Enamel and dentin bond strength following gaseous ozone application.
Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo
2009-08-01
To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p < 0.05). The use of ozone gas to disinfect the cavity before placing a restoration had no influence on immediate enamel and dentin bond strength.
van Dyk, N; Witvrouw, E; Bahr, R
2018-04-25
In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mumcu, Emre; Erdemir, Ugur; Topcu, Fulya Toksoy
2010-05-01
By means of a micro push-out test, this study compared the bond strengths of two types of fiber-reinforced posts cemented with luting cements based on two currently available adhesive approaches as well as evaluated their failure modes. Sixty extracted single-rooted human maxillary central incisor and canine teeth were sectioned below the cementoenamel junction, and the roots were endodontically treated. Following standardized post space preparation, the roots were divided into two fiber post groups and then further into three subgroups of 10 specimens each according to the luting cements. A push-out test was performed to measure regional bond strengths, and the fracture modes were evaluated using a stereomicroscope. At the root section, there were no statistically significant differences (p>0.05) in push-out bond strength among the tested luting cements. Nevertheless, the push-out bond strength values of glass fiber-reinforced posts were higher than those of carbon fiber-reinforced posts, irrespective of the adhesive approach used. On failure mode, the predominant failure mode was adhesive failure between dentin and the luting cement.
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
Hammami, Raouf; Chaouachi, Anis; Makhlouf, Issam; Granacher, Urs; Behm, David G
2016-11-01
Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). There were significant medium-large sized correlations between all balance measures with back extensor strength (r = .486-.791) and large associations with power (r = .511-.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/power variables. The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes.
NASA Astrophysics Data System (ADS)
Sun, Chengqi; Liu, Xiaolong; Hong, Youshi
2015-06-01
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.
Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Craig W.; Telesca, Antonio; Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu
Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum loweredmore » the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.« less
Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique
2017-01-01
To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.
Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique
2017-01-01
Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin. PMID:29069151
Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra
2014-01-01
PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002
Jhingan, Pulkit; Sachdev, Vinod; Sandhu, Meera; Sharma, Karan
2015-12-01
To compare and evaluate shear bond strength of self-etching adhesives bonded to cavities prepared by diamond bur or Er,Cr:YSGG laser and the effect of prior acid etching on shear bond strength. Ninety-six caries-free human premolars were selected and divided into 2 groups depending on mode of cavity preparation (48 teeth each). Cavities were prepared with Er,Cr:YSGG laser in group 1 and diamond burs in an air-turbine handpiece in group 2. Groups 1 and 2 were further subdivided into three subgroups of 8 teeth each, which were bonded with sixth- or seventh-generation adhesives with or without prior acid etching, followed by restoration of all samples with APX Flow. These samples were subjected to shear bond strength testing. In addition, the surface morphology of 24 samples each from groups 1 and 2 was evaluated using SEM. Data were analyzed using the Shapiro-Wilk test, one- and two-way ANOVA, the t-test, and the least significant difference test, which showed that the data were normally distributed (p > 0.05). The shear bond strength of adhesives in cavities prepared by Er,Cr:YSGG laser was significantly higher than in diamond bur-prepared cavities (p < 0.05). SEM analysis showed a smear-layer-free anfractuous surface on laser-ablated teeth, in contrast to conventional bur-prepared teeth. The Er,Cr:YSGG laser-ablated surface proved to be more receptive for adhesion than those prepared by diamond bur irrespective of the bonding agent used. Seventh-generation adhesives yielded higher shear bond strength than did sixth-generation adhesives. Prior acid etching decreased the shear bond strength of self-etching adhesives.
Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z
The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.
Antfolk, Jan; Lieberman, Debra; Santtila, Pekka
2012-01-01
It is expected that in humans, the lowered fitness of inbred offspring has produced a sexual aversion between close relatives. Generally, the strength of this aversion depends on the degree of relatedness between two individuals, with closer relatives inciting greater aversion than more distant relatives. Individuals are also expected to oppose acts of inbreeding that do not include the self, as inbreeding between two individuals posits fitness costs not only to the individuals involved in the sexual act, but also to their biological relatives. Thus, the strength of inbreeding aversion should be predicted by the fitness costs an inbred child posits to a given individual, irrespective of this individual’s actual involvement in the sexual act. To test this prediction, we obtained information about the family structures of 663 participants, who reported the number of same-sex siblings, opposite-sex siblings, opposite-sex half siblings and opposite-sex cousins. Each participant was presented with three different types of inbreeding scenarios: 1) Participant descriptions, in which participants themselves were described as having sex with an actual opposite-sex relative (sibling, half sibling, or cousin); 2) Related third-party descriptions, in which participants’ actual same-sex siblings were described as having sex with their actual opposite-sex relatives; 3) Unrelated third-party descriptions, in which individuals of the same sex as the participants but unrelated to them were described as having sex with opposite-sex relatives. Participants rated each description on the strength of sexual aversion (i.e., disgust-reaction). We found that unrelated third-party descriptions elicited less disgust than related third-party and participant descriptions. Related third-party and participant descriptions elicited similar levels of disgust suggesting that the strength of inbreeding aversion is predicted by inclusive fitness costs. Further, in the related and unrelated conditions alike, the strength of inbreeding aversion was positively associated with the degree of relatedness between those described in the descriptions. PMID:23209792
Effect of endodontic chelating solutions on the bond strength of endodontic sealers.
Tuncel, Behram; Nagas, Emre; Cehreli, Zafer; Uyanik, Ozgur; Vallittu, Pekka; Lassila, Lippo
2015-01-01
The purpose of this in vitro study was to evaluate the effect of various chelating solutions on the radicular push-out bond strength of calcium silicate-based and resin-based root canal sealers. Root canals of freshly-extracted single-rooted teeth (n = 80) were instrumented by using rotary instruments. The specimens were randomly divided into 4 groups according to the chelating solutions being tested: (1) 17% ethylenediaminetetraacetic acid (EDTA); (2) 9% etidronic acid; (3) 1% peracetic acid (PAA); and (4) distilled water (control). In each group, the roots were further assigned into 2 subgroups according to the sealer used: (1) an epoxy resin-based sealer (AH Plus) and (2) a calcium silicate-based sealer (iRoot SP). Four 1 mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group). Push-out bond strength test was performed at a crosshead speed of 1 mm/min., and the bond strength data were analyzed statistically with two-way analysis of variance (ANOVA) with Bonferroni's post hoc test (p < 0.05). Failure modes were assessed quantitatively under a stereomicroscope. Irrespective of the irrigation regimens, iRoot SP exhibited significantly higher push-out bond strength values than AH Plus (p < 0.05). For both the sealers, the use of chelating solutions increased the bond strength, but to levels that were not significantly greater than their respective controls (p > 0.05). iRoot SP showed higher resistance to dislocation than AH Plus. Final irrigation with 17% EDTA, 9% Etidronic acid, and 1% PAA did not improve the bond strength of AH Plus and iRoot SP to radicular dentin.
Six-minute walking test in children with ESRD: discrimination validity and construct validity.
Takken, Tim; Engelbert, Raoul; van Bergen, Monique; Groothoff, Jaap; Nauta, Jeroen; van Hoeck, Koen; Lilien, Marc; Helders, Paul
2009-11-01
The six-minute walking test (6MWT) may be a practical test for the evaluation functional exercise capacity in children with end-stage renal disease (ESRD). The aim of this study was to investigate the 6MWT performance in children with ESRD compared to reference values obtained in healthy children and, secondly, to study the relationship between 6MWT performance with anthropometric variables, clinical parameters, aerobic capacity and muscle strength. Twenty patients (13 boys and seven girls; mean age 14.1 +/- 3.4 years) on dialysis participated in this study. Anthropometrics were taken in a standardized manner. The 6MWT was performed in a 20-m-long track in a straight hallway. Aerobic fitness was measured using a cycle ergometer test to determine peak oxygen uptake (V O(2peak)), peak rate (W(peak)) and ventilatory threshold (VT). Muscle strength was measured using hand-held myometry. Children with ESRD showed a reduced 6MWT performance (83% of predicted, p < 0.0001), irrespective of the reference values used. The strongest predictors of 6MWT performance were haematocrit and height. Regression models explained 59% (haematocrit and height) to 60% (haematocrit) of the variance in 6MWT performance. 6MWT performance was not associated with V O(2peak), strength, or other anthropometric variables, but it was significantly associated with haematocrit and height. Children with ESRD scored lower on the 6MWT than healthy children. Based on these results, the 6MWT may be a useful instrument for monitoring clinical status in children with ESRD, however it cannot substitute for other fitness tests, such as a progressive exercise test to measure V O(2peak) or muscle strength tests.
Henriques, B; Gonçalves, S; Soares, D; Silva, F S
2012-09-01
The aim of this study was to evaluate the effect of thermo-mechanical cycling on the metal-ceramic bond strength of conventional porcelain fused to metal restorations (PFM) and new functionally graded metal-ceramic dental restorations (FGMR). Two types of specimens were produced: PFM and FGMR specimens. PFM specimens were produced by conventional PFM technique. FGMR specimens were hot pressed and prepared with a metal/ceramic composite interlayer (50 M, vol%) at the metal-ceramic interface. They were manufactured and standardized in cylindrical format and then submitted to thermal (3000, 6000 and 12,000 cycles; between 5 °C and 60 °C; dwell time: 30s) and mechanical (25,000, 50,000 and 100,000 cycles under a load of 50 N; 1.6 Hz) cycling. The shear bond strength tests were performed in a universal testing machine (crosshead speed: 0.5mm/min), using a special device to concentrate the tension at the metal-ceramic interface and the load was applied until fracture. The metal-ceramic interfaces were examined with SEM/EDS prior to and after shear tests. The Young's modulus and hardness were measured across the interfaces of both types of specimens using nanoindentation tests. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA was used to compare shear bond strength results (p<0.05). FGMR specimens showed significantly (p<0.001) higher shear bond strength results than PFM specimens, irrespective of fatigue conditions. Fatigue conditions significantly (p<0.05) affected the shear bond strength results. The analysis of surface fracture revealed adhesive fracture type for PFM specimens and mixed fracture type for FGMR specimens. Nanoindentation tests showed differences in mechanical properties measured across the metal-ceramic interface for the two types of specimens, namely Young's Modulus and hardness. This study showed significantly better performance of the new functionally graded restorations relative to conventional PFM restorations, under fatigue testing conditions and for the materials tested. Copyright © 2012 Elsevier Ltd. All rights reserved.
Androulakis-Korakakis, Patroklos; Langdown, Louis; Lewis, Adam; Fisher, James P; Gentil, Paulo; Paoli, Antonio; Steele, James
2018-02-01
Androulakis-Korakakis, P, Langdown, L, Lewis, A, Fisher, JP, Gentil, P, Paoli, A, and Steele, J. Effects of exercise modality during additional "high-intensity interval training" on aerobic fitness and strength in powerlifting and strongman athletes. J Strength Cond Res 32(2): 450-457, 2018-Powerlifters and strongman athletes have a necessity for optimal levels of muscular strength while maintaining sufficient aerobic capacity to perform and recover between events. High-intensity interval training (HIIT) has been popularized for its efficacy in improving both aerobic fitness and strength but never assessed within the aforementioned population group. This study looked to compare the effect of exercise modality, e.g., a traditional aerobic mode (AM) and strength mode (SM), during HIIT on aerobic fitness and strength. Sixteen well resistance-trained male participants, currently competing in powerlifting and strongman events, completed 8 weeks of approximately effort- and volume-matched HIIT in 2 groups: AM (cycling, n = 8) and SM (resistance training, n = 8). Aerobic fitness was measured as predicted V[Combining Dot Above]O2max using the YMCA 3 minutes step test and strength as predicted 1 repetition maximum from a 4-6RM test using a leg extension. Both groups showed significant improvements in both strength and aerobic fitness. There was a significant between-group difference for aerobic fitness improvements favoring the AM group (p ≤ 0.05). There was no between-group difference for change in strength. Magnitude of change using within-group effect size for aerobic fitness and strength was considered large for each group (aerobic fitness, AM = 2.6, SM = 2.0; strength, AM = 1.9, SM = 1.9). In conclusion, our results support enhanced strength and aerobic fitness irrespective of exercise modality (e.g., traditional aerobic and resistance training). However, powerlifters and strongman athletes wishing to enhance their aerobic fitness should consider HIIT using an aerobic HIIT mode.
Effect of ultrasonic tip and root-end filling material on bond strength.
Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário
2016-11-01
The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.
da Cunha, Sandra Ribeiro de Barros; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; da Silva, João Luis Fernandes; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa
2016-01-01
To evaluate the effects of three different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. Eighty human third molars were randomly divided into four groups (n = 20) according to the radiation dose (control/no radiation, 20 Gy, 40 Gy, and 70 Gy). The teeth were sagittally sectioned into three slices: one mesial and one distal section containing enamel and one middle section containing dentin. The sections were then placed in the enamel and dentin groups, which were further divided into two subgroups (n = 10) according to the adhesive used. Three restorations were performed in each tooth (one per section) using Adper Single Bond 2 (3M ESPE) or Universal Single Bond (3M ESPE) adhesive system and Filtek Z350 XT (3M ESPE) resin composite and subjected to the microshear bond test. Data were analyzed using a two-way ANOVA followed by Tukey's test. Failure modes were examined under a stereoscopic loupe. Radiotherapy did not affect the bond strengths of the adhesives to either enamel or dentin. In dentin, the Universal Single Bond adhesive system showed higher bond strength values when compared with the Adper Single Bond adhesive system. More adhesive failures were observed in the enamel for all radiation doses and adhesives. Radiotherapy did not influence the bond strength to enamel or dentin, irrespective of the adhesive or radiation dose used.
Fiber post etching with hydrogen peroxide: effect of concentration and application time.
de Sousa Menezes, Murilo; Queiroz, Ellyne Cavalcanti; Soares, Paulo Vinícius; Faria-e-Silva, André Luis; Soares, Carlos José; Martins, Luis Roberto Marcondes
2011-03-01
Etching is necessary to expose the fibers and enable both mechanical and chemical bonding of the resin core to the fiber post. This study evaluated the effect of concentration and application time of hydrogen peroxide on the surface topography and bond strength of glass fiber posts to resin cores. Fiber posts were etched with 24% or 50% hydrogen peroxide for 1, 5, or 10 min (n = 10). Posts without any treatment were used as a control. After etching, the posts were silanated and adhesive resin was applied. The posts were positioned into a mold to allow a self-cured resin core to be inserted. The post/resin assembly was serially sectioned into five beams that were subjected to a tensile bond strength test. Data were subjected to two-way ANOVA and Tukey test (α = 0.05). The surface topography was analyzed using scanning electronic microscopy. Non-etched post presents a relatively smooth surface without fiber exposure. Application of hydrogen peroxide increased the surface roughness and exposed the fibers. All experimental conditions yielded similar bond strength values that were higher than those obtained in the control group. Both 24% and 50% hydrogen peroxide exposure increased the bond strength of resin to the posts, irrespective of the application time. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Mathew, Joe; Kurian, Byju P; Philip, Biju; Mohammed, Sunil; Menon, Preetha; Raj, Rajan S
2016-08-01
Superior adhesive strength in luting agents is of paramount significance in fixed partial denture success. In this in vitro study five cements were tested for retentive qualities, using both lathe-cut and hand-prepared specimens. A total of 104 freshly extracted tooth specimens were prepared. Seventy of them were lathe-cut and 30 specimens were hand-prepared to simulate clinical conditions. Five different cements were tested, which included a compomer, a composite, a zinc phosphate, and 2 glass-ionomer luting cements. Of the 5, 2 trial cements were indigenously developed by Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, India - a glass-ionomer cement (Chitra GIC) and a chemical-cure composite (Chitra CCC). All cements were compared within each group and between groups (lathe-prepared and hand-prepared). GC Fuji 1 (GC America) exhibited superior retentive strengths in both lathe-cut and hand-prepared specimens, whereas the compomer cement displayed the lowest values when tested. In lathe-cut specimens, statistical analysis showed no significant difference between GC Fuji 1 and indigenously developed Chitra CCC. Both Chitra CCC and GC Fuji 1 have comparable strengths in lathe-cut samples, making Chitra CCC a potential luting agent. Statistical analysis reveals that all cements, except GC Fuji 1, exhibited a significant decrease in strength due to the change in design uniformity. The chemical bonding of GC Fuji 1 proves to be quite strong irrespective of shape and precision of the tooth crown. The indigenously developed Chitra GIC and Chitra CCC showed promising results to be used as a potential luting agent.
HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION
Mukherjee, Rajarshi; Pillai, Natesh S.; Lin, Xihong
2015-01-01
In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which does not occur in the case of Gaussian linear regression. We derive the detection boundary as a function of two components: a design matrix sparsity index and signal strength, each of which is a function of the sparsity of the alternative. For any alternative, if the design matrix sparsity index is too high, any test is asymptotically powerless irrespective of the magnitude of signal strength. For binary design matrices with the sparsity index that is not too high, our results are parallel to those in the Gaussian case. In this context, we derive detection boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the theoretical results using simulation studies. PMID:26246645
Dentin moisture conditions affect the adhesion of root canal sealers.
Nagas, Emre; Uyanik, M Ozgur; Eymirli, Ayhan; Cehreli, Zafer C; Vallittu, Pekka K; Lassila, Lippo V J; Durmaz, Veli
2012-02-01
The purpose of this study was to evaluate the effects of intraradicular moisture conditions on the push-out bond strength of root canal sealers. Eighty root canals were prepared using rotary instruments and, thereafter, were assigned to 4 groups with respect to the moisture condition tested: (1) ethanol (dry): excess distilled water was removed with paper points followed by dehydration with 95% ethanol, (2) paper points: the canals were blot dried with paper points with the last one appearing dry, (3) moist: the canals were dried with low vacuum by using a Luer adapter for 5 seconds followed by 1 paper point for 1 second, and (4) wet: the canals remained totally flooded. The roots were further divided into 4 subgroups according to the sealer used: (1) AH Plus (Dentsply-Tulsa Dental, Tulsa, OK), (2) iRoot SP (Innovative BioCeramix Inc, Vancouver, Canada), (3) MTA Fillapex (Angelus Indústria de Produtos Odontológicos S/A, Londrina, Brasil), and (4) Epiphany (Pentron Clinical Technologies, Wallingford, CT). Five 1-mm-thick slices were obtained from each root sample (n = 25 slices/group). Bond strengths of the test materials to root canal dentin were measured using a push-out test setup at a cross-head speed of 1 mm/min. The data were analyzed statistically by two-way analysis of variance and Tukey tests at P = .05. Irrespective of the moisture conditions, iRoot SP displayed the highest bond strength to root dentin. Statistical ranking of bond strength values was as follows: iRoot SP > AH Plus > Epiphany ≥ MTA Fillapex. The sealers displayed their highest and lowest bond strengths under moist (3) and wet (4) conditions, respectively. The degree of residual moisture significantly affects the adhesion of root canal sealers to radicular dentin. For the tested sealers, it may be advantageous to leave canals slightly moist before filling. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Intraventricular filling under increasing left ventricular wall stiffness and heart rates
NASA Astrophysics Data System (ADS)
Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif
2015-11-01
Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).
Immediate vs delayed repair bond strength of a nanohybrid resin composite.
El-Askary, Farid S; El-Banna, Ahmed H; van Noort, Richard
2012-06-01
To evaluate both the immediate and water-stored repair tensile bond strength (TBS) of a nanohybrid resin composite using different bonding protocols. One hundred sixty half hourglass-shaped slabs were prepared. Eighty half-slabs were wet ground immediately after light curing using high-speed abrasive burs, while the other half-slabs were stored in water for one month (delayed) and then wet ground for repair. Each set of the 80 repaired slabs was split into two groups to be tested for TBS after 24 h or 1 month of water storage. For all repaired slabs, either immediate or delayed, four bonding procedures were used involving wet and dry bonding with a 3-step etch-and-rinse adhesive with or without silane pretreatment. TBS tests were performed at a crosshead speed of 0.5 mm/min. To determine the cohesive strength of the resin composite itself, which served as the reference, additional whole slabs were prepared and tested in tension after a 24-h (n = 10) and a 1-month storage period (n = 10). Failure modes were evaluated using a stereomicroscope at 40X magnification. Three-way ANOVA was run to test the effect of water storage, testing time, bonding protocols, and their interactions on the repair TBS, which was given as a percentage of the reference values. For the immediate repair groups, the repair TBS ranged from 40% to 61.9% after 24-h storage and from 26% to 53.1% after 1-month water storage compared to the TBS of the whole slabs. For the delayed repair group, the repaired TBS ranged from 47.2% to 63.6% for the 24-h repairs and from 32.2% to 44.2% for the test groups stored in water for 1 month. Three-way ANOVA revealed that water storage had no significant effect on the repair TBS (p = 0.619). Both testing time and bonding protocols had a significant effect on the repair TBS (p = 0.001). The interactions between the independent variables (water storage, testing time, and bonding protocols) had no significant effect (p = 0.067). The repair bond strength was consistently and highly significantly less than the cohesive strength of the composite. A delay of 1 month before carrying out the repair had no effect on the bond strength, irrespective of the bonding procedure used. Silane treatment did not improve the repair bond strength. In all instances, except for the immediate wet bonding plus silane procedure and delayed dry bonding, the bond strength of the repairs significantly dropped after 1 month of storage in water.
Coombs, Timothy A; Frazer, Ashlyn K; Horvath, Deanna M; Pearce, Alan J; Howatson, Glyn; Kidgell, Dawson J
2016-09-01
Cross-education of strength has been proposed to be greater when completed by the dominant limb in right handed humans. We investigated whether the direction of cross-education of strength and corticospinal plasticity are different following right or left limb strength training in right-handed participants. Changes in strength, muscle thickness and indices of corticospinal plasticity were analyzed in 23 adults who were exposed to 3-weeks of either right-hand strength training (RHT) or left-hand strength training (LHT). Maximum voluntary wrist extensor strength in both the trained and untrained limb increased, irrespective of which limb was trained, with TMS revealing reduced corticospinal inhibition. Cross-education of strength was not limited by which limb was trained and reduced corticospinal inhibition was not just confined to the trained limb. Critically, from a behavioral perspective, the magnitude of cross-education was not limited by which limb was trained.
Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement
Sawada, Tomofumi; Spintzyk, Sebastian; Schille, Christine; Zöldföldi, Judit; Paterakis, Angelos; Schweizer, Ernst; Stephan, Ingrid; Rupp, Frank; Geis-Gerstorfer, Jürgen
2016-01-01
This study analyzed the shear bond strength (SBS) of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group): no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax) and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C) after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05). Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01). In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05). Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05) and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode. PMID:28773641
Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar
2015-05-01
Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.
Gaddala, Naresh; Veeramachineni, Chandrasekhar
2015-01-01
Background Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. Aim The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Materials and Methods Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Results Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Conclusion Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear. PMID:26155568
Soares, Carlos Jose; Santana, Fernanda Ribeiro; Pereira, Janaina Carla; Araujo, Tatiana Santos; Menezes, Murilo Souza
2008-06-01
Controversy exists concerning the use of fiber-reinforced posts to improve bond strength to resin cement because some precementation treatments can compromise the mechanical properties of the posts. The purpose of this study was to analyze the influence of airborne-particle abrasion on the mechanical properties and microtensile bond strength (MTBS) of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. Flexural strength (delta(f)), flexural modulus (E(f)), and stiffness (S) were assessed using a 3-point bending test for glass fiber-reinforced and carbon fiber-reinforced resin posts submitted to airborne-particle abrasion (AB) with 50-microm Al(2)O(3), and for posts without any surface treatment (controls) (n=10). Forty glass fiber (GF) and 40 carbon fiber (CF) posts were submitted to 1 of 4 surface treatments (n=10) prior to MTBS testing: silane (S); silane and adhesive (SA); airborne-particle abrasion with 50-microm Al(2)O(3) and silane (ABS); airborne-particle abrasion, silane, and adhesive (ABSA). Two composite resin restorations (Filtek Z250) with rounded depressions in the lateral face were bilaterally fixed to the post with resin cement (RelyX ARC). Next, the specimen was sectioned with a precision saw running perpendicular to the bonded surface to obtain 10 bonded beam specimens with a cross-sectional area of 1 mm(2). Each beam specimen was tested in a mechanical testing machine (EMIC 2,000 DL), under stress, at a crosshead speed of 0.5 mm/min until failure. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). Failure patterns of tested specimens were analyzed using scanning electron microscopy (SEM). The 3-point bending test demonstrated significant differences among groups only for the post type factor for flexural strength, flexural modulus, and stiffness. The carbon fiber posts exhibited significantly higher mean flexural strength (P=.001), flexural modulus (P=.003), and stiffness (P=.001) values when compared with glass fiber posts, irrespective of surface treatment. An alteration in the superficial structure of the posts could be observed by SEM after airborne-particle abrasion. MTBS testing showed no significant effect for the surface treatment type; however, significant effects for post system factor and for interaction between the 2 factors were observed. For the carbon fiber post, the ABSA surface treatment resulted in values significantly lower than the S surface treatment. SEM analysis of MTBS-tested specimens demonstrated adhesive and cohesive failures. Airborne-particle abrasion did not influence the mechanical properties of the post; however, it produced undesirable surface changes, which could reduce the bond strength to resin cement. For the surface treatments studied, if silane is applied, the adhesive system and airborne-particle abrasion are not necessary.
Graupner, Nina; Labonte, David; Humburg, Heide; Buzkan, Tayfun; Dörgens, Anna; Kelterer, Wiebke; Müssig, Jörg
2017-02-28
Here we investigate the mechanical properties and structural design of the pericarp of the green coconut (Cocos nucifera L.). The pericarp showed excellent impact characteristics, and mechanical tests of its individual components revealed gradients in stiffness, strength and elongation at break from the outer to the inner layer of the pericarp. In order to understand more about the potential effect of such gradients on 'bulk' material properties, we designed simple, graded, cellulose fibre-reinforced polylactide (PLA) composites by stacking layers reinforced with fibres of different mechanical properties. Tensile properties of the graded composites were largely determined by the 'weakest' fibre, irrespective of the fibre distribution. However, a graded design led to pronounced asymmetric bending and impact properties. Bio-inspired, asymmetrically graded composites showed a flexural strength and modulus comparable to that of the strongest reference samples, but the elongation at maximum load was dependent on the specimen orientation. The impact strength of the graded composites showed a similar orientation-dependence, and peak values exceeded the impact strength of a non-graded reference composite containing identical fibre fractions by up to a factor of three. In combination, our results show that an asymmetric, systematic variation of fibre properties can successfully combine desirable properties of different fibre types, suggesting new routes for the development of high-performance composites, and improving our understanding of the structure-function relationship of the coconut pericarp.
Alves, Christiano Robles Rodrigues; Merege Filho, Carlos Alberto Abujabra; Benatti, Fabiana Braga; Brucki, Sonia; Pereira, Rosa Maria R.; de Sá Pinto, Ana Lucia; Lima, Fernanda Rodrigues; Roschel, Hamilton; Gualano, Bruno
2013-01-01
Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation. Trial Registration Clinicaltrials.gov NCT01164020 PMID:24098469
Miragaya, Luciana; Maia, Luciane Cople; Sabrosa, Carlos Eduardo; de Goes, Mário Fernando; da Silva, Eduardo Moreira
2011-10-01
To evaluate the influence of four surface treatments on the bond strength of a self-adhesive resin cement to an yttria-stabilized zirconia (Y-TZP) ceramic material (Lava Frame zirconia). Forty plates (8 x 6 x 1 mm) of a Y-TZP ceramic restorative material were randomly assigned to four groups (n = 10) according to the surface treatments: control, no treatment; airborne-particle abrasion with 50-μm Al2O3; coating with an MDP-based primer; conditioning with Rocatec System. The ceramic plates treated with each of the four methods were further divided into 2 subgroups according to the resin cement tested: RelyXTM ARC (ARC, conventional) and RelyXTM Unicem (Ucem, self-adhesive). The resin cements were put into PVC tubes (diameter 0.75 mm, 0.5 mm height) placed on the ceramic plate surfaces. After water storage at 37°C for 24 h, the specimens were submitted to a microshear bond strength (μSBS) test at a crosshead speed of 1.0 mm/min. The surface treatments significantly influenced the μSBS (p < 0.05). For the four surface treatments, UCem presented significantly higher μSBS than ARC (p < 0.05). For both resin cements, the best result was produced by the MDP-based primer: ARC 15.9 ± 5.0 MPa and UCem 36.2 ± 2.1 MPa. The highest μSBS values were presented by UCem on ceramic plates treated with the MDP-based primer (36.2 ± 2.1 MPa) and Rocatec system (37.4 ± 2.3 MPa). Irrespective of the surface treatment, the self-adhesive resin cement performed better in terms of bond strength to yttria-stabilized zirconia ceramic than did conventional resin cement.
Santosa, Robert E; Martin, William; Morton, Dean
2010-01-01
Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.
Zheng, Shaokui; Li, Xiaofeng; Zhang, Xueyu; Wang, Wei; Yuan, Shengliu
2017-09-01
This study investigated the potential effect of four frequently used inorganic regenerant properties (i.e., ionic strength, cation type, anion type, and regeneration solution volume) on the desorption and adsorption performance of 14 pharmaceuticals, belonging to 12 therapeutic classes with different predominant chemical forms and hydrophobicities, using polymeric anion exchange resin (AER)-packed fixed-bed column tests. After preconditioning with NaCl, NaOH, or saline-alkaline (SA) solutions, all resulting mobile counterion types of AERs effectively adsorbed all 14 pharmaceuticals, where the preferential magnitude of OH - -type = Cl - + OH - -type > Cl - -type. During regeneration, ionic strength (1 M versus 3 M NaCl) had no significant influence on desorption performance for any of the 14 pharmaceuticals, while no regenerant cation (HCl versus NaCl) or anion type (NaCl versus NaOH and SA) achieved higher desorption efficiencies for all pharmaceuticals. A volumetric increase in 1 M or 3 M NaCl solutions significantly improved the desorption efficiencies of most pharmaceuticals, irrespective of ionic strength. The results indicate that regeneration protocols, including regenerant cation type, anion type and volume, should be optimized to improve pharmaceutical removal by AERs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Short-term memory for pictures seen once or twice.
Martini, Paolo; Maljkovic, Vera
2009-06-01
The present study is concerned with the effects of exposure time, repetition, spacing and lag on old/new recognition memory for generic visual scenes presented in a RSVP paradigm. Early memory studies with verbal material found that knowledge of total exposure time at study is sufficient to accurately predict memory performance at test (the Total Time Hypothesis), irrespective of number of repetitions, spacing or lag. However, other studies have disputed such simple dependence of memory strength on total study time, demonstrating super-additive facilitatory effects of spacing and lag, as well as inhibitory effects, such as the Ranschburg effect, Repetition Blindness and the Attentional Blink. In the experimental conditions of the present study we find no evidence of either facilitatory or inhibitory effects: recognition memory for pictures in RSVP supports the Total Time Hypothesis. The data are consistent with an Unequal-Variance Signal Detection Theory model of memory that assumes the average strength and the variance of the familiarity of pictures both increase with total study time. The main conclusion is that the growth of visual scene familiarity with temporal exposure and repetition is a stochastically independent process.
Chlorhexidine stabilizes the adhesive interface: a 2 year in vitro study
Breschi, Lorenzo; Mazzoni, Annalisa; Nato, Fernando; Carrilho, Marcela; Visintini, Erika; Tjäderhane, Leo; Ruggeri, Alessandra; Tay, Franklin R; De Stefano Dorigo, Elettra; Pashley, David H
2013-01-01
Objectives This study evaluated the role of endogenous dentin MMPs in auto-degradation of collagen fibrils within adhesive-bonded interfaces. The null hypotheses tested were that adhesive blends or chlorhexidine digluconate (CHX) application does not modify dentin MMPs activity and that CHX used as therapeutic primer does not improve the stability of adhesive interfaces over time. Methods Zymograms of protein extracts from human dentin powder incubated with Adper Scotchbond 1XT (SB1XT) on untreated or 0.2–2% CHX treated dentin were obtained to assay dentin MMPs activity. Microtensile bond strength and interfacial nanoleakage expression of SB1XT bonded interfaces (with or without CHX pre-treatment for 30s on the etched surface) were analyzed immediately and after 2 yr of storage in artificial saliva at 37°C. Results Zymograms showed that application of SB1XT to human dentin powder increases MMP-2 activity, while CHX pre-treatment inhibited all dentin gelatinolytic activity, irrespective from the tested concentration. CHX significantly lowered the loss of bond strength and nanoleakage seen in acid-etched resin-bonded dentin artificially aged for 2 yr. Significance The study demonstrates the active role of SB1XT in dentin MMP-2 activation and the efficacy of CHX inhibition of MMPs even if used at low concentration (0.2%). PMID:20045177
Perceived pain, fear of falling and physical function in women with osteoporosis.
Hübscher, Markus; Vogt, Lutz; Schmidt, Katharina; Fink, Matthias; Banzer, Winfried
2010-07-01
The aim of this cross-sectional study was to evaluate pain intensity-related differences in physical performance and fear of falling in elderly women with osteoporosis. A sample of 82 osteoporotic women (73.8±8.1 years) with and without vertebral fractures was included. Numeric rating scale (NRS) measures (0=no pain, 10=unbearable) were applied to obtain actual pain intensity and to stratify between patients with mild (0-3), moderate (4-6) and severe (7-10) pain. Activity-related fear of falling was evaluated with the Falls Efficacy Scale-International Version (FES-I). Physical performance measures included maximum voluntary quadriceps strength, postural sway and gait speed measures. Controlling for age, fractures, and history of falls ANCOVA with Scheffe's post hoc test indicated significant slower walking velocities and greater postural sway for patients with severe pain. Furthermore, significant group differences could be detected for muscle strength and fear of falling. Patients with more intense pain (NRS≥5) were 6.4 times (odds ratio; 95%CI: 1.5-26.7) more likely to score below average in fall-related self-efficacy and all physical performance tests. Among women with osteoporosis, heightened back pain intensity increases fear of falling and decreases physical performance irrespective of vertebral fractures and history of falls. Copyright © 2010 Elsevier B.V. All rights reserved.
Sampaio, Paula Costa Pinheiro; Kruly, Paula de Castro; Ribeiro, Clara Cabral; Hilgert, Leandro Augusto; Pereira, Patrícia Nóbrega Rodrigues; Scaffa, Polliana Mendes Candia; Di Hipólito, Vinicius; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel
2017-11-01
The purpose of this in vitro study was to evaluate the bonding ability and monomer conversion of a universal adhesive system applied to dentin as functions of different curing times and storage. The results were compared among a variety of commercial adhesives. Flat superficial dentin surfaces were exposed on human molars and assigned into one of the following adhesives (n = 15): total-etch Adper Single Bond 2 (SB) and Optibond Solo Plus (OS), self-etch Optibond All in One (OA) and Clearfil SE Bond (CSE), and Scotchbond Universal Adhesive in self-etch mode (SU). The adhesives were applied following the manufacturers' instructions and cured for 10, 20, or 40s. Specimens were processed for the microtensile bond strength (µTBS) test in accordance with the non-trimming technique and tested after 24h and 2 years. The fractured specimens were classified under scanning electron microscopy (SEM). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=5). Data were analyzed by 2-way ANOVA/Tukey's tests (α = 0.05). At 24-h evaluation, OA and CSE presented similar bond strength means irrespective of the curing time, whereas SB and SU exhibited significantly higher means when cured for 40s as did OS when cured for 20 or 40s (p < 0.05). At 2-year evaluation, only OA exhibited significantly higher bond strength when cured for 20 and 40s (p < 0.05). When the evaluation times were compared, OA also exhibited the same bonding ability when cured for longer periods of time (20 and 40s). All of the adhesives tested exhibited significantly lower monomer conversion when photoactivated according to the manufacturers' instructions (10s). Higher monomer conversions obtained with longer light exposure allow only higher immediate bond strength for most of the adhesives tested. After 2-year storage, only the self-etching adhesive Optibond All-In-One exhibited the same bonding ability when cured for longer periods of time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Repeated-Sprint Sequences During Female Soccer Matches Using Fixed and Individual Speed Thresholds.
Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Rosseti, Marcelo; Moura, Felipe A; Bradley, Paul S
2017-07-01
Nakamura, FY, Pereira, LA, Loturco, I, Rosseti, M, Moura, FA, and Bradley, PS. Repeated-sprint sequences during female soccer matches using fixed and individual speed thresholds. J Strength Cond Res 31(7): 1802-1810, 2017-The main objective of this study was to characterize the occurrence of single sprint and repeated-sprint sequences (RSS) during elite female soccer matches, using fixed (20 km·h) and individually based speed thresholds (>90% of the mean speed from a 20-m sprint test). Eleven elite female soccer players from the same team participated in the study. All players performed a 20-m linear sprint test, and were assessed in up to 10 official matches using Global Positioning System technology. Magnitude-based inferences were used to test for meaningful differences. Results revealed that irrespective of adopting fixed or individual speed thresholds, female players produced only a few RSS during matches (2.3 ± 2.4 sequences using the fixed threshold and 3.3 ± 3.0 sequences using the individually based threshold), with most sequences composing of just 2 sprints. Additionally, central defenders performed fewer sprints (10.2 ± 4.1) than other positions (fullbacks: 28.1 ± 5.5; midfielders: 21.9 ± 10.5; forwards: 31.9 ± 11.1; with the differences being likely to almost certainly associated with effect sizes ranging from 1.65 to 2.72), and sprinting ability declined in the second half. The data do not support the notion that RSS occurs frequently during soccer matches in female players, irrespective of using fixed or individual speed thresholds to define sprint occurrence. However, repeated-sprint ability development cannot be ruled out from soccer training programs because of its association with match-related performance.
Effects of short-term very low-carbohydrate or conventional diet on strength performance.
Meirelles, C; Candido, T; Gomes, P S
2010-06-01
Weight reduction strategies usually include diet and regular physical activity. A very low-carbohydrate and high protein diet (VLCD) may be preferred instead of a low energy conventional diet (CONV). The effects of VLCD on strength performance are yet to be understood. Aim of the study is to determine the effects of two different restrictive diets on strength performance. Sedentary women were assigned to either a VLCD (<40 g carbohydrate; n=12) or a CONV diet (500 to 800 kcal restrictive; 48%, 22% and 30% from carbohydrate, protein and fat, respectively; n=12). Knee extension isokinetic strength tests (3 yen 15 reps at 60 degrees .s-1, with 90 or 180 s rest interval between sets) were performed prior and after a one week diet period. Both groups reduced body mass (VLCD: -2.6+/-1.0% vs. CONV: -1.9+/-1.3%; P<0.05), with no between diets effect. The sum of the total work in three sets (ATW) was 4850+/-1002 J vs. 4801+/-973 J with 90 s rest interval, and 4812+/-1174 J vs. 4812+/-1210 J with 180 s rest interval, respectively, in the pre vs. post-VLCD period. For CONV, values were 4709+/-729 J vs. 4530+/-996 J with 90 s rest interval, and 4760+/-732 J vs. 4816+/-702 J with 180 s rest interval, respectively, in the pre vs. post-CONV treatment. No significant differences were detected in the ATW between groups. Short-term hypoenergetic diets, irrespective of the carbohydrate content, seem to reduce significantly body mass, but do not impair acute strength performance.
Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.
Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R
2014-01-01
The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.
Laurence Mott; Les Groom; Stephen Shaler
2002-01-01
This paper reports variations in mechanical properties of individual southern pine fibers and compares engineering properties of earlywood and latewood tracheids with respect to tree height and juvenility. Results indicate that latewood fibers exhibit greater strength and stiffness than earlywood fibers irrespective of tree height or juvenility. Average earlywood...
Leslie H. Groom; Stephen Shaler; Laurence Mott
2002-01-01
This paper repons variations in mechanical properties of individual southern pine fibers and compares engineering properties of earlywood and latewood tracheids with respect to tree height and juvenility. Results indicate that latewood fibers exhibit greater strength and stiffness than earlywood fibers irrespective of tree height or juvenility. Average earlywood...
NASA Astrophysics Data System (ADS)
Swanson, Lauren H.; Bianchini, Julie A.
2015-12-01
In this study, we investigated the process of teacher co-planning. We examined two teams of high school science and special education teachers brought together to co-plan inclusive, inquiry-oriented science units as part of a professional development effort. We used three conceptual lenses to help make sense of this process: (1) characteristics of collaboration, (2) small group interactions, and (3) community discourse. Using these lenses individually and collectively, we identified strengths and limitations in teachers' co-planning efforts. A strength was that all teachers, irrespective of discipline, shared ideas and helped make decisions about the content and activities included in unit and lesson plans. A limitation was that teachers, again irrespective of discipline, discussed science education topics in their teams more often than special education ones. We found this latter finding of note as it spoke to issues of parity among teachers during the professional development. In our discussion, we argue that each conceptual lens yielded both unique and common findings on co-planning. We also provide recommendations for professional developers and educational scholars intent on organizing and/or researching co-planning among science and special education teachers.
Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions
NASA Technical Reports Server (NTRS)
Sanders, W. A.; Mieskowski, D. M.
1985-01-01
Room temperature, 700-, 1000-, 1200-, and 1370-C examinations of the effect of 1.7-2.6 mol pct rare earth oxide additions to sintered Si3N4 are conducted. While the room temperature-1000 C bend strengths were higher for this material with Y2O3 additions than with CeO2, La2O3, or Sm2O3, the reverse was true at 1200-1370 C. This phenomenon is explained on the basis of microstructural differences, since quantitative microscopy of SEM replicas showed the Si3N4-Y2O3 composition to contain both a higher percentage of elongated grains and a coarser microstructure than the other three alternatives. The elongated grains appear to increase this composition's low temperature strength irrespective of microstructural coarseness; this coarseness, however, decreases strength relative to the other compositions at higher temperatures.
Mair, Lawrence; Padipatvuthikul, P
2010-02-01
Resin bonding can be compared to making a sandwich with the tooth on one side and the restoration on the other, a layer of bonding resin is applied to either side and a filled resin (composite) placed in between. This presentation considers factors that influence the restoration side of the sandwich and various ways that the assembled testpieces may be "aged" prior to testing. The materials to be bonded may be either ceramic, metal or composite formed by methods such as casting, pressing, sintering or machining. The fabrication method determines the susceptibility of the bonding surface to physical or chemical modification. The treatment of the surface prior to bonding can be physical (e.g. sandblasting) or chemical (e.g. metal primer); but is more likely to be a combination (e.g. silica deposition+silane). Successful bonding depends on establishing a surface with a high population of unreacted vinyl groups (-CC) that can then be cross-polymerized to the resin in the bonding composite. The physical approach has involved etching or sandblasting the surfaces; but the ability to form a microretentive surface in this way depends on a heterogeneous surface. Noble metals and modern high strength ceramics have a more homogeneous surface and are not easily etched. To overcome this problem a number of ways to deposit a silica layer on the bonding surface have been developed: the Silicoater that involves baking on a silica layer, the Rocatec technique (CoJet) that involves air blasting silica onto the surface in conjunction with an abrasive; and two more modern approaches: sol-gel evaporation and molecular vapor deposition (MVD). All these techniques require the subsequent application of a silane layer to provide the -CC moieties. The use of primers without an intervening silica layer has been tested and found to be successful with some specialized bonding systems that contain agents such as methacryloyloxydecyldihydrogen-phosphate (MDP) (PanaviaEX). AGING OF TESTPIECES PRIOR TO BONDING: The most common type of aging is storage in water at temperatures from ambient to 100 degrees Celsius. This generally decreases bond strengths; but not to catastrophic values. A more exacting pre-test regime is thermal cycling. In some studies this caused a slightly greater reduction in bond strength than storage in water; but in other tests it resulted in total failure. As some testpieces have spontaneously debonded during thermal cycling, it seems sensible to include TC in any screening test of new materials. Mechanical cycling (fatigue) prior to testing has a very significant effect and the bond strength that can withstand 1,000,000 cycles can be one sixth of the bond strength in a simple monotonic test (tensile, shear or compression). Whereas simple monotonic tests provide a blunt instrument for eliminating poorly performing techniques their use for discriminating between established techniques is open to discussion. Copyright 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
An Investigation of the Tensile Strength of a Composite-To-Metal Adhesive Joint
NASA Astrophysics Data System (ADS)
Tsouvalis, Nicholas G.; Karatzas, Vassilios A.
2011-04-01
The present study examines the feasibility of a simple concept composite-to-metal butt joint through the performance of both numerical and experimental studies. The composite part is made of glass/epoxy unidirectional layers made with the vacuum bag method. The geometry of the joint is typical for marine applications and corresponds to a low stiffness ratio. Two major parameters are investigated, namely the overlap length and the surface preparation of the steel adherent. Manufacturing of specimens and the procedure of the tensile tests are described in detail, giving hints for obtaining a better quality joint. Axial elongation and strains at various places of the joint were monitored and also numerically calculated. The tests revealed that the joint is quite effective, irrespectively of the steel surface preparation method. The failure loads are comparable and in some cases superior to other corresponding values found in the literature. The numerical models proved to adequately predict the structural response of the joint up to the loading where debonding starts.
Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk
2009-03-01
Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.
Laterality as an indicator of emotional stress in ewes and lambs during a separation test.
Barnard, Shanis; Matthews, Lindsay; Messori, Stefano; Podaliri-Vulpiani, Michele; Ferri, Nicola
2016-01-01
We assessed motor laterality in sheep to explore species-specific brain hemi-field dominance and how this could be affected by genetic or developmental factors. Further, we investigated whether directionality and strength of laterality could be linked to emotional stress in ewes and their lambs during partial separation. Forty-three ewes and their singleton lambs were scored on the (left/right) direction of turn in a y-maze to rejoin a conspecific (laterality test). Further, their behavioural response (i.e. time spent near the fence, vocalisations, and activity level) during forced separation by an open-mesh fence was assessed (separation test). Individual laterality was recorded for 44.2% ewes (significant right bias) and 81.4% lambs (equally biased to the left and the right). There was no significant association in side bias between dams and offspring. The Chi-squared test revealed a significant population bias for both groups (p < 0.05). Evolutionary adaptive strategies or stimuli-related visual laterality may provide explanation for this decision-making process. Absolute strength of laterality (irrespective of side) was high (Kolmogorov-Smirnov test, dams: D = 0.2; p < 0.001; lambs: D = 0.36, p < 0.0001). The Wilcoxon test showed that lateralised lambs and dams spent significantly more time near each other during separation than non-lateralised animals (p < 0.05), and that lateralised dams were also more active than non-lateralised ones. Arguably, the lateralised animals showed a greater attraction to their pair because they were more disturbed and thus required greater reassurance. The data show that measures of laterality offer a potential novel non-invasive indicator of separation stress.
Undrained behavior and shear strength of clean sand containing low-plastic fines
NASA Astrophysics Data System (ADS)
To-Anh Phan, Vu; Hsiao, Darn-Horng
2018-04-01
This study presents experimental tests to understand the undrained behavior of sand containing various fines contents. The specimens were prepared by the wet tamping method. The consolidated undrained triaxial shear tests were carried out by sands mixed with amounts of fines in ranging from 0 to 60%. The results showed that the deviator stress quickly reaches the peak value with an axial strain in a range of 0.5 to 2%, and then, the value drops significantly with further increases in the axial strain, the pore water pressure of all the sand-fines mixtures rapidly increases as the axial strain reaches a value in a range from 1 to 2% and then slowly increases and reaches a stable state when strain is greater than 8%. Peak deviator stress gradually decreases with an increasing fines content from 0 to 40%, thereafter, the peak deviator significantly increases with further increases in the fines content up to 60%, irrespective of confining pressure values using in these tests. Finally, the effective internal friction angles are remarkably greater than the total friction angles for various sand-fines mixtures.
Loguercio, Alessandro D; Stanislawczuk, Rodrigo; Polli, Luceli G; Costa, Jully A; Michel, Milton D; Reis, Alessandra
2009-10-01
Although it is known that chlorhexidine application may preserve resin-dentin bonds from degradation, the lowest optimal concentration and application time have yet to be established. This study evaluated the effects of different concentrations of chlorhexidine digluconate and different application times on the preservation of resin-dentin bonds formed using two etch-and-rinse adhesives. In experiment 1, after acid etching, the occlusal demineralized dentin was rewetted either with water or with 0.002, 0.02, 0.2, 2, or 4% chlorhexidine for 60 s. In experiment 2, the surfaces were rewetted with water, or with 0.002% or 2% chlorhexidine for 15 or 60 s. After this, both adhesives and composite resin were applied and light-cured. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm min(-1)) immediately or after 6 months of storage in water. Two bonded sticks from each tooth were immersed in silver nitrate and analyzed quantitatively using scanning electron microscopy. Reductions in microtensile bond strengths and higher silver nitrate uptake were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were maintained for up to 6 months under all chlorhexidine conditions tested, irrespective of the chlorhexidine concentration and application time. The use of 0.002% chlorhexidine for 15 s seems to be sufficient to preserve resin-dentin interfaces over a 6-month period.
Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L
2015-12-15
Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-02-01
41 4.4.1 Ordered arrangement of nanoporous silica – Decreasing sensitivity to cracks 44...materials become insensitive to flaws, thus enabling them to reach their theoretical strength irrespective of cracks or defects. Furthermore, in...highlighting the essential role of large stiffness-ratios in reducing crack tip stress concentrations in lamellar structures [32, 33]. Furthermore, a
Gravitational effects on body composition in birds
NASA Technical Reports Server (NTRS)
Smith, A. H.; Sanchez P., O.; Burton, R. R.
1975-01-01
Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki; Okabayashi, Kunio
1985-01-01
A study has been systematically made of the effect of bainite on the mechanical properties of a commercial Japanese 0.40 pct C-Ni-Cr-Mo high strength steel (AISI 4340 type) having a mixed structure of martensite and bainite. Isothermal transformation of lower bainite at 593 K, which appeared in acicular form and partitioned prior austenite grains, in association with tempered marprovided provided a better combination of strength and fracture ductility, improving true notch tensile strength (TNTS) and fracture appearance transition temperature (FATT) in Charpy impact tests. This occurred regardless of the volume fraction of lower bainite present and/or the tempering conditions employed to create a difference in strength between the two phases. Upper bainite which was isothermally transformed at 673 K appeared as masses that filled prior austenite grains and had a very detrimental effect on the strength and fracture ductility of the steel. Significant damage occurred to TNTS and FATT, irrespective of the volume fraction of upper bainite present and/or the tempering conditions employed when the upper bainite was associated with tempered martensite. However, when the above two types of bainite appeared in the same size, shape, and distribution within tempered martensite approximately equalized to the strength of the bainite, a similar trend or a marked similarity was observed between the tensile properties of the mixed structures and the volume fraction of bainite. From the above results, it is assumed that the mechanical properties of high strength steels having a mixed structure of martensite and bainite are affected more strongly by the size, shape, and distribution of bainite within martensite than by the difference in strength between martensite and bainite or by the type of mixed bainite present. The remarkable effects of the size, shape, and distribution of bainite within martensite on the mechanical properties of the steel are briefly discussed in terms of the modified law of mixtures, metallographic examinations, and the analyses of stress-strain diagrams.
The effect of Agaricus brasiliensis extract supplementation on honey bee colonies.
Stevanovic, Jevrosima; Stanimirovic, Zoran; Simeunovic, Predrag; Lakic, Nada; Radovic, Ivica; Sokovic, Marina; Griensven, Leo J L D VAN
2018-01-01
This study was done to discover any beneficial effect of a medicinal mushroom Agaricus brasiliensis extract on the honey bee. Firstly, a laboratory experiment was conducted on 640 bees reared in 32 single-use plastic rearing cups. A. brasiliensis extract proved safe in all doses tested (50, 100 and 150 mg/kg/day) irrespective of feeding mode (sugar syrup or candy). Secondly, a three-year field experiment was conducted on 26 colonies treated with a single dose of A. brasiliensis extract (100 mg/kg/day) added to syrup. Each year the colonies were treated once in autumn and twice in spring. The treatments significantly increased colony strength parameters: brood rearing improvement and adult population growth were noticed more often than the increase in honey production and pollen reserves. These positive effects were mainly observed in April. In conclusion, A. brasiliensis extract is safe for the bees and helps maintaining strong colonies, especially in spring.
Liu, P; Gupta, N; Jing, Y; Collie, N D; Zhang, H; Smith, P F
2017-04-21
Some studies have demonstrated that aging is associated with impaired vestibular reflexes, especially otolithic reflexes, resulting in postural instability. However, the neurochemical basis of these age-related changes is still poorly understood. The l-arginine metabolic system has been implicated in changes in the brain associated with aging. In the current study, we examined the levels of l-arginine and its metabolizing enzymes and downstream metabolites in the vestibular nucleus complex (VNC) and cerebellum (CE) of rats with and without behavioral testing which were young (4months old), middle-aged (12months old) or aged (24months old). We found that aging was associated with lower nitric oxide synthase activity in the CE of animals with testing and increased arginase in the VNC and CE of animals with testing. l-citrulline and l-ornithine were lower in the VNC of aged animals irrespective of testing, while l-arginine and l-citrulline were lower in the CE with and without testing, respectively. In the VNC and CE, aging was associated with lower levels of glutamate in the VNC, irrespective of testing. In the VNC it was associated with higher levels of agmatine and putrescine, irrespective of testing. In the CE, aging was associated with higher levels of putrescine in animals without testing and with higher levels of spermine in animals with testing, and spermidine, irrespective of testing. Multivariate analyses indicated significant predictive relationships between the different variables, and there were correlations between some of the neurochemical variables and behavioral measurements. Cluster analyses revealed that aging altered the relationships between l-arginine and its metabolites. The results of this study demonstrate that there are major changes occurring in l-arginine metabolism in the VNC and CE as a result of age, as well as behavioral activity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy
NASA Astrophysics Data System (ADS)
Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj
2018-07-01
Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.
Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy
NASA Astrophysics Data System (ADS)
Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj
2018-04-01
Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.
IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.
Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier
2017-04-05
To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.
Shoulder rotational profiles in young healthy elite female and male badminton players.
Couppé, C; Thorborg, K; Hansen, M; Fahlström, M; Bjordal, J M; Nielsen, D; Baun, M; Storgaard, M; Magnusson, S P
2014-02-01
The aim of the present study was to profile shoulder passive range of motion (ROM) and isometric strength for external (ER) and internal (IR) rotation as part of a preseason screening in adolescent national badminton players. Passive external range of motion (EROM) and internal range of motion (IROM) were examined on the dominant and nondominant shoulder in 31 adolescent national badminton players (12 females and 19 males) with a standard goniometer. Muscle strength was examined with a hand-held dynamometer in ER and IR. Total range of motion (TROM = EROM+IROM) was lower on the dominant side compared with the nondominant side in both groups (P < 0.001). Males were generally stronger than females in all strength measurements except for IR on the dominant side (P < 0.01). In females, IR dominant side strength was greater compared with IR on the nondominant side (P < 0.05). TROM was reduced on the dominant side compared with the nondominant side in young elite badminton players, irrespective of gender. No rotational strength differences existed between the dominant and nondominant side in male players, but in female players a higher IR strength on the dominant side was not balanced by a higher ER strength. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.
Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T
2003-02-01
The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.
No Improvement in Sprint Performance With a Neuromuscular Fitted Dental Splint.
Fischer, Henrike; Weber, Daniel; Beneke, Ralph
2017-03-01
Mouth guards protect against orofacial and dental injuries in sports. However, special fitted dental splints have been claimed to improve strength and speed and, therefore, to enhance athletic performance. To test the effects of a neuromuscular fitted dental splint in comparison with a habitual verticalizing splint and a no-splint condition on cycling sprint performance in the Wingate Anaerobic Test (WAnT). Twenty-three men (26.0 ± 2.0 y, 1.82 ± 0.06 m, 79.4 ± 7.7 kg) performed 3 WAnTs, 1 with the neuromuscular fitted splint, 1 with a habitual verticalized dental splint of the same height and material, and 1 under control conditions without any mouth guard, in randomized order separated by 1 wk. No differences between any splint conditions were found in any aspect of WAnT performance (time to peak power, peak power, minimum power, power drop, and average power). Moderate to nearly perfect correlations between all splint conditions in all WAnT outcomes with coefficients of variation between 1.3% and 6.6% were found. Irrespective of habitual verticalization or myocentric positioning, dental splints have no effects on any aspect of WAnT performance. Results are comparable to those of test-retest experiments.
Task-irrelevant spider associations affect categorization performance.
Woud, Marcella L; Ellwart, Thomas; Langner, Oliver; Rinck, Mike; Becker, Eni S
2011-09-01
In two studies, the Single Target Implicit Association Test (STIAT) was used to investigate automatic associations toward spiders. In both experiments, we measured the strength of associations between pictures of spiders and either threat-related words or pleasant words. Unlike previous studies, we administered a STIAT version in which stimulus contents was task-irrelevant: The target spider pictures were categorized according to the label picture, irrespective of what they showed. In Study 1, spider-fearful individuals versus non-fearful controls were tested, Study 2 compared spider enthusiasts to non-fearful controls. Results revealed that the novel STIAT version was sensitive to group differences in automatic associations toward spiders. In Study 1, it successfully distinguished between spider-fearful individuals and non-fearful controls. Moreover, STIAT scores predicted automatic fear responses best, whereas controlled avoidance behavior was best predicted by the FAS (German translation of the Fear of Spiders Questionnaire). The results of Study 2 demonstrated that the novel STIAT version was also able to differentiate between spider enthusiasts and non-fearful controls. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.
2017-05-01
Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.
da Silva, Eduardo M; Miragaya, Luciana; Sabrosa, Carlos Eduardo; Maia, Lucianne C
2014-09-01
The behavior of the luting cement and the cementation protocol are essential in the clinical success of ceramic restorations. The purpose of this study was to evaluate the bond stability of 2 resin cements and a yttria-stabilized tetragonal polycrystalline zirconia (Y-TZP) ceramic submitted to 2 surface treatments. Sixty plates of a Y-TZP ceramic were assigned to 3 groups according to the surface treatments: control, as sintered surface; methacryloxydecyl dihydrogen phosphate (MDP), coated with an MDP-based primer, and tribochemical silica-coating (TSC), coated with tribochemical silica. The plates of each group were further divided into 2 subgroups according to the resin cement as follows: RelyX adhesive resin cement (conventional) and RelyX Unicem (self-adhesive). Cylinders of resin cements (∅=0.75 mm × 0.5 mm in height) were built up on the ceramic surfaces, and the plates stored in distilled water at 37°C for either 24 hours or 6 months before being submitted to a microshear bond strength test. The data were submitted to 3-way ANOVA and the Tukey honestly significant difference test (α=.05). Three-way ANOVA showed statistical significance for the 3 independent factors: resin cement, surface treatment, and period of water immersion (P<.001). Unicem presented the highest microshear bond strength after 24 hours (MDP, 37.4 ±2.3 and TSC, 36.2 ±2.1 MPa). Except for RelyX adhesive resin cement applied on ceramic surfaces treated with TSC, the microshear bond strength of all the other groups decreased after 6 months of aging in water. The microshear bond strength decreased most in the control groups (-81.5% for ARC and -93.1% for Unicem). In the group treated with TSC, the microshear bond strength for Unicem decreased by 54.8% and in that treated with MDP-based primer by -42.5%. In the group treated with MDP-based primer, the microshear bond strength for RelyX ARC decreased by -52.8%. Irrespective of surface treatments, self-adhesive resin cement was not able to maintain the bond to Y-TZP ceramic after 6 months of aging in water. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Yılmaz, Tekin; Ercikdi, Bayram; Deveci, Hacı
2018-09-15
This study presents the utilisation of finely ground construction and demolition waste (CDW) as partial replacement (5-15 wt.%) to sulphide tailings on the short- and long-term strength, durability (i.e. no loss of strength) and microstructural properties of cemented paste backfill (CPB) over a curing period of 360 days. The CPB samples containing CDW were prepared at binder dosages of 7.5 and 8.5 wt.%, while control samples (full tailings) were only produced at 8.5 wt.% binder dosage. A total of 108 CPB samples were subjected to the unconfined compressive strength (UCS), acid/sulphate (pH, SO 4 2- ) and microstructure (MIP, XRD etc.) tests. Despite its limited contribution to the resistance of CPB to acid and sulphate attack, the use of CDW as partial replacement (5-15 wt.%) to sulphide tailings enhanced the strength properties of CPB samples by decreasing the total and macro porosity. The UCSs and pH values of CPB samples increased with increasing the CDW content in CPB mixtures, while the generation of sulphate ions (SO4 2- ) decreased irrespective of the binder dosages. Compared with control samples prepared at 8.5 wt.% binder dosage, 5.3-19.5% higher UCS values were obtained for the CPB samples containing 15 wt.% CDW prepared even at 7.5 wt.% binder dosage. Mercury intrusion porosimetry (MIP) analyses proved the beneficial effect of the use of CDW on the microstructural properties (i.e. total porosity) of CPB. These findings suggest that CDW materials can be suitably used as backfill material in the mining industry to fill underground voids created during the ore production. This offers safe disposal and hence environmentally sound management of CDW. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coupling strength assumption in statistical energy analysis
Lafont, T.; Totaro, N.
2017-01-01
This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335
Torres, Gabriele Barbosa; da Silva, Tânia Mara; Basting, Rosanna Tarkany; Bridi, Enrico Coser; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso; do Amaral, Flávia Lucisano Botelho; de Paiva Gonçalves, Sérgio Eduardo; Basting, Roberta Tarkany
2017-10-01
To evaluate the bond strength to superficial (SD) and deep (DD) dentin after the use of 2.5% (T2.5%) or 4% (T4%) titanium tetrafluoride (TiF 4 ) in aqueous solution as a dentin pretreatment, or when incorporated into the primer (T2.5%P and T4%P) of an adhesive system (Clearfil SE Bond/CL). Degree of conversion (DC), particle size (PS), polydispersity index (PI) and zeta potential (ZP) of the solutions were evaluated. Fifty molars were sectioned longitudinally to obtain two slices of each tooth, which were demarcated into SD and DD. Treatments were applied (n=10): CL; T2.5%; T4%; T2.5%P; T4%P. After 24h or 180days storage, microshear bond strength tests were performed. The DC values of T2.5%P and T4%P were evaluated by FTIR. PS, PI and ZP were measured using dynamic light scattering. Analysis of mixed models showed significant effect of concentration of TiF 4 * solution * storage time (p=0.0075). There were higher bond strength values in SD than in DD (p=0.0105) for all treatments in both times. The failure mode showed adhesive failures in the majority of groups, irrespective of depth and time (p=0.3746). The bond strength values were not affected by treatments. Lower average particle size was observed for T2.5%P and T4%P at baseline. T2.5% and T4% showed a trend towards agglomeration. Higher bond strength values were achieved at SD for all treatments and times. The failure modes observed were adhesive. TiF 4 incorporation did not affect DC. T2.5%P and T4%P presented excellent stability over time. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
On the origin of Hill's causal criteria.
Morabia, A
1991-09-01
The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.
Application of Electro Chemical Machining for materials used in extreme conditions
NASA Astrophysics Data System (ADS)
Pandilov, Z.
2018-03-01
Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.
Marchewka, Artur; Kherif, Ferath; Krueger, Gunnar; Grabowska, Anna; Frackowiak, Richard; Draganski, Bogdan
2014-05-01
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS. Copyright © 2013 Wiley Periodicals, Inc.
Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu
2018-04-13
To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30s air drying) with DMSO/ethanol or DMSO/H 2 O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24h and sectioned into resin-dentin beams (0.8mm 2 ) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n=8) under SEM. Additional teeth (n=2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20cm H 2 O) using 5mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (α=0.05). While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p<0.05), DMSO/H 2 O and DMSO/ethanol produced significantly higher bond strengths for SBMP irrespective of dentin condition (p<0.05). SU presented significantly higher nanoleakage levels (p<0.05) and micropermeability than SBMP. Improvement in hybrid layer integrity occurred for SBMP and SU for both pretreatments, albeit most pronouncedly for DMSO/ethanol regardless of dentin moisture. DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin-dentin interfaces. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Dougoud, Michaël; Rohr, Rudolf P.
2018-01-01
The consensus that complexity begets stability in ecosystems was challenged in the seventies, a result recently extended to ecologically-inspired networks. The approaches assume the existence of a feasible equilibrium, i.e. with positive abundances. However, this key assumption has not been tested. We provide analytical results complemented by simulations which show that equilibrium feasibility vanishes in species rich systems. This result leaves us in the uncomfortable situation in which the existence of a feasible equilibrium assumed in local stability criteria is far from granted. We extend our analyses by changing interaction structure and intensity, and find that feasibility and stability is warranted irrespective of species richness with weak interactions. Interestingly, we find that the dynamical behaviour of ecologically inspired architectures is very different and richer than that of unstructured systems. Our results suggest that a general understanding of ecosystem dynamics requires focusing on the interplay between interaction strength and network architecture. PMID:29420532
Topcu, Fulya Toksoy; Erdemir, Ugur; Ozel, Emre; Tiryaki, Murat; Oktay, Elif Aybala; Yildiz, Esra
2017-01-01
Objectives: The aim of this study was to evaluate the effects of time elapsed since bleaching and different bleaching regimens on the microtensile bond strength of resin composite to enamel. Methodology: Forty flattened buccal enamel surfaces were divided into four groups: An unbleached (control) group and three bleaching groups. Control group specimens were not subjected to a bleaching regimen (Group 1), while those in the bleaching groups were bleached as follows: opalescence 10% (Group 2), whiteness perfect 16% (Group 3), and whiteness hydrogen peroxide 35% (Group 4). Thereafter, the bleached specimens were divided into three subgroups (n = 4 teeth each) for restoration according to predetermined posttreatment time intervals (immediately, 1 week, and 2 weeks). Bonded specimens were then sectioned and subjected to μTBS testing. The data were analyzed using Kruskal–Wallis and Mann–Whitney U-tests at α = 0.05. Results: There was a significant difference in the μTBS of the resin composite to enamel in groups that were bonded immediately after bleaching and in the control group (P < 0.05). Compared to the control group, the μTBS in Groups 2, 3, and 4 decreased significantly 1-week postbleaching (P < 0.05). No significant difference in μTBS was observed between the bleached and unbleached groups 2 weeks after treatment (P > 0.05). Conclusions: Adhesive restorative procedures could not be performed immediately or after 1 week irrespective of the type or concentration of bleaching system used. Composite restorations on bleached enamel surfaces should be performed after an interval of at least 2 weeks. PMID:29042734
Topcu, Fulya Toksoy; Erdemir, Ugur; Ozel, Emre; Tiryaki, Murat; Oktay, Elif Aybala; Yildiz, Esra
2017-01-01
The aim of this study was to evaluate the effects of time elapsed since bleaching and different bleaching regimens on the microtensile bond strength of resin composite to enamel. Forty flattened buccal enamel surfaces were divided into four groups: An unbleached (control) group and three bleaching groups. Control group specimens were not subjected to a bleaching regimen (Group 1), while those in the bleaching groups were bleached as follows: opalescence 10% (Group 2), whiteness perfect 16% (Group 3), and whiteness hydrogen peroxide 35% (Group 4). Thereafter, the bleached specimens were divided into three subgroups ( n = 4 teeth each) for restoration according to predetermined posttreatment time intervals (immediately, 1 week, and 2 weeks). Bonded specimens were then sectioned and subjected to μTBS testing. The data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests at α = 0.05. There was a significant difference in the μTBS of the resin composite to enamel in groups that were bonded immediately after bleaching and in the control group ( P < 0.05). Compared to the control group, the μTBS in Groups 2, 3, and 4 decreased significantly 1-week postbleaching ( P < 0.05). No significant difference in μTBS was observed between the bleached and unbleached groups 2 weeks after treatment ( P > 0.05). Adhesive restorative procedures could not be performed immediately or after 1 week irrespective of the type or concentration of bleaching system used. Composite restorations on bleached enamel surfaces should be performed after an interval of at least 2 weeks.
Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Jin, Fei; Wu, Hao-Liang; Liu, Zhi-Bin
2014-12-15
Cement stabilization is used extensively to remediate soils contaminated with heavy metals. However, previous studies suggest that the elevated zinc (Zn) and lead (Pb) concentrations in the contaminated soils would substantially retard the cement hydration, leading to the deterioration of the performance of cement stabilized soils. This study presents a new binder, KMP, composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The effectiveness of stabilization using this binder is investigated on soils spiked with Zn and Pb, individually and together. Several series of tests are conducted including toxicity characteristic leaching (TCLP), ecotoxicity in terms of luminescent bacteria test and unconfined compressive strength. The leachability of a field Zn- and Pb- contaminated soil stabilized with KMP is also evaluated by TCLP leaching test. The results show that the leached Zn concentrations are lower than the China MEP regulatory limit except when Zn and Pb coexist and for the curing time of 7 days. On the other hand, the leached Pb concentrations for stabilized soils with Pb alone or mixed Zn and Pb contamination are much lower than the China MEP or USEPA regulatory limit, irrespective of the curing time. The luminescent bacteria test results show that the toxicity of the stabilized soils has been reduced considerably and is classified as slightly toxic class. The unconfined compressive strength of the soils decrease with the increase in the Zn concentration. The stabilized soils with mixed Zn and Pb contaminants exhibit notably higher leached Zn concentration, while there is lower unconfined compressive strength relative to the soils when contaminated with Zn alone. The X-ray diffraction and scanning electron microscope analyses reveal the presence of bobierrite (Mg3(PO4)2·8H2O) and K-struvite (MgKPO4·6H2O) as the main products formed in the KMP stabilized uncontaminated soils; the formation of hopeite (Zn3(PO4)2·4H2O), scholzite (CaZn2(PO4)2·2H2O), zinc hydroxide (Zn(OH)2), and fluoropyromorphite (Pb5(PO4)3F) in the soils are the main mechanisms for immobilization of Zn and Pb with the KMP binder. The change in the relative quantities of the formed phosphate-based products, with respect to the Zn concentration and presence of mixed Zn and Pb contaminants, can well explain the measured impact of the Zn concentration levels and presence of both Zn and Pb contaminants on the unconfined compressive strength of the KMP stabilized soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.
McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D
2017-09-01
McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.
Diagnosis of motor fascicle compression in carpal tunnel syndrome.
Modi, C S; Ho, K; Hegde, V; Boer, R; Turner, S M
2010-06-01
Median nerve motor fascicle compression in patients with carpal tunnel syndrome is usually characterised by reduced finger grip and pinch strength, loss of thumb abduction and opposition strength and thenar atrophy. The functional outcome in patients with advanced changes may be poor due to irreversible intraneural changes. The aim of this study was to investigate patient-reported symptoms, which may enable a clinical diagnosis of median nerve motor fascicle compression to be made irrespective of the presence of advanced signs. One hundred and twelve patients (166 hands) with a clinical diagnosis of carpal tunnel syndrome were referred to the neurophysiology department and completed symptom severity questionnaires with subsequent neurophysiological testing. An increasing frequency of pain experienced by patients was significantly associated with an increased severity of median nerve motor fascicle compression with prolonged motor latencies measured in patients that described pain as a predominant symptom. An increasing frequency of paraesthesia and numbness and weakness associated with dropping objects was significantly associated with both motor and sensory involvement but not able to distinguish between them. This study suggests that patients presenting with a clinical diagnosis of carpal tunnel syndrome with pain as a frequently experienced and predominant symptom require consideration for urgent investigation and surgical treatment to prevent chronic motor fascicle compression with permanent functional deficits. Copyright 2010 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Dike, Kenneth C; Long, Roger A
1953-01-01
Given three presumably identical lots of commercial, sintered, wrought molybdenum, the 1-hour recrystallization temperature of one lot remained above 2900 F by limiting the amount of effective restraining to 35 percent or less. Different recrystallization temperatures were obtained in various atmospheres, the highest in argon and the lowest in hydrogen. Metal thus fabricated and then stress-relieved possessed an ultimate tensile strength at room temperature within 10 percent of metal swaged 99 percent and also possessed equivalent ductility. At 1800 F, equivalent strength and ductility was obtained irrespective of the amount of swaging over the range of 10 to 99 percent. The amount of swaging greatly influenced the recrystallized grain size but the difference in grain size is not the major controlling factor which determines whether recrystallized molybdenum is ductile or brittle at room temperature.
Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs
2015-12-01
It has frequently been reported that balance and lower-extremity muscle strength/power are associated with sports-related and everyday activities. Knowledge about the relationship between balance, strength, and power are important for the identification of at-risk individuals because deficits in these neuromuscular components are associated with an increased risk of sustaining injuries and falls. In addition, this knowledge is of high relevance for the development of specifically tailored health and skill-related exercise programs. The objectives of this systematic literature review and meta-analysis were to characterize and, if possible, quantify associations between variables of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus up to March 2015 to capture all relevant articles. A systematic approach was used to evaluate the 996 articles identified for initial review. Studies were included only if they investigated healthy individuals aged ≥6 years and tested at least one measure of static steady-state balance (e.g., center of pressure [CoP] displacement during one-legged stance), dynamic steady-state balance (e.g., gait speed), proactive balance (e.g., distance in the functional-reach-test), or reactive balance (e.g., CoP displacement during perturbed one-legged stance), and one measure of maximal strength (e.g., maximum voluntary contraction), explosive force (e.g., rate of force development), or muscle power (e.g., jump height). In total, 37 studies met the inclusionary criteria for review. The included studies were coded for the following criteria: age (i.e., children: 6-12 years, adolescents: 13-18 years, young adults: 19-44 years, middle-aged adults: 45-64 years, old adults: ≥65 years), sex (i.e., female, male), and test modality/outcome (i.e., test for the assessment of balance, strength, and power). Studies with athletes, patients, and/or people with diseases were excluded. Pearson's correlation coefficients were extracted, transformed (i.e., Fisher's z-transformed r z value), aggregated (i.e., weighted mean r z value), back-transformed to r values, classified according to their magnitude (i.e., small: r ≤ 0.69, medium: r ≤ 0.89, large: r ≥ 0.90), and, if possible, statistically compared. Heterogeneity between studies was assessed using I2 and Chi-squared (χ2) statistics. Three studies examined associations between balance and lower-extremity muscle strength/power in children, one study in adolescents, nine studies in young adults, three studies in middle-aged adults, and 23 studies in old adults. Overall, small-sized associations were found between variables of balance and lower-extremity muscle strength/power, irrespective of the age group considered. In addition, small-sized but significantly larger correlation coefficients were found between measures of dynamic steady-state balance and maximal strength in children (r = 0.57) compared with young (r = 0.09, z = 3.30, p = 0.001) and old adults (r = 0.35, z = 2.94, p = 0.002) as well as in old compared with young adults (z = 1.95, p = 0.03). Even though the reported results provided further insight into the associations between measures of balance and lower-extremity muscle strength/power, they did not allow us to deduce cause and effect relations. Further, the investigated associations could be biased by other variables such as joint flexibility, muscle mass, and/or auditory/visual acuity. Our systematic review and meta-analysis showed predominately small-sized correlations between measures of balance and lower-extremity muscle strength/power in children, adolescents, and young, middle-aged, and old adults. This indicates that these neuromuscular components are independent of each other and should therefore be tested and trained complementarily across the lifespan. Significantly larger but still small-sized associations were found between measures of dynamic steady-state balance and maximal strength in children compared with young and old adults as well as in old compared with young adults. These findings imply that age/maturation may have an impact on the association of selected components of balance and lower-extremity muscle strength.
Katiraie, Michael; Croymans, Daniel M.; Yang, Otto O.; Kelesidis, Theodoros
2013-01-01
We examined the impact of strength fitness and body weight on the redox properties of high-density lipoprotein (HDL) and associations with indices of vascular and metabolic health. Ninety young men were categorized into three groups: 1) overweight untrained (OU; n = 30; BMI 30.7 ± 2.1 kg/m2); 2) overweight trained [OT; n = 30; BMI 29.0 ± 1.9; ≥4 d/wk resistance training (RT)]; and 3) lean trained (LT; n = 30; BMI 23.7 ± 1.4; ≥4 d/wk RT). Using a novel assay on the basis of the HDL-mediated rate of oxidation of dihydrorhodamine (DOR), we determined the functional (redox) properties of HDL and examined correlations between DOR and indices of vascular and metabolic health in the cohort. DOR was significantly lower in both trained groups compared with the untrained group (LT, 1.04 ± 0.49; OT, 1.39 ± 0.57; OU, 1.80 ± 0.74; LT vs. OU P < 0.00001; OT vs. OU P = 0.02), however, DOR in the OT group was not significantly different from that of the LT group. DOR was negatively associated with HDL-cholesterol (R = −0.64), relative strength (R = −0.42), sex hormone-binding globulin (R = −0.42), and testosterone (R = −0.35) (all P ≤ 0.001); whereas DOR was positively associated with triglycerides (R = 0.39, P = 0.002), oxidized low-density lipoprotein (R = 0.32), body mass index (R = 0.43), total mass (R = 0.35), total fat mass (R = 0.42), waist circumference (R = 0.45), and trunk fat mass (R = 0.42) (all P ≤ 0.001). Chronic RT is associated with improved HDL redox activity. This may contribute to the beneficial effects of RT on reducing cardiovascular disease risk, irrespective of body weight status. PMID:23887902
Age at spinal cord injury determines muscle strength
Thomas, Christine K.; Grumbles, Robert M.
2014-01-01
As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643
Dua, R; Nandlal, B
2004-03-01
The present study was conducted to compare and evaluate the tensile strength of silver soldered joints of stainless steel and cobalt-chromium orthodontic wires with band material. An attempt was made to observe the effect of joint site preparation by incorporation of tack welding and increasing metal to metal surface contact area by flattening an end of the wire prior to soldering along with the regularly used round wires without tack welding. A total of 180 wire specimens were soldered to 180 band specimens. Fifteen samples according to joint site preparation were included for each of the wire groups i.e. Gloria (S.S.), Remanium (S.S.) and Remaloy (Co-Cr) wires of 0.036" in diameter. The findings of the study were suggestive that all three wires may be used for preparing silver soldered joints irrespective of the quality of the wire. However, when subjecting the wire to joint site preparation, Gloria (S.S.) wire showed less tensile strength as compared to Remanium and Remaloy.
Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases
Kalyani, Rita Rastogi; Corriere, Mark; Ferrucci, Luigi
2014-01-01
The term sarcopenia refers to the loss of muscle mass that occurs with ageing. On the basis of study results showing that muscle mass is only moderately related to functional outcomes, international working groups have proposed that loss of muscle strength or physical function should also be included in the definition. Irrespective of how sarcopenia is defined, both low muscle mass and poor muscle strength are clearly highly prevalent and important risk factors for disability and potentially mortality in individuals as they age. Many chronic diseases, in addition to ageing, could also accelerate decrease of muscle mass and strength, and this effect could be a main underlying mechanism by which chronic diseases cause physical disability. In this Review, we address both age-related and disease-related muscle loss, with a focus on diabetes and obesity but including other disease states, and potential common mechanisms and treatments. Development of treatments for age-related and disease-related muscle loss might improve active life expectancy in older people, and lead to substantial health-care savings and improved quality of life. PMID:24731660
Stress enhances reconsolidation of declarative memory.
Bos, Marieke G N; Schuijer, Jantien; Lodestijn, Fleur; Beckers, Tom; Kindt, Merel
2014-08-01
Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others. Copyright © 2014. Published by Elsevier Ltd.
Patients with ALS show highly correlated progression rates in left and right limb muscles.
Rushton, David J; Andres, Patricia L; Allred, Peggy; Baloh, Robert H; Svendsen, Clive N
2017-07-11
Amyotrophic lateral sclerosis (ALS) progresses at different rates between patients, making clinical trial design difficult and dependent on large cohorts of patients. Currently, there are few data showing whether the left and right limbs progress at the same or different rates. This study addresses rates of decline in specific muscle groups of patients with ALS and assesses whether there is a relationship between left and right muscles in the same patient, regardless of overall progression. A large cohort of patients was used to assess decline in muscle strength in right and left limbs over time using 2 different methods: The Tufts Quantitative Neuromuscular Exam and Accurate Test of Limb Isometric Strength protocol. Then advanced linear regression statistical methods were applied to assess progression rates in each limb. This report shows that linearized progression models can predict general slopes of decline with good accuracy. Critically, the data demonstrate that while overall decline is variable, there is a high degree of correlation between left and right muscle decline in ALS. This implies that irrespective of which muscle starts declining soonest or latest, their rates of decline following onset are more consistent. First, this study demonstrates a high degree of power when using unilateral treatment approaches to detect a slowing in disease progression in smaller groups of patients, thus allowing for paired statistical tests. These findings will be useful in transplantation trials that use muscle decline to track disease progression in ALS. Second, these findings discuss methods, such as tactical selection of muscle groups, which can improve the power efficiency of all ALS clinical trials. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Plasma hormones, muscle mass and strength in resistance-trained postmenopausal women.
Orsatti, Fabio L; Nahas, Eliana A P; Maesta, Nailza; Nahas-Neto, Jorge; Burini, Roberto C
2008-04-20
To associate changes of body composition, muscle strength (MS) and plasma hormones (PH) in resistance-training protocol in sedentary postmenopausal women (PMW). This randomized controlled trial, Brazilian 43 PMW (45-70-year-old) able for physical exercises were selected after they have accomplished medical and ethical criteria. They were assigned in two groups: RT, resistance training (n=22); and CT, not trained control (n=21); with supervision sessions of two to three exercise for large and one exercise for smaller groups in three series of 8-12 rep. (60-80%1RM) for each exercise. The training period lasted 16 weeks and was preceded by low-load exercise (40-50%1RM) adaptation period of 4 weeks (3/(times week)). Body weight, height, body mass index (BMI), and composition (BIA) along with fast-PH (FSH, LH, estradiol, cortisol, IGF-1 and testosterone) were assessed before (M0) and after (M16) the 4 weeks period with the MS (1RM) determined also at 8 weeks (M8). The values were correlated by Person's test and the means compared by Student's t-test and ANOVA. At baseline both groups were similar in age, time of PMW, body composition, MS and fast-PH. However after 16 weeks, RT presented higher BMI (2.1%), IGF-1 (37.8%) and MM gain (1.8+/-0.8 kg) than CT. MM correlated positively with IGF-1 (r=0.45, p<0.05) and MS progressively increased in all exercise greater in pectoral than legs and upper arms. Former sedentary postmenopausal women submitted to resistance training gained MM and MS irrespectively of fat mass changes but significantly associated with IGF-1 increase.
NASA Astrophysics Data System (ADS)
Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang
2017-11-01
The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.
Farias de Lacerda, Ana Julia; Ferreira Zanatta, Rayssa; Crispim, Bruna; Borges, Alessandra Bühler; Gomes Torres, Carlos Rocha; Tay, Franklin R; Pucci, Cesar Rogério
2016-10-01
To evaluate the bonding behavior of resin composite and different adhesives applied to demineralized or remineralized enamel. Bovine tooth crowns were polished to prepare a 5 mm2 enamel bonding area, and divided into five groups (n= 48) according to the surface treatment: CONT (sound enamel control), DEM (demineralized with acid to create white spot lesions), REMS (DEM remineralized with artificial saliva), REMF (DEM remineralized with sodium fluoride) and INF (DEM infiltrated with Icon resin infiltrant). The surface-treated teeth were divided into two subgroups (n= 24) according to adhesive type: ER (etch-and-rinse; Single Bond Universal) and SE (self-etching; Clearfill S3 Bond), and further subdivided into two categories (n= 12) according to aging process: Thermo (thermocycling) and NA (no aging). Composite blocks were made over bonded enamel and sectioned for microtensile bond strength (MTBS) testing. Data were analyzed with three-way ANOVA and post-hoc Tukey's test (α= 0.05). Significant differences were observed for enamel surface treatment (P< 0.0001), adhesive type (P< 0.0001) and aging (P< 0.0001). CONT and INF groups had higher MTBS than the other groups; Single Bond Universal had higher MTBS than Clearfil S3 Bond; thermo-aging resulted in lower MTBS irrespective of adhesive type and surface treatment condition. The predominant failure mode was mixed for all groups. Enamel surface infiltrated with Icon does not interfere with adhesive resin bonding procedures. Treatment of enamel surface containing white spot lesions or cavities with cavosurface margins in partially-demineralized enamel can benefit from infiltration with a low viscosity resin infiltrant prior to adhesive bonding of resin composites.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... Product Certifications Based on Third Party Conformity Assessment Body Testing Prior to Commission's... the product. The Commission also emphasizes that, irrespective of certification, the product in... lifting the stay of enforcement with regard to testing and certification of children's products under 16...
NASA Astrophysics Data System (ADS)
Namrou, Abdul Rahman
Near-surface-mounted (NSM) fiber reinforced polymer (FRP) is another strengthening alternative of externally bonded fiber reinforced polymers. NSM FRP is a promising alternative technology that has emerged for enhancing the strength capacity of concrete structures. Most laboratory researches have focused mainly on the overall member performance and/or the bonding performance of the NSM bars or strips. Limited research has focused on the effect of temperature exposure on NSM FRP performance. The results of an experimental program performed on forty-eight (48) concrete block specimen with NSM carbon-fiber reinforced polymer (CFRP) strengthening systems at elevated temperatures that reaches to 200°C [392°F] to investigate flexural performance. The effect of using two different adhesive systems (epoxy anchoring system) with manufacturer recommendation at ordinary and high temperature exposures is also studied. The adhesive was injected in a NSM groove size (25 mm [1 in] deep x 13 mm [0.5 in] wide) the width and depth of the groove were greater than 3 and 1.5 times the CFRP thickness and width, respectively. Test results show that the interfacial strength of the specimens bonded with the ordinary epoxy is maintained until 75°C [167°F] is reached, while the strength noticeably decreases with an increasing temperature above this limit. The specimens with the high-temperature epoxy preserve interfacial capacity up to 200°C [392°F] despite a trend of strength-decrease being observed. The failure of the test specimens is brittle irrespective of adhesive type. Interfacial damage is localized along the bond-line with the presence of hairline cracks that further develop when interfacial failure is imminent. This thesis also presents an experimental result concerning the bond performance of concrete-adhesive at elevated temperatures that reaches to 200°C [392°F] applied for three hours. Then, the concrete prisms were tested under three point flexural loading. The experimental program is comprised of seventy-two (72) specimens bonded with low viscosity, high viscosity adhesives and high-temperature adhesive and their comparative performance is of interest in the present investigation. Emphasis is placed on the residual capacity of the conditioned bond-concrete interface and corresponding failure mode. For high temperature exposure, it is shown that the high temperature laminated adhesive outperforms the high and low viscosity adhesives by remaining fairly consistent and allowing the strengthening system to remain effective for up to three hours of 200°C [392°F].
Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh
2018-01-11
To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.
Influence of Er,Cr:YSGG laser treatment on the microtensile bond strength of adhesives to dentin.
Cardoso, Marcio Vivan; Coutinho, Edurado; Ermis, R Banu; Poitevin, André; Van Landuyt, Kirsten; De Munck, Jan; Carvalho, Rubens C R; Lambrechts, Paul; Van Meerbeek, Bart
2008-02-01
In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (microTBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereomicroscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Significantly lower microTBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin.
Morrissey, Mark D; Mathews, Iva Z; McCormick, Cheryl M
2011-01-01
Adolescence is a time of developmental changes and reorganization in the brain and stress systems, thus, adolescents may be more vulnerable than adults to the effects of chronic mild stressors. Most studies, however, have not directly compared stress experienced in adolescence to the same stress experience in adulthood. In the present study, adolescent (n=46) and adult (n=48) male rats underwent 16 days of social instability stress (daily 1h isolation and change of cage partners) or were non-stress controls. Rats were then tested on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or 3 weeks later. No difference was found among the groups during the Training Phase of conditioning. Irrespective of the time between the social stress experience and fear conditioning, rats stressed in adolescence had decreased context and cue memory, and cue generalization compared to control rats, as measured by the percentage of time spent freezing in tests. Social instability stress in adulthood had no effect on any measure of fear conditioning. The results support the hypothesis that adolescence is a time of heightened vulnerability to stressors. Copyright © 2010 Elsevier Inc. All rights reserved.
Petrie, Cynthia S; Walker, Mary P
2012-06-01
A great range of clinical failures have been observed with fiber-reinforced dowels, often attributed to fracture or bending of the dowels. This study investigated flexural properties of fiber-reinforced dowels, with and without airborne-particle abrasion, after storage in aqueous environments over time. Scanning electron microscopy (SEM) was used to analyze the mode of failure of dowels. Two dowel systems (ParaPost Fiber Lux and FibreKor) were evaluated. Ten dowels of each system were randomly assigned to one of six experimental groups: 1--control, dry condition; 2--dowels airborne-particle abraded and then stored dry; 3--dowels stored for 24 hours in aqueous solution at 37°C; 4--dowels airborne-particle abraded followed by 24-hour aqueous storage at 37°C; 5--dowels stored for 30 days in aqueous solution at 37°C; 6--dowels airborne-particle abraded followed by 30-day aqueous storage at 37°C. Flexural strength and flexural modulus were tested for all groups according to American Society of Testing and Materials (ASTM) standard D4476. One failed dowel from each group was randomly selected to be evaluated with SEM equipped with energy dispersive spectroscopy (EDS) to characterize the failure pattern. One intact dowel of each system was also analyzed with SEM and EDS for baseline information. Mean flexural modulus and strength of ParaPost Fiber Lux dowels across all conditions were 29.59 ± 2.89 GPa and 789.11 ± 89.88 MPa, respectively. Mean flexural modulus and strength of FibreKor dowels across all conditions were 25.58 ± 1.48 GPa and 742.68 ± 89.81 MPa, respectively. One-way ANOVA and a post hoc Dunnett's t-test showed a statistically significant decrease in flexural strength as compared to the dry control group for all experimental groups stored in water, for both dowel systems (p < 0.05). Flexural modulus for both dowel systems showed a statistically significant decrease only for dowels stored in aqueous solutions for 30 days (p < 0.05). Airborne-particle abrasion did not have an effect on flexural properties for either dowel system (p > 0.05). SEM and EDS analyses revealed differences in composition and failure mode of the two dowel systems. Failed dowels of each system revealed similar failure patterns, irrespective of the experimental group. Aqueous storage had a negative effect on flexural properties of fiber-reinforced dowels, and this negative effect appeared to increase with longer storage times. The fiber/resin matrix interface was the weak structure for the dowel systems tested. © 2012 by the American College of Prosthodontists.
Evaluation of MIMIC-Model Methods for DIF Testing with Comparison to Two-Group Analysis
ERIC Educational Resources Information Center
Woods, Carol M.
2009-01-01
Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for 1 group of people versus another, irrespective of mean differences on the construct. This study focuses on the use of multiple-indicator multiple-cause (MIMIC) structural equation models for DIF testing, parameterized as item…
Ramsay-Curve Differential Item Functioning
ERIC Educational Resources Information Center
Woods, Carol M.
2011-01-01
Differential item functioning (DIF) occurs when an item on a test, questionnaire, or interview has different measurement properties for one group of people versus another, irrespective of true group-mean differences on the constructs being measured. This article is focused on item response theory based likelihood ratio testing for DIF (IRT-LR or…
An in vitro investigation of pre-treatment effects before fissure sealing.
Bagheri, Mahshid; Pilecki, Peter; Sauro, Salvatore; Sherriff, Martyn; Watson, Timothy F; Hosey, Marie Therese
2017-11-01
Fissure sealants prevent occlusal caries in permanent molars. Enamel preparation methods are used before fissure sealing. To investigate effects of bioglass air-abrasion pre-treatment with and without an adhesive, on fissure enamel of permanent teeth, with respect to etchability, microleakage and microtensile bond strength. Half of the occlusal surfaces of 50 extracted premolars underwent bioglass air-abrasion. Dye was applied to the entire occlusal surface. Photographs were taken to score etched surface by dye uptake. Adhesive was applied to 25 of the bioglass-treated areas and all teeth were fissure sealed, sectioned, and evaluated using confocal microscopy. Buccal and lingual surfaces of a further eight premolars were acid-etched and randomly received: air-abrasion, adhesive, both, or none before sealant application for microtensile bond strength measurement in half of the samples immediately and half following 6 months of water immersion. Linear mixed models and multinomial logistic regression were used (P = 0.05). Bioglass air-abrasion significantly improved enamel etchability and reduced microleakage. The addition of an adhesive made no difference to either microleakage or microtensile bond strength. The combination of bioglass abrasion and adhesive led to more cohesive, rather than adhesive, failure. Bioglass air-abrasion improved enamel etchability and reduced microleakage irrespective of the adhesive use but neither pre-treatment affected the microtensile bond strength. © 2017 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
National surveys of radiofrequency field strengths from radio base stations in Africa
Joyner, Ken H.; Van Wyk, Marthinus J.; Rowley, Jack T.
2014-01-01
The authors analysed almost 260 000 measurement points from surveys of radiofrequency (RF) field strengths near radio base stations in seven African countries over two time frames from 2001 to 2003 and 2006 to 2012. The results of the national surveys were compared, chronological trends investigated and potential exposures compared by technology and with frequency modulation (FM) radio. The key findings from thes data are that irrespective of country, the year and mobile technology, RF fields at a ground level were only a small fraction of the international human RF exposure recommendations. Importantly, there has been no significant increase in typical measured levels since the introduction of 3G services. The mean levels in these African countries are similar to the reported levels for countries of Asia, Europe and North America using similar mobile technologies. The median level for the FM services in South Africa was comparable to the individual but generally lower than the combined mobile services. PMID:24044904
Zaenker, Pierre; Favret, Fabrice; Lonsdorfer, Evelyne; Muff, Guillaume; de Seze, Jérôme; Isner-Horobeti, Marie-Eve
2018-02-01
Numerous studies have shown that mild-to-moderate intensity or resistance exercise training improves physical capacities such as, peak oxygen consumption, maximal tolerated power and strength in multiple sclerosis patients. However, few studies have evaluated the effects of high-intensity interval training (HIIT) associated to with resistance training. Only few studies have analyzed difference between men and women before and after combined training. Moreover, the evaluation of exercise between ambulatory multiple sclerosis patients without disability (Expanded Disability Status Score [EDSS] 0-3) and patients with disabilities (EDSS 3.5-5) was not largely published. The main objective of our study was to determine if HIIT combined with resistance training improved aerobic and strength capacities as well as quality of life in multiple sclerosis patients and if gender and disabilities play a role in these changes. This study was an open-label uncontrolled study. The study was performed outside from conventional care facilities and including homebased training. Twenty-six multiple sclerosis patients have completed the program (19 women, 7 men; mean age 44.6±7.9 years, EDSS 2 [0-5]). We conducted a 12-week program of high-intensity interval training combined with resistance training at body weight. Peak oxygen consumption, maximal tolerated power, lactates, isokinetic strength of quadriceps and hamstrings (at 90°/s, 180°/s, and 240°/s) and quality of life were evaluated before and after the program. Peak oxygen consumption and maximum tolerated power improved by 13.5% and 9.4%, respectively. Isokinetic muscle strength increased in both quadriceps and hamstrings at each speed, with a rebalancing of strength between the two legs in quadriceps. Quality of life was also enhanced in three domains. Women showed better improvements than men in V̇O2peak, maximal tolerated power, lactates at the end of test, and heart rate peak, strength in both quadriceps and hamstrings mostly at low speed, and quality of life. The two EDSS groups increased V̇O2peak and strength. Our study has shown that HIIT combined with resistance exercise training induced an improvement in physical capacity and quality of life. Moreover, this study allowed patients, irrespective of their sex or EDSS score, to resume exercise autonomously. The results of the study showed that aerobic training at moderate intensity is not the single type of training tolerated by multiple sclerosis patients. High-intensity interval training is well tolerated too and can be used in clinical rehabilitation with resistance training, in both men and women with and without disabilities.
Australian Biology Test Item Bank, Years 11 and 12. Volume II: Year 12.
ERIC Educational Resources Information Center
Brown, David W., Ed.; Sewell, Jeffrey J., Ed.
This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…
Testing for Differential Item Functioning with Measures of Partial Association
ERIC Educational Resources Information Center
Woods, Carol M.
2009-01-01
Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for one group of people versus another, irrespective of mean differences on the construct. There are many methods available for DIF assessment. The present article is focused on indices of partial association. A family of average…
Validating Grammaticality Judgment Tests: Evidence from Two New Psycholinguistic Measures
ERIC Educational Resources Information Center
Vafaee, Payman; Suzuki, Yuichi; Kachisnke, Ilina
2017-01-01
Several previous factor-analytic studies on the construct validity of grammaticality judgment tests (GJTs) concluded that untimed GJTs measure explicit knowledge (EK) and timed GJTs measure implicit knowledge (IK) (Bowles, 2011; R. Ellis, 2005; R. Ellis & Loewen, 2007). It has also been shown that, irrespective of the time condition chosen,…
Australian Biology Test Item Bank, Years 11 and 12. Volume I: Year 11.
ERIC Educational Resources Information Center
Brown, David W., Ed.; Sewell, Jeffrey J., Ed.
This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…
Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L
2017-12-08
Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. ANZCTR 12610000660088 . Registered 12 August 2010.
Effect of metallic coating on the properties of copper-silicon carbide composites
NASA Astrophysics Data System (ADS)
Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.
2017-11-01
In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.
Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish
2017-02-01
Laser welding is a potentially useful technique for joining two pieces of similar or dissimilar materials with high precision. In the present work, comparative studies on laser welding of similar metal of AISI 304SS and AISI 316SS have been conducted forming butt joints. A robotic control 600 W pulsed Nd:YAG laser source has been used for welding purpose. The effects of laser power, scanning speed and pulse width on the ultimate tensile strength and weld width have been investigated using the empirical models developed by RSM. The results of ANOVA indicate that the developed models predict the responses adequately within the limits of input parameters. 3-D response surface and contour plots have been developed to find out the combined effects of input parameters on responses. Furthermore, microstructural analysis as well as hardness and tensile behavior of the selected weld of 304SS and 316SS have been carried out to understand the metallurgical and mechanical behavior of the weld. The selection criteria are based on the maximum and minimum strength achieved by the respective weld. It has been observed that the current pulsation, base metal composition and variation in heat input have significant influence on controlling the microstructural constituents (i.e. phase fraction, grain size etc.). The result suggests that the low energy input pulsation generally produce fine grain structure and improved mechanical properties than the high energy input pulsation irrespective of base material composition. However, among the base materials, 304SS depict better microstructural and mechanical properties than the 316SS for a given parametric condition. Finally, desirability function analysis has been applied for multi-objective optimization for maximization of ultimate tensile strength and minimization of weld width simultaneously. Confirmatory tests have been conducted at optimum parametric conditions to validate the optimization techniques.
A comparison of manual and quantitative elbow strength testing.
Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R
2012-10-01
The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.
Conduct symptoms and emotion recognition in adolescent boys with externalization problems.
Aspan, Nikoletta; Vida, Peter; Gadoros, Julia; Halasz, Jozsef
2013-01-01
In adults with antisocial personality disorder, marked alterations in the recognition of facial affect were described. Less consistent data are available on the emotion recognition in adolescents with externalization problems. The aim of the present study was to assess the relation between the recognition of emotions and conduct symptoms in adolescent boys with externalization problems. Adolescent boys with externalization problems referred to Vadaskert Child Psychiatry Hospital participated in the study after informed consent (N = 114, 11-17 years, mean = 13.4). The conduct problems scale of the strengths and difficulties questionnaire (parent and self-report) was used. The performance in a facial emotion recognition test was assessed. Conduct problems score (parent and self-report) was inversely correlated with the overall emotion recognition. In the self-report, conduct problems score was inversely correlated with the recognition of anger, fear, and sadness. Adolescents with high conduct problems scores were significantly worse in the recognition of fear, sadness, and overall recognition than adolescents with low conduct scores, irrespective of age and IQ. Our results suggest that impaired emotion recognition is dimensionally related to conduct problems and might have importance in the development of antisocial behavior.
Distributed Patterns of Reactivation Predict Vividness of Recollection.
St-Laurent, Marie; Abdi, Hervé; Buchsbaum, Bradley R
2015-10-01
According to the principle of reactivation, memory retrieval evokes patterns of brain activity that resemble those instantiated when an event was first experienced. Intuitively, one would expect neural reactivation to contribute to recollection (i.e., the vivid impression of reliving past events), but evidence of a direct relationship between the subjective quality of recollection and multiregional reactivation of item-specific neural patterns is lacking. The current study assessed this relationship using fMRI to measure brain activity as participants viewed and mentally replayed a set of short videos. We used multivoxel pattern analysis to train a classifier to identify individual videos based on brain activity evoked during perception and tested how accurately the classifier could distinguish among videos during mental replay. Classification accuracy correlated positively with memory vividness, indicating that the specificity of multivariate brain patterns observed during memory retrieval was related to the subjective quality of a memory. In addition, we identified a set of brain regions whose univariate activity during retrieval predicted both memory vividness and the strength of the classifier's prediction irrespective of the particular video that was retrieved. Our results establish distributed patterns of neural reactivation as a valid and objective marker of the quality of recollection.
Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.
Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J
2018-01-01
Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.
Lee, Bor-Shiunn; Lin, Hong-Ping; Chan, Jerry Chun-Chung; Wang, Wei-Chuan; Hung, Ping-Hsuan; Tsai, Yu-Hsin; Lee, Yuan-Ling
2018-01-01
Mineral trioxide aggregate (MTA) is the most frequently used repair material in endodontics, but the long setting time and reduced mechanical strength in acidic environments are major shortcomings. In this study, a novel sol-gel-derived calcium silicate cement (sCSC) was developed using an initial Ca/Si molar ratio of 3, with the most effective mixing orders of reactants and optimal HNO3 catalyst volumes. A Fourier transform infrared spectrometer, scanning electron microscope with energy-dispersive X-ray spectroscopy, and X-ray powder diffractometer were used for material characterization. The setting time, compressive strength, and microhardness of sCSC after hydration in neutral and pH 5 environments were compared with that of MTA. Results showed that sCSC demonstrated porous microstructures with a setting time of ~30 min, and the major components of sCSC were tricalcium silicate, dicalcium silicate, and calcium oxide. The optimal formula of sCSC was sn200, which exhibited significantly higher compressive strength and microhardness than MTA, irrespective of neutral or pH 5 environments. In addition, both sn200 and MTA demonstrated good biocompatibility because cell viability was similar to that of the control. These findings suggest that sn200 merits further clinical study for potential application in endodontic repair of perforations. PMID:29386894
Lee, Bor-Shiunn; Lin, Hong-Ping; Chan, Jerry Chun-Chung; Wang, Wei-Chuan; Hung, Ping-Hsuan; Tsai, Yu-Hsin; Lee, Yuan-Ling
2018-01-01
Mineral trioxide aggregate (MTA) is the most frequently used repair material in endodontics, but the long setting time and reduced mechanical strength in acidic environments are major shortcomings. In this study, a novel sol-gel-derived calcium silicate cement (sCSC) was developed using an initial Ca/Si molar ratio of 3, with the most effective mixing orders of reactants and optimal HNO 3 catalyst volumes. A Fourier transform infrared spectrometer, scanning electron microscope with energy-dispersive X-ray spectroscopy, and X-ray powder diffractometer were used for material characterization. The setting time, compressive strength, and microhardness of sCSC after hydration in neutral and pH 5 environments were compared with that of MTA. Results showed that sCSC demonstrated porous microstructures with a setting time of ~30 min, and the major components of sCSC were tricalcium silicate, dicalcium silicate, and calcium oxide. The optimal formula of sCSC was sn200, which exhibited significantly higher compressive strength and microhardness than MTA, irrespective of neutral or pH 5 environments. In addition, both sn200 and MTA demonstrated good biocompatibility because cell viability was similar to that of the control. These findings suggest that sn200 merits further clinical study for potential application in endodontic repair of perforations.
Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua
2014-01-01
Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807
Gate control of quantum dot-based electron spin-orbit qubits
NASA Astrophysics Data System (ADS)
Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang
2018-07-01
We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.
Saka, Takashi
2016-05-01
The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.
Foxton, R M; Nakajima, M; Tagami, J; Miura, H
2005-02-01
The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual-cure composite resins exhibited no significant differences in muTBS irrespective of whether polymerization was chemically or photoinitiated (P > 0.05). Both dual-cure composite resins exhibited good bonding to root canal dentin, which was not dependent upon region or mode of polymerization.
Older Children Have a Greater Chance to Be Accepted to Gifted Student Programmes
ERIC Educational Resources Information Center
Segev, Elad; Cahan, Sorel
2014-01-01
Selection to programmes for gifted students in Israel, performed in the second grade, relies on raw ability and achievement test scores, irrespective of age, thereby ignoring the well-known effect of within-grade age differences on test scores. Employing the entire cohort of third graders of legal age (67,366 students, 1.4% of whom were enrolled…
Agarwal, Astha; Jain, Amita
2013-01-01
All colonizing and invasive staphylococcal isolates may not produce biofilm but may turn biofilm producers in certain situations due to change in environmental factors. This study was done to test the hypothesis that non biofilm producing clinical staphylococci isolates turn biofilm producers in presence of sodium chloride (isotonic) and high concentration of glucose, irrespective of presence or absence of ica operon. Clinical isolates of 100 invasive, 50 colonizing and 50 commensal staphylococci were tested for biofilm production by microtiter plate method in different culture media (trypticase soy broth alone or supplemented with 0.9% NaCl/ 5 or 10% glucose). All isolates were tested for the presence of ica ADBC genes by PCR. Biofilm production significantly increased in the presence of glucose and saline, most, when both glucose and saline were used together. All the ica positive staphylococcal isolates and some ica negative isolates turned biofilm producer in at least one of the tested culture conditions. Those remained biofilm negative in different culture conditions were all ica negative. The present results showed that the use of glucose or NaCl or combination of both enhanced biofilm producing capacity of staphylococcal isolates irrespective of presence or absence of ica operon.
Isometric strength testing as a means of controlling medical incidents on strenuous jobs.
Keyserling, W M; Herrin, G D; Chaffin, D B
1980-05-01
This investigation was performed to determine if isometric strength tests can be used to select workers for strenuous jobs and to reduce occupational injuries which are caused by a mismatch between worker strength and job strength requirements. Twenty jobs in a tire and rubber plant were studied biomechanically to identify critical strength-demanding tasks. Four strength tests were designed to simulate these tasks, and performance criteria were established for passing the tests. New applicants were administered the tests during their preplacement examinations to determine if they possessed sufficient strength to qualify for the jobs. The medical incidence rate of employees who were selected using the strength tests was approximately one-third that of employees selected using traditional medical criteria. It was concluded that isometric strength tests can be used to reduce occupational injuries and should be considered for implementation in industries with strenuous jobs.
Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla
2014-01-01
Objective To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Methods Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25–67) and conventional physiotherapy with a mean age of 49 years (range: 43–59). Both groups were submitted to a twelve-week program of two sessions weekly. Results After the intervention, significant improvements were observed regarding the Lequesne index (p-value = 0.0217), Oswestry Disability Index (p-value = 0.0112), range of motion of trunk extension (p-value = 0.0320), trunk flexion muscle strength (p-value = 0.0459), hip extension and abduction muscle strength (p-value = 0.0062 and p-value = 0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Conclusion Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. PMID:25818817
Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla
2015-01-01
To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25-67) and conventional physiotherapy with a mean age of 49 years (range: 43-59). Both groups were submitted to a twelve-week program of two sessions weekly. After the intervention, significant improvements were observed regarding the Lequesne index (p-value=0.0217), Oswestry Disability Index (p-value=0.0112), range of motion of trunk extension (p-value=0.0320), trunk flexion muscle strength (p-value=0.0459), hip extension and abduction muscle strength (p-value=0.0062 and p-value=0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.
Chen, Hsi-Chung; Hsu, Nai-Wei; Chou, Pesus
2017-04-01
Different pathomechanisms may underlie the age-related decline in muscle mass and muscle power in older adults. This study aimed to examine the independent relationship between sleep duration and muscle power. Older adults, aged 65 years and older, were randomly selected to participate in a community-based survey in Yilan city, Taiwan. Data on self-reported sleep duration, sociodemographic information, lifestyle, chronic medical and mental health conditions, sleep-related parameters, and anthropometric measurements were collected. Participants who slept ≤4 hr, 5 hr, 6-7 hr, 8 hr, and ≥9 hr were defined as shortest, short, mid-range, long, and longest sleepers, respectively. Muscle power was estimated using hand grip strength. A total of 1081 individuals participated. Their average age was 76.3 ± 6.1 years, and 59.4% were female. After controlling for covariates, including muscle mass of the upper extremities, both long (estimated mean [95% confidence interval, CI]: 19.2 [18.2-20.2], p = .03) and longest sleepers (estimated mean [95% CI]: 17.8 [16.4-19.2], p = .001) had weaker hand grip strength than mid-range sleepers (estimated mean [95% CI]: 20.9 [20.3-21.4]). When stratified by sex, the association between longest sleep duration and weaker hand grip strength was noted among men only. Older adults with long sleep duration had weaker hand grip strength irrespective of muscle mass. This finding suggests that decreased muscle power may mediate or confound the relationship between long sleep duration and adverse health outcomes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Designing durable icephobic surfaces
Golovin, Kevin; Kobaku, Sai P. R.; Lee, Duck Hyun; DiLoreto, Edward T.; Mabry, Joseph M.; Tuteja, Anish
2016-01-01
Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months. PMID:26998520
Glotov, B O; Nikolaev, L G; Kurochkin, S N; Severin, E S
1977-01-01
By measuring the fluorescence polarization of fluorescent histone H1 derivatives complexed with DNA, binding of the histone to DNA was studied as a function of ionic strength in the solution prior to and after the H1 phosphorylation on Ser-37 residue. Fluorescent labels were covalently linked either specifically to Tyr-72 residues or unspecifically to lysine residues in the H1 polypeptide chain. The values of the corresponding rotational relaxation times showed that at low ionic strength all the segments of the H1 molecule were immobilized on binding to DNA. The gradual increasing NaC1 concentration in the solution of H1-DNA complex was accompanied at first by additional retardation of the histone mobility in the complex, and then by progressive release of histone H1 from from the complex which was completed at 0.5-0.6 M NaC1 irrespective of phosphorylation. tat the same time the phosphorylation of histone H1 led to removal of the central and, presumably, N-terminal regions of H1 from DNA. PMID:194228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn
2014-09-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient formore » the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.« less
Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.
Hampson, R E; Deadwyler, S A
1996-11-26
Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.
Bazyler, Caleb D; Mizuguchi, Satoshi; Kavanaugh, Ashley A; McMahon, John J; Comfort, Paul; Stone, Michael H
2018-06-21
To determine if jumping-performance changes during a peaking phase differed among returners and new players on a female collegiate volleyball team and to determine which variables best explained the variation in performance changes. Fourteen volleyball players were divided into 2 groups-returners (n = 7) and new players (n = 7)-who completed a 5-wk peaking phase prior to conference championships. Players were tested at baseline before the preseason on measures of the vastus lateralis cross-sectional area using ultrasonography, estimated back-squat 1-repetition maximum, countermovement jump height (JH), and relative peak power on a force platform. Jumping performance, rating of perceived exertion training load, and sets played were recorded weekly during the peaking phase. There were moderate to very large (P < .01, Glass Δ = 1.74) and trivial to very large (P = .07, Δ = 1.09) differences in JH and relative peak power changes in favor of returners over new players, respectively, during the peaking phase. Irrespective of group, 7 of 14 players achieved peak JH 2 wk after the initial overreach. The number of sets played (r = .78, P < .01) and the athlete's preseason relative 1-repetition maximum (r = .54, P = .05) were the strongest correlates of JH changes during the peaking phase. Returners achieved greater improvements in jumping performance during the peaking phase compared with new players, which may be explained by the returners' greater relative maximal strength, time spent competing, and training experience. Thus, volleyball and strength coaches should consider these factors when prescribing training during a peaking phase to ensure their players are prepared for important competitions.
ERIC Educational Resources Information Center
Best, Catherine S.; Moffat, Vivien J.; Power, Michael J.; Owens, David G. C.; Johnstone, Eve C.
2008-01-01
Theory of Mind, Weak Central Coherence and executive dysfunction, were investigated as a function of behavioural markers of autism. This was irrespective of the presence or absence of a diagnosis of an autistic spectrum disorder. Sixty young people completed the Social Communication Questionnaire (SCQ), false belief tests, the block design test,…
Spatial and Temporal Visual Masking and Visibility.
1982-10-01
but is generally enhanced by nonzero adaptation ,7elocities. The enchancement occurs irrespective of direction of motion of the adapt and test...with monochrome images, which are then presented in full czlor. It cannot be used with natural color images, ncr with monochrome images presented in
Wasniewska, Malgorzata; Salerno, Mariacarolina; Corrias, Andrea; Mazzanti, Laura; Matarazzo, Patrizia; Corica, Domenico; Aversa, Tommaso; Messina, Maria Francesca; De Luca, Filippo; Valenzise, Mariella
2016-01-01
To prospectively investigate, during a 5-year follow-up, whether the prognosis of thyroid function with Hashimoto thyroiditis (HT) is different in euthyroid girls with Turner syndrome (TS) than in euthyroid girls without TS. In 66 TS girls and 132 non-TS girls with euthyroid HT and similar thyroid functional test results at HT diagnosis, we followed up the evolution of thyroid status over time. At the end of follow-up, the TS girls exhibited higher TSH levels, lower fT4 levels, and lower prevalence rates of both euthyroidism and subclinical hypothyroidism, but higher prevalence rates of both overt hypothyroidism and hyperthyroidism, irrespective of the karyotype. An association with TS is able to impair the long-term prognosis of thyroid function in girls with HT. Such an effect occurs irrespective of thyroid functional test results at HT diagnosis and is not necessarily linked with a specific karyotype. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.
2018-01-01
To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.
Conical similarity of shock/boundary layer interactions generated by swept fins
NASA Technical Reports Server (NTRS)
Lu, F. K.; Settles, G. S.
1983-01-01
A parametric experimental study has been made of the class of 3D shock wave/turbulent boundary layer interactions generated by swept-leading-edge fins. The fin sweepback angles ranged from 0 to 65 deg at angles of attack of 5, 9, and 15 deg. Two equilibrium 2D turbulent boundary layers with a free-stream Mach number of 2.95 and a Reynolds number of 6.3 x 10 to the 7th/m were used as incoming flow conditions. All the resulting interactions were found to possess conical symmetry of surface pressures and skin friction lines beyond an initial inception zone. Further, these interactions revealed a simple similarity based on inviscid shock strength irrespective of fin sweepback or angle of attack.
Cosmological constant is a conserved charge
NASA Astrophysics Data System (ADS)
Chernyavsky, Dmitry; Hajian, Kamal
2018-06-01
Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.
Code of Federal Regulations, 2013 CFR
2013-10-01
... sections of pipe, for which a post installation test is impractical, a preinstallation strength test must... 49 Transportation 3 2013-10-01 2013-10-01 false Strength test requirements for steel pipeline to...: MINIMUM FEDERAL SAFETY STANDARDS Test Requirements § 192.505 Strength test requirements for steel pipeline...
An Empirical Examination of Weiner's Critique of Attribution Research.
ERIC Educational Resources Information Center
Covington, Martin V.; Omelich, Carol L.
1984-01-01
Weiner's allegations of errors in testing his theory (presumed detrimental effects of investigating a restricted range of variables, use of expectancy changes as a mediating variable, and presumed inappropriateness of classroom performance as a dependent variable) are evaluated. Disconfirmation of Weiner's predictions occurs irrespective of…
The role of self-control strength in the development of state anxiety in test situations.
Englert, C; Bertrams, A
2013-06-01
Self-control strength may affect state anxiety because emotion regulation is impaired in individuals whose self-control strength has been temporarily depleted. Increases in state anxiety were expected to be larger for participants with depleted compared to nondepleted self-control strength, and trait test anxiety should predict increases in state anxiety more strongly if self-control strength is depleted. In a sample of 76 university students, trait test anxiety was assessed, self-control strength experimentally manipulated, and state anxiety measured before and after the announcement of a test. State anxiety increased after the announcement. Trait test anxiety predicted increases in state anxiety only in students with depleted self-control strength, suggesting that increased self-control strength may be useful for coping with anxiety.
A novel method of testing the shear strength of thick honeycomb composites
NASA Technical Reports Server (NTRS)
Hodge, A. J.; Nettles, A. T.
1991-01-01
Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.
Strength evaluation test of pressureless-sintered silicon nitride at room temperature
NASA Technical Reports Server (NTRS)
Matsusue, K.; Takahara, K.; Hashimoto, R.
1984-01-01
In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.
Kim, Jin Yong; Yang, Soo Hyun; Kwon, Jihyun; Lee, Hyun Woo; Kim, Hyun
2017-03-30
The unpredictable and inescapable electric shock-induced "learned helplessness" paradigm has long been used to produce an animal model of depression to identify the molecules associated with depressive symptoms or to assess the efficacy of pharmacological treatments for depression. After exposure to unpredictable and inescapable shocks (uncontrollable stress), most of mice showed defect in escape behavior in active avoidance test (learned helplessness, LH), while others did not (non-learned helplessness, NLH). Here, we investigated whether mice with LH or NLH exhibited depressive symptoms, including anhedonia, anxiety, and despair. We found that compared with control naïve mice, both uncontrollable shocks-induced LH and NLH mice showed increased anhedonia- and anxiety- but not despair-like behaviors. Notably, mice subjected to uncontrollable shocks showed similar behaviors, irrespective of whether they also showed LH or NLH. Furthermore, since both LH and NLH mice showed only anhedonia- and anxiety- but not despair-like behaviors, this model may be generally inadequate for classic depression-like behavior assessment. In conclusion, uncontrollable electric shock induces depression-like behavior, irrespective of the state of helplessness. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans
2015-01-01
Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO 2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virginmore » unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO 2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO 2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO 2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.« less
Mechanical and bond strength properties of light-cured and chemically cured glass ionomer cements.
McCarthy, M F; Hondrum, S O
1994-02-01
The purpose of this study was to evaluate the mechanical and bond strength properties of a commercially available light-cured glass ionomer cement and of a chemically cured glass ionomer cement. Sixty recently extracted human molars were randomly divided into six equal groups, and the bond strengths of the two cement types were evaluated at 1 hour, 24 hours, and 7 days. Stainless steel lingual buttons were bonded to prepared enamel surfaces, and the samples were placed in a water bath at 37 degrees C until testing. The shear bond strength of each sample was determined with a universal testing instrument. The mechanical strength properties of the two cements were then evaluated. The transverse flexural strength, compressive strength, rigidity, and diametral tensile strength were tested for each cement at 1 hour, 24 hours, and 7 days. The results of the mechanical property strength tests were then compared with the results of the bond strength tests.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Munagala, Venkata Naga Vamsi; Akinyi, Valary; Vo, Phuong; Chromik, Richard R.
2018-06-01
The powder microstructure and morphology has significant influence on the cold sprayability of Ti6Al4V coatings. Here, we compare the cold sprayability and properties of coatings obtained from Ti6Al4V powders of spherical morphology (SM) manufactured using plasma gas atomization and irregular morphology (IM) manufactured using the Armstrong process. Coatings deposited using IM powders had negligible porosity and better properties compared to coatings deposited using SM powders due to higher particle impact velocities, porous surface morphology and more deformable microstructure. To evaluate the cohesive strength, multi-scale indentation was performed and hardness loss parameter was calculated. Coatings deposited using SM powders exhibited poor cohesive strength compared to coatings deposited using IM powders. Images of the residual indents showed de-bonding and sliding of adjacent splats in the coatings deposited using SM powders irrespective of the load. Coatings deposited using IM powders showed no evidence of de-bonding at low loads. At high loads, splat de-bonding was observed resulting in hardness loss despite negligible porosity. Thus, while the powders from Armstrong process lead to a significant improvement in sprayability and coating properties, further optimization of powder and cold spray process will be required as well as consideration of post-annealing treatments to obtain acceptable cohesive strength.
Gagnon, Dany H; Roy, Audrey; Gabison, Sharon; Duclos, Cyril; Verrier, Molly C; Nadeau, Sylvie
2016-01-01
Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation.
Texture, composition and anatomy of spinach leaves in relation to nitrogen fertilization.
Gutiérrez-Rodríguez, Eduardo; Lieth, Heiner J; Jernstedt, Judith A; Labavitch, John M; Suslow, Trevor V; Cantwell, Marita I
2013-01-01
The postharvest quality and shelf life of spinach are greatly influenced by cultural practices. Reduced spinach shelf life is a common quandary in the Salinas Valley, California, where current agronomic practices depend on high nitrogen (N) rates. This study aimed to describe the postharvest fracture properties of spinach leaves in relation to N fertilization, leaf age and spinach cultivar. Force-displacement curves, generated by a puncture test, showed a negative correlation between N fertilization and the toughness, stiffness and strength of spinach leaves (P > 0.05). Younger leaves (leaves 12 and 16) from all N treatments were tougher than older leaves (leaves 6 and 8) (P > 0.05). Leaves from the 50 and 75 ppm total N treatments irrespective of spinach cultivar had higher fracture properties and nutritional quality than leaves from other N treatments (P > 0.05). Total alcohol-insoluble residues (AIR) and pectins were present at higher concentrations in low-N grown plants. These plants also had smaller cells and intercellular spaces than high-N grown leaves (P > 0.05). Observed changes in physicochemical and mechanical properties of spinach leaves due to excess nitrogen fertilization were significantly associated with greater postharvest leaf fragility and lower nutritional quality. Copyright © 2012 Society of Chemical Industry.
Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian
2016-05-01
To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.
Measures of Strength and Fitness for Older Populations.
ERIC Educational Resources Information Center
Osness, Wayne H.; Hiebert, Lujean M.
The overall strength of the musculature does not require testing of large numbers of muscle groups and can be accomplished from three or four tests. Small batteries of strength tests have been devised to predict total strength. The best combination of tests for males are thigh flexors, leg extensors, arm flexors, and pectoralis major. The battery…
Thermoplastic composites for veneering posterior teeth-a feasibility study.
Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R
2002-09-01
This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.
Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing
2017-08-01
Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p < .01) and manual dexterous coordination (β = -.52, p < .01) performed better on the time-based hand function test. In comparison, older adults with better grip strength (β = .40, p < .01), arm curl strength (β = .23, p < .05), and manual dexterous coordination (β = .23, p < .05) were associated with better self-report of upper extremity function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.
Roy, Audrey; Gabison, Sharon; Verrier, Molly C.
2016-01-01
Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation. PMID:27635262
Knapp, M; Seuchter, S A; Baur, M P
1994-01-01
It is believed that the main advantage of affected sib-pair tests is that their application requires no information about the underlying genetic mechanism of the disease. However, here it is proved that the mean test, which can be considered the most prominent of the affected sib-pair tests, is equivalent to lod score analysis for an assumed recessive mode of inheritance, irrespective of the true mode of the disease. Further relationships of certain sib-pair tests and lod score analysis under specific assumed genetic modes are investigated.
A method to determine shear adhesive strength of fibrin sealants.
Sierra, D H; Feldman, D S; Saltz, R; Huang, S
1992-01-01
The adhesive strength of fibrin sealants has not been rigorously evaluated to date. The adhesive strength of six different concentrations of cryoprecipitated fibrinogen as well as the commercially available fibrin tissue adhesive Tissucol was tested under controlled conditions utilizing split-thickness skin grafts as the test adherand. This test configuration permitted the modeling of bonding strength for attachment of skin grafts as well as incorporate established engineering test standards for adhesives. An increase in fibrin concentration corresponded with an increase in shear adhesive strength. No significant increases in adhesive strength were attained after 5 min of bonding for all tested concentrations, except for the commercial adhesive, which attained the adhesive strength of an equivalent concentration of cryoprecipitated adhesive after 90 min. The adhesive strength, however, was an order of magnitude less than reported values of the tensile strength of fibrin material for similar concentrations. Therefore, it is important that the surgeon use a sufficiently high fibrinogen concentration for the specific clinical indication. The method of fibrin sealant preparation and/or the compounding adjuncts appear to have an effect on the development of adhesive strength.
Thorborg, K; Bandholm, T; Schick, M; Jensen, J; Hölmich, P
2013-08-01
Handheld dynamometry (HHD) is a promising tool for obtaining reliable hip strength measurements in the clinical setting, but intertester reliability has been questioned, especially in situations where testers exhibit differences in upper-extremity muscle strength (male vs female). The purpose of this study was to examine the intertester reliability concerning strength assessments of hip abduction, adduction, external and internal rotation, flexion and extension using HHD, and to test whether systematic differences in test values exist between testers of different upper-extremity strength. Fifty healthy individuals (29 women), aged 25 ± 5 years were included. Two physiotherapist students (one female, one male) of different upper-extremity strength performed the measurements. The tester order and strength test order were randomized. Intraclass correlation coefficients were used to quantify reliability, and ranged from 0.82 to 0.91 for the six strength test. The female tester systematically measured lower strength values for all isometric strength tests (P < 0.05). In hip strength assessments using HHD, systematic bias exists between testers of different sex, which is likely explained by differences in upper-extremity strength. Hence, to improve intertester reliability, the dynamometer likely needs external fixation, as this will eliminate the influence of differences in upper-extremity strength between testers. © 2011 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in; Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com; Santhosh, L.G., E-mail: lgsanthu2006@gmail.com
Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated bymore » performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.« less
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
24 CFR 3280.810 - Electrical testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Electrical testing. (a) Dielectric strength test. The wiring of each manufactured home shall be subjected to a 1-minute, 900 to 1079 volt dielectric strength test (with all switches closed) between live parts... listed shall not be required to withstand the dielectric strength test. (b) Each manufactured home shall...
24 CFR 3280.810 - Electrical testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Electrical testing. (a) Dielectric strength test. The wiring of each manufactured home shall be subjected to a 1-minute, 900 to 1079 volt dielectric strength test (with all switches closed) between live parts... listed shall not be required to withstand the dielectric strength test. (b) Each manufactured home shall...
NASA Astrophysics Data System (ADS)
Kamal, Abu Sayed Md
Wide adoption by the construction industry of Fibre Reinforced Polymer (FRP) rebars - a relatively recent construction material that offers numerous advantages of corrosion resistance, higher strength, lighter weight, etc. over conventional reinforcing materials for concrete, such as steel - is at least partially impeded due to a lack of an effective long term in-service performance prediction model and relatively high initial costs. A reliable service life prediction model for FRP composites in concrete depends on a clear understanding of the transport mechanisms of potentially harmful chemical species into the FRP composites and their subsequent contribution to any potentially active degradation mechanism(s). To identify which mechanisms control the degradation of Glass Fibre Reinforced Polymers (GFRP) in alkaline environments, GFRP rebars were immersed into simulated concrete pore solutions and subjected to accelerated ageing tests (Phase 1). The conditioned samples were analyzed by various electron microscopy (SEM, EDS) and spectroscopic methods (FTIR). Analyses of these tests revealed that fibre-matrix debonding took place in few samples exposed to 75 °C (the highest temperature considered in this study), and tested after one year, despite the fact that the glass fibres and polymer matrix remained essentially intact and that no penetration of alkalis into the GFRP rebars was observed. Hence, this study shows that the Vinyl Ester (VE) polymer matrix used acts as an effective semi-permeable membrane by allowing the penetration of water while blocking alkali ions. The findings showing that most of the damage seems to be confined to the fibre-matrix interphase (or interface), under the considered test conditions, stimulated an investigation on the effects of sizing on the strength retention and water up-take of GFRP rebars in Phase 2 of the testing program. In order to study the effects of sizing on the properties of GFRP rebars, GFRP custom plane sheets with sized and desized glass fibers were produced and exposed to deionized water at 4 °C, 23 °C, and 50 °C. Irrespective of sample types, the tensile strength decreased with temperature while the mass gain and moisture diffusivity increased with temperature. However, the sized samples showed a similar mass gain behavior as the desized ones, at the same exposure environment. This study confirms that sizing in GFRP custom plane sheets contributes not only to the initial strength of the composite by enhancing the adhesion between the glass fibre and a matrix, but also to the strength retention (i.e., durability) when exposed to harsh environments. The experiments of Phase 2 were carried out at 100% relative humidity (RH). However, field service conditions vary with respect to RH and temperature for GFRP composites in concrete. Therefore, a further study was conducted to investigate the effects of RH and temperature on the properties of GFRP rebars in Phase 3. The effects of RH were investigated by exposing GFRP rebars to nine RH environments (9%-100%) while monitoring mass changes during drying and wetting. Moreover, the thermal effects of GFRP rebars on water uptake in deionized water at 4 °C, 23 °C, and 50 °C were studied and compared with those for GFRP custom plane sheets. The effects of RH on drying and wetting for GFRP rebars exhibited a hysteretic behavior. The percent of mass gain at 100% RH showed a significant difference from that in other RH environments. Mass gain and moisture diffusivity were found to increase for both rebars and custom sheets with increasing temperature. A typical Fickian behaviour of water absorption was observed for both types of samples at all exposure conditions, except the GFRP rebars at higher temperatures (starting at 50 °C) which showed non-Fickian behaviour for water absorption. The dependence of the diffusion coefficient on temperature was found to follow the Arrhenius equation. (Abstract shortened by UMI.)
Westman, Mark E; Malik, Richard; Hall, Evelyn; Norris, Jacqueline M
2016-06-01
We recently showed that two immunochromatography point-of-care FIV antibody test kits (Witness FeLV/FIV and Anigen Rapid FIV/FeLV) were able to correctly assign FIV infection status, irrespective of FIV vaccination history, using whole blood as the diagnostic specimen. A third FIV antibody test kit, SNAP FIV/FeLV Combo (an enzyme-linked immunosorbent assay [ELISA]), was unable to differentiate antibodies produced in response to FIV vaccination from those incited by FIV infection. The aim of this study was to determine if saliva is a suitable diagnostic specimen using the same well characterized feline cohort. FIV infection status of these cats had been determined previously using a combination of serology, polymerase chain reaction (PCR) testing and virus isolation. This final assignment was then compared to results obtained using saliva as the diagnostic specimen utilizing the same three point-of-care FIV antibody test kits and commercially available PCR assay (FIV RealPCR). In a population of cats where one third (117/356; 33%) were FIV-vaccinated, both immunochromatography test kits accurately diagnosed FIV infection using saliva via a centrifugation method, irrespective of FIV vaccination history. For FIV diagnosis using saliva, the specificity of Anigen Rapid FIV/FeLV and Witness FeLV/FIV was 100%, while the sensitivity of these kits was 96% and 92% respectively. SNAP FIV/FeLV Combo respectively. SNAP FIV/FeLV Combo had a specificity of 98% and sensitivity of 44%, while FIV RealPCR testing had a specificity of 100% and sensitivity of 72% using saliva. A revised direct method of saliva testing was trialed on a subset of FIV-infected cats (n=14), resulting in 14, 7 and 0 FIV positive results using Anigen Rapid FIV/FeLV, Witness FeLV/FIV and SNAP FIV/FeLV Combo, respectively. These results demonstrate that saliva can be used to diagnose FIV infection, irrespective of FIV vaccination history, using either a centrifugation method (Anigen Rapid FIV/FeLV and Witness FeLV/FIV) or a direct method (Anigen Rapid FIV/FeLV). Collection of a saliva specimen therefore provides an acceptable alternative to venipuncture (i) in fractious cats where saliva may be easier to obtain than whole blood, (ii) in settings when a veterinarian or trained technician is unavailable to collect blood and (iii) in shelters where FIV testing is undertaken prior to adoption but additional blood testing is not required. Copyright © 2016 Elsevier Ltd. All rights reserved.
Examining Secondary Writing: Curriculum-Based Measures and Six Traits
ERIC Educational Resources Information Center
Havlin, Patricia J.
2013-01-01
Writing assessments have taken two primary forms in the past two decades: direct and indirect. Irrespective of type, either form needs to be anchored to making decisions in the classroom and predicting performance on high-stakes tests, particularly in a high-stakes environment with serious consequences. In this study, 11th-grade students were…
Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.
Brindle, Richard A; Ebaugh, David; Milner, Clare E
2018-06-06
Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3) = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.
2003-01-01
Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.
Simulations of turbulent asymptotic suction boundary layers
NASA Astrophysics Data System (ADS)
Bobke, Alexandra; Örlü, Ramis; Schlatter, Philipp
2016-02-01
A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which - in accordance with the results from the temporal simulation - indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.
NASA Astrophysics Data System (ADS)
Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed
2013-12-01
When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.
Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model
NASA Astrophysics Data System (ADS)
Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki
2017-11-01
We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.
Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng
2014-08-19
Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.
Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki
2017-01-01
Background: Isokinetic strength and hop tests are commonly used to assess athletes’ readiness to return to sport after knee surgery. Purpose/Hypothesis: The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation (r). Results: The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s (P = .03), flexion total work/body weight at 180 deg/s (P = .04), and flexion peak torque/body weight at 300 deg/s (P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s (r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s (r = –0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types. Conclusion: The single-leg hop tests and isokinetic strength measurements were both useful for a bilateral comparison of knee functional performance and strength. Knee flexion strength deficits and flexion-to-extension ratios seemed to be correlated with single-leg hop test performance. There was no difference in postoperative hop test performance or knee strength according to graft type. PMID:29164167
Isometric shoulder strength in young swimmers.
McLaine, Sally J; Ginn, Karen A; Fell, James W; Bird, Marie-Louise
2018-01-01
The prevalence of shoulder pain in young swimmers is high. Shoulder rotation strength and the ratio of internal to external rotation strength have been reported as potential modifiable risk factors associated with shoulder pain. However, relative strength measures in elevated positions, which include flexion and extension, have not been established for the young swimmer. The aim of this study was to establish clinically useful, normative shoulder strength measures and ratios for swimmers (14-20 years) without shoulder pain. Cross-sectional, observational study. Swimmers (N=85) without a recent history of shoulder pain underwent strength testing of shoulder flexion and extension (in 140° abduction); and internal and external rotation (in 90° abduction). Strength tests were performed in supine using a hand-held dynamometer and values normalised to body weight. Descriptive statistics were calculated for strength and strength ratios (flexion:extension and internal:external rotation). Differences between groups (based on gender, history of pain, test and arm dominance) were explored using independent and paired t tests. Normative shoulder strength values and ratios were established for young swimmers. There was a significant difference (p<0.002) in relative strength between males and females for all tests with no differences in strength ratios. Relative strength of the dominant and non-dominant shoulders (except for extension); and for swimmers with and without a history of shoulder pain was not significantly different. A normal shoulder strength profile for the young swimmer has been established which provides a valuable reference for the clinician assessing shoulder strength in this population. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl
NASA Technical Reports Server (NTRS)
Lerch, Brad; Draper, Sue; Pereira, J. Mike
2002-01-01
High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.
Gupta, Ajay K; Shukla, Gita; Sharma, Poonam; Gupta, Amit K; Kumar, Amit; Gupta, Deepika
2018-03-01
Orthodontic treatment these days is increasing in demand, and therefore, it is relatively imperative for the orthodontist to prescribe the use of fluoride-containing products, such as mouthwashes and gels, to help prevent dental caries and maintain healthy oral health. The aim of the study was to assess and evaluate the effects of fluoride prophylactic agents on mechanical properties of nickel titanium (NiTi) wires during orthodontic treatment using scanning electron microscope (SEM). We used the commercially available round preformed NiTi orthodontic archwire (3M company) and three different mouthwash solutions, i.e., Phos-Flur gel (1.1% sodium acidulated phosphate fluoride, APF, 0.5% w/v fluoride, pH = 5.1; Colgate Oral Pharmaceuticals) and Prevident 5000 (1.1% sodium fluoride neutral agent, 0.5% w/v fluoride, pH = 7; Colgate Oral Pharmaceuticals). All the specimens were subjected to a three-point bending test on a universal testing machine. To observe the surface morphological changes, one wire from each group was randomly selected and observed under a SEM. It was observed that there was not much difference in the values of both modulus of elasticity and yield strength obtained after loading of stress on the wires in all the three experimental conditions. A significant difference in both modulus of elasticity and yield strength was observed during unloading of stress. Further, when the surface characteristics were observed for all the specimens using SEM images, it was observed that NiTi wires treated with Phos-Flur showed large surface defects which appeared as round, pitted areas depicting corrosion, numerous white inclusions, and overall damaged surface structure of the wire as compared with the control. Thus, fluoridated mouthwashes are essential to maintain good oral hygiene and decrease instance of caries in patients undergoing orthodontic treatment. The prophylactic usage of topical fluoride agents on NiTi wire seems to diminish the mechanical properties of the orthodontic wire that could significantly affect future treatment outcomes. It has been proved that fluoride mouthwashes/gels do affect the structural surface qualities and strength of wires used during the orthodontic treatment irrespective of the composition of the wires. Therefore, it is the responsibility of the clinician to prescribe these prophylactic agents carefully while keeping in mind their pH so that the overall result of the treatment may not be hampered and delayed due to change in properties of the wires used.
The influence of main bar corrosion on bond strength in selfcompacting concrete
NASA Astrophysics Data System (ADS)
Ayop, S. S.; Emhemed, A. N. K.; Jamaluddin, N.; Sadikin, A.
2017-11-01
The experimental study was conducted to determine the influence of main bar corrosion on bond strength in self-compacting concrete (SCC). A total 16 tension pullout tests specimens reinforced with 10 mm and 14 mm diameter bar were used for the bond strength test. The properties of SCC were determined from the slump flow, T50cm, V-funnel and L box test. Reinforcing bars in the concrete were submitted to impressed current to accelerate the corrosion of the bar. It was found that the relationship between bond strength and concrete strength in un-corroded specimens differed from that of corroded specimens set in high-strength concrete because of brittleness in the corroded specimens, which caused a sudden loss of bond strength. The results revealed that specimens of un-corroded and corroded showed a higher percentage of bond strength degradation during the pullout tests.
Velocity-specific strength recovery after a second bout of eccentric exercise.
Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P
2014-02-01
A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p < 0.05). Faster recovery of isometric strength associated with a repeated bout of ECC was evident when the velocity was matched between bouts, suggesting that specificity effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.
Kerr, A; Clark, A; Cooke, E V; Rowe, P; Pomeroy, V M
2017-09-01
Restoring independence in the sit-to-stand (STS) task is an important objective for stroke rehabilitation. It is not known if a particular intervention, strength training or therapy focused on movement performance is more likely to improve STS recovery. This study aimed to compare STS outcomes from functional strength training, movement performance therapy and conventional therapy. Randomised controlled trial. Acute stroke units. Medically well patients (n=93) with recent (<42 days) stroke. The mean age of patients was 68.8 years, mean time post ictus was 33.5 days, 54 (58%) were male, 20 showed neglect (22%) and 37 (40%) had a left-sided brain lesion. Six weeks of either conventional therapy, functional strength training or movement performance therapy. Subjects were allocated to groups on a random basis. STS ability, timing, symmetry, co-ordination, smoothness and knee velocity were measured at baseline, outcome (after 6 weeks of intervention) and follow-up (3 months after outcome). No significant differences were found between the groups. All three groups improved their STS ability, with 88% able to STS at follow-up compared with 56% at baseline. Few differences were noted in quality of movement, with only symmetry when rising showing significantly greater improvement in the movement performance therapy group; this benefit was not evident at follow-up. Recovery of the STS movement is consistently good during stroke rehabilitation, irrespective of the type of therapy experienced. Changes in quality of movement did not differ according to group allocation, indicating that the type of therapy is less important. Clinical trial registration number NCT00322192. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ning; Shahsavari, Rouzbeh
2016-11-01
As the most widely used manufactured material on Earth, concrete poses serious societal and environmental concerns which call for innovative strategies to develop greener concrete with improved strength and toughness, properties that are exclusive in man-made materials. Herein, we focus on calcium silicate hydrate (C-S-H), the major binding phase of all Portland cement concretes, and study how engineering its nanovoids and portlandite particle inclusions can impart a balance of strength, toughness and stiffness. By performing an extensive +600 molecular dynamics simulations coupled with statistical analysis tools, our results provide new evidence of ductile fracture mechanisms in C-S-H - reminiscent of crystalline alloys and ductile metals - decoding the interplay between the crack growth, nanovoid/particle inclusions, and stoichiometry, which dictates the crystalline versus amorphous nature of the underlying matrix. We found that introduction of voids and portlandite particles can significantly increase toughness and ductility, specially in C-S-H with more amorphous matrices, mainly owing to competing mechanisms of crack deflection, voids coalescence, internal necking, accommodation, and geometry alteration of individual voids/particles, which together regulate toughness versus strength. Furthermore, utilizing a comprehensive global sensitivity analysis on random configuration-property relations, we show that the mean diameter of voids/particles is the most critical statistical parameter influencing the mechanical properties of C-S-H, irrespective of stoichiometry or crystalline or amorphous nature of the matrix. This study provides new fundamental insights, design guidelines, and de novo strategies to turn the brittle C-S-H into a ductile material, impacting modern engineering of strong and tough concrete infrastructures and potentially other complex brittle materials.
Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia
2016-04-01
To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.
ERIC Educational Resources Information Center
Londeree, Ben R.
1981-01-01
Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)
Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-03-01
The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.
Kauhl, B; Maier, W; Schweikart, J; Keste, A; Moskwyn, M
2018-01-10
Hypertension is one of the most frequently diagnosed chronic conditions in Germany. Targeted prevention strategies and allocation of general practitioners where they are needed most are necessary to prevent severe complications arising from high blood pressure. However, data on chronic diseases in Germany are mostly available through survey data, which do not only underestimate the actual prevalence but are also only available on coarse spatial scales. The discussion of including area deprivation for planning of healthcare is still relatively young in Germany, although previous studies have shown that area deprivation is associated with adverse health outcomes, irrespective of individual characteristics. The aim of this study is therefore to analyze the spatial distribution of hypertension at very fine geographic scales and to assess location-specific associations between hypertension, socio-demographic population characteristics and area deprivation based on health insurance claims of the AOK Nordost. To visualize the spatial distribution of hypertension prevalence at very fine geographic scales, we used the conditional autoregressive Besag-York-Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific association of hypertension to area deprivation and further socio-demographic population characteristics. The sex- and age-adjusted prevalence of hypertension was 33.1% in 2012 and varied widely across northeastern Germany. The main risk factors for hypertension were proportions of insurants aged 45-64, 65 and older, area deprivation and proportion of persons commuting to work outside their residential municipality. The GWR model revealed important regional variations in the strength of the examined associations. Area deprivation has only a significant and therefore direct influence in large parts of Mecklenburg-West Pomerania. However, the spatially varying strength of the association between demographic variables and hypertension indicates that there also exists an indirect effect of area deprivation on the prevalence of hypertension. It can therefore be expected that persons ageing in deprived areas will be at greater risk of hypertension, irrespective of their individual characteristics. The future planning and allocation of primary healthcare in northeastern Germany would therefore greatly benefit from considering the effect of area deprivation.
Probabilistic thermal-shock strength testing using infrared imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.
1999-12-01
A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.
Subjective Global Nutritional Assessment for children.
Secker, Donna J; Jeejeebhoy, Khursheed N
2007-04-01
Subjective Global Assessment (SGA), a method of nutritional assessment based on clinical judgment, has been widely used to assess the nutritional status of adults for both clinical and research purposes. Foreseeing benefits of its use in children, we chose to adapt SGA and test its validity and reproducibility in the pediatric population. We prospectively evaluated the preoperative nutritional status of 175 children (aged 31 d to 17.9 y) having major thoracic or abdominal surgery with the use of Subjective Global Nutritional Assessment (SGNA) and commonly used objective measurements. Each child underwent nutritional assessment by 2 independent assessors, one performing measurements of anthropometrics and handgrip strength and one performing SGNA. To test interrater reproducibility, 78 children had SGNA performed by a third assessor. Occurrence of nutrition-associated complications was documented for 30 d postoperatively. SGNA successfully divided children into 3 groups (well nourished, moderately malnourished, severely malnourished) with different mean values for various anthropometric and biochemical measures (P < 0.05). Malnourished children had higher rates of infectious complications than did well-nourished children (P = 0.042). Postoperative length of stay was longer for malnourished children (8.2 +/- 10 d) than for well-nourished children (5.3 +/- 5.4 d) (P = 0.002). No objective nutritional measures showed association with outcomes, with the exception of serum albumin, which was not clinically predictive because mean concentrations were in the normal range irrespective of the presence or absence of complications. SGNA is a valid tool for assessing nutritional status in children and identifying those at higher risk of nutrition-associated complications and prolonged hospitalizations.
NASA Astrophysics Data System (ADS)
Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.
2018-01-01
We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.
NASA Astrophysics Data System (ADS)
Atif Wahid, Mohd; Siddiquee, Arshad Noor; Khan, Zahid A.; Sharma, Nidhi
2018-04-01
The aim of the present study is to investigate the effect of cooling media on the temperature distribution, microstructure and mechanical properties of the joint produced during Underwater Friction Stir Welding (UFSW) in normal water, cold water (water with crushed ice (CFSW)) and air (FSW), for aluminum alloy (AA) 6082-T6. The results showed that peak temperature during UFSW and CFSW were significantly lower than the FSW. The temperature at the advancing side (AS) of the joint was higher than the retreating side (RS). Substantial reduction in TMAZ/HAZ width was observed during UFSW and CFSW as compared to FSW. Al-Mn-Fe-Si intermetallic phases were seen in all the joints along with the BM. The main strengthening precipitates found in UFSW and CFSW was β″ (Mg5Si6) which changed to β (Mg2Si) precipitates during FSW due to increased temperature. The tensile strength of the joints was best during UFSW followed by FSW and CFSW. The controlled temperature distribution resulted in improved tensile strength whereas both undercooling and overcooling resulted in decreased tensile strength, however, increased cooling rate does not improve the elongation. A typical ‘W’ shape hardness profile was observed in all the joints irrespective of the cooling media used. Maximum hardness was obtained in the UFSW joint due to refined grain structure, high-density dislocations and presence of β″ phases.
Lloyd, Rhodri S; Radnor, John M; De Ste Croix, Mark B A; Cronin, John B; Oliver, Jon L
2016-05-01
The purpose of this study was to compare the effectiveness of 6-week training interventions using different modes of resistance (traditional strength, plyometric, and combined training) on sprinting and jumping performances in boys before and after peak height velocity (PHV). Eighty school-aged boys were categorized into 2 maturity groups (pre- or post-PHV) and then randomly assigned to (a) plyometric training, (b) traditional strength training, (c) combined training, or (d) a control group. Experimental groups participated in twice-weekly training programs for 6 weeks. Acceleration, maximal running velocity, squat jump height, and reactive strength index data were collected pre- and postintervention. All training groups made significant gains in measures of sprinting and jumping irrespective of the mode of resistance training and maturity. Plyometric training elicited the greatest gains across all performance variables in pre-PHV children, whereas combined training was the most effective in eliciting change in all performance variables for the post-PHV cohort. Statistical analysis indicated that plyometric training produced greater changes in squat jump and acceleration performances in the pre-PHV group compared with the post-PHV cohort. All other training responses between pre- and post-PHV cohorts were not significant and not clinically meaningful. The study indicates that plyometric training might be more effective in eliciting short-term gains in jumping and sprinting in boys who are pre-PHV, whereas those who are post-PHV may benefit from the additive stimulus of combined training.
The Relationship among Leg Strength, Leg Power and Alpine Skiing Success.
ERIC Educational Resources Information Center
Gettman, Larry R.; Huckel, Jack R.
The purpose of this study was to relate leg strength and power to alpine skiing success as measured by FIS points. Isometric leg strength was represented by the knee extension test described by Clarke. Leg power was measured by the vertical jump test and the Margaria-Kalamen stair run. Results in the strength and power tests were correlated with…
Weiss, Shennan A; Orosz, Iren; Salamon, Noriko; Moy, Stephanie; Wei, Linqing; Van ’t Klooster, Maryse A; Knight, Robert T; Harper, Ronald M; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard J
2016-01-01
Objective Ripples (80–150 Hz) recorded from clinical macroelectrodes have been shown to be an accurate biomarker of epileptogenic brain tissue. We investigated coupling between epileptiform spike phase and ripple amplitude to better understand the mechanisms that generate this type of pathological ripple (pRipple) event. Methods We quantified phase amplitude coupling (PAC) between epileptiform EEG spike phase and ripple amplitude recorded from intracranial depth macroelectrodes during episodes of sleep in 12 patients with mesial temporal lobe epilepsy. PAC was determined by 1) a phasor transform that corresponds to the strength and rate of ripples coupled with spikes, and a 2) ripple-triggered average to measure the strength, morphology, and spectral frequency of the modulating and modulated signals. Coupling strength was evaluated in relation to recording sites within and outside the seizure onset zone (SOZ). Results Both the phasor transform and ripple-triggered averaging methods showed ripple amplitude was often robustly coupled with epileptiform EEG spike phase. Coupling was more regularly found inside than outside the SOZ, and coupling strength correlated with the likelihood a macroelectrode’s location was within the SOZ (p<0.01). The ratio of the rate of ripples coupled with EEG spikes inside the SOZ to rates of coupled ripples in non-SOZ was greater than the ratio of rates of ripples on spikes detected irrespective of coupling (p<0.05). Coupling strength correlated with an increase in mean normalized ripple amplitude (p<0.01), and a decrease in mean ripple spectral frequency (p<0.05). Significance Generation of low-frequency (80–150 Hz) pRipples in the SOZ involves coupling between epileptiform spike phase and ripple amplitude. The changes in excitability reflected as epileptiform spikes may also cause clusters of pathologically interconnected bursting neurons to grow and synchronize into aberrantly large neuronal assemblies. PMID:27723936
Design and development of a 3D printed UAV
NASA Astrophysics Data System (ADS)
Banfield, Christopher P.
The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.
Accelerated Strength Testing of Thermoplastic Composites
NASA Technical Reports Server (NTRS)
Reeder, J. R.; Allen, D. H.; Bradley, W. L.
1998-01-01
Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.
Vacuum Strength of Two Candidate Glasses for a Space Observatory
NASA Technical Reports Server (NTRS)
Manning, Timothy Andrew; Tucker, Dennis S.; Herren, Kenneth A.; Gregory, Don A.
2007-01-01
The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 degrees C) and in vacuum after being heated to 200 degrees C. Both glasses tested in vacuum showed a significant increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 degrees C.
Vacuum Strength of Two Candidate Glasses for a Space Observatory
NASA Technical Reports Server (NTRS)
Manning, T. a.; Tucker, D. S.; Herren, K. A.; Gregory, D. A.
2007-01-01
The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 C) and in vacuum after being heated to 200 C. Both glasses tested in vacuum showed an increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 C.
ERIC Educational Resources Information Center
Beach, Steven R. H.; And Others
1993-01-01
Examined negative affect among 349 adults. Indices of salient social support and salient interpersonal stress irrespective of source were related to level of negative affective symptoms. Marital relationship was most frequently named source of support, but coworkers were named equally often as source of interpersonal stress. Marital satisfaction…
IRT-LR-DIF with Estimation of the Focal-Group Density as an Empirical Histogram
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
Item response theory-likelihood ratio-differential item functioning (IRT-LR-DIF) is used to evaluate the degree to which items on a test or questionnaire have different measurement properties for one group of people versus another, irrespective of group-mean differences on the construct. Usually, the latent distribution is presumed normal for both…
Soil-test biological activity with the flush of CO2: III. Corn yield responses to applied nitrogen
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) is an important cereal grain in many states and typically receives large N fertilizer inputs, irrespective of historical management. Tailoring N inputs to soil-specific conditions would help to increase efficiency of N use and avoid environmental contamination. A total of 47 tri...
Personal Choices of Kibbutz Children in Simulated Situations of Distress and Joy.
ERIC Educational Resources Information Center
Kaffman, Mordecai; And Others
1980-01-01
Kibbutz children (N=998) aged 3 to 10 years were asked to indicate their personal choices in response to a projective test depicting a child in situations of distress and joy. Children selected their own parents as the most significant choice in all age groups, irrespective of communal or family type of sleeping arrangement. (Author)
USDA-ARS?s Scientific Manuscript database
Ethanol (EtOH) metabolism is involved in both initiating and promoting mechanisms in hepatocellular carcinoma progression in chronic alcoholics. In this study, we developed a mouse model to test the hypothesis that chronic EtOH consumption promotes tumor growth irrespective of EtOH-related initiati...
NASA Technical Reports Server (NTRS)
Pleines, Wilhelm
1930-01-01
This report includes strength of riveted joints in duralumin, descriptions of test procedure and results of tests. Tabulated data includes: curshing strength by failure for various conditions, shearing strength of hole edge zone in direction of tearing, tearing strengths of plates weakened by rivet holes, and enlargement of holes at beginning of break.
Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José
2008-01-01
In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization inhibition tests suggest that Vislin can be used as substance of gingival retraction without affecting the tested properties of four impression materials. PMID:19089261
Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José
2008-01-01
In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization inhibition tests suggest that Vislin can be used as substance of gingival retraction without affecting the tested properties of four impression materials.
Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-01-01
Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696
Reliability of doming and toe flexion testing to quantify foot muscle strength.
Ridge, Sarah Trager; Myrer, J William; Olsen, Mark T; Jurgensmeier, Kevin; Johnson, A Wayne
2017-01-01
Quantifying the strength of the intrinsic foot muscles has been a challenge for clinicians and researchers. The reliable measurement of this strength is important in order to assess weakness, which may contribute to a variety of functional issues in the foot and lower leg, including plantar fasciitis and hallux valgus. This study reports 3 novel methods for measuring foot strength - doming (previously unmeasured), hallux flexion, and flexion of the lesser toes. Twenty-one healthy volunteers performed the strength tests during two testing sessions which occurred one to five days apart. Each participant performed each series of strength tests (doming, hallux flexion, and lesser toe flexion) four times during the first testing session (twice with each of two raters) and two times during the second testing session (once with each rater). Intra-class correlation coefficients were calculated to test for reliability for the following comparisons: between raters during the same testing session on the same day (inter-rater, intra-day, intra-session), between raters on different days (inter-rater, inter-day, inter-session), between days for the same rater (intra-rater, inter-day, inter-session), and between sessions on the same day by the same rater (intra-rater, intra-day, inter-session). ICCs showed good to excellent reliability for all tests between days, raters, and sessions. Average doming strength was 99.96 ± 47.04 N. Average hallux flexion strength was 65.66 ± 24.5 N. Average lateral toe flexion was 50.96 ± 22.54 N. These simple tests using relatively low cost equipment can be used for research or clinical purposes. If repeated testing will be conducted on the same participant, it is suggested that the same researcher or clinician perform the testing each time for optimal reliability.
Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz
2013-01-01
This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.
Brisse, S; Milatovic, D; Fluit, A C; Verhoef, J; Martin, N; Scheuring, S; Köhrer, K; Schmitz, F J
1999-08-01
The in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin were tested against 72 ciprofloxacin-resistant and 28 ciprofloxacin-susceptible isolates of Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes. Irrespective of the alterations in GyrA and ParC proteins, clinafloxacin exhibited greater activity than all other fluoroquinolones tested against K. pneumoniae and E. aerogenes.
Brisse, Sylvain; Milatovic, Dana; Fluit, Ad C.; Verhoef, Jan; Martin, Nele; Scheuring, Sybille; Köhrer, Karl; Schmitz, Franz-Josef
1999-01-01
The in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin were tested against 72 ciprofloxacin-resistant and 28 ciprofloxacin-susceptible isolates of Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes. Irrespective of the alterations in GyrA and ParC proteins, clinafloxacin exhibited greater activity than all other fluoroquinolones tested against K. pneumoniae and E. aerogenes. PMID:10428935
Column strength of magnesium alloy AM-57S
NASA Technical Reports Server (NTRS)
Holt, M
1942-01-01
Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.
Ammonia IRMS-TPD study on the distribution of acid sites in mordenite.
Niwa, Miki; Suzuki, Katsuki; Katada, Naonobu; Kanougi, Tomonori; Atoguchi, Takashi
2005-10-13
Using an IRMS-TPD (temperature programmed desorption) of ammonia, we studied the nature, strength, crystallographic location, and distribution of acid sites of mordenite. In this method, infrared spectroscopy (IR) and mass spectroscopy (MS) work together to follow the thermal behavior of adsorbed and desorbed ammonia, respectively; therefore, adsorbed species were identified, and their thermal behavior was directly connected with the desorption of ammonia during an elevation of temperature. IR-measured TPD of the NH4(+) cation was similar to MS-measured TPD, thus showing the nature of Brønsted acidity. From the behavior of OH bands, it was found that the Brønsted acid sites consisted of two kinds of OH bands at high and low wavenumbers, ascribable to OH bands situated on 12- and 8-member rings (MR) of mordenite structure, respectively. The amount and strength of these Brønsted hydroxyls were measured quantitatively based on a theoretical equation using a curve fitting method. Up to ca. 30% of the exchange degree, NH4(+) was exchanged with Na+ on the 12-MR to arrive at saturation; therefore, in this region, the Brønsted acid site was situated on the large pore of 12-MR. The NH4(+) cation was then exchanged with Na+ on 8-MR, and finally exceeded the amount on 12-MR. In the 99% NH4-mordenite, Brønsted acid sites were located predominantly on the 8-MR more than on the 12-MR. Irrespective of the NH4(+) exchange degree, the strengths deltaH of Brønsted OH were 145 and 153 kJ mol(-1) on the 12- and 8-MR, respectively; that is, the strength of Brønsted acid site on the 8-MR was larger than that on the 12-MR. A density functional theory (DFT) calculation supported the difference in the strengths of the acid sites. Catalytic cracking activity of the Brønsted acid sites on the 8-MR declined rapidly, while that on the 12-MR was remarkably kept. The difference in strength and/or steric capacity may cause such a difference in the life of a catalyst.
Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V
2015-02-01
OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.
29 CFR Appendix E to Subpart L of... - Test Methods for Protective Clothing
Code of Federal Regulations, 2012 CFR
2012-07-01
... strength of the specimen shall be the average of the five highest peak loads of resistance registered for 3... convenience. (2) Test method for determining the strength of cloth by tearing: Trapezoid Method. A. Test... directions shall be tested from each sample unit. (ii) The tearing strength of the sample unit shall be the...
29 CFR Appendix E to Subpart L of... - Test Methods for Protective Clothing
Code of Federal Regulations, 2014 CFR
2014-07-01
... strength of the specimen shall be the average of the five highest peak loads of resistance registered for 3... convenience. (2) Test method for determining the strength of cloth by tearing: Trapezoid Method. A. Test... directions shall be tested from each sample unit. (ii) The tearing strength of the sample unit shall be the...
Innovations in bonding to zirconia based ceramics: Part III. Phosphate monomer resin cements.
Mirmohammadi, Hesam; Aboushelib, Moustafa N M; Salameh, Ziad; Feilzer, Albert J; Kleverlaan, Cornelis J
2010-08-01
To compare the bond strength values and the ranking order of three phosphate monomer containing resin cements using microtensile (microTBS) and microshear (microSBS) bond strength tests. Zirconia discs (Procera Zirconia) were bonded to resin composite discs (Filtek Z250) using three different cements (Panavia F 2.0, RelyX UniCem, and Multilink). Two bond strength tests were used to determine zirconia resin bond strength; microtensile bond strength test (microTBS) and microshear bond strength test (microSBS). Ten specimens were tested for each group (n=10). Two-way analysis of variance (ANOVA) was used to analyze the data (alpha=0.05). There were statistical significant differences in bond strength values and in the ranking order obtained using the two test methods. microTBS reported significant differences in bond strength values, whereas microSBS failed to detect such effect. Both Multilink and Panavia demonstrated basically cohesive failure in the resin cement while RelyX UniCem demonstrated interfacial failure. Based on the findings of this study, the data obtained using either microTBS or microSBS could not be directly compared. microTBS was more sensitive to material differences compared to microSBS which failed to detect such differences. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome
2016-04-01
A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation, as expected, with a pronounced transition occurring at about 1000 mm/yr MAP. We speculate that relatively stiff, sub-horizontal layers that are interbedded with weathered material, may explain the discrepancy between both lower seismic velocities (in the field and the laboratory) and lower unconfined compressive strength, and the interpreted high strength exhibited by the seismic slope response during the Kiholo Bay earthquake. This observation has important consequences on the type of landslides observed in the 2006 earthquake, as well as the landslides that can be expected in future earthquakes.
High-impact strength acrylic denture base material processed by autoclave.
Abdulwahhab, Salwan Sami
2013-10-01
To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Kaipa, Ramesh; Jones, Richard D; Robb, Michael P
2016-07-01
The benefits of different practice conditions in limb-based rehabilitation of motor disorders are well documented. Conversely, the role of practice structure in the treatment of motor-based speech disorders has only been minimally investigated. Considering this limitation, the current study aimed to investigate the effectiveness of selected practice conditions in spatial and temporal learning of novel speech utterances in individuals with Parkinson's disease (PD). Participants included 16 individuals with PD who were randomly and equally assigned to constant, variable, random, and blocked practice conditions. Participants in all four groups practiced a speech phrase for two consecutive days, and reproduced the speech phrase on the third day without further practice or feedback. There were no significant differences (p > 0.05) between participants across the four practice conditions with respect to either spatial or temporal learning of the speech phrase. Overall, PD participants demonstrated diminished spatial and temporal learning in comparison to healthy controls. Tests of strength of association between participants' demographic/clinical characteristics and speech-motor learning outcomes did not reveal any significant correlations. The findings from the current study suggest that repeated practice facilitates speech-motor learning in individuals with PD irrespective of the type of practice. Clinicians need to be cautious in applying practice conditions to treat speech deficits associated with PD based on the findings of non-speech-motor learning tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gupta, Abhinav; Tewari, R K
2016-01-01
The present study was undertaken to evaluate and compare the impact strength and transverse strength of the high-impact denture base materials. A conventional heat polymerized acrylic resin was used as a control. The entire experiment was divided into four main groups with twenty specimens each according to denture base material selected Trevalon, Trevalon Hi, DPI Tuff and Metrocryl Hi. These groups were further subgrouped into the two parameters selected, impact strength and flexural strength with ten specimens each. These specimens were then subjected to transverse bend tests with the help of Lloyds instrument using a three point bend principle. Impact tests were undertaken using an Izod-Charpy digital impact tester. This study was analyzed with one-way analysis of variance using Fisher f-test and Bonferroni t-test. There was a significant improvement in the impact strength of high-impact denture base resins as compared to control (Trevalon). However, in terms of transverse bend tests, only DPI Tuff showed higher transverse strength in comparison to control. Trevalon Hi and Metrocryl Hi showed a decrease in transverse strength. Within the limits of this in vitro study, (1) There is a definite increase in impact strength due to the incorporation of butadiene styrene rubber in this high strength denture base materials as compared to Trevalon used as a control. (2) Further investigations are required to prevent the unduly decrease of transverse strength. (3) It was the limitation of the study that the exact composition of the high-impact resins was not disclosed by the manufacturer that would have helped in better understanding of their behavior.
Validity of the Jump-and-Reach Test in Subelite Adolescent Handball Players.
Muehlbauer, Thomas; Pabst, Jan; Granacher, Urs; Büsch, Dirk
2017-05-01
Muehlbauer, T, Pabst, J, Granacher, U, and Büsch, D. Validity of the jump-and-reach test in subelite adolescent handball players. J Strength Cond Res 31(5): 1282-1289, 2017-The primary purpose of this study was to examine concurrent validity of the jump-and-reach (JaR) test using the Vertec system and a criterion device (i.e., Optojump system). In separate subanalyses, we investigated the influence of gym floor condition and athletes' sex on the validity of vertical jump height. Four hundred forty subelite adolescent female (n = 222, mean age: 14 ± 1 year, age range: 13-15 years) and male (n = 218, mean age: 15 ± 1 year, age range: 14-16 years) handball players performed the JaR test in gyms with region or point elastic floors. Maximal vertical jump height was simultaneously assessed using the Vertec and the Optojump systems. In general, significantly higher jump heights were obtained for the Vertec compared with the Optojump system (11.2 cm, Δ31%, Cohen's d = 2.58). The subanalyses revealed significantly larger jump heights for the Vertec compared with the Optojump system irrespective of gym floor condition and players' sex. The association between Optojump- and Vertec-derived vertical jump heights amounted to rP = 0.84, with a coefficient of determination (R) of 0.71. The subanalyses indicated significantly larger correlations in males (rP = 0.75, R = 0.56) than in females (rP = 0.63, R = 0.40). Yet, correlations were not significantly different between region (rP = 0.83, R = 0.69) as opposed to point elastic floor (rP = 0.87, R = 0.76). Our findings indicate that the 2 apparatuses cannot be used interchangeably. Consequently, gym floor and sex-specific regression equations were provided to estimate true (Optojump system) vertical jump height from Vertec-derived data.
Riddle, Daniel L; Stratford, Paul W
2011-10-01
Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. A cross-sectional design was used. Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from -.36 (95% confidence interval=-.41, -.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing.
Stratford, Paul W.
2011-01-01
Background Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. Objective The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. Design A cross-sectional design was used. Methods Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Results Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from −.36 (95% confidence interval=−.41, −.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. Limitations The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Conclusions Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle strength tests maintain their relationship with self-report or performance-based disability measures even when pain is elicited during testing. PMID:21835892
Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G
2015-05-01
Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R
2013-01-01
Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.
The column strength of aluminum alloy 75S-T extruded shapes
NASA Technical Reports Server (NTRS)
Holt, Marshall; Leary, J R
1946-01-01
Because the tensile strength and tensile yield strength of alloy 75S-T are appreciably higher than those of the materials used in the tests leading to the use of the straight-line column curve, it appeared advisable to establish the curve of column strength by test rather than by extrapolation of relations determined empirically in the earlier tests. The object of this investigation was to determine the curve of column strength for extruded aluminum alloy 75S-T. In addition to three extruded shapes, a rolled-and-drawn round rod was included. Specimens of various lengths covering the range of effective slenderness ratios up to about 100 were tested.
Dynamic balance ability in young elite soccer players: implication of isometric strength.
Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim
2018-04-01
Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.
16 CFR Figure 8 to Part 1203 - Apparatus for Test of Retention System Strength
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Apparatus for Test of Retention System Strength 8 Figure 8 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT...—Apparatus for Test of Retention System Strength ER10MR98.008 ...
16 CFR Figure 8 to Part 1203 - Apparatus for Test of Retention System Strength
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Apparatus for Test of Retention System Strength 8 Figure 8 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT...—Apparatus for Test of Retention System Strength ER10MR98.008 ...
Improved stud configurations for attaching laminated wood wind turbine blades
NASA Technical Reports Server (NTRS)
Fadoul, J. R.
1985-01-01
A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.
[Functional-behavioral profile of new cyclic GABA analogs in acute toxicity tests].
Bugaeva, L I; Spasov, A A; Verovskiĭ, V E
2004-01-01
The properties of karphedone and phepyrone--new phenyl derivatives of pyrrolidone possessing nootropic activity--were studied in the course of the acute toxicity tests on rats. The drug effects were evaluated in terms of their integral influence on the state and behavior of test animals. The real therapeutic range and the profit/risk ratio of karphedone were comparable with those of the reference drug pyracetam and exceeded by a factor of 1.3 the corresponding values for phepyrone (irrespective of the LD50 values). The results give grounds for the further preclinical investigation of karphedone.
Development and Evaluation of Stitched Sandwich Panels
NASA Technical Reports Server (NTRS)
Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)
2001-01-01
This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.
Accelerated Testing Methodology Developed for Determining the Slow Crack Growth of Advanced Ceramics
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
1998-01-01
Constant stress-rate ("dynamic fatigue") testing has been used for several decades to characterize the slow crack growth behavior of glass and structural ceramics at both ambient and elevated temperatures. The advantage of such testing over other methods lies in its simplicity: strengths are measured in a routine manner at four or more stress rates by applying a constant displacement or loading rate. The slow crack growth parameters required for component design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, test time can be reduced appreciably. If a preload corresponding to 50 percent of the strength is applied to the specimen prior to testing, 50 percent of the test time can be saved as long as the applied preload does not change the strength. In fact, it has been a common, empirical practice in the strength testing of ceramics or optical fibers to apply some preloading (<40 percent). The purpose of this work at the NASA Lewis Research Center is to study the effect of preloading on measured strength in order to add a theoretical foundation to the empirical practice.
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1987-01-01
An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.
Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea
2013-01-01
The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.
Familial Brugada syndrome uncovered by hyperkalaemic diabetic ketoacidosis.
Postema, Pieter G; Vlaar, Alexander P J; DeVries, J Hans; Tan, Hanno L
2011-10-01
We describe a case of diabetic ketoacidosis with concomitant hyperkalaemia that uncovered a typical Brugada syndrome electrocardiogram (ECG). Further provocation testing in the patient and his son confirmed familial Brugada syndrome. Diabetic ketoacidosis with hyperkalaemia may uncover an inheritable arrhythmia syndrome that may put the patient and his/her next of kin at risk for a sudden death, irrespective of diabetes mellitus.
Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraris, Monica; Ventrella, Andrea; Salvo, Milena
2014-03-17
A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less
Strength testing and training of rowers: a review.
Lawton, Trent W; Cronin, John B; McGuigan, Michael R
2011-05-01
In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82-0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.57-0.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r = -0.54 to -0.68; p < 0.05). Repetition tests that assess muscular or strength endurance by quantifying the number of repetitions accrued at a fixed percentage of the strength maximum (e.g. 50-70% 1RM leg press) or set absolute load (e.g. 40 kg prone bench pulls) were less reliable and more time consuming when compared with briefer maximal strength tests. Only leg press repetition tests were correlated with 2000-m ergometer times (e.g. r = -0.67; p < 0.05). However, these tests differentiate training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio <45% or knee extensor-elbow flexor ratio around 4.2 ± 0.22 to 1) appeared useful in the pathological assessment of low back pain or rib injury history associated with rowing. While strength partially explained variances in 2000-m ergometer performance, concurrent endurance training may be counterproductive to strength development over the shorter term (i.e. <12 weeks). Therefore, prioritization of strength training within the sequence of training units should be considered, particularly over the non-competition phase (e.g. 2-6 sets × 4-12 repetitions, three sessions a week). Maximal strength was sustained when infrequent (e.g. one or two sessions a week) but intense (e.g. 73-79% of maximum) strength training units were scheduled; however, it was unclear whether training adaptations should emphasize maximal strength, endurance or power in order to enhance performance during the competition phase. Additionally, specific on-water strength training practices such as towing ropes had not been reported. Further research should examine the on-water benefits associated with various strength training protocols, in the context of the training phase, weight division, experience and level of rower, if limitations to the reliability and precision of performance data (e.g. 2000-m time or rank) can be controlled. In conclusion, while positive ergometer time-trial benefits of clinical and practical significance were reported with strength training, a lack of statistical significance was noted, primarily due to an absence of quality long-term controlled experimental research designs.
Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates
NASA Technical Reports Server (NTRS)
Grenoble, Ray W.; Johnston, William M.
2013-01-01
Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.
van der Stap, Djamilla K.D.; Rider, Lisa G.; Alexanderson, Helene; Huber, Adam M.; Gualano, Bruno; Gordon, Patrick; van der Net, Janjaap; Mathiesen, Pernille; Johnson, Liam G.; Ernste, Floranne C.; Feldman, Brian M.; Houghton, Kristin M.; Singh-Grewal, Davinder; Kutzbach, Abraham Garcia; Munters, Li Alemo; Takken, Tim
2015-01-01
OBJECTIVES Currently there are no evidence-based recommendations regarding which fitness and strength tests to use for patients with childhood or adult idiopathic inflammatory myopathies (IIM). This hinders clinicians and researchers in choosing the appropriate fitness- or muscle strength-related outcome measures for these patients. Through a Delphi survey, we aimed to identify a candidate core-set of fitness and strength tests for children and adults with IIM. METHODS Fifteen experts participated in a Delphi survey that consisted of five stages to achieve a consensus. Using an extensive search of published literature and through the expertise of the experts, a candidate core-set based on expert opinion and clinimetric properties was developed. Members of the International Myositis Assessment and Clinical Studies Group (IMACS) were invited to review this candidate core-set during the final stage, which led to a final candidate core-set. RESULTS A core-set of fitness- and strength-related outcome measures was identified for children and adults with IIM. For both children and adults, different tests were identified and selected for maximal aerobic fitness, submaximal aerobic fitness, anaerobic fitness, muscle strength tests and muscle function tests. CONCLUSIONS The core-set of fitness and strength-related outcome measures provided by this expert consensus process will assist practitioners and researchers in deciding which tests to use in IIM patients. This will improve the uniformity of fitness and strength tests across studies, thereby facilitating the comparison of study results and therapeutic exercise program outcomes among patients with IIM. PMID:26568594
Accelerated Testing Methodology for the Determination of Slow Crack Growth of Advanced Ceramics
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.; Gyekenyesi, John P.
1997-01-01
Constant stress-rate (dynamic fatigue) testing has been used for several decades to characterize slow crack growth behavior of glass and ceramics at both ambient and elevated temperatures. The advantage of constant stress-rate testing over other methods lies in its simplicity: Strengths are measured in a routine manner at four or more stress rates by applying a constant crosshead speed or constant loading rate. The slow crack growth parameters (n and A) required for design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, an appreciable saving of test time can be achieved. If a preload corresponding to 50 % of the strength is applied to the specimen prior to testing, 50 % of the test time can be saved as long as the strength remains unchanged regardless of the applied preload. In fact, it has been a common, empirical practice in strength testing of ceramics or optical fibers to apply some preloading (less then 40%). The purpose of this work is to study the effect of preloading on the strength to lay a theoretical foundation on such an empirical practice. For this purpose, analytical and numerical solutions of strength as a function of preloading were developed. To verify the solution, constant stress-rate testing using glass and alumina at room temperature and alumina silicon nitride, and silicon carbide at elevated temperatures was conducted in a range of preloadings from O to 90 %.
Testing Bonds Between Brittle And Ductile Films
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Ohsaki, Hiroyuki
1989-01-01
Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.
Polymer concrete overlay test program : final report.
DOT National Transportation Integrated Search
1981-12-01
The results in this report were obtained during the test program which began in 1973. Physical properties of various polymer concretes are listed. They include compressive strength, splitting tensile strength, bond strength, the modulus of elasticity...
A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs
NASA Astrophysics Data System (ADS)
Rawat, Prashant; Singh, K. K.
2016-09-01
Multi-wall carbon nanotubes (MWCNTs) promises to enhance mechanical properties exceptionally when it is doped with fiber reinforced polymer (FRP) composite. Glass fiber symmetrical laminate with eight layers of 4.0 mm thickness was fabricated by hand lay-up technique assisted by vacuum bagging method. Ply orientations for symmetrical laminate used [(0,90)/(+45,-45)/(+45,-45)/(0,90)//(90,0)/(+45,-45)/(+45,-45)/(90,0)]. MWCNTs reinforced three different samples (0 wt.%, 0.5 wt.% and 0.75 wt.% by weight) were tested on universal testing machine (UTM). Short beam strength test and inter laminar shear strength (ILSS) calculation have been done according to ASTM D2344 and ASTM D7264. UTM having maximum load capacity of 50 KN with loading rate of 0.1 mm/min to 50 mm/min was used for mechanical testing. Testing results justified that by adding 0.50 wt.% MWCNTs in symmetrical GFRP laminate can enhance inter laminar shear strength by 13.66% and bending strength by 44.22%.
Jiménez S, Christian Edgardo; Fernández G, Rubén; Zurita O, Félix; Linares G, Daniel; Farías M, Ariel
2014-04-01
Hip and knee osteoarthritis are important causes of pain and disability among older people. Education and strength training can alleviate symptoms and avoid functional deterioration. To assess muscle strength, fall risk and quality of life of older people with osteoarthritis and the effects of physiotherapy education and strength training on these variables. Thirty participants aged 78 ± 5 years (63% women) were randomly assigned to receive physiotherapy (Controls), physiotherapy plus education (Group 1) and physiotherapy plus strength training (group 2). At baseline and after 16 weeks of intervention, patients were evaluated with the Senior Fitness Test, Timed Up and Go and Quality of Life score short form (SF-36). During the intervention period, Senior Fitness Test and Timed Up and Go scores improved in all groups and SF-36 did not change. The improvement in Senior Fitness Test and Timed Up and Go was more marked in Groups 1 and 2 than in the control group. Education and strength training improve functional tests among older people with osteoarthritis.
ERIC Educational Resources Information Center
Proyer, Rene T.; Sidler, Nicole; Weber, Marco; Ruch, Willibald
2012-01-01
The relationship between character strengths and vocational interests was tested. In an online study, 197 thirteen to eighteen year-olds completed a questionnaire measuring character strengths and a multi-method measure for interests (questionnaire, nonverbal test, and objective personality tests). The main findings were that intellectual…
Standard methods for filled hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
The effects of two test specimen geometry parameters, the specimen width and W/D ratio, on filled-hole tensile strength were determined for textile composite materials. Test data generated by Boeing and Lockheed on 2-D and 3-D braids, and 3-D weaves were used to make these evaluations. The investigation indicated that filled-hole tensile-strength showed little sensitivity to either parameter. Test specimen configurations used in open-hole tension tests, such as those suggested by ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates or those proposed by MIL-HDBK-17-lD should provide adequate results for material comparisons studies. Comparisons of the materials' open-hole and filled-hole tensile strengths indicated that the latter were generally lower than the former. The 3-D braids were the exception; their filled-hole strengths were unexpected larger than their open-hole strengths. However, these increases were small compared to the scatter in the data. Thus, filled hole tension may be a critical design consideration for textile composite materials.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.
1993-01-01
Astronauts have the task of retrieving and deploying satellites and handling massive objects in a around the payload bay. Concerns were raised that manual handling of such massive objects might induce loads to the shuttle suits exceeding the design-certified loads. The Crew and Thermal Division of NASA JSC simulated the satellite handling tasks (Satellite Manload Tests 1 and 3) and determined the maximum possible load that a suited member could impart onto the suit. In addition, the tests revealed that the load to the suit by an astronaut could be calculated from the astronaut's maximum hand grasp breakaway strength. Thus, this study was conducted to document that hand grasp breakaway strengths of the astronauts who were scheduled to perform EVA during the upcoming missions. In addition, this study verified whether the SML 3 test results were sufficient for documenting the maximum possible load. An attempt was made to predict grasp strength from grip strength and hand anthropometry. Based on the results from this study, the SML 3 test results were deemed sufficient to document the maximum possible load on the suit. Finally, prediction of grasp strength from grip strength was not as accurate as expected. Hence, it was recommended that grasp strength be collected from the astronauts in order to obtain accurate load estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skochko, G.W.; Herrmann, T.P.
Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less
Microhardness Testing of Aluminum Alloy Welds
NASA Technical Reports Server (NTRS)
Bohanon, Catherine
2009-01-01
A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still retaining the sample. This makes hardness testing a good test for identifying grain size and microstructure.
Buchheit, M
2015-05-01
The aim of the present study was to examine whether monthly resting heart rate (HR), HR variability (HRV) and psychometric measures can be used to monitor changes in physical performance in highly-trained adolescent handball players. Data were collected in 37 adolescent players (training 10±2.1 h.wk(-1)) on 11 occasions from September to May during the in-season period, and included an estimation of training status (resting HR and HRV, the profile of mood state (POMS) questionnaire), and 3 physical performance tests (a 10-m sprint, a counter movement jump and a graded aerobic intermittent test, 30-15 Intermittent Fitness Test). The sensitivity of HR and psychometric measures to changes in physical performance was poor (< 20%), irrespective of the training status markers and the performance measures. The specificity was however strong (> 75%), irrespective of the markers and the performance measures. Finally, the difference in physical performance between players with better vs. worse estimated training status were all almost certainly trivial. The present results highlight the limitation of monthly measures of resting HR, HRV and perceived mood and fatigue for predicting in-season changes in physical performance in highly-trained adolescent handball players. This suggests that more frequent monitoring might be required, and/or that other markers might need to be considered. © Georg Thieme Verlag KG Stuttgart · New York.
16 CFR 1203.13 - Test schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... environments, respectively) shall be tested in accordance with the dynamic retention system strength test at... Peripheral vision § 1203.15 Positional stability § 1203.16 Retention system strength § 1203.17 Impact tests...
Reliability formulation for the strength and fire endurance of glued-laminated beams
D. A. Bender
A model was developed for predicting the statistical distribution of glued-laminated beam strength and stiffness under normal temperature conditions using available long span modulus of elasticity data, end joint tension test data, and tensile strength data for laminating-grade lumber. The beam strength model predictions compared favorably with test data for glued-...
NASA Astrophysics Data System (ADS)
Ciniņa, I.; Zīle, O.; Andersons, J.
2013-01-01
The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.
Determination of Material Strengths by Hydraulic Bulge Test.
Wang, Hankui; Xu, Tong; Shou, Binan
2016-12-30
The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.
Yasuda, Tomohiro; Fukumura, Kazuya; Nakajima, Toshiaki
2017-04-01
[Purpose] To examine if the SPPB is higher with healthy subjects than outpatients, which was higher than inpatients and if the SPPB can be validated assessment tool for strength tests and lower extremity morphological evaluation in cardiovascular disease patients. [Subjects and Methods] Twenty-four middle aged and older adults with cardiovascular disease were recruited from inpatient and outpatient facilities and assigned to separate experimental groups. Twelve age-matched healthy volunteers were assigned to a control group. SPPB test was used to assess balance and functional motilities. The test outcomes were compared with level of care (inpatient vs. outpatient), physical characteristics, strength and lower extremity morphology. [Results] Total SPPB scores, strength tests (knee extensor muscle strength), and lower extremity morphological evaluation (muscle thickness of anterior and posterior mid-thigh and posterior lower-leg) were greater in healthy subjects and outpatients groups compared with inpatients. To predict total Short Physical Performance Battery scores, the predicted knee extension and anterior mid-thigh muscle thickness were calculated. [Conclusion] The SPPB is an effective tool as the strength tests and lower extremity morphological evaluation for middle-aged and older adult cardiovascular disease patients. Notably, high knee extensor muscle strength and quadriceps femoris muscle thickness are positively associated with high SPPB scores.
Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam
2018-03-28
The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.
Petit, Laurent; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie
2015-03-01
Hemispheric lateralization for spatial attention and its relationships with manual preference strength and eye preference were studied in a sample of 293 healthy individuals balanced for manual preference. Functional magnetic resonance imaging was used to map this large sample while performing visually guided saccadic eye movements. This activated a bilateral distributed cortico-subcortical network in which dorsal and ventral attentional/saccadic pathways elicited rightward asymmetrical activation depending on manual preference strength and sighting eye. While the ventral pathway showed a strong rightward asymmetry irrespective of both manual preference strength and eye preference, the dorsal frontoparietal network showed a robust rightward asymmetry in strongly left-handers, even more pronounced in left-handed subjects with a right sighting-eye. Our findings brings support to the hypothesis that the origin of the rightward hemispheric dominance for spatial attention may have a manipulo-spatial origin neither perceptual nor motor per se but rather reflecting a mechanism by which a spatial context is mapped onto the perceptual and motor activities, including the exploration of the spatial environment with eyes and hands. Within this context, strongly left-handers with a right sighting-eye may benefit from the advantage of having the same right hemispheric control of their dominant hand and visuospatial attention processing. We suggest that this phenomenon explains why left-handed right sighting-eye athletes can outperform their competitors in sporting duels and that the prehistoric and historical constancy of the left-handers ratio over the general population may relate in part on the hemispheric specialization of spatial attention. © 2014 Wiley Periodicals, Inc.
Skaczkowski, Gemma; Durkin, Sarah; Kashima, Yoshihisa; Wakefield, Melanie
2017-01-01
Objective To examine the effect of branding, as indicated by brand name, on evaluation of the cigarette smoking experience. Design Between-subjects and within-subjects experimental study. Participants were randomly allocated to smoke a cigarette from a pack featuring a premium brand name and a cigarette from a pack featuring a value brand name. Within each condition, participants unknowingly smoked two identical cigarettes (either two premium or two value cigarettes). Setting Australia, October 2014, 2 years after tobacco plain packaging implementation. Participants 81 current cigarette smokers aged 19–39 years. From apparently premium and value brand-name packs, 40 smokers were allocated to smoke the same actual premium cigarettes and 41 were allocated to smoke the same actual value cigarettes. Primary outcome measures Experienced taste (flavour, satisfaction, enjoyment, quality, liking, mouthfeel and aftertaste), harshness, dryness, staleness, harm/strength measures (strength, tar, lightness, volume of smoke), draw effort and purchase intent. Results Cigarettes given a premium brand name were rated as having a better taste, were less harsh and less dry than identical cigarettes given a value brand name. This pattern was observed irrespective of whether the two packs actually contained premium or value cigarettes. These effects were specific: the brand name did not influence ratings of cigarette variant attributes (strength, tar, volume of smoke, lightness and draw effort). Conclusions Despite the belief that brand names represent genuine differences between cigarette products, the results suggest that at least some of this perceived sensory difference is attributable to brand image. PMID:28093441
Saywell, S A; Anissimova, N P; Ford, T W; Meehan, C F; Kirkwood, P A
2007-01-01
The descending control of respiratory-related motoneurones in the thoracic spinal cord remains the subject of some debate. In this study, direct connections from expiratory bulbospinal neurones to identified motoneurones were investigated using spike-triggered averaging and the strengths of connection revealed were related to the presence and size of central respiratory drive potentials in the same motoneurones. Intracellular recordings were made from motoneurones in segments T5–T9 of the spinal cord of anaesthetized cats. Spike-triggered averaging from expiratory bulbospinal neurones in the caudal medulla revealed monosynaptic EPSPs in all groups of motoneurones, with the strongest connections to expiratory motoneurones with axons in the internal intercostal nerve. In the latter, connection strength was similar irrespective of the target muscle (e.g. external abdominal oblique or internal intercostal) and the EPSP amplitude was positively correlated with the amplitude of the central respiratory drive potential of the motoneurone. For this group, EPSPs were found in 45/83 bulbospinal neurone/motoneurone pairs, with a mean amplitude of 40.5 μV. The overall strength of the connection supports previous measurements made by cross-correlation, but is about 10 times stronger than that reported in the only previous similar survey to use spike-triggered averaging. Calculations are presented to suggest that this input alone is sufficient to account for all the expiratory depolarization seen in the recorded motoneurones. However, extra sources of input, or amplification of this one, are likely to be necessary to produce a useful motoneurone output. PMID:17204500
NASA Astrophysics Data System (ADS)
Yoshino, Akira; Yamauchi, Chisato
2015-02-01
We investigate box/peanut and bar structures in image data of edge-on and face-on nearby galaxies taken from the Sloan Digital Sky Survey (SDSS) to present catalogues containing the surface brightness parameters and the morphology classification. About 1700 edge-on galaxies and 2600 face-on galaxies are selected from SDSS DR7 in the g, r and i-bands. The images of each galaxy are fitted with the model of two-dimensional surface brightness of the Sérsic bulge and exponential disk. After removing some irregular data, the box/peanut, bar and other structures are easily distinguished by eye using residual (observed minus model) images. We find 292 box/peanut structures in the 1329 edge-on samples and 630 bar structures in 1890 face-on samples in the i-band, after removing some irregular data. The fraction of box/peanut galaxies is about 22 per cent against the edge-on samples, and that of bar galaxies is about 33 per cent (about 50 per cent if 629 elliptical galaxies are removed) against the face-on samples. Furthermore the strengths of the box/peanuts and bars are evaluated as strong, standard or weak. We find that the strength increases slightly with increasing B/T (bulge-to-total flux ratio), and that the fraction of box/peanuts is generally about a half of that of bars, irrespective of the strength and B/T. Our result supports the idea that a box/peanut is a bar seen edge-on.
Comparison of shear bond strength relative to two testing devices.
Pecora, Nikole; Yaman, Peter; Dennison, Joseph; Herrero, Alberto
2002-11-01
Dentin adhesives are characterized on the basis of their bond strength to dentin; however, great variation exists within the same material depending on the testing apparatus. To realistically compare bond strengths, the testing mechanisms must be the same. The purpose of this investigation was to use 2 testing devices to evaluate the shear bond strength of 3 single-bottle adhesives with their multistep counterparts. The occlusal surfaces of 120 freshly extracted third molars were ground to expose the dentin and polished with 600-grit silicon carbide paper. Three single-bottle, (Optibond Solo Plus, 3M Single Bond, and Excite) and 3 multistep adhesives (Optibond FL, 3M MultiPurpose Plus, and Syntac) were each used to bond a composite cylinder (made from a 2.379 +/-.001-mm diameter by 4-mm-high mold) of Tetric Ceram to 20 teeth. The specimens were stored in 100% humidity for 24 hours. The shear bond strength at failure was measured in kilograms and converted to megapascals for each material, using a knife (conventional method) and an Ultradent testing device on a universal testing machine (Instron) at a loading rate of 0.5 mm/min. A 2-way analysis of variance (ANOVA) test was performed comparing the 2 testing devices and the materials at P<.05. Where significant, a 1-way ANOVA test was conducted among the materials for each test group, and a Tukey multiple comparison test was used to determine significant differences among the materials tested (P<.05). An independent Student t test at P<.05 was used to determine significance between testing devices. The results showed that Optibond Solo Plus (26.85 +/- 8.76 MPa), Optibond FL (25.40 +/- 4.44 MPa), 3M Single Bond (28.12 +/- 5.01 MPa), and 3M MultiPurpose Plus (34.40 +/- 7.90 MPa) had significantly higher bond strengths when tested with the Ultradent testing device. The mean values for Excite (19.47 +/- 6.17 MPa) and Syntac (20.20 +/- 7.07 MPa) were also higher with the Ultradent testing device, but the difference was not significant. Within the limitations of this study, all bonding agents tested resulted in higher mean shear bond strengths when tested with the Ultradent testing device compared with the unrestricted knife. The single-step bonding agents exhibited mean bond strengths comparable to their multistep counterparts.
Aircraft landing dynamics facility carriage weld test program
NASA Technical Reports Server (NTRS)
Lawson, A. G.
1984-01-01
A welded tubular structure constructed of low alloy high strength quenched and tempered steel was tested. The consistency of the mechanical strengths and chemical composition and the degree of difficulty of obtaining full strength welds with these steels is characterized. The results of constructing and testing two typical connections which are used in the structure design are reported.
MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF 2-D AND 3-D SiC/SiNC CERAMIC MATRIX COMPOSITES
2018-02-23
48 5.2 Residual Strength of Test Specimens Reaching Run -Out ...........................................48 5.3 Fracture...46 Table 10. Residual Strength Tension Test Results for Creep Rupture Specimens Reaching Run - Out...Residual Strength Tension Test Results for Fatigue Specimens Reaching Run -Out . 49 vii Distribution Statement A. Approved for public release
Size and Strength: Do We Need Both to Measure Vocabulary Knowledge?
ERIC Educational Resources Information Center
Laufer, B.; Elder, C.; Hill, K.; Congdon, P.
2004-01-01
This article describes the development and validation of a test of vocabulary size and strength. The first part of the article sets out the theoretical rationale for the test, and describes how the size and strength constructs have been conceptualized and operationalized. The second part of the article focusses on the process of test validation,…
The internal bond and shear strength of hardwood veneered particleboard composites
P. Chow; J.J. Janowiak; E.W. Price
1986-01-01
The effects of several accelerated aging tests and weather exposures on hardwood reconstituted structural composite panels were evaluated. The results indicated that the internal bond and shear by tension loading strength reductions of the panels were affected by the exposure test method. The ranking of the effects of various exposure tests on strength values in an...
Srirekha, A; Bashetty, Kusum
2013-01-01
Objectives: The present comparative analysis aimed at evaluating the mechanical behavior of various restorative materials in abfraction lesion in the presence and absence of occlusal restoration. Materials and Methods: A three-dimensional finite-element analysis was performed. Six experimental models of mandibular first premolar were generated and divided into two groups (groups A and B) of three each. All the groups had cervical abfraction lesion restored with materials and in addition group A had class I occlusal restoration. A load of 90 N, 200 N, and 400 N were applied at 45° loading angle on the buccal inclines of buccal cusp and Von Mises stresses was chosen for analysis. Results: In all the models, the values of stress recorded at the cervical margin of the restorations were at their maxima. Irrespective of the occlusal restoration, all the materials performed well at 90 N and 200 N. At 400 N, only low-shrink composite showed stresses lesser than its tensile strength indicating its success even at higher load. Conclusion: Irrespective of occlusal restoration, restorative materials with low modulus of elasticity are successful in abfraction lesions at moderate tensile stresses; whereas materials with higher modulus of elasticity and mechanical properties can support higher loads and resist wear. Significance: The model allows comparison of different restorative materials for restoration of abfraction lesions in the presence and absence of occlusal restoration. The model can be used to validate more sophisticated computational models as well as to conduct various optimization studies. PMID:23716970
Sekendiz, Betül; Cuğ, Mutlu; Korkusuz, Feza
2010-11-01
The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.
Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola
2013-01-01
Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825
Flexural strength of proof-tested and neutron-irradiated silicon carbide
NASA Astrophysics Data System (ADS)
Price, R. J.; Hopkins, G. R.
1982-08-01
Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.
Reliability analysis of structures under periodic proof tests in service
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1976-01-01
A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.
Seat strength in rear body block tests.
Viano, David C; White, Samuel D
2016-07-03
This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats. The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY). Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989-2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats. Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700-3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.
Chairside CAD/CAM materials. Part 2: Flexural strength testing.
Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich
2017-01-01
Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
St-Onge, Maxime; Mathieu, Marie-Eve; Tousignant, Benoit; Faraj, May; Lavoie, Jean-Marc
2009-12-01
The main objective of this study was to establish whether a stable measurement of strength could be obtained without prior exercise familiarization in postmenopausal women who were overweight or obese. A second objective was to evaluate the influence of physical activity on the variability of strength measurement. Thirty postmenopausal women (age: 57.9 yr; SD: 5 yr; body mass index: 31.0 kg/m2; SD: 4 kg/m2) underwent 3 strength testing sessions (48 hr apart) each including 3 exercises (leg press, chest press, and lat pull down). Energy expenditure was measured before the strength testing week with the doubly labelled water method over a 10-day period. Resting metabolic rate was measured by indirect calorimetry. Physical activity energy expenditure was calculated as follows: total energy expenditure x 0.9, minus the resting metabolic rate. Repeated analysis of variance and paired t-test were used to assess the difference and the reliability of the testing sequence. Results from leg press and chest press exercises indicated no significant difference among the 3 testing sessions. The lat pull down exercise was associated with a significant systematic bias between sessions 1 and 2 (mean difference: 1.4 kg; SD: 3 kg; 95% confidence intervals; 0.2-2.7 kg), but the difference disappeared at the third testing session (mean difference: 0.7 kg; SD: 3 kg; 95% confidence intervals; 0.5-2 kg). Physical activity did not influence the variability of the strength results. Overall, our results showed that a relatively stable strength measurement can be obtained within a maximum of 3 testing sessions without prior familiarization. In addition, physical activity did not influence strength testing in postmenopausal women who were overweight or obese.
Sancho-Tello, Silvia; Bravo, Dayana; Borrás, Rafael; Costa, Elisa; Muñoz-Cobo, Beatriz; Navarro, David
2011-01-01
The performance of the LightCycler SeptiFast (SF) assay was compared to that of culture methods in the detection of microorganisms in 43 purulent fluids from patients with pyogenic infections. The SF assay was more sensitive than the culture methods (86% versus 61%, respectively), irrespective of whether the infections were mono- or polymicrobial. PMID:21715593
Comparison of Three Methods of Assessing Muscle Strength and Imbalance Ratios of the Knee
Moss, Crayton L.; Wright, P. Thomas
1993-01-01
Three strength measurement methods for determining muscle strength and imbalance ratios of the knee were compared in 41 (23 female, 18 male) NCAA Division I track and field athletes. Peak quadriceps extensions and hamstring flexions were measured isotonically, isometrically, and isokinetically. Isokinetic measurements were performed on a Cybex II at 60°/s. Isometric extension and flexion measurements were performed using the Nicholas Manual Muscle Tester (Lafayette Instruments; Lafayette, Ind). Isotonic measurements were done on both Universal and Nautilus apparatuses. Testing order was randomized to avoid a treatment order effect. A repeated measures ANOVA and a post hoc Tukey test were used to compare the three methods of assessing strength and imbalance ratios of the knee. Absolute strength values were significantly different according to gender and mode of testing. Bilateral strength imbalance ratios for knee flexion were significantly lower for the Nautilus leg curl machine. Ipsilateral strength imbalance ratios were significantly greater for the Cybex II. Our results indicated that absolute strength values cannot be interchanged between testing modes. Except for Cybex II (ipsilateral) and Nautilus (bilateral knee flexion), strength imbalance ratios could be interchanged. ImagesFig 1.Fig 2.Fig 3.Fig 4.Fig 5.Fig 6.Fig 7.INGING PMID:16558207
Ritti-Dias, Raphael Mendes; Cucato, Gabriel Grizzo; de Mello Franco, Fábio Gazelato; Cendoroglo, Maysa Seabra; Nasri, Fábio; Monteiro-Costa, Maria Luiza; de Carvalho, José Antonio Maluf; de Matos, Luciana Diniz Nagem Janot
2016-09-01
The aim of the present study was to verify if there is sex difference in the associations among handgrip strength, peak expiratory flow (PEF) and timed up and go (TUG) test results. The sample included 288 consecutive elderly men (n=93) and women (n=195). Functional capacity was measured using the TUG test, and muscle strength was measured based on handgrip. Moreover, as a measure of current health status, PEF was evaluated. Linear regression procedures were performed to analyze the relationships between handgrip and both PEF and TUG test results, with adjustment for confounders, and to identify the possible mediating role of PEF in the association between handgrip strength and TUG test results. In men, handgrip strength was associated with both PEF and TUG performance (p<0.01). After adjustment for PEF, the relationship between handgrip strength and TUG performance remained significant. In women, handgrip strength was also associated with both PEF and TUG performance (p<0.01). However, after adjustment for PEF, the relationship between handgrip strength and TUG performance was no longer significant. Mobility in the elderly is sex dependent. In particular, PEF mediates the relationship between handgrip strength and TUG performance in women, but not in men.
Chiral susceptibility and the scalar Ward identity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.; Liu, Y.-X.; Roberts, C. D.
2009-03-01
The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For themore » two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.« less
Chiral susceptibility and the scalar Ward identity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Lei; Liu Yuxin; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
2009-03-15
The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For themore » two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.« less
Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics
El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.
2014-01-01
Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720
Perceived school safety is strongly associated with adolescent mental health problems.
Nijs, Miesje M; Bun, Clothilde J E; Tempelaar, Wanda M; de Wit, Niek J; Burger, Huibert; Plevier, Carolien M; Boks, Marco P M
2014-02-01
School environment is an important determinant of psychosocial function and may also be related to mental health. We therefore investigated whether perceived school safety, a simple measure of this environment, is related to mental health problems. In a population-based sample of 11,130 secondary school students, we analysed the relationship of perceived school safety with mental health problems using multiple logistic regression analyses to adjust for potential confounders. Mental health problems were defined using the clinical cut-off of the self-reported Strengths and Difficulties Questionnaire. School safety showed an exposure-response relationship with mental health problems after adjustment for confounders. Odds ratios increased from 2.48 ("sometimes unsafe") to 8.05 ("very often unsafe"). The association was strongest in girls and young and middle-aged adolescents. Irrespective of the causal background of this association, school safety deserves attention either as a risk factor or as an indicator of mental health problems.
Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.
Bracewell, Ryan R; Bentz, Barbara J; Sullivan, Brian T; Good, Jeffrey M
2017-11-17
Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.
Electric Field-Controlled Ion Transport In TiO2 Nanochannel.
Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong
2015-06-03
On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.
Evaluation of the Properties Magnesium Phosphate Cement with Emulsified Asphalt
NASA Astrophysics Data System (ADS)
Du, Jia-Chong; Shen, Ruei-Siang; Zhou, Yu-Zhun
2017-10-01
Three type mixtures of magnesium phosphate cement with emulsified asphalt for evaluation their properties. The mixtures of the samples were fabricated and allowed them 2 hours, seven and twenty eight days curing before tested by compressive strength, Marshall stability and indirect tensile strength to probe into their engineering properties. The test results show that all tests have the greatest values at the 28 days curing and too much asphalt emulsion may cause too soft as result of low stability. The compressive strength of Type-III mixture has the greatest value, no matter what curing time is. The Marshall stability test and indirect tensile strength of the Type-III mixture are qualified by the specification required for fast maintenance. The more asphalt emulsion added, the less compressive strength has.
Lozano, José H
2016-02-01
Previous research aimed at testing the situational strength hypothesis suffers from serious limitations regarding the conceptualization of strength. In order to overcome these limitations, the present study attempts to test the situational strength hypothesis based on the operationalization of strength as reinforcement contingencies. One dispositional factor of proven effect on cooperative behavior, social value orientation (SVO), was used as a predictor of behavior in four social dilemmas with varying degree of situational strength. The moderating role of incentive condition (hypothetical vs. real) on the relationship between SVO and behavior was also tested. One hundred undergraduates were presented with the four social dilemmas and the Social Value Orientation Scale. One-half of the sample played the social dilemmas using real incentives, whereas the other half used hypothetical incentives. Results supported the situational strength hypothesis in that no behavioral variability and no effect of SVO on behavior were found in the strongest situation. However, situational strength did not moderate the effect of SVO on behavior in situations where behavior showed variability. No moderating effect was found for incentive condition either. The implications of these results for personality theory and assessment are discussed. © 2014 Wiley Periodicals, Inc.
The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness
Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.
2014-01-01
Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412
The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.
Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S
2014-05-01
Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.
Joly, Marine; Scheumann, Marina; Zimmermann, Elke
2012-01-01
Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.
Middelveen, Marianne J; Bandoski, Cheryl; Burke, Jennie; Sapi, Eva; Filush, Katherine R; Wang, Yean; Franco, Agustin; Mayne, Peter J; Stricker, Raphael B
2015-02-12
Morgellons disease (MD) is a complex skin disorder characterized by ulcerating lesions that have protruding or embedded filaments. Many clinicians refer to this condition as delusional parasitosis or delusional infestation and consider the filaments to be introduced textile fibers. In contrast, recent studies indicate that MD is a true somatic illness associated with tickborne infection, that the filaments are keratin and collagen in composition and that they result from proliferation and activation of keratinocytes and fibroblasts in the skin. Previously, spirochetes have been detected in the dermatological specimens from four MD patients, thus providing evidence of an infectious process. Based on culture, histology, immunohistochemistry, electron microscopy and molecular testing, we present corroborating evidence of spirochetal infection in a larger group of 25 MD patients. Irrespective of Lyme serological reactivity, all patients in our study group demonstrated histological evidence of epithelial spirochetal infection. Strength of evidence based on other testing varied among patients. Spirochetes identified as Borrelia strains by polymerase chain reaction (PCR) and/or in-situ DNA hybridization were detected in 24/25 of our study patients. Skin cultures containing Borrelia spirochetes were obtained from four patients, thus demonstrating that the organisms present in dermatological specimens were viable. Spirochetes identified by PCR as Borrelia burgdorferi were cultured from blood in seven patients and from vaginal secretions in three patients, demonstrating systemic infection. Based on these observations, a clinical classification system for MD is proposed. Our study using multiple detection methods confirms that MD is a true somatic illness associated with Borrelia spirochetes that cause Lyme disease. Further studies are needed to determine the optimal treatment for this spirochete-associated dermopathy.
Efficacy of core muscle strengthening exercise in chronic low back pain patients.
Kumar, Tarun; Kumar, Suraj; Nezamuddin, Md; Sharma, V P
2015-01-01
Low back pain is a common health problem in human being and about 5 to 15% will develop chronic low back pain (CLBP). The clinical findings of CLBP suggest that lumbar mobility is decreased and recruitment order of core muscles is altered. In literature, there is no data about the effect of core muscles strengthening in the chronicity (short duration, long duration) of CLBP. This study evaluated the effect of core muscle strengthening intervention on chronicity of chronic low back pain. Thirty patients were recruited from the outpatient department of the National Institute for the Orthopaedically Handicapped. These 30 patients divided into two groups: A and B on the basis of duration of low back pain. Group-A patients complain about pain duration for more than twelve months and Group B complains about pain duration from three to twelve months. Both the groups were received same intervention for six weeks. Assessment was done pre intervention and post intervention after six weeks for both the groups. %For both the groups the assessment was done after six weeks for pre and post intervention. The result described both the groups showed improvement in all the outcome measures including pain as well as in function using Numerical pain rating scale, Oswestry Disability Index, Sorensen test, Gluteus Maximus Strength, Activation of transversus abdominis and Modified-Modified Schober's Test. The improvement was statistically non-significant with inter groups and significant within group. This study concludes that core muscle strengthening exercise along with lumbar flexibility and gluteus maximus strengthening is an effective rehabilitation technique for all chronic low back pain patients irrespective of duration (less than one year and more than one year) of their pain.
Does cultural integration explain a mental health advantage for adolescents?
Bhui, Kamaldeep S; Lenguerrand, Erik; Maynard, Maria J; Stansfeld, Stephen A; Harding, Seeromanie
2012-06-01
A mental health advantage has been observed among adolescents in urban areas. This prospective study tests whether cultural integration measured by cross-cultural friendships explains a mental health advantage for adolescents. A prospective cohort of adolescents was recruited from 51 secondary schools in 10 London boroughs. Cultural identity was assessed by friendship choices within and across ethnic groups. Cultural integration is one of four categories of cultural identity. Using gender-specific linear-mixed models we tested whether cultural integration explained a mental health advantage, and whether gender and age were influential. Demographic and other relevant factors, such as ethnic group, socio-economic status, family structure, parenting styles and perceived racism were also measured and entered into the models. Mental health was measured by the Strengths and Difficulties Questionnaire as a 'total difficulties score' and by classification as a 'probable clinical case'. A total of 6643 pupils in first and second years of secondary school (ages 11-13 years) took part in the baseline survey (2003/04) and 4785 took part in the follow-up survey in 2005-06. Overall mental health improved with age, more so in male rather than female students. Cultural integration (friendships with own and other ethnic groups) was associated with the lowest levels of mental health problems especially among male students. This effect was sustained irrespective of age, ethnicity and other potential explanatory variables. There was a mental health advantage among specific ethnic groups: Black Caribbean and Black African male students (Nigerian/Ghanaian origin) and female Indian students. This was not fully explained by cultural integration, although cultural integration was independently associated with better mental health. Cultural integration was associated with better mental health, independent of the mental health advantage found among specific ethnic groups: Black Caribbean and some Black African male students and female Indian students.
Augustsson, Jesper
2016-08-01
Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes. The test is practical and easy to perform in any setting and could therefore provide additional information to the common clinical hip examination, in the rehabilitation or research setting, as well as when conducting on-the-field testing in sports. 3.
The impact of chlorhexidine mouth rinse on the bond strength of polycarbonate orthodontic brackets.
Hussein, Farouk Ahmed; Hashem, Mohammed Ibrahim; Chalisserry, Elna P; Anil, Sukumaran
2014-11-01
The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. No statistically significant difference was found in bond strengths' values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength.
Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women
Lee, Dong-Kyu; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop
2014-01-01
[Purpose] The purpose of this study was to elucidate the relationship between Y-balance test (YBT) distance and the lower-limb strength of adult women. [Subjects] Forty women aged 45 to 80 years volunteered for this study. [Methods] The participants were tested for maximal muscle strength of the lower limbs (hip extensors, hip flexors, hip abductors, knee extensors, knee flexors, and ankle dorsiflexors) and YBT distances in the anterior, posteromedial, and posterolateral directions. Pearson’s correlation coefficient was used to quantify the linear relationships between YBT distances and lower-limb strength. [Results] Hip extensor and knee flexor strength were positively correlated with YBT anterior distance. Hip extensor, hip abductor, and knee flexor strength were positively correlated with the YBT posteromedial distance. Hip extensor and knee flexor strength were positively correlated with YBT posterolateral distance. [Conclusion] There was a weak correlation between lower-limb strength (hip extensors, hip abductors, and knee flexors) and dynamic postural control as measured by the YBT. PMID:24926122
Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A
2018-04-15
Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting bending strength of fire-retardant-treated plywood from screw-withdrawal tests
J. E. Winandy; P. K. Lebow; W. Nelson
This report describes the development of a test method and predictive model to estimate the residual bending strength of fire-retardant-treated plywood roof sheathing from measurement of screw-withdrawal force. The preferred test methodology is described in detail. Models were developed to predict loss in mean and lower prediction bounds for plywood bending strength as...
Equivalence Reliability among the FITNESSGRAM[R] Upper-Body Tests of Muscular Strength and Endurance
ERIC Educational Resources Information Center
Sherman, Todd; Barfield, J. P.
2006-01-01
This study was designed to investigate the equivalence reliability between the suggested FITNESSGRAM[R] muscular strength and endurance test, the 90[degrees] push-up (PSU), and alternate FITNESSGRAM[R] tests of upper-body strength and endurance (i.e., modified pull-up [MPU], flexed-arm hang [FAH], and pull-up [PU]). Children (N = 383) in Grades 3…
Ploegmakers, Joris; The, Bertram; Wang, Allan; Brutty, Mike; Ackland, Tim
2015-10-01
Forearm rotation is a key function in the upper extremity. Following distal radius fracture, residual disability may occur in tasks requiring forearm rotation. The objectives of this study are to define pronation and supination strength profiles tested through the range of forearm rotation in normal individuals, and to evaluate the rotational strength profiles and rotational strength deficits across the testing range in a cohort of patients treated for distal radius fracture associated with an ulnar styloid base fracture. In a normative cohort of 29 subjects the supination strength profile showed an increasing linear relationship from supination to pronation. Twelve subjects were evaluated 2-4 years after anatomical open reduction and volar plate fixation of a distal radius fracture. The injured wrist was consistently weaker (corrected for hand dominance) in both supination and pronation strength in all testing positions, with the greatest loss in 60 degrees supination. Mean supination strength loss across all testing positions was significantly correlated with worse PRWE scores, highlighting the importance of supination in wrist function.
Dijkhuizen, Annemarie; Douma, Rob K; Krijnen, Wim P; van der Schans, Cees P; Waninge, Aly
2018-05-30
A feasible and reliable instrument to measure strength in persons with severe intellectual and visual disabilities (SIVD) is lacking. The aim of our study was to determine feasibility, learning period and reliability of three strength tests. Twenty-nine participants with SIVD performed the Minimum Sit-to-Stand Height test (MSST), the Leg Extension test (LE) and the 30 seconds Chair-Stand test (30sCS), once per week for 5 weeks. Feasibility was determined by the percentage of successful measurements; learning effect by using paired t test between two consecutive measurements; test-retest reliability by intraclass correlation coefficient and Limits of Agreement and, correlations by Pearson correlations. A sufficient feasibility and learning period of the tests was shown. The methods had sufficient test-retest reliability and moderate-to-sufficient correlations. The MSST, the LE, and the 30sCS are feasible tests for measuring muscle strength in persons with SIVD, having sufficient test re-test reliability. © 2018 John Wiley & Sons Ltd.
76 FR 17561 - Inflatable Personal Flotation Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... the grab breaking strength, tear strength, seam strength, and permeability tests for inflation chamber... Coated Fabrics), and ASTM D 1434-82 (Standard Test Method for Determining Gas Permeability... Government and Indian tribes, or on the distribution of power and responsibilities between the Federal...
NASA Astrophysics Data System (ADS)
Delibalta, M. S.; Kahraman, S.; Comakli, R.
2015-11-01
Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.
Life prediction and mechanical reliability of NT551 silicon nitride
NASA Astrophysics Data System (ADS)
Andrews, Mark Jay
The inert strength and fatigue performance of a diesel engine exhaust valve made from silicon nitride (Si3N4) ceramic were assessed. The Si3N4 characterized in this study was manufactured by Saint Gobain/Norton Industrial Ceramics and was designated as NT551. The evaluation was made utilizing a probabilistic life prediction algorithm that combined censored test specimen strength data with a Weibull distribution function and the stress field of the ceramic valve obtained from finite element analysis. The major assumptions of the life prediction algorithm are that the bulk ceramic material is isotropic and homogeneous and that the strength-limiting flaws are uniformly distributed. The results from mechanical testing indicated that NT551 was not a homogeneous ceramic and that its strength were functions of temperature, loading rate, and machining orientation. Fractographic analysis identified four different failure modes; 2 were identified as inhomogeneities that were located throughout the bulk of NT551 and were due to processing operations. The fractographic analysis concluded that the strength degradation of NT551 observed from the temperature and loading rate test parameters was due to a change of state that occurred in its secondary phase. Pristine and engine-tested valves made from NT551 were loaded to failure and the inert strengths were obtained. Fractographic analysis of the valves identified the same four failure mechanisms as found with the test specimens. The fatigue performance and the inert strength of the Si3N 4 valves were assessed from censored and uncensored test specimen strength data, respectively. The inert strength failure probability predictions were compared to the inert strength of the Si3N4 valves. The inert strength failure probability predictions were more conservative than the strength of the valves. The lack of correlation between predicted and actual valve strength was due to the nonuniform distribution of inhomogeneities present in NT551. For the same reasons, the predicted and actual fatigue performance did not correlate well. The results of this study should not be considered a limitation of the life prediction algorithm but emphasize the requirement that ceramics be homogeneous and strength-limiting flaws uniformly distributed as a perquisite for accurate life prediction and reliability analyses.
Nyman, Jeffry S.; Gorochow, Lacey E.; Horch, R. Adam; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D.
2012-01-01
With an ability to quantify matrix-bound and pore water in bone, 1H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21 to 60 years of age (young) and 74 to 99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ~3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62 °C and then 103 °C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62 °C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. PMID:23631897
Nyman, Jeffry S; Gorochow, Lacey E; Adam Horch, R; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D
2013-06-01
With an ability to quantify matrix-bound and pore water in bone, (1)H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21-60 years of age (young) and 74-99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ∼3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62°C and then 103°C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62°C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. Published by Elsevier Ltd.
Comparative study of mechanical properties of direct core build-up materials
Kumar, Girish; Shivrayan, Amit
2015-01-01
Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905
Low agreement between the fitnessgram criterion references for adolescents
Coledam, Diogo Henrique Constantino; Batista, João Pedro; Glaner, Maria Fátima
2015-01-01
OBJECTIVE: To analyze the association and agreement of fitnessgram reference criteria (RC) for cardiorespiratory fitness, body mass index (BMI) and strength in youth. METHODS: The study included 781 youth, 386 females, aged 10 to 18 years of Londrina-PR. It were performed cardiorespiratory fitness and muscular strength tests and was calculated body mass index. The association between the tests was analyzed using Poisson regression to obtain prevalence ratio (PR) and confidence intervals of 95%, while agreement of the reference criteria was tested by Kappa index. RESULTS: Significant associations were found between cardiorespiratory fitness and BMI (PR=1,49, 1,27-1,75), muscle strength and BMI (PR=1,55, 1,17-2,08), cardiorespiratory fitness and muscle strength (PR=1,81, 1,47-2,24). The agreement between reference criteria ranged from weak to fair, 48.8% (k=0.05, p=0.10) for cardiorespiratory fitness and BMI, 52.9% (k=0.09, p=0.001) for muscle strength and BMI and 38.4% (k=0.22, p<0.001) for cardiorespiratory fitness and muscle strength. CONCLUSIONS: Although RC for cardiorespiratory fitness, muscle strength and BMI are associated, the agreement between them ranged from weak to fair. To evaluate health related physical fitness it is suggest the execution of all tests, since each test has specific characteristics. PMID:25649383
Influence of dentin pretreatment on bond strength of universal adhesives.
Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea
2017-01-01
Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer's instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal-Wallis analysis of variance and the Mann-Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system.
Lundberg, Karin; Wu, Lindsey; Papia, Evaggelia
2017-01-01
Abstract Objective: The aim of the study was to make an inventory of current literature on the bond strength between zirconia and veneering porcelain after surface treatment of zirconia by grinding with diamond bur and/or with airborne-particle abrasion. Material and methods: The literature search for the present review was made following recommended guidelines using acknowledged methodology on how to do a systematic review. The electronic databases PubMed, Cochrane Library, and Science Direct were used in the present study. Results: Twelve studies were selected. Test methods used in the original studies included shear bond strength (SBS) test, tensile bond strength test, and micro-tensile bond strength test. The majority of studies used SBS. Results showed a large variation within each surface treatment of zirconia, using different grain size, blasting time, and pressure. Conclusions: Airborne-particle abrasion might improve the bond strength and can therefore be considered a feasible surface treatment for zirconia that is to be bonded. Grinding has been recommended as a surface treatment for zirconia to improve the bond strength; however, this recommendation cannot be verified. A standardized test method and surface treatment are required to be able to compare the results from different studies and draw further conclusions. PMID:28642927
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.
1991-01-01
Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.
Kierkegaard, Marie; Petitclerc, Émilie; Hébert, Luc J; Mathieu, Jean; Gagnon, Cynthia
2018-02-28
To assess changes and responsiveness in outcome measures of mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1. A 9-year longitudinal study conducted with 113 patients. The responsiveness of the Timed Up and Go test, Berg Balance Scale, quantitative muscle testing, grip and pinch-grip strength, and Purdue Pegboard Test was assessed using criterion and construct approaches. Patient-reported perceived changes (worse/stable) in balance, walking, lower-limb weakness, stair-climbing and hand weakness were used as criteria. Predefined hypotheses about expected area under the receiver operating characteristic curves (criterion approach) and correlations between relative changes (construct approach) were explored. The direction and magnitude of median changes in outcome measures corresponded with patient-reported changes. Median changes in the Timed Up and Go test, grip strength, pinch-grip strength and Purdue Pegboard Test did not, in general, exceed known measurement errors. Most criterion (72%) and construct (70%) approach hypotheses were supported. Promising responsiveness was found for outcome measures of mobility, balance and muscle strength. Grip strength and manual dexterity measures showed poorer responsiveness. The performance-based outcome measures captured changes over the 9-year period and responsiveness was promising. Knowledge of measurement errors is needed to interpret the meaning of these longitudinal changes.
Influence of dentin pretreatment on bond strength of universal adhesives
Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea
2017-01-01
Abstract Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer’s instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal–Wallis analysis of variance and the Mann–Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system. PMID:28642929
The Construction of a Muscular Strength Test Battery for Girls in the Primary Grades.
ERIC Educational Resources Information Center
DiNucci, James M.; Pelton, Elois B.
This study was designed to construct a gross muscular strength test battery for girls 6-9 years of age in grades 1-3. The subjects for this investigation were a random sample of 183 girls in grades 1-3 of the public schools of Natchitoches, Louisiana. The variables selected were 22 cable tension strength tests developed by Clarke and associates.…
Jung, Hungu; Yamasaki, Masahiro
2016-12-08
Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.
Environmental light color affects the stress response of Nile tilapia.
Maia, Caroline Marques; Volpato, Gilson Luiz
2013-02-01
We investigated the effects of environmental light colors (blue, yellow and white) on the stress responses (measured by changes in ventilatory frequency - VF) of Nile tilapia to confinement. After 7 days of light treatment, the VF was similar for fish in each color. On the 8th day, fish were confined for 15 min. After release, the post-confinement VF was measured six times (first period: 0, 2 and 4 min; second period: 6, 8 and 10 min). Irrespective of the light color treatment, confinement increased the VF to higher levels during the first post-confinement period than during the second one. When color was analyzed, irrespective of time, fish under white light increased their VF post-confinement, and blue light prevented this effect. We conclude that blue light is the preferred color for Nile tilapia in terms of reducing stress. This finding is in contrast to previous choice test studies that indicated that yellow is their preferred color. Copyright © 2012 Elsevier GmbH. All rights reserved.
Tsantani, Maria S; Belin, Pascal; Paterson, Helena M; McAleer, Phil
2016-08-01
Vocal pitch has been found to influence judgments of perceived trustworthiness and dominance from a novel voice. However, the majority of findings arise from using only male voices and in context-specific scenarios. In two experiments, we first explore the influence of average vocal pitch on first-impression judgments of perceived trustworthiness and dominance, before establishing the existence of an overall preference for high or low pitch across genders. In Experiment 1, pairs of high- and low-pitched temporally reversed recordings of male and female vocal utterances were presented in a two-alternative forced-choice task. Results revealed a tendency to select the low-pitched voice over the high-pitched voice as more trustworthy, for both genders, and more dominant, for male voices only. Experiment 2 tested an overall preference for low-pitched voices, and whether judgments were modulated by speech content, using forward and reversed speech to manipulate context. Results revealed an overall preference for low pitch, irrespective of direction of speech, in male voices only. No such overall preference was found for female voices. We propose that an overall preference for low pitch is a default prior in male voices irrespective of context, whereas pitch preferences in female voices are more context- and situation-dependent. The present study confirms the important role of vocal pitch in the formation of first-impression personality judgments and advances understanding of the impact of context on pitch preferences across genders.
Moliner-Urdiales, Diego; Ortega, Francisco B; Vicente-Rodriguez, Germán; Rey-Lopez, Juan P; Gracia-Marco, Luis; Widhalm, Kurt; Sjöström, Michael; Moreno, Luis A; Castillo, Manuel J; Ruiz, Jonatan R
2010-08-01
The objective of this study is to analyse the association of objectively assessed physical activity (PA) with muscular strength and fat-free mass in adolescents, and to determine whether meeting the current PA recommendations is associated with higher levels of muscular strength and fat-free mass. The present cross-sectional study comprised 363 Spanish adolescents (180 females) aged 12.5-17.5 years. PA was assessed by accelerometry and expressed as average PA (counts/min), and min/day of inactive, light, moderate, vigorous and moderate to vigorous PA (MVPA). MVPA was dichotomized into < 60 min/day and > or = 60. Upper body muscular strength was measured with the handgrip strength test, and lower body muscular strength was measured with the standing broad jump, squat jump, counter movement jump and Abalakov tests. Fat-free mass was measured by DXA. We observed positive associations between vigorous PA and all the lower body muscular strength tests except for the counter movement jump in males. PA was not associated with fat-free mass in both males and females. Male adolescents engaged in at least 60 min/day MVPA performed better in the standing broad jump test. In conclusion, the findings of the present study suggest that only vigorous PA is associated with muscular strength, particularly lower-body muscular strength in male adolescents.
Evaluation of acceptance strength tests for concrete pavements.
DOT National Transportation Integrated Search
2005-06-30
The North Carolina Department of Transportation has used traditionally flexural strength tests for acceptance : testing of Portland cement concrete pavements. This report summarizes a research project implemented to : investigate the feasibility of u...
ETV Program Report: Big Fish Septage and High Strength Waste Water Treatment System
Verification testing of the Big Fish Environmental Septage and High Strength Wastewater Processing System for treatment of high-strength wastewater was conducted at the Big Fish facility in Charlevoix, Michigan. Testing was conducted over a 13-month period to address different c...
NASA Technical Reports Server (NTRS)
Baker, Donald J.
1994-01-01
Residual strength results are presented for four composite material systems that have been exposed for up to 10 years to the environment at five different locations on the North American continent. The exposure locations are near where the Bell Model 206L helicopters, which participated in a flight service program sponsored by NASA Langley Research Center and the U.S. Army, were flying in daily commercial service. The composite material systems are (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 graphite/E-788 epoxy. Six replicates of each material were removed and tested after 1, 3, 5, 7, and 10 years of exposure. The average baseline strength was determined from testing six as-fabricated specimens. More than 1700 specimens have been tested. All specimens that were tested to determine their strength were painted with a polyurethane paint. Each set of specimens also included an unpainted panel for observing the weathering effects on the composite materials. A statistically based procedure has been used to determine the strength value above which at least 90 percent of the population is expected to fall with a 95-percent confidence level. The computed compression strengths are 80 to 90 percent of the baseline (no-exposure) strengths. The resulting compression strengths are approximately 8 percent below the population mean strengths. The computed short-beam-shear strengths are 83 to 92 percent of the baseline (no-exposure) strengths. The computed tension strength of all materials is 93 to 97 percent of the baseline (no-exposure) strengths.
Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A
2018-04-27
Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yildirim, T; Ayar, M K; Yesilyurt, C; Kilic, S
2016-01-01
The aim of the present study was to compare two different bond strength test methods (tensile and microtensile) in investing the influence of erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser pulse frequency on resin-enamel bonding. One-hundred and twenty-five bovine incisors were used in the present study. Two test methods were used: Tensile bond strength (TBS; n = 20) and micro-TBS (μTBS; n = 5). Those two groups were further split into three subgroups according to Er, Cr: YSGG laser frequency (20, 35, and 50 Hz). Following adhesive procedures, microhybrid composite was placed in a custom-made bonding jig for TBS testing and incrementally for μTBS testing. TBS and μTBS tests were carried out using a universal testing machine and a microtensile tester, respectively. Analysis of TBS results showed that means were not significantly different. For μTBS, the Laser-50 Hz group showed the highest bond strength (P < 0.05), and increasing frequency significantly increased bond strength (P < 0.05). Comparing the two tests, the μTBS results showed higher means and lower standard deviations. It was demonstrated that increasing μTBS pulse frequency significantly improved immediate bond strength while TBS showed no significant effect. It can, therefore, be concluded that test method may play a significant role in determining optimum laser parameters for resin bonding.
Connick, Mark J; Beckman, Emma; Vanlandewijck, Yves; Malone, Laurie A; Blomqvist, Sven; Tweedy, Sean M
2017-11-25
The Para athletics wheelchair-racing classification system employs best practice to ensure that classes comprise athletes whose impairments cause a comparable degree of activity limitation. However, decision-making is largely subjective and scientific evidence which reduces this subjectivity is required. To evaluate whether isometric strength tests were valid for the purposes of classifying wheelchair racers and whether cluster analysis of the strength measures produced a valid classification structure. Thirty-two international level, male wheelchair racers from classes T51-54 completed six isometric strength tests evaluating elbow extensors, shoulder flexors, trunk flexors and forearm pronators and two wheelchair performance tests-Top-Speed (0-15 m) and Top-Speed (absolute). Strength tests significantly correlated with wheelchair performance were included in a cluster analysis and the validity of the resulting clusters was assessed. All six strength tests correlated with performance (r=0.54-0.88). Cluster analysis yielded four clusters with reasonable overall structure (mean silhouette coefficient=0.58) and large intercluster strength differences. Six athletes (19%) were allocated to clusters that did not align with their current class. While the mean wheelchair racing performance of the resulting clusters was unequivocally hierarchical, the mean performance of current classes was not, with no difference between current classes T53 and T54. Cluster analysis of isometric strength tests produced classes comprising athletes who experienced a similar degree of activity limitation. The strength tests reported can provide the basis for a new, more transparent, less subjective wheelchair racing classification system, pending replication of these findings in a larger, representative sample. This paper also provides guidance for development of evidence-based systems in other Para sports. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bisson, M; Alméras, N; Plaisance, J; Rhéaume, C; Bujold, E; Tremblay, A; Marc, I
2013-12-01
What is already known about this subject A healthy life begins in utero and a healthy pregnancy requires a fit and healthy mother. Physical activity during pregnancy provides a stimulation that is essential for promoting optimal body oxygenation and composition as well as metabolic fitness during pregnancy. Although a higher maternal fitness is expected to provide a beneficial fetal environment, it is still unclear whether physical fitness during pregnancy contributes to perinatal health. What this study adds Participation in sports and exercise previously and at the beginning of pregnancy can benefit maternal health by improving cardiorespiratory fitness during pregnancy, irrespective of maternal body mass index. Maternal strength, an indicator of muscular fitness, is an independent determinant of infant fetal growth and can positively influence birth weight. It is still unclear whether maternal physical activity and fitness during pregnancy contributes to perinatal health. The aims of this study were to characterize maternal physical fitness at 16 weeks of pregnancy and to examine its effects on infant birth weight. Maternal anthropometry (body mass index [BMI] and skin-folds), physical activity, cardiorespiratory fitness (VO2 peak) and muscular fitness (handgrip strength) were assessed at 16 weeks of gestation in 65 healthy pregnant women. Offspring birth weight was collected from maternal charts after delivery. A higher VO2 peak was associated with physical activity spent at sports and exercise before and in early pregnancy (P = 0.0005). Maternal BMI was negatively associated with cardiorespiratory fitness (P < 0.0001) but positively related to muscular strength (P = 0.0001). Unlike maternal cardiorespiratory fitness, handgrip strength was positively associated with infant birth weight (r = 0.34, P = 0.0068) even after adjustment for confounders (adjusted r = 0.27, P = 0.0480). A positive relationship between maternal muscular fitness and infant birth weight highlighted maternal strength in pregnancy as a new determinant of infant birth weight. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.
Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P.; Niemeyer, Philipp
2017-01-01
Background: Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. Purpose: To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Study Design: Cross-sectional study; Level of evidence, 3. Methods: To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2). Results: Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm2) were of no importance regarding the prediction of the strength deficit. The quadriceps strength deficit between the injured and the uninjured leg was best predicted by the results of the single-leg hop test. Conclusion: Patients with isolated cartilage defects of the knee joint have significant deficits in quadriceps muscle strength of the injured leg compared with the uninjured leg. The single-leg hop test may be used to predict quadriceps strength deficits. Future research should address whether preoperative strength training in patients with cartilage defects of the knee could be effective and should be taken into consideration in addition to surgical treatment. PMID:28596973
Delahanty, Linda M; Pan, Qing; Jablonski, Kathleen A; Watson, Karol E; McCaffery, Jeanne M; Shuldiner, Alan; Kahn, Steven E; Knowler, William C; Florez, Jose C; Franks, Paul W
2012-02-01
We tested genetic associations with weight loss and weight regain in the Diabetes Prevention Program, a randomized controlled trial of weight loss-inducing interventions (lifestyle and metformin) versus placebo. Sixteen obesity-predisposing single nucleotide polymorphisms (SNPs) were tested for association with short-term (baseline to 6 months) and long-term (baseline to 2 years) weight loss and weight regain (6 months to study end). Irrespective of treatment, the Ala12 allele at PPARG associated with short- and long-term weight loss (-0.63 and -0.93 kg/allele, P ≤ 0.005, respectively). Gene-treatment interactions were observed for short-term (LYPLAL1 rs2605100, P(lifestyle*SNP) = 0.032; GNPDA2 rs10938397, P(lifestyle*SNP) = 0.016; MTCH2 rs10838738, P(lifestyle*SNP) = 0.022) and long-term (NEGR1 rs2815752, P(metformin*SNP) = 0.028; FTO rs9939609, P(lifestyle*SNP) = 0.044) weight loss. Three of 16 SNPs were associated with weight regain (NEGR1 rs2815752, BDNF rs6265, PPARG rs1801282), irrespective of treatment. TMEM18 rs6548238 and KTCD15 rs29941 showed treatment-specific effects (P(lifestyle*SNP) < 0.05). Genetic information may help identify people who require additional support to maintain reduced weight after clinical intervention.
2017-12-01
description in Figure 9 below 2 Full or partial loss of test data due to instrumentation/triggering failures 3 Gages not included in these tests 4...Table 2. Sample properties. Test Description Dimensions Weight (lbs.) Strength (psi) Notes 17 Fully Tempered Glass Window 4-ft x 6-ft x...an estimate of prism strength for medium weight CMU. The reinforced concrete sample was a 5.5-in thick solid panel. To evaluate its strength
Application of Strength Diagnosis.
ERIC Educational Resources Information Center
Newton, Robert U.; Dugan, Eric
2002-01-01
Discusses the various strength qualities (maximum strength, high- and low-load speed strength, reactive strength, rate of force development, and skill performance), noting why a training program design based on strength diagnosis can lead to greater efficacy and better performance gains for the athlete. Examples of tests used to assess strength…
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR § 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Dynamic strength of retention system test. Â... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.
McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind
2018-06-08
McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p < 0.05), whereas all strength measures correlated significantly with CMJ heights (p < 0.001). The associations between jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.
Loyd, Brian J; Jennings, Jason M; Judd, Dana L; Kim, Raymond H; Wolfe, Pamela; Dennis, Douglas A; Stevens-Lapsley, Jennifer E
2017-09-01
Total knee arthroplasty (TKA) is associated with declines in hip abductor (HA) muscle strength; however, a longitudinal analysis demonstrating the influence of TKA on trajectories of HA strength change has not been conducted. The purpose of this study was to quantify changes in HA strength from pre-TKA through 3 months post-TKA and to characterize the relationship between HA strength changes and physical performance. This study is a post hoc analysis of a randomized controlled trial. Data from 162 participants (89 women, mean age = 63 y) were used for analysis. Data were collected by masked assessors preoperatively and at 1 and 3 months following surgery. Outcomes included: Timed "Up and Go" test (TUG), Stair Climbing Test (SCT), Six-Minute Walk Test (6MWT), and walking speed. Paired t tests were used for between- and within-limb comparisons of HA strength. Multivariable regression was used to determine contributions of independent variables, HA and knee extensor strength, to the dependent variables of TUG, SCT, 6MWT, and walking speed at each time point. Hip abductor strength was significantly lower in the surgical limb pre-TKA (mean = 0.015; 95% CI = 0.010-0.020), 1 month post-TKA (0.028; 0.023-0.034), and 3 months post-TKA (0.02; 0.014-0.025) compared with the nonsurgical limb. Hip abductor strength declined from pre-TKA to 1 month post-TKA (18%), but not at the 3-month time point (0%). Hip abductor strength independently contributed to performance-based outcomes pre-TKA; however, this contribution was not observed post-TKA. The post hoc analysis prevents examining all outcomes likely to be influenced by HA strength. Surgical limb HA strength is impaired prior to TKA, and worsens following surgery. Furthermore, HA strength contributes to performance-based outcomes, supporting the hypothesis that HA strength influences functional recovery. © 2017 American Physical Therapy Association
Mayson, Douglas J; Kiely, Dan K; LaRose, Sharon I; Bean, Jonathan F
2008-12-01
To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01-1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance (BERG 14.23 [1.84-109.72], performance-oriented mobility assessment 33.92 [3.69-312.03], and Dynamic Gait Index 35.80 [4.77-268.71]). Strength was only associated with the BERG 1.08 (1.01-1.14). Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity.
NASA Technical Reports Server (NTRS)
Reeder, James R.
2002-01-01
Accelerated tests for composite failure were investigated. Constant ramp transverse strength tests on thermoplastic composite specimens were conducted at four temperatures from 300 F to 450 F and five duration times from 0.5 sec to 24 hrs. Up to 400 F, the time-temperature-superposition method produces a master curve allowing strength at longer times to be estimated from strength tests conducted over shorter times but at higher temperatures. The shift factors derived from compliance tests applied well to the strength data. To explain why strength behaved similar to compliance, a viscoelastic fracture model was investigated based on the hypothesis that the work of fracture for crack initiation at some critical flaw remains constant with time and temperature. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with stress rate. Fracture tests using double cantilever beam specimens were conducted from 300 F to 450 F over time scales similar to the strength study. The toughness data showed a significant change with loading rate, less variation with temperature, did not form a master curve, and could not be correlated with the fracture model. Since the fracture model did not fit the fracture data, an alternative explanation based on the dilatational strain energy density was proposed. However the usefulness of this model is severely limited because it relies on a critical parameter which varies with loading rate.
Scale effects on the transverse tensile strength of graphite epoxy composites
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Salpekar, Satish A.
1992-01-01
The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.
Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates
Min, Fanlu; Yao, Zhanhu; Jiang, Teng
2014-01-01
The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355
Ultrasound transmission measurements for tensile strength evaluation of tablets.
Simonaho, Simo-Pekka; Takala, T Aleksi; Kuosmanen, Marko; Ketolainen, Jarkko
2011-05-16
Ultrasound transmission measurements were performed to evaluate the tensile strength of tablets. Tablets consisting of one ingredient were compressed from dibasic calcium phosphate dehydrate, two grades of microcrystalline cellulose and two grades of lactose monohydrate powders. From each powder, tablets with five different tensile strengths were directly compressed. Ultrasound transmission measurements were conducted on every tablet at frequencies of 2.25 MHz, 5 MHz and 10 MHz and the speed of sound was calculated from the acquired waveforms. The tensile strength of the tablets was determined using a diametrical mechanical testing machine and compared to the calculated speed of sound values. It was found that the speed of sound increased with the tensile strength for the tested excipients. There was a good correlation between the speed of sound and tensile strength. Moreover, based on the statistical tests, the groups with different tensile strengths can be differentiated from each other by measuring the speed of sound. Thus, the ultrasound transmission measurement technique is a potentially useful method for non-destructive and fast evaluation of the tensile strength of tablets. Copyright © 2011 Elsevier B.V. All rights reserved.
Kordi Yoosefinejad, Amin; Shadmehr, Azadeh; Olyaei, Ghloamreza; Talebian, Saeed; Bagheri, Hossein
2014-01-01
Peripheral neuropathy is a common complication of diabetes mellitus. Muscle strength and the balance deficits are seen in these patients. Whole-Body Vibration (WBV) is a time-efficient method which may be beneficial for them. The immediate effects of WBV on muscle strength and balance have not been studied yet. The aim of this study was to investigate the effects of one session of WBV on muscle strength and the balance of diabetic patients. Ten diabetic patients with peripheral neuropathy took part in this study. Outcome measurements were total strength, strength of tibialis anterior and quadriceps femoris muscles and the balance parameters including Unilateral Stance Test and Timed Up and Go Test. Tibialis anterior muscle strength and Timed Up and GO Test parameters showed significant differences post-exercise in comparison to baseline. A session of WBV had positive effects on muscle strength and the balance in patients with type-2 diabetes associated with neuropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.
High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.
Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E
2016-02-01
To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair strength compared with high-tensile strength suture at time-zero simulated testing. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Jaya Christiyan, K. G.; Chandrasekhar, U.; Mathivanan, N. Rajesh; Venkateswarlu, K.
2018-02-01
A 3D printing was successfully used to fabricate samples of Polylactic Acid (PLA). Processing parameters such as Lay-up speed, Lay-up thickness, and printing nozzle were varied. All samples were tested for flexural strength using three point load test. A statistical mathematical model was developed to correlate the processing parameters with flexural strength. The result clearly demonstrated that the lay-up thickness and nozzle diameter influenced flexural strength significantly, whereas lay-up speed hardly influenced the flexural strength.
Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments
2017-01-19
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7160--17-9702 Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea ...LIMITATION OF ABSTRACT Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments Roger C. Gauss1 and Joseph M...significantly- updated results from 55 broadband SUS SSS measurements in 6 Critical Sea Test (CST) experