito, Corina Isabel; Rosario, Emily R
2015-01-01
To establish hand strength development trends in children with autism and to investigate correlations between grip and pinch strength, components of handwriting, and functional activities in children with and without autism. Fifty-one children were divided into two groups: typically developing children and children on the autism spectrum. Each child completed testing for pinch and grip strength, handwriting legibility, pencil control, and independence in functional activities. The children with autism followed the same strength development trends as the typically developing children. Grip strength correlated with pencil control in both groups and with handwriting legibility in the typically developing children but not in the children with autism. Grip and pinch strength correlated with independence with functional activities in both groups. This study provides evidence that grip and pinch strength are important components in developing pencil control, handwriting legibility, and independence with functional fine motor tasks. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Gonzalez, Brian D; Jim, Heather S L; Small, Brent J; Sutton, Steven K; Fishman, Mayer N; Zachariah, Babu; Heysek, Randy V; Jacobsen, Paul B
2016-05-01
The purpose of the study is to examine changes in muscle strength and self-reported physical functioning in men receiving androgen deprivation therapy (ADT) for prostate cancer compared to matched controls. Prostate cancer patients scheduled to begin ADT (n = 62) were assessed within 20 days of starting ADT and 6 and 12 months later. Age and geographically matched prostate cancer controls treated with prostatectomy only (n = 86) were assessed at similar time intervals. Grip strength measured upper body strength, the Chair Rise Test measured lower body strength, and the SF-12 Physical Functioning scale measured self-reported physical functioning. As expected, self-reported physical functioning and upper body muscle strength declined in ADT recipients but remained stable in prostate cancer controls. Contrary to expectations, lower body muscle strength remained stable in ADT recipients but improved in prostate cancer controls. Higher Gleason scores, more medical comorbidities, and less exercise at baseline predicted greater declines in physical functioning in ADT recipients. ADT is associated with declines in self-reported physical functioning and upper body muscle strength as well as worse lower body muscle strength relative to prostate cancer controls. These findings should be included in patient education regarding the risks and benefits of ADT. Findings also underscore the importance of conducting research on ways to prevent or reverse declines in physical functioning in this patient population.
Kingsley, J Derek; Panton, Lynn B; Toole, Tonya; Sirithienthad, Prawee; Mathis, Reed; McMillan, Victor
2005-09-01
To determine whether women with fibromyalgia benefit from strength training. Randomized controlled trial. Testing was completed at the university and training was completed at a local community wellness facility. Twenty-nine women (age range, 18-54 y) with fibromyalgia participated. Subjects were randomly assigned to a control (n=14; wait-listed for exercise) or strength (n=15) group. After the first 4 weeks, 7 (47%) women dropped from the strength group. Subjects underwent 12 weeks of training on 11 exercises, 2 times a week, performing 1 set of 8 to 12 repetitions at 40% to 60% of their maximal lifts and were progressed to 60% to 80%. Subjects were measured for strength, functionality, tender point sensitivity, and fibromyalgia impact. The strength group significantly (P< or =.05) improved upper- (strength, 39+/-11 to 42+/-12 kg; control, 38+/-13 to 38+/-12 kg) and lower- (strength, 68+/-28 to 82+/-25 kg; control, 61+/-25 to 61+/-26 kg) body strength. Upper-body functionality measured by the Continuous-Scale Physical Functional Performance test improved significantly (strength, 44+/-11 to 50+/-16U; control, 51+/-11 to 49+/-13U) after training. Tender point sensitivity and fibromyalgia impact did not change. Strength training improved strength and some functionality in women with fibromyalgia. Interventions with resistance have important implications on independence and quality of life issues for women with fibromyalgia.
Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults
Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.
2014-01-01
Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203
Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei
2016-07-01
Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M
2013-07-01
This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J
2006-12-15
To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping
2016-08-01
Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders
Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.
2009-01-01
Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2014-01-01
Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012
Pulmonary Function, Muscle Strength and Mortality in Old Age
Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.
2009-01-01
Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.
2014-01-01
The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2015-04-01
To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.
García-Peña, Carmen; García-Fabela, Luis C.; Gutiérrez-Robledo, Luis M.; García-González, Jose J.; Arango-Lopera, Victoria E.; Pérez-Zepeda, Mario U.
2013-01-01
Functional decline after hospitalization is a common adverse outcome in elderly. An easy to use, reproducible and accurate tool to identify those at risk would aid focusing interventions in those at higher risk. Handgrip strength has been shown to predict adverse outcomes in other settings. The aim of this study was to determine if handgrip strength measured upon admission to an acute care facility would predict functional decline (either incident or worsening of preexisting) at discharge among older Mexican, stratified by gender. In addition, cutoff points as a function of specificity would be determined. A cohort study was conducted in two hospitals in Mexico City. The primary endpoint was functional decline on discharge, defined as a 30-point reduction in the Barthel Index score from that of the baseline score. Handgrip strength along with other variables was measured at initial assessment, including: instrumental activities of daily living, cognition, depressive symptoms, delirium, hospitalization length and quality of life. All analyses were stratified by gender. Logistic regression to test independent association between handgrip strength and functional decline was performed, along with estimation of handgrip strength test values (specificity, sensitivity, area under the curve, etc.). A total of 223 patients admitted to an acute care facility between 2007 and 2009 were recruited. A total of 55 patients (24.7%) had functional decline, 23.46% in male and 25.6% in women. Multivariate analysis showed that only males with low handgrip strength had an increased risk of functional decline at discharge (OR 0.88, 95% CI 0.79–0.98, p = 0.01), with a specificity of 91.3% and a cutoff point of 20.65 kg for handgrip strength. Females had not a significant association between handgrip strength and functional decline. Measurement of handgrip strength on admission to acute care facilities may identify male elderly patients at risk of having functional decline, and intervene consequently. PMID:23936113
Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta
The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Altubasi, Ibrahim M
2018-06-07
Knee osteoarthritis is a common and a disabling musculoskeletal disorder. Patients with knee osteoarthritis have activity limitations which are linked to the strength of the quadriceps muscle. Previous research reported that the relationship between quadriceps muscle strength and physical function is moderated by the level of knee joint frontal plane laxity. The purpose of the current study is to reexamine the moderation effect of the knee joint laxity as measured by stress radiographs on the relationship between quadriceps muscle strength and physical function. One-hundred and sixty osteoarthritis patients participated in this cross-sectional study. Isometric quadriceps muscle strength was measured using an isokinetic dynamometer. Self-rated and performance-based physical function were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and Get Up and Go test, respectively. Stress radiographs which were taken while applying varus and valgus loads to knee using the TELOS device. Knee joint laxity was determined by measuring the distance between joint surfaces on the medial and lateral sides. Hierarchical multiple regression models were constructed to study the moderation effect of laxity on the strength function relationship. Two regression models were constructed for self-rated and performance-based function. After controlling for demographics, strength contributed significantly in the models. The addition of laxity and laxity-strength interaction did not add significant contributions in the regression models. Frontal plane knee joint laxity measured by stress radiographs does not moderate the relationship between quadriceps muscle strength and physical function in patients with osteoarthritis. Copyright © 2018 Elsevier B.V. All rights reserved.
Strength Development: Using Functional Isometrics in an Isotonic Strength Training Program.
ERIC Educational Resources Information Center
Jackson, Allen; And Others
1985-01-01
A study was made to determine if a combination of functional isometrics and standard isotonic training would be superior to a standard isotonic program in an instructional setting. The results provide support for functional isometrics as an enhancement where achievement of maximum strength is the goal. (Author/MT)
Chen, Yoa; Yu, Yong; He, Cheng-qi
2015-11-01
To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.
Pua, Yong-Hao; Liang, Zhiqi; Ong, Peck-Hoon; Bryant, Adam L; Lo, Ngai-Nung; Clark, Ross A
2011-12-01
Knee extensor strength is an important correlate of physical function in patients with knee osteoarthritis; however, it remains unclear whether standing balance is also a correlate. The purpose of this study was to evaluate the cross-sectional associations of knee extensor strength, standing balance, and their interaction with physical function. One hundred four older adults with end-stage knee osteoarthritis awaiting a total knee replacement (mean ± SD age 67 ± 8 years) participated. Isometric knee extensor strength was measured using an isokinetic dynamometer. Standing balance performance was measured by the center of pressure displacement during quiet standing on a balance board. Physical function was measured by the self-report Short Form 36 (SF-36) questionnaire and by the 10-meter fast-pace gait speed test. After adjustment for demographic and knee pain variables, we detected significant knee strength by standing balance interaction terms for both SF-36 physical function and fast-pace gait speed. Interrogation of the interaction revealed that standing balance in the anteroposterior plane was positively related to physical function among patients with lower knee extensor strength. Conversely, among patients with higher knee extensor strength, the standing balance-physical function associations were, or tended to be, negative. These findings suggest that although standing balance was related to physical function in patients with knee osteoarthritis, this relationship was complex and dependent on knee extensor strength level. These results are of importance in developing intervention strategies and refining theoretical models, but they call for further study. Copyright © 2011 by the American College of Rheumatology.
Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.
Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth
2016-03-31
Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.
The effect of stimulus strength on the speed and accuracy of a perceptual decision.
Palmer, John; Huk, Alexander C; Shadlen, Michael N
2005-05-02
Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.
2017-06-01
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.
Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.
van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B
2018-06-18
Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.
[A Structural Equation Model on Family Strength of Married Working Women].
Hong, Yeong Seon; Han, Kuem Sun
2015-12-01
The purpose of this study was to identify the effect of predictive factors related to family strength and develop a structural equation model that explains family strength among married working women. A hypothesized model was developed based on literature reviews and predictors of family strength by Yoo. This constructed model was built of an eight pathway form. Two exogenous variables included in this model were ego-resilience and family support. Three endogenous variables included in this model were functional couple communication, family stress and family strength. Data were collected using a self-report questionnaire from 319 married working women who were 30~40 of age and lived in cities of Chungnam province in Korea. Data were analyzed with PASW/WIN 18.0 and AMOS 18.0 programs. Family support had a positive direct, indirect and total effect on family strength. Family stress had a negative direct, indirect and total effect on family strength. Functional couple communication had a positive direct and total effect on family strength. These predictive variables of family strength explained 61.8% of model. The results of the study show a structural equation model for family strength of married working women and that predicting factors for family strength are family support, family stress, and functional couple communication. To improve family strength of married working women, the results of this study suggest nursing access and mediative programs to improve family support and functional couple communication, and reduce family stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A. C.; Guttormsen, M.; Blasi, N.
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...
2017-04-24
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Beerepoot, Maarten T P; Alam, Md Mehboob; Bednarska, Joanna; Bartkowiak, Wojciech; Ruud, Kenneth; Zaleśny, Robert
2018-06-15
The present work investigates the performance of exchange-correlation functionals in the prediction of two-photon absorption (2PA) strengths. For this purpose, we considered six common functionals used for studying 2PA processes and tested these on six organoboron chelates. The set consisted of two semilocal (PBE and BLYP), two hybrid (B3LYP and PBE0), and two range-separated (LC-BLYP and CAM-B3LYP) functionals. The RI-CC2 method was chosen as a reference level and was found to give results consistent with the experimental data that are available for three of the molecules considered. Of the six exchange-correlation functionals studied, only the range-separated functionals predict an ordering of the 2PA strengths that is consistent with experimental and RI-CC2 results. Even though the range-separated functionals predict correct relative trends, the absolute values for the 2PA strengths are underestimated by a factor of 2-6 for the molecules considered. An in-depth analysis, on the basis of the derived generalized few-state model expression for the 2PA strength for a coupled-cluster wave function, reveals that the problem with these functionals can be linked to underestimated excited-state dipole moments and, to a lesser extent, overestimated excitation energies. The semilocal and hybrid functionals exhibit less predictable errors and a variation in the 2PA strengths in disagreement with the reference results. The semilocal and hybrid functionals show smaller average errors than the range-separated functionals, but our analysis reveals that this is due to fortuitous error cancellation between excitation energies and the transition dipole moments. Our results constitute a warning against using currently available exchange-correlation functionals in the prediction of 2PA strengths and highlight the need for functionals that correctly describe the electron density of excited electronic states.
Fish-oil supplementation enhances the effects of strength training in elderly women.
Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio
2012-02-01
Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.
Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y
2012-02-01
This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.
Choi, Jong-Bae
2016-01-01
[Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689
de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues
2017-04-01
Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.
2013-01-01
Background Knee extensor strength and knee extension range of motion (ROM) are important predictors of physical function in patients with a total knee arthroplasty (TKA). However, the relationship between the two knee measures remains unclear. The purpose of this study was to examine whether changes in knee extensor strength mediate the association between changes in knee extension ROM and self-report physical function. Methods Data from 441 patients with a TKA were collected preoperatively and 6 months postoperatively. Self-report measure of physical function was assessed by the Short Form 36 (SF-36) questionnaire. Knee extensor strength was measured by handheld dynamometry and knee extension ROM by goniometry. A bootstrapped cross product of coefficients approach was used to evaluate mediation effects. Results Mediation analyses, adjusted for clinicodemographic measures, revealed that the association between changes in knee extension ROM and SF-36 physical function was mediated by changes in knee extensor strength. Conclusions In patients with TKA, knee extensor strength mediated the influence of knee extension ROM on physical function. These results suggest that interventions to improve the range of knee extension may be useful in improving knee extensor performance. PMID:23332039
Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars Louis; Andersen, Thomas Rostgaard; Randers, Morten Bredsgaard; Helge, Jørn Wulff; Suetta, Charlotte; Schmidt, Jakob Friis; Bangsbo, Jens; Krustrup, Peter; Aagaard, Per
2016-06-01
A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force development (RFD) were assessed with isokinetic dynamometry, while postural balance and vertical jumping performance were evaluated using force plate analysis. Furthermore, functional ability was evaluated by stair-ascent and chair-rising testing. A total of nine, nine and seven participants from FT, ST and CON, respectively, were included in the analysis. Both exercise regimens led to substantial gains in functional ability, evidenced by 24 and 18 % reduced stair-ascent time, and 32 and 21 % increased chair-rising performance in FT and ST, respectively (all P < 0.05). Long-term strength training led to increased concentric (14 %; P < 0.01) and isometric (23 %; P < 0.001) quadriceps and isometric hamstring strength (44 %; P < 0.0001), whereas football training mainly resulted in enhanced hamstring strength (18 %, P < 0.05) and RFD (89 %, P < 0.0001). Long-term (1 year) strength training led to increased quadriceps and hamstring strength, whereas the adaptations to football training mainly included enhanced strength and rapid force capacity of the hamstring muscles. Gains in functional ability were observed in response to both training regimens, evidenced by reduced stair-ascent time and increased chair-rising performance. Long-term football exercise and strength training both appear to be effective interventional strategies to improve factors of importance for ADL by counteracting the age-related decline in lower limb strength and functional capacity among old male adults. This could potentially be a way to improve work ability of senior workers.
Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B
2009-11-01
To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E
2017-09-01
To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.
Hand grip strength and dexterity function in children aged 6-12 years: A cross-sectional study.
Omar, Mohammed T A; Alghadir, Ahmad H; Zafar, Hamayun; Al Baker, Shaheerah
Cross-sectional and clinical measurement. Assessment of hand function considers an essential part in clinical practice. To develop normative values of hand grip strength and dexterity function for 6-12-year-old children in Saudi Arabia. Grip strength and dexterity function was measured in 525 children using Grip Track hand dynamometer (JTECH Medical, Midvale, UT, USA) and 9-hole pegboard test respectively. The grip strength and dexterity function was improved as age progressed regardless of gender. Across all age groups, the hand grip strength of boys was significantly higher than girls for dominant hand (31.75 ± 10.33 vs 28.24 ± 9.35; P < .001) and nondominant hand (31.01 ± 10.27 vs 27.27 ± 9.30; P < .001). The girls performed slightly faster than boys for dominant hand (19.70 vs 20.68; P < .05) and nondominant hand (21.79 vs 23.46; P < .05). In general, girls completed a 9-HPT faster than boys in the 2 of 7 age groups: 11 years (9-HPT scores = 2.10 seconds; P < .01) and 12 years (9-HPT scores = 1.93 seconds; P < .01). The overall patterns of hand grip strength and dexterity function observed in the present study are similar to the previous studies that established acceleration of grip strength with advanced age, and faster performance scores in older children than younger children in both genders. Norms of hand grip strength and dexterity enable therapists to identify some developmental characteristics of hand function among Saudi children, determine the presence of impairment, and compare scores from children in different clinical settings. Not applicable. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Scholtes, Vanessa A; Dallmeijer, Annet J; Rameckers, Eugene A; Verschuren, Olaf; Tempelaars, Els; Hensen, Maartje; Becher, Jules G
2008-01-01
Background Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP. Methods/Results Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events. Conclusion Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive. Trial Registration Trial Register NTR1403 PMID:18842125
Shoulder functional ratio in elite junior tennis players.
Saccol, Michele Forgiarini; Gracitelli, Guilherme Conforto; da Silva, Rogério Teixeira; Laurino, Cristiano Frota de Souza; Fleury, Anna Maria; Andrade, Marília dos Santos; da Silva, Antonio Carlos
2010-02-01
To evaluate shoulder rotation strength and compare the functional ratio between shoulders of elite junior tennis players. This cross-sectional study evaluated muscular rotation performance of 40 junior tennis players (26 male and 14 female) with an isokinetic dynamometer. Strength variables of external (ER) and internal rotators (IR) in concentric and eccentric modes were considered. For the peak torque functional ratio, the eccentric strength of the ER and the concentric strength of the IR were calculated. All variables related to IR were significantly higher on the dominant compared to the non-dominant side in males and females (p<0.05), but only boys exhibited this dominance effect in ER (p<0.05 and p<0.001). Regarding functional ratios, they were significantly lower for the dominant shoulder (p<0.001) and below 1.00 for both groups, indicating that the eccentric strength of the ER was not greater than the concentric strength of the IR. Elite junior tennis players without shoulder injury have shoulder rotation muscle strength imbalances that alter the normal functional ratio between rotator cuff muscles. Although these differences do not seem to affect the athletic performance, detection and prevention with exercise programs at an early age are recommended. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Firth, Joseph; Stubbs, Brendon; Vancampfort, Davy; Firth, Josh A; Large, Matthew; Rosenbaum, Simon; Hallgren, Mats; Ward, Philip B; Sarris, Jerome; Yung, Alison R
2018-06-06
Handgrip strength may provide an easily-administered marker of cognitive functional status. However, further population-scale research examining relationships between grip strength and cognitive performance across multiple domains is needed. Additionally, relationships between grip strength and cognitive functioning in people with schizophrenia, who frequently experience cognitive deficits, has yet to be explored. Baseline data from the UK Biobank (2007-2010) was analyzed; including 475397 individuals from the general population, and 1162 individuals with schizophrenia. Linear mixed models and generalized linear mixed models were used to assess the relationship between grip strength and 5 cognitive domains (visual memory, reaction time, reasoning, prospective memory, and number memory), controlling for age, gender, bodyweight, education, and geographical region. In the general population, maximal grip strength was positively and significantly related to visual memory (coefficient [coeff] = -0.1601, standard error [SE] = 0.003), reaction time (coeff = -0.0346, SE = 0.0004), reasoning (coeff = 0.2304, SE = 0.0079), number memory (coeff = 0.1616, SE = 0.0092), and prospective memory (coeff = 0.3486, SE = 0.0092: all P < .001). In the schizophrenia sample, grip strength was strongly related to visual memory (coeff = -0.155, SE = 0.042, P < .001) and reaction time (coeff = -0.049, SE = 0.009, P < .001), while prospective memory approached statistical significance (coeff = 0.233, SE = 0.132, P = .078), and no statistically significant association was found with number memory and reasoning (P > .1). Grip strength is significantly associated with cognitive functioning in the general population and individuals with schizophrenia, particularly for working memory and processing speed. Future research should establish directionality, examine if grip strength also predicts functional and physical health outcomes in schizophrenia, and determine whether interventions which improve muscular strength impact on cognitive and real-world functioning.
Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E
2017-04-26
This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.
Study of photon strength functions via (γ→, γ', γ″) reactions at the γ3-setup
NASA Astrophysics Data System (ADS)
Isaak, Johann; Savran, Deniz; Beck, Tobias; Gayer, Udo; Krishichayan; Löher, Bastian; Pietralla, Norbert; Scheck, Marcus; Tornow, Werner; Werner, Volker; Zilges, Andreas
2018-05-01
One of the basic ingredients for the modelling of the nucleosynthesis of heavy elements are so-called photon strength functions and the assumption of the Brink-Axel hypothesis. This hypothesis has been studied for many years by numerous experiments using different and complementary reactions. The present manuscript aims to introduce a model-independent approach to study photon strength functions via γ-γ coincidence spectroscopy of photoexcited states in 128Te. The experimental results provide evidence that the photon strength function extracted from photoabsorption cross sections is not in an overall agreement with the one determined from direct transitions to low-lying excited states.
Flower power: its association with bee power and floral functional morphology in papilionate legumes
Córdoba, Silvina A.; Cocucci, Andrea A.
2011-01-01
Background and Aims A test was made of the hypothesis that papilionate legume flowers filter pollinators according to their ability to exert strength to open flowers to access rewards. In addition, interactions with pollen vectors were expected to explain the structural complexity of the architecture of these flowers since operative flower strength may be determined by a combination of morphological traits which form part of an intrafloral functional module. Methods Six papilionate species were studied: Collaea argentina, Desmodium uncinatum, Galactia latisiliqua, Lathyrus odoratus, Spartium junceum and Tipuana tipu. Measurements were made of the strength needed to open keels and the strength that pollinators were capable of exerting. Morphological traits of all petals were also measured to determine which of them could be either mutually correlated or correlated with operative strength and moment of strength and participated in a functional module. Key Results It was observed that pollinators were capable in all cases of exerting forces higher and often several times higher than that needed to access floral rewards, and no association could be detected between floral operative strength and strength exerted by the corresponding pollinators. On the other hand, strong and significant correlations were found among morphometric traits and, of these, with operative strength and moment. This was particularly evident among traits of the keel and the wings, presumably involved in the functioning of the floral moveable mechanism. Conclusions Though visitors are often many times stronger than the operative strength of the flowers they pollinate, exceptionally weak bees such as Apis mellifera cannot open the strongest flowers. On the other hand, strong correlations among certain petal morphometric traits (particularly between the keel and wings) give support to the idea that an intrafloral module is associated with the functioning of the mechanism of these legume flowers. In addition, the highly significant correlations found across petals support the view of functional phenotypic integration transcending the ontogenetic organization of flower structure. PMID:21821623
van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J
2007-06-15
To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.
Watters, James M; Vallerand, Andrew; Kirkpatrick, Susan M; Abbott, Heather E; Norris, Sonya; Wells, George; Barber, Graeme G
2002-08-01
Tissue injury following ischemia-reperfusion is mediated in part by free oxygen radicals. We hypothesized that perioperative micronutrient supplementation would augment antioxidant defenses, minimize muscle injury, and minimize postoperative decreases in muscle strength and physical function following abdominal aortic aneurysmectomy. A university-affiliated hospital and regional referral center. A randomized, double-blind, placebo-controlled trial of supplementation with beta-carotene, vitamins C and E, zinc, and selenium for a period of 2-3 weeks prior to surgery and 1 week thereafter. Patients undergoing elective abdominal aortic aneurysmectomy (n=18 per group). Handgrip and other measures of strength and physical function. Handgrip and quadriceps strength decreased following surgery, but not to a significantly different extent in the placebo and supplemented groups. Self-rated physical function decreased following surgery in the placebo group and was preserved in the supplemented group. Perioperative supplementation with micronutrients with antioxidant properties has limited effects on strength and physical function following major elective surgery.
Borges, Daniel L; Silva, Mayara Gabrielle; Silva, Luan Nascimento; Fortes, João Vyctor; Costa, Erika Thalita; Assunção, Rebeca Pessoa; Lima, Carlos Magno; da Silva Nina, Vinícius José; Bernardo-Filho, Mário; Caputo, Danúbia Sá
2016-09-01
Physical activity is beneficial in several clinical situations and recommended for patients with ischemic heart disease, as well as for those undergoing cardiac surgery. In a randomized controlled trial, 34 patients underwent coronary artery bypass grafting. A randomized control group (n = 15) submitted to conventional physiotherapy. The intervention group (n = 19) received the same protocol plus additional aerobic exercise with cycle ergometer. Pulmonary function by spirometry, respiratory muscle strength by manovacuometry, and functional capacity through 6-minute walking test was assessed before surgery and at hospital discharge. There was significant reduction in pulmonary function in both groups. In both groups, inspiratory muscle strength was maintained while expiratory muscle strength significantly decreased. Functional capacity was maintained in the intervention group (364.5 [324.5 to 428] vs. 348 [300.7 to 413.7] meters, P = .06), but it decreased significantly in control group patients (320 [288.5 to 393.0] vs. 292 [237.0 to 336.0] meters, P = .01). A significant difference in functional capacity was also found in intergroup analyses at hospital discharge (P = .03). Aerobic exercise applied early on coronary artery bypass grafting patients may promote maintenance of functional capacity, with no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.
Ramlagan, Shandir; Peltzer, Karl; Phaswana-Mafuya, Nancy
2014-01-07
Little is known about the prevalence, predictors and gender differences in hand grip strength of older adults in Africa. This study aims to investigate social and health differences in hand grip strength among older adults in a national probability sample of older South Africans who participated in the Study of Global Ageing and Adults Health (SAGE wave 1) in 2008. We conducted a national population-based cross-sectional study with a sample of 3840 men and women aged 50 years or older in South Africa. The questionnaire included socio-demographic characteristics, health variables, and anthropometric measurements. Linear multivariate regression analysis was performed to assess the association of social factors, health variables and grip strength. The mean overall hand grip strength was 37.9 kgs for men (mean age 61.1 years, SD = 9.1) and 31.5 kgs for women (mean age 62.0 years, SD = 9.7). In multivariate analysis among men, greater height, not being underweight and lower functional disability was associated with greater grip strength, and among women, greater height, better cognitive functioning, and lower functional disability were associated with greater grip strength. Greater height and lower functional disability were found for both older South African men and women to be significantly associated with grip strength.
Palmieri-Smith, RM; Lepley, LK
2016-01-01
Background Quadriceps strength deficits are observed clinically following anterior cruciate injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. Purpose To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry, as well as functional performance and self-reported function. Study Design Cross-Sectional study. Methods Seventy-three patients were tested at the time they were cleared for return to activity following ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Results Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared to patients with low quadriceps strength symmetry (P<0.05). Similarly, knee flexion angle and external moment symmetry was higher in the patients with high and moderate quadriceps symmetry compared to those with low symmetry (P<0.05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P<0.05). Conclusion Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation following ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. PMID:25883169
Palmieri-Smith, Riann M; Lepley, Lindsey K
2015-07-01
Quadriceps strength deficits are observed clinically after anterior cruciate ligament (ACL) injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry as well as functional performance and self-reported function. Cross-sectional study; Level of evidence, 3. A total of 73 patients were tested at the time they were cleared for return to activity after ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared with patients with low quadriceps strength symmetry (P < .05). Similarly, knee flexion angle and external moment symmetry were higher in the patients with high and moderate quadriceps symmetry compared with those with low symmetry (P < .05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P < .05). Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation after ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. © 2015 The Author(s).
Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force
NASA Astrophysics Data System (ADS)
Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.
2016-01-01
The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.
2017-01-01
Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485
Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.
Angom, D; Ghosh, S; Kota, V K B
2004-01-01
We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.
Zammit, Andrea R; Robitaille, Annie; Piccinin, Andrea; Muniz-Terrera, Graciela; Hofer, Scott M
2018-03-08
Grip strength and cognitive function reflect upper body muscle strength and mental capacities. Cross-sectional research has suggested that in old age these two processes are moderately to highly associated, and that an underlying common cause drives this association. Our aim was to synthesize and evaluate longitudinal research addressing whether changes in grip strength are associated with changes in cognitive function in healthy older adults. We systematically reviewed English-language research investigating the longitudinal association between repeated measures of grip strength and of cognitive function in community-dwelling older adults to evaluate the extent to which the two indices decline concurrently. We used four search engines: Embase, PsychINFO, PubMed, and Web of Science. Of 459 unique citations, 6 met our full criteria: 4 studies reported a longitudinal association between rates of change in grip strength and cognitive function in older adults, 2 of which reported the magnitudes of these associations as ranging from low to moderate; 2 studies reported significant cross-sectional but not longitudinal associations among rates of change. All studies concluded that cognitive function and grip strength declined, on average, with increasing age, although with little to no evidence for longitudinal associations among rates of change. Future research is urged to expand the study of physical and cognitive associations in old age using a within-person and multi-study integrative approach to evaluate the reliability of longitudinal results with greater emphasis on the magnitude of this association.
Sakai, Kotomi; Nakayama, Enri; Tohara, Haruka; Kodama, Keiji; Takehisa, Takahiro; Takehisa, Yozo; Ueda, Koichiro
2017-01-01
Objective The objective of this study was to clarify the relationship between tongue strength, lip strength, and nutrition-related sarcopenia (NRS). Patients and methods A total of 201 older inpatients aged ≥65 years (70 men, median age: 84 years, interquartile range: 79–89 years) consecutively admitted for rehabilitation were included in this cross-sectional study. The main factors evaluated were the presence of NRS diagnosed by malnutrition using the Mini-Nutrition Assessment – Short Form, sarcopenia based on the criteria of the Asian Working Group for Sarcopenia, tongue strength, and lip strength. Other factors such as age, sex, comorbidity, physical function, cognitive function, and oral intake level were also assessed. Results In all, 78 (38.8%) patients were allocated to the NRS group, and 123 (61.2%) patients were allocated to the non-NRS group. The median tongue strength and lip strength (interquartile range) were significantly lower in the NRS group (tongue: 22.9 kPa [17.7–27.7 kPa] and lip: 7.2 N [5.6–9.8 N]) compared with the non-NRS group (tongue: 29.7 kPa [24.8–35.1 kPa] and lip: 9.9 N [8.4–12.3 N], P<0.001 for both). Multivariable logistic regression analysis showed that NRS was independently associated with tongue strength (odds ratio [OR] =0.93, 95% confidence interval [CI] 0.87–0.98, P=0.012) and lip strength (OR =0.76, 95% CI 0.66–0.88, P<0.001), even after adjusting for age, sex, comorbidity, physical function, cognitive function, and oral intake level. Conclusion The likelihood of occurrence of NRS decreased when tongue strength or lip strength increased. Tongue strength and lip strength may be important factors for preventing and improving NRS, regardless of the presence of low oral intake level in older rehabilitation inpatients. PMID:28814847
Residual strength of GFR/POM as a function of damage
NASA Astrophysics Data System (ADS)
Zachariev, G.; Rudolph, H.-V.; Ivers, H.
2010-07-01
A relation between the residual strength and the dispersed damage accumulated in a short fiber reinforced polyoximethylene (GFR/POM) samples under tension is found. For that purpose dependencies of damage and residual strength on loading percentage are used. Damage as a function of loading percentage is known for the material under study. To find the dependency of residual strength on loading percentage a subsidiary function is introduced and a method is proposed for determination of the parameters in the dependency on the basis of the experimental data. Both damage and residual strength are measured after unloading samples that have been loaded applying different loading percentages. Damage is the accumulation of new internal surfaces that arise under mechanical loading in the whole volume of the material. They are registered by a new original method of X-ray refraction. The analytical relation between the residual strength and damage accumulated is compared to the experimental results found for the residual strength under different damage degrees.
Free-form reticulated shell structures searched for maximum buckling strength
NASA Astrophysics Data System (ADS)
Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji
2017-10-01
In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.
Photon Strength Function at Low Energies in 95Mo
Wiedeking, M.; Bernstein, L. A.; Allmond, J. M.; ...
2014-05-01
A new and model-independent experimental method has been developed to determine the energy dependence of the photon strength function. It is designed to study statistical feeding from the quasi continuum to individual low-lying discrete levels. This new technique is presented and results for 95Mo are compared to data from the University of Oslo. In particular, questions regarding the existence of the low-energy enhancement in the photon strength function are addressed.
Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed
2016-10-01
The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A
2013-12-01
Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok
2016-01-01
Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404
Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok
2016-01-01
This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.
NASA Astrophysics Data System (ADS)
Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.
2018-04-01
The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.
Willigenburg, Nienke; Hewett, Timothy E
2017-03-01
To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.
E1 and M1 γ-strength functions in 144Nd
Voinov, A. V.; Grimes, S. M.
2015-12-14
Both E1 and M1 γ-strength functions below the neutron separation energy were analyzed based on experimental data from 143Nd(n,γ) 144Nd and 143Nd(n,γα) 140Ce reactions. It is confirmed that the commonly adopted E1 model based on the temperature dependence of the width of the giant dipole resonance works well. The popular M1 strength function due to the spin-flip magnetic resonance located near the neutron binding energy is not capable of reproducing experimental data. As a result, the low-energy enhancement of the M1 strength or the energy-independent model of Weisskopf, both leading to the low-energy strength sizable to E1 one, fit experimentalmore » data best.« less
Effects of processing induced defects on laminate response - Interlaminar tensile strength
NASA Technical Reports Server (NTRS)
Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.
1991-01-01
Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.
2014-01-01
Background Little is known about the prevalence, predictors and gender differences in hand grip strength of older adults in Africa. This study aims to investigate social and health differences in hand grip strength among older adults in a national probability sample of older South Africans who participated in the Study of Global Ageing and Adults Health (SAGE wave 1) in 2008. Methods We conducted a national population-based cross-sectional study with a sample of 3840 men and women aged 50 years or older in South Africa. The questionnaire included socio-demographic characteristics, health variables, and anthropometric measurements. Linear multivariate regression analysis was performed to assess the association of social factors, health variables and grip strength. Results The mean overall hand grip strength was 37.9 kgs for men (mean age 61.1 years, SD = 9.1) and 31.5 kgs for women (mean age 62.0 years, SD = 9.7). In multivariate analysis among men, greater height, not being underweight and lower functional disability was associated with greater grip strength, and among women, greater height, better cognitive functioning, and lower functional disability were associated with greater grip strength. Conclusions Greater height and lower functional disability were found for both older South African men and women to be significantly associated with grip strength. PMID:24393403
2013-01-01
Background The purpose of the present study was to compare dynamic muscle strength, functional performance, fatigue, and quality of life in premenopausal systemic lupus erythematosus (SLE) patients with low disease activity versus matched-healthy controls and to determine the association of dynamic muscle strength with fatigue, functional performance, and quality of life in SLE patients. Methods We evaluated premenopausal (18–45 years) SLE patients with low disease activity (Systemic lupus erythematosus disease activity index [SLEDAI]: mean 1.5 ± 1.2). The control (n = 25) and patient (n = 25) groups were matched by age, physical characteristics, and the level of physical activities in daily life (International Physical Activity Questionnaire IPAQ). Both groups had not participated in regular exercise programs for at least six months prior to the study. Dynamic muscle strength was assessed by one-repetition maximum (1-RM) tests. Functional performance was assessed by the Timed Up and Go (TUG), in 30-s test a chair stand and arm curl using a 2-kg dumbbell and balance test, handgrip strength and a sit-and-reach flexibility test. Quality of life (SF-36) and fatigue were also measured. Results The SLE patients showed significantly lower dynamic muscle strength in all exercises (leg press 25.63%, leg extension 11.19%, leg curl 15.71%, chest press 18.33%, lat pulldown 13.56%, 1-RM total load 18.12%, P < 0.001-0.02) compared to the controls. The SLE patients also had lower functional performance, greater fatigue and poorer quality of life. In addition, fatigue, SF-36 and functional performance accounted for 52% of the variance in dynamic muscle strength in the SLE patients. Conclusions Premenopausal SLE patients with low disease activity showed lower dynamic muscle strength, along with increased fatigue, reduced functional performance, and poorer quality of life when compared to matched controls. PMID:24011222
Relationship between physical function and biomechanical gait patterns in boys with haemophilia.
Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I
2016-11-01
The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.
Hand grip strength and cognitive function among elderly cancer survivors.
Yang, Lin; Koyanagi, Ai; Smith, Lee; Hu, Liang; Colditz, Graham A; Toriola, Adetunji T; López Sánchez, Guillermo Felipe; Vancampfort, Davy; Hamer, Mark; Stubbs, Brendon; Waldhör, Thomas
2018-01-01
We evaluated the associations of handgrip strength and cognitive function in cancer survivors ≥ 60 years old using data from the National Health and Nutrition Examination Survey (NHANES). Data in two waves of NHANES (2011-2014) were aggregated. Handgrip strength in kilogram (kg) was defined as the maximum value achieved using either hand. Two cognitive function tests were conducted among adults 60 years and older. The Animal Fluency Test (AFT) examines categorical verbal fluency (a component of executive function), and the Digital Symbol Substitution test (DSST) assesses processing speed, sustained attention, and working memory. Survey analysis procedures were used to account for the complex sampling design of the NHANES. Multiple linear regression models were used to estimate associations of handgrip strength with cognitive test scores, adjusting for confounders (age, gender, race/ethnicity, education, marital status, smoking status, depressive symptoms and leisure time physical activity). Among 383 cancer survivors (58.5% women, mean age = 70.9 years, mean BMI = 29.3 kg/m2), prevalent cancer types were breast (22.9%), prostate (16.4%), colon (6.9%) and cervix (6.2%). In women, each increase in kg of handgrip strength was associated with 0.20 (95% CI: 0.08 to 0.33) higher score on AFT and 0.83 (95% CI: 0.30 to 1.35) higher score on DSST. In men, we observed an inverted U-shape association where cognitive function peaked at handgrip strength of 40-42 kg. Handgrip strength, a modifiable factor, appears to be associated with aspects of cognitive functions in cancer survivors. Prospective studies are needed to address their causal relationship.
Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z
2011-01-01
Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094
Hanson, Erik D.; Srivatsan, Sindhu R.; Agrawal, Siddhartha; Menon, Kalapurakkal S.; Delmonico, Matthew J.; Wang, Min Q.; Hurley, Ben F.
2010-01-01
The purpose of this study was to determine (a) the effects of strength training (ST) on physical function and (b) the influence of strength, power, muscle volume (MV), and body composition on physical function. Healthy, inactive adults (n = 50) aged 65 years and older underwent strength, power, total body composition (% fat and fat free mass [FFM]), and physical function testing before and after 22 weeks of ST. Physical function testing consisted of tasks designed to mimic common physical activities of daily living (ADL). To improve internal validity of the assessment of mid-thigh intermuscular fat, subcutaneous fat, and knee extensors MV, a 10-week unilateral ST program using the untrained leg as an internal control preceded 12 weeks of whole-body ST. Strength, power, and FFM increased significantly with ST (all p < 0.05), whereas rapid walk, 5 chair stands, and get up and go time decreased significantly with ST in the overall group (all p < 0.05). Women improved significantly in both walking test times (both p < 0.05) but not in the stair climb test, whereas men improved in the stair climb test (p < 0.05) but not in walking test times. Multiple regression analysis revealed the highest R2 (0.28) for the change in chair stands time, followed by stair climb and usual walk at 0.27 and 0.21, respectively. ST improves performance in functional tasks important for ADLs. Changes in strength, power, and FFM are predictors of ST-induced improvements in these tasks. PMID:19910811
Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z
2011-01-01
To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-10-18
To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-01-01
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249
New true-triaxial rock strength criteria considering intrinsic material characteristics
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong
2018-02-01
A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.
Allison, Sarah J.; Brooke-Wavell, Katherine; Folland, Jonathan
2018-01-01
High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. Objectives: This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Methods: Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Results: Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P<0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. Conclusion: The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults. PMID:29504585
Anwer, Shahnawaz; Alghadir, Ahmad
2014-05-01
[Purpose] The aim of present study was to investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in knee osteoarthritis. [Subjects and Methods] Outpatients (N=42, 21 per group; age range 40-65 years; 13 men and 29 women) with osteoarthritis of the knee participated in the study. The experimental group performed isometric exercises including isometric quadriceps, straight leg raising, and isometric hip adduction exercise 5 days a week for 5 weeks, whereas the control group did not performed any exercise program. The outcome measures or dependent variables selected for this study were pain intensity, isometric quadriceps strength, and knee function. These variables were measured using the Numerical Rating Scale (NRS), strength gauge device, and reduced WOMAC index, respectively. All the measurements were taken at baseline (week 0) and at the end of the trial at week 5. [Results] In between-group comparisons, the maximum isometric quadriceps strength, reduction in pain intensity, and improvement in function in the isometric exercise group at the end of the 5th week were significantly greater than those of the control group (p<0.05). [Conclusion] The 5-week isometric quadriceps exercise program showed beneficial effects on quadriceps muscle strength, pain, and functional disability in patients with osteoarthritis of the knee.
Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan
2018-03-01
High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P⟨0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults.
Holm, Bente; Thorborg, Kristian; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas
2013-01-01
Background By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits. Objective(s) Firstly, to quantify changes (compared to pre-operative values) in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling. Design Prospective, cohort study. Setting Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011. Participants Thirty-five patients (65.9±7.2 years) undergoing THA. Main outcome measures Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively). Hip pain, thigh swelling, and C-Reactive Protein were also determined. Results Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41–58%, P<0.001), but less pronounced at Day 8 (range of reductions: 23–31%, P<0.017). Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL) improved at Day 8 (P<0.014). Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses. Conclusion(s) Hip muscle strength and leg-press power decreased substantially in the first week after THA – especially at Day 2 – with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery. Trial Registration ClinicalTrials.gov NCT01246674. PMID:23614020
Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T
2015-01-01
The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.
Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey
2016-09-01
Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.
Metz, Roderik; van der Heijden, Geert J M G; Verleisdonk, Egbert-Jan M M; Tamminga, Rob; van der Werken, Christiaan
2009-10-01
The aim of this study was to measure the effect of treatment of acute Achilles tendon ruptures on calf muscle strength recovery. Eighty-three patients with acute Achilles tendon rupture were randomly allocated to either minimally invasive surgery with functional after-treatment or conservative treatment by functional bracing. Calf muscle strength using isokinetic testing was evaluated at 3 months and after 6 or more months posttreatment. To exclusively investigate the effect of treatment on outcome, the authors excluded patients with major complications from the analysis. In 31 of 39 patients in the surgical treatment group and 25 of 34 patients in the conservative treatment group, isokinetic strength tests were performed. In the analysis of differences in mean peak torque, no statistically significant differences were found between surgery and conservative treatment, except for plantar flexion strength at 90 degrees per second at the second measurement, favoring conservative treatment. After 8 to 10 months follow- up, loss of plantar flexion strength was still present in the injured leg in both treatment groups. In conclusion, isokinetic muscle strength testing did not detect a statistically significant difference between minimally invasive surgical treatment with functional after-treatment and conservative treatment by functional bracing of acute Achilles tendon ruptures.
Quantitative Biology of Exercise-Induced Signal Transduction Pathways.
Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang
2017-01-01
Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.
Kraschnewski, Jennifer L; Sciamanna, Christopher N; Ciccolo, Joseph T; Rovniak, Liza S; Lehman, Erik B; Candotti, Carolina; Ballentine, Noel H
2014-09-01
To determine the association between meeting strength training guidelines (≥2 times per week) and the presence of functional limitations among older adults. This cross-sectional study used data from older adult participants (N=6763) of the National Health Interview Survey conducted in 2011 in the United States. Overall, 16.1% of older adults reported meeting strength training guidelines. For each of nine functional limitations, those with the limitation were less likely to meet strength training recommendations than those without the limitation. For example, 20.0% of those who reported no difficulty walking one-quarter mile met strength training guidelines, versus only 10.1% of those who reported difficulty (p<.001). In sum, 21.7% of those with no limitations (33.7% of sample) met strength training guidelines, versus only 15.9% of those reporting 1-4 limitations (38.5% of sample) and 9.8% of those reporting 5-9 limitations (27.8% of sample) (p<.001). Strength training is uncommon among older adults and even less common among those who need it the most. The potential for strength training to improve the public's health is therefore substantial, as those who have the most to gain from strength training participate the least. Copyright © 2014 Elsevier Inc. All rights reserved.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561
Reichert, Thaís; Delevatti, Rodrigo Sudatti; Prado, Alexandre Konig Garcia; Bagatini, Natália Carvalho; Simmer, Nicole Monticelli; Meinerz, Andressa Pellegrini; Barroso, Bruna Machado; Costa, Rochelle Rocha; Kanitz, Ana Carolina; Kruel, Luiz Fernando Martins
2018-03-27
Water-based resistance training (WRT) has been indicated to promote strength gains in elderly population. However, no study has compared different training strategies to identify the most efficient one. The aim of this study was to compare the effects of 3 WRT strategies on the strength and functional capacity of older women. In total, 36 women were randomly allocated to training groups: simple set of 30 seconds [1 × 30s; 66.41 (1.36) y; n = 12], multiple sets of 10 seconds [3 × 10s; 66.50 (1.43) y; n = 11], and simple set of 10 seconds [1 × 10s; 65.23 (1.09) y; n = 13]. Training lasted for 12 weeks. The maximal dynamic strength (in kilograms) and muscular endurance (number of repetitions) of knee extension, knee flexion, elbow flexion, and bench press, as well as functional capacity (number of repetitions), were evaluated. All types of training promoted similar gains in maximal dynamic strength of knee extension and flexion as well as elbow flexion. Only the 1 × 30s and 1 × 10s groups presented increments in bench press maximal strength. All 3 groups showed increases in muscular endurance in all exercises and functional capacity. WRT using long- or short-duration simple sets promotes the same gains in strength and functional capacity in older women as does WRT using multiple sets.
Sugimoto, Dai; Bowen, Samantha L; Meehan, William P; Stracciolini, Andrea
2016-08-01
To synthesize existing research evidence and examine effects of neuromuscular training on general strength, maximal strength, and functional mobility tasks in children and young adults with Down syndrome. PubMed and EBSCO were used as a data source. To attain the aim of this study, literature search was performed under following inclusion criteria: (1) included participants with Down syndrome, (2) implemented a neuromuscular training intervention and measured outcome variables of general strength, maximal strength, and functional mobility tasks, (3) had a group of participants whose mean ages were under 30 years old, (4) employed a prospective controlled design, and (5) used mean and standard deviations to express the outcome variables. Effect size was calculated from each study based on pre- and post-testing value differences in general strength, maximal strength, and functional mobility tasks between control and intervention groups. The effect size was further classified in to one of the following categories: small, moderate, and large effects. Seven studies met inclusion criteria. Analysis indicated large to moderate effects on general strength, moderate to small effects on maximal strength, and small effect on functional mobility tasks by neuromuscular training. Although there were limited studies, the results showed that neuromuscular training could be used as an effective intervention in children and young adults with Down syndrome. Synthesis of seven reviewed studies indicated that neuromuscular training could be beneficial to optimize general and maximal muscular strength development in children and young adults with Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gariballa, Salah; Alessa, Awad
2018-04-01
Although low muscle function/strength is an important predictor of poor clinical outcome in older patients, information on its impact on mental health in clinical practice is still lacking. The aim of this report is to measure the impact of low muscle function measured by handgrip strength on mental health of older people during both acute illness and recovery. Four hundred and thirty-two randomly selected hospitalized older patients had their baseline demographic and clinical characteristics assessed within 72 h of admission, at 6 weeks and at 6 months. Low muscle strength-handgrip was defined using the European Working Group criteria. Mental health outcome measures including cognitive state, depression symptoms and quality of life were also measured. Among the 432 patients recruited, 308 (79%) had low muscle strength at baseline. Corresponding figures at 6 weeks and at 6 months were 140 (73%) and 158 (75%). Patients with poor muscle strength were significantly older with increased disability and poor nutritional status compared with those with normal muscle strength. After adjustment for age, gender, disability, comorbidity including severity of acute illness and body mass index patients with low muscle strength had worse cognitive function, quality of life and higher depression symptoms compared with those with normal muscle strength over a 6-month period (p < 0.05). Poor muscle strength in older people is associated with poor cognitive state and quality of life and increased depression symptoms during both acute illness and recovery.
Jiménez S, Christian Edgardo; Fernández G, Rubén; Zurita O, Félix; Linares G, Daniel; Farías M, Ariel
2014-04-01
Hip and knee osteoarthritis are important causes of pain and disability among older people. Education and strength training can alleviate symptoms and avoid functional deterioration. To assess muscle strength, fall risk and quality of life of older people with osteoarthritis and the effects of physiotherapy education and strength training on these variables. Thirty participants aged 78 ± 5 years (63% women) were randomly assigned to receive physiotherapy (Controls), physiotherapy plus education (Group 1) and physiotherapy plus strength training (group 2). At baseline and after 16 weeks of intervention, patients were evaluated with the Senior Fitness Test, Timed Up and Go and Quality of Life score short form (SF-36). During the intervention period, Senior Fitness Test and Timed Up and Go scores improved in all groups and SF-36 did not change. The improvement in Senior Fitness Test and Timed Up and Go was more marked in Groups 1 and 2 than in the control group. Education and strength training improve functional tests among older people with osteoarthritis.
Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)
... be used even as a first-line therapy. Physiotherapy may improve muscle strength, function and mobility, and ... be used even as a first-line therapy. Physiotherapy may improve muscle strength, function and mobility, and ...
de Sousa, Davide G; Harvey, Lisa A; Dorsch, Simone; Leung, Joan; Harris, Whitney
2016-10-01
Does 4 weeks of active functional electrical stimulation (FES) cycling in addition to usual care improve mobility and strength more than usual care alone in people with a sub-acute acquired brain injury caused by stroke or trauma? Multi centre, randomised, controlled trial. Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite strength score in the affected lower limb of 7 (SD 5) out of 20 points. Participants in the experimental group received an incremental, progressive, FES cycling program five times a week over a 4-week period. All participants received usual care. Outcome measures were taken at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the affected lower limb. Mobility was measured with three mobility items of the Functional Independence Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower limb and spasticity of the affected plantar flexors. All but one participant completed the study. The mean between-group differences for mobility and strength of the knee extensors of the affected lower limb were -0.3/21 points (95% CI -3.2 to 2.7) and 7.5 Nm (95% CI -5.1 to 20.2), where positive values favoured the experimental group. The only secondary outcome that suggested a possible treatment effect was strength of key muscles of the affected lower limb with a mean between-group difference of 3.0/20 points (95% CI 1.3 to 4.8). Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear. ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016) Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised controlled trial.Journal of Physiotherapy62: 203-208]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B
2009-08-01
To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.
Khalaf, K A; Parnianpour, M; Sparto, P J; Simon, S R
1997-10-01
The combination of increasing costs of musculoskeletal injuries and the implementation of the Americans with Disabilities Act (ADA) has created the need for a more objective functional understanding of dynamic trunk performance. In this study, trunk extensor and flexor strengths were measured as a function of angular position and velocity for 20 subjects performing maximum isometric and isokinetic exertions. Results indicate that trunk strength is significantly influenced by trunk angular position, trunk angular velocity, gender, and direction, as well as by the interaction between trunk angular position and velocity. Three-dimensional surfaces of trunk strength in response to trunk angular position and velocity were constructed for each subject per direction. Such data presentation is more accurate and gives better insight about the strength profile of an individual than does the traditional use of a single strength value. The joint strength capacity profiles may be combined with joint torque requirements from a manual material handling task, such as a lifting task, to compute the dynamic utilization ratio for the trunk muscles. This ratio can be used as a unified measure of both task demand and functional capacity to guide job assignment, return to work, and prognosis during the rehabilitation processes. Furthermore, the strength regressions developed in this study would provide dynamic strength limits that can be used as functional constraints in the computer simulation of physical activities, such as lifting. In light of the ADA, this would be of great value in predicting the consequences of task modifications and/or workstation alterations without subjecting an injured worker or an individual with a disability to unnecessary testing.
Fong, Shirley S M; Ng, Shamay S M; Liu, Karen P Y; Pang, Marco Y C; Lee, H W; Chung, Joanne W Y; Lam, Priscillia L; Guo, X
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = -0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly.
Fong, Shirley S. M.; Ng, Shamay S. M.; Liu, Karen P. Y.; Pang, Marco Y. C.; Lee, H. W.; Chung, Joanne W. Y.; Lam, Priscillia L.; Guo, X.
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = −0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly. PMID:25530782
Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R
2014-02-01
In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.
Dorgo, Sandor; Edupuganti, Pradeep; Smith, Darla R; Ortiz, Melchor
2012-06-01
In this study, we compared hamstring (H) and quadriceps (Q) strength changes in men and women, as well as changes in conventional and functional H:Q ratios following an identical 12-week resistance training program. An isokinetic dynamometer was used to assess 14 male and 14 female participants before and after the intervention, and conventional and functional H:Q ratios were calculated. Hamstring strength improved similarly in men and women, but improvement in quadriceps strength was significantly greater in men, while women showed only modest improvements. For the conventional and functional H:Q ratios, women showed significantly greater improvements than men. Both men and women were able to exceed the commonly recommended 0.6 conventional and 1.0 functional H:Q ratios after the 12-week lower-body resistance training program.
Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee
2016-12-01
In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja; Heickendorff, Lene; Vestergaard, Peter; Mosekilde, Leif; Christiansen, Peer
2015-05-01
Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed, although decreased muscle function may contribute to increased fracture risk. We aimed to assess the changes in muscle strength, muscle function, postural stability, quality of life (QoL), and well-being during treatment with vitamin D or placebo before and after parathyroidectomy (PTX) in PHPT patients. A randomized placebo-controlled trial. We included 46 PHPT patients, mean age 58 (range 29-77) years and 35 (76%) were women. Daily treatment with 70 μg (2800 IU) cholecalciferol or placebo for 52 weeks. Treatment was administered 26 weeks before PTX and continued for 26 weeks after PTX. Changes in QoL and measures of muscle strength and function. Preoperatively, 25-hydroxyvitamin D (25OHD) increased significantly (50-94 nmol/l) compared with placebo (57-52 nmol/l). We did not measure any beneficial effects of supplementation with vitamin D compared with placebo regarding well-being, QoL, postural stability, muscle strength, or function. In all patients, we measured marked improvements in QoL, well-being (P<0.01), muscle strength in the knee flexion and extension (P<0.001), and muscle function tests (P<0.01) after surgical cure. Postural stability improved during standing with eyes closed (P<0.05), but decreased with eyes open (P<0.05). Patients with PHPT and 25OHD levels around 50 nmol/l did not benefit from vitamin D supplementation concerning muscle strength, muscle function, postural stability, well-being, or QoL. Independent of preoperative 25OHD levels, PTX improved these parameters. © 2015 European Society of Endocrinology.
Guinan, Emer M; Doyle, S L; Bennett, A E; O'Neill, L; Gannon, J; Elliott, J A; O'Sullivan, J; Reynolds, J V; Hussey, J
2018-05-01
Preoperative chemo(radio)therapy for oesophageal cancer (OC) may have an attritional impact on body composition and functional status, impacting postoperative outcome. Physical decline with skeletal muscle loss has not been previously characterised in OC and may be amenable to physical rehabilitation. This study characterises skeletal muscle mass and physical performance from diagnosis to post-neoadjuvant therapy in patients undergoing preoperative chemo(radio)therapy for OC. Measures of body composition (axial computerised tomography), muscle strength (handgrip), functional capacity (walking distance), anthropometry (weight, height and waist circumference), physical activity, quality-of-life and nutritional status were captured prospectively. Sarcopenia status was defined as pre-sarcopenic (low muscle mass only), sarcopenic (low muscle mass and low muscle strength or function) or severely sarcopenic (low muscle mass and low muscle strength and low muscle function). Twenty-eight participants were studied at both time points (mean age 62.86 ± 8.18 years, n = 23 male). Lean body mass reduced by 4.9 (95% confidence interval 3.2 to 6.7) kg and mean grip strength reduced by 4.3 (2.5 to 6.1) kg from pre- to post-neoadjuvant therapy. Quality-of-life scores capturing gastrointestinal symptoms improved. Measures of anthropometry, walking distance, physical activity and nutritional status did not change. There was an increase in sarcopenic status from diagnosis (pre-sarcopenic n = 2) to post-treatment (pre-sarcopenic n = 5, severely sarcopenic n = 1). Despite maintenance of body weight, functional capacity and activity habits, participants experience declines in muscle mass and strength. Interventions involving exercise and/or nutritional support to build muscle mass and strength during preoperative therapy, even in patients who are functioning normally, are warranted.
Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin
2017-05-01
To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.
Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R
2017-12-01
Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.
Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun
2014-01-01
In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.
Effects of hyperthyroidism on hand grip strength and function.
Erkol İnal, Esra; Çarlı, Alparslan Bayram; Çanak, Sultan; Aksu, Oğuzhan; Köroğlu, Banu Kale; Savaş, Serpil
2015-01-01
Hyperthyroidism is a pathologic condition in which the body is exposed to excessive amounts of circulating thyroid hormones. Skeletal muscle is one of the major target organs of thyroid hormones. We evaluated hand grip strength and function in patients with overt hyperthyroidism. Fifty-one patients newly diagnosed with hyperthyroidism and 44 healthy controls participated in this study. Age, height, weight, and dominant hand of all participants were recorded. The diagnosis of hyperthyroidism was confirmed by clinical examination and laboratory tests. Hand grip strength was tested at the dominant hand with a Jamar hand dynamometer. The grooved pegboard test (PGT) was used to evaluate hand dexterity. The Duruöz Hand Index (DHI) was used to assess hand function. No significant differences were found in terms of clinical and demographic findings between the patients with hyperthyroidism and healthy controls (p > 0.05). Significant differences were found between the patients with hyperthyroidism and healthy controls regarding PGT and DHI scores (p < 0.05). Hyperthyroidism seemed to affect hand dexterity and function more than hand grip strength and seemed to be associated with reduced physical function more than muscle strength. This may also indicate that patients with hyperthyroidism should be evaluated by multidisplinary modalities.
Level densities and γ-ray strength functions in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.
2010-06-01
The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.
Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins
2016-04-01
The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p < 0.001) and similarly in both groups after training. Muscle power also increased with training (≈27 %; p < 0.05), with no difference between groups. Both groups also improved their functional performance after training period (≈13 %; p < 0.001), with no difference between groups. The present study showed that TRT and PT using RPE scale to control intensity were significantly and similarly effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.
Wollin, Martin; Thorborg, Kristian; Welvaert, Marijke; Pizzari, Tania
2018-03-14
The primary purpose of this study was to describe an early detection and management strategy when monitoring in-season hip and groin strength, health and function in soccer. Secondly to compare pre-season to in-season test results. Longitudinal cohort study. Twenty-seven elite male youth soccer players (age: 15.07±0.73years) volunteered to participate in the study. Monitoring tests included: adductor strength, adductor/abductor strength ratio and hip and groin outcome scores (HAGOS). Data were recorded at pre-season and at 22 monthly intervals in-season. Thresholds for alerts to initiate further investigations were defined as any of the following: adductor strength reductions >15%, adductor/abductor strength ratio <0.90, and HAGOS subscale scores <75 out of 100 in any of the six subscales. Overall, 105 alerts were detected involving 70% of players. Strength related alerts comprised 40% and remaining 60% of alerts were related to HAGOS. Hip adductor strength and adductor/abductor strength ratio were lowest at pre-season testing and had increased significantly by month two (p<0.01, mean difference 0.26, CI95%: 0.12, 0.41N/kg and p<0.01, mean difference 0.09, CI95%: 0.04, 0.13 respectively). HAGOS subscale scores were lowest at baseline with all, except Physical Activity, showing significant improvements at time-point one (p<0.01). Most (87%) time-loss were classified minimal or mild. In-season monitoring aimed at early detection and management of hip and groin strength, health and function appears promising. Hip and groin strength, health and function improved quickly from pre-season to in-season in a high-risk population for ongoing hip and groin problems. Copyright © 2018 Sports Medicine Australia. All rights reserved.
Davis, Hope C; Troy Blackburn, J; Ryan, Eric D; Luc-Harkey, Brittney A; Harkey, Matthew S; Padua, Darin A; Pietrosimone, Brian
2017-07-01
The purpose of this study was to determine associations between self-reported function (International Knee Documentation Committee Index), isometric quadriceps strength and rate of torque development in individuals with a unilateral anterior cruciate ligament reconstruction. Forty-one individuals [31% male, BMI mean 25 (SD 4) kg/m 2 , months post anterior cruciate ligament reconstruction mean 49 (SD 40)] completed the self-reported function and isometric quadriceps function testing. Rate of torque development was assessed at 0-100ms (early), 100-200ms (late) ms, and peak following the onset of contraction. Associations were examined between rate of torque development, strength, and self-reported function. Linear regression was used to determine the unique amount of variance explained by the combination of rate of torque development and strength. Higher rate of torque development 100-200ms is weakly associated with higher self-reported function in individuals with a unilateral anterior cruciate ligament reconstruction (r=0.274, p=0.091); however, rate of torque development 100-200ms does not predict a significant amount of variance in self-reported function after accounting for strength (ΔR 2 =0.003, P=0.721). Quadriceps strength has a greater influence on self-reported function compared to rate of torque development in individuals with an anterior cruciate ligament reconstruction with time from surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon
2017-11-01
There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.
Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G
2012-04-01
Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.
Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T
2017-01-01
Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.
Park, Junhyuck; Yim, JongEun
2016-01-01
Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.
Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos
2010-05-01
The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P < or = 0.0001). For eccentric actions, internal rotator muscles were stronger in the dominant than the non-dominant limb (P < or = 0.0001) at both speeds. Concentric balance and functional balance ratios did not differ between sides at 3.14 rad . s(-1) (P = 0.1631), but at 5.23 rad . s(-1) the functional balance ratio in the dominant limb was lower than for the non-dominant limb (P = 0.0500). Although the dominant side was stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.
Zhang, Xiaohui; Hu, Min; Lou, Zhen; Liao, Bagen
2017-02-01
The aims of this study were to determine an effective knee function rehabilitation program for athletes undergoing partial medial meniscectomy. Participants were randomly assigned to neuromuscular training (NT) or strength training (ST) group and subjected to functional assessments before surgery and again at 4, and 8 weeks post hoc . Functional knee assessment, such as Lysholm knee scoring, star excursion balance, and BTE PrimusRS isokinetic performance tests were evaluated in each group. All postoperational symptoms were significantly improved after 4 and 8 weeks of NT and ST. Both NT and ST programs showed effective knee function recovery seen as an increase in muscular strength and endurance. However, the NT program showed the most significant functional improvement of dynamic balance and coordination.
Friel, Karen; Domholdt, Elizabeth; Smith, Douglas G
2005-01-01
For this study, we compared the physical impairments and functional deficits of individuals with lower-limb amputation (LLA) for those with and without low back pain (LBP). Nineteen participants with LLA were placed into two groups based on visual analog scores of LBP. We assessed functional limitations, iliopsoas length, hamstring length, abdominal strength, back extensor strength, and back extensor endurance. Data analysis included correlations and t-tests. We found significant correlations between pain score and functional limitations, iliopsoas length, and back extensor endurance. We also detected significant differences in functional limitations, iliopsoas length, back extensor strength, and back extensor endurance between those with and without LBP. We saw significant differences in back extensor strength and back extensor endurance between those with transtibial and transfemoral amputations. Differences exist in physical measures of individuals with LLA with and without LBP. Clinicians should consider these impairments in individuals with amputation who experience LBP. Because of the participants' characteristics, these findings may be applicable to veterans with LLA.
Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona
2014-06-01
Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.
Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert
2013-01-01
Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.
Low-energy modification of the γ strength function of the odd-even nucleus 115In
NASA Astrophysics Data System (ADS)
Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie
2016-10-01
Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.
[Methodological aspects of functional neuroimaging at high field strength: a critical review].
Scheef, L; Landsberg, M W; Boecker, H
2007-09-01
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
Lee, Han Suk; Park, Jeung Hun
2015-08-01
[Purpose] This study investigated the effects of Nordic walking on physical functions and depression in frail people aged 70 years and above. [Subjects] Twenty frail elderly individuals ≥70 years old were assigned to either a Nordic walking group (n=8) or general exercise group (n=10). [Methods] The duration of intervention was equal in both groups (3 sessions/week for 12 weeks, 60 min/session). Physical function (balance, upper extremity strength, lower extremity strength, weakness) and depression were examined before and after the interventions. [Results] With the exception of upper extremity muscle strength, lower extremity strength, weakness, balance, and depression after Nordic walking demonstrated statistically significant improvement. However, in the general exercise group, only balance demonstrated a statistically significant improvement after the intervention. There were significant differences in the changes in lower extremity muscle strength, weakness and depression between the groups. [Conclusion] In conclusion, Nordic walking was more effective than general exercise. Therefore, we suggest that Nordic walking may be an attractive option for significant functional improvement in frail people over 70 years old.
The Resilience Function of Character Strengths in the Face of War and Protracted Conflict.
Shoshani, Anat; Slone, Michelle
2015-01-01
This study investigated the role of character strengths and virtues in moderating relations between conflict exposure and psychiatric symptoms among 1078 adolescents aged 13-15 living in southern Israel, who were exposed to lengthy periods of war, terrorism and political conflict. Adolescents were assessed for character strengths and virtues, political violence exposure using the Political Life Events (PLE) scale, and psychiatric symptoms using the Brief Symptom Inventory and the UCLA PTSD Index. Results confirmed that political violence exposure was positively correlated with psychiatric symptoms. Interpersonal, temperance and transcendence strengths were negatively associated with psychiatric symptoms. Moderating effects of the interpersonal strengths on the relation between political violence exposure and the psychiatric and PTSD indices were confirmed. The findings extend existing knowledge about the resilience function of character strengths in exposure to protracted conflict and have important practical implications for applying strength-building practices for adolescents who grow up in war-affected environments.
Empirical calibration of the near-infrared Ca II triplet - III. Fitting functions
NASA Astrophysics Data System (ADS)
Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Vazdekis, A.; Peletier, R. F.
2002-02-01
Using a near-infrared stellar library of 706 stars with a wide coverage of atmospheric parameters, we study the behaviour of the CaII triplet strength in terms of effective temperature, surface gravity and metallicity. Empirical fitting functions for recently defined line-strength indices, namely CaT*, CaT and PaT, are provided. These functions can be easily implemented into stellar population models to provide accurate predictions for integrated CaII strengths. We also present a thorough study of the various error sources and their relation to the residuals of the derived fitting functions. Finally, the derived functional forms and the behaviour of the predicted CaII are compared with those of previous works in the field.
Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki
2017-11-06
Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.
Zani, Fabiana Vieira Breijão; Aguilar-Nascimento, José Eduardo; Nascimento, Diana Borges Dock; da Silva, Ageo Mário Cândido; Caporossi, Fernanda Stephan; Caporossi, Cervantes
2015-01-01
ABSTRACT Objective: To evaluate the change in respiratory function and functional capacity according to the type of preoperative fasting. Methods: Randomized prospective clinical trial, with 92 female patients undergoing cholecystectomy by laparotomy with conventional or 2 hours shortened fasting. The variables measured were the peak expiratory flow, forced expiratory volume in the first second, forced vital capacity, dominant handgrip strength, and non-dominant handgrip strength. Evaluations were performed 2 hours before induction of anesthesia and 24 hours after the operation. Results: The two groups were similar in preoperative evaluations regarding demographic and clinical characteristics, as well as for all variables. However, postoperatively the group with shortened fasting had higher values than the group with conventional fasting for lung function tests peak expiratory flow (128.7±62.5 versus 115.7±59.9; p=0.040), forced expiratory volume in the first second (1.5±0.6 versus 1.2±0.5; p=0.040), forced vital capacity (2.3±1.1 versus 1.8±0.9; p=0.021), and for muscle function tests dominant handgrip strength (24.9±6.8 versus 18.4±7.7; p=0.001) and non-dominant handgrip strength (22.9±6.3 versus 17.0±7.8; p=0.0002). In the intragroup evaluation, there was a decrease in preoperative compared with postoperative values, except for dominant handgrip strength (25.2±6.7 versus 24.9±6.8; p=0.692), in the shortened fasting group. Conclusion: Abbreviation of preoperative fasting time with ingestion of maltodextrin solution is beneficial to pulmonary function and preserves dominant handgrip strength. PMID:26154547
Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.
Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John
2016-08-01
We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.
Liberman, Keliane; Forti, Louis N; Beyer, Ingo; Bautmans, Ivan
2017-01-01
This systematic review reports the most recent literature regarding the effects of physical exercise on muscle strength, body composition, physical functioning and inflammation in older adults. All articles were assessed for methodological quality and where possible effect size was calculated. Thirty-four articles were included - four involving frail, 24 healthy and five older adults with a specific disease. One reported on both frail and nonfrail patients. Several types of exercise were used: resistance training, aerobic training, combined resistance training and aerobic training and others. In frail older persons, moderate-to-large beneficial exercise effects were noted on inflammation, muscle strength and physical functioning. In healthy older persons, effects of resistance training (most frequently investigated) on inflammation or muscle strength can be influenced by the exercise modalities (intensity and rest interval between sets). Muscle strength seemed the most frequently used outcome measure, with moderate-to-large effects obtained regardless the exercise intervention studied. Similar effects were found in patients with specific diseases. Exercise has moderate-to-large effects on muscle strength, body composition, physical functioning and inflammation in older adults. Future studies should focus on the influence of specific exercise modalities and target the frail population more.
Ozdemir, Filiz Ciledag; Pehlivan, Erkan; Melekoglu, Rauf
2017-01-01
To investigate the pelvic floor muscle strength of the women andevaluateits possible correlation with sexual dysfunction. In this cross-sectional type study, stratified clusters were used for the sampling method. Index of Female Sexual Function (IFSF) worksheetwere used for questions on sexual function. The pelvic floor muscle strength of subjects was assessed byperineometer. The chi-squared test, logistic regression and Pearson's correlation analysis were used for the statistical analysis. Four hundred thirty primiparous women, mean age 38.5 participated in this study. The average pelvic floor muscle strength value was found 31.4±9.6 cm H 2 O and the average Index of Female Sexual Function (IFSF) score was found 26.5±6.9. Parity (odds ratio OR=5.546) and age 40 or higher (OR=3.484) were found correlated with pelvic floor muscle weakness (p<0.05). The factors directly correlated with sexual dysfunction were found being overweight (OR=2.105) and age 40 or higher (OR=2.451) (p<0.05). Pearson's correlation analysis showed that there was a statistically significantlinear correlation between the muscular strength of the pelvic floor and sexual function (p=0.001). The results suggested subjects with decreased pelvic floor muscle strength value had higher frequency of sexual dysfunction.
Time-varying coupling functions: Dynamical inference and cause of synchronization transitions
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav
2017-02-01
Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.
Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.
Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A
2018-05-01
To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Evolution of the pygmy dipole resonance in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.
2011-04-01
Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.
Solutions to inverse plume in a crosswind problem using a predictor - corrector method
NASA Astrophysics Data System (ADS)
Vanderveer, Joseph; Jaluria, Yogesh
2013-11-01
Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.
Norman, Kristina; Wirth, Rainer; Neubauer, Maxi; Eckardt, Rahel; Stobäus, Nicole
2015-02-01
We investigated the impact of low phase angle (PhA) values on muscle strength, quality of life, symptom severity, and 1-year mortality in older cancer patients. Prospective study with 1-year follow-up. Cancer patients aged >60 years. PhA was derived from whole body impedance analysis. The fifth percentile of age-, sex-, and body mass index-stratified reference values were used as cut-off. Quality of life was determined with the European Organization of Research and Treatment in Cancer questionnaire, reflecting both several function scales and symptom severity. Muscle strength was assessed by hand grip strength, knee extension strength, and peak expiratory flow. 433 cancer patients, aged 60-95 years, were recruited. Patients with low PhA (n = 197) exhibited decreased muscle strength compared with patients with normal PhA (hand grip strength: 22 ± 8.6 vs 28.9 ± 8.9 kg, knee extension strength: 20.8 ± 11.8 vs 28.1 ± 14.9 kg, and peak expiratory flow: 301.1 ± 118 vs 401.7 ± 142.6 L/min, P < .001). Physical function, global health status, and role function from the European Organization of Research and Treatment in Cancer questionnaire were reduced, and most symptoms (fatigue, anorexia, pain, and dyspnea) increased in patients with low PhA (P < .001). In a risk-factor adjusted regression analysis, PhA emerged as independent predictor of physical function (ß:-0.538, P = .023), hand grip strength (ß:-4.684, P < .0001), knee extension strength (ß:-4.548, P = .035), and peak expiratory flow (ß:-66.836, P < .0001). Low PhA moreover predicted 1-year mortality in the Cox proportional hazards regression model, whereas grip strength was no longer significant. PhA below the fifth reference percentile is highly predictive of decreased muscle strength, impaired quality of life, and increased mortality in old patients with cancer and should be evaluated in routine assessment. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Pomeroy, Valerie M; Ward, Nick S; Johansen-Berg, Heidi; van Vliet, Paulette; Burridge, Jane; Hunter, Susan M; Lemon, Roger N; Rothwell, John; Weir, Christopher J; Wing, Alan; Walker, Andrew A; Kennedy, Niamh; Barton, Garry; Greenwood, Richard J; McConnachie, Alex
2014-02-01
Functional strength training in addition to conventional physical therapy could enhance upper limb recovery early after stroke more than movement performance therapy plus conventional physical therapy. To determine (a) the relative clinical efficacy of conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy for upper limb recovery; (b) the neural correlates of response to conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy; (c) whether any one or combination of baseline measures predict motor improvement in response to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Randomized, controlled, observer-blind trial. The sample will consist of 288 participants with upper limb paresis resulting from a stroke that occurred within the previous 60 days. All will be allocated to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Functional strength training and movement performance therapy will be undertaken for up to 1·5 h/day, five-days/week for six-weeks. Measurements will be undertaken before randomization, six-weeks thereafter, and six-months after stroke. Primary efficacy outcome will be the Action Research Arm Test. Explanatory measurements will include voxel-wise estimates of brain activity during hand movement, brain white matter integrity (fractional anisotropy), and brain-muscle connectivity (e.g. latency of motor evoked potentials). The primary clinical efficacy analysis will compare treatment groups using a multilevel normal linear model adjusting for stratification variables and for which therapist administered the treatment. Effect of conventional physical therapy combined with functional strength training versus conventional physical therapy combined with movement performance therapy will be summarized using the adjusted mean difference and 95% confidence interval. To identify the neural correlates of improvement in both groups, we will investigate associations between change from baseline in clinical outcomes and each explanatory measure. To identify baseline measurements that independently predict motor improvement, we will develop a multiple regression model. © 2013 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.
The influence of cooling forearm/hand and gender on estimation of handgrip strength.
Cheng, Chih-Chan; Shih, Yuh-Chuan; Tsai, Yue-Jin; Chi, Chia-Fen
2014-01-01
Handgrip strength is essential in manual operations and activities of daily life, but the influence of forearm/hand skin temperature on estimation of handgrip strength is not well documented. Therefore, the present study intended to investigate the effect of local cooling of the forearm/hand on estimation of handgrip strength at various target force levels (TFLs, in percentage of MVC) for both genders. A cold pressor test was used to lower and maintain the hand skin temperature at 14°C for comparison with the uncooled condition. A total of 10 male and 10 female participants were recruited. The results indicated that females had greater absolute estimation deviations. In addition, both genders had greater absolute deviations in the middle range of TFLs. Cooling caused an underestimation of grip strength. Furthermore, a power function is recommended for establishing the relationship between actual and estimated handgrip force. Statement of relevance: Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the forearm/hand tended to cause underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. Practitioner Summary: It is important to understand the effect of lowering the forearm/hand skin temperature on grip-strength estimation. A cold pressor was used to cool the hand. The cooling caused underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the forearm/hand tended to cause underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. It is important to understand the effect of lowering the forearm/hand skin temperature on grip-strength estimation. A cold pressor was used to cool the hand. The cooling caused underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force
Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A
2015-01-01
Introduction Individuals with cerebral palsy (CP) have muscles that are smaller, weaker and more resistant to stretch compared to typically developing people. Progressive resistance training leads to increases in muscle size and strength. In CP, the benefits of resistance training alone may not transfer to improve other activities such as walking; however, the transfer of strength improvements to improved mobility may be enhanced by performing training that involves specific functional tasks or motor skills. This study aims to determine the efficacy of combined functional anaerobic and strength training in (1) influencing muscle strength, structure and function and (2) to determine if any changes in muscle strength and structure following training impact on walking ability and gross motor functional capacity and performance in the short (following 3 months of training) and medium terms (a further 3 months post-training). Methods and analysis 40 adolescents and young adults with CP will be recruited to undertake a 12-week training programme. The training programme will consist of 3×75 min sessions per week, made up of 5 lower limb resistance exercises and 2–3 functional anaerobic exercises per session. The calf muscles will be specifically targeted, as they are the most commonly impacted muscles in CP and are a key muscle group involved in walking. If, as we believe, muscle properties change following combined strength and functional training, there may be long-term benefits of this type of training in slowing the deterioration of muscle function in people with spastic-type CP. Ethics and dissemination Ethical approval has been obtained from the ethics committees at The University of Queensland (2014000066) and Children's Health Queensland (HREC/15/QRCH/30). The findings will be disseminated by publications in peer-reviewed journals, conferences and local research organisations’ media. Trial registration number Australian and New Zealand Clinical Trials Registry (ACTRN12614001217695). PMID:26116614
Sakai, Kotomi; Nakayama, Enri; Tohara, Haruka; Maeda, Tomomi; Sugimoto, Motonobu; Takehisa, Takahiro; Takehisa, Yozo; Ueda, Koichiro
2017-04-01
The aim of this cross-sectional study was to investigate whether tongue strength observed in older adult inpatients of a rehabilitation hospital is associated with muscle function, nutritional status, and dysphagia. A total of 174 older adult inpatients aged 65 years and older in rehabilitation (64 men, 110 women; median age, 84 years; interquartile range, 80-89 years) who were suspected of having reduced tongue strength due to sarcopenia were included in this study. Isometric tongue strength was measured using a device fitted with a disposable oral balloon probe. We evaluated age, muscle function as assessed by the Barthel index and grip strength, nutritional status as measured by the Mini Nutritional Assessment-short form (MNA-SF), body mass index, serum albumin, controlling nutritional status, and calf circumference and arm muscle area to assess muscle mass. In addition, the functional oral intake scale (FOIS) was used as an index of dysphagia. Multivariate linear regression analysis revealed that isometric tongue strength was independently associated with grip strength (coefficient = 0.33, 95 % confidence interval (CI) 0.12-0.54, p = 0.002), MNA-SF (coefficient = 0.74, 95 % CI 0.12-1.35, p = 0.019), and FOIS (coefficient = 0.02, 95 % CI 0.00-0.15, p = 0.047). To maintain and improve tongue strength in association with sarcopenic dysphagia, exercise therapy and nutritional therapy interventions, as well as direct interventions to address tongue strength, may be effective in dysphagia rehabilitation in older adult inpatients.
Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse
Shaw, SC; Denison, EM; Cooper, C
2017-01-01
Sarcopenia is an age-related syndrome characterised by progressive and generalised loss of skeletal muscle mass and strength; it is a major contributor to the risk of physical frailty, functional impairment in older people, poor health-related quality of life, and premature death. Many different definitions have been used to describe sarcopenia and have resulted in varying estimates of prevalence of the condition. The most recent attempts of definitions have tried to integrate information on muscle mass, strength and physical function and provide a definition that is useful in both research and clinical settings. This review focuses on the epidemiology of the three distinct physiological components of sarcopenia, and highlights the similarities and differences between their patterns of variation with age, gender, geography and time; and the individual risk factors that cluster selectively with muscle mass, strength and physical function. Methods used to measure muscle mass, strength and physical functioning and how differences in these approaches can contribute to the varying prevalence rates will also be described. The evidence for this review was gathered by undertaking a systematic search of the literature. The descriptive characteristics of muscle mass, strength and function described in this review point to the urgent need for a consensual definition of sarcopenia incorporating these parameters. PMID:28469267
Handgrip strength is associated with improved spirometry in adolescents
Standl, Marie; Berdel, Dietrich; von Berg, Andrea; Bauer, Carl-Peter; Schikowski, Tamara; Koletzko, Sibylle; Lehmann, Irina; Krämer, Ursula; Heinrich, Joachim; Schulz, Holger
2018-01-01
Introduction Pulmonary rehabilitation, including aerobic exercise and strength training, improves function, such as spirometric indices, in lung disease. However, we found spirometry did not correlate with physical activity (PA) in healthy adolescents (Smith ERJ: 42(4), 2016). To address whether muscle strength did, we measured these adolescents’ handgrip strength and correlated it with spirometry. Methods In 1846 non-smoking, non-asthmatic Germans (age 15.2 years, 47% male), we modeled spirometric indices as functions of handgrip strength by linear regression in each sex, corrected for factors including age, height, and lean body mass. Results Handgrip averaged 35.4 (SD 7.3) kg in boys, 26.6 (4.2) in girls. Spirometric volumes and flows increased linearly with handgrip. In boys each kg handgrip was associated with about 28 mL greater FEV1 and FVC; 60 mL/sec faster PEF; and 38 mL/sec faster FEF2575. Effects were 10–30% smaller in girls (all p<0.0001) and stable when Z-scores for spirometry and grip were modeled, after further correction for environment and/or other exposures, and consistent across stages of puberty. Conclusions Grip strength was associated with spirometry in a cohort of healthy adolescents whose PA was not. Thus, research into PA’s relationship with lung function should consider strength as well as total PA. Strength training may benefit healthy lungs; interventions are needed to prove causality. PMID:29641533
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
1992-05-01
regression analysis. The strength of any one variable can be estimated along with the strength of the entire model in explaining the variance of percent... applicable a set of damage functions is to a particular situation. Sometimes depth- damage functions are embedded in computer programs which calculate...functions. Chapter Six concludes with recommended policies on the development and application of depth-damage functions. 5 6 CHAPTER TWO CONSTRUCTION OF
Dulac, Maude; Boutros, Guy El Hajj; Pion, Charlotte; Barbat-Artigas, Sébastien; Gouspillou, Gilles; Aubertin-Leheudre, Mylène
2016-01-01
To investigate whether handgrip strength normalized to body weight could be a useful clinical tool to identify dynapenia and assess functional capacity in post-menopausal women. A total of 136 postmenopausal women were recruited. Body composition (Dual Energy X-ray Absorptiometry [DEXA], Bio-electrical Impedence Analysis [BIA]), grip strength (dynamometer) and functional capacity (senior fitness tests) were evaluated. Dynapenia was established according to a handgrip strength index (handgrip strength divided by body weight (BW) in Kg/KgBW) obtained from a reference population of young women: Type I dynapenic (<0.44 kg/KgBW) and type II dynapenic (<0.35 kg/KgBW). The results show a positive correlation between handgrip strength index (in kg/KgBW) and alternate-step test (r=0.30, p<0.001), chair-stand test (r=0.25, p<0.005) and one-leg stance test (r=0.335, p<0.001). The results also showed a significant difference in non-dynapenic compared to type I dynapenic and type II dynapenic for the chair-stand test (Non-dynapenic: 12.0±3.0; Type I: 11.7±2.5; Type II: 10.3±3.0) (p=0.037 and p=0.005, respectively) and the one-leg stance test (Non-dynapenic: 54.2±14.2; Type I: 43.8±21.4; Type II: 35.0±21.8) (p=0.030 and p=0.004, respectively). Finally, a significant difference was observed between type II dynapenic and non-dynapenic for the chair-stand test (p=0.032), but not with type I dynapenic. The results showed that handgrip strength was positively correlated with functional capacity. In addition, non-dynapenic women displayed a better functional status when compared to type I and type II dynapenic women. Thus, the determination of the handgrip strength thresholds could be an accessible and affordable clinical tool to identify people at risk of autonomy loss.
Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural
2015-01-01
There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knak, Kirsten L; Andersen, Linda K; Christiansen, Ingelise; Markvardsen, Lars K
2018-03-30
Grip strength (GS) is a common measure of general muscle strength in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). However, it is important to investigate the correlation and responsiveness of GS compared with isokinetic muscle strength (IKS) and function of the lower limbs. Seventy patients with CIDP were evaluated with GS, IKS, and functional measures of the lower limbs. Reevaluation was performed after 2 and 10/12 weeks. Correlation and response analyses were performed. GS correlated with IKS at the ankle (IKS ankle ; maximum Spearman's rank-order correlation [R S ] = 0.58) and with walking performance (maximum R S = -0.38). IKS ankle was more responsive to detect change (standardized response mean [SRM] = 0.57) than GS (SRM = 0.27). GS does not seem to be an appropriate surrogate measure of IKS and function of the lower limbs in patients with CIDP. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.
Wang, Yao; Shao, Wei-bo; Gao, Li; Lu, Jie; Gu, Hao; Sun, Li-hua; Tan, Yan; Zhang, Ying-dong
2014-01-01
There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson's disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration. Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson's disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed. Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients. These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.
Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders
2016-11-01
The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morishita, S; Tsubaki, A; Fu, J B; Mitobe, Y; Onishi, H; Tsuji, T
2018-05-16
We investigated the difference in relationship between muscle strength and quality of life (QOL)/fatigue in long-term cancer survivors and healthy subjects. Thirty-six cancer survivors and 29 healthy subjects were assessed for body composition and bone status at the calcaneus using the Osteo Sono Assessment Index. Muscle strength was evaluated via handgrip and knee extensor strength. Health-related QOL was assessed using the Medical Outcome Study 36-item Short-Form Health Survey. Fatigue was measured using the brief fatigue inventory. Cancer survivors exhibited lower QOL scores in the physical functioning, physical role function, bodily pain and general health domains (p < .05). Grip and knee extension muscle strength in cancer survivors was positively correlated with the physical function and bodily pain of QOL (p < .05). The usual fatigue subscale score was only significantly higher in cancer survivors than in healthy subjects (p < .05). However, there were no correlations between muscle strength and fatigue in cancer survivors. Our results showed that muscle strength was an important factor for improving QOL in cancer survivors. We believe that the findings of this study will be relevant in the context of planning rehabilitation for cancer survivors. © 2018 John Wiley & Sons Ltd.
Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy
Pizzato, Tatiana M.; Baptista, Cyntia R. J. A.; Souza, Mariana A.; Benedicto, Michelle M. B.; Martinez, Edson Z.; Mattiello-Sverzut, Ana C.
2014-01-01
BACKGROUND: Grip strength is used to infer functional status in several pathological conditions, and the hand dynamometer has been used to estimate performance in other areas. However, this relationship is controversial in neuromuscular diseases and studies with the bulb dynamometer comparing healthy children and children with Duchenne Muscular Dystrophy (DMD) are limited. OBJECTIVE: The evolution of grip strength and the magnitude of weakness were examined in boys with DMD compared to healthy boys. The functional data of the DMD boys were correlated with grip strength. METHOD: Grip strength was recorded in 18 ambulant boys with DMD (Duchenne Group, DG) aged 4 to 13 years (mean 7.4±2.1) and 150 healthy volunteers (Control Group, CG) age-matched using a bulb dynamometer (North Coast- NC70154). The follow-up of the DG was 6 to 33 months (3-12 sessions), and functional performance was verified using the Vignos scale. RESULTS: There was no difference between grip strength obtained by the dominant and non-dominant side for both groups. Grip strength increased in the CG with chronological age while the DG remained stable or decreased. The comparison between groups showed significant difference in grip strength, with CG values higher than DG values (confidence interval of 95%). In summary, there was an increment in the differences between the groups with increasing age. Participants with 24 months or more of follow-up showed a progression of weakness as well as maintained Vignos scores. CONCLUSIONS: The amplitude of weakness increased with age in the DG. The bulb dynamometer detected the progression of muscular weakness. Functional performance remained virtually unchanged in spite of the increase in weakness. PMID:25003277
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention
Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.
2016-01-01
Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. PMID:27629707
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.
Rosenberg, Monica D; Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S; Shen, Xilin; Constable, R Todd; Li, Chiang-Shan R; Chun, Marvin M
2016-09-14
Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. Copyright © 2016 the authors 0270-6474/16/369547-11$15.00/0.
Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.
Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung
2015-11-01
[Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.
Palmer, Kathryn; Hebron, Clair; Williams, Jonathan M
2015-05-03
Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor strengthening or functional motor control programmes have a positive impact of pain, however their effect on knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength. This prospective, randomised, repeated measures design included 29 asymptomatic volunteers presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric hip abduction. There were no significant differences in dynamic knee valgus and internal rotation following the isolated hip abductor or functional motor control intervention, and no significant differences between the groups for knee angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18° for the functional motor control group and strengthening group respectively. Therefore there was a tendency towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008) and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being identified (p = 0.475). Isolated hip strengthening and functional motor control exercises resulted in non-statistically significant changes in knee kinematics, however there was a clear trend towards clinically meaningful reductions in valgus and internal rotation. Both groups demonstrated similar significant gains in hip abductor strength suggesting either approach could be used to strengthen the hip abductors.
Chen, Xing; Tume, Ron K; Xu, Xinglian; Zhou, Guanghong
2017-10-13
The qualitative characteristics of meat products are closely related to the functionality of muscle proteins. Myofibrillar proteins (MPs), comprising approximately 50% of total muscle proteins, are generally considered to be insoluble in solutions of low ionic strength (< 0.2 M), requiring high concentrations of salt (> 0.3 M) for solubilization. These soluble proteins are the ones which determine many functional properties of meat products, including emulsification and thermal gelation. In order to increase the utilization of meat and meat products, many studies have investigated the solubilization of MPs in water or low ionic strength media and determining their functionality. However, there still remains a lack of systematic information on the functional properties of MPs solubilized in this manner. Hence, this review will explore some typical techniques that have been used. The main procedures used for their solubilization, the fundamental principles and their functionalities in water (low ionic strength medium) are comprehensively discussed. In addition, advantages and disadvantages of each technique are summarized. Finally, future considerations are presented to facilitate progress in this new area and to enable water soluble muscle MPs to be utilized as novel meat ingredients in the food industry.
The Resilience Function of Character Strengths in the Face of War and Protracted Conflict
Shoshani, Anat; Slone, Michelle
2016-01-01
This study investigated the role of character strengths and virtues in moderating relations between conflict exposure and psychiatric symptoms among 1078 adolescents aged 13–15 living in southern Israel, who were exposed to lengthy periods of war, terrorism and political conflict. Adolescents were assessed for character strengths and virtues, political violence exposure using the Political Life Events (PLE) scale, and psychiatric symptoms using the Brief Symptom Inventory and the UCLA PTSD Index. Results confirmed that political violence exposure was positively correlated with psychiatric symptoms. Interpersonal, temperance and transcendence strengths were negatively associated with psychiatric symptoms. Moderating effects of the interpersonal strengths on the relation between political violence exposure and the psychiatric and PTSD indices were confirmed. The findings extend existing knowledge about the resilience function of character strengths in exposure to protracted conflict and have important practical implications for applying strength-building practices for adolescents who grow up in war-affected environments. PMID:26793139
Smith, Derek T; Judge, Stacey; Malone, Ashley; Moynes, Rebecca C; Conviser, Jason; Skinner, James S
2016-01-01
Reduced strength, balance, and functional independence diminish quality of life and increase health care costs. Sixty adults (82.2 ± 4.9 years) were randomized to a control or three 12-week intervention groups: bioDensity (bD); Power Plate (PP) whole-body vibration (WBV); or bD+PP. bD involved one weekly 5-s maximal contraction of four muscle groups. PP involved two 5-min WBV sessions. Primary outcomes were strength, balance, and Functional Independence Measure (FIM). No groups differed initially. Strength significantly increased 22-51% for three muscle groups in bD and bD+PP (P < .001), with no changes in control and PP. Balance significantly improved in PP and bD+PP but not in control or bD. bD, PP, and bD+PP differentially improved FIM self-care and mobility. Strength improvements from weekly 5-min sessions of bD may impart health/clinical benefits. Balance and leg strength improvements suggest WBV beneficially impacts fall risk and incidence. Improved FIM scores are encouraging and justify larger controlled trials on bD and bD+PP efficacy.
Outcomes of total hip arthroplasty: a study of patients one year postsurgery.
Trudelle-Jackson, Elaine; Emerson, Roger; Smith, Sue
2002-06-01
Ex post facto research using prospective analysis of differences between the involved hip and uninvolved hip. To assess outcomes of total hip arthroplasty (THA) by comparing range of motion (ROM), muscle strength, and postural stability in the surgical hip to those of the uninvolved hip 1 year postsurgery. An additional objective was to assess degree of relationship among ROM, strength, and postural stability impairments to a measure of self-assessed function. Most patients who have THA receive physical therapy that consists mainly of self-care instructions and an exercise protocol that emphasizes mobility during the acute phase of recovery. But, outcomes of THA 1 year postsurgery indicate that current physical therapy programs used during the acute phase of recovery do not effectively restore physical and functional performance. Subjects consisted of 11 women and 4 men (mean age +/- standard deviation = 62 +/- 8 years) with unilateral THA performed 1 year prior to data collection. Assessment variables consisted of self-assessment of function and measures of postural stability, muscle strength, and hip ROM. The 12-Item Hip Questionnaire was used for self-assessment of function. Three separate repeated measures MANOVA were used to compare the involved side to the uninvolved side in measures of postural stability, strength, and ROM. The Spearman's rho was used to assess degree of association between the subjects' score of self-assessed function and impairments in strength and postural stability. Measures of postural stability were significantly lower (P < or = 0.01) on the side of the replaced hip. Differences in strength values between the involved and uninvolved sides were not statistically significant. Correlations between scores of self-assessed function and hip abductor and knee extensor strength were statistically significant (r = 0.56, P < or = 0.03). Self-assessed function was not significantly correlated to postural stability impairments. The brief postsurgical rehabilitation program received by patients with THA may not be sufficient. A second phase of rehabilitation implemented 4 months or more after surgery that emphasizes weight bearing and postural stability may be advisable.
[Health-related strength and power training in seniors: Purpose and recommendations].
Donath, Lars; Faude, Oliver; Bopp, Micha; Zahner, Lukas
2015-05-01
The proportion of older people in western societies rapidly increases. Aging-induced disease conditions accompanied with declines in cardiocirculatory and neuromuscular performance constitute a major individual and economic health burden. Besides decreasing vascular and cardiac function during the process of aging, a loss of skeletal muscle mass, muscle structure and function seem to mainly account for decreasing maximal strength, strength development and strength endurance. These findings adversely interfer with static and dynamic postural control and may lead to an increased risk of falling with impairments of autonomy and quality of life. Traditional strength training recommendations basing on health-related exercise prescriptions for elderly people have been proven to counteract or at least attenuate aging-induced declines of neuromuscular muscular function. Multimodal and combined strength and balance training deliver additional improvements of neuromuscular capacity. Recent evidence additionally underpin the need of trunk muscle training and claimed for regimes considering explosive and high-velocity strength training in seniors. High quality RCTs revealed notable strength training effects on mobility, autonomy, quality of life and the reduction of the risk of falling (up to 50%). Available evidence also indicates that various strength training regimes elicit preventive and therapeutic effects on osteoporosis, diabetes type 2 and other chronic diseases, with effect sizes comparable to medication intake. Thus, health care providers, health insurances, Employers' Liability Insurance Associations and politicians should promote infrastructural developments that enable feasible and cost-effective access to health-related fitness centers or other sport facilities (e. g. sport clubs). These environmental requirements should be embedded in multi-centric education programs and campaigns that might enable regularly conducted strength and endurance training perceived as beneficial and valuable from an individual health care perspective.
Stiffness and strength of oxygen-functionalized graphene with vacancies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu
2014-11-14
The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less
Kim, H D; Choi, J B; Yoo, S J; Chang, M Y; Lee, S W; Park, J S
2017-01-01
Tongue function can affect both the oral and pharyngeal stages of the swallowing process, and proper tongue strength is vital for safe oropharyngeal swallowing. This trial investigated the effect of tongue-to-palate resistance training (TPRT) on tongue strength and oropharyngeal swallowing function in stroke with dysphagia patients. This trial was performed using a 4-week, two-group, pre-post-design. Participants were allocated to the experimental group (n = 18) or the control group (n = 17). The experimental group performed TPRT for 4 weeks (5 days per week) and traditional dysphagia therapy, whereas the control group performed traditional dysphagia therapy on the same schedule. Tongue strength was measured using the Iowa Oral Performance Instrument. Swallowing function was measured using the videofluoroscopic dysphagia scale (VDS) and penetration-aspiration scale (PAS) based on a videofluoroscopic swallowing study. Experimental group showed more improved in the tongue strength (both anterior and posterior regions, P = 0·009, 0·015). In addition, the experimental group showed more improved scores on the oral and pharyngeal phase of VDS (P = 0·029, 0·007), but not on the PAS (P = 0·471), compared with the control group. This study demonstrated the effectiveness of TPRT in increasing tongue muscle strength and improving swallowing function in patients with post-stroke dysphagia. Therefore, we recommend TPRT as an easy and simple rehabilitation strategy for improving swallowing in patients with dysphagia. © 2016 John Wiley & Sons Ltd.
Broersma, M; Koops, E A; Vroomen, P C; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M
2015-05-01
Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS), using a single-blind two-period placebo-controlled cross-over design. Eleven patients received active 15 Hz rTMS over the contralateral motor cortex (hand area), in two periods of 5 days, for 30 min once a day at 80% of resting motor threshold, with a train length of 2 s and an intertrain interval of 4 s. Eight of these eleven patients were also included in the placebo treatment condition. Primary outcome measure was change in muscle strength as measured by dynamometry after treatment. Secondary outcome measure was the subjective change in muscle strength after treatment. In patients who received both treatments, active rTMS induced a significantly larger median increase in objectively measured muscle strength (24%) compared to placebo rTMS (6%; P < 0.04). Subjective ratings showed no difference due to treatment, i.e. patients did not perceive these objectively measured motor improvements (P = 0.40). Our findings suggest that rTMS by itself can potentially improve muscle weakness in functional neurological paresis disorder. Whereas patients' muscle strength increased as measured with dynamometry, patients did not report increased functioning of the affected hand, subjectively. The results may indicate that decreased muscle strength is not the core symptom and that rTMS should be added to behavioral approaches in functional neurological paresis. © 2015 EAN.
NASA Astrophysics Data System (ADS)
Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong
2016-01-01
Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.
Aalund, Peter K; Larsen, Kristian; Hansen, Torben B; Bandholm, Thomas
2013-02-01
To investigate which of the 2 muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, was most closely associated with performance-based and self-reported measures of function shortly after total knee arthroplasty (TKA). Cross-sectional, exploratory study. Laboratory at a regional hospital. Individuals (N=39) with an average age ± SD of 65.5±10.3 years, who all had unilateral TKA 28 days prior. None. The patients performed maximal isometric knee extensions and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-meter fast speed walking- and 30-second chair stand tests were used to determine performance-based function, while the Western Ontario and McMaster Universities Osteoarthritis Index and Oxford Knee Scores were used to determine self-reported function. Normalized leg press power was more closely associated with both performance-based (r=.82, P<.001) and self-reported (r=.48, P=.002) measures of function compared with normalized knee extension strength (r=.51, P=.001 and r=.39, P=.015, respectively). Normalized leg press power was more closely associated with both performance-based and self-reported function early after TKA than normalized knee extension strength. It may be explained by the fact that performance-based measures of function are typically closed kinetic chain tasks, such as walking or rising from a chair, and self-reported measures of function typically include questions that address perceived difficulty with performing these same tasks. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
[Effect of physical activity on functional performance].
Nikolaus, T
2001-02-01
Epidemiological studies clearly show a connection between physical activity and the occurrence of disabilities in old age. Physical exercise is possible and useful at every age. Numerous intervention trials have shown that training of endurance, strength and coordination has positive effects on the cardiovascular system, the lung, the musculo-skeletal system, metabolism and the immune system in elderly people. Even very frail elderly people can increase their muscle strength and functional capabilities by strength training. Group sessions may improve social interactions and additionally increase the quality of life.
Strength, Deformation and Friction of in situ Rock
1974-12-01
Kayenta sandstone, Mixed Company site, Colorado. 30 21. Strength as a function of density for specimen cored perpendicular and parallel to bedding. 30...saturation. 33 24. Photomicrograph of Kayenta sandstone (x 30). 35 25. Stress difference as a function of density for triaxial tests up to P = 4.0...specimen size on strength for Kayenta sandstone, Mixed Company site Colorado. m Sä £ 3 s Q 3/« In, j. O 2 In. X ’ X3/4(n.ll • 2ln. II it
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Behavioral and Emotional Strengths among Youth in Systems of Care and the Effect of Race/Ethnicity
ERIC Educational Resources Information Center
Barksdale, Crystal L.; Azur, Melissa; Daniels, Amy M.
2010-01-01
Behavioral and emotional strengths are important to consider when understanding youth mental health and treatment. This study examined the association between youth strengths and functional impairment and whether this association is modified by race/ethnicity. Multinomial logistic regression models were used to estimate the effects of strengths on…
[Anthropometry, body composition and functional limitations in the elderly].
Arroyo, Patricia; Lera, Lydia; Sánchez, Hugo; Bunout, Daniel; Santos, José Luis; Albala, Cecilia
2007-07-01
Functional limitations limit the independence and jeopardize the quality of life of elderly subjects. To assess the association between anthropometric measures and body composition with functional limitations in community-living older people. Cross-sectional survey of 377 people > or = 6 5 years old (238 women), randomly selected from the SABE/Chile project. Complete anthropometric measurements were done. Handgrip muscle strength was measured using dynamometers. Body composition was determined using Dual-Energy X-Ray Absorptiometry. Functional limitations were assessed using self reported and observed activities. Body mass index was strongly associated with fat mass (men r =0.87; women r =0.91) and with lean mass (men r =0.55; women r =0.62). Males had significantly greater lean mass (48.9 kg vs 34.9 kg), and bone mass than females (2.6 kg vs 1.8 kg) and women had higher fat mass than men (26.3 kg vs 22.9 kg). The prevalence of functional limitations was high, affecting more women than men (63.7% vs 37.5%, p <0.01). Functional limitations were associated with lower handgrip strength in both sexes. In the multiple regression models, with functional limitations as dependent variable and anthropometric measures as contributing variables, only hand grip strength had a significant association (negative) with functional limitations in both genders. Age was also a significant risk factor for functional limitations among women. Hand grip strength was strongly and inversely associated with functional limitations. Handgrip dynamometry is an easy, cheap and low time-consuming indicator for the assessment of functional limitations and the evaluation of geriatric interventions aimed to improve functional ability.
Functional strength of commercial-airline stewardesses.
DOT National Transportation Integrated Search
1975-11-01
Data from 13 body measurements and 4 strength tests on 152 female flight attendants are reported herein. The stewardesses are taller (x bar = 165.8 cm) and lighter (x bar = 54.6 kg) than the corresponding age in the civilian population. The strength ...
Optimum structural design based on reliability and proof-load testing
NASA Technical Reports Server (NTRS)
Shinozuka, M.; Yang, J. N.
1969-01-01
Proof-load test eliminates structures with strength less than the proof load and improves the reliability value in analysis. It truncates the distribution function of strength at the proof load, thereby alleviating verification of a fitted distribution function at the lower tail portion where data are usually nonexistent.
The impact of obesity on skeletal muscle strength and structure through adolescence to old age.
Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys
2016-06-01
Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.
NASA Astrophysics Data System (ADS)
E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi
2016-07-01
We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.
NASA Astrophysics Data System (ADS)
Babb, James F.
2015-08-01
The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.
Edelson, Lisa R; Mathias, Kevin C; Fulgoni, Victor L; Karagounis, Leonidas G
2016-02-04
Physical strength is associated with improved health outcomes in children. Heavier children tend to have lower functional strength and mobility. Physical activity can increase children's strength, but it is unknown how different types of electronic media use impact physical strength. Data from the NHANES National Youth Fitness Survey (NNYFS) from children ages 6-15 were analyzed in this study. Regression models were conducted to determine if screen-based sedentary behaviors (television viewing time, computer/video game time) were associated with strength measures (grip, leg extensions, modified pull-ups, plank) while controlling for potential confounders including child age, sex, BMI z-score, and days per week with 60+ minutes of physical activity. Grip strength and leg extensions divided by body weight were analyzed to provide measures of relative strength together with pull-ups and plank, which require lifting the body. The results from the regression models showed the hypothesized inverse association between TV time and all strength measures. Computer time was only significantly inversely associated with the ability to do one or more pull-ups. This study shows that television viewing, but not computer/videogames, is inversely associated with measures of child strength while controlling for child characteristics and physical activity. These findings suggest that "screen time" may not be a unified construct with respect to strength outcomes and that further exploration of the potential benefits of reducing television time on children's strength and related mobility is needed.
Goldberg, Allon; Alexander, Neil B.
2010-01-01
Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678
Lee, Jung-Sun; Kim, Chang-Yong; Kim, Hyeong-Dong
2016-08-01
The aim of this study was to determine the effect of whole-body vibration training combined with task-related training on arm function, spasticity, and grip strength in subjects with poststroke hemiplegia. Forty-five subjects with poststroke were randomly allocated to 3 groups, each with 15 subjects as follows: control group, whole-body vibration group, and whole-body vibration plus task-related training group. Outcome was evaluated by clinical evaluation and measurements of the grip strength before and 4 weeks after intervention. Our results show that there was a significantly greater increase in the Fugl-Meyer scale, maximal grip strength of the affected hand, and grip strength normalized to the less affected hand in subjects undergoing the whole-body vibration training compared with the control group after the test. Furthermore, there was a significantly greater increase in the Wolf motor function test and a decrease in the modified Ashworth spasticity total scores in subjects who underwent whole-body vibration plus task-related training compared with those in the other 2 groups after the test. The findings indicate that the use of whole-body vibration training combined with task-related training has more benefits on the improvement of arm function, spasticity, and maximal grip strength than conventional upper limb training alone or with whole-body vibration in people with poststroke hemiplegia.
Joint awareness after total knee arthroplasty is affected by pain and quadriceps strength.
Hiyama, Y; Wada, O; Nakakita, S; Mizuno, K
2016-06-01
There is a growing interest in the use of patient-reported outcomes to provide a more patient-centered view on treatment. Forgetting the artificial joint can be regarded as the goal in joint arthroplasty. The goals of the study were to describe changes in joint awareness in the artificial joint after total knee arthroplasty (TKA), and to determine which factors among pain, knee range of motion (ROM), quadriceps strength, and functional ability affect joint awareness after TKA. Patients undergoing TKA demonstrate changes in joint awareness and joint awareness is associated with pain, knee ROM, quadriceps strength, and functional ability. This prospective cohort study comprised 63 individuals undergoing TKA, evaluated at 1, 6, and 12 months postoperatively. Outcomes included joint awareness assessed using the Forgotten Joint Score (FJS), pain score, knee ROM, quadriceps strength, and functional ability. Fifty-eight individuals completed all postoperative assessments. All measures except for knee extension ROM improved from 1 to 6 months. However, there were no differences in any measures from 6 to 12 months. FJS was affected most greatly by pain at 1 month and by quadriceps strength at 6 and 12 months. Patients following TKA demonstrate improvements in joint awareness and function within 6 months after surgery, but reach a plateau from 6 to 12 months. Quadriceps strength could contribute to this plateau of joint awareness. Prospective cohort study, IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Six-year trajectory of objective physical function in persons with depressive and anxiety disorders.
Lever-van Milligen, Bianca A; Lamers, Femke; Smit, Jan H; Penninx, Brenda W J H
2017-02-01
Depression and anxiety have been related to poorer self-reported physical functioning over time; however, objective measures of physical function are less frequently examined. This study assessed the 6-year trajectory of hand-grip strength and lung function in persons with depressive and/or anxiety disorders. At four waves (baseline, 2, 4, and 6 years) hand-grip strength and lung function were assessed in 2,480 participants, aged 18-65 years, of the Netherlands Study of Depression and Anxiety. Linear mixed models were used to examine the association between baseline psychiatric status (current and remitted depression and anxiety, healthy controls) and physical function during 6-year follow-up, adjusted for sociodemographics, lifestyle, and health indicators. Although there were no differences in the rate of decline over time, women with current, but not remitted, depression and anxiety had poorer hand-grip strength (B = -1.34, P < .001) and poorer lung function (B = -11.91, P =.002) compared to healthy women during the entire 6-year follow-up. Associations with depression and anxiety severity measures confirmed dose-response relationships with objective physical function. In men, stronger 6-year decline of lung function was found in those with current disorders (current diagnosis-by-time: B = -11.72, P = .002) and even in those with remitted disorders (remitted diagnosis by time: B = -10.11, P = .04) compared to healthy men. Depression and anxiety are associated with consistently poorer hand-grip strength in women and poorer lung function in women and men over 6 years of time, implicating their long-lasting impact on physical functioning. © 2016 Wiley Periodicals, Inc.
Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability
Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung
2015-01-01
[Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost. PMID:26696703
Steele, James; Raubold, Kristin; Kemmler, Wolfgang; Fisher, James; Gentil, Paulo; Giessing, Jürgen
2017-01-01
The present study examined the progressive implementation of a high effort resistance training (RT) approach in older adults over 6 months and through a 6-month follow-up on strength, body composition, function, and wellbeing of older adults. Twenty-three older adults (aged 61 to 80 years) completed a 6-month supervised RT intervention applying progressive introduction of higher effort set end points. After completion of the intervention participants could choose to continue performing RT unsupervised until 6-month follow-up. Strength, body composition, function, and wellbeing all significantly improved over the intervention. Over the follow-up, body composition changes reverted to baseline values, strength was reduced though it remained significantly higher than baseline, and wellbeing outcomes were mostly maintained. Comparisons over the follow-up between those who did and those who did not continue with RT revealed no significant differences for changes in any outcome measure. Supervised RT employing progressive application of high effort set end points is well tolerated and effective in improving strength, body composition, function, and wellbeing in older adults. However, whether participants continued, or did not, with RT unsupervised at follow-up had no effect on outcomes perhaps due to reduced effort employed during unsupervised RT.
Intermuscular Fat: A Review of the Consequences and Causes
Marcus, Robin L.; LaStayo, Paul C.; Ryan, Alice S.
2014-01-01
Muscle's structural composition is an important factor underlying muscle strength and physical function in older adults. There is an increasing amount of research to support the clear disassociation between the loss of muscle lean tissue mass and strength with aging. This disassociation implies that factors in addition to lean muscle mass are responsible for the decreases in strength and function seen with aging. Intermuscular adipose tissue (IMAT) is a significant predictor of both muscle function and mobility function in older adults and across a wide variety of comorbid conditions such as stroke, spinal cord injury, diabetes, and COPD. IMAT is also implicated in metabolic dysfunction such as insulin resistance. The purpose of this narrative review is to provide a review of the implications of increased IMAT levels in metabolic, muscle, and mobility function. Potential treatment options to mitigate increasing levels of IMAT will also be discussed. PMID:24527032
Relation between functional mobility and dynapenia in institutionalized frail elderly.
Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes
2017-01-01
To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.
The fracture strength and frictional strength of Weber Sandstone
Byerlee, J.D.
1975-01-01
The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.
Bonjorno Junior, José Carlos; de Oliveira, Cláudio Ricardo; Luporini, Rafael Luís; Mendes, Renata Gonçalves; Zangrando, Katiany Thais Lopes; Trimer, Renata; Arena, Ross
2015-01-01
Impaired cardiorespiratory fitness (CRF) is a hallmark characteristic in obese and lean sedentary young women. Peak oxygen consumption (VO2peak) prediction from the six-minute step test (6MST) has not been established for sedentary females. It is recognized that lower-limb muscle strength and power play a key role during functional activities. The aim of this study was to investigate cardiorespiratory responses during the 6MST and CPX and to develop a predictive equation to estimate VO2peak in both lean and obese subjects. Additionally we aim to investigate how muscle function impacts functional performance. Lean (LN = 13) and obese (OB = 18) women, aged 20–45, underwent a CPX, two 6MSTs, and isokinetic and isometric knee extensor strength and power evaluations. Regression analysis assessed the ability to predict VO2peak from the 6MST, age and body mass index (BMI). CPX and 6MST main outcomes were compared between LN and OB and correlated with strength and power variables. CRF, functional capacity, and muscle strength and power were lower in the OB compared to LN (<0.05). During the 6MST, LN and OB reached ~90% of predicted maximal heart rate and ~80% of the VO2peak obtained during CPX. BMI, age and number of step cycles (NSC) explained 83% of the total variance in VO2peak. Moderate to strong correlations between VO2peak at CPX and VO2peak at 6MST (r = 0.86), VO2peak at CPX and NSC (r = 0.80), as well as between VO2peak, NSC and muscle strength and power variables were found (p<0.05). These findings indicate the 6MST, BMI and age accurately predict VO2peak in both lean and obese young sedentary women. Muscle strength and power were related to measures of aerobic and functional performance. PMID:26717568
ERIC Educational Resources Information Center
Grandjean, Julien; Collette, Fabienne
2011-01-01
One conception of inhibitory functioning suggests that the ability to successfully inhibit a predominant response depends mainly on the strength of that response, the general functioning of working memory processes, and the working memory demand of the task (Roberts, Hager, & Heron, 1994). The proposal that inhibition and functional working memory…
The effects of ageing on respiratory muscle function and performance in older adults.
Watsford, Mark L; Murphy, Aron J; Pine, Matthew J
2007-02-01
The reduced physiological capacity evident with ageing may affect the ability to perform many tasks, potentially affecting quality of life. Previous research has clearly demonstrated the reduced capacity of the respiratory system with ageing and described the effect that habitual physical activity has upon this decline. This research aimed to examine the influence of age on respiratory muscle (RM) function and the relationship between RM function and physical performance within the Australian population. Seventy-two healthy older adults (50-79 years) were divided into males (n=36) and females (n=36) and examined for pulmonary function, RM strength, inspiratory muscle endurance (IME) and 1.6 km walking performance. There were no significant age by gender effects for any variables; however, ageing was significantly related to reduced RM function and walking capacity within each gender. Furthermore, regression analysis showed that the RM strength could be predicted from age. Partial correlations controlling for age indicated that expiratory muscle strength was significantly related to walking performance in males (p=0.04), whilst IME contributed significantly to walking performance in all participants. These within-gender effects and relationships indicate that RM strength is an important physiological variable to maintain in the older population, as it may be related to functional ability.
The effects of strength and endurance training in patients with rheumatoid arthritis.
Strasser, Barbara; Leeb, Gunther; Strehblow, Christoph; Schobersberger, Wolfgang; Haber, Paul; Cauza, Edmund
2011-05-01
Patients with rheumatoid arthritis (RA) suffer from muscle loss, causing reduced muscle strength and endurance. The current study aimed to: (1) evaluate the effects of combined strength and endurance training (CT) on disease activity and functional ability in patients with RA and (2) investigate the benefits of a 6-month supervised CT program on muscle strength, cardio-respiratory fitness, and body composition of RA patients. Forty patients with RA, aged 41-73 years, were recruited for the current study. Twenty of these patients (19 females, one male) were randomly assigned to a 6-month supervised CT program; 20 patients (17 females, three males) served as controls. Within the CT program, strength training consisted of sets of weight bearing exercises for all major muscle groups. In addition to strength training, systematic endurance training was performed on a cycle ergometer two times per week. For RA patients involved in CT, disease activity (p = 0.06) and pain (p = 0.05) were reduced after the 6-month training period while general health (p = 0.04) and functional ability (p = 0.06) improved. Cardio-respiratory endurance was found to have improved significantly (by 10%) after 6 months of CT (p < 0.001). The overall strength of patients undertaking CT increased by an average of 14%. Lean body mass increased, and the percentage of body fat was found to decrease significantly (p < 0.05). A combination of strength and endurance training resulted in considerable improvements in RA patients' muscle strength and cardio-respiratory endurance, accompanied by positive changes in body composition and functional ability. Long-term training appears to be effective in reducing disease activity and associated pain and was found to have no deleterious effects.
Muscle strength in patients with acromegaly at diagnosis and during long-term follow-up.
Füchtbauer, Laila; Olsson, Daniel S; Bengtsson, Bengt-Åke; Norrman, Lise-Lott; Sunnerhagen, Katharina S; Johannsson, Gudmundur
2017-08-01
Patients with acromegaly have decreased body fat (BF) and increased extracellular water (ECW) and muscle mass. Although there is a lack of systematic studies on muscle function, it is believed that patients with acromegaly may suffer from proximal muscle weakness despite their increased muscle mass. We studied body composition and muscle function in untreated acromegaly and after biochemical remission. Prospective observational study. Patients with acromegaly underwent measurements of muscle strength (dynamometers) and body composition (four-compartment model) at diagnosis ( n = 48), 1 year after surgery ( n = 29) and after long-term follow-up (median 11 years) ( n = 24). Results were compared to healthy subjects. Untreated patients had increased body cell mass (113 ± 9% of predicted) and ECW (110 ± 20%) and decreased BF (67 ± 7.6%). At one-year follow-up, serum concentration of IGF-I was reduced and body composition had normalized. At baseline, isometric muscle strength in knee flexors and extensors was normal and concentric strength was modestly increased whereas grip strength and endurance was reduced. After one year, muscle strength was normal in both patients with still active disease and patients in remission. At long-term follow-up, all patients were in remission. Most muscle function tests remained normal, but isometric flexion and the fatigue index were increased to 153 ± 42% and 139 ± 28% of predicted values, respectively. Patients with untreated acromegaly had increased body cell mass and normal or modestly increased proximal muscle strength, whereas their grip strength was reduced. After biochemical improvement and remission, body composition was normalized, hand grip strength was increased, whereas proximal muscle fatigue increased. © 2017 European Society of Endocrinology.
Dulac, Maude; Boutros, Guy El Hajj; Pion, Charlotte; Barbat-Artigas, Sébastien; Gouspillou, Gilles; Aubertin-Leheudre, Mylène
2016-01-01
ABSTRACT Objective To investigate whether handgrip strength normalized to body weight could be a useful clinical tool to identify dynapenia and assess functional capacity in post-menopausal women. Method A total of 136 postmenopausal women were recruited. Body composition (Dual Energy X-ray Absorptiometry [DEXA], Bio-electrical Impedence Analysis [BIA]), grip strength (dynamometer) and functional capacity (senior fitness tests) were evaluated. Dynapenia was established according to a handgrip strength index (handgrip strength divided by body weight (BW) in Kg/KgBW) obtained from a reference population of young women: Type I dynapenic (<0.44 kg/KgBW) and type II dynapenic (<0.35 kg/KgBW). Results The results show a positive correlation between handgrip strength index (in kg/KgBW) and alternate-step test (r=0.30, p<0.001), chair-stand test (r=0.25, p<0.005) and one-leg stance test (r=0.335, p<0.001). The results also showed a significant difference in non-dynapenic compared to type I dynapenic and type II dynapenic for the chair-stand test (Non-dynapenic: 12.0±3.0; Type I: 11.7±2.5; Type II: 10.3±3.0) (p=0.037 and p=0.005, respectively) and the one-leg stance test (Non-dynapenic: 54.2±14.2; Type I: 43.8±21.4; Type II: 35.0±21.8) (p=0.030 and p=0.004, respectively). Finally, a significant difference was observed between type II dynapenic and non-dynapenic for the chair-stand test (p=0.032), but not with type I dynapenic. Conclusion The results showed that handgrip strength was positively correlated with functional capacity. In addition, non-dynapenic women displayed a better functional status when compared to type I and type II dynapenic women. Thus, the determination of the handgrip strength thresholds could be an accessible and affordable clinical tool to identify people at risk of autonomy loss. PMID:27683834
Hurd, Wendy J.; Axe, Michael J.; Snyder-Mackler, Lynn
2010-01-01
Objectives To clarify the determinants of dynamic knee stability early after anterior cruciate ligament (ACL) injury. Materials and Methods 345 consecutive patients who were regular participants in IKDC level I/II sports before injury and had an acute isolated ACL injury from the practice of a single orthopaedic surgeon underwent a screening examination including clinical measures, knee laxity, quadriceps strength, hop testing, and patient self-reported knee function an average of 6 weeks after injury when impairments were resolved. Independent t-tests were performed to evaluate differences in quadriceps strength and anterior knee laxity between potential copers and noncopers. Hierarchical regression was performed to determine the influence of quadriceps strength, pre-injury activity level, and anterior knee laxity on hop test performance, as well as the influence of timed hop, cross-over hop, quadriceps strength, pre-injury activity level, and anterior knee laxity on self-assessed global function. Results Neither anterior knee laxity nor quadriceps strength differed between potential copers and non-copers. Quadriceps strength influenced hop test performance more significantly than pre-injury activity level or anterior knee laxity, but the variance accounted for by quadriceps strength was low (Range: 4-8%). Timed hop performance was the only variable that impacted self-assessed global function. Conclusions Traditional surgical decision making based on passive anterior knee laxity and pre-injury activity level is not supported by the results, as neither are good predictors of dynamic knee stability. Clinical tests that capture neuromuscular adaptations, including the timed hop test, may be useful in predicting function and guiding individualized patient management after ACL injury. PMID:17932399
Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F
2016-03-03
It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.
Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M
2007-01-01
Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.
Depressive symptoms, handgrip strength, and weight status in US older adults.
Smith, Lee; White, Stephanie; Stubbs, Brendon; Hu, Liang; Veronese, Nicola; Vancampfort, Davy; Hamer, Mark; Gardner, Benjamin; Yang, Lin
2018-06-05
Handgrip strength is a valid indicator of broader physical functioning. Handgrip strength and weight status have been independently associated with depressive symptoms in older adults, but no study has yet investigated the relationships between all three in older US adults. This study investigated the relationship between physical function and depressive symptoms by weight status in older US adults. Cross-sectional data were analysed from the National Health and Nutrition Examination Survey waves 2011 to 2012 and 2013 to 2014. Physical function was assessed using a grip strength dynamometer. Depressive symptoms were assessed using the self-reported Patient Health Questionnaire-9. Weight status was assessed using Body Mass Index (BMI) and participants were categorised as normal weight (< 25 kg/m 2 ), overweight (25 to < 30 kg/m 2 ), and obese (≥ 30.0 kg/m 2 ). Associations between depressive symptoms and hand grip strength were estimated by gender-specific multiple linear regressions and BMI stratified multivariable linear regression. A total of 2,812 adults (54% female, mean age 69.2 years, mean BMI 29.2 kg/m 2 ) were included. Women with moderate to severe depressive symptoms had 1.60 kg (95% CI: 0.91 to 2.30) lower hand grip strength compared to women with minimal or no depressive symptoms. No such association was observed in men. Among those with obesity, men (-3.72 kg, 95% CI: -7.00 to -0.43) and women (-1.83 kg, 95% CI: -2.87 to -0.78) with moderate to severe depressive symptoms both had lower handgrip strength. Among older US adults, women and people who are obese and depressed are at the greatest risk of decline in physical function. Copyright © 2018 Elsevier B.V. All rights reserved.
Eraslan, Leyla; Yuce, Deniz; Erbilici, Arzu; Baltaci, Gul
2018-03-01
This study aimed to compare the short-term effects of kinesiotaping and extracorporeal shock wave therapy (ESWT) along with physiotherapy on pain, functionality, and grip strength in patients with newly diagnosed lateral epicondylitis undergoing rehabilitation. Forty-five voluntary patients (mean age 48 years) were randomly assigned to three groups. Patients in all groups received physiotherapy consisting of a cold pack and transcutaneous electrical nerve stimulation five times per week for a total of 15 sessions and a home exercise programme including stretching and eccentric strength exercises. In the second group, patients received kinesiotaping 5 days a week for 3 weeks. In the third group, ESWT was applied three times for 3 weeks. Patients were assessed by visual analogue scale for pain intensity, pain-free grip strength using a hand dynamometer, Cyriax Resisted Muscle Test, and Patient-Rated Tennis Elbow Evaluation Scale. All measurements were collected at baseline and after treatment. There were no significant differences in the demographic characteristics of the patients in all groups at baseline. Intra-group analysis revealed that pain intensity decreased, whereas maximum grip strength and functionality increased in all groups at the end of the treatment (p < 0.05). Inter-group analysis revealed that the kinesiotaping group yielded better results in decreasing pain intensity than the other groups (p < 0.05). The kinesiotaping group (p < 0.001) and ESWT group (p = 0.002) yielded better results in improving functionality than the physiotherapy group. There were significant differences in recovering pain-free grip strength in the kinesiotaping group (p < 0.05). Kinesiotaping was found to be effective for decreasing pain intensity, recovering grip strength, and improving functionality in patients with lateral epicondylitis undergoing rehabilitation. Therapeutic study, Level II.
Anaerobic power and physical function in strength-trained and non-strength-trained older adults.
Slade, Jill M; Miszko, Tanya A; Laity, Jennifer H; Agrawal, Subodoh K; Cress, M Elaine
2002-03-01
Challenging daily tasks, such as transferring heavy items or rising from the floor, may be dependent on the ability to generate short bursts of energy anaerobically. The purposes of this study were to determine if strength-trained (ST) older adults have higher anaerobic power output compared with non-strength-trained (NST) older adults and to determine the relationship between anaerobic power and performance-based physical function. Thirty-five men and women (age 71.5 +/- 6.4 years, mean +/- SD; NST: n = 18, ST: n = 17) were grouped by training status. Outcome variables included relative anaerobic power (Wingate test), physical function measured with the Continuous Scale Physical Functional Performance Test (CS-PFP, scaled 0 to 100), and anthropometric lean thigh volume (LTV). Analysis of covariance (with age and sex as covariates) was used to determine group differences in the dependent variables listed above. Pearson's r was used to determine the relationship between anaerobic power, CS-PFP total score (TOT), and CS-PFP lower body strength domain score (LBS). The ST group had significantly higher mean anaerobic power (NST 58.9 +/- 16 W/l, ST 96.3 +/- 23 W/l), CS-PFP total (NST 61.2 +/- 13, ST 73.7 +/- 8), and LBS (NST 54.1 +/- 17, ST 70.9 +/- 8) compared with the NST group (p <.05). However, LTV was similar for both groups (NST 3.323 +/- 0.75; ST 3.179 +/- 0.79), which suggests that the ST group had higher muscle quality compared with the NST group. Anaerobic power was significantly related to TOT (r =.611, p =.001) and LBS (r =.650, p =.001). High levels of physical function in ST older adults may in part be explained by higher levels of anaerobic power associated with strength training.
THE EFFECTS OF VARIED TENSIONS OF KINESIOLOGY TAPING ON QUADRICEPS STRENGTH AND LOWER LIMB FUNCTION
Franco, Yuri Rafael dos Santos; Nannini, Stella Bispo; Nakaoka, Gustavo Bezerra; dos Reis, Amir Curcio; Bryk, Flavio Fernandes
2017-01-01
Background Kinesiology Taping (KT) may promote changes in muscle strength and motor performance, topics of great interest in the sports-medicine sciences. These characteristics are purported to be associated with the tension generated by the KT on the skin. However, the most suitable tension for the attainment of these strength and performance effects has not yet been confirmed. Hypothesis/Purpose The purpose of the present study was to analyze the effects of different tensions of KT on the isometric contraction of the quadriceps and lower limb function of healthy individuals over a period of seven days. Study Design Blind, randomized, clinical trial. Methods One hundred and thirty healthy individuals were distributed into the following five groups: control (without KT); KT0 (KT without tension); KT50; KT75 and KT100 (approximately 50%, 75% and 100% tension applied to the tape, respectively). Assessments of isometric quadriceps strength were conducted using a hand held dynamometer. Lower limb function was assessed through Single Hop Test for Distance, with five measurement periods: baseline; immediately after KT application; three days after KT; five days after KT; and 72h after KT removal (follow-up). Results There were no statistically significant differences (p > 0.05) at any of the studied periods on participants’ quadriceps strength nor in the function of the lower dominant limb, based on comparisons between the control group and the experimental groups. Conclusion KT applied with different tensions did not produce modulations, in short or long-term, on quadriceps’ strength or lower limb function of healthy individuals. Therefore, this type of KT application, when seeking these objectives, should be reconsidered. Level of Evidence 1b PMID:28217419
Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang
2017-09-01
Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2 = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2 = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2 = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.
Skrypnik, Damian; Ratajczak, Marzena; Karolkiewicz, Joanna; Mądry, Edyta; Pupek-Musialik, Danuta; Hansdorfer-Korzon, Rita; Walkowiak, Jarosław; Jakubowski, Hieronim; Bogdański, Paweł
2016-05-01
Obesity is a risk factor of nonalcoholic fatty liver disease. Although the standard therapy for obesity involves physical exercise, well-planned studies of the changes in liver function in response to different exercise intensities in obese subjects are scarce. The aim of the present study was to examine a question of how does exercise mode affect the liver function. 44 women with abdominal obesity were randomized into two exercise groups: endurance (group A) and endurance-strength (group B). Women in each group exercised for 60min 3 times/week for a 3-month period. Markers of liver function: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltranspeptidase (GGT), alkaline phosphatase (ALP) activities, and bilirubin levels were quantified. We found significant differences in ALT (p<0.01) and AST (p<0.05) activities between group A and B after training exercise. Blood ALT and AST tended to decrease in group B, increase in group A. Significant reduction in serum GGT level after exercise in both groups was observed (p<0.001, group A; p<0.01, group B). Neither endurance nor endurance-strength exercise led to changes in serum ALP activity and total or direct bilirubin level. However, endurance-strength training resulted in significant decreases in serum indirect bilirubin (p<0.05). Strong positive correlations between serum indirect bilirubin and body mass (r=0.615; p=0.0085) and BMI (r=0.576; p=0.0154) were found after endurance-strength exercise (group B). The mode of exercise does matter: endurance-strength exercise led to a greater improvement, compared to endurance exercise, in the liver function in women with abdominal obesity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Grenier, Marie-Lyne; Mendonca, Rochelle; Dalley, Peter
2016-01-01
The study was a retrospective cohort analysis for a 19-month period from May 2013 to December 2014. Although the use of orthoses has long been a staple of conservative treatment measures for individuals with osteoarthritis of the thumb carpometacarpal (CMC) joint, there remains little evidence exploring its effectiveness in improving functional outcomes for this client population. The purpose of this study was to assess the effectiveness of 3 frequently used orthoses in improving the functional pinch strength of adults with a diagnosis of thumb CMC joint osteoarthritis. A retrospective cohort analysis was conducted to determine whether pinch strength improved after orthotic fabrication, and fitting in patients referred to a hand therapy clinic. Patients who received a Colditz design orthosis had a mean increase of 2.64 lb with regard to functional pinch strength after orthotic fabrication and fitting. Patients who received a Comfort Cool orthosis (North Coast Medical, Morgan Hill, CA) had a mean increase of 2.47 lb, whereas patients who received a Thumb Spica orthosis had a mean increase of 3.25 lb. There was no evidence of any statistically significant difference in the average improvements in pinch strength between the Colditz design orthosis and the Comfort Cool orthosis. Results from this study demonstrate that orthosis wear consistently increases the functional pinch strength of individuals with thumb CMC joint osteoarthritis. Large-scale multisite research studies comparing various orthotic designs are necessary to help therapists determine best practice interventions for the conservative management of thumb CMC joint osteoarthritis. 2(c). Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Sugiura, Yumiko; Tsuda, Yuko; Kimura, Motoshi; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi
2012-01-01
This study aimed to determine the association between sarcopenia, defined by muscle mass, muscle strength, and physical performance, and higher-level functional capacity in community-dwelling Japanese elderly people. Subjects were 1158 elderly, community-dwelling Japanese people aged 65 or older. We used bioelectrical impedance analysis to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance. Sarcopenia was characterized by low muscle mass, plus low muscle strength or low physical performance. Subjects without low muscle mass, low muscle strength, and low physical performance were classified as "normal." Examination of higher-level functional capacity was performed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC). The TMIG-IC is a 13-item questionnaire completed by the subject; it contains five questions on self-maintenance and four questions each on intellectual activity and social role. Sarcopenia was identified in 11.3% and 10.7% of men and women, respectively. The percentage of disability for instrumental activities of daily living (IADL) was 39.0% in men with sarcopenia and 30.6% in women with sarcopenia. After adjustment for age, in men, sarcopenia was significantly associated with IADL disability compared with intermediate and normal subjects. In women, sarcopenia was significantly associated with every subscale of the TMIG-IC disability compared with intermediate and normal subjects. This study revealed that sarcopenia, defined by muscle mass, muscle strength, and physical performance, had a significant association with disability in higher-level functional capacity in elderly Japanese subjects. Interventions to prevent sarcopenia may prevent higher-level functional disability among elderly people. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Modeling the Residual Strength of a Fibrous Composite Using the Residual Daniels Function
NASA Astrophysics Data System (ADS)
Paramonov, Yu.; Cimanis, V.; Varickis, S.; Kleinhofs, M.
2016-09-01
The concept of a residual Daniels function (RDF) is introduced. Together with the concept of Daniels sequence, the RDF is used for estimating the residual (after some preliminary fatigue loading) static strength of a unidirectional fibrous composite (UFC) and its S-N curve on the bases of test data. Usually, the residual strength is analyzed on the basis of a known S-N curve. In our work, an inverse approach is used: the S-N curve is derived from an analysis of the residual strength. This approach gives a good qualitive description of the process of decreasing residual strength and explanes the existence of the fatigue limit. The estimates of parameters of the corresponding regression model can be interpreted as estimates of parameters of the local strength of components of the UFC. In order to approach the quantitative experimental estimates of the fatigue life, some ideas based on the mathematics of the semiMarkovian process are employed. Satisfactory results in processing experimental data on the fatigue life and residual strength of glass/epoxy laminates are obtained.
Ploegmakers, Joris; The, Bertram; Wang, Allan; Brutty, Mike; Ackland, Tim
2015-10-01
Forearm rotation is a key function in the upper extremity. Following distal radius fracture, residual disability may occur in tasks requiring forearm rotation. The objectives of this study are to define pronation and supination strength profiles tested through the range of forearm rotation in normal individuals, and to evaluate the rotational strength profiles and rotational strength deficits across the testing range in a cohort of patients treated for distal radius fracture associated with an ulnar styloid base fracture. In a normative cohort of 29 subjects the supination strength profile showed an increasing linear relationship from supination to pronation. Twelve subjects were evaluated 2-4 years after anatomical open reduction and volar plate fixation of a distal radius fracture. The injured wrist was consistently weaker (corrected for hand dominance) in both supination and pronation strength in all testing positions, with the greatest loss in 60 degrees supination. Mean supination strength loss across all testing positions was significantly correlated with worse PRWE scores, highlighting the importance of supination in wrist function.
Functional changes through the usage of 3D-printed transitional prostheses in children.
Zuniga, Jorge M; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Than, Nicholas A; Stergiou, Nicholas
2017-11-08
There is limited knowledge on the use of 3 D-printed transitional prostheses, as they relate to changes in function and strength. Therefore, the purpose of this study was to identify functional and strength changes after usage of 3 D-printed transitional prostheses for multiple weeks for children with upper-limb differences. Gross manual dexterity was assessed using the Box and Block Test and wrist strength was measured using a dynamometer. This testing was conducted before and after a period of 24 ± 2.61 weeks of using a 3 D-printed transitional prosthesis. The 11 children (five girls and six boys; 3-15 years of age) who participated in the study, were fitted with a 3 D-printed transitional partial hand (n = 9) or an arm (n = 2) prosthesis. Separate two-way repeated measures ANOVAs were performed to analyze function and strength data. There was a significant hand by time interaction for function, but not for strength. Conclusion and relevance to the study of disability and rehabilitation: The increase in manual gross dexterity suggests that the Cyborg Beast 2 3 D-printed prosthesis can be used as a transitional device to improve function in children with traumatic or congenital upper-limb differences. Implications for Rehabilitation Children's prosthetic needs are complex due to their small size, rapid growth, and psychosocial development. Advancements in computer-aided design and additive manufacturing offer the possibility of designing and printing transitional prostheses at a very low cost, but there is limited knowledge on the function of this type of devices. The use of 3D printed transitional prostheses may improve manual gross dexterity in children after several weeks of using it.
Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner
2007-05-01
The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p < 0.001). This difference was not present after executing the 6 weeks exercise sessions (p > 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p < 0.001) and from 3.10 +/- 2.16 to 2.19 +/- 0.98 degrees for 20 degrees of inversion angle (p < 0.05) following the isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p < 0.001). Following the isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p < 0.01 for OLHD and CSMHT, p < 0.001 for SLHC, TLHD, and SMHT). These results substantiate the deficits of strength, proprioception, balance and functionality in recreational athletes with FAI. The isokinetic exercise program used in this study had a positive effect on these parameters.
Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I
2011-08-01
Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.
Decrease in pulmonary function and oxygenation after lung resection
Westerdahl, Elisabeth; Langer, Daniel; Souza, Domingos S.R.; Andreasen, Jan Jesper
2018-01-01
Respiratory deficits are common following curative intent lung cancer surgery and may reduce the patient's ability to be physically active. We evaluated the influence of surgery on pulmonary function, respiratory muscle strength and physical performance after lung resection. Pulmonary function, respiratory muscle strength (maximal inspiratory/expiratory pressure) and 6-min walk test (6MWT) were assessed pre-operatively, 2 weeks post-operatively and 6 months post-operatively in 80 patients (age 68±9 years). Video-assisted thoracoscopic surgery was performed in 58% of cases. Two weeks post-operatively, we found a significant decline in pulmonary function (forced vital capacity −0.6±0.6 L and forced expiratory volume in 1 s −0.43±0.4 L; both p<0.0001), 6MWT (−37.6±74.8 m; p<0.0001) and oxygenation (−2.9±4.7 units; p<0.001), while maximal inspiratory and maximal expiratory pressure were unaffected. At 6 months post-operatively, pulmonary function and oxygenation remained significantly decreased (p<0.001), whereas 6MWT was recovered. We conclude that lung resection has a significant short- and long-term impact on pulmonary function and oxygenation, but not on respiratory muscle strength. Future research should focus on mechanisms negatively influencing post-operative pulmonary function other than impaired respiratory muscle strength. PMID:29362707
Decrease in pulmonary function and oxygenation after lung resection.
Brocki, Barbara Cristina; Westerdahl, Elisabeth; Langer, Daniel; Souza, Domingos S R; Andreasen, Jan Jesper
2018-01-01
Respiratory deficits are common following curative intent lung cancer surgery and may reduce the patient's ability to be physically active. We evaluated the influence of surgery on pulmonary function, respiratory muscle strength and physical performance after lung resection. Pulmonary function, respiratory muscle strength (maximal inspiratory/expiratory pressure) and 6-min walk test (6MWT) were assessed pre-operatively, 2 weeks post-operatively and 6 months post-operatively in 80 patients (age 68±9 years). Video-assisted thoracoscopic surgery was performed in 58% of cases. Two weeks post-operatively, we found a significant decline in pulmonary function (forced vital capacity -0.6±0.6 L and forced expiratory volume in 1 s -0.43±0.4 L; both p<0.0001), 6MWT (-37.6±74.8 m; p<0.0001) and oxygenation (-2.9±4.7 units; p<0.001), while maximal inspiratory and maximal expiratory pressure were unaffected. At 6 months post-operatively, pulmonary function and oxygenation remained significantly decreased (p<0.001), whereas 6MWT was recovered. We conclude that lung resection has a significant short- and long-term impact on pulmonary function and oxygenation, but not on respiratory muscle strength. Future research should focus on mechanisms negatively influencing post-operative pulmonary function other than impaired respiratory muscle strength.
Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.
Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H
2004-12-01
To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.
Strength training for a child with suspected developmental coordination disorder.
Menz, Stacy M; Hatten, Kristin; Grant-Beuttler, Marybeth
2013-01-01
Children with developmental coordination disorder (DCD) demonstrate difficulty with feedforward motor control and use varied compensatory strategies. To examine gross motor function changes following strength training in a child with motor control difficulties. A girl aged 6 years 11 months, with apraxia and hypotonia, and demonstrating motor delays consistent with DCD. Twenty-four strength training sessions were completed using a universal exercise unit. Postintervention scores significantly improved on the Bruininks-Oseretsky test of motor proficiency, second edition, and the Canadian occupational performance measure scores and raised the developmental coordination disorder questionnaire, revised 2007, scores above the range where DCD is suspected. Nonsignificant changes in strength were observed. Improved function and significant gains in manual coordination were observed following blocked practice of isolated, simple joint movements during strength training. Improved motor skills may be because of effective use of feedforward control and improved stabilization. Strength training does not rehearse skills using momentum, explaining nonsignificant changes in locomotor or locomotion areas.
Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength
ERIC Educational Resources Information Center
Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan
2010-01-01
The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…
47 CFR 73.184 - Groundwave field strength graphs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... function of groundwave conductivity and distance from the source of radiation. The groundwave field... Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere,” Part II, by Mr. K.A... relative values of groundwave field strength over a plane earth as a function of the numerical distance p...
Relationship between lung function and grip strength in older hospitalized patients: a pilot study
Holmes, Sarah J; Allen, Stephen C; Roberts, Helen C
2017-01-01
Objective Older people with reduced respiratory muscle strength may be misclassified as having COPD on the basis of spirometric results. We aimed to evaluate the relationship between lung function and grip strength in older hospitalized patients without known airways disease. Methods Patients in acute medical wards were recruited who were aged ≥70 years; no history, symptoms, or signs of respiratory disease; Mini Mental State Examination ≥24; willing and able to consent to participate; and able to perform hand grip and forced spirometry. Data including lung function (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], FEV1/FVC, peak expiratory flow rate [PEFR], and slow vital capacity [SVC]), grip strength, age, weight, and height were recorded. Data were analyzed using descriptive statistics and linear regression unadjusted and adjusted (for age, height, and weight). Results A total of 50 patients (20 men) were recruited. Stronger grip strength in men was significantly associated with greater FEV1, but this was attenuated by adjustment for age, height, and weight. Significant positive associations were found in women between grip strength and both PEFR and SVC, both of which remained robust to adjustment. Conclusion The association between grip strength and PEFR and SVC may reflect stronger patients generating higher intrathoracic pressure at the start of spirometry and pushing harder against thoracic cage recoil at end-expiration. Conversely, patients with weaker grip strength had lower PEFR and SVC. These patients may be misclassified as having COPD on the basis of spirometric results. PMID:28458532
Effects of smartphone overuse on hand function, pinch strength, and the median nerve.
İnal, Esra Erkol; Demİrcİ, kadİr; Çetİntürk, Azİze; Akgönül, Mehmet; Savaş, Serpİl
2015-08-01
In this study we investigated the flexor pollicis longus (FPL) tendon and median nerve in smartphone users by ultrasonography to assess the effects of smartphone addiction on the clinical and functional status of the hands. One hundred two students were divided into 3 groups: non-users, and high or low smartphone users. Smartphone Addiction Scale (SAS) scores and grip and pinch strengths were recorded. Pain in thumb movement and rest and hand function were evaluated on the visual analog scale (VAS) and the Duruöz Hand Index (DHI), respectively. The cross-sectional areas (CSAs) of the median nerve and the FPL tendon were calculated bilaterally using ultrasonography. Significantly higher median nerve CSAs were observed in the dominant hands of the high smartphone users than in the non-dominant hands (P<0.001). SAS scores correlated with VAS pain for movement and rest, DHI scores, and pinch strength (P<0.05; r=0.345, 0.272, 0.245, and 0.281, respectively). Smartphone overuse enlarges the median nerve, causes pain in the thumb, and decreases pinch strength and hand functions. © 2015 Wiley Periodicals, Inc.
Zarebska, Aleksandra; Ahmetov, Ildus I; Sawczyn, Stanislaw; Weiner, Alexandra S; Kaczmarczyk, Mariusz; Ficek, Krzysztof; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Leonska-Duniec, Agata; Klocek, Tomasz; Voronina, Elena N; Boyarskikh, Uljana A; Filipenko, Maksim L; Cieszczyk, Pawel
2014-01-01
It has been suggested that DNA hypomethylation because of poorer effectiveness of the 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme induces muscular growth. We hypothesised that the common, functional 1298A>C polymorphism in the MTHFR gene is associated with athletic status. To test this hypothesis, we investigated the distribution of the 1298A>C variant in Polish (n = 302) and Russian (n = 842) athletes divided into four groups: endurance, strength-endurance, sprint-strength and strength-endurance, as well as in 1540 control participants. We found different genotypes (the AC heterozygote advantage) and allele distributions among sprint-strength athletes and strength athletes than the groups of sedentary controls for each nationality. In the combined study, the allelic frequencies for the 1298C variant were 35.6% in sprint-strength athletes (OR 1.18 [1.02-1.36], P = 0.024 vs. controls) and 38.6% in strength athletes (OR 1.34 [1.10-1.64], P = 0.003 vs. controls). The results of the initial and repetition studies as well as the combined analysis suggest that the functional 1298A>C polymorphism in the MTHFR gene is associated with athletic status. The presence of the C allele seems to be beneficial in sprint-strength and strength athletes. It needs to be established whether and to what extent this effect is mediated by alteration in DNA methylation status.
Di Monaco, Marco; Castiglioni, Carlotta; De Toma, Elena; Gardin, Luisa; Giordano, Silvia; Tappero, Rosa
2015-02-01
The objective of this study was to investigate the contribution of handgrip strength in predicting the functional outcome after hip fracture in women.We prospectively investigated white women (N = 193 of 207) who were consecutively admitted to a rehabilitation hospital after a hip fracture. We measured handgrip strength with a Jamar dynamometer (Lafayette Instrument Co, Lafayette, IN), on admission to rehabilitation. Ability to function in activities of daily living was assessed by the Barthel index both on discharge from rehabilitation and at a 6-month follow-up.We found significant correlations between handgrip strength measured before rehabilitation and Barthel index scores assessed both on discharge from rehabilitation (ρ = 0.52, P < 0.001) and after 6 months (ρ = 0.49, P < 0.001). Significant associations between handgrip strength and Barthel index scores persisted after adjustment for age, comorbidities, pressure ulcers, medications in use, concomitant infections, body mass index, hip-fracture type, and Barthel index scores assessed both preinjury and on admission to rehabilitation (P = 0.001). Further adjustments for both Barthel index scores and Timed Up-and-Go test assessed at rehabilitation ending did not erase the significant association between handgrip strength and the Barthel index scores at the 6-month evaluation (P = 0.007). To define successful rehabilitation, we categorized the Barthel index scores as either high (85 or higher) or low (<85). The adjusted odds ratio for 1 SD increase in grip strength was 1.73 (95% confidence interval [CI] 1.05-2.84, P = 0.032) for having a high Barthel index score at the end of inpatient rehabilitation and 2.24 (95% CI 1.06-5.18) for having a high Barthel index score at the 6-month follow-up.Handgrip strength assessed before rehabilitation independently predicted the functional outcome both after inpatient rehabilitation and at a 6-month follow-up in hip-fracture women.
Neves, Lucas M; Fortaleza, Ana C; Rossi, Fabrício E; Diniz, Tiego A; Codogno, Jamile S; Gobbo, Luis A; Gobbi, Sebastião; Freitas, Ismael F
2017-04-01
This randomized clinical trial with concealed allocations, and blinding of the assessors and the data analyst, was aimed at determining the effects of 16 weeks of functional training on the body composition, functional fitness and lipid profiles in postmenopausal women. The study began with 64 subjects (N.=32 functional training and N.=32 control group) and ended with 50 subjects (N.=28 functional training and N.=22 control group). The exercise was conducted in circuit training format with 8 stations related to the development of muscular strength (using elastic bands for resistance) plus 3 stations focused on balance, coordination, and agility. The training session also incorporated an 18 to 30 minute walk. The control group did not participate in the exercise programs during the period of study. The participants were evaluated before and after the training period as regards their body composition (fat and lean mass), functional fitness, abdominal strength and blood chemistry variables. Significant reductions were observed in all body composition variables related to fat (FM= -3.4 and Android FM= -7.7%) (P<0.05). The functional fitness components had significant improvements in coordination (-33.3%), strength (66.5%), agility (-19.5%) and aerobic capacity (-7%), and significant improvement in abdominal strength (188.2%). We observed significant improvements in total cholesterol (-4.4%) and HDL (-9.9%). The observed data lead us to conclude that functional training utilizing with elastic bands and unstable bases causes significantly improved in body composition, functional fitness and lipid profiles.
Yoon, Dong Hyun; Kang, Dongheon; Kim, Hee-Jae; Kim, Jin-Soo; Song, Han Sol; Song, Wook
2017-05-01
The effectiveness of resistance training in improving cognitive function in older adults is well demonstrated. In particular, unconventional high-speed resistance training can improve muscle power development. In the present study, the effectiveness of 12 weeks of elastic band-based high-speed power training (HSPT) was examined. Participants were randomly assigned into a HSPT group (n = 14, age 75.0 ± 0.9 years), a low-speed strength training (LSST) group (n = 9, age 76.0 ± 1.3 years) and a control group (CON; n = 7, age 78.0 ± 1.0 years). A 1-h exercise program was provided twice a week for 12 weeks for the HSPT and LSST groups, and balance and tone exercises were carried out by the CON group. Significant increases in levels of cognitive function, physical function, and muscle strength were observed in both the HSPT and LSST groups. In cognitive function, significant improvements in the Mini-Mental State Examination and Montreal Cognitive Assessment were seen in both the HSPT and LSST groups compared with the CON group. In physical functions, Short Physical Performance Battery scores were increased significantly in the HSPT and LSST groups compared with the CON group. In the 12 weeks of elastic band-based training, the HSPT group showed greater improvements in older women with mild cognitive impairment than the LSST group, although both regimens were effective in improving cognitive function, physical function and muscle strength. We conclude that elastic band-based HSPT, as compared with LSST, is more efficient in helping older women with mild cognitive impairment to improve cognitive function, physical performance and muscle strength. Geriatr Gerontol Int 2017; 17: 765-772. © 2016 Japan Geriatrics Society.
Moura, Bruno Monteiro de; Sakugawa, Raphael Luiz; Orssatto, Lucas Bet da Rosa; de Lima, Luis Antonio Pereira; Pinto, Ronei Silveira; Walker, Simon; Diefenthaeler, Fernando
2017-12-06
While it is accepted that resistance training can improve functional capacity in older individuals, the neuromuscular source of this improvement has yet to be identified. This study investigated the link between improved neuromuscular performance and functional capacity after a 12-week resistance training period in untrained healthy older individuals. Fifteen older men and women (60-71 years) adhered to a 4-week control period, followed by 12 weeks of non-linear resistance training for the lower limbs. Maximum dynamic leg press strength (1-RM), maximum isometric knee extension torque and rate of torque development (RTD) were evaluated at - 4, 0, 4, 8, and 12 weeks, and muscle activity was assessed at 0, 4, 8, and 12 weeks. Functional capacity tests (chair rise, stair ascent and descent, and timed up and go) were performed at - 4, 0, and 12 weeks. No changes occurred during the control period, but the group increased their 1-RM strength (from 142 ± 53 to 198 ± 43 kg, p = 0.001), which was accompanied by an increase in vastus lateralis activation (p = 0.008) during the intervention. Increase was observed at all RTD time intervals at week 8 (p < 0.05). Significant improvements in all the functional capacity tests were observed at week 12 (p < 0.05). Despite the expected increase in strength, RTD, muscle activity, and functional capacity, there was no significant relationship between the changes in neuromuscular performance and functional capacity. While resistance training elicits various positive improvements in healthy older individuals, actual strength gain did not influence the gain in functional capacity. The present study highlights the exact cause that improved the functional capabilities during resistance training are currently unknown.
Incisor crown bending strength correlates with diet and incisor curvature in anthropoid primates.
Deane, Andrew S
2015-02-01
Anthropoid incisors are large relative to the postcanine dentition and function in the preprocessing of food items. Previous analyses of anthropoid incisor allometry and shape demonstrate that incisor morphology is correlated with preferred foods and that more frugivorous anthropoids have larger and more curved incisors. Although the relationship between incisal crown curvature and preferred foods has been well documented in extant and fossil anthropoids, the functional significance of curvature variation has yet to be conclusively established. Given that an increase in crown curvature will increase maximum linear crown dimensions, and bending resistance is a function of linear crown dimensions, it is hypothesized that incisor crown curvature functons to increase incisor crown resistance to bending forces. This study uses beam theory to calculate the mesiodistal and labiolingual bending strengths of the maxillary and mandibular incisors of hominoid and platyrrhine taxa with differing diets and variable degrees of incisal curvature. Results indicate that bending strength correlates with incisal curvature and that frugivores have elevated incisor bending resistance relative to folivores. Maxillary central incisor bending strengths further discriminate platyrrhine and hominoid hard- and soft-object frugivores suggesting this crown is subjected to elevated occlusal loading relative to other incisors. These results are consistent with the hypothesis that incisor crown curvature functions to increase incisor crown resistance to bending forces but does not preclude the possibility that incisor bending strength is a composite function of multiple dentognathic variables including, but not limited to, incisor crown curvature. © 2014 Wiley Periodicals, Inc.
Bernard, Charlotte; Dabis, François; de Rekeneire, Nathalie
2017-05-01
To present the current knowledge on physical function, grip strength and frailty in HIV-infected patients living in sub-Saharan Africa, where the phenomenon is largely underestimated. A systematic search was conducted on MEDLINE, Scopus and African Index Medicus. We reviewed articles on sub-Saharan African people living with HIV (PLHIV) >18 years old, published until November 2016. Of 537 articles, 12 were conducted in six African countries and included in this review. Five articles reported information on functional limitation and one on disability. Two of these five articles reported functional limitation (low gait speed) in PLHIV. Disability was observed in 27% and 3% of PLHIV living in rural and urban places, respectively. Two of three studies reporting grip strength reported lower grip strength (nearly 4 kg) in PLHIV in comparison with uninfected patients. One study reported that PLHIV were more likely to be frail than HIV-uninfected individuals (19.4% vs. 13.3%), whereas another reported no statistical difference. Decline in physical function, grip strength and frailty are now part of the burden of PLHIV living in SSA countries, but current data are insufficient to characterise the real public health dimension of these impairments. Further studies are needed to depict this major public health challenge. As this is likely to contribute to a significant burden on the African healthcare systems and human resources in the near future, a holistic care approach should be developed to inform guidelines. © 2017 John Wiley & Sons Ltd.
Functional studies in 79-year-olds. II. Upper extremity function.
Lundgren-Lindquist, B; Sperling, L
1983-01-01
As part of the Gerontological and Geriatric Population Study of 79-year-old people in Göteborg, a representative subsample comprising 112 women and 93 men took part in a study of upper extremity function. Thirty-eight per cent of the women and 37% of the men had disorders in the upper extremities. The investigation included tests of co-ordination, static strength in the key-grip and the transversal volar grip, power capacity in opening jars and a bottle, basal movements in the upper extremities in personal hygiene and dressing activities, function in the kitchen e.g. reaching shelves, manual tasks including tests of pronation and supination of the forearm. In the key-grip as well as in the transversal volar grip men showed a generally larger decrease in strength with age than women compared to 70-year-olds in a previous population study. Significant correlations were found between strength in the key-grip and the performance time in the test of co-ordination. Women produced about 66% of the muscular force of the men when opening jars. Significant correlations were found between strength in the transversal volar grip and the maximal torque for opening the jars. Female and male subjects who were not capable of handling the electric plug in the manual ability test had significantly weaker strength in the key-grip. The importance of designing products and adapting the environment so as to correspond to the functional capacity of the elderly, is emphasized.
Casas-Herrero, Alvaro; Cadore, Eduardo L.; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Marques, Mário C.
2013-01-01
Abstract This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper and lower limbs. Functional tests included 5-meter habitual gait, timed up-and-go (TUG), dual task performance, balance, and rise from a chair ability. Incidence of falls was assessed using questionnaires. The thigh muscle mass and attenuation were assessed using computed tomography. There were no differences between the frail and frail+MCI groups for all the functional variables analyzed, except in the cognitive score of the TUG with verbal task, which frail showed greater performance than the frail+MCI group. Significant associations were observed between the functional performance, incidence of falls, muscle mass, strength, and power in the frail and frail+MCI groups (r=−0.73 to r=0.83, p<0.01 to p<0.05). These results suggest that the frail oldest old with and without MCI have similar functional and neuromuscular outcomes. Furthermore, the functional outcomes and incidences of falls are associated with muscle mass, strength, and power in the frail elderly population. PMID:23822577
Shiotsu, Yoko; Yanagita, Masahiko
2018-06-01
This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P < 0.01, respectively). Functional reach test significantly increased in the AR-M and RA-M groups (P < 0.01, respectively), and there were significant group differences between AR-L and AR-M (P = 0.002), RA-L and RA-M (P = 0.014). Preliminary findings suggest that combined aerobic and low- or moderate-intensity resistance training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.
López-de-Uralde-Villanueva, Ibai; Sollano-Vallez, Ernesto; Del Corral, Tamara
2017-06-11
To investigate whether patients with chronic nonspecific neck pain and having moderate to severe disability have a greater cervical motor function impairment and respiratory disturbances compared with patients with chronic nonspecific neck pain having mild disability and asymptomatic subjects; and the association between these outcomes in patients with chronic nonspecific neck pain and healthy controls. Cross-sectional study, 44 patients with chronic nonspecific neck pain and 31 healthy subjects participated. The neck disability index was used to divide the patients into 2 groups: 1) mild disability group (scores between 5 and 14 points); and 2) moderate to severe disability group (scores >14 points). Cervical motor function was measured by cervical range of motion, forward head posture, neck flexor, and extensor muscle strength. Respiratory function and maximum respiratory pressures were also measured. Statistically differences were found between the patients with chronic nonspecific neck pain having a moderate to severe disability and the asymptomatic subjects for cervical and respiratory muscle strength. Comparisons between chronic nonspecific neck pain and the asymptomatic groups showed differences for all the variables, except for forward head posture. The regression model determined that strength of cervical flexion explained 36.4 and 45.6% of the variance of maximum inspiratory pressures and maximum expiratory pressures, respectively. Only the chronic nonspecific neck pain group with moderate to severe disability showed differences compared with the healthy subjects. Neck muscle strength could be a good predictor of respiratory muscle function. Implications for rehabilitation Neck pain severity could be closely associated with decreased respiratory pressure in patients with chronic nonspecific neck pain. These findings suggest a new therapeutic approach for patients with moderate to severe disability, such as respiratory muscle training. The regression models show that a simple measurement of neck muscle strength could provide a reasonably accurate prediction for the respiratory function of these patients. Hence, this could provide an easy tool to assess respiratory function to physiotherapists without the need for sophisticated instrumentation.
Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M
2012-01-01
Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.
ERIC Educational Resources Information Center
Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.
2012-01-01
This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…
Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A
2018-04-15
Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Higher blood pressure is associated with higher handgrip strength in the oldest old.
Taekema, Diana G; Maier, Andrea B; Westendorp, Rudi G J; de Craen, Anton J M
2011-01-01
Aging is associated with progressive loss of muscle strength. Muscle tissue is vascularized by an elaborate vascular network. There is evidence that blood pressure (BP) is associated with muscle function in middle age. It is unknown how BP associates with muscle function in oldest old people. We studied the association between BP and handgrip strength in middle and old age. BP was measured automatically in middle-aged subjects and with a mercury sphygmomanometer in the oldest old. Handgrip strength was measured with a handgrip strength dynamometer. Cross-sectional measurements of handgrip strength and BP were available for 670 middle-aged subjects (mean 63.2 ± 6.6 years) and 550 oldest old subjects (all 85 years). Prospective data were available for oldest old subjects only with a 4-year follow-up at 89 years. The association between BP and handgrip strength was analyzed by linear regression analysis. In middle-aged subjects, BP and handgrip strength were not statistically significantly associated. In oldest old subjects, higher systolic BP (SBP), mean arterial pressure (MAP), and pulse pressure (PP) were associated with higher handgrip strength after adjusting for comorbidity and medication use (all P < 0.02). Furthermore, in oldest old subjects, changes in SBP, MAP, and PP after 4 years was associated with declining handgrip strength (all, P < 0.05). In oldest old, higher BP is associated with better muscle strength. Further study is necessary to investigate whether BP is a potential modifiable risk factor for prevention of age-associated decline in muscle strength.
Johnson, Caleb D; Whitehead, Paul N; Pletcher, Erin R; Faherty, Mallory S; Lovalekar, Mita T; Eagle, Shawn R; Keenan, Karen A
2018-04-01
Johnson, CD, Whitehead, PN, Pletcher, ER, Faherty, MS, Lovalekar, MT, Eagle, SR, and Keenan, KA. The relationship of core strength and activation and performance on three functional movement screens. J Strength Cond Res 32(4): 1166-1173, 2018-Current measures of core stability used by clinicians and researchers suffer from several shortcomings. Three functional movement screens appear, at face-value, to be dependent on the ability to activate and control core musculature. These 3 screens may present a viable alternative to current measures of core stability. Thirty-nine subjects completed a deep squat, trunk stability push-up, and rotary stability screen. Scores on the 3 screens were summed to calculate a composite score (COMP). During the screens, muscle activity was collected to determine the length of time that the bilateral erector spinae, rectus abdominis, external oblique, and gluteus medius muscles were active. Strength was assessed for core muscles (trunk flexion and extension, trunk rotation, and hip abduction and adduction) and accessory muscles (knee flexion and extension and pectoralis major). Two ordinal logistic regression equations were calculated with COMP as the outcome variable, and: (a) core strength and accessory strength, (b) only core strength. The first model was significant in predicting COMP (p = 0.004) (Pearson's Chi-Square = 149.132, p = 0.435; Nagelkerke's R-Squared = 0.369). The second model was significant in predicting COMP (p = 0.001) (Pearson's Chi-Square = 148.837, p = 0.488; Nagelkerke's R-Squared = 0.362). The core muscles were found to be active for most screens, with percentages of "time active" for each muscle ranging from 54-86%. In conclusion, performance on the 3 screens is predicted by core strength, even when accounting for "accessory" strength variables. Furthermore, it seems the screens elicit wide-ranging activation of core muscles. Although more investigation is needed, these screens, collectively, seem to be a good assessment of core strength.
Cho, Chunhee; Hwang, Wonjeong; Hwang, Sujin; Chung, Yijung
2016-03-01
Independent walking is an important goal of clinical and community-based rehabilitation for children with cerebral palsy (CP). Virtual reality-based rehabilitation therapy is effective in motivating children with CP. This study investigated the effects of treadmill training with virtual reality on gait, balance, muscular strength, and gross motor function in children with CP. Eighteen children with spastic CP were randomly divided into the virtual reality treadmill training (VRTT) group (9 subjects, mean age, 10.2 years) and treadmill training (TT) group (9 subjects, mean age, 9.4 years). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. Muscle strength was assessed using a digitalized manual muscle tester. Gross motor function was assessed using the Gross Motor Functional Measure (GMFM). Balance was assessed using the Pediatric Balance Scale (PBS). Gait speed was assessed using the 10-meter walk test (10MWT), and gait endurance was assessed using the 2-minute walk test (2MWT). After training, gait and balance was improved in the VRTT compared to the TT group (P < 0.05). Muscular strength was significantly greater in the VRTT group than the TT group, except for right hamstring strength. The improvements in GMFM (standing) and PBS scores were greater in the VRTT group than the TT group (P < 0.05). Furthermore, the VRTT group showed the higher values of 10MWT and 2MWT compared to the TT group (P < 0.05). In conclusion, VRTT programs are effective for improving gait, balance, muscular strength, and gross motor function in children with CP.
Celebrate Strengths, Nurture Affinities: A Conversation with Mel Levine
ERIC Educational Resources Information Center
Scherer, Marge
2006-01-01
In this interview with "Educational Leadership," pediatrician Dr. Mel Levine, cofounder of "All Kinds of Minds," explains why students and educators should learn about eight neurodevelopmental functions that undergird our strengths and weaknesses. For the most part, he notes, adults who lead successful lives mobilize their strengths and compensate…
Granacher, Urs; Gollhofer, Albert; Hortobágyi, Tibor; Kressig, Reto W; Muehlbauer, Thomas
2013-07-01
The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Given that the mean PEDro quality score did not reach the predetermined cut-off of ≥6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.
USDA-ARS?s Scientific Manuscript database
Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...
ERIC Educational Resources Information Center
Wang, Hui-Yi; Chen, Chien-Chih; Hsiao, Shih-Fen
2012-01-01
Cerebral palsy (CP) is a common childhood disorder characterized by motor disability. Children with CP are at risk of developing significant respiratory problems associated with insufficient respiratory muscle strength. It is crucial to identify important factors which are associated with the limitations in daily living function in such children.…
ERIC Educational Resources Information Center
Franke, Warren D.; Margrett, Jennifer A.; Heinz, Melinda; Martin, Peter
2012-01-01
This study assessed the association between perceived health, fatigue, positive and negative affect, handgrip strength, objectively measured physical activity, body mass index, and self-reported functional limitations, assessed 6 months later, among 11 centenarians (age = 102 plus or minus 1). Activities of daily living, assessed 6 months prior to…
Application of the Extended Completeness Relation to the Absorbing Boundary Condition
NASA Astrophysics Data System (ADS)
Iwasaki, Masataka; Otani, Reiji; Ito, Makoto
The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum are also analyzed according to the decomposition of the energy levels in the extended completeness relation.
Trabal, Joan; Forga, Maria; Leyes, Pere; Torres, Ferran; Rubio, Jordi; Prieto, Esther; Farran-Codina, Andreu
2015-01-01
Objective To assess the effect of free leucine supplementation combined with resistance training versus resistance training only on muscle strength and functional status in older adults. Methods This was a randomized, double-blind, placebo-controlled, parallel study with two intervention groups. Thirty older adults were randomly assigned to receive either 10 g leucine/day (leucine group [LG], n=15) or a placebo (control group [CG], n=15), plus resistance training over a 12-week period. Maximal overcoming isometric leg strength, functional status, nutritional status, body composition, health-related quality of life, depression, and dietary intake were assessed at 4 and 12 weeks. Missing data at 12 weeks were handled using mixed models for repeated measurements for data imputation. Results Twenty-four subjects completed the 4-week assessment and eleven completed the 12-week intervention. Clinically significant gains were found in isometric leg strength at both assessment time points. Analysis of the effect size also showed how participants in LG outperformed those in CG for chair stands and the timed up and go test. No significant changes were observed for the rest of the outcomes. Conclusion Our combined analysis showed moderate changes in isometric leg muscle strength and certain components of functional status. The magnitude of changes found on these outcomes should be qualified as a positive effect of the concomitant intervention. PMID:25926725
Araújo, Joamira P; Neto, Gabriel R; Loenneke, Jeremy P; Bemben, Michael G; Laurentino, Gilberto C; Batista, Gilmário; Silva, Júlio C G; Freitas, Eduardo D S; Sousa, Maria S C
2015-12-01
Water-based exercise and low-intensity exercise in combination with blood flow restriction (BFR) are two methods that have independently been shown to improve muscle strength in those of advancing age. The objective of this study was to assess the long-term effect of water-based exercise in combination with BFR on maximum dynamic strength and functional capacity in post-menopausal women. Twenty-eight women underwent an 8-week water-based exercise program. The participants were randomly allocated to one of the three groups: (a) water exercise only, (b) water exercise + BFR, or (c) a non-exercise control group. Functional capacity (chair stand test, timed up and go test, gait speed, and dynamic balance) and strength testing were tested before and after the 8-week aquatic exercise program. The main findings were as follows: (1) water-based exercise in combination with BFR significantly increased the lower limb maximum strength which was not observed with water-based exercise alone and (2) water-based exercise, regardless of the application of BFR, increased functional performance measured by the timed up and go test over a control group. Although we used a healthy population in the current study, these findings may have important implications for those who may be contraindicated to using traditional resistance exercise. Future research should explore this promising modality in these clinical populations.
Supervised Versus Home Exercise Training Programs on Functional Balance in Older Subjects.
Youssef, Enas Fawzy; Shanb, Alsayed Abd Elhameed
2016-11-01
Aging is associated with a progressive decline in physical capabilities and a disturbance of both postural control and daily living activities. The aim of this study was to evaluate the effects of supervised versus home exercise programs on muscle strength, balance and functional activities in older participants. Forty older participants were equally assigned to a supervised exercise program (group-I) or a home exercise program (group-II). Each participant performed the exercise program for 35-45 minutes, two times per week for four months. Balance indices and isometric muscle strength were measured with the Biodex Balance System and Hand-Held Dynamometer. Functional activities were evaluated by the Berg Balance Scale (BBS) and the timed get-up-and-go test (TUG). The mean values of the Biodex balance indices and the BBS improved significantly after both the supervised and home exercise programs ( P < 0.05). However, the mean values of the TUG and muscle strength at the ankle, knee and hip improved significantly only after the supervised program. A comparison between the supervised and home exercise programs revealed there were only significant differences in the BBS, TUG and muscle strength. Both the supervised and home exercise training programs significantly increased balance performance. The supervised program was superior to the home program in restoring functional activities and isometric muscle strength in older participants.
Jones, Gareth R; Roland, Kaitlyn P; Neubauer, Noelannah A; Jakobi, Jennifer M
2017-02-01
To determine which clinical measures of physical function (ie, gait, balance, and grip strength) best represent long-term electromyography in persons with Parkinson disease (PD) compared with those without PD. Cross-sectional study. Local community. A sample (N=37) of men and women with PD (n=23) and those without PD (n=14), living independently at home, older than 50 years of age, from the local community. Not applicable. Measures of gait, balance, and grip strength were completed, and electromyography was examined in biceps brachii, triceps brachii, vastus lateralis, and biceps femoris during a 6.5-hour day. Muscle activity was quantified through burst in electromyography (>2% of the normalized maximum voluntary exertion with a continuous activity period of >0.1s). Stepwise multiple regression models were used to determine the proportion of variance in burst characteristics explained by clinical measures of physical function in PD. Grip strength was the best predictor of muscle activity in persons with PD (R 2 =.17-.33; P<.04), whereas gait characteristics explained muscle activity in healthy controls (R 2 =.40-.82; P<.04). Grip strength could serve as an effective clinical assessment tool to determine changes in muscle activity, which is a precursor to functional loss in persons with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Szulińska, Monika; Skrypnik, Damian; Ratajczak, Marzena; Karolkiewicz, Joanna; Madry, Edyta; Musialik, Katarzyna; Walkowiak, Jaroslaw; Jakubowski, Hieronim; Bogdański, Pawel
2016-10-01
Obesity is associated with kidney defects. Physical activity is a key element in the treatment of obesity. The aim of this study was to compare the effect of endurance and endurance-strength training on kidney function in abdominally obese women. Forty-four abdominally obese women were randomized to endurance training or endurance-strength training, three times a week for 3 months. Before and after the intervention, kidney function was assessed by measuring blood creatinine, urine creatinine, and urine albumin levels, and the albumin-to-creatinine ratio and glomerular filtration rate (GFR) were calculated. Renal hyperperfusion was present in both groups before the study. Following both types of physical activity, similar modifications of the investigated parameters were observed, but with no significant between-group differences. Both courses of training led to a significant increase in blood creatinine and a subsequent decrease in the GFR. A significant increase in urine creatinine and album levels, though not exceeding the range for microalbuminuria, was not accompanied by any difference in the albumin-to-creatinine ratio after endurance-strength training alone. Three months of either endurance or endurance-strength training has a favorable and comparable effect on renal function in abdominally obese women with renal hyperfiltration. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Trabal, Joan; Forga, Maria; Leyes, Pere; Torres, Ferran; Rubio, Jordi; Prieto, Esther; Farran-Codina, Andreu
2015-01-01
To assess the effect of free leucine supplementation combined with resistance training versus resistance training only on muscle strength and functional status in older adults. This was a randomized, double-blind, placebo-controlled, parallel study with two intervention groups. Thirty older adults were randomly assigned to receive either 10 g leucine/day (leucine group [LG], n=15) or a placebo (control group [CG], n=15), plus resistance training over a 12-week period. Maximal overcoming isometric leg strength, functional status, nutritional status, body composition, health-related quality of life, depression, and dietary intake were assessed at 4 and 12 weeks. Missing data at 12 weeks were handled using mixed models for repeated measurements for data imputation. Twenty-four subjects completed the 4-week assessment and eleven completed the 12-week intervention. Clinically significant gains were found in isometric leg strength at both assessment time points. Analysis of the effect size also showed how participants in LG outperformed those in CG for chair stands and the timed up and go test. No significant changes were observed for the rest of the outcomes. Our combined analysis showed moderate changes in isometric leg muscle strength and certain components of functional status. The magnitude of changes found on these outcomes should be qualified as a positive effect of the concomitant intervention.
Mechanisms of information decoding in a cascade system of gene expression
NASA Astrophysics Data System (ADS)
Wang, Haohua; Yuan, Zhanjiang; Liu, Peijiang; Zhou, Tianshou
2016-05-01
Biotechnology advances have allowed investigation of heterogeneity of cellular responses to stimuli on the single-cell level. Functionally, this heterogeneity can compromise cellular responses to environmental signals, and it can also enlarge the repertoire of possible cellular responses and hence increase the adaptive nature of cellular behaviors. However, the mechanism of how this response heterogeneity is generated remains elusive. Here, by systematically analyzing a representative cellular signaling system, we show that (1) the upstream activator always amplifies the downstream burst frequency (BF) but the noiseless activator performs better than the noisy one, remarkably for small or moderate input signal strengths, and the repressor always reduces the downstream BF but the difference in the reducing effect between noiseless and noise repressors is very small; (2) both the downstream burst size and mRNA mean are a monotonically increasing function of the activator strength but a monotonically decreasing function of the repressor strength; (3) for repressor-type input, there is a noisy signal strength such that the downstream mRNA noise arrives at an optimal level, but for activator-type input, the output noise intensity is fundamentally a monotonically decreasing function of the input strength. Our results reveal the essential mechanisms of both signal information decoding and cellular response heterogeneity, whereas our analysis provides a paradigm for analyzing dynamics of noisy biochemical signaling systems.
Reider, L; Hawkes, W; Hebel, J R; D'Adamo, C; Magaziner, J; Miller, R; Orwig, D; Alley, D E
2013-01-01
To determine whether body mass index (BMI) at the time of hospitalization or weight change in the period immediately following hospitalization predict physical function in the year after hip fracture. Prospective observational study. Two hospitals in Baltimore, Maryland. Female hip fracture patients age 65 years or older (N=136 for BMI analysis, N=41 for analysis of weight change). Body mass index was calculated based on weight and height from the medical chart. Weight change was based on DXA scans at 3 and 10 days post fracture. Physical function was assessed at 2, 6 and 12 months following fracture using the lower extremity gain scale (LEGS), walking speed and grip strength. LEGS score and walking speed did not differ across BMI tertiles. However, grip strength differed significantly across BMI tertiles (p=0.029), with underweight women having lower grip strength than normal weight women at all time points. Women experiencing the most weight loss (>4.8%) had significantly lower LEGS scores at all time points, slower walking speed at 6 months, and weaker grip strength at 12 months post-fracture relative to women with more modest weight loss. In adjusted models, overall differences in function and functional change across all time points were not significant. However, at 12 months post fracture,women with the most weight loss had an average grip strength 7.0 kg lower than women with modest weight loss (p=0.030). Adjustment for confounders accounts for much of the relationships between BMI and function and weight change and function in the year after fracture. However, weight loss is associated with weakness during hip fracture recovery. Weight loss during and immediately after hospitalization appears to identify women at risk of poor function and may represent an important target for future interventions.
Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.
Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J
2005-10-01
To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.
Wetherill, Reagan R.; Fang, Zhuo; Jagannathan, Kanchana; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.
2015-01-01
Background Resting-state functional connectivity is a noninvasive, neuroimaging method for assessing neural network function. Altered functional connectivity among regions of the default-mode network have been associated with both nicotine and cannabis use; however, less is known about co-occurring cannabis and tobacco use. Methods We used posterior cingulate cortex (PCC) seed-based resting-state functional connectivity analyses to examine default mode network (DMN) connectivity strength differences between four groups: 1) individuals diagnosed with cannabis dependence who do not smoke tobacco (n=19; ages 20–50), 2) cannabis-dependent individuals who smoke tobacco (n=23, ages 21–52), 3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (n=24, ages 21–57), and 4) cannabis- and tobacco-naïve healthy controls (n=21, ages 21–50), controlling for age, sex, and alcohol use. We also explored associations between connectivity strength and measures of cannabis and tobacco use. Results PCC seed-based analyses identified the core nodes of the DMN (i.e., PCC, medial prefrontal cortex, inferior parietal cortex, and temporal cortex). In general, the cannabis-dependent, nicotine-dependent, and co-occurring use groups showed lower DMN connectivity strengths than controls, with unique group differences in connectivity strength between the PCC and the cerebellum, medial prefrontal cortex, parahippocampus, and anterior insula. In cannabis-dependent individuals, PCC-right anterior insula connectivity strength correlated with duration of cannabis use. Conclusions This study extends previous research that independently examined the differences in resting-state functional connectivity among individuals who smoke cannabis and tobacco by including an examination of co-occurring cannabis and tobacco use and provides further evidence that cannabis and tobacco exposure is associated with alterations in DMN connectivity. PMID:26094186
Guo, LanJun; Li, Yan; Han, Ruquan; Gelb, Adrian W
2018-01-01
Motor evoked potentials (MEPs) are commonly used during surgery for spinal cord tumor resection. However, it can be difficult to record reliable MEPs from the muscles of the lower extremities during surgery in patients with preoperative weakness due to spinal cord compression. In this study, motor function of patients' lower extremities and their association with intraoperative MEP recording were compared. Patients undergoing thoracic spinal cord tumor resection were studied. Patients' motor function was checked immediately before the surgical procedure. MEP responses were recorded from the tibialis anterior and foot muscles, and the hand muscles were used as control. Electrical current with train of eight pulses, 200 to 500 V was delivered through 2 corkscrews placed at C3' and C4' sites. Anesthesia was maintained by total intravenous anesthesia using a combination of propofol and remifentanil after induction with intravenous propofol, remifentanil, and rocuronium. Rocuronium was not repeated. Bispectral Index was maintained between 40 to 50. From 178 lower limbs of 89 patients, myogenic MEPs could be recorded from 100% (105/105) of the patients with 5 of 5 motor strength in lower extremity; 90% (36/40) from the patients with 4/5 motor strength; only 25% (5/20) with 3/5; and 12.5% (1/8) with 2/5 motor strength; none (0/5) were able to be recorded if the motor strength was 1/5. The ability to record myogenic MEPs is closely associated with the patient's motor function. They are difficult to obtain if motor function is 3/5 motor strength in the lower extremity. They are almost impossible to record if motor function is worse than 3/5.
Buford, Thomas W; Fillingim, Roger B; Manini, Todd M; Sibille, Kimberly T; Vincent, Kevin R; Wu, Samuel S
2015-07-01
As the U.S. population ages, efficacious interventions are needed to manage pain and maintain physical function among older adults with osteoarthritis (OA). Skeletal muscle weakness is a primary contributory factor to pain and functional decline among persons with OA, thus interventions are needed that improve muscle strength. High-load resistance exercise is the best-known method of improving muscle strength; however high-compressive loads commonly induce significant joint pain among persons with OA. Thus interventions with low-compressive loads are needed which improve muscle strength while limiting joint stress. This study is investigating the potential of an innovative training paradigm, known as Kaatsu, for this purpose. Kaatsu involves performing low-load exercise while externally-applied compression partially restricts blood flow to the active skeletal muscle. The objective of this randomized, single-masked pilot trial is to evaluate the efficacy and feasibility of chronic Kaatsu training for improving skeletal muscle strength and physical function among older adults. Participants aged ≥ 60 years with physical limitations and symptomatic knee OA will be randomly assigned to engage in a 3-month intervention of either (1) center-based, moderate-load resistance training, or (2) Kaatsu training matched for overall workload. Study dependent outcomes include the change in 1) knee extensor strength, 2) objective measures of physical function, and 3) subjective measures of physical function and pain. This study will provide novel information regarding the therapeutic potential of Kaatsu training while also informing about the long-term clinical viability of the paradigm by evaluating participant safety, discomfort, and willingness to continually engage in the intervention. Copyright © 2015 Elsevier Inc. All rights reserved.
Growing up with Down syndrome: Development from 6 months to 10.7 years.
Marchal, Jan Pieter; Maurice-Stam, Heleen; Houtzager, Bregje A; Rutgers van Rozenburg-Marres, Susanne L; Oostrom, Kim J; Grootenhuis, Martha A; van Trotsenburg, A S Paul
2016-12-01
We analysed developmental outcomes from a clinical trial early in life and its follow-up at 10.7 years in 123 children with Down syndrome. To determine 1) strengths and weaknesses in adaptive functioning and motor skills at 10.7 years, and 2) prognostic value of early-life characteristics (early developmental outcomes, parental and child characteristics, and comorbidity) for later intelligence, adaptive functioning and motor skills. We used standardized assessments of mental and motor development at ages 6, 12 and 24 months, and of intelligence, adaptive functioning and motor skills at 10.7 years. We compared strengths and weaknesses in adaptive functioning and motor skills by repeated-measures ANOVAs in the total group and in children scoring above-average versus below-average. The prognostic value of demographics, comorbidity and developmental outcomes was analysed by two-step regression. Socialisation was a stronger adaptive skill than Communication followed by Daily Living. Aiming and catching was a stronger motor skill than Manual dexterity, followed by Balance. Above-average and below-average scoring children showed different profiles of strengths and weaknesses. Gender, (the absence or presence of) infantile spasms and particularly 24-month mental functioning predicted later intelligence and adaptive functioning. Motor skills, however, appeared to be less well predicted by early life characteristics. These findings provide a reference for expected developmental levels and strengths and weaknesses in Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Raj, Isaac Selva; Bird, Stephen R; Westfold, Ben A; Shield, Anthony J
2017-01-01
Reliable measures of muscle strength and functional capacity in older adults are essential. The aim of this study was to determine whether coefficients of variation (CVs) of individuals obtained at the first session can infer repeatability of performance in a subsequent session. Forty-eight healthy older adults (mean age 68.6 ± 6.1 years; age range 60-80 years) completed two assessment sessions, and on each occasion undertook: dynamometry for isometric and isokinetic quadriceps strength, 6 meter fast walk (6MFWT), timed up and go (TUG), stair climb and descent, and vertical jump. Significant linear relationships were observed between CVs in session 1 and the percentage difference between sessions 1 and 2 for torque at 60, 120, 240 and 360°/s, 6MFWT, TUG, stair climb, and stair descent. The results of this study could be used to establish criteria for determining an acceptably reliable performance in strength and functional tests.
Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L
2015-07-01
The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.
Effects of pelvic floor muscle training during pregnancy.
de Oliveira, Claudia; Lopes, Marco Antonio Borges; Carla Longo e Pereira, Luciana; Zugaib, Marcelo
2007-08-01
The objective of the present study was to evaluate the effect of pelvic floor muscle training in 46 nulliparous pregnant women. The women were divided into 2 groups: an exercise group and a control group. Functional evaluation of the pelvic floor muscle was performed by digital vaginal palpation using the strength scale described by Ortiz and by a perineometer (with and without biofeedback). The functional evaluation of the pelvic floor muscles showed a significant increase in pelvic floor muscle strength during pregnancy in both groups (P < .001). However, the magnitude of the change was greater in the exercise group than in the control group (47.4% vs. 17.3%, P < .001). The study also showed a significant positive correlation (Spearman's test, r = 0.643; P < .001) between perineometry and digital assessment in the strength of pelvic floor muscles. Pelvic floor muscle training resulted in a significant increase in pelvic floor muscle pressure and strength during pregnancy. A significant positive correlation between functional evaluation of the pelvic floor muscle and perineometry was observed during pregnancy.
Hämäläinen, Anni; Dammhahn, Melanie; Aujard, Fabienne; Kraus, Cornelia
2015-01-01
Muscle strength reflects physical functioning, declines at old age and predicts health and survival in humans and laboratory animals. Age-associated muscle deterioration causes loss of strength and may impair fitness of wild animals. However, the effects of age and life-history characteristics on muscle strength in wild animals are unknown. We investigated environment- and sex-specific patterns of physical functioning by measuring grip strength in wild and captive gray mouse lemurs. We expected more pronounced strength senescence in captivity due to condition-dependent, extrinsic mortality found in nature. Males were predicted to be stronger but potentially experience more severe senescence than females as predicted by life history theory. We found similar senescent declines in captive males and females as well as wild females, whereas wild males showed little decline, presumably due to their early mortality. Captive animals were generally weaker and showed earlier declines than wild animals. Unexpectedly, females tended to be stronger than males, especially in the reproductive season. Universal intrinsic mechanisms (e.g. sarcopenia) likely cause the similar patterns of strength loss across settings. The female advantage in muscle strength merits further study; it may follow higher reproductive investment by males, or be an adaptation associated with female social dominance. Copyright © 2014 Elsevier Inc. All rights reserved.
Rahman, Mizanur; Hewitt, Jennifer E; Van-Bussel, Frank; Edwards, Hunter; Blawzdziewicz, Jerzy; Szewczyk, Nathaniel J; Driscoll, Monica; Vanapalli, Siva A
2018-06-12
Muscle strength is a functional measure of quality of life in humans. Declines in muscle strength are manifested in diseases as well as during inactivity, aging, and space travel. With conserved muscle biology, the simple genetic model C. elegans is a high throughput platform in which to identify molecular mechanisms causing muscle strength loss and to develop interventions based on diet, exercise, and drugs. In the clinic, standardized strength measures are essential to quantitate changes in patients; however, analogous standards have not been recapitulated in the C. elegans model since force generation fluctuates based on animal behavior and locomotion. Here, we report a microfluidics-based system for strength measurement that we call 'NemaFlex', based on pillar deflection as the nematode crawls through a forest of pillars. We have optimized the micropillar forest design and identified robust measurement conditions that yield a measure of strength that is independent of behavior and gait. Validation studies using a muscle contracting agent and mutants confirm that NemaFlex can reliably score muscular strength in C. elegans. Additionally, we report a scaling factor to account for animal size that is consistent with a biomechanics model and enables comparative strength studies of mutants. Taken together, our findings anchor NemaFlex for applications in genetic and drug screens, for defining molecular and cellular circuits of neuromuscular function, and for dissection of degenerative processes in disuse, aging, and disease.
Qu, Jing; Ouyang, Liangqi; Kuo, Chin-chen; Martin, David C.
2015-01-01
Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this study the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 ± 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 ± 0.6 MPa. PMID:26607768
Grundberg, Elin; Brändström, Helena; Ribom, Eva L; Ljunggren, Osten; Mallmin, Hans; Kindmark, Andreas
2004-03-01
Bone mineral density (BMD) is under strong genetic control and a number of candidate genes have been associated with BMD. Both muscle strength and body weight are considered to be important predictors of BMD but far less is known about the genes affecting muscle strength and fat mass. The purpose of this study was to investigate the poly adenosine (A) repeat and the BsmI SNP in the vitamin D receptor (VDR) in relation to muscle strength and body composition in healthy women. A population-based study of 175 healthy women aged 20-39 years was used. The polymorphic regions in the VDR gene (the poly A repeat and the BsmI SNP) were amplified by PCR. Body mass measurements (fat mass, lean mass, body weight and body mass index) and muscle strength (quadriceps, hamstring and grip strength) were evaluated. Individuals with shorter poly A repeat, ss and/or absence of the linked BsmI restriction site (BB) have higher hamstring strength (ss vs LL, P=0.02), body weight (ss vs LL, P=0.049) and fat mass (ss vs LL, P=0.04) compared with women with a longer poly A repeat (LL) and/or the presence of the linked BsmI restriction site (bb). Genetic variation in the VDR is correlated with muscle strength, fat mass and body weight in premenopausal women. Further functional studies on the poly A microsatellite are needed to elucidate whether this is the functionally relevant locus or if the polymorphism is in linkage disequilibrium with a functional variant in a closely situated gene further downstream of the VDR 3'UTR.
Origin of tensile strength of a woven sample cut in bias directions
Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li
2015-01-01
Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn–yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655
Functional and cosmetic outcome of single-digit ray amputation in hand.
Bhat, A K; Acharya, A M; Narayanakurup, J K; Kumar, B; Nagpal, P S; Kamath, A
2017-12-01
To assess patient satisfaction, functional and cosmetic outcomes of single-digit ray amputation in hand and identify factors that might affect the outcome. Forty-five patients who underwent ray amputation were evaluated, 37 males and eight females whose mean age was 36.6 years ranging between 15 and 67 years. Twenty-eight patients had dominant hand involvement. Twenty-one patients underwent primary ray amputation, and 24 patients had secondary ray amputation. Eight out of the 23 patients with central digit injuries underwent transposition. Grip strength, pinch strength, tactile sensibility and functional evaluation using Result Assessment Scale (RAS) and DASH score were analysed. Cosmetic assessment was performed using visual analogue scale (VAS) for cosmesis. Median time of assessment after surgery was 20 months. Average loss of grip strength and pinch strength was found to be 43.3 and 33.6%, respectively. Average RAS score was 3.75. Median DASH score was 23.4. Eighty-three percentage of patients had excellent or good cosmesis on the VAS. Transposition causes significant increase in DASH scores for central digit ray amputations but was cosmetically superior. Middle finger ray amputation had the maximum loss of grip strength, and index finger ray amputation had greater loss of pinch strength. Affection of neighbouring digits caused greater grip and pinch loss, and a higher DASH score. Primary ray resection decreased the total disability and eliminated the costs of a second procedure. Following ray amputation, one can predict an approximate 43.3% loss of grip strength and 33.6% loss of pinch strength. The patients can be counselled regarding the expected time off from work, amount of disability and complications after a single-digit ray amputation. Majority of the patients can return to the same occupation after a period of dedicated hand therapy. Therapeutic, Level III.
Kostka, Joanna; Sikora, Joanna; Kostka, Tomasz
2017-01-01
The goal of this study was to assess whether angiotensin-converting enzyme (ACE) activity is related to muscle function (strength, power and velocity), as well as to assess if ACE inhibitors (ACEIs) and other angiotensin system blocking medications (ASBMs) influence muscle performance in elderly women. Ninety-five community-dwelling elderly women took part in this study. Anthropometric data, blood ACE activity analysis, maximum power (P max ) and optimal shortening velocity (υ opt ) of the knee extensor muscles, handgrip strength, physical activity (PA) and functional performance were measured. Women taking ACEI were on average almost 2 years older than the women who did not take ACEI. They took more medicines and were also characterized by significantly lower level of ACE, but they did not differ in terms of PA level, results of functional performance and parameters characterizing muscle functions. No correlations of ACE activity with P max and handgrip strength, as well as with PA or functional performance were found. Higher ACE activity was connected with lower υ opt for women who did not take any ASBMs (rho =-0.37; p =0.01). Serum ACE activity was not associated with muscle strength, power and functional performance in both ASBM users and nonusers, but was associated with optimal shortening velocity of quadriceps muscles in older women. Further prospective studies are needed to assess if ACEIs or other ASBMs may slow down the decline in muscle function and performance.
Effective Collision Strengths for Fine-structure Transitions in Si VII
NASA Astrophysics Data System (ADS)
Sossah, A. M.; Tayal, S. S.
2014-05-01
The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.
An extrapolation method for compressive strength prediction of hydraulic cement products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siqueira Tango, C.E. de
1998-07-01
The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less
McKenna, Victoria S; Zhang, Bin; Haines, Morgan B; Kelchner, Lisa N
2017-05-17
This systematic review summarizes the effects of isometric lingual strength training on lingual strength and swallow function in adult populations. Furthermore, it evaluates the designs of the reviewed studies and identifies areas of future research in isometric lingual strength training for dysphagia remediation. A comprehensive literature search of 3 databases and additional backward citation search identified 10 studies for inclusion in the review. The review reports and discusses the isometric-exercise intervention protocols, pre- and postintervention lingual-pressure data (maximum peak pressures and lingual-palatal pressures during swallowing), and oropharyngeal swallowing measures such as penetration-aspiration scales, oropharyngeal residue and duration, lingual volumes, and quality-of-life assessments. Studies reported gains in maximum peak lingual pressures following isometric lingual strength training for both healthy adults and select groups of individuals with dysphagia. However, due to the variability in study designs, it remains unclear whether strength gains generalize to swallow function. Although isometric lingual strength training is a promising intervention for oropharyngeal dysphagia, the current literature is too variable to confidently report specific therapeutic benefits. Future investigations should target homogenous patient populations and use randomized controlled trials to determine the efficacy of this treatment for individuals with dysphagia.
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Effects of functional training on pain, leg strength, and balance in women with fibromyalgia.
Latorre Román, Pedro Ángel; Santos E Campos, María Aparecida; García-Pinillos, Felipe
2015-01-01
The aim of this study was to analyze the effect of 18-week functional training (FT) program consisting in two sessions a week of in-water exercise and one of on-land exercise on pain, strength, and balance in women with fibromyalgia. A sample consisting of 36 fibromyalgia patients was included in the study. The patients were allocated randomly into the experimental group (EG, n = 20), and control group (CG, n = 16). Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand and handgrip strength) and agility/dynamic balance and static balance. Fibromyalgia impact and pain were analyzed by Fibromyalgia Impact Questionnaire (FIQ), tender points (TPs), visual analog scale (VAS). We observed a significant reduction in the FIQ (p = 0.042), the algometer scale of TP (p = 0.008), TP (p < 0.001), and VAS (p < 0.001) in the EG. The EG shows better results in leg strength (p < 0.001), handgrip strength (p = 0.025), agility/dynamic balance (p = 0.032) and balance (p = 0.006). An 18-week intervention consisting in two sessions of in-water exercise and one session of on-land exercise of FT reduces pain and improves functional capacity in FM patients. These results suggested that FT could play an important role in maintaining an independent lifestyle in patients with FM.
Broeckhoven, Chris; du Plessis, Anton; Hui, Cang
2017-10-01
The presence of dermal armor is often unambiguously considered the result of an evolutionary predator-prey arms-race. Recent studies focusing predominantly on osteoderms - mineralized elements embedded in the dermis layer of various extant and extinct vertebrates - have instead proposed that dermal armor might exhibit additional functionalities besides protection. Multiple divergent functionalities could impose conflicting demands on a phenotype, yet, functional trade-offs in dermal armor have rarely been investigated. Here, we use high-resolution micro-computed tomography and voxel-based simulations to test for a trade-off between the strength and thermal capacity of osteoderms using two armored cordylid lizards as model organisms. We demonstrate that high vascularization, associated with improved thermal capacity might limit the strength of osteoderms. These results call for a holistic, cautionary future approach to studies investigating dermal armor, especially those aiming to inspire artificial protective materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relation between functional mobility and dynapenia in institutionalized frail elderly
Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes
2017-01-01
ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148
Single functional group interactions with individual carbon nanotubes
NASA Astrophysics Data System (ADS)
Friddle, Raymond W.; Lemieux, Melburne C.; Cicero, Giancarlo; Artyukhin, Alexander B.; Tsukruk, Vladimir V.; Grossman, Jeffrey C.; Galli, Giulia; Noy, Aleksandr
2007-11-01
Carbon nanotubes display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits and biosensors to field emitters and membranes. These applications use the non-covalent interactions between the nanotubes and chemical functionalities, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.
Lam, Ngee Wei; Goh, Hui Ting; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Poi, Philip Jun Hua; Tan, Maw Pin
2016-10-01
Hand strength is a good indicator of physical fitness and frailty among the elderly. However, there are no published hand strength references for Malaysians aged > 65 years. This study aimed to establish normative data for hand grip strength (HGS) and key pinch strength (KPS) for Malaysians aged ≥ 60 years, and explore the relationship between hand strength and physical ability. Healthy participants aged ≥ 60 years with no neurological conditions were recruited from rural and urban locations in Malaysia. HGS and KPS were measured using hand grip and key pinch dynamometers. Basic demographic data, anthropometric measures, modified Barthel Index scores and results of the Functional Reach Test (FRT), Timed Up and Go (TUG) test and Jebsen-Taylor Hand Function Test (JTHFT) were recorded. 362 subjects aged 60-93 years were recruited. The men were significantly stronger than the women in both HGS and KPS (p < 0.001). The hand strength of the study cohort was lower than that of elderly Western populations. Significant correlations were observed between hand strength, and residential area (p < 0.001), FRT (r = 0.236, p = 0.028), TUG (r = -0.227, p = 0.009) and JTHFT (r = -0.927, p < 0.001). This study established reference ranges for the HGS and KPS of rural and urban elderly Malaysian subpopulations. These will aid the use of hand strength as a screening tool for frailty among elderly persons in Malaysia. Future studies are required to determine the modifiable factors for poor hand strength. Copyright: © Singapore Medical Association
Lam, Ngee Wei; Goh, Hui Ting; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Poi, Philip Jun Hua; Tan, Maw Pin
2016-01-01
INTRODUCTION Hand strength is a good indicator of physical fitness and frailty among the elderly. However, there are no published hand strength references for Malaysians aged > 65 years. This study aimed to establish normative data for hand grip strength (HGS) and key pinch strength (KPS) for Malaysians aged ≥ 60 years, and explore the relationship between hand strength and physical ability. METHODS Healthy participants aged ≥ 60 years with no neurological conditions were recruited from rural and urban locations in Malaysia. HGS and KPS were measured using hand grip and key pinch dynamometers. Basic demographic data, anthropometric measures, modified Barthel Index scores and results of the Functional Reach Test (FRT), Timed Up and Go (TUG) test and Jebsen-Taylor Hand Function Test (JTHFT) were recorded. RESULTS 362 subjects aged 60–93 years were recruited. The men were significantly stronger than the women in both HGS and KPS (p < 0.001). The hand strength of the study cohort was lower than that of elderly Western populations. Significant correlations were observed between hand strength, and residential area (p < 0.001), FRT (r = 0.236, p = 0.028), TUG (r = −0.227, p = 0.009) and JTHFT (r = −0.927, p < 0.001). CONCLUSION This study established reference ranges for the HGS and KPS of rural and urban elderly Malaysian subpopulations. These will aid the use of hand strength as a screening tool for frailty among elderly persons in Malaysia. Future studies are required to determine the modifiable factors for poor hand strength. PMID:26768064
Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi
2017-11-27
Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.
Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P.; Niemeyer, Philipp
2017-01-01
Background: Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. Purpose: To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Study Design: Cross-sectional study; Level of evidence, 3. Methods: To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2). Results: Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm2) were of no importance regarding the prediction of the strength deficit. The quadriceps strength deficit between the injured and the uninjured leg was best predicted by the results of the single-leg hop test. Conclusion: Patients with isolated cartilage defects of the knee joint have significant deficits in quadriceps muscle strength of the injured leg compared with the uninjured leg. The single-leg hop test may be used to predict quadriceps strength deficits. Future research should address whether preoperative strength training in patients with cartilage defects of the knee could be effective and should be taken into consideration in addition to surgical treatment. PMID:28596973
Lower limb strength in professional soccer players: profile, asymmetry, and training age.
Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George
2010-01-01
Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications regarding proper training and injury prevention in relation to professional experience in soccer. Key pointsMuscle strength increased from the low (5-7 years) to the intermediate professional training age (8-10 years) and stabilized thereafter.Soccer practicing and competition at the professional level induces critical strength adaptations (asymmetries) regarding the function of the knee and ankle musculature.Soccer players with long professional training age showed a tendency for lower isokinetic strength asymmetries than players with intermediate and short professional training age.
Strength Training: A Natural Prescription for Staying Healthy and Fit.
ERIC Educational Resources Information Center
Adams, Raymond, Ed.
2003-01-01
This newsletter highlights the importance of strength training in keeping older adults healthy and fit, explaining how it can forestall declines in strength and muscle mass, along with their attendant negative impact upon other metabolic functions and activities of daily living. Physical inactivity is common throughout the nation. Approximately 11…
ERIC Educational Resources Information Center
Olsen, Jamie E.; Ross, Sandy A.; Foreman, Matthew H.; Engsberg, Jack R.
2013-01-01
Children with cerebral palsy (CP) are likely to experience decreased participation in activities and less competence in activities of daily living. Studies of children with spastic CP have shown that strengthening programs produce positive results in strength, gait, and functional outcomes (measured by the Gross Motor Function Measure). No…
Pope, Derek A; Poe, Lindsey; Stein, Jeffrey S; Kaplan, Brent A; Heckman, Bryan W; Epstein, Leonard H; Bickel, Warren K
2018-04-18
The experimental tobacco marketplace (ETM) provides a method to estimate, prior to implementation, the effects of new products or policies on purchasing across various products in a complex tobacco marketplace. We used the ETM to examine the relationship between nicotine strength and substitutability of alternative products for cigarettes to contribute to the literature on regulation of e-liquid nicotine strength. The present study contained four sampling and four ETM purchasing sessions. During sampling sessions, participants were provided 1 of 4 e-liquid strengths (randomised) to sample for 2 days followed by an ETM purchasing session. The nicotine strength sampled in the 2 days prior to an ETM session was the same strength available for purchase in the next ETM. Each participant sampled and could purchase 0 mg/mL, 6 mg/mL, 12 mg/mL and 24 mg/mL e-liquid, among other products, during the study. Cigarette demand was unaltered across e-liquid strength. E-liquid was the only product to substitute for cigarettes across more than one e-liquid strength. Substitutability increased as a function of e-liquid strength, with the 24 mg/mL displaying the greatest substitutability of all products. The present study found that e-liquid substitutability increased with nicotine strength, at least up to 24 mg/mL e-liquid. However, the effects of e-liquid nicotine strength on cigarette purchasing were marginal and total nicotine purchased increased as e-liquid nicotine strength increased. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Hinkley, Jeffrey A.; Whitley, Karen S.; Gates, Thomas S.
2004-01-01
Mechanical testing of an advanced polymer resin with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The elastic properties, inelastic elongation behavior, and notched tensile strength all as a function of molecular weight and test temperature were determined. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature.
Furlong, Jonathan; Rynders, Corey A; Sutherlin, Mark; Patrie, James; Katch, Frank I; Hertel, Jay; Weltman, Arthur
2014-01-01
StemSport (SS; StemTech International, Inc. San Clemente, CA) contains a proprietary blend of the botanical Aphanizomenon flos-aquae and several herbal antioxidant and anti-inflammatory substances. SS has been purported to accelerate tissue repair and restore muscle function following resistance exercise. Here, we examine the effects of SS supplementation on strength adaptations resulting from a 12-week resistance training program in healthy young adults. Twenty-four young adults (16 males, 8 females, mean age = 20.5 ± 1.9 years, mass = 70.9 ± 11.9 kg, stature = 176.6 ± 9.9 cm) completed the twelve week training program. The study design was a double-blind, placebo controlled parallel group trial. Subjects either received placebo or StemSport supplement (SS; mg/day) during the training. 1-RM bench press, 1-RM leg press, vertical jump height, balance (star excursion and center of mass excursion), isokinetic strength (elbow and knee flexion/extension) and perception of recovery were measured at baseline and following the 12-week training intervention. Resistance training increased 1-RM strength (p < 0.008), vertical jump height (p < 0.03), and isokinetic strength (p < 0.05) in both SS and placebo groups. No significant group-by-time interactions were observed (all p-values >0.10). These data suggest that compared to placebo, the SS herbal/botanical supplement did not enhance training induced adaptations to strength, balance, and muscle function above strength training alone.
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.
Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano
2009-05-06
despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients
Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano
2009-01-01
Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559
Test of the Brink-Axel Hypothesis for the Pygmy Dipole Resonance
NASA Astrophysics Data System (ADS)
Martin, D.; von Neumann-Cosel, P.; Tamii, A.; Aoi, N.; Bassauer, S.; Bertulani, C. A.; Carter, J.; Donaldson, L.; Fujita, H.; Fujita, Y.; Hashimoto, T.; Hatanaka, K.; Ito, T.; Krugmann, A.; Liu, B.; Maeda, Y.; Miki, K.; Neveling, R.; Pietralla, N.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Shima, T.; Yamamoto, T.; Zweidinger, M.
2017-11-01
The gamma strength function and level density of 1- states in 96Mo have been extracted from a high-resolution study of the (p → , p→ ' ) reaction at 295 MeV and extreme forward angles. By comparison with compound nucleus γ decay experiments, this allows a test of the generalized Brink-Axel hypothesis in the energy region of the pygmy dipole resonance. The Brink-Axel hypothesis is commonly assumed in astrophysical reaction network calculations and states that the gamma strength function in nuclei is independent of the structure of the initial and final state. The present results validate the Brink-Axel hypothesis for 96Mo and provide independent confirmation of the methods used to separate gamma strength function and level density in γ decay experiments.
Hierarchy of Dysfunction Related to Dressing Performance in Stroke Patients: A Path Analysis Study.
Fujita, Takaaki; Nagayama, Hirofumi; Sato, Atsushi; Yamamoto, Yuichi; Yamane, Kazuhiro; Otsuki, Koji; Tsuchiya, Kenji; Tozato, Fusae
2016-01-01
Previous reports indicated that various dysfunctions caused by stroke affect the level of independence in dressing. These dysfunctions can be hierarchical, and these effects on dressing performance can be complicated in stroke patients. However, there are no published reports focusing on the hierarchical structure of the relationships between the activities of daily living and balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits. The purpose of this study was to elucidate the hierarchical and causal relationships between dressing performance and these dysfunctions in stroke patients. This retrospective study included 104 first-time stroke patients. The causal relationship between the dressing performance and age, time post stroke, balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits were examined using path analysis. A hypothetical path model was created based on previous studies, and the goodness of fit between the data and model were verified. A modified path model was created that achieved an almost perfect fit to the data. Balance function and abdominal muscle strength have direct effects on dressing performance, with standardized direct effect estimates of 0.78 and 0.15, respectively. Age, motor and sensory functions of the affected lower limb, and strength of abdominal muscle and knee extension on the unaffected side have indirect effects on dressing by influencing balance function. Our results suggest that dressing performance depends strongly on balance function, and it is mainly influenced by the motor function of the affected lower limb.
Measures of functional performance and their association with hip and thigh strength.
Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A
2015-01-01
Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.
Lee, So Young; Han, Eun Young; Kim, Bo Ryun; Im, Sang Hee
2018-03-12
The aim of this study was to assess the effects of a motorized aquatic treadmill exercise program improve the isometric strength of the knee muscles, cardiorespiratory fitness, arterial stiffness, motor function, balance, functional outcomes and quality of life in subacute stroke patients. Thirty-two patients were randomly assigned to 4-week training sessions of either aquatic therapy(n=19) or land-based aerobic exercise(n=18). Isometric strength was measured using an isokinetic dynamometer. Cardiopulmonary fitness was evaluated using a symptom-limited exercise tolerance test and by measuring brachial ankle pulse wave velocity. Moreover, motor function(Fugl-Meyer Assessment[FMA] and FMA-lower limb[FMA-LL]), balance(Berg Balance Scale[BBS]), Activities of daily living(Korean version of the Modified Barthel Index [K-MBI]), and Quality of life(EQ-5D index) were examined. There were no inter-group differences between demographic and clinical characteristics at baseline(p>0.05). The results shows significant improvements in peak oxygen consumption (p=0.02), maximal isometric strength of the bilateral knee extensors (p<0.01) and paretic knee flexors (p=0.01), FMA (p=0.03), FMA-LL (p=0.01), BBS (p=0.01), K-MBI (p<0.01), and EQ-5D index (p=0.04) after treatment in the aquatic therapy group. However, only significant improvements in maximal isometric strength in the knee extensors (p=0.03) and flexors (p=0.04) were found within the aquatic therapy group and control group. Water-based aerobic exercise performed on a motorized aquatic treadmill had beneficial effect on isometric muscle strength in the lower limb.
Ward, Rachel E; Beauchamp, Marla K; Latham, Nancy K; Leveille, Suzanne G; Percac-Lima, Sanja; Kurlinski, Laura; Ni, Pengsheng; Goldstein, Richard; Jette, Alan M; Bean, Jonathan F
2016-08-01
To identify neuromuscular impairments most predictive of unfavorable mobility outcomes in late life. Longitudinal cohort study. Research clinic. Community-dwelling primary care patients aged ≥65 years (N=391) with self-reported mobility modifications, randomly selected from a research registry. Not applicable. Categories of decline in and persistently poor mobility across baseline, 1 and 2 years of follow-up in the Lower-Extremity Function scales of the Late-Life Function and Disability Instrument. The following categories of impairment were assessed as potential predictors of mobility change: strength (leg strength), speed of movement (leg velocity, reaction time, rapid leg coordination), range of motion (ROM) (knee flexion/knee extension/ankle ROM), asymmetry (asymmetry of leg strength and knee flexion/extension ROM measures), and trunk stability (trunk extensor endurance, kyphosis). The largest effect sizes were found for baseline weaker leg strength (odds ratio [95% confidence interval]: 3.45 [1.72-6.95]), trunk extensor endurance (2.98 [1.56-5.70]), and slower leg velocity (2.35 [1.21-4.58]) predicting a greater likelihood of persistently poor function over 2 years. Baseline weaker leg strength, trunk extensor endurance, and restricted knee flexion motion also predicted a greater likelihood of decline in function (1.72 [1.10-2.70], 1.83 [1.13-2.95], and 2.03 [1.24-3.35], respectively). Older adults exhibiting poor mobility may be prime candidates for rehabilitation focused on improving these impairments. These findings lay the groundwork for developing interventions aimed at optimizing rehabilitative care and disability prevention, and highlight the importance of both well-recognized (leg strength) and novel impairments (leg velocity, trunk extensor muscle endurance). Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Influence of strength training intensity on subsequent recovery in elderly.
Orssatto, L B R; Moura, B M; Bezerra, E S; Andersen, L L; Oliveira, S N; Diefenthaeler, F
2018-06-01
Understanding the influence of strength training intensity on subsequent recovery in elderly is important to avoid reductions in physical function during the days following training. Twenty-two elderly were randomized in two groups: G70 (65.9 ± 4.8 years, n = 11) and G95 (66.9 ± 5.1, n = 11). Baseline tests included maximum voluntary isometric contraction (peak torque and rate of torque development - RTD), countermovement jump, and functional capacity (timed up and go, stairs ascent and descent). Then, both groups performed a single strength training session with intensities of 70% (G70) or 95% (G95) of five repetition maximum. The same tests were repeated immediately, 24 h, 48 h, and 72 h after the session. Peak torque was lower than baseline immediately after for both groups and at 24 h for G95. Compared with G70, G95 had lower peak torque at 24 h and 48 h. Countermovement jump, timed up and go, stairs ascent, and RTD at 0-50 ms only differed from baseline immediately after for both groups. RTD at 0-200 ms was lower than baseline immediately after and 24 h after the session for both groups. In conclusion, reduced physical function immediately after strength training can last for 1-2 days in elderly depending on the type of physical function and intensity of training. Higher intensity resulted in greater impairment. Exercise prescription in elderly should take this into account, e.g., by gradually increasing intensity during the first months of strength training. These results have relevance for elderly who have to be fit for work or other activities in the days following strength training. Copyright © 2018 Elsevier Inc. All rights reserved.
Jansen, Mariette J; Viechtbauer, Wolfgang; Lenssen, Antoine F; Hendriks, Erik J M; de Bie, Rob A
2011-01-01
What are the effects of strength training alone, exercise therapy alone, and exercise with additional passive manual mobilisation on pain and function in people with knee osteoarthritis compared to control? What are the effects of these interventions relative to each other? A meta-analysis of randomised controlled trials. Adults with osteoarthritis of the knee. INTERVENTION TYPES: Strength training alone, exercise therapy alone (combination of strength training with active range of motion exercises and aerobic activity), or exercise with additional passive manual mobilisation, versus any non-exercise control. Comparisons between the three interventions were also sought. The primary outcome measures were pain and physical function. 12 trials compared one of the interventions against control. The effect size on pain was 0.38 (95% CI 0.23 to 0.54) for strength training, 0.34 (95% CI 0.19 to 0.49) for exercise, and 0.69 (95% CI 0.42 to 0.96) for exercise plus manual mobilisation. Each intervention also improved physical function significantly. No randomised comparisons of the three interventions were identified. However, meta-regression indicated that exercise plus manual mobilisations improved pain significantly more than exercise alone (p = 0.03). The remaining comparisons between the three interventions for pain and physical function were not significant. Exercise therapy plus manual mobilisation showed a moderate effect size on pain compared to the small effect sizes for strength training or exercise therapy alone. To achieve better pain relief in patients with knee osteoarthritis physiotherapists or manual therapists might consider adding manual mobilisation to optimise supervised active exercise programs. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.
Hand dysfunction in type 2 diabetes mellitus: Systematic review with meta-analysis.
Gundmi, Shubha; Maiya, Arun G; Bhat, Anil K; Ravishankar, N; Hande, Manjunatha H; Rajagopal, K V
2018-03-01
People with type 2 diabetes mellitus frequently show complications in feet and hands. However, the literature has mostly focused on foot complications. The disease can affect the strength and dexterity of the hands, thereby reducing function. This systematic review and meta-analysis focused on identifying the existing evidence on how type 2 diabetes mellitus affects hand strength, dexterity and function. We searched MEDLINE via PubMed, CINHAL, Scopus and Web of Science, and the Cochrane central register of controlled trials for reports of studies of grip and pinch strength as well as hand dexterity and function evaluated by questionnaires comparing patients with type 2 diabetes mellitus and healthy controls that were published between 1990 and 2017. Data are reported as standardized mean difference (SMD) or mean difference (MD) and 95% confidence intervals (CIs). Among 2077 records retrieved, only 7 full-text articles were available for meta-analysis. For both the dominant and non-dominant hand, type 2 diabetes mellitus negatively affected grip strength (SMD: -1.03; 95% CI: -2.24 to 0.18 and -1.37, -3.07 to 0.33) and pinch strength (-1.09, -2.56 to 0.38 and -1.12, -2.73 to 0.49), although not significantly. Dexterity of the dominant hand did not differ between diabetes and control groups but was poorer for the non-dominant hand, although not significantly. Hand function was worse for diabetes than control groups in 2 studies (MD: -8.7; 95% CI: -16.88 to -1.52 and 4.69, 2.03 to 7.35). This systematic review with meta-analysis suggested reduced hand function, specifically grip and pinch strength, for people with type 2 diabetes mellitus versus healthy controls. However, the sample size for all studies was low. Hence, we need studies with adequate sample size and randomized controlled trials to provide statistically significant results. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene
2015-11-01
Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.
Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier
NASA Astrophysics Data System (ADS)
Shuaib, Mohd; Sharma, Vijay R.; Yadav, Abhishek; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.
2017-10-01
In the present work, excitation functions of several reaction residues in the system 19F+169Tm, populated via the complete and incomplete fusion processes, have been measured using off-line γ-ray spectroscopy. The analysis of excitation functions has been done within the framework of statistical model code pace4. The excitation functions of residues populated via xn and pxn channels are found to be in good agreement with those estimated by the theoretical model code, which confirms the production of these residues solely via complete fusion process. However, a significant enhancement has been observed in the cross-sections of residues involving α-emitting channels as compared to the theoretical predictions. The observed enhancement in the cross-sections has been attributed to the incomplete fusion processes. In order to have a better insight into the onset and strength of incomplete fusion, the incomplete fusion strength function has been deduced. At present, there is no theoretical model available which can satisfactorily explain the incomplete fusion reaction data at energies ≈4-6 MeV/nucleon. In the present work, the influence of incomplete fusion on complete fusion in the 19F+169Tm system has also been studied. The measured cross-section data may be important for the development of reactor technology as well. It has been found that the incomplete fusion strength function strongly depends on the α-Q value of the projectile, which is found to be in good agreement with the existing literature data. The analysis strongly supports the projectile-dependent mass-asymmetry systematics. In order to study the influence of Coulomb effect ({Z}{{P}}{Z}{{T}}) on incomplete fusion, the deduced strength function for the present work is compared with the nearby projectile-target combinations. The incomplete fusion strength function is found to increase linearly with {Z}{{P}}{Z}{{T}}, indicating a strong influence of Coulomb effect in the incomplete fusion reactions.
Riddle, Daniel L; Stratford, Paul W
2011-10-01
Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. A cross-sectional design was used. Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from -.36 (95% confidence interval=-.41, -.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing.
Hafezeqoran, Ali; Koodaryan, Roodabeh
2017-09-21
Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.
Stratford, Paul W.
2011-01-01
Background Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. Objective The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. Design A cross-sectional design was used. Methods Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Results Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from −.36 (95% confidence interval=−.41, −.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. Limitations The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Conclusions Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing. PMID:21835892
Loyd, Brian J; Jennings, Jason M; Judd, Dana L; Kim, Raymond H; Wolfe, Pamela; Dennis, Douglas A; Stevens-Lapsley, Jennifer E
2017-09-01
Total knee arthroplasty (TKA) is associated with declines in hip abductor (HA) muscle strength; however, a longitudinal analysis demonstrating the influence of TKA on trajectories of HA strength change has not been conducted. The purpose of this study was to quantify changes in HA strength from pre-TKA through 3 months post-TKA and to characterize the relationship between HA strength changes and physical performance. This study is a post hoc analysis of a randomized controlled trial. Data from 162 participants (89 women, mean age = 63 y) were used for analysis. Data were collected by masked assessors preoperatively and at 1 and 3 months following surgery. Outcomes included: Timed "Up and Go" test (TUG), Stair Climbing Test (SCT), Six-Minute Walk Test (6MWT), and walking speed. Paired t tests were used for between- and within-limb comparisons of HA strength. Multivariable regression was used to determine contributions of independent variables, HA and knee extensor strength, to the dependent variables of TUG, SCT, 6MWT, and walking speed at each time point. Hip abductor strength was significantly lower in the surgical limb pre-TKA (mean = 0.015; 95% CI = 0.010-0.020), 1 month post-TKA (0.028; 0.023-0.034), and 3 months post-TKA (0.02; 0.014-0.025) compared with the nonsurgical limb. Hip abductor strength declined from pre-TKA to 1 month post-TKA (18%), but not at the 3-month time point (0%). Hip abductor strength independently contributed to performance-based outcomes pre-TKA; however, this contribution was not observed post-TKA. The post hoc analysis prevents examining all outcomes likely to be influenced by HA strength. Surgical limb HA strength is impaired prior to TKA, and worsens following surgery. Furthermore, HA strength contributes to performance-based outcomes, supporting the hypothesis that HA strength influences functional recovery. © 2017 American Physical Therapy Association
Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F
2015-01-01
Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940
NASA Technical Reports Server (NTRS)
Aghazadeh, Fred
2005-01-01
The objective of the planned summer research was to develop a procedure to determine the isokinetic functional strength of suited and unsuited participants in order to estimate the coefficient of micro-gravity suit on human strength. To accomplish this objective, the Anthropometry and Biomechanics Facility's Multipurpose, Multiaxial Isokinetic dynamometer (MMID) was used. Development of procedure involved selection and testing of seven routines to be tested on MMID. We conducted the related experiments and collected the data for 12 participants. In addition to the above objective, we developed a procedure to assess the fatiguing characteristics of suited and unsuited participants using EMG technique. We collected EMG data on 10 participants while performing a programmed routing on MMID. EMG data along with information on the exerted forces, effector speed, number of repetitions, and duration of each routine were recorded for further analysis. Finally, gathering and tabulation Of data for various human strengths for updating of MSIS (HSIS) strength requirement, which started in summer 2003, also continued.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
Kaltsatou, Antonia; Mameletzi, Dimitra; Douka, Stella
2011-04-01
The purpose of the present study was to evaluate the influence of a mixed exercise program, including Greek traditional dances and upper body training, in physical function, strength and psychological condition of breast cancer survivors. Twenty-seven women (N = 27), who had been diagnosed and surgically treated for breast cancer, volunteered to participate in this study. The experimental group consisted of 14 women with mean age 56.6 (4.2) years. They attended supervised Greek traditional dance courses and upper body training (1 h, 3 sessions/week) for 24 weeks. The control group consisted of 13 sedentary women with mean age 57.1 (4.1) years. Blood pressure, heart rate, physical function (6-min walking test), handgrip strength, arm volume and psychological condition (Life Satisfaction Inventory and Beck Depression Inventory) were evaluated before and after the exercise program. The results showed significant increases of 19.9% for physical function, 24.3% for right handgrip strength, 26.1% for left handgrip strength, 36.3% for life satisfaction and also a decrease of 35% for depressive symptoms in the experimental group after the training program. Significant reductions of 9% for left hand and 13.7% for right hand arm volume were also found in the experimental group. Consequently, aerobic exercise with Greek traditional dances and upper body training could be an alternative choice of physical activity for breast cancer survivors, thus promoting benefits in physical function, strength and psychological condition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Olds, Margie; McNair, Peter; Nordez, Antoine; Cornu, Christophe
2011-01-01
Active muscle stiffness might protect the unstable shoulder from recurrent dislocation. To compare strength and active stiffness in participants with unilateral anterior shoulder instability and to examine the relationship between active stiffness and functional ability. Cross-sectional study. University research laboratory. Participants included 16 males (age range, 16-40 years; height = 179.4 ± 6.1 cm; mass = 79.1 ± 6.8 kg) with 2 or more episodes of unilateral traumatic anterior shoulder instability. Active stiffness and maximal voluntary strength were measured bilaterally in participants. In addition, quality of life, function, and perceived instability were measured using the Western Ontario Stability Index, American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, and Single Alpha Numeric Evaluation, respectively. We found less horizontal adduction strength (t(15) = -4.092, P = .001) and less stiffness at 30% (t(14) = -3.796, P = .002) and 50% (t(12) = -2.341, P = .04) maximal voluntary strength in the unstable than stable shoulder. Active stiffness was not correlated with quality of life, function, or perceived instability (r range, 0.0-0.25; P > .05). The observed reduction in stiffness in the unstable shoulder warrants inclusion of exercises in the rehabilitation program to protect the joint from perturbations that might lead to dislocation. The lack of association between active stiffness and quality of life, function, or perceived instability might indicate that stiffness plays a less direct role in shoulder stability.
Reference values for physical performance measures in the aging working population.
Cote, Mark P; Kenny, Anne; Dussetschleger, Jeffrey; Farr, Dana; Chaurasia, Ashok; Cherniack, Martin
2014-02-01
The aim of this study was to determine reference physical performance values in older aging workers. Cross-sectional physical performance measures were collected for 736 manufacturing workers to assess effects of work and nonwork factors on age-related changes in musculoskeletal function and health. Participants underwent surveys and physical testing that included bioelectrical impedance analysis, range-of-motion measures, exercise testing, and dynamic assessment. Physical characteristics, such as blood pressure and body fat percentage, were comparable to published values. Dynamic and range-of-motion measurements differed from published normative results. Women had age-related decreases in cervical extension and lateral rotation. Older men had better spinal flexion than expected. Predicted age-related decline in lower-extremity strength and shoulder strength in women was not seen. Men declined in handgrip, lower-extremity strength, and knee extension strength, but not trunk strength, across age groups. There was no appreciable decline in muscle fatigue at the trunk, shoulder, and knee with aging for either gender, except for the youngest age group of women. Normative values may underestimate physical performance in "healthy" older workers, thereby underappreciating declines in less healthy older workers. Work may be preservative of function for a large group of selected individuals. A "healthy worker effect" may be greater for musculoskeletal disease and function than for heart disease and mortality. Clinicians and researchers studying musculoskeletal function in older workers can use a more specific set of reference values.
Soldier Performance as a Function of Stress and Load: A Review
1990-01-01
1985) increasing load obstacle course decreased weight performance Ikai & Steinhaus shouting forearm flex strength increased (1961) gun shot increased...performance. Capacity represents relatively fil1 ed physiological limits of behavior, while performance is a function of psychological factors (Ikai & Steinhaus ...3), 513-524. Ikai, M., & Steinhaus , A. H. (1961). Some factors modifying the expression of human strength. Journal of ADnlied Physiology, 15, 157-163
Villafañe, Jorge H; Valdes, Kristin; Angulo-Diaz-Parreño, Santiago; Pillastrini, Paolo; Negrini, Stefano
2015-06-01
Grip testing is commonly used as an objective measure of strength in the hand and upper extremity and is frequently used clinically as a proxy measure of function. Increasing knowledge of hand biomechanics, muscle strength, and prehension patterns can provide us with a better understanding of the functional capabilities of the hand. The objectives of this study were to determine the contribution of ulnar digits to overall grip strength in individuals with thumb carpometacarpal (CMC) osteoarthritis (OA). Thirty-seven subjects participated in the study. This group consisted of 19 patients with CMC OA (aged 60-88 years) and 18 healthy subjects (60-88 years). Three hand configurations were used by the subjects during grip testing: use of the entire hand (index, middle, ring, and little fingers) (IMRL); use of the index, middle, and ring fingers (IMR); and use of only the index and middle fingers (IM). Grip strength findings for the two groups found that compared to their healthy counterparts, CMC OA patients had, on average, a strength deficiency of 45.6, 35.5, and 28.8 % in IMRL, IMR, and IM, respectively. The small finger contribution to grip is 14.3 % and the ring and small finger contribute 34 % in subjects with CMC OA. Grip strength decreases as the number of digits contributing decreased in both groups. The ulnar digits contribution to grip strength is greater than one third of total grip strength in subjects with CMC OA. Individuals with CMC OA demonstrate significantly decreased grip strength when compared to their healthy counterparts.
Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength
NASA Astrophysics Data System (ADS)
Ams, D.; Swanson, J. S.; Reed, D. T.
2010-12-01
Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.
Kim, Jaeeun; Yim, Jongeun
2017-11-13
BACKGROUND Handgrip strength and walking speed predict and influence cognitive function. We aimed to investigate an exercise protocol for improving handgrip strength and walking speed, applied to patients with chronic stroke who had cognitive function disorder. MATERIAL AND METHODS Twenty-nine patients with cognitive function disorder participated in this study, and were randomly divided into one of two groups: exercise group (n=14) and control group (n=15). Both groups underwent conventional physical therapy for 60 minutes per day. Additionally, the exercise group followed an exercise protocol for handgrip using the hand exerciser, power web exerciser, Digi-Flex (15 minutes); and treadmill-based weight loading training on their less-affected leg (15 minutes) using a sandbag for 30 minutes, three times per day, for six weeks. Outcomes, including cognitive function and gait ability, were measured before and after the training. RESULTS The Korean version of Montreal Cognitive Assessment (K-MoCA), Stroop test (both simple and interference), Trail Making-B, Timed Up and Go, and 10-Meter Walk tests (p<0.05) yielded improved results for the exercise group compared with the control group. Importantly, the K-MoCA, Timed Up and Go, and 10-Meter Walk test results were significantly different between the two groups (p<0.05). CONCLUSIONS The exercise protocol for improving handgrip strength and walking speed had positive effects on cognitive function in patients with chronic stroke.
Association of sarcopenia with functional decline in community-dwelling elderly subjects in Japan.
Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Tanimoto, Keiji; Shishikura, Kanako; Sugiura, Yumiko; Kusabiraki, Toshiyuki; Kono, Koichi
2013-10-01
The present study aimed to determine the association of sarcopenia, defined by muscle mass, muscle strength and physical performance, with functional disability from a 2-year cohort study of community-dwelling elderly Japanese people. Participants were 743 community-dwelling elderly Japanese people aged 65 years or older. We used bioelectrical impedance analysis (BIA) to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance in a baseline study. Functional disability was defined using an activities of daily living (ADL) scale and instrumental activities of daily living (IADL) scale at baseline and during follow-up examinations 2 years later. Logistic regression analysis, adjusted for age and body mass index, was used to examine the association between sarcopenia and the occurrence of functional disability. In the present study, 7.8% of men and 10.2% of women were classified as having sarcopenia. Among sarcopenia patients in the baseline study, 36.8% of men and 18.8% of women became dependent in ADL at 2-year follow up. From the logistic regression analysis adjusted by age and body mass index, sarcopenia was significantly associated with the occurrences of physical disability compared with normal subjects in both men and women. Sarcopenia, defined by muscle mass, muscle strength and physical performance, was associated with functional decline over a 2-year period in elderly Japanese. Interventions to prevent sarcopenia are very important to prevent functional decline among elderly individuals. © 2013 Japan Geriatrics Society.
Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.
Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V
2017-09-11
The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.
Wachter, Nikolaus Johannes; Mentzel, Martin; Krischak, Gert D; Gülke, Joachim
2017-06-24
In the assessment of hand and upper limb function, grip strength is of the major importance. The measurement by dynamometers has been established. In this study, the effect of a simulated ulnar nerve lesion on different grip force measurements was evaluated. In 25 healthy volunteers, grip force measurement was done by the JAMAR dynamometer (Fabrication Enterprises Inc, Irvington, NY) for power grip and by a pinch strength dynamometer for tip pinch strength, tripod grip, and key pinch strength. A within-subject research design was used in this prospective study. Each subject served as the control by preinjection measurements of grip and pinch strength. Subsequent measurements after ulnar nerve block were used to examine within-subject change. In power grip, there was a significant reduction of maximum grip force of 26.9% with ulnar nerve block compared with grip force without block (P < .0001). Larger reductions in pinch strength were observed with block: 57.5% in tip pinch strength (P < .0001), 61.0% in tripod grip (P < .0001), and 58.3% in key pinch strength (P < .0001). The effect of the distal ulnar nerve block on grip and pinch force could be confirmed. However, the assessment of other dimensions of hand strength as tip pinch, tripod pinch and key pinch had more relevance in demonstrating hand strength changes resulting from an distal ulnar nerve lesion. The measurement of tip pinch, tripod grip and key pinch can improve the follow-up in hand rehabilitation. II. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N I
NASA Astrophysics Data System (ADS)
Tayal, S. S.
2006-03-01
The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N I lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strengths over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s22p3 4So, 2Do, 2Po, 2s2p4 4P, 2s22p23s 4P, and 2P terms and from these levels to the levels of the 2s22p23p 2So, 4Do, 4Po, 4So, 2Do, 2Po, 2s22p23s 2D, 2s22p24s 4P, 2P, 2s22p23d 2P, 4F, 2F, 4P, 4D, and 2D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.
Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi
2017-01-01
Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01) and with knee extensor muscle strength (r = −0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation. PMID:29186880
Willigenburg, Nienke; Hewett, Timothy E.
2016-01-01
Objective To define the relationship between FMS™ scores and hop performance, hip strength, and knee strength in collegiate football players. Design Cross-sectional cohort. Participants Freshmen of a division I collegiate American football team (n=59). Main Outcome Measures The athletes performed the FMS™, as well as a variety of hop tests, isokinetic knee strength and isometric hip strength tasks. We recorded total FMS™ score, peak strength and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman’s correlation coefficients quantified the relationships these measures, and chi-square analyses compared the number of athletes with asymmetries on the different tasks. Results We observed significant correlations (r=0.38–0.56, p≤0.02) between FMS™ scores and hop distance, but not between FMS™ scores and hip or knee strength (all p≥0.21). The amount of asymmetry on the FMS™ test was significantly correlated to the amount of asymmetry on the timed 6m hop (r=0.44, p<0.01), but not to hip or knee strength asymmetries between limbs (all p≥0.34). Conclusions FMS™ score was positively correlated to hop distance, and limb asymmetry in FMS™ tasks was correlated to limb asymmetry in 6m hop time in football players. No significant correlations were observed between FMS™ score and hip and knee strength, or between FMS™ asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time and cost efficient alternative to FMS™ testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries. PMID:26886801
Gray, Michelle; Powers, Melissa; Boyd, Larissa; Garver, Kayla
2018-03-22
Functional mobility disability affects more than one in five adults over 70 years and increases to 80% by 90 years. While negative changes in mobility are multifactorial, deleterious body composition changes contribute significantly. Resistance training alters the negative trajectory of physical function as well as increases lean mass among older adults. Recently, high-velocity (HV) resistance training has been indicated as an effective intervention to increase lean mass and functional performance. The present investigation compared body composition, physical function, and muscular strength changes between HV and LV resistance training programs. Participants > 65 years (n = 53) were randomly assigned to LV, HV, or active control (AC) group and participated in their respective intervention for 48 weeks. Analysis of covariance revealed no significant body composition changes over time between groups (p > 0.05). Eight-foot up-and-go performance improved in the HV and AC groups (p < 0.05) with no change in the LV group (p > 0.05) over time. Muscular strength increased in both the LV and HV groups within the first 24 weeks, while only in the LV group, muscular strength continued to increase from 24 to 48 weeks (p < 0.05). Resistance training appears to be an effective intervention for improving aspects of physical function and muscular strength; however, no significant changes in body composition were observed over the 48-week intervention. Findings from the current investigation support use of resistance training for improving physical function among community-dwelling older adults.
Functional polymorphisms associated with human muscle size and strength.
Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P
2004-07-01
Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.
El-Shamy, S
2017-06-01
The objective was to evaluate the effects of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. Thirty children with hemophilia with age ranging from 9 to 13 years were selected and randomly assigned to either the study group that received whole body vibration training (30-40 Hz, 2-4 mm of peak-to-peak vertical plate displacement for 15 minutes/day, 3 days/week/ 12 weeks) plus the conventional physical therapy program or the control group that performed a conventional physical therapy program only. Outcomes included quadriceps strength, bone mineral density, and the functional capacity. Children in the study group showed a significant improvement in all outcomes compared with the control group. The quadriceps peak torque after treatment was 70.26 and 56.46 Nm for the study and control group, respectively (p⟨0.001). The lumbar spine bone mineral density after treatment was 0.85 and 0.72 g/cm 2 for the study and control group, respectively (p⟨0.001). The functional capacity after treatment was 325 and 290 m for the study and control group, respectively (p=0.006). Whole body vibration training is an effective modality in increasing quadriceps strength, bone mineral density, and functional capacity in children with hemophilia.
El-Shamy, S.
2017-01-01
Objectives: The objective was to evaluate the effects of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. Methods: Thirty children with hemophilia with age ranging from 9 to 13 years were selected and randomly assigned to either the study group that received whole body vibration training (30-40 Hz, 2-4 mm of peak-to-peak vertical plate displacement for 15 minutes/day, 3 days/week/ 12 weeks) plus the conventional physical therapy program or the control group that performed a conventional physical therapy program only. Outcomes included quadriceps strength, bone mineral density, and the functional capacity. Results: Children in the study group showed a significant improvement in all outcomes compared with the control group. The quadriceps peak torque after treatment was 70.26 and 56.46 Nm for the study and control group, respectively (p<0.001). The lumbar spine bone mineral density after treatment was 0.85 and 0.72 g/cm2 for the study and control group, respectively (p<0.001). The functional capacity after treatment was 325 and 290 m for the study and control group, respectively (p=0.006). Conclusions: Whole body vibration training is an effective modality in increasing quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. PMID:28574408
Evaluation of Serial Casting for Boys with Duchenne Muscular Dystrophy: A Case Report.
Carroll, Kate; de Valle, Katy; Kornberg, Andrew; Ryan, Monique; Kennedy, Rachel
2018-02-01
To report the effects of below-knee serial casting in two boys with Duchenne muscular dystrophy who presented with well-preserved strength and calf shortening. Bilateral below-knee serial casts were applied over two weeks with follow-up of daily stretching and wearing of customized night splints. Outcome measures were performed at baseline, 1, 3, 6, and 12 months post-casting. These included measures of calf length, leg strength, motor function, endurance, and spatio-temporal gait parameters. Both boys completed serial casting with gains in muscle length. No adverse effects on strength or motor function were observed over a 12-month follow-up period.
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian
2016-08-01
To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.
Ratajczak, Karina; Płomiński, Janusz
2015-01-01
The most common fracture of the distal end of the radius is Colles' fracture. Treatment modalities available for use in hand rehabilitation after injury include massage. The aim of this study was to evaluate the effect of isometric massage on the recovery of hand function in patients with Colles fractures. For this purpose, the strength of the finger flexors was assessed as an objective criterion for the evaluation of hand function. The study involved 40 patients, randomly divided into Group A of 20 patients and Group B of 20 patients. All patients received physical therapy and exercised individually with a physiotherapist. Isometric massage was additionally used in Group A. Global grip strength was assessed using a pneumatic force meter on the first and last day of therapy. Statistical analysis was performed using STATISTICA. Statistical significance was defined as a P value of less than 0.05. In both groups, global grip strength increased significantly after the therapy. There was no statistically significant difference between the groups. The men and women in both groups equally improved grip strength. A statistically significant difference was demonstrated between younger and older patients, with younger patients achieving greater gains in global grip strength in both groups. The incorporation of isometric massage in the rehabilitation plan of patients after a distal radial fracture did not significantly contribute to faster recovery of hand function or improve their quality of life.
McKnight, Patrick E.; Kasle, Shelley; Going, Scott; Villaneuva, Isidro; Cornett, Michelle; Farr, Josh; Wright, Jill; Streeter, Clara; Zautra, Alex
2010-01-01
Objective To assess the relative effectiveness of combining self-management and strength-training for improving functional outcomes in early knee osteoarthritis patients. Methods A randomized intervention trial lasting 24 months conducted at an academic medical center. Community dwelling middle-aged adults (N=273), aged 34 to 65 with knee osteoarthritis, pain and self-reported physical disability completed a strength-training program, a self-management program, or a combined program. Outcomes included five physical function tests (leg press, range of motion, work capacity, balance, and stair climbing) and two self-reported measures of pain and disability. Results A total of 201 (73.6 %) participants completed the 2-year trial. Overall compliance was modest - strength-training (55.8 %), self-management (69.1 %), and combined (59.6 %) programs. The three groups showed a significant and large increase from pre- to post-treatment in all physical functioning measures including leg press (d =.85), range of motion (d=1.00), work capacity (d=.60), balance (d=.59), and stair climbing (d=.59). Additionally, all three groups showed decreased self-reported pain (d=-.51) and disability (d=-.55). There were no significant differences among groups. Conclusions Middle-aged, sedentary persons with mild early knee osteoarthritis benefited from strength-training, self-management, and the combination. These results suggest that both strength-training and self-management are suitable treatments for early onset of knee osteoarthritis in middle-aged adults. Self-management alone may offer the least burdensome treatment for early osteoarthritis. PMID:20191490
Zhang, Bin; Haines, Morgan B.; Kelchner, Lisa N.
2017-01-01
Purpose This systematic review summarizes the effects of isometric lingual strength training on lingual strength and swallow function in adult populations. Furthermore, it evaluates the designs of the reviewed studies and identifies areas of future research in isometric lingual strength training for dysphagia remediation. Method A comprehensive literature search of 3 databases and additional backward citation search identified 10 studies for inclusion in the review. The review reports and discusses the isometric-exercise intervention protocols, pre- and postintervention lingual-pressure data (maximum peak pressures and lingual-palatal pressures during swallowing), and oropharyngeal swallowing measures such as penetration-aspiration scales, oropharyngeal residue and duration, lingual volumes, and quality-of-life assessments. Results Studies reported gains in maximum peak lingual pressures following isometric lingual strength training for both healthy adults and select groups of individuals with dysphagia. However, due to the variability in study designs, it remains unclear whether strength gains generalize to swallow function. Conclusion Although isometric lingual strength training is a promising intervention for oropharyngeal dysphagia, the current literature is too variable to confidently report specific therapeutic benefits. Future investigations should target homogenous patient populations and use randomized controlled trials to determine the efficacy of this treatment for individuals with dysphagia. PMID:28282484
Strength training for plantar fasciitis and the intrinsic foot musculature: A systematic review.
Huffer, Dean; Hing, Wayne; Newton, Richard; Clair, Mike
2017-03-01
The aim was to critically evaluate the literature investigating strength training interventions in the treatment of plantar fasciitis and improving intrinsic foot musculature strength. A search of PubMed, CINHAL, Web of Science, SPORTSDiscus, EBSCO Academic Search Complete and PEDRO using the search terms plantar fasciitis, strength, strengthening, resistance training, intrinsic flexor foot, resistance training. Seven articles met the eligibility criteria. Methodological quality was assessed using the modified Downs and Black checklist. All articles showed moderate to high quality, however external validity was low. A comparison of the interventions highlights significant differences in strength training approaches to treating plantar fasciitis and improving intrinsic strength. It was not possible to identify the extent to which strengthening interventions for intrinsic musculature may benefit symptomatic or at risk populations to plantar fasciitis. There is limited external validity that foot exercises, toe flexion against resistance and minimalist running shoes may contribute to improved intrinsic foot musculature function. Despite no plantar fascia thickness changes being observed through high-load plantar fascia resistance training there are indications that it may aid in a reduction of pain and improvements in function. Further research should use standardised outcome measures to assess intrinsic foot musculature strength and plantar fasciitis symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.
The intensity and effects of strength training in the elderly.
Mayer, Frank; Scharhag-Rosenberger, Friederike; Carlsohn, Anja; Cassel, Michael; Müller, Steffen; Scharhag, Jürgen
2011-05-01
The elderly need strength training more and more as they grow older to stay mobile for their everyday activities. The goal of training is to reduce the loss of muscle mass and the resulting loss of motor function. The dose-response relationship of training intensity to training effect has not yet been fully elucidated. PubMed was selectively searched for articles that appeared in the past 5 years about the effects and dose-response relationship of strength training in the elderly. Strength training in the elderly (>60 years) increases muscle strength by increasing muscle mass, and by improving the recruitment of motor units, and increasing their firing rate. Muscle mass can be increased through training at an intensity corresponding to 60% to 85% of the individual maximum voluntary strength. Improving the rate of force development requires training at a higher intensity (above 85%), in the elderly just as in younger persons. It is now recommended that healthy old people should train 3 or 4 times weekly for the best results; persons with poor performance at the outset can achieve improvement even with less frequent training. Side effects are rare. Progressive strength training in the elderly is efficient, even with higher intensities, to reduce sarcopenia, and to retain motor function.
Fry, Prem S.; Debats, Dominique L.
2014-01-01
Both cognitive and psychosocial theories of adult development stress the fundamental role of older adults' appraisals of the diverse sources of cognitive and social-emotional strengths. This study reports the development of a new self-appraisal measure that incorporates key theoretical dimensions of internal and external sources of life strengths, as identified in the gerontological literature. Using a pilot study sample and three other independent samples to examine older adults' appraisals of their sources of life strengths which helped them in their daily functioning and to combat life challenges, adversity, and losses, a psychometric instrument having appropriate reliability and validity properties was developed. A 24-month followup of a randomly selected sample confirmed that the nine-scale appraisal measure (SLSAS) is a promising instrument for appraising older adults' sources of life strengths in dealing with stresses of daily life's functioning and also a robust measure for predicting outcomes of resilience, autonomy, and well-being for this age group. A unique strength of the appraisal instrument is its critically relevant features of brevity, simplicity of language, and ease of administration to frail older adults. Dedicated to the memory of Shanta Khurana whose assistance in the pilot work for the study was invaluable PMID:24772352
Supraspinatus tendon micromorphology in individuals with subacromial pain syndrome.
Pozzi, Federico; Seitz, Amee L; Plummer, Hillary A; Chow, Kira; Bashford, Gregory R; Michener, Lori A
Cross-sectional cohort. Tendon collagen organization can be estimated by peak spatial frequency radius (PSFR) on ultrasound images. Characterizing PSFR can define the contribution of collagen disruption to shoulder symptoms. The purpose of this was to characterize the (1) supraspinatus tendon PSFR in participants with subacromial pain syndrome (SPS) and healthy controls; (2) PSFR between participants grouped on a tendon visual quality score; and (3) relationship between PSFR with patient-reported pain, function, and shoulder strength. Participants with SPS (n = 20) and age, sex, and arm-dominance-matched healthy controls (n = 20) completed strength testing in scaption and external rotation, and patient-reported pain, and functional outcomes. Supraspinatus tendon ultrasound images were acquired, and PSFR was calculated for a region of interest 15 mm medial to the supraspinatus footprint. PSFR was compared between groups using an independent t-test and an analysis of variance to compare between 3 groups for visually qualitatively rated tendon abnormalities. Relationships between PSFR with pain, function, and strength were assessed using Pearson correlation coefficient. Supraspinatus tendon PSFR was not different between groups (P = .190) or tendon qualitative ratings (P = .556). No relationship was found between PSFR and pain, functional loss, and strength (P > .05). Collagen disruption (PSFR) measured via ultrasound images of the supraspinatus tendon was not different between participants with SPS or in those with visually rated tendon defects. PSFR is not related to shoulder pain, function, and strength, suggesting that supraspinatus tendon collagen disorganization may not be a contributing factor to shoulder SPS. However, collagen disruption may not be isolated to a single region of interest. 3b: case-control study. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship
Jandačka, Daniel; Beremlijski, Petr
2011-01-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484
Determination of strength exercise intensities based on the load-power-velocity relationship.
Jandačka, Daniel; Beremlijski, Petr
2011-06-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.
Lin, Shu-Fen; Sung, Huei-Chuan; Li, Tzai-Li; Hsieh, Tsung-Cheng; Lan, Hsiao-Chin; Perng, Shoa-Jen; Smith, Graeme D
2015-05-01
The aim of this study was to investigate the effects of Tai-Chi in conjunction with thera-band resistance exercise on functional fitness and muscle strength in community-based older people. Tai-Chi is known to improve functional fitness in older people. Tai-Chi is usually performed with free hands without resistance training and usually focuses on training lower limbs. To date, no study has examined the use of Tai-Chi in conjunction with thera-band resistance exercise in this population. Cluster randomised trial design. Older people at six senior day care centres in Taiwan were assigned to thera-band resistance exercise or control group using a cluster randomisation. The thera-band resistance exercise group (n = 48) received sixty minute thera-band resistance exercise twice weekly for a period of 16 weeks. The control group (n = 47) underwent routine activities in the day care centre, receiving no Tai-Chi or resistance exercise. After receiving the thera-band resistance exercise, intervention participants displayed a significant increase in muscle strength of upper and lower extremities. Significant improvements were recorded on most measures of the Senior Fitness Test, with the exception of the chair-stand and back-scratch test. Thera-band resistance exercise has the potential to improve functional fitness and muscle strength in community-based older people. Thera-band resistance exercise potentially offers a safe and appropriate form of physical activity that nursing staff can easily incorporate into the daily routine of older people in day care centres, potentially improving functional performance and muscle strength. © 2015 John Wiley & Sons Ltd.
Exercise training guidelines for the elderly.
Evans, W J
1999-01-01
The capacity of older men and women to adapt to increased levels of physical activity is preserved, even in the most elderly. Aerobic exercise results in improvements in functional capacity and reduced risk of developing Type II diabetes in the elderly. High-intensity resistance training (above 60% of the one repetition maximum) has been demonstrated to cause large increases in strength in the elderly. In addition, resistance training result in significant increases in muscle size in elderly men and women. Resistance training has also been shown to significantly increase energy requirements and insulin action of the elderly. We have recently demonstrated that resistance training has a positive effect on multiple risk factors for osteoporotic fracture in previously sedentary postmenopausal women. Because the sedentary lifestyle of a long-term care facility may exacerbate losses of muscle function, we have applied this same training program to frail, institutionalized elderly men and women. In a population of 100 nursing home residents, a randomly assigned high-intensity strength-training program resulted in significant gains in strength and functional status. In addition, spontaneous activity, measured by activity monitors, increased significantly in those participating in the exercise program whereas there was no change in the sedentary control group. Before the strength training intervention, the relationship of whole body potassium and leg strength was seen to be relatively weak (r2 = 0.29, P < 0.001), indicating that in the very old, muscle mass is an important but not the only determining factor of functional status. Thus, exercise may minimize or reverse the syndrome of physical frailty, which is so prevalent among the most elderly. Because of their low functional status and high incidence of chronic disease, there is no segment of the population that can benefit more from exercise than the elderly.
Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual, appendix 2
NASA Technical Reports Server (NTRS)
Boyce, Lola; Lovelace, Thomas B.
1989-01-01
The FORTRAN programs RANDOM3 and RANDOM4 are documented. They are based on fatigue strength reduction, using a probabilistic constitutive model. They predict the random lifetime of an engine component to reach a given fatigue strength. Included in this user manual are details regarding the theoretical backgrounds of RANDOM3 and RANDOM4. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B and C include photocopies of the actual computer printout corresponding to the sample problems. Appendices D and E detail the IMSL, Version 10(1), subroutines and functions called by RANDOM3 and RANDOM4 and SAS/GRAPH(2) programs that can be used to plot both the probability density functions (p.d.f.) and the cumulative distribution functions (c.d.f.).
Salgado, Bryan Coleman; Jones, Maitri; Ilgun, Suzanne; McCord, Gyandev; Loper-Powers, Mangala; van Houten, Peter
2013-01-01
Yoga has been found to be effective for addressing problems with strength, flexibility, balance, gait, anxiety, depression, and concentration. Varying degrees of these problems occur in individuals with multiple sclerosis (MS). This study examined the effects of a comprehensive, 4-month yoga program on strength, mobility, balance, respiratory function, and quality of life for individuals with MS. Twenty four individuals with MS participated in an intensive Ananda Yoga training followed by 17 weeks of home practice. Significant improvements in functional strength, balance, and peak expiratory flow and a trend toward improvements in mental health and quality of life outcomes were detected following the intervention. The results of this exploratory study suggest that yoga can have a positive impact on physical functioning and quality of life for persons with mild to moderate MS.
Clinical assessment of hand strength using a microcomputer.
Jain, A S; Hennedy, J A; Carus, D A
1985-10-01
A microcomputer based system has been designed for precise, objective quantification of hand strength. Pinch, grasp and shear strengths are measured using force transducers. The system, which is quick and easy to operate, not only measures these strengths accurately, but also collects, stores and displays this data numerically or in graphical form, at the touch of a button. The data can be manipulated to answer any type of statistical question related to any group of patients. The assessment of hand strength in ninety-six people, representing normal hand function, by means of this system, is reported.
Pincivero, D M; Lephart, S M; Karunakara, R G
1997-09-01
The ability to maximally generate active muscle tension during resistance training has been established to be a primary determinant for strength development. The influence of intrasession rest intervals may have a profound effect on strength gains subsequent to short-term high intensity training. The purpose of this study was to examine the effects of rest interval on strength and functional performance after four weeks of isokinetic training. Fifteen healthy college aged individuals were randomly assigned to either a short rest interval group (group 1, n = 8) or a long rest interval group (group 2, n = 7). Subjects were evaluated for quadriceps and hamstring isokinetic strength at 60 (five repetitions) and 180 (30 repetitions) degrees/second and functional performance with the single leg hop for distance test. One leg of each subject was randomly assigned to a four week, three days/week isokinetic strength training programme for concentric knee extension and flexion performed at 90 degrees/second. Subjects in group 1 received a 40 second rest interval in between exercise sets, whereas subjects in group 2 received a 160 second rest period. A two factor analysis of variance for the pre-test--post-test gain scores (%) showed significantly greater improvements for isokinetic hamstring total work and average power at 180 degrees/second for the trained limb of subjects in group 2 than their contralateral non-trained limb and the subjects in group 1. Significantly greater improvements for the single leg hop for distance were also found for the trained limbs of subjects in both groups as compared with the non-trained limbs. The findings indicate that a relatively longer intrasession rest period resulted in a greater improvement in hamstring muscle strength during short term high intensity training.
Mau-Moeller, Anett; Gube, Martin; Felser, Sabine; Feldhege, Frank; Weippert, Matthias; Husmann, Florian; Tischer, Thomas; Bader, Rainer; Bruhn, Sven; Behrens, Martin
2017-08-17
To determine intrasession and intersession reliability of strength measurements and hamstrings to quadriceps strength imbalance ratios (H/Q ratios) using the new isoforce dynamometer. Repeated measures. Exercise science laboratory. Thirty healthy subjects (15 females, 15 males, 27.8 years). Coefficient of variation (CV) and intraclass correlation coefficients (ICC) were calculated for (1) strength parameters, that is peak torque, mean work, and mean power for concentric and eccentric maximal voluntary contractions; isometric maximal voluntary torque (IMVT); rate of torque development (RTD), and (2) H/Q ratios, that is conventional concentric, eccentric, and isometric H/Q ratios (Hcon/Qcon at 60 deg/s, 120 deg/s, and 180 deg/s, Hecc/Qecc at -60 deg/s and Hiso/Qiso) and functional eccentric antagonist to concentric agonist H/Q ratios (Hecc/Qcon and Hcon/Qecc). High reliability: CV <10%, ICC >0.90; moderate reliability: CV between 10% and 20%, ICC between 0.80 and 0.90; low reliability: CV >20%, ICC <0.80. (1) Strength parameters: (a) high intrasession reliability for concentric, eccentric, and isometric measurements, (b) moderate-to-high intersession reliability for concentric and eccentric measurements and IMVT, and (c) moderate-to-high intrasession reliability but low intersession reliability for RTD. (2) H/Q ratios: (a) moderate-to-high intrasession reliability for conventional ratios, (b) high intrasession reliability for functional ratios, (c) higher intersession reliability for Hcon/Qcon and Hiso/Qiso (moderate to high) than Hecc/Qecc (low to moderate), and (d) higher intersession reliability for conventional H/Q ratios (low to high) than functional H/Q ratios (low to moderate). The results have confirmed the reliability of strength parameters and the most frequently used H/Q ratios.
Sakugawa, Raphael Luiz; Moura, Bruno Monteiro; Orssatto, Lucas Bet da Rosa; Bezerra, Ewertton de Souza; Cadore, Eduardo Lusa; Diefenthaeler, Fernando
2018-05-17
The interruption of training (detraining) results in loss of the gains acquired. Partial retention could occur after detraining, and variation in training stimuli may optimize retraining adaptations. To evaluate the effect of a resistance-retraining program on strength and functional capacity performance after a detraining period. Ten elderly men and women (63-68 years) completed 12 weeks of training, 16 weeks of detraining, and 8 weeks of retraining. One-repetition maximum (1-RM) at 45° leg press, maximum isometric knee extension torque, rate of torque development (RTD), 30-s sit-to-stand, timed up and go, and stair ascent and descent tests were assessed. The 1-RM increased after training (p < 0.01) and remained higher after a detraining period when compared to pre-training (p < 0.01). Post-retraining values were not different from post-training period (p > 0.05). For RTD and 30-s sit-to-stand, there was an increase after retraining when compared to pre-training values (p < 0.05). For timed up and go and stair ascent and descent, reductions were observed between pre-training and post-training periods (p < 0.05), only timed up and go increased after the detraining period (p < 0.01). After 16 weeks of detraining, the maximum strength did not return to baseline levels, and a retraining with explosive strength exercise sessions can recover maximum strength gains, RTD, and functional capacity at the same level obtained after a detraining period. The inclusion of an explosive strength session in retraining period improves RTD and 30-s sit-to-stand performance and can accelerate the recovery of strength after a detraining period.
2014-01-01
Background StemSport (SS; StemTech International, Inc. San Clemente, CA) contains a proprietary blend of the botanical Aphanizomenon flos-aquae and several herbal antioxidant and anti-inflammatory substances. SS has been purported to accelerate tissue repair and restore muscle function following resistance exercise. Here, we examine the effects of SS supplementation on strength adaptations resulting from a 12-week resistance training program in healthy young adults. Methods Twenty-four young adults (16 males, 8 females, mean age = 20.5 ± 1.9 years, mass = 70.9 ± 11.9 kg, stature = 176.6 ± 9.9 cm) completed the twelve week training program. The study design was a double-blind, placebo controlled parallel group trial. Subjects either received placebo or StemSport supplement (SS; mg/day) during the training. 1-RM bench press, 1-RM leg press, vertical jump height, balance (star excursion and center of mass excursion), isokinetic strength (elbow and knee flexion/extension) and perception of recovery were measured at baseline and following the 12-week training intervention. Results Resistance training increased 1-RM strength (p < 0.008), vertical jump height (p < 0.03), and isokinetic strength (p < 0.05) in both SS and placebo groups. No significant group-by-time interactions were observed (all p-values >0.10). Conclusions These data suggest that compared to placebo, the SS herbal/botanical supplement did not enhance training induced adaptations to strength, balance, and muscle function above strength training alone. PMID:24910543
Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children.
Chao, Tony; Porter, Craig; Herndon, David N; Siopi, Aikaterina; Ideker, Henry; Mlcak, Ronald P; Sidossis, Labros S; Suman, Oscar E
2018-03-01
Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V˙O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). Muscle strength and power, lean body mass, and V˙O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.
Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites
NASA Technical Reports Server (NTRS)
Sodano, Henry A.; Brett, Robert
2011-01-01
The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
Arnardottir, Snjolaug; Alexanderson, Helene; Lundberg, Ingrid E; Borg, Kristian
2003-01-01
To evaluate the safety and effect of a home training program on muscle function in 7 patients with sporadic inclusion body myositis. The patients performed exercise 5 days a week over a 12-week period. Safety was assessed by clinical examination, repeated muscle biopsies and serum levels of creatine kinase. Muscle strength was evaluated by clinical examination, dynamic dynamometer and by a functional index in myositis. Strength was not significantly improved after the exercise, however none of the patients deteriorated concerning muscle function. The histopathology was unchanged and there were no signs of increased muscle inflammation or of expression of cytokines and adhesion molecules in the muscle biopsies. Creatine kinase levels were unchanged. A significant decrease was found in the areas that were positively stained for EN-4 (a marker for endothelial cells) in the muscle biopsies after training. The home exercise program was considered as not harmful to the muscles regarding muscle inflammation and function. Exercise may prevent loss of muscle strength due to disease and/or inactivity.
ERIC Educational Resources Information Center
Hong, Wei-Hsien; Chen, Hseih-Ching; Shen, I-Hsuan; Chen, Chung-Yao; Chen, Chia-Ling; Chung, Chia-Ying
2012-01-01
The aim of this study was to evaluate the relationships of muscle strength at different angular velocities and gross motor functions in ambulatory children with cerebral palsy (CP). This study included 33 ambulatory children with spastic CP aged 6-15 years and 15 children with normal development. Children with CP were categorized into level I (n =…
Gfellner, Barbara
2016-01-01
This study investigated associations between ego strengths (psychosocial development), racial/ethnic identity using Multi-Ethnic Identity Measure-Revised (exploration, commitment) and Multidimensional Measure of Racial Identity (centrality, private regard, public regard) dimensions, and personal adjustment/well-being among 178 North American Indian/First Nations adolescents who resided and attended school on reserves. As predicted, ego strengths related directly with centrality, private regard, and the adjustment measures; the moderation of ego strengths for exploration, commitment, and private regard reflected adverse functioning for those with less than advanced ego strengths. As well, ego strengths mediated associations between centrality and private regard with several measures of personal well-being. Practical and theoretical implications are considered.
A Novel Application of Eddy Current Braking for Functional Strength Training during Gait
Washabaugh, Edward P.; Claflin, Edward S.; Gillespie, R. Brent; Krishnan, Chandramouli
2016-01-01
Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population. PMID:26817456
Origin of acoustic emission produced during single point machining
NASA Astrophysics Data System (ADS)
Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.
1991-05-01
Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.
A Novel Application of Eddy Current Braking for Functional Strength Training During Gait.
Washabaugh, Edward P; Claflin, Edward S; Gillespie, R Brent; Krishnan, Chandramouli
2016-09-01
Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population.
Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Elena Lugo-Sánchez, M; Gisela Carvallo-Ruiz, M; García-Sánchez, Guillermina
2008-09-15
A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional-technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein-protein aggregates insoluble at high ionic strength (I=0.5M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160gcm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle. Copyright © 2008. Published by Elsevier Ltd.
Fingelkurts, Andrew A; Fingelkurts, Alexander A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe
2012-01-01
The default mode network (DMN) has been consistently activated across a wide variety of self-related tasks, leading to a proposal of the DMN's role in self-related processing. Indeed, there is limited fMRI evidence that the functional connectivity within the DMN may underlie a phenomenon referred to as self-awareness. At the same time, none of the known studies have explicitly investigated neuronal functional interactions among brain areas that comprise the DMN as a function of self-consciousness loss. To fill this gap, EEG operational synchrony analysis [1, 2] was performed in patients with severe brain injuries in vegetative and minimally conscious states to study the strength of DMN operational synchrony as a function of self-consciousness expression. We demonstrated that the strength of DMN EEG operational synchrony was smallest or even absent in patients in vegetative state, intermediate in patients in minimally conscious state and highest in healthy fully self-conscious subjects. At the same time the process of ecoupling of operations performed by neuronal assemblies that comprise the DMN was highest in patients in vegetative state, intermediate in patients in minimally conscious state and minimal in healthy fully self-conscious subjects. The DMN's frontal EEG operational module had the strongest decrease in operational synchrony strength as a function of selfconsciousness loss, when compared with the DMN's posterior modules. Based on these results it is suggested that the strength of DMN functional connectivity could mediate the strength of self-consciousness expression. The observed alterations similarly occurred across EEG alpha, beta1 and beta2 frequency oscillations. Presented results suggest that the EEG operational synchrony within DMN may provide an objective and accurate measure for the assessment of signs of self-(un)consciousness in these challenging patient populations. This method therefore, may complement the current diagnostic procedures for patients with severe brain injuries and, hence, the planning of a rational rehabilitation intervention.
Fingelkurts, Andrew A; Fingelkurts, Alexander A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe
2012-01-01
The default mode network (DMN) has been consistently activated across a wide variety of self-related tasks, leading to a proposal of the DMN’s role in self-related processing. Indeed, there is limited fMRI evidence that the functional connectivity within the DMN may underlie a phenomenon referred to as self-awareness. At the same time, none of the known studies have explicitly investigated neuronal functional interactions among brain areas that comprise the DMN as a function of self-consciousness loss. To fill this gap, EEG operational synchrony analysis [1, 2] was performed in patients with severe brain injuries in vegetative and minimally conscious states to study the strength of DMN operational synchrony as a function of self-consciousness expression. We demonstrated that the strength of DMN EEG operational synchrony was smallest or even absent in patients in vegetative state, intermediate in patients in minimally conscious state and highest in healthy fully self-conscious subjects. At the same time the process of ecoupling of operations performed by neuronal assemblies that comprise the DMN was highest in patients in vegetative state, intermediate in patients in minimally conscious state and minimal in healthy fully self-conscious subjects. The DMN’s frontal EEG operational module had the strongest decrease in operational synchrony strength as a function of selfconsciousness loss, when compared with the DMN’s posterior modules. Based on these results it is suggested that the strength of DMN functional connectivity could mediate the strength of self-consciousness expression. The observed alterations similarly occurred across EEG alpha, beta1 and beta2 frequency oscillations. Presented results suggest that the EEG operational synchrony within DMN may provide an objective and accurate measure for the assessment of signs of self-(un)consciousness in these challenging patient populations. This method therefore, may complement the current diagnostic procedures for patients with severe brain injuries and, hence, the planning of a rational rehabilitation intervention. PMID:22905075
Karelis, Antony D; Fontaine, Jonathan; Messier, Virginie; Messier, Lyne; Blanchard, Chris; Rabasa-Lhoret, Remi; Strychar, Irene
2008-07-01
The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness (VO2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg.m(-2), s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both VO2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = -0.24, P < 0.01 and r = -0.30, P < 0.01, respectively). In addition, VO2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of VO2peak and muscle strength, respectively. In conclusion, higher VO2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of VO2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of VO2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.
Phosphorylation and Ionic Strength Alter the LRAP-HAP Interface in the N-terminus
Lu, Jun-xia; Xu, Yimin Sharon; Shaw, Wendy J.
2013-01-01
The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of the amelogenin, LRAP, with hydroxyapatite (HAP). Using solid state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation and dynamics of three regions in the N-terminus of the protein, L15 to V19, V19 to L23 and K24 to S28. These regions are also near the only phosphorylated residue in the protein, pS16, therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(−P) vs. LRAP(+P)) were also investigated. All of the regions and conditions studied for the surface immobilized proteins showed restricted motion, with indications of slightly more mobility under all conditions for L15(+P) and K24(−P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L15V19(−P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V19L23(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(−P) and LRAP(+P) as a function of pH or ionic strength and reveal that K24 has multiple resolvable resonance, suggestive of two coexisting structures. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L15, V19, and K24) are closer to the surface in LRAP(+P), but K24S28 also changes structure as a result of phosphorylation, from a random coil to a largely helical structure, and V19L23 becomes more extended at high ionic strength when phosphorylated. These observations suggest that ionic strength and dephosphorylation may provide switching mechanisms to trigger a change in the function of the N-terminus. PMID:23477367
Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S
2017-07-01
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.
De Groef, An; Van Kampen, Marijke; Tieto, Elena; Schönweger, Petra; Christiaens, Marie-Rose; Neven, Patrick; Geraerts, Inge; Gebruers, Nick; Devoogdt, Nele
2016-10-01
The aim of this study is (1) to investigate the prevalence rate of arm lymphedema, pain, impaired shoulder range of motion, strength and shoulder function one year after a sentinel lymph node biopsy (SLNB) for breast cancer and (2) to determine predictive factors for these complications. A longitudinal study was performed. One hundred patients with a sentinel-lymph node negative breast cancer were included. All patients were measured before surgery and one year after. Arm lymphedema was measured with the perimeter, pain with the Visual Analogue Scale, shoulder range of motion with an inclinometer, strength with a handheld dynamometer and shoulder function with the Disability of Arm, Shoulder and Hand questionnaire. Patient-, breast cancer- and treatment-related variables were recorded. One year after surgery 8% of sentinel node-negative breast cancer patients had developed arm lymphedema. Fifty percent of patients had pain, 30% had an impaired shoulder range of motion, 8% had a decreased handgrip strength and 49% had an impaired shoulder function. Pain, shoulder range of motion, strength and shoulder dysfunctions changed significantly over one year (p < 0.001). Higher Body Mass Index is a predictive variable for shoulder dysfunctions one year post-SLNB. Prevalence rate of lymphedema and other upper limb impairments may not be underestimated after SLNB. Pain, shoulder range of motion, handgrip strength and shoulder function change significantly up to one year compared to preoperative values in sentinel node-negative breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reference values for developing responsive functional outcome measures across the lifespan.
McKay, Marnee J; Baldwin, Jennifer N; Ferreira, Paulo; Simic, Milena; Vanicek, Natalie; Burns, Joshua
2017-04-18
To generate a reference dataset of commonly performed functional outcome measures in 1,000 children and adults and investigate the influence of demographic, anthropometric, strength, and flexibility characteristics. Twelve functional outcome measures were collected from 1,000 healthy individuals aged 3-101 years: 6-minute walk test, 30-second chair stand test, timed stairs test, long jump, vertical jump, choice stepping reaction time, balance (Star Excursion Balance Test, tandem stance eyes open and closed, single-leg stance eyes closed), and dexterity (9-hole peg test, Functional Dexterity Test). Correlation and multiple regression analyses were performed to identify factors independently associated with each measure. Age- and sex-stratified reference values for functional outcome measures were generated. Functional performance increased through childhood and adolescence, plateaued during adulthood, and declined in older adulthood. While balance did not differ between the sexes, male participants generally performed better at gross motor tasks while female participants performed better at dexterous tasks. Height was the most consistent correlate of functional performance in children, while lower limb muscle strength was a major determinant in adolescents and adults. In older adults, age, lower limb strength, and joint flexibility explained up to 63% of the variance in functional measures. These normative reference values provide a framework to accurately track functional decline associated with neuromuscular disorders and assist development and validation of responsive outcome measures for therapeutic trials. © 2017 American Academy of Neurology.
Ishak, Nor Azizah; Zahari, Zarina; Justine, Maria
2017-01-01
This study aims (1) to determine the association between kinesiophobia and pain, muscle functions, and functional performances and (2) to determine whether kinesiophobia predicts pain, muscle functions, and functional performance among older persons with low back pain (LBP). This is a correlational study, involving 63 institutionalized older persons (age = 70.98 ± 7.90 years) diagnosed with LBP. Anthropometric characteristics (BMI) and functional performances (lower limb function, balance and mobility, and hand grip strength) were measured. Muscle strength (abdominal and back muscle strength) was assessed using the Baseline® Mechanical Push/Pull Dynamometer, while muscle control (transverse abdominus and multifidus) was measured by using the Pressure Biofeedback Unit. The pain intensity and the level of kinesiophobia were measured using Numerical Rating Scale and Tampa Scale of Kinesiophobia, respectively. Data were analyzed using Pearson's correlation coefficients and multivariate linear regressions. No significant correlations were found between kinesiophobia and pain and muscle functions (all p > 0.05). Kinesiophobia was significantly correlated with mobility and balance ( p = 0.038, r = 0.263). Regressions analysis showed that kinesiophobia was a significant predictor of mobility and balance ( p = 0.038). We can conclude that kinesiophobia predicted mobility and balance in older persons with LBP. Kinesiophobia should be continuously assessed in clinical settings to recognize the obstacles that may affect patient's compliance towards a rehabilitation program in older persons with LBP.
2017-01-01
Objectives This study aims (1) to determine the association between kinesiophobia and pain, muscle functions, and functional performances and (2) to determine whether kinesiophobia predicts pain, muscle functions, and functional performance among older persons with low back pain (LBP). Methods This is a correlational study, involving 63 institutionalized older persons (age = 70.98 ± 7.90 years) diagnosed with LBP. Anthropometric characteristics (BMI) and functional performances (lower limb function, balance and mobility, and hand grip strength) were measured. Muscle strength (abdominal and back muscle strength) was assessed using the Baseline® Mechanical Push/Pull Dynamometer, while muscle control (transverse abdominus and multifidus) was measured by using the Pressure Biofeedback Unit. The pain intensity and the level of kinesiophobia were measured using Numerical Rating Scale and Tampa Scale of Kinesiophobia, respectively. Data were analyzed using Pearson's correlation coefficients and multivariate linear regressions. Results No significant correlations were found between kinesiophobia and pain and muscle functions (all p > 0.05). Kinesiophobia was significantly correlated with mobility and balance (p = 0.038, r = 0.263). Regressions analysis showed that kinesiophobia was a significant predictor of mobility and balance (p = 0.038). Conclusion We can conclude that kinesiophobia predicted mobility and balance in older persons with LBP. Kinesiophobia should be continuously assessed in clinical settings to recognize the obstacles that may affect patient's compliance towards a rehabilitation program in older persons with LBP. PMID:28634547
Strength Training to Enhance Early Recovery after Hematopoietic Stem Cell Transplantation.
Hacker, Eileen Danaher; Collins, Eileen; Park, Chang; Peters, Tara; Patel, Pritesh; Rondelli, Damiano
2017-04-01
Intensive cancer treatment followed by hematopoietic stem cell transplantation (HCT) results in moderate to severe fatigue and physical inactivity, leading to diminished functional ability. The purpose of this study was to determine the efficacy of an exercise intervention, strength training to enhance early recovery (STEER), on physical activity, fatigue, muscle strength, functional ability, and quality of life after HCT. This single-blind, randomized clinical trial compared strength training (n = 33) to usual care plus attention control with health education (UC + AC with HE) (n = 34). Subjects were stratified by type of transplantation and age. STEER consisted of a comprehensive program of progressive resistance introduced during hospitalization and continued for 6 weeks after hospital discharge. Fatigue, physical activity, muscle strength, functional ability, and quality of life were assessed before HCT hospital admission and after intervention completion. Data were analyzed using split-plot analysis of variance. Significant time × group interactions effects were noted for fatigue (P = .04). The STEER group reported improvement in fatigue from baseline to after intervention whereas the UC + AC with HE group reported worsened fatigue from baseline to after intervention. Time (P < .001) and group effects (P = .05) were observed for physical activity. Physical activity declined from baseline to 6 weeks after hospitalization. The STEER group was more physically active. Functional ability tests (timed stair climb and timed up and go) resulted in a significant interaction effect (P = .03 and P = .05, respectively). Subjects in the UC + AC with HE group were significantly slower on both tests baseline to after intervention, whereas the STEER group's time remained stable. The STEER group completed both tests faster than the UC + AC with HE group after intervention. Study findings support the use of STEER after intensive cancer treatment and HCT. Strength training demonstrated positive effects on fatigue, physical activity, muscle strength, and functional ability. The exact recovery patterns between groups and over time varied; the STEER group either improved or maintained their status from baseline to after intervention (6 weeks after hospital discharge) whereas the health education group generally declined over time or did not change. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Habets, B; Smits, H W; Backx, F J G; van Cingel, R E H; Huisstede, B M A
2017-05-01
Investigating differences in hip muscle strength between athletes with Achilles tendinopathy (AT) and asymptomatic controls. Cross-sectional case-control study. Sports medical center. Twelve recreational male athletes with mid-portion AT and twelve matched asymptomatic controls. Isometric strength of the hip abductors, external rotators, and extensors was measured using a handheld dynamometer. Functional hip muscle performance was evaluated with the single-leg squat. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was completed to determine clinical severity of symptoms. Compared to controls, participants with AT demonstrated 28.9% less isometric hip abduction strength (p = 0.012), 34.2% less hip external rotation strength (p = 0.010), and 28.3% less hip extension strength (p = 0.034) in the injured limb. Similar differences were found for the non-injured limb (26.7-41.8%; p < 0.03). No significant differences were found in functional hip muscle performance between the injured and non-injured limb or between the groups, and no significant correlation was found between hip muscle strength and VISA-A scores. Recreational male athletes with chronic mid-portion AT demonstrated bilateral weakness of hip abductors, external rotators, and extensors compared to their asymptomatic counterparts. These findings suggest that hip muscle strength may be important in the assessment and rehabilitation of those with AT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sanders, J L; Cappola, A R; Arnold, A M; Boudreau, R M; Chaves, P H; Robbins, J; Cushman, M; Newman, A B
2010-09-01
The correlation between dehydroepiandrosterone sulfate (DHEAS) decline and age led to the hypothesis that DHEAS might be a marker of primary aging, though conflicting data from observational studies of mortality do not support this. We evaluated concurrent DHEAS and functional decline in a very old cohort to test if DHEAS change tracks with functional change during aging. DHEAS and functional performance (gait speed, grip strength, Modified Mini-Mental State Examination [3MSE] score, and digit symbol substitution test [DSST] score) were measured in 1996-1997 and 2005-2006 in 989 participants in the Cardiovascular Health Study All Stars study (mean age 85.2 years in 2005-2006, 63.5% women and 16.5% African American). We used multivariable linear regression to test the association of DHEAS decline with functional decline. After adjustment, each standard deviation decrease in DHEAS was associated with greater declines in gait speed (0.12 m/s, p = .01), grip strength (0.09 kg, p = .03), 3MSE score (0.13 points, p < .001), and DSST score (0.14 points, p = .001) in women only. Additional adjustment for baseline DHEAS attenuated the association with grip strength but did not alter other estimates appreciably, and baseline DHEAS was unassociated with functional decline. In this cohort of very old individuals, DHEAS decline tracked with declines in gait speed, 3MSE score, and DSST score, but not grip strength, in women independent of baseline DHEAS level. DHEAS decline might be a marker for age-associated performance decline, but its relevance is specific to women.
Differences in Physical Fitness and Cardiovascular Function Depend on BMI in Korean Men.
So, Wi-Young; Choi, Dai-Hyuk
2010-01-01
We investigated the associations between cardiovascular function and both body mass index and physical fitness in Korean men. The subjects were 2,013 men, aged 20 to 83 years, who visited a health promotion center for a comprehensive medical and fitness test during 2006-2009. The WHO's Asia-Pacific Standard Report definition of BMI was used in this study. Fitness assessment of cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, power, agility, and balance were evaluated by VO2max (ml/kg/min), grip strength (kg), sit-ups (reps/min), sit and reach (cm), vertical jump (cm), side steps (reps/30s), and standing on one leg with eyes closed (sec), respectively. For cardiovascular function, we evaluated systolic blood pressure (SBP), diastolic blood pressure (DBP), resting heart rate (RHR), double product (DP), and vital capacity. There were significant decreases in cardiorespiratory endurance (p < 0.001), power (p < 0.001), and balance (p < 0.001), and increases in muscular strength (p < 0.001). Further, cardiovascular function, including SBP (p < 0.001), DBP (p < 0.001), double product (p < 0.001), and vital capacity (p=0.006) appeared to be lower for the obesity group. We conclude that an obese person exhibits lower fitness level and weaker cardiovascular function than a normal person. Key pointsThe obese group had a lower fitness level, including cardiorespiratory endurance, power, and balance.Obese group demonstrated an increase in muscular strength.Obese group had higher blood pressure and weaker cardiovascular function, including DP and vital capacity, than the normal group.
Differences in Physical Fitness and Cardiovascular Function Depend on BMI in Korean Men
So, Wi-Young; Choi, Dai-Hyuk
2010-01-01
We investigated the associations between cardiovascular function and both body mass index and physical fitness in Korean men. The subjects were 2,013 men, aged 20 to 83 years, who visited a health promotion center for a comprehensive medical and fitness test during 2006-2009. The WHO's Asia-Pacific Standard Report definition of BMI was used in this study. Fitness assessment of cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, power, agility, and balance were evaluated by VO2max (ml/kg/min), grip strength (kg), sit-ups (reps/min), sit and reach (cm), vertical jump (cm), side steps (reps/30s), and standing on one leg with eyes closed (sec), respectively. For cardiovascular function, we evaluated systolic blood pressure (SBP), diastolic blood pressure (DBP), resting heart rate (RHR), double product (DP), and vital capacity. There were significant decreases in cardiorespiratory endurance (p < 0.001), power (p < 0.001), and balance (p < 0.001), and increases in muscular strength (p < 0.001). Further, cardiovascular function, including SBP (p < 0.001), DBP (p < 0.001), double product (p < 0.001), and vital capacity (p=0.006) appeared to be lower for the obesity group. We conclude that an obese person exhibits lower fitness level and weaker cardiovascular function than a normal person. Key points The obese group had a lower fitness level, including cardiorespiratory endurance, power, and balance. Obese group demonstrated an increase in muscular strength. Obese group had higher blood pressure and weaker cardiovascular function, including DP and vital capacity, than the normal group. PMID:24149691
Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long
2014-10-01
Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.
Physical Function, Hyperuricemia, and Gout in Older Adults.
Burke, Bridget Teevan; Köttgen, Anna; Law, Andrew; Windham, Beverly Gwen; Segev, Dorry; Baer, Alan N; Coresh, Josef; McAdams-DeMarco, Mara A
2015-12-01
Gout prevalence is high in older adults and those affected are at risk of physical disability, yet it is unclear whether they have worse physical function. We studied gout, hyperuricemia, and physical function in 5,819 older adults (age ≥65 years) attending the 2011-2013 Atherosclerosis Risk in Communities Study visit, a prospective US population-based cohort. Differences in lower extremity function (Short Physical Performance Battery [SPPB] and 4-meter walking speed) and upper extremity function (grip strength) by gout status and by hyperuricemia prevalence were estimated in adjusted ordinal logistic regression (SPPB) and linear regression (walking speed and grip strength) models. Lower scores or times signify worse function. The prevalence of poor physical performance (first quartile) by gout and hyperuricemia was estimated using adjusted modified Poisson regression. Ten percent of participants reported a history of gout and 21% had hyperuricemia. There was no difference in grip strength by history of gout (P = 0.77). Participants with gout performed worse on the SPPB test; they had 0.77 times (95% confidence interval [95% CI] 0.65, 0.90, P = 0.001) the prevalence odds of a 1-unit increase in SPPB score and were 1.18 times (95% CI 1.07, 1.32, P = 0.002) more likely to have poor SPPB performance. Participants with a history of gout had slower walking speed (mean difference -0.03; 95% CI -0.05, -0.01, P < 0.001) and were 1.19 times (95% CI 1.06, 1.34, P = 0.003) more likely to have poor walking speed. Similarly, SPPB score and walking speed, but not grip strength, were worse in participants with hyperuricemia. Older adults with gout and hyperuricemia are more likely to have worse lower extremity, but not upper extremity, function. © 2015, American College of Rheumatology.
Prediction and Estimation of Scaffold Strength with different pore size
NASA Astrophysics Data System (ADS)
Muthu, P.; Mishra, Shubhanvit; Sri Sai Shilpa, R.; Veerendranath, B.; Latha, S.
2018-04-01
This paper emphasizes the significance of prediction and estimation of the mechanical strength of 3D functional scaffolds before the manufacturing process. Prior evaluation of the mechanical strength and structural properties of the scaffold will reduce the cost fabrication and in fact ease up the designing process. Detailed analysis and investigation of various mechanical properties including shear stress equivalence have helped to estimate the effect of porosity and pore size on the functionality of the scaffold. The influence of variation in porosity was examined by computational approach via finite element analysis (FEA) and ANSYS application software. The results designate the adequate perspective of the evolutionary method for the regulation and optimization of the intricate engineering design process.
Controlled simulation of optical turbulence in a temperature gradient air chamber
NASA Astrophysics Data System (ADS)
Toselli, Italo; Wang, Fei; Korotkova, Olga
2016-05-01
Atmospheric turbulence simulator is built and characterized for in-lab optical wave propagation with controlled strength of the refractive-index fluctuations. The temperature gradients are generated by a sequence of heat guns with controlled individual strengths. The temperature structure functions are measured in two directions transverse to propagation path with the help of a thermocouple array and used for evaluation of the corresponding refractive-index structure functions of optical turbulence.
ERIC Educational Resources Information Center
Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.
2012-01-01
The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…
Jung, Hungu; Yamasaki, Masahiro
2016-12-08
Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.
Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans
2017-01-01
Research suggests that college-aged adults are vulnerable to tinnitus and hearing loss due to exposure to traumatic levels of noise on a regular basis. Recent human studies have associated exposure to high noise exposure background (NEB, i.e., routine noise exposure) with the reduced cochlear output and impaired speech processing ability in subjects with clinically normal hearing sensitivity. While the relationship between NEB and the functions of the auditory afferent neurons are studied in the literature, little is known about the effects of NEB on functioning of the auditory efferent system. The objective of the present study was to investigate the relationship between medial olivocochlear reflex (MOCR) strength and NEB in subjects with clinically normal hearing sensitivity. It was hypothesized that subjects with high NEB would exhibit reduced afferent input to the MOCR circuit which would subsequently lead to reduced strength of the MOCR. In normal-hearing listeners, the study examined (1) the association between NEB and baseline click-evoked otoacoustic emissions (CEOAEs) and (2) the association between NEB and MOCR strength. The MOCR was measured using CEOAEs evoked by 60 dB pSPL linear clicks in a contralateral acoustic stimulation (CAS)-off and CAS-on (a broadband noise at 60 dB SPL) condition. Participants with at least 6 dB signal-to-noise ratio (SNR) in the CAS-off and CAS-on conditions were included for analysis. A normalized CEOAE inhibition index was calculated to express MOCR strength in a percentage value. NEB was estimated using a validated questionnaire. The results showed that NEB was not associated with the baseline CEOAE amplitude (r = -0.112, p = 0.586). Contrary to the hypothesis, MOCR strength was positively correlated with NEB (r = 0.557, p = 0.003). NEB remained a significant predictor of MOCR strength (β = 2.98, t(19) = 3.474, p = 0.003) after the unstandardized coefficient was adjusted to control for effects of smoking, sound level tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed. PMID:28886123
Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
1999-01-01
Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.
Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions
NASA Technical Reports Server (NTRS)
Tayal, S. S.
2004-01-01
Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Crespo Campo, L.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Klintefjord, M.; Larsen, A. C.; Renstrøm, T.; Sahin, E.; Siem, S.; Springer, A.; Tornyi, T. G.; Tveten, G. M.
2016-10-01
Particle-γ coincidence data have been analyzed to obtain the nuclear level density and the γ -strength function of 64Ni by means of the Oslo method. The level density found in this work is in very good agreement with known energy levels at low excitation energies as well as with data deduced from particle-evaporation measurements at excitation energies above Ex≈5.5 MeV. The experimental γ -strength function presents an enhancement at γ energies below Eγ≈3 MeV and possibly a resonancelike structure centered at Eγ≈9.2 MeV. The obtained nuclear level density and γ -strength function have been used to estimate the (n ,γ ) cross section for the s -process branch-point nucleus 63Ni, of particular interest for astrophysical calculations of elemental abundances.
Functional capacity and muscular abnormalities in subclinical hypothyroidism.
Reuters, Vaneska S; Teixeira, Patrícia de Fátima S; Vigário, Patrícia S; Almeida, Cloyra P; Buescu, Alexandre; Ferreira, Márcia M; de Castro, Carmen L N; Gold, Jaime; Vaisman, Mario
2009-10-01
Neuromuscular abnormalities and low exercise tolerance are frequently observed in overt hypothyroidism, but it remains controversial if they can also occur in subclinical hypothyroidism (sHT). The aim of this study is to evaluate neuromuscular symptoms, muscle strength, and exercise capacity in sHT, compared with healthy euthyroid individuals. A cross-sectional study was performed with 44 sHT and 24 euthyroid outpatients from a university hospital. Neuromuscular symptoms were questioned. Muscle strength was tested for neck, shoulder, arm, and hip muscle groups, using manual muscle testing (MMT). Quadriceps muscle strength was tested with a chair dynamometer and inspiratory muscle strength (IS) by a manuvacuometer. Functional capacity was estimated based on the peak of oxygen uptake (mL/kg/min), using the Bruce treadmill protocol. Cramps (54.8% versus 25.0%; P < 0.05), weakness (45.2% versus 12.6; P < 0.05), myalgia (47.6% versus 25.0%; P = 0.07), and altered MMT (30.8% versus 8.3%; P = 0.040) were more frequent in sHT. Quadriceps strength and IS were not impaired in sHT and the same was observed for functional capacity. IS was significantly lower in patients complaining of fatigue and weakness (P < 0.05) and tended to be lower in those with altered MMT (P = 0.090). Neuromuscular complaints and altered MMT were significantly more frequent in sHT than in controls, and IS was lower in patients with these abnormalities. Results suggest that altered muscle strength by MMT and the coexistence of neuromuscular complaints in patients with sHT may indicate neuromuscular dysfunction.
NASA Astrophysics Data System (ADS)
Vasilopoulos, P.; Wang, X. F.
2004-03-01
Spin-polarized electron transport through waveguides, in which the strength a of the spin-orbit interaction is varied periodically, is studied using the transfer-matrix technique. It is shown that the transmission T exhibits a spin-transistor action, as a function of a or of the length of one of the two subunits of the unit cell if only one mode is allowed to propagate in the waveguide. A similar but not periodic behavior is shown by T as a function of the elec-tron energy E. In a waveguide with only one segment, of strength a2 and length l2, comprised between two segments of strength a1, the total transmission, obtained as T=1/[cos2(D2*l2)+r*sin2(D2*l2)], shows a sinusoidal dependence. The spin-up (T+) and spin-down (T-) transmissions are given by T+=T cos2x and T-=T sin2x, where x is a measure of the spin precession. The total phase acquired by electrons in different branches during propagation is x=2[d1*(L-l2)+ d2*l2] with di=2m*a1/h2 and L the waveguide length. The transmission through a superlattice, with alternating segments of lengths l1, l2, and strengths a1, a2, is also a periodic function of aj and lj, j=1,2. As the strength a can be controlled by applying gates, the structure considered is a good candidate for the establishment of a realistic spin transistor.
Lower-extremity strength ratios of professional soccer players according to field position.
Ruas, Cassio V; Minozzo, Felipe; Pinto, Matheus D; Brown, Lee E; Pinto, Ronei S
2015-05-01
Previous investigators have proposed that knee strength, hamstrings to quadriceps, and side-to-side asymmetries may vary according to soccer field positions. However, different results have been found in these variables, and a generalization of this topic could lead to data misinterpretation by coaches and soccer clubs. Thus, the aim of this study was to measure knee strength and asymmetry in soccer players across different field positions. One hundred and two male professional soccer players performed maximal concentric and eccentric isokinetic knee actions on the preferred and nonpreferred legs at a velocity of 60° · s. Players were divided into their field positions for analysis: goalkeepers, side backs, central backs, central defender midfielders, central attacking midfielders, and forwards. Results demonstrated that only goalkeepers (GK) differed from most other field positions on players' characteristics, and concentric peak torque across muscles. Although all players presented functional ratios of the preferred (0.79 ± 0.14) and nonpreferred (0.75 ± 0.13) legs below accepted normative values, there were no differences between positions for conventional or functional strength ratios or side-to-side asymmetry. The same comparisons were made only between field players, without inclusion of the GK, and no differences were found between positions. Therefore, the hamstrings to quadriceps and side-to-side asymmetries found here may reflect knee strength functional balance required for soccer skills performance and game demands across field positions. These results also suggest that isokinetic strength profiles should be considered differently in GK compared with other field positions due to their specific physiological and training characteristics.
Larsen, P; Elsoe, R; Graven-Nielsen, T; Laessoe, U; Rasmussen, S
2015-12-01
To examine the long-term outcome after intramedullary nailing of femoral diaphysial fractures measured as disease-specific patient reported function, walking ability, muscle strength, pain and quality of life (QOL). Cross-sectional study. Retrospective review and follow-up with clinical examination of 48 patients treated with intramedullary nailing after femoral shaft fracture between 2007 and 2010. The patients underwent a clinical examination and assessment of walking ability, maximal muscle strength during knee flexion and extension and hip abduction. Hip disability and Osteoarthritis Outcome Score (HOOS) and questionnaire evaluating QOL (Eq5D-5L) were completed by patients. Fourty-eight patients agreed to participate. Mean time for follow-up was 4.7 years. The mean HOOS scores were 84.9 (Pain), 86.6 (ADL), 85.0 (Symptoms), 72.6 (QOL), and 69.1 (Sport). The mean muscle strength of knee flexion with the injured leg (226.0 N) was significantly lower then knee flexion with the non-injured leg (259.5 N, P < 0.0001). Likewise for knee extension (335.2 vs 406.4 N, P < 0.001) and hip abduction (129.2 vs 156.0 N, P < 0.001). Significant association between HOOS and an increase in the difference in muscle strength were observed as well as between worse HOOS outcome and increasing body mass index. This study showed that decreased muscle strength for knee flexion, knee extension and hip abduction was associated with worse long-term functional outcome measured with a disease-specific questionnaire (HOOS) after intramedullary nailing of femoral shaft fracture.
Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues
Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro
2014-01-01
Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445
Santos, Thiago R T; Oliveira, Bárbara A; Ocarino, Juliana M; Holt, Kenneth G; Fonseca, Sérgio T
2015-01-01
Patellofemoral pain syndrome (PFPS) is characterized by anterior knee pain, which may limit the performance of functional activities. The influence of hip joint motion on the development of this syndrome has already been documented in the literature. In this regard, studies have investigated the effectiveness of hip muscle strengthening in patients with PFPS. The aims of this systematic review were (1) to summarize the literature related to the effects of hip muscle strengthening on pain intensity, muscle strength, and function in individuals with PFPS and (2) to evaluate the methodological quality of the selected studies. A search for randomized controlled clinical trials was conducted using the following databases: Google Scholar, MEDLINE, PEDro, LILACS, and SciELO. The selected studies had to distinguish the effects of hip muscle strengthening in a group of patients with PFPS, as compared to non-intervention or other kinds of intervention, and had to investigate the following outcomes: pain, muscle strength, and function. The methodological quality of the selected studies was analyzed by means of the PEDro scale. Seven studies were selected. These studies demonstrated that hip muscle strengthening was effective in reducing pain. However, the studies disagreed regarding the treatments' ability to improve muscle strength. Improvement in functional capabilities after hip muscle strengthening was found in five studies. Hip muscle strengthening is effective in reducing the intensity of pain and improving functional capabilities in patients with PFPS, despite the lack of evidence for its ability to increase muscle strength.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-01-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. PMID:28150897
Raij, Tuukka T; Korkeila, Jyrki; Joutsenniemi, Kaisla; Saarni, Samuli I; Riekki, Tapani J J
2014-04-01
[corrected] Personal characteristics contribute to whether negative attitudes in society are internalized as deteriorating self-stigma. Studies in healthy subjects suggest that resilience is associated with the regulation of amygdala activation by the medial prefrontal cortex (mPFC), but little is known about the factors that contribute to individual stigma resistance in psychiatric patients. We assessed stigma (by measuring association strengths between social inferiority and schizophrenia by an implicit association test) in 20 patients with schizophrenia and in 16 age- and sex-matched healthy control subjects. The brain activation strengths were measured by functional magnetic resonance imaging during evaluation of schizophrenia-related statements and of control statements. Association strengths between social inferiority and schizophrenia were inversely related to the strength of the activation of the rostro-ventral mPFC. This inverse correlation survived adjustment for global functioning, depression symptom scores, and insight. Activation of the rostro-ventral mPFC was negatively correlated with activation of the amygdala. The association strengths between social inferiority and schizophrenia correlated with the compromised performance in a Stroop task, which is a measure of cognitive regulation. Our findings suggest that individual stigma resistance is associated with emotion regulation. These findings may help to understand better stigma resistance and thereby aid the development of patient interventions that add to the public anti-stigma work in reducing devastating effects of stigma. © 2014.
The Goals and Effects of Music Listening and Their Relationship to the Strength of Music Preference.
Schäfer, Thomas
2016-01-01
Individual differences in the strength of music preference are among the most intricate psychological phenomena. While one person gets by very well without music, another person needs to listen to music every day and spends a lot of temporal and financial resources on listening to music, attending concerts, or buying concert tickets. Where do these differences come from? The hypothesis presented in this article is that the strength of music preference is mainly informed by the functions that music fulfills in people's lives (e.g., to regulate emotions, moods, or physiological arousal; to promote self-awareness; to foster social relatedness). Data were collected with a diary study, in which 121 respondents documented the goals they tried to attain and the effects that actually occurred for up to 5 music-listening episodes per day for 10 successive days. As expected, listeners reporting more intense experience of the functional use of music in the past (1) had a stronger intention to listen to music to attain specific goals in specific situations and (2) showed a larger overall strength of music preference. It is concluded that the functional effectiveness of music listening should be incorporated in existing models and frameworks of music preference to produce better predictions of interindividual differences in the strength of music preference. The predictability of musical style/genre preferences is also discussed with regard to the present results.
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-01-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-10-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.
Bennett, Raffeal; Olesik, Susan V
2018-01-25
The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Curvature on the Impact Damage Characteristics and Residual Strength of Composite Plates
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.
1998-01-01
The results of a study of the response and failure characteristics of thin, cylindrically curved, composite plates subjected to low-speed impact damage are presented. The results indicate that the plate radius and the plate thickness are important structural parameters that influence the nonlinear response of a plate for a given amount of impact energy. Analytical and experimental contact-force results are compared for several plates and the results correlate well. The impact-energy levels required to cause damage initiation and barely visible impact damage are a function of the plate radius for a given plate thickness. The impact-energy levels required to initiate impact damage for plates with a certain range of radii are greater than plates with other radii. The contact-force results corresponding to these impact-energy levels follow a similar trend. Residual strength results for plates with barely visible impact damage suggest that the compression-after-impact residual strength is also a function of plate radius. The residual strength of impact-damaged flat plates appears to be lower than the residual strength of the corresponding cylindrically curved plates.
Tran, N L; Bohrer, F I; Trogler, W C; Kummel, A C
2009-05-28
Density functional theory (DFT) simulations were used to determine the binding strength of 12 electron-donating analytes to the zinc metal center of a zinc phthalocyanine molecule (ZnPc monomer). The analyte binding strengths were compared to the analytes' enthalpies of complex formation with boron trifluoride (BF(3)), which is a direct measure of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated, the ZnPc binding energies were found to correlate linearly with analyte basicities. Based on natural population analysis calculations, analyte complexation to the Zn metal of the ZnPc monomer resulted in limited charge transfer from the analyte to the ZnPc molecule, which increased with analyte-ZnPc binding energy. The experimental analyte sensitivities from chemiresistor ZnPc sensor data were proportional to an exponential of the binding energies from DFT calculations consistent with sensitivity being proportional to analyte coverage and binding strength. The good correlation observed suggests DFT is a reliable method for the prediction of chemiresistor metallophthalocyanine binding strengths and response sensitivities.
The in situ transverse lamina strength of composite laminates
NASA Technical Reports Server (NTRS)
Flaggs, D. L.
1983-01-01
The objective of the work reported in this presentation is to determine the in situ transverse strength of a lamina within a composite laminate. From a fracture mechanics standpoint, in situ strength may be viewed as constrained cracking that has been shown to be a function of both lamina thickness and the stiffness of adjacent plies that serve to constrain the cracking process. From an engineering point of view, however, constrained cracking can be perceived as an apparent increase in lamina strength. With the growing need to design more highly loaded composite structures, the concept of in situ strength may prove to be a viable means of increasing the design allowables of current and future composite material systems. A simplified one dimensional analytical model is presented that is used to predict the strain at onset of transverse cracking. While it is accurate only for the most constrained cases, the model is important in that the predicted failure strain is seen to be a function of a lamina's thickness d and of the extensional stiffness bE theta of the adjacent laminae that constrain crack propagation in the 90 deg laminae.
Mechanical sea-ice strength parameterized as a function of ice temperature
NASA Astrophysics Data System (ADS)
Hata, Yukie; Tremblay, Bruno
2016-04-01
Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).
Ehrensberger, Monika; Simpson, Daniel; Broderick, Patrick; Monaghan, Kenneth
2016-04-01
Since its discovery in 1894 cross-education of strength - a bilateral adaptation after unilateral training - has been shown to be effective in the rehabilitation after one-sided orthopedic injuries. Limited knowledge exists on its application within the rehabilitation after stroke. This review examined the evidence regarding the implication of cross-education in the rehabilitation of the post-stroke hemiplegic patient and its role in motor function recovery. Electronic databases were searched by two independent assessors. Studies were included if they described interventions which examined the phenomenon of cross-education of strength from the less-affected to the more-affected side in stroke survivors. Study quality was assessed using the PEDro scale and the Cochrane risk of bias assessment tool. Only two controlled trials met the eligibility criteria. The results of both studies show a clear trend towards cross-educational strength transfer in post-stroke hemiplegic patients with 31.4% and 45.5% strength increase in the untrained, more-affected dorsiflexor muscle. Results also suggest a possible translation of strength gains towards functional task improvements and motor recovery. Based on best evidence synthesis guidelines the combination of the results included in this review suggest at least a moderate level of evidence for the application of cross-education of strength in stroke rehabilitation. Following this review it is recommended that additional high quality randomized controlled trials are conducted to further support the findings.
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to conduct the run, liter/min. B=acid density (a function of acid strength and temperature), g/cc. C=acid strength, decimal fraction. K1/4=conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton...
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to conduct the run, liter/min. B=acid density (a function of acid strength and temperature), g/cc. C=acid strength, decimal fraction. K1/4=conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton...
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to conduct the run, liter/min. B=acid density (a function of acid strength and temperature), g/cc. C=acid strength, decimal fraction. K1/4=conversion factor, 0.0808 (Mg-min-cc)/(g-hr-liter) [0.0891 (ton...
Measures of Functional Performance and Their Association With Hip and Thigh Strength
Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.
2015-01-01
Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236
NASA Astrophysics Data System (ADS)
Ciniņa, I.; Zīle, O.; Andersons, J.
2013-01-01
The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.
Oscillator strengths and collision strengths for S v
NASA Technical Reports Server (NTRS)
Van Wyngaarden, W. L.; Henry, R. J. W.
1981-01-01
Observations of the optical extreme-ultraviolet spectrum of the Jupiter planetary system during the Voyager space mission revealed bright emission lines of some sulfur ions. The spectra of the torus at the orbit of Io are likely to contain S V lines. The described investigation provides oscillator strengths and collision strengths for the first four UV lines. The collision strengths from the ground state to four other excited states are also obtained. Use is made of a two-state calculation which is checked for convergence for some transitions by employing a three-state or a four-state approximation. Target wave functions for S V are calculated so that the oscillator strengths calculated in dipole length and dipole velocity approximations agree within 5%.
Abe, Sakiko; Ezaki, Osamu; Suzuki, Motohisa
2016-05-01
Sarcopenia, the loss of skeletal muscle mass, strength, and function, is common in elderly individuals but difficult to treat. A combination of nutrients was investigated to treat sarcopenia in very frail elderly adults. We enrolled 38 elderly nursing home residents (11 men and 27 women with a mean ± SD age of 86.6 ± 4.8 y) in a 3-mo randomized, controlled, single-blind, parallel group trial. The participants were randomly allocated to 3 groups. The first group received a daily l-leucine (1.2 g) and cholecalciferol (20 μg)-enriched supplement with 6 g medium-chain triglycerides (TGs) (MCTs) (LD + MCT); the second group received the same leucine and cholecalciferol-enriched supplement with 6 g long-chain TGs (LD + LCT); and the third group did not receive any supplements (control). The supplement and oils were taken at dinner, and changes in muscle mass, strength, and function were monitored. The increase in body weight in the LD + MCT (1.1 ± 1.0 kg) and LD + LCT (0.8 ± 1.1 kg) groups was greater than that in the control group (-0.5 ± 0.9 kg) (P < 0.05). After 3 mo, participants in the LD + MCT group had a 13.1% increase in right-hand grip strength (1.2 ± 1.0 kg, P < 0.01), a 12.5% increase in walking speed (0.078 ± 0.080 m/s, P < 0.05), a 68.2% increase in a 10-s leg open-and-close test performance (2.31 ± 1.68 n/10 s, P < 0.001), and a 28.2% increase in peak expiratory flow (53 ± 59 L/min, P < 0.01). No significant improvements in muscle mass, strength, or function were observed in the LD + LCT or control groups. The combined supplementation of MCTs (6 g), leucine-rich amino acids, and cholecalciferol at dinner may improve muscle strength and function in frail elderly individuals. This trial was registered at the University Hospital Medical Information Network Clinical Trials Registry as UMIN000017567. © 2016 American Society for Nutrition.
Magni, Nicoló Edoardo; McNair, Peter John; Rice, David Andrew
2017-06-13
Hand osteoarthritis is a common condition characterised by joint pain and muscle weakness. These factors are thought to contribute to ongoing disability. Some evidence exists that resistance training decreases pain, improves muscle strength, and enhances function in people with knee and hip osteoarthritis. However, there is currently a lack of consensus regarding its effectiveness in people with hand osteoarthritis. Therefore, the aim of this systematic review and meta-analysis was to establish whether resistance training in people with hand osteoarthritis increases grip strength, decreases joint pain, and improves hand function. Seven databases were searched from 1975 until July 1, 2016. Randomised controlled trials were included. The Cochrane Risk of Bias Tool was used to assess studies' methodological quality. The Grade of Recommendations Assessment, Development, and Evaluation system was adopted to rate overall quality of evidence. Suitable studies were pooled using a random-effects meta-analysis. Five studies were included with a total of 350 participants. The majority of the training programs did not meet recommended intensity, frequency, or progression criteria for muscle strengthening. There was moderate-quality evidence that resistance training does not improve grip strength (mean difference = 1.35; 95% confidence interval (CI) = -0.84, 3.54; I 2 = 50%; p = 0.23 ). Low-quality evidence showed significant improvements in joint pain (standardised mean difference (SMD) = -0.23; 95% CI = -0.42, -0.04; I 2 = 0%; p = 0.02) which were not clinically relevant. Low-quality evidence demonstrated no improvements in hand function following resistance training (SMD = -0.1; 95% CI = -0.33, 0.13; I 2 = 28%; p = 0.39). There is no evidence that resistance training has a significant effect on grip strength or hand function in people with hand osteoarthritis. Low-quality evidence suggests it has a small, clinically unimportant pain-relieving effect. Future studies should investigate resistance training regimes with adequate intensity, frequency, and progressions to achieve gains in muscle strength.
José, Anderson; Dal Corso, Simone
2016-04-01
Among people who are hospitalised for community-acquired pneumonia, does an inpatient exercise-based rehabilitation program improve functional outcomes, symptoms, quality of life and length of hospital stay more than a respiratory physiotherapy regimen? Randomised trial with concealed allocation, intention-to-treat analysis and blinding of some outcomes. Forty-nine adults hospitalised for community-acquired pneumonia. The experimental group (n=32) underwent a physical training program that included warm-up, stretching, peripheral muscle strength training and walking at a controlled speed for 15 minutes. The control group (n=17) underwent a respiratory physiotherapy regimen that included percussion, vibrocompression, respiratory exercises and free walking. The intervention regimens lasted 8 days. The primary outcome was the Glittre Activities of Daily Living test, which assesses the time taken to complete a series of functional tasks (eg, rising from a chair, walking, stairs, lifting and bending). Secondary outcomes were distance walked in the incremental shuttle walk test, peripheral muscle strength, quality of life, dyspnoea, lung function, C-reactive protein and length of hospital stay. Measures were taken 1 day before and 1 day after the intervention period. There was greater improvement in the experimental group than in the control group on the Glittre Activities of Daily Living test (mean between-group difference 39 seconds, 95% CI 20 to 59) and the incremental shuttle walk test (mean between-group difference 130 m, 95% CI 77 to 182). There were also significantly greater improvements in quality of life, dyspnoea and peripheral muscle strength in the experimental group than in the control group. There were no between-group differences in lung function, C-reactive protein or length of hospital stay. The improvement in functional outcomes after an inpatient rehabilitation program was greater than the improvement after standard respiratory physiotherapy. The exercise training program led to greater benefits in functional capacity, peripheral muscle strength, dyspnoea and quality of life. ClinicalTrials.gov, NCT02103400. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Reproducibility of structural strength and stiffness for graphite-epoxy aircraft spoilers
NASA Technical Reports Server (NTRS)
Howell, W. E.; Reese, C. D.
1978-01-01
Structural strength reproducibility of graphite epoxy composite spoilers for the Boeing 737 aircraft was evaluated by statically loading fifteen spoilers to failure at conditions simulating aerodynamic loads. Spoiler strength and stiffness data were statistically modeled using a two parameter Weibull distribution function. Shape parameter values calculated for the composite spoiler strength and stiffness were within the range of corresponding shape parameter values calculated for material property data of composite laminates. This agreement showed that reproducibility of full scale component structural properties was within the reproducibility range of data from material property tests.
Bukowski, Alexandra R; Schittko, Conrad; Petermann, Jana S
2018-02-01
One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant-soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant-soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant-soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness-related aboveground traits and used them along literature-derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis . Our results indicate that negative plant-soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant-soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role.
de Oliveira Silva, Alessandro; Dutra, Maurílio Tiradentes; de Moraes, Wilson Max Almeida Monteiro; Funghetto, Silvana Schwerz; Lopes de Farias, Darlan; dos Santos, Paulo Henrique Fernandes; Vieira, Denis Cesar Leite; Nascimento, Dahan da Cunha; Orsano, Vânia Silva Macedo; Schoenfeld, Brad J; Prestes, Jonato
2018-01-01
Objectives The purpose of this study was to compare the effects of resistance training (RT) on body composition, muscle strength, and functional capacity in elderly women with and without sarcopenic obesity (SO). Methods A total of 49 women (aged ≥60 years) were divided in two groups: without SO (non-SO, n=41) and with SO (n=8). Both groups performed a periodized RT program consisting of two weekly sessions for 16 weeks. All measures were assessed at baseline and postintervention, including anthropometry and body composition (dual-energy X-ray absorptiometry), muscle strength (one repetition maximum) for chest press and 45° leg press, and functional capacity (stand up, elbow flexion, timed “up and go”). Results After the intervention, only the non-SO group presented significant reductions in percentage body fat (−2.2%; P=0.006), waist circumference (−2.7%; P=0.01), waist-to-hip ratio (−2.3; P=0.02), and neck circumference (−1.8%; P=0.03) as compared with baseline. Muscle strength in the chest press and biceps curl increased in non-SO only (12.9% and 11.3%, respectively), while 45° leg press strength increased in non-SO (50.3%) and SO (40.5%) as compared with baseline. Performance in the chair stand up and timed “up and go” improved in non-SO only (21.4% and −8.4%, respectively), whereas elbow flexion performance increased in non-SO (23.8%) and SO (21.4%). Effect sizes for motor tests were of higher magnitude in the non-SO group, and in general, considered “moderate” compared to “trivial” in the SO group. Conclusion Results suggest that adaptations induced by 16 weeks of RT are attenuated in elderly woman with SO, compromising improvements in adiposity indices and gains in muscle strength and functional capacity. PMID:29588579
NASA Astrophysics Data System (ADS)
Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.
2016-07-01
Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.
Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten
2016-01-01
The Gait Deviation Index summarizes overall gait 'quality', based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait 'quality' and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the 'Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Patients with the strongest hip abductor and hip flexor muscles had the best gait 'quality'. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait 'quality'. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait 'quality' in patients with primary hip OA.
Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten
2016-01-01
Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007
Wu, Brian W; Berger, Max; Sum, Jonathan C; Hatch, George F; Schroeder, E Todd
2014-12-06
The anterior cruciate ligament (ACL) is one of four major ligaments in the knee that provide stability during physical activity. A tear in the ACL is characterized by joint instability that leads to decreased activity, knee dysfunction, reduced quality of life and a loss of muscle mass and strength. While rehabilitation is the standard-of-care for return to daily function, additional surgical reconstruction can provide individuals with an opportunity to return to sports and strenuous physical activity. Over 200,000 ACL reconstructions are performed in the United States each year, and rehabilitation following surgery is slow and expensive. One possible method to improve the recovery process is the use of intramuscular testosterone, which has been shown to increase muscle mass and strength independent of exercise. With short-term use of supraphysiologic doses of testosterone, we hope to reduce loss of muscle mass and strength and minimize loss of physical function following ACL reconstruction compared to standard-of-care alone. This study is a double-blinded randomized control trial. Men 18-50 years of age, scheduled for ACL reconstruction are randomized into two groups. Participants randomized to the testosterone group receive intramuscular testosterone administration once per week for 8 weeks starting 2 weeks prior to surgery. Participants randomized to the control group receive a saline placebo intramuscularly instead of testosterone. Lean mass, muscle strength and physical function are measured at 5 time points: 2 weeks pre-surgery, 1 day pre-surgery, and 6, 12, 24 weeks post-surgery. Both groups follow standard-of-care rehabilitation protocol. We believe that testosterone therapy will help reduce the loss of muscle mass and strength experienced after ACL injury and reconstruction. Hopefully this will provide a way to shorten the rehabilitation necessary following ACL reconstruction. If successful, testosterone therapy may also be used for other injuries involving trauma and muscle atrophy. NCT01595581, REGISTRATION: May 8, 2012.
Searching for a relevant definition of sarcopenia: results from the cross-sectional EPIDOS study
Dupuy, Charlotte; Lauwers-Cances, Valérie; Guyonnet, Sophie; Gentil, Catherine; Abellan Van Kan, Gabor; Beauchet, Olivier; Schott, Anne-Marie; Vellas, Bruno; Rolland, Yves
2015-01-01
Background The diversity of definitions proposed for sarcopenia has been rarely tested in the same population, and so far, their clinical utilities for predicting physical difficulties could not be clearly understood. Our objective is to report the prevalence of sarcopenia and the characteristics of sarcopenic community-dwelling older women according to the different definitions of sarcopenia currently proposed. We also assessed these definitions for their incremental predictive value over currently standard predictors for some self-reported difficulties in physical function and knee extension strength. Methods Cross-sectional analysis included data from 3025 non-disabled women aged 75 years or older without previous history of hip fracture from the inclusion visit of the EPIDémiologie de l'OStéoporose study. A total body composition evaluation was available for 2725 women. Sarcopenia was defined using six different definitions of sarcopenia based on different muscle mass, gait speed, and grip strength cut-offs. Self-reported difficulties in physical function and knee extension strength were collected. Logistic regression and multiple linear regression models were built for each physical dysfunction, and the predictive capacity of sarcopenia (one model for each definition) was studied using the C-statistic, the net reclassification index, or adjusted R2. Results The estimated prevalence of sarcopenia ranged from 3.3–20.0%. Only 85 participants (3.1%) were identified having sarcopenia according to all definitions. All definitions were, to some degree, associated with self-reported difficulties in physical function and knee extension strength, but none improved the predictive ability of the self-reported difficulties in physical function. Conversely, all definitions accounted for a small but significant amount of explained variation for predicting knee extension strength. Conclusions Prevalence of sarcopenia varies widely depending on the definition adopted. Based on this research, the current definitions for sarcopenia does not substantially increment the predictive value of clinical characteristics of patients to predict self-reported physical difficulties and knee extension strength. PMID:26136190
Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita
2018-01-01
The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association
How Molecular Structure Affects Mechanical Properties of an Advanced Polymer
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
2000-01-01
density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.
NASA Astrophysics Data System (ADS)
Wysocki, J. K.
1984-02-01
The idea of Young and Clark of independent evaluation of the work function φ and electric field strength F in FEM [R.D. Young and H.E. Clark, Phys. Rev. Letters 17 (1966) 351] has been extended to the energy region above the Fermi level. The estimation of slowly varying elliptic functions, necessary to compute φ and F, using only experimental data is presented. Calculations for the W(111) plane using the field electron energy distribution and the integral field-emission current dependence on retarding voltage have been performed.
Investigating the neural basis for functional and effective connectivity. Application to fMRI
Horwitz, Barry; Warner, Brent; Fitzer, Julie; Tagamets, M.-A; Husain, Fatima T; Long, Theresa W
2005-01-01
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations. PMID:16087450
Relationships Among Lower Body Strength, Power, and Performance of Functional Tasks
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Ryder, J.; Hackney, K.; Scott-Pandorf, M.; Redd, E.; Buxton, R.; Bloomberg, J.
2010-01-01
There is a large degree of variability among crewmembers with respect to decrements in muscle strength and power following long duration spaceflight, ranging from 0 to approx.30% reductions. The purpose of this study was to investigate the influence of varying decrements in lower body muscle strength and power (relative to body weight) on the performance of 2 occupationally relevant tasks (ladder climb and supine egress & walk). Seventeen participants with leg strength similar to US crewmembers performed a leg press power test, an isokinetic knee extension strength test and they were asked to complete the 2 functional tasks as quickly as possible. On additional test days the participants were asked to repeat the functional tasks under 3 conditions where a different external load was applied each time using a weighted suit in order to experimentally manipulate participants strength/body weight and power/body weight ratios. The weight in the suit ranged from 20-120% of body weight and was distributed in proportion to limb segment weights to minimize changes in center of gravity. The ladder task consisted of climbing 40 rungs on a ladder treadmill as fast as possible. The supine egress & walk task consisted of rising from a supine position and walking through an obstacle course. Results show a relatively linear relationship between strength/body weight and task time and power/body weight with task time such that the fastest performance times are associated with higher strength and power with about half the variance in task time is accounted for by a single variable (either strength or power). For the average person, a 20% reduction in power/body weight (from 18 to 14.4 W/kg) induces an increase (slowing) of about 10 seconds in the ladder climb task from 14 to 24 seconds (approx.70%) and a slowing of the supine egress & walk task from 14 to 21 seconds (approx.50%). Similar relationships were observed with strength/body weight and task performance. For the average person, a 20% reduction in strength/body weight (from 2.1 to 1.7 Nm/kg) resulted in a slowing of the ladder climb from 10.5 to 24 seconds (approx.128%) and a slowing of the supine egress & walk from 11 to 20 seconds (approx.82%). These data suggest that the single variable of either low body muscle strength or power, relative to body weight is predictive of about 50% of the variance in task performance time, and that considerable slowing in task performance is associated with relatively typical decrements in muscle performance seen with long duration spaceflight. The observation of a relatively linear relationship between strength/power and task time suggests that across the full spectrum of initial crew strengths and typical decrements in strength previously observed, that task performance would be expected to be slowed following long duration spaceflight. These data will be confirmed in actual spaceflight with subsequent studies.
Is tibialis anterior tendon transfer effective for recurrent clubfoot?
Gray, Kelly; Burns, Joshua; Little, David; Bellemore, Michael; Gibbons, Paul
2014-02-01
Tibialis anterior tendon transfer surgery forms a part of Ponseti management for children with congenital talipes equinovarus who, after initial correction, present with residual dynamic supination. Although retrospective studies support good outcomes, prospective longitudinal studies in this population are lacking. We assessed strength, plantar loading, ROM, foot alignment, function, satisfaction, and quality of life in patients with clubfoot that recurred after Ponseti casting who met indications for tibialis anterior tendon transfer surgery, and compared them with a group of patients with clubfoot treated with casting but whose deformity did not recur (therefore who were not indicated for tibialis anterior tendon transfer surgery). Twenty children with idiopathic congenital talipes equinovarus indicated for tibialis anterior tendon transfer surgery were recruited. Assessment at baseline (before surgery), and 3, 6, and 12 months (after surgery) included strength (hand-held dynamometry), plantar loading (capacitance transducer matrix platform), ROM (Dimeglio scale), foot alignment (Foot Posture Index(©)), function and satisfaction (disease-specific instrument for clubfoot), and quality of life (Infant Toddler Quality of Life Questionnaire™). Outcomes were compared with those of 12 age-matched children with congenital talipes equinovarus not indicated for tibialis anterior tendon transfer surgery. Followup was 100% in the control group and 95% (19 of 20) in the tibialis anterior transfer group. At baseline, the tibialis anterior tendon transfer group had a significantly worse eversion-to-inversion strength ratio, plantar loading, ROM, foot alignment, and function and satisfaction. At 3 months after surgery, eversion-to-inversion strength, plantar loading, and function and satisfaction were no longer different between groups. Improvements were maintained at 12 months after surgery (eversion-to-inversion strength mean difference, 8% body weight; 95% CI, -26% to 11%; p = 0.412; plantar loading, p > 0.251; function and satisfaction, p = 0.076). ROM remained less and foot alignment more supinated in the tibialis anterior tendon transfer group between baseline and followup (p < 0.001, p < 0.001). Tibialis anterior tendon transfer surgery was an effective procedure, which at 12-month followup restored the balance of eversion-to-inversion strength and resulted in plantar loading and function and satisfaction outcomes similar to those of age-matched children with congenital talipes equinovarus who after Ponseti casting were not indicated for tibialis anterior tendon transfer.
NASA Technical Reports Server (NTRS)
Safren, H. G.
1987-01-01
The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.
Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.
Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog
2017-09-07
We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.
Park, Eun-Young; Kim, Won-Ho
2013-05-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beenakker, Karel G M; Ling, Carolina H; Meskers, Carel G M; de Craen, Anton J M; Stijnen, Theo; Westendorp, Rudi G J; Maier, Andrea B
2010-10-01
There is growing recognition of the serious consequences of sarcopenia on the functionality and autonomy in old age. Recently, the age-related changes in several inflammatory mediators have been implicated in the pathogenesis of sarcopenia. The purposes of this systematic review were two-fold: (1) to describe the patterns of muscle strength loss with age in the general population, and (2) to quantify the loss of muscle strength in rheumatoid arthritis as representative for an underlying inflammatory state. Handgrip strength was used as a proxy for overall muscle strength. Results from 114 studies (involving 90,520 subjects) and 71 studies (involving 10,529 subjects) were combined in a meta-analysis for the general and rheumatoid arthritis population respectively and standardized at an equal sex distribution. For the general population we showed that between the ages of 25 years and 95 years mean handgrip strength declined from 45.5 kg to 23.2 kg for males and from 27.1 kg to 12.8 kg for females. We noted a steeper handgrip strength decline after 50 years of age (rate of 0.37 kg/year). In the rheumatoid arthritis population handgrip strength was not associated with chronological age between the ages of 35 years and 65 years and was as low as 20.2 kg in male and 15.1 in female. Rheumatoid arthritis disease duration was inversely associated with handgrip strength. This meta-analysis shows distinct patterns of age-related decrease of handgrip strength in the general population. Handgrip strength is strongly associated with the presence and duration of an inflammatory state as rheumatoid arthritis. The putative link between age-related inflammation and sarcopenia mandates further study as it represents a potential target for intervention to maintain functional independence in old age. Copyright © 2010 Elsevier B.V. All rights reserved.
Effects of neutron irradiation on the strength of continuous fiber reinforced SiC/SiC composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H.
1997-04-01
Flexural strength data as a function of irradiation temperature and dose for a SiC{sub f}/SiC composite made with Nicalon-CG fiber suggest three major degradation mechanisms. Based on an analysis of tensile strength and microstructural data for irradiated Nicalon-CG and Hi-Nicalon fibers, it is anticipated that these degradation mechanisms will be alleviated in Hi-Nicalon reinforced composites.
Dip, Renata Maciulis; Cabrera, Marcos AS; Prato, Sabrina Ferrari
2017-01-01
Background Loss of muscle strength exerts a considerable impact on the quality of life and mortality of older adults. The present household survey study measured body composition and muscle strength with the aim of analyzing the roles of low lean mass, low muscle strength and obesity in stair negotiation ability and the effect of comorbidities on the relationship between body composition and functional capacity. Methods Body composition was assessed using bioelectrical impedance analysis and muscle strength was assessed with a hand grip dynamometer. The study population comprised individuals >55 years of age from a medium-sized Brazilian municipality. The sample included 451 participants. Results A total of 368 subjects were interviewed; their ages varied from 56 to 91 years. Among males, low muscle strength was associated with stair negotiation difficulty independent of muscle mass, age and obesity but muscle mass was not. However, when we analyzed comorbidities and body composition jointly, chronic lower limb pain and obesity were independently associated with stair negotiation difficulty but body composition and age were not. Among women, after comorbidities were included into the model, low muscle strength and obesity remained associated with stair negotiation difficulty as chronic lower limb pain and depression. The relationship between muscle function and comorbidities is discussed in this article. PMID:28860730
Dip, Renata Maciulis; Cabrera, Marcos As; Prato, Sabrina Ferrari
2017-01-01
Loss of muscle strength exerts a considerable impact on the quality of life and mortality of older adults. The present household survey study measured body composition and muscle strength with the aim of analyzing the roles of low lean mass, low muscle strength and obesity in stair negotiation ability and the effect of comorbidities on the relationship between body composition and functional capacity. Body composition was assessed using bioelectrical impedance analysis and muscle strength was assessed with a hand grip dynamometer. The study population comprised individuals >55 years of age from a medium-sized Brazilian municipality. The sample included 451 participants. A total of 368 subjects were interviewed; their ages varied from 56 to 91 years. Among males, low muscle strength was associated with stair negotiation difficulty independent of muscle mass, age and obesity but muscle mass was not. However, when we analyzed comorbidities and body composition jointly, chronic lower limb pain and obesity were independently associated with stair negotiation difficulty but body composition and age were not. Among women, after comorbidities were included into the model, low muscle strength and obesity remained associated with stair negotiation difficulty as chronic lower limb pain and depression. The relationship between muscle function and comorbidities is discussed in this article.
E1 and M1 strength functions at low energy
NASA Astrophysics Data System (ADS)
Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas
2017-09-01
We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.
Sex Differences in Fear of Falling among Older Adults with Low Grip Strength.
Lim, Eunju
2016-05-01
Fear of falling is not only a risk factor for falls, but it is also an important clinical predictor of functional decline in older adults. This study identified sex differences in fear of falling and related factors in older adults with low grip strength. The data of 902 older adults from the 2012 Korean National Survey, conducted as a research project by the Korea Employment Information Service, were analyzed. Grip strength, activities of daily living, cognitive function, depressive symptoms, and fear of falling were assessed. Multiple regression analysis was performed by a simultaneous data entry method. Fear of falling was greater in older women with low grip strength than in their male equivalents (P<0.001). Regression analysis showed that age, fall experience within the previous 2 yr, activities of daily living, and depressive symptoms collectively accounted for 15.3% (P<0.001) of the variance among men. Meanwhile, age, fall experience within the previous 2 yr, grip strength, activities of daily living, and depressive symptoms collectively accounted for 13.4% (P<0.001) of the variance among women. Thus, the predictors of fear of falling differ between older men and women with low grip strength. Therefore, sex differences must be considered when developing intervention strategies for reducing fear of falling in this demographic.
Aging Effects in Polymer Composites
NASA Technical Reports Server (NTRS)
Chamis, Chistos C.; McManus, Hugh L.
1999-01-01
Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.
2005-03-01
Reference Strength as a Function of Temperature ........................... Figure 77: Exponent of Reference Strength as a Function of Temperature...relationship in terms of moisture content for the coefficient and/or the exponent in the 104 area fraction of embrittlement equation developed by Morscher...appears in almost all of the terms of Equations 35 and 37 either as a coefficient, an exponent , or both. This variable is a fitting parameter that
Doucet, Barbara M.; Griffin, Lisa
2014-01-01
Introduction The optimal parameters of neuromuscular electrical stimulation (NMES) for recovery of hand function following stroke are not known. This clinical pilot study examined whether higher or lower frequencies are more effective for improving fine motor control of the hand in a chronic post-stroke population. Methods A one-month, 4x/week in-home regimen of either a high frequency (40Hz) or low frequency (20Hz) NMES program was applied to the hemiplegic thenar muscles of 16 persons with chronic stroke. Participants were identified a priori as having a low level of function (LF) or a high level of function (HF). Outcome measures of strength, dexterity, and endurance were measured before and after participation in the regimen. Results LF subjects showed no significant changes with either the high or the low frequency NMES regimen. HF subjects showed significant changes in strength, dexterity and endurance. Within this group, higher frequencies of stimulation yielded strength gains and increased motor activation; lower frequencies impacted dexterity and endurance. Conclusions The results suggest that higher frequencies of stimulation could be more effective in improving strength and motor activation properties and that lower frequencies may impact coordination and endurance changes; results also indicate that persons with a higher functional level of recovery may respond more favorably to NMES regimens, but further study with larger patient groups is warranted. PMID:23893829
Origin of acoustic emission produced during single point machining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.
1991-01-01
Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less
Patsaki, Irini; Gerovasili, Vasiliki; Sidiras, Georgios; Karatzanos, Eleftherios; Mitsiou, Georgios; Papadopoulos, Emmanuel; Christakou, Anna; Routsi, Christina; Kotanidou, Anastasia; Nanas, Serafim
2017-08-01
Intensive Care Unit (ICU) survivors experience muscle weakness leading to restrictions in functional ability. Neuromuscular electrical stimulation (NMES) has been an alternative to exercise in critically ill patients. The aim of our study was to investigate its effects along with individualized rehabilitation on muscle strength of ICU survivors. Following ICU discharge, 128 patients (age: 53±16years) were randomly assigned to daily NMES sessions and individualized rehabilitation (NMES group) or to control group. Muscle strength was assessed by the Medical Research Council (MRC) score and hand grip at hospital discharge. Secondary outcomes were functional ability and hospital length of stay. MRC, handgrip, functional status and hospital length of stay did not differ at hospital discharge between groups (p>0.05). ΔMRC% one and two weeks after ICU discharge tended to be higher in NMES group, while it was significant higher in NMES group of patients with ICU-acquired weakness at two weeks (p=0.05). NMES and personalized physiotherapy in ICU survivors did not result in greater improvement of muscle strength and functional status at hospital discharge. However, in patients with ICU-aw NMES may be effective. The potential benefits of rehabilitation strategies should be explored in larger number of patients in future studies. www.Clinicaltrials.gov: NCT01717833. Copyright © 2017. Published by Elsevier Inc.
Holviala, Jarkko H S; Sallinen, Janne M; Kraemer, William J; Alen, Markku J; Häkkinen, Keijo K T
2006-05-01
Progressive strength training can lead to substantial increases in maximal strength and mass of trained muscles, even in older women and men, but little information is available about the effects of strength training on functional capabilities and balance. Thus, the effects of 21 weeks of heavy resistance training--including lower loads performed with high movement velocities--twice a week on isometric maximal force (ISOmax) and force-time curve (force produced in 500 milliseconds, F0-500) and dynamic 1 repetition maximum (1RM) strength of the leg extensors, 10-m walking time (10WALK) and dynamic balance test (DYN.D) were investigated in 26 middle-aged (MI; 52.8 +/- 2.4 years) and 22 older women (O; 63.8 +/- 3.8 years). 1RM, ISOmax, and F0-500 increased significantly in MI by 28 +/- 10%, 20 +/- 19%, 31 +/- 34%, and in O by 27 +/- 8%, 20 +/- 16%, 18 +/- 45%, respectively. 10WALK (MI and O, p < 0.001) shortened and DYN.D improved (MI and O, p < 0.001). The present strength-training protocol led to large increases in maximal and explosive strength characteristics of leg extensors and in walking speed, as well to an improvement in the present dynamic balance test performance in both age groups. Although training-induced increase in explosive strength is an important factor for aging women, there are other factors that contribute to improvements in dynamic balance capacity. This study indicates that total body heavy resistance training, including explosive dynamic training, may be applied in rehabilitation or preventive exercise protocols in aging women to improve dynamic balance capabilities.
Van Nuffelen, Gwen; Van den Steen, Leen; Vanderveken, Olivier; Specenier, Pol; Van Laer, Carl; Van Rompaey, Diane; Guns, Cindy; Mariën, Steven; Peeters, Marc; Van de Heyning, Paul; Vanderwegen, Jan; De Bodt, Marc
2015-09-04
Reduced tongue strength is an important factor contributing to early and late dysphagia in head and neck cancer patients previously treated with chemoradiotherapy. The evidence is growing that tongue strengthening exercises can improve tongue strength and swallowing function in both healthy and dysphagic subjects. However, little is known about the impact of specific features of an exercise protocol for tongue strength on the actual outcome (strength or swallowing function). Previous research originating in the fields of sports medicine and physical rehabilitation shows that the degree of exercise load is an influential factor for increasing muscle strength in the limb skeletal muscles. Since the tongue is considered a muscular hydrostat, it remains to be proven whether the same concepts will apply. This ongoing randomized controlled trial in chemoradiotherapy-treated patients with head and neck cancer investigates the effect of three tongue strengthening exercise protocols, with different degrees of exercise load, on tongue strength and swallowing. At enrollment, 51 patients whose dysphagia is primarily related to reduced tongue strength are randomly assigned to a training schedule of 60, 80, or 100% of their maximal tongue strength. Patients are treated three times a week for 8 weeks, executing 120 repetitions of the assigned exercise once per training day. Exercise load is progressively adjusted every 2 weeks. Patients are evaluated before, during and after treatment by means of tongue strength measurements, fiber-optic endoscopic evaluation of swallowing and quality-of-life questionnaires. This randomized controlled trial is the first to systematically investigate the effect of different exercise loads in tongue strengthening exercise protocols. The results will allow the development of more efficacious protocols. Current Controlled Trials ISRCTN14447678.
Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook
NASA Astrophysics Data System (ADS)
Dorri Moghadam, Afsaneh; Schultz, Benjamin F.; Ferguson, J. B.; Omrani, Emad; Rohatgi, Pradeep K.; Gupta, Nikhil
2014-06-01
Many different types of advanced metal matrix composites are now available, some of which possess functional properties. Recent work on particle-reinforced, self-lubricating and self-healing metals and metal matrix nanocomposites (MMNCs) synthesized by solidification synthesis is reviewed. Particle-based MMNCs have been developed by several modern processing tools based on either solid- or liquid-phase synthesis techniques that are claimed to exhibit exciting mechanical properties including improvements of modulus, yield strength, and ultimate tensile strength. This article presents a brief and objective review of the work done over the last decade to identify the challenges and future opportunities in the area of functional nanocomposites. Increasing interest in lightweight materials has resulted in studies on hollow particle-filled metal matrix syntactic foams. Syntactic foams seem especially suitable for development with functional properties such as self-healing and self-lubrication. The metal matrix micro and nanocomposites, and syntactic foams having combinations of ultrahigh strength and wear resistance, self-lubricating, and/or self-healing properties can lead to increased energy efficiency, reliability, comfort of operation, reparability, and safety of vehicles. The focus of the present review is aluminum and magnesium matrix functional materials.
Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.
Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S
2017-07-01
What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P < 0.05], whereas FLH showed good reliability in chow (ICC = 0.7; P < 0.05) but not in HFD mice after 10 weeks (ICC < 0.5). Our data demonstrate that non-invasive muscle function tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
Stock, Roland; Mork, Paul Jarle
2009-09-01
To investigate the effect of two weeks of intensive exercise on leg function in chronic stroke patients and to evaluate the feasibility of an intensive exercise programme in a group setting. Pilot study with one-group pre-test post-test design with two pre-tests and one-year follow-up. Inpatient rehabilitation hospital. Twelve hemiparetic patients completed the intervention. Ten patients participated at one-year follow-up. Six hours of daily intensive exercise for two weeks with focus on weight-shifting towards the affected side and increased use of the affected extremity during functional activities. An insole with nubs in the shoe of the non-paretic limb was used to reinforce weight-shift toward the affected side. Timed Up and Go, Four Square Step Test, gait velocity, gait symmetry and muscle strength in knee and ankle muscles. Maximal gait velocity (P = 0.002) and performance time (seconds) on Timed Up and Go (mean, SD; 12.2, 3.8 vs. 9.4, 3.2) and Four Square Step Test improved from pre- to post-test (P = 0.005). Improvements remained significant at follow-up. Preferred gait velocity and gait symmetry remained unchanged. Knee extensor (P<50.009) and flexor (P<50.001) strength increased bilaterally from pre- to post-test but only knee flexor strength remained significant at follow-up. Ankle dorsi flexor (P = 0.02) and plantar flexor (P<0.001) strength increased on paretic side only (not tested at follow-up). Intensive exercise for lower extremity is feasible in a group setting and was effective in improving ambulatory function, maximal gait velocity and muscle strength in chronic stroke patients. Most improvements persisted at the one-year follow-up.
Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions.
Xie, Dong; Weng, Yiming; Guo, Xia; Zhao, Jun; Gregory, Richard L; Zheng, Cunge
2011-05-01
The objective of this study was to use the newly synthesized poly(quaternary ammonium salt) (PQAS)-containing polyacid to formulate the light-curable glass-ionomer cements and study the effect of the PQAS on the compressive strength and antibacterial activity of the formed cements. The functional QAS and their constructed PQAS were synthesized, characterized and formulated into the experimental high-strength cements. Compressive strength (CS) and Streptococcus mutans viability were used to evaluate the mechanical strength and antibacterial activity of the cements. Fuji II LC cement was used as control. The specimens were conditioned in distilled water at 37°C for 24 h prior to testing. The effects of the substitute chain length, loading as well as grafting ratio of the QAS and aging on CS and S. mutans viability were investigated. All the PQAS-containing cements showed a significant antibacterial activity, accompanying with an initial CS reduction. The effects of the chain length, loading and grafting ratio of the QAS were significant. Increasing chain length, loading, grafting ratio significantly enhanced antibacterial activity but reduced the initial CS. Under the same substitute chain length, the cements containing QAS bromide were found to be more antibacterial than those containing QAS chloride although the CS values of the cements were not statistically different from each other, suggesting that we can use QAS bromide directly without converting bromide to chloride. The experimental cement showed less CS reduction and higher antibacterial activity than Fuji II LC. The long-term aging study suggests that the cements may have a long-lasting antibacterial function. This study developed a novel antibacterial glass-ionomer cement. Within the limitations of this study, it appears that the experimental cement is a clinically attractive dental restorative due to its high mechanical strength and antibacterial function. Published by Elsevier Ltd.
Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis
Kumar, Deepak; Karampinos, Dimitrios C.; MacLeod, Toran D.; Lin, Wilson; Nardo, Lorenzo; Li, Xiaojuan; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B
2014-01-01
Objectives To compare thigh muscle intramuscular fat (intraMF) fractions and area between people with and without knee radiographic osteoarthritis (ROA); and to evaluate the relationships of quadriceps adiposity and area with strength, function and knee MRI lesions. Methods Ninety six subjects (ROA: KL >1; n = 30, control: KL = 0,1; n = 66) underwent 3-Tesla MRI of the thigh muscles using chemical shift-based water/fat MR imaging (fat fractions) and the knee (clinical grading). Subjects were assessed for isometric/isokinetic quadriceps/hamstrings strength, function (KOOS, stair climbing test [SCT], and 6-minute walk test [(6MWT]. Thigh muscle intraMF fractions, muscle area and strength, and function were compared between controls and ROA subjects, adjusting for age. Relationships between measures of muscle fat/area with strength, function, KL and lesion scores were assessed using regression and correlational analyses. Results The ROA group had worse KOOS scores but SCT and 6MWT were not different. The ROA group had greater quadriceps intraMF fraction but not for other muscles. Quadriceps strength was lower in ROA group but the area was not different. Quadriceps intraMF fraction but not area predicted self-reported disability. Aging, worse KL, and cartilage and meniscus lesions were associated with higher quadriceps intraMF fraction. Conclusion Quadriceps intraMF is higher in people with knee OA and is related to symptomatic and structural severity of knee OA, where as the quadriceps area is not. Quadriceps fat fraction from chemical shift-based water/fat MR imaging may have utility as a marker of structural and symptomatic severity of knee OA disease process. PMID:24361743
Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija
2015-01-01
Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Structural connectivity of right frontal hyperactive areas scales with stuttering severity
Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin
2018-01-01
Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. PMID:29228195
Structural connectivity of right frontal hyperactive areas scales with stuttering severity.
Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin
2018-01-01
A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T
2014-10-01
To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.
Rathleff, M S; Mølgaard, C M; Fredberg, U; Kaalund, S; Andersen, K B; Jensen, T T; Aaskov, S; Olesen, J L
2015-06-01
The aim of this study was to investigate the effectiveness of shoe inserts and plantar fascia-specific stretching vs shoe inserts and high-load strength training in patients with plantar fasciitis. Forty-eight patients with ultrasonography-verified plantar fasciitis were randomized to shoe inserts and daily plantar-specific stretching (the stretch group) or shoe inserts and high-load progressive strength training (the strength group) performed every second day. High-load strength training consisted of unilateral heel raises with a towel inserted under the toes. Primary outcome was the foot function index (FFI) at 3 months. Additional follow-ups were performed at 1, 6, and 12 months. At the primary endpoint, at 3 months, the strength group had a FFI that was 29 points lower [95% confidence interval (CI): 6-52, P = 0.016] compared with the stretch group. At 1, 6, and 12 months, there were no differences between groups (P > 0.34). At 12 months, the FFI was 22 points (95% CI: 9-36) in the strength group and 16 points (95% CI: 0-32) in the stretch group. There were no differences in any of the secondary outcomes. A simple progressive exercise protocol, performed every second day, resulted in superior self-reported outcome after 3 months compared with plantar-specific stretching. High-load strength training may aid in a quicker reduction in pain and improvements in function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M
2004-09-01
In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.
Artilheiro, M.C.; Sá, C.S.C.; Fávero, F.M.; Caromano, F.A.; Voos, M.C.
2017-01-01
This study aimed to investigate possible asymmetries and relationships between performance of dominant and non-dominant upper limbs (UL) in patients with Duchenne and Becker muscular dystrophies (DMD/BMD), to compare UL performance of patients and healthy subjects and to investigate the relationship between timed performance of UL and age, motor function and muscle strength in DMD/BMD patients. Sixteen patients with DMD and 3 with BMD were evaluated with Jebsen-Taylor Test (timed performance), Vignos scale and Dimension 3 of Motor Function Measure (motor function), and Medical Research Council scale (muscle strength) on a single session. ANOVA showed no asymmetry between dominant and non-dominant UL, except in the writing subtest, in patients and in healthy controls. There were relationships between dominant and non-dominant UL performances. Correlations between timed performance, motor function and muscle strength were found, but age was not correlated with these variables. These findings may reduce the assessment time, prevent fatigue and provide more accurate clinical reasoning involving UL in DMD/BMD treatment. PMID:28746422
Yu, JaeHo; Park, DaeSung; Lee, GyuChang
2013-01-01
The aim of this study was to investigate the effect of eccentric strengthening on pain, muscle strength, endurance, and functional fitness factors in Achilles tendinopathy patients. Thirty-two male patients with Achilles tendinopathy were assigned to either the experimental group that performed eccentric strengthening or the control group that performed concentric strengthening (n = 16, both groups) for 8 wks (50 mins per day, three times per week). A visual analog scale, an isokinetic muscle testing equipment, the side-step test, and the Sargent jump test were used to assess pain, muscle strength, endurance, and functional fitness factors before and after the intervention. In comparison with the control group, the experimental group showed significant improvement in pain, ankle dorsiflexion endurance, total balance index, and agility after the intervention (P < 0.05). However, there was no significant difference in dexterity between the two groups. Eccentric strengthening was more effective than concentric strengthening in reducing pain and improving function in patients with Achilles tendinopathy; therefore, regular eccentric strengthening is important for patients in a clinical setting.
Novel Analog For Muscle Deconditioning
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Ryder, Jeff; Buxton, Roxanne; Redd. Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle; Fiedler, James; Ploutz-Snyder, Robert; Bloomberg, Jacob
2011-01-01
Existing models (such as bed rest) of muscle deconditioning are cumbersome and expensive. We propose a new model utilizing a weighted suit to manipulate strength, power, or endurance (function) relative to body weight (BW). Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre-and postflightastronaut performance data for the same tasks. Splineregression was used to identify muscle function thresholds below which task performance was impaired. Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/BW of 79 J/kg, isokineticknee extension (KE)/BW of 6 Nm/kg, and KE torque/BW of 1.9 Nm/kg.Conclusions: Laboratory manipulation of relative strength has promise as an appropriate analog for spaceflight-induced loss of muscle function, for predicting occupational task performance and establishing operationally relevant strength thresholds.
Modification of carbon fiber surfaces via grafting with Meldrum's acid
NASA Astrophysics Data System (ADS)
Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang
2015-11-01
The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.
Bučar Pajek, Maja; Leskošek, Bojan; Vivoda, Tjaša; Svilan, Katarina; Čuk, Ivan; Pajek, Jernej
2016-06-01
To reduce the need for a large number of executed physical function tests we examined inter-relations and determined predictive power for daily physical activity of the following tests: 6-min walk, 10 repetition sit-to-stand, time up-and-go, Storke balance, handgrip strength, upper limb tapping and sitting forward bend tests. In 90 dialysis and 140 healthy control subjects we found high correlations between all tests, especially those engaging lower extremities. Sit-to-stand, forward bend and handgrip strength were selected for the test battery and composite motor performance score. Sit-to-stand test was superior in terms of sensitivity to uremia effects and association with daily physical function in adjusted analyses. There was no incremental value in calculating the composite performance score. We propose to standardize the physical function assessment of dialysis patients for cross-sectional and longitudinal observations with three simple, cheap, well-accessible and easily performed test tools: sit-to-stand test, handgrip strength and Human Activity Profile questionnaire. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
Payette, Hélène; Boutier, Véronique; Coulombe, Carole; Gray-Donald, Katherine
2002-08-01
To evaluate the impact of nutritional supplementation on nutritional status, muscle strength, perceived health, and functional status in a population of community-living, frail, undernourished elderly people. A 16-week intervention study in which subjects were randomized to an experimental or a control group and visited in their home on a monthly basis. Outcome variables were measured at the start and end of the study at subjects' homes by a dietitian blinded to treatment assignment. 83 elderly people (experimental group: n=42; control group: n=41; mean age=80+/-7 years) receiving community home-care services and at high risk for undernutrition. Provision of a nutrient-dense protein-energy liquid supplement and encouragement to improve intake from other foods. Anthropometric indexes, handgrip strength, isometric elbow flexion and leg extension strength, lower extremity function, perceived health, and functional status. Study groups were compared on an "intention to treat" basis using analysis of variance for repeated measures and unpaired and paired t tests and their nonparametric equivalents where appropriate. Total energy intake (1,772 vs 1,440 kcal; P<.001) and weight gain (1.62 vs 0.04 kg; P<.001) were higher in the supplemented group. No significant changes were observed with respect to other anthropometric indexes, muscle strength, or functional variables; however, beneficial effects were observed in emotional role functioning (P<0.01) and number of days spent in bed (P=.04). Nutrition intervention is feasible in free-living, frail, undernourished elderly people and results in significant improvement of nutritional status with respect to energy and nutrient intake and weight gain. Weight loss can be stopped and in some cases reversed; however, increased physical activity may also be required to improve health and functional status.
Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength
NASA Technical Reports Server (NTRS)
Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.
2013-01-01
Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.
75 FR 62893 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... for using portland cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of the structure... of the structure depends on the functional reliability of the structure's principal strength elements...
Heliospheric Modulation Strength During The Neutron Monitor Era
NASA Astrophysics Data System (ADS)
Usoskin, I. G.; Alanko, K.; Mursula, K.; Kovaltsov, G. A.
Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric mod- ulation strength. Convoluting these spectra with the specific yield function of a neu- tron monitor, we obtain the expected neutron monitor count rates for different values of the modulation strength. Finally, inverting this relation, we calculate the modula- tion strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (19532000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding esti- mates reported earlier for some years.
2012-01-01
Background Enzyme replacement therapy (ERT) in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years) were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y); hand-held dynamometry 4.0 pp/y; both p < 0.001). Forced vital capacity (FVC) remained stable when measured in upright, but declined in supine position (−1.1 pp/y; p = 0.03). Muscle function did not improve in all patients (quick motor function test 0.7 pp/y; p = 0.14), but increased significantly in wheelchair-independent patients and those with mild and moderate muscle weakness. Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up), ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p < 0.001 and hand-held dynamometry +7.9 pp/y, p < 0.001). Its effect on upright FVC was +1.8 pp/y (p = 0.08) and on supine FVC +0.8 (p = 0.38). Favorable prognostic factors were female gender for muscle strength, and younger age and better clinical status for supine FVC. Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely. PMID:23013746
Peeler, Jason; Christian, Mathew; Cooper, Juliette; Leiter, Jeffrey; MacDonald, Peter
2015-11-01
To determine the effect of a 12-week lower body positive pressure (LBPP)-supported low-load treadmill walking program on knee joint pain, function, and thigh muscle strength in overweight patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community-based, multidisciplinary sports medicine clinic. Thirty-one patients aged between 55 and 75 years, with a body mass index ≥25 kg/m and mild-to-moderate knee OA. Twelve-week LBPP-supported low-load treadmill walking regimen. Acute knee joint pain (visual analog scale) during full weight bearing treadmill walking, chronic knee pain, and joint function [Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire] during normal activities of daily living, and thigh muscle strength (isokinetic testing). Appropriate methods of statistical analysis were used to compare data from baseline and follow-up evaluation. Participants reported significant improvements in knee joint pain and function and demonstrated significant increases in thigh muscle strength about the degenerative knee. Participants also experienced significant reductions in acute knee pain during full weight bearing treadmill walking and required dramatically less LBPP support to walk pain free on the treadmill. Data suggest that an LBPP-supported low-load exercise regimen can be used to significantly diminish knee pain, enhance joint function, and increase thigh muscle strength, while safely promoting pain-free walking exercise in overweight patients with knee OA. These findings have important implications for the development of nonoperative treatment strategies that can be used in the management of joint symptoms associated with progressive knee OA in at-risk patient populations. This research suggests that LBPP-supported low-load walking is a safe user-friendly mode of exercise that can be successfully used in the management of day-to-day joint symptoms associated with knee OA, helping to improve the physical health, quality of life, and social well-being of North America's aging population.
Kahyaoglu Sut, Hatice; Balkanli Kaplan, Petek
2016-03-01
The aim of this study was to investigate the effects of pelvic floor muscle exercise during pregnancy and the postpartum period on pelvic floor muscle activity and voiding functions. Pregnant women (n = 60) were randomly assigned into two groups (Training [n = 30] and Control [n = 30]) using a computer-based system. Pelvic floor muscle strength was measured using a perineometry device. Urinary symptoms were measured using the Urinary Distress Inventory (UDI-6), Incontinence Impact Questionnaire (IIQ-7), and the Overactive Bladder Questionnaire (OAB-q). Voiding functions were measured using uroflowmetry and 3-day voiding diaries. Measurements were obtained at week 28, weeks 36-38 of pregnancy, and postpartum weeks 6-8. Pelvic floor muscle strength significantly decreased during the pregnancy (P < 0.001). However, pelvic floor muscle strength improvement was significantly higher in the Training group compared to the Control group (P < 0.001). The UDI-6, IIQ-7, and OAB-q scores did not significantly change during weeks 36-38 of pregnancy in the Training group (P > 0.05). However, UDI-6, coping, concern, and total scores of OAB-q were significantly decreased during weeks 36-38 of pregnancy in the Control group (P < 0.05). The UDI-6 and OAB-q scores were significantly improved during postpartum weeks 6-8 (P < 0.05). Voiding functions were negatively affected in both groups, decreasing during weeks 36-38 of pregnancy and improving during the postpartum period. Pregnancy and delivery affect pelvic floor muscle strength, urinary symptoms, quality of life, and voiding functions. Pelvic floor muscle exercises applied during pregnancy and the postpartum period increase pelvic floor muscle strength and prevent deterioration of urinary symptoms and quality of life in pregnancy. © 2015 Wiley Periodicals, Inc.
Mediators of disability and hope for people with spinal cord injury.
Phillips, Brian N; Smedema, Susan M; Fleming, Allison R; Sung, Connie; Allen, Michael G
2016-08-01
To test potential strength-based mediators of functional disability and hope in adults with spinal cord injury. Two hundred and forty-two participants with spinal cord injury were recruited for this study. The mean age of participants was 44.6 years (standard deviation = 13.2), and 66.1% were men. Participants completed a survey containing a demographic questionnaire, as well as measures of functional disability, hope, self-esteem, proactive coping, perceived social support and disability acceptance. Mediation analysis was conducted using a bootstrap test for multiple mediators. Proactive coping, self-esteem and perceived social support significantly mediated the relationship between functional disability and hope, while disability acceptance did not. The combination of mediators resulted in functional disability no longer being a significant predictor of hope. The strength-based constructs of proactive coping, self-esteem and social support appear effective in predicting hope regardless of severity of spinal cord injury. Functional disability was no longer predictive of hope after controlling for these strength-based constructs. Disability acceptance did not significantly add to the mediation model. These results provide further evidence for strength-based interventions in rehabilitation. Implications for Rehabilitation Strength-based constructs of proactive coping, self-esteem and social support are important factors for addressing hope following spinal cord injury, regardless of level of severity. Rehabilitation services providers should focus efforts on supporting clients in the accurate appraisal of predictable stressors and then generate means for addressing them as a form of proactive coping. Rehabilitation services providers must be cautious when addressing self-esteem to focus on perceived competence and learning processes rather than self-esteem directly or through the accomplishment of goals that may not be achieved. Knowing that social supports are related to hope post-spinal cord injury, it is important for rehabilitation services providers to recognize potential social supports early in the rehabilitation process and involve those social supports in the rehabilitation process when possible.
Electric and Magnetic Dipole Strength at Low Energy.
Sieja, K
2017-08-04
A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ-ray strength of the ^{44}Sc isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1ℏω sd-pf-gds model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M1 strength but show quite different behavior for the E1 strength.
Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz
2016-01-01
Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern of correlations between structural or functional frontostriatal connectivity strength and self-control suggests that, in addition to the importance of the frontostriatal nodes itself, the structural and functional properties of different connections within the frontostriatal network are crucial for self-controlled behaviors in the healthy elderly. Because high DoG/low DD is a significant predictor of willpower and wellbeing in the elderly population, interventions aiming at strengthening frontostriatal connectivity to strengthen self-controlled behavior are needed in the future. PMID:28105013
Hartigan, Erin H.; Axe, Michael J.; Snyder-Mackler, Lynn
2013-01-01
STUDY DESIGN Randomized clinical trial. OBJECTIVES Determine effective interventions for improving readiness to return to sports post-operatively in patients with complete, unilateral, anterior cruciate ligament (ACL) rupture who do not compensate well after the injury (noncopers). Specifically, we compared the effects of 2 preoperative interventions on quadriceps strength and functional outcomes. BACKGROUND The percentage of athletes who return to sports after ACL reconstruction varies considerably, possibly due to differential responses after acute ACL rupture and different management. Prognostic data for noncopers following ACL reconstruction is absent in the literature. METHODS Forty noncopers were randomly assigned to receive either progressive quadriceps strength-training exercises (STR group) or perturbation training in conjunction with strength-training exercises (PERT group) for 10 preoperative rehabilitation sessions. Postoperative rehabilitation was similar between groups. Data on quadriceps strength indices [(involved limb/uninvolved limb force) ×100], 4 hop score indices, and 2 self-report questionnaires were collected preoperatively and 3, 6, and 12 months postoperatively. Mann-Whitney U tests were used to compare functional differences between the groups. Chi-square tests were used to compare frequencies of passing functional criteria and reasons for differences in performance between groups postoperatively. RESULTS Functional outcomes were not different between groups, except a greater number of patients in the PERT group achieved global rating scores (current knee function expressed as a percentage of overall knee function prior to injury) necessary to pass return-to-sports criteria 6 and 12 months after surgery. Mean scores for each functional outcome met return-to-sports criteria 6 and 12 months postoperatively. Frequency counts of individual data, however, indicated that 5% of noncopers passed RTS criteria at 3, 48% at 6, and 78% at 12 months after surgery. CONCLUSION Functional outcomes suggest that a subgroup of noncopers require additional supervised rehabilitation to pass stringent criteria to return to sports. LEVEL OF EVIDENCE Therapy, level 2b. PMID:20195019
Hartigan, Erin H; Axe, Michael J; Snyder-Mackler, Lynn
2010-03-01
Randomized clinical trial. Determine effective interventions for improving readiness to return to sports postoperatively in patients with complete, unilateral, anterior cruciate ligament (ACL) rupture who do not compensate well after the injury (noncopers). Specifically, we compared the effects of 2 preoperative interventions on quadriceps strength and functional outcomes. The percentage of athletes who return to sports after ACL reconstruction varies considerably, possibly due to differential responses after acute ACL rupture and different management. Prognostic data for noncopers following ACL reconstruction is absent in the literature. Forty noncopers were randomly assigned to receive either progressive quadriceps strength-training exercises (STR group) or perturbation training in conjunction with strength-training exercises (PERT group) for 10 preoperative rehabilitation sessions. Postoperative rehabilitation was similar between groups. Data on quadriceps strength indices [(involved limb/uninvolved limb force) x 100], 4 hop score indices, and 2 self-report questionnaires were collected preoperatively and 3, 6, and 12 months postoperatively. Mann-Whitney U tests were used to compare functional differences between the groups. Chi-square tests were used to compare frequencies of passing functional criteria and reasons for differences in performance between groups postoperatively. Functional outcomes were not different between groups, except a greater number of patients in the PERT group achieved global rating scores (current knee function expressed as a percentage of overall knee function prior to injury) necessary to pass return-to-sports criteria 6 and 12 months after surgery. Mean scores for each functional outcome met return-to-sports criteria 6 and 12 months postoperatively. Frequency counts of individual data, however, indicated that 5% of noncopers passed RTS criteria at 3, 48% at 6, and 78% at 12 months after surgery. Functional outcomes suggest that a subgroup of noncopers require additional supervised rehabilitation to pass stringent criteria to return to sports. Therapy, level 2b.Note: If watching the first video, we recommend downloading and referring to the accompanying PowerPoint slides for any text that is not readable.
Sekir, U; Yildiz, Y; Hazneci, B; Ors, F; Saka, T; Aydin, T
2008-12-01
In contrast to the single evaluation methods used in the past, the combination of multiple tests allows one to obtain a global assessment of the ankle joint. The aim of this study was to determine the reliability of the different tests in a functional test battery. Twenty-four male recreational athletes with unilateral functional ankle instability (FAI) were recruited for this study. One component of the test battery included five different functional ability tests. These tests included a single limb hopping course, single-legged and triple-legged hop for distance, and six and cross six meter hop for time. The ankle joint position sense and one leg standing test were used for evaluation of proprioception and sensorimotor control. The isokinetic strengths of the ankle invertor and evertor muscles were evaluated at a velocity of 120 degrees /s. The reliability of the test battery was assessed by calculating the intraclass correlation coefficient (ICC). Each subject was tested two times, with an interval of 3-5 days between the test sessions. The ICCs for ankle functional and proprioceptive ability showed high reliability (ICCs ranging from 0.94 to 0.98). Additionally, isokinetic ankle joint inversion and eversion strength measurements represented good to high reliability (ICCs between 0.82 and 0.98). The functional test battery investigated in this study proved to be a reliable tool for the assessment of athletes with functional ankle instability. Therefore, clinicians may obtain reliable information from the functional test battery during the assessment of ankle joint performance in patients with functional ankle instability.
Insulin resistance and muscle strength in older persons.
Abbatecola, Angela M; Ferrucci, Luigi; Ceda, Gianpaolo; Russo, Cosimo R; Lauretani, Fulvio; Bandinelli, Stefania; Barbieri, Michelangela; Valenti, Giorgio; Paolisso, Giuseppe
2005-10-01
The functional consequences of an age-related insulin resistance (IR) state on muscle functioning are unknown. Because insulin is needed for adequate muscle function, an age-related insulin-resistant state may also be a determining factor. We evaluated the relationship between IR and handgrip muscle strength in men and women from a large population-based study (n = 968). The degree of IR was evaluated by the homeostasis model assessment (HOMA) and muscle strength was assessed using handgrip. Simple sex-stratified correlations demonstrated that, in men, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.321; p < .001), muscle area (r = 0.420; p < .001), muscle density (r = 0.263; p = .001), plasma albumin (r = 0.156; p = .001), insulin-like growth factor-1 (r = 0.258; p < .001), calcium (r = 0.140; p = .006), and testosterone (r = 0.325; p < .001) concentrations, whereas a negative association was found for age (r = -0.659; p < .001) and myoglobin plasma levels (r = -0.164; p =.001). In women, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.280; p < .001), muscle area (r = 0.306; p < .001), muscle density (r = 0.341; p = .001), plasma albumin (r = 0.140; p =.001), and insulin-like growth factor-1 (r = 0.300; p < .001), whereas a negative association was found for age (r = -0.563; p < .001), myoglobin levels (r = -0.164; p = .001), and IR (r = -0.130; p = .04). Sex-stratified analyses adjusted for multiple confounders showed that the relationship between IR and handgrip strength was found significant in women, whereas it was negligible and not significant in men.
Functional outcomes and life satisfaction in long-term survivors of pediatric sarcomas.
Gerber, Lynn H; Hoffman, Karen; Chaudhry, Usha; Augustine, Elizabeth; Parks, Rebecca; Bernad, Martha; Mackall, Crystal; Steinberg, Seth; Mansky, Patrick
2006-12-01
To describe the inter-relationships among impairments, performance, and disabilities in survivors of pediatric sarcoma and to identify measurements that profile survivors at risk for functional loss. Prospective, cross-sectional. Research facility. Thirty-two participants in National Cancer Institute clinical trials. Not applicable. Range of motion (ROM), strength, limb volume, grip strength, walk velocity, Assessment of Motor and Process Skills (AMPS); Human Activity Profile (HAP), Sickness Impact Profile (SIP), standard form of the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36); and vocational attitudes and leisure satisfaction. Twenty of 30 survivors tested had moderate or severe loss of ROM; 13 of 31 tested had 90% or less of predicted walk velocity; all of whom had trunk or lower-extremity lesions. Women with decreased ROM (r=.50, P=.06) or strength (r=.74, P=.002) had slow gait velocity. Sixteen of 31 tested were more than 1 standard deviation below normal grip strength. Eighteen had increased limb volume. These 18 had low physical competence (SF-36) (r=-.70, P=.001) and high SIP scores (r=.73, P=.005). AMPS scores were lower than those of the matched normed sample (P<.001). HAP identified 15 of 30 who had moderately or severely reduced activity. Leisure satisfaction was higher in the subjects (P<.001). Eight reported cancer had negatively impacted work and 17 reported that it negatively impacted vocational plans. Survivors with lower-extremity or truncal lesions and women with decreased ROM and strength likely have slow walk velocity, low exercise tolerance, and high risk for functional loss. They should be identified using ROM, strength, limb volume, and walk time measures.
Reinstein, Dan Z; Archer, Timothy J; Randleman, J Bradley
2013-07-01
To develop a mathematical model to estimate the relative differences in postoperative stromal tensile strength following photorefractive keratectomy (PRK), LASIK, and small incision lenticule extraction (SMILE). Using previously published data where in vitro corneal stromal tensile strength was determined as a function of depth, a mathematical model was built to calculate the relative remaining tensile strength by fitting the data with a fourth order polynomial function yielding a high correlation coefficient (R(2) = 0.930). Calculating the area under this function provided a measure of total stromal tensile strength (TTS), based only on the residual stromal layer for PRK or LASIK and the residual stromal layers above and below the lenticule interface for SMILE. Postoperative TTS was greatest after SMILE, followed by PRK, then LASIK; for example, in a 550-μm cornea after 100-μm tissue removal, postoperative TTS was 75% for SMILE (130-μm cap), 68% for PRK, and 54% for LASIK (110-μm flap). The postoperative TTS decreased for thinner corneal pachymetry for all treatment types. In LASIK, the postoperative TTS decreased with increasing flap thickness by 0.22%/μm, but increased by 0.08%/μm for greater cap thickness in SMILE. The model predicted that SMILE lenticule thickness could be approximately 100 μm greater than the LASIK ablation depth and still have equivalent corneal strength (equivalent to approximately 7.75 diopters). This mathematical model predicts that the postoperative TTS is considerably higher after SMILE than both PRK and LASIK, as expected given that the strongest anterior lamellae remain intact. Consequently, SMILE should be able to correct higher levels of myopia. Copyright 2013, SLACK Incorporated.
Aertssen, W F M; Steenbergen, B; Smits-Engelsman, B C M
2018-06-07
There is lack of valid and reliable field-based tests for assessing functional strength in young children with mild intellectual disabilities (IDs). The aim of this study was to investigate the test-retest reliability and construct validity of the Functional Strength Measurement in children with ID (FSM-ID). Fifty-two children with mild ID (40 boys and 12 girls, mean age 8.48 years, SD = 1.48) were tested with the FSM. Test-retest reliability (n = 32) was examined by a two-way interclass correlation coefficient for agreement (ICC 2.1A). Standard error of measurement and smallest detectable change were calculated. Construct validity was determined by calculating correlations between the FSM-ID and handheld dynamometry (HHD) (convergent validity), FSM-ID, FSM-ID and subtest strength of the Bruininks-Oseretsky test of motor proficiency - second edition (BOT-2) (convergent validity) and the FSM-ID and balance subtest of the BOT-2 (discriminant validity). Test-retest reliability ICC ranged 0.89-0.98. Correlation between the items of the FSM-ID and HHD ranged 0.39-0.79 and between FSM-ID and BOT-2 (strength items) 0.41-0.80. Correlation between items of the FSM-ID and BOT-2 (balance items) ranged 0.41-0.70. The FSM-ID showed good test-retest reliability and good convergent validity with the HHD and BOT-2 subtest strength. The correlations assessing discriminant validity were higher than expected. Poor levels of postural control and core stability in children with mild IDs may be the underlying factor of those higher correlations. © 2018 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Foley, A; Halbert, J; Hewitt, T; Crotty, M
2003-12-01
To compare the effects of a hydrotherapy resistance exercise programme with a gym based resistance exercise programme on strength and function in the treatment of osteoarthritis (OA). Single blind, three arm, randomised controlled trial. 105 community living participants aged 50 years and over with clinical OA of the hip or knee. Participants were randomised into one of three groups: hydrotherapy (n = 35), gym (n = 35), or control (n = 35). The two exercising groups had three exercise sessions a week for six weeks. At six weeks an independent physiotherapist unaware of the treatment allocation performed all outcome assessments (muscle strength dynamometry, six minute walk test, WOMAC OA Index, total drugs, SF-12 quality of life, Adelaide Activities Profile, and the Arthritis Self-Efficacy Scale). In the gym group both left and right quadriceps significantly increased in strength compared with the control group, and right quadriceps strength was also significantly better than in the hydrotherapy group. The hydrotherapy group increased left quadriceps strength only at follow up, and this was significantly different from the control group. The hydrotherapy group was significantly different from the control group for distance walked and the physical component of the SF-12. The gym group was significantly different from the control group for walk speed and self efficacy satisfaction. Compliance rates were similar for both exercise groups, with 84% of hydrotherapy and 75% of gym sessions attended. There were no differences in drug use between groups over the study period. Functional gains were achieved with both exercise programmes compared with the control group.
Foley, A; Halbert, J; Hewitt, T; Crotty, M
2003-01-01
Objective: To compare the effects of a hydrotherapy resistance exercise programme with a gym based resistance exercise programme on strength and function in the treatment of osteoarthritis (OA). Design: Single blind, three arm, randomised controlled trial. Subjects: 105 community living participants aged 50 years and over with clinical OA of the hip or knee. Methods: Participants were randomised into one of three groups: hydrotherapy (n = 35), gym (n = 35), or control (n = 35). The two exercising groups had three exercise sessions a week for six weeks. At six weeks an independent physiotherapist unaware of the treatment allocation performed all outcome assessments (muscle strength dynamometry, six minute walk test, WOMAC OA Index, total drugs, SF-12 quality of life, Adelaide Activities Profile, and the Arthritis Self-Efficacy Scale). Results: In the gym group both left and right quadriceps significantly increased in strength compared with the control group, and right quadriceps strength was also significantly better than in the hydrotherapy group. The hydrotherapy group increased left quadriceps strength only at follow up, and this was significantly different from the control group. The hydrotherapy group was significantly different from the control group for distance walked and the physical component of the SF-12. The gym group was significantly different from the control group for walk speed and self efficacy satisfaction. Compliance rates were similar for both exercise groups, with 84% of hydrotherapy and 75% of gym sessions attended. There were no differences in drug use between groups over the study period. Conclusion: Functional gains were achieved with both exercise programmes compared with the control group. PMID:14644853
Baltich, J; Emery, C A; Whittaker, J L; Nigg, B M
2017-11-01
The purpose of this trial was to evaluate injury risk in novice runners participating in different strength training interventions. This was a pilot randomized controlled trial. Novice runners (n = 129, 18-60 years old, <2 years recent running experience) were block randomized to one of three groups: a "resistance" strength training group, a "functional" strength training group, or a stretching "control" group. The primary outcome was running related injury. The number of participants with complaints and the injury rate (IR = no. injuries/1000 running hours) were quantified for each intervention group. For the first 8 weeks, participants were instructed to complete their training intervention three to five times a week. The remaining 4 months was a maintenance period. NCT01900262. A total of 52 of the 129 (40%) novice runners experienced at least one running related injury: 21 in the functional strength training program, 16 in the resistance strength training program and 15 in the control stretching program. Injury rates did not differ between study groups [IR = 32.9 (95% CI 20.8, 49.3) in the functional group, IR = 31.6 (95% CI 18.4, 50.5) in the resistance group, and IR = 26.7 (95% CI 15.2, 43.2)] in the control group. Although this was a pilot assessment, home-based strength training did not appear to alter injury rates compared to stretching. Future studies should consider methods to minimize participant drop out to allow for the assessment of injury risk. Injury risk in novice runners based on this pilot study will inform the development of future larger studies investigating the impact of injury prevention interventions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ilić, Ivan; Djordjević, Vitomir; Stanković, Ivan; Vlahović-Stipac, Alja; Putniković, Biljana; Babić, Rade; Nesković, Aleksandar N
2014-04-01
Long-term intensive training is associated with distinctive cardiac adaptations which are known as athlete's heart. The aim of this study was to determine whether the use of anabolic androgenic steroids (AAS) could affect echocardiographic parameters of left ventricular (LV) morphology and function in elite strength and endurance athletes. A total of 20 elite strength athletes (10 AAS users and 10 non-users) were compared to 12 steroid-free endurance athletes. All the subjects underwent comprehensive standard echocardiography and tissue Doppler imaging. After being indexed for body surface area, both left atrium (LA) and LV end-diastolic diameter (LVEDD) were significantly higher in the endurance than strength athletes, regardless of AAS use (p < 0.05, for both). A significant correlation was found between LA diameter and LVEDD in the steroid-free endurance athletes, showing that 75% of LA size variability depends on variability of LVEDD (p < 0.001). No significant differences in ejection fraction and cardiac output were observed among the groups, although mildly reduced LV ejection fraction was seen only in the AAS users. The AAS-using strength athletes had higher A-peak velocity when compared to steroid-free athletes, regardless of training type (p < 0.05 for both). Both AAS-using and AAS-free strength athletes had lower e' peak velocity and higher E/e' ratio than endurance athletes (p < 0.05, for all). There is no evidence that LV ejection fraction in elite athletes is altered by either type of training or AAS misuse. Long-term endurance training is associated with preferable effects on LV diastolic function compared to strength training, particularly when the latter is combined with AAS abuse.
Effectiveness of a home-based strengthening program for elderly males in Italy. A preliminary study.
Capodaglio, P; Facioli, M; Burroni, E; Giordano, A; Ferri, A; Scaglioni, G
2002-02-01
The practice of regular physical exercise has been shown to be effective in slowing the age-related progressive functional deterioration. Most exercise trials have been conducted with supervised training programs. The purpose of this study was to investigate the effectiveness of a 4-month home-based strength training on strength, function and personal satisfaction. Ten elderly men (mean age 68.5 years) were enrolled for home-based training one month after completing a 4-month supervised program; 12 age-matched men served as the control group. Subjects were asked to perform 3 sessions a week consisting of six resistance exercises with elastic bands involving the major muscle groups of the upper and lower limbs. We had calculated the correlation between the elongation and resistance of the elastic bands. The subjects were instructed to keep a diary reporting the execution of the session. We measured dynamic concentric strength of the muscle groups involved in the resistance exercises and maximal isometric strength of the knee extensors and elbow flexors before and after the 4-month home training. The Satisfaction Profile (SAT-P) questionnaire was administered before and one month after the completion of the training program for assessing personal satisfaction. The final to baseline comparison showed a non-significant decrease in mean isometric maximal strength values for knee extensors and elbow flexors in the control group, while the exercise group significantly (p=0.001) improved the average baseline values. Maximal dynamic concentric strength values decreased significantly in the control group, while significant improvements were observed in the exercising subjects. The SAT-P questionnaire did not show any difference in either group from baseline. The adherence-to-protocol rate based on self-report was 78%. Home training with elastic bands appears to be an effective low-cost modality of maintaining strength and function in an elderly population.
Muscle strength in breast cancer patients receiving different treatment regimes
Klassen, Oliver; Schmidt, Martina E.; Ulrich, Cornelia M.; Schneeweiss, Andreas; Potthoff, Karin; Steindorf, Karen
2016-01-01
Abstract Background Muscle dysfunction and sarcopenia have been associated with poor performance status, an increased mortality risk, and greater side effects in oncologic patients. However, little is known about how performance is affected by cancer therapy. We investigated muscle strength in breast cancer patients in different adjuvant treatment settings and also compared it with data from healthy individuals. Methods Breast cancer patients (N = 255) from two randomized controlled exercise trials, staged 0–III and aged 54.4 ± 9.4 years, were categorized into four groups according to their treatment status. In a cross‐sectional design, muscle function was assessed bilaterally by isokinetic dynamometry (0°, 60°, 180°/s) as maximal voluntary isometric contraction (MVIC) and maximal isokinetic peak torque (MIPT) in shoulder rotators and knee flexors and extensors. Additionally, muscular fatigue index (FI%) and shoulder flexibility were evaluated. Healthy women (N = 26), aged 53.3 ± 9.8 years, were tested using the same method. Analysis of covariance was used to estimate the impact of different cancer treatments on skeletal muscle function with adjustment for various clinical and socio‐demographic factors. Results Consistently, lower muscle strength was measured in shoulder and knee strength in patients after chemotherapy. On average, patients had up to 25% lower strength in lower extremities and 12–16% in upper extremities in MVIC and MIPT during cancer treatment compared with healthy women. No substantial difference between patient groups in shoulder strength, but significantly lower shoulder flexibility in patients with radical mastectomy was measured. Chemotherapy‐treated patients had consistently higher FI%. No serious adverse events were reported. Conclusions Breast cancer patients showed markedly impaired muscle strength and joint dysfunctions before and after anticancer treatment. The significant differences between patients and healthy individuals underline the need of exercise therapy as early as possible in order to prevent or counteract the loss of muscle function after curative surgery as well as the consequences of neo‐/adjuvant chemotherapy. PMID:27896952
Oh, Seung-Lyul; Kim, Hee-Jae; Woo, Shinae; Cho, Be-Long; Song, Misoon; Park, Yeon-Hwan; Lim, Jae-Young; Song, Wook
2017-05-01
In the present study, we determined the effect of an integrated health education and elastic band resistance training program on body composition, physical function, muscle strength and quality in community-dwelling elderly women. We recruited participants with eligibility inclusion criteria, and randomly assigned them to either the control group (n = 19) or the intervention group (n = 19). The integrated intervention program comprised of health education and individual counseling, and elastic band training for 18 weeks (8 weeks of supervised training and 10 weeks of self-directed training). We assessed body composition, muscle strength and quality, and physical function at pre-, after 8 weeks (mid-) and 18 weeks (post-training). After the intervention, there were no significant changes in skeletal muscle index, fat free mass, total lean mass and total fat mass for both the control group and intervention group. However, the interaction effect was significantly different in SPPB score (P < 0.05), isokinetic strength (60 deg/s, P < 0.001; 120 deg/s; P < 0.05) and muscle quality (P < 0.05) after 18 weeks of intervention relative to the baseline of the control and intervention groups. The supervised elastic band training of 8 weeks did not improve short physical performance battery score and isokinetic strength, whereas there was a significant increase of those outcomes (10.6% improvement, 9.8~23.5% improvement) after 10 weeks of following self-directed exercise compared with the baseline. These results show the effectiveness of following self-directed resistance training with health education after supervised training cessation in improvement of short physical performance battery and leg muscle strength. This intervention program might be an effective method to promote muscle strength and quality, and to prevent frailty in elderly women. Geriatr Gerontol Int 2017; 17: 825-833. © 2016 Japan Geriatrics Society.
Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Delecluse, Christophe; Roth, Stephen M; Metter, E Jeffrey; Ferrucci, Luigi; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston P; Thomis, Martine A
2011-01-01
Muscle strength is important in functional activities of daily living and the prevention of common pathologies. We describe the two-staged fine mapping of a previously identified linkage peak for knee strength on chr12q12-14. First, 209 tagSNPs in/around 74 prioritized genes were genotyped in 500 Caucasian brothers from the Leuven Genes for Muscular Strength study (LGfMS). Combined linkage and family-based association analyses identified activin receptor 1B (ACVR1B) and inhibin β C (INHBC), part of the transforming growth factor β pathway regulating myostatin – a negative regulator of muscle mass – signaling, for follow-up. Second, 33 SNPs, selected in these genes based on their likelihood to functionally affect gene expression/function, were genotyped in an extended sample of 536 LGfMS siblings. Strong associations between ACVR1B genotypes and knee muscle strength (P-values up to 0.00002) were present. Of particular interest was the association with rs2854464, located in a putative miR-24-binding site, as miR-24 was implicated in the inhibition of skeletal muscle differentiation. Rs2854464 AA individuals were ∼2% stronger than G-allele carriers. The strength increasing effect of the A-allele was also observed in an independent replication sample (n=266) selected from the Baltimore Longitudinal Study of Aging and a Flemish Policy Research Centre Sport, Physical Activity and Health study. However, no genotype-related difference in ACVR1B mRNA expression in quadriceps muscle was observed. In conclusion, we applied a two-stage fine mapping approach, and are the first to identify and partially replicate genetic variants in the ACVR1B gene that account for genetic variation in human muscle strength. PMID:21063444
Kliziene, Irina; Sipaviciene, Saule; Vilkiene, Jovita; Astrauskiene, Audrone; Cibulskas, Gintautas; Klizas, Sarunas; Cizauskas, Ginas
2017-01-01
To evaluate the effects of Pilates exercises designed to improve isometric trunk extension and flexion strength of muscles in women with chronic low back pain (cLBP). Female volunteers with cLBP were divided into an experimental group (EG; n = 27) and a control group (CG; n = 27). Pilates exercises were performed twice per week by the EG; the duration of each session was 60 min. The program lasted for 16 weeks; thus patients underwent a total of 32 exercise sessions. The maximum isometric waist bending strength of the EG had improved significantly (p = 0.001) after 16 weeks of the Pilates program. The results of trunk flexion muscle endurance tests significantly depended on the trunk extension muscle endurance before the intervention, and at 1 month (r = 0.723, p < 0.001) and 2 months (r = 0.779, p < 0.001) after the Pilates exercise program. At the end of the 16-week exercise program, cLBP intensity decreased by 2.01 ± 0.8 (p < 0.05) in the EG, and this reduction persisted for 1 month after completion of the program. At 1 and 2 months after cessation of the Pilates exercise program the pain intensified and the functional state deteriorated much faster than the maximum trunk muscle strength. Therefore, it can be concluded that, to decrease pain and improve functional condition, regular exercise (and not only improved strength and endurance) is required. We established that, although the 16-week lumbar stabilization exercise program increased isometric trunk extension and flexion strength and this increase in strength persisted for 2 months, decreased LBP and improved functional condition endured for only 1 month. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grote, Simon; Kleinebudde, Peter
2018-06-10
The influence of a functionalized raw material particle structure on the granulation behavior and tabletabilty of calcium carbonate (CaCO 3 ) was investigated. Therefore, a milled grade of CaCO 3 was compared to different binary mixtures of milled and functionalized CaCO 3 . Relevant properties of raw materials, ribbons and granules were measured. The starting materials and two fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force and granule size on tablet tensile strength was evaluated. Adding functionalized particles drastically influenced the granulation and tableting behavior of CaCO 3 . Increasing proportions increased the ribbon porosity and granule size. Tensile strength of tablets from powder mixtures and granules was increased as well. Nevertheless, adding functionalized CaCO 3 led to a loss in tabletability induced by a previous compaction step to an extent depending on its proportion in the formulation. A clear influence of the particle morphology on granulation and tableting behavior was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. Adding functionalized CaCO 3 to a mixture, even in small amounts, seemed to be beneficial to increase granule size and tablet strength. Copyright © 2018 Elsevier B.V. All rights reserved.
Santos, Thiago R. T.; Oliveira, Bárbara A.; Ocarino, Juliana M.; Holt, Kenneth G.; Fonseca, Sérgio T.
2015-01-01
Introduction: Patellofemoral pain syndrome (PFPS) is characterized by anterior knee pain, which may limit the performance of functional activities. The influence of hip joint motion on the development of this syndrome has already been documented in the literature. In this regard, studies have investigated the effectiveness of hip muscle strengthening in patients with PFPS. Objectives: The aims of this systematic review were (1) to summarize the literature related to the effects of hip muscle strengthening on pain intensity, muscle strength, and function in individuals with PFPS and (2) to evaluate the methodological quality of the selected studies. Method: A search for randomized controlled clinical trials was conducted using the following databases: Google Scholar, MEDLINE, PEDro, LILACS, and SciELO. The selected studies had to distinguish the effects of hip muscle strengthening in a group of patients with PFPS, as compared to non-intervention or other kinds of intervention, and had to investigate the following outcomes: pain, muscle strength, and function. The methodological quality of the selected studies was analyzed by means of the PEDro scale. Results: Seven studies were selected. These studies demonstrated that hip muscle strengthening was effective in reducing pain. However, the studies disagreed regarding the treatments' ability to improve muscle strength. Improvement in functional capabilities after hip muscle strengthening was found in five studies. Conclusion: Hip muscle strengthening is effective in reducing the intensity of pain and improving functional capabilities in patients with PFPS, despite the lack of evidence for its ability to increase muscle strength. PMID:26039034
Obese older adults suffer foot pain and foot-related functional limitation.
Mickle, Karen J; Steele, Julie R
2015-10-01
There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI <25). Obese participants were found to have a significantly higher prevalence of foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Preserving Healthy Muscle during Weight Loss123
Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina
2017-01-01
Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-05-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l 1 -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
206Pb+n resonances for E=600-900 keV: Neutron strength functions
NASA Astrophysics Data System (ADS)
Horen, D. J.; Harvey, J. A.; Hill, N. W.
1981-11-01
Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Evidence for the dipole nature of the low-energy γ enhancement in Fe 56
Larsen, A. C.; Blasi, N.; Bracco, A.; ...
2013-12-11
Here, the γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the ( 3He,αγ) 56Fe reaction, is confirmed with the (p,p'γ) 56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.
Vaapio, Sari; Salminen, Marika; Vahlberg, Tero; Kivelä, Sirkka-Liisa
2011-02-01
The aim of this longitudinal study was to describe whether an increase in knee extension strength is associated with improvements in managing in activities of daily living (ADL) and in self-perceived physical condition in fall-prone community-dwelling older women. Subjects (n=417) aged ≥ 65 years belonged either to intervention or control groups in a 12-month randomized controlled fall prevention trial. Isometric muscle strength of knee extension was measured with an adjustable dynamometer chair. Managing in activities of daily living was measured with structured questions about abilities to climb stairs, walk at least 400 meters, toilet, bath, go to the sauna, do light or heavy housework, and carry heavy loads. A question of self-perceived physical condition was also asked. Positive associations were found between increased knee extension strength and an increase in walking at least 400 meters (p<0.001), carrying heavy loads (p=0.004), and climbing stairs (p=0.007), and in self perceived physical condition (p=0.005) over a 12- month follow-up. In addition, low age, non-use of a walking aid, low number of prescribed medications, and good functional balance at baseline were associated with an increase in performance of these ADL functions. An increase in knee extension strength during the 12-month follow-up was associated with improvement in some ADL functions and improvement in self-perceived physical condition during the same period in fall-prone community-dwelling women.
The Goals and Effects of Music Listening and Their Relationship to the Strength of Music Preference
Schäfer, Thomas
2016-01-01
Individual differences in the strength of music preference are among the most intricate psychological phenomena. While one person gets by very well without music, another person needs to listen to music every day and spends a lot of temporal and financial resources on listening to music, attending concerts, or buying concert tickets. Where do these differences come from? The hypothesis presented in this article is that the strength of music preference is mainly informed by the functions that music fulfills in people’s lives (e.g., to regulate emotions, moods, or physiological arousal; to promote self-awareness; to foster social relatedness). Data were collected with a diary study, in which 121 respondents documented the goals they tried to attain and the effects that actually occurred for up to 5 music-listening episodes per day for 10 successive days. As expected, listeners reporting more intense experience of the functional use of music in the past (1) had a stronger intention to listen to music to attain specific goals in specific situations and (2) showed a larger overall strength of music preference. It is concluded that the functional effectiveness of music listening should be incorporated in existing models and frameworks of music preference to produce better predictions of interindividual differences in the strength of music preference. The predictability of musical style/genre preferences is also discussed with regard to the present results. PMID:26985998
Effect of rice husk ash and fly ash on the compressive strength of high performance concrete
NASA Astrophysics Data System (ADS)
Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc
2018-03-01
The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.
Mirror therapy in children with hemiplegia: a pilot study.
Gygax, Marine Jequier; Schneider, Patrick; Newman, Christopher John
2011-05-01
Mirror therapy, which provides the visual illusion of a functional paretic limb by using the mirror reflection of the non-paretic arm, is used in the rehabilitation of hemiparesis after stroke in adults. We tested the effectiveness and feasibility of mirror therapy in children with hemiplegia by performing a pilot crossover study in ten participants (aged 6-14 y; five males, five females; Manual Ability Classification System levels: one at level I, two at level II, four at level III, three at level IV) randomly assigned to 15 minutes of daily bimanual training with and without a mirror for 3 weeks. Assessments of maximal grasp and pinch strengths, and upper limb function measured by the Shriner's Hospital Upper Extremity Evaluation were performed at weeks 0 (baseline), 3, 6 (intervention), and 9 (wash-out). Testing of grasp strength behind the mirror improved performance by 15% (p=0.004). Training with the mirror significantly improved grasp strength (with mirror +20.4%, p=0.033; without +5.9%, p>0.1) and upper limb dynamic position (with mirror +4.6%, p=0.044; without +1.2%, p>0.1), while training without a mirror significantly improved pinch strength (with mirror +6.9%, p>0.1; without +21.9%, p=0.026). This preliminary study demonstrates the feasibility of mirror therapy in children with hemiplegia and that it may improve strength and dynamic function of the paretic arm. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Understanding the Strengths of African American Families.
ERIC Educational Resources Information Center
Littlejohn-Blake, Sheila M.; Darling, Carol Anderson
1993-01-01
Focuses on strengths of African-American families and how they function, relevant conceptual approaches, and trends and issues in studying African-American families that can facilitate understanding. A shift from studying dysfunctional families to more positive aspects can help African-American families meet societal challenges. (SLD)
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.
2002-01-01
Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.
Yeates, Erin M; Molfenter, Sonja M; Steele, Catriona M
2008-01-01
Dysphagia, or difficulty swallowing, often occurs secondary to conditions such as stroke, head injury or progressive disease, many of which increase in frequency with advancing age. Sarcopenia, the gradual loss of muscle bulk and strength, can place older individuals at greater risk for dysphagia. Data are reported for three older participants in a pilot trial of a tongue-pressure training therapy. During the experimental therapy protocol, participants performed isometric strength exercises for the tongue as well as tongue pressure accuracy tasks. Biofeedback was provided using the Iowa Oral Performance Instrument (IOPI), an instrument that measures tongue pressure. Treatment outcome measures show increased isometric tongue strength, improved tongue pressure generation accuracy, improved bolus control on videofluoroscopy, and improved functional dietary intake by mouth. These preliminary results indicate that, for these three adults with dysphagia, tongue-pressure training was beneficial for improving both instrumental and functional aspects of swallowing. The experimental treatment protocol holds promise as a rehabilitative tool for various dysphagia populations.
Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M
2014-12-04
Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions. Injuries rates will be compared between groups over 6 months. Avoiding injury will allow individuals to enjoy the benefits of participating in aerobic activities and reduce the healthcare costs associated with running injuries. Current Controlled Trial NCT01900262.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok
Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.
Yoosefinejad, Amin Kordi; Ghaffarinejad, Farahnaz; Hemati, Mahbubeh; Jamshidi, Narges
2018-05-21
Hyperkyphosis is a common postural defect with high prevalence in the 20 to 50 year old population. It appears to compromise proximal scapular stability. Grip and pinch strength are used to evaluate general upper extremity function. The aim of this study was to compare pinch and grip strength between young women with and without hyperkyphosis. Thirty young women (18-40 years old) with hyperkyphosis and 30 healthy women matched for age and body mass index participated in the study. Hyperkyphosis was confirmed by measuring the kyphosis angle with a flexible ruler. Grip strength was measured with the Waisa method and a dynamometer. Pinch strength was assessed with a pinch meter. Grip (P= 0.03) and pinch strength (P= 0.04) were significantly lower in women with hyperkyphosis compared to the control group. Kyphosis angle correlated weakly with grip (r= 0.26) and pinch strength (r= 0.23). Hyperkyphotic posture has led to decreased grip and pinch strength compared to people without hyperkyphosis.
Zak, Marek; Swine, Christian; Grodzicki, Tomasz
2009-01-28
Consistently swelling proportion of the frail elderly within a modern society challenges the overstrained public health sector to provide both adequate medical care and comprehensive assistance in their multiple functional deficits of daily living. Easy-to-apply and task-specific ways of addressing this issue are being sought out, with a view to proposing systemic solutions for nationwide application. The present randomised, double-blind, placebo-controlled, 7-week clinical trial aimed to determine whether specifically structured, intensive exercise regimens, combined with nutritional supplementation, might improve and help sustain individual muscle strength and mobility, and possibly enhance individual functional capabilities in an on-going quest for active prevention of care-dependency. Ninety-one frail elderly (F 71 M 20; mean age 79 years) were recruited from both nursing home residents and community dwellers and randomly split into four groups: Group I - progressive resistance exercises (PRE) + functionally-oriented exercises (FOE) + nutritional supplementation (NS), Group II - PRE + FOE + placebo, Group III--standard exercises (SE) + FOE + NS, Group IV - SE + FOE + placebo. Each group pursued a 45 min. exercise session 5 times weekly. The subjects' strength with regard to four muscle groups, i.e. hip and knee extensors and flexons, was assessed at 80% (1 RM) weekly, whereas their balance and mobility at baseline and at the end of the study. The study was completed by 80 subjects. Despite its relatively short duration significant differences in muscle strength were noted both in Group I and Group II (p = 0.01; p = 0.04; respectively), although this did not translate directly into perceptible improvement in individual mobility. Notable improvements in individual mobility were reported in Group III and Group IV (p = 0.002), although without positive impact on individual muscle strength. Comprehensively structured, high-intensity regimen made up of diverse exercise types, i.e. functionally-oriented, progressive resistance and standard ones, preferably if combined with nutritional supplementation in adequate volume, demonstrates clear potential for appreciably improving overall functional status in the frail elderly in terms of individual walking capacity and muscle strength. Central Register of Clinical Trials, Poland--CEBK180/2000.
Yoshihara, A; Tobina, T; Yamaga, T; Ayabe, M; Yoshitake, Y; Kimura, Y; Shimada, M; Nishimuta, M; Nakagawa, N; Ohashi, M; Hanada, N; Tanaka, H; Kiyonaga, A; Miyazaki, H
2009-01-01
The turning point in the deterioration of physical function seems to occur between the ages of 70 and 80 years. In particular, muscle strength may decline even more in subjects older than 75. A recent study found that the angiotensin-converting enzyme (ACE) genotype also affects physiological left ventricular hypertrophy. A very limited number of papers have examined genetic differences in resistance and endurance forms of a single sporting discipline. The purpose of this study was to evaluate the relationship between ACE genotype and physical function by controlling the known confounding factors including dental status. We selected 431 subjects who were aged 76 years and did not require special care for their daily activities. We conducted a medical examination, followed by 5 physical function tests, as follows: (1) maximum hand grip strength, (2) maximal isometric knee extensor strength, (3) maximal stepping rate for 10 s, (4) one-leg standing time with eyes open and (5) 10-meter maximum walking speed. Subjects were genotyped for the ACE intron 16 Alu insertion. In addition, serum concentrations of total cholesterol, total protein, IgA and IgG were measured at a commercial laboratory. The Eichner index was used as an indicator of occlusal condition. Multiple linear regression analysis was performed to evaluate the relationship between the ACE gene insertion/deletion (I/D) polymorphism and physical function considering confounding factors. The ACE gene I/D polymorphism was positively associated with hand grip strength and 10-meter maximum walking speed. Betas of hand grip strength were 0.09 for I/D (p = 0.022) and 0.12 for insertion/insertion (I/I; p = 0.004). Betas of 10-meter walking speed were -0.11 for I/D (p = 0.093) and -0.14 for I/I (p = 0.039). Dental status such as Eichner index class C was significantly associated with one-leg standing time with eyes open (beta -0.11; p = 0.028). This study suggests that there is a significant relationship between ACE genotype and physical function. In particular, subjects with the ACE deletion/deletion genotype were associated with upper extremities. Copyright 2009 S. Karger AG, Basel.
Alves, Christiano Robles Rodrigues; Merege Filho, Carlos Alberto Abujabra; Benatti, Fabiana Braga; Brucki, Sonia; Pereira, Rosa Maria R.; de Sá Pinto, Ana Lucia; Lima, Fernanda Rodrigues; Roschel, Hamilton; Gualano, Bruno
2013-01-01
Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation. Trial Registration Clinicaltrials.gov NCT01164020 PMID:24098469
[Root system distribution and biomechanical characteristics of Bambusa oldhami].
Zhou, Ben-Zhi; Xu, Sheng-Hua; An, Yan-Fei; Xu, Sheng-Hua
2014-05-01
To determine the mechanism of soil stabilizing through Bambusa oldhami root system, the vertical distribution of B. oldhami root system in soil was investigated, and the tensile strength of individual root and soil shear strength were measured in B. oldhami forest. The dry mass, length, surface area and volume of the B. oldhami root system decreased with the increasing soil depth, with more than 90% of the root system occurring in the 0-40 cm soil layer. The root class with D 1 mm occupied the highest percentage of the total in terms of root length, accounting for 79.6%, but the lowest percentage of the total in terms of root volume, accounting for 8.2%. The root class with D >2 mm was the opposite, and the root class with D= 1-2 mm stayed in between. The maximum tensile resistance of B. oldhami root, either with 12% moisture content or a saturated moisture content, increased with the increasing root diameter, while the tensile strength decreased with the increasing root diameter in accordance with power function. Tensile strength of the root, with either of the two moisture contents, was significantly different among the diameter classes, with the highest tensile strength occurring in the root with D < or = 1 mm and the lowest in the root with D > or = 2 mm. The tensile strength of root with 12% moisture content was significantly higher than that with the saturated moisture content, and less effect of moisture content on root tensile strength would occur in thicker roots. The shear strengths of B. oldhami forest soil and of bare soil both increased with the increasing soil depth. The shear strength of B. oldhami forest soil had a linear positive correlation with the root content in soil, and was significantly higher than that of bare soil. The shear strength increment in B. oldhami forest was positively correlated with the root content in soil according to an exponential function, but not related significantly with soil depth.
NASA Astrophysics Data System (ADS)
Delibalta, M. S.; Kahraman, S.; Comakli, R.
2015-11-01
Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data
Grosse, E.; Junghans, A. R.; Massarczyk, R.
2017-11-28
Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less
Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosse, E.; Junghans, A. R.; Massarczyk, R.
Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less
Christiansen, Ingelise; Markvardsen, Lars H; Jakobsen, Johannes
2018-04-01
Variations in muscle strength and function have not been studied in patients with chronic inflammatory demyelinating polyneuropathy and multifocal motor neuropathy whose treatment regimen has been changed from intravenous to subcutaneous immunoglobulin (IVIg to SCIg). In a prospective, open-label study, patients were changed from monthly IVIg to weekly SCIg. The primary endpoint was variation in isokinetic muscle strength (cIKS). Secondary endpoints were variations in Medical Research Council (MRC) score, grip strength (GS), 9-hole-peg test (9-HPT), and 40-meter-walk test (40-MWT). The coefficient of variance of cIKS during the IVIg and SCIg treatment periods was unchanged (mean ± SD: 6.97 ± 4.83% vs. 5.50 ± 3.13%, P = 0.21). The variations in the 9-HPT and 40-MWT were significantly lower in the SCIg group (P = 0.01 and P = 0.005, respectively). When therapy was changed from IVIg to SCIg, fluctuation of muscle strength was unchanged, but performance fluctuations were diminished. Muscle Nerve 57: 610-614, 2018. © 2017 Wiley Periodicals, Inc.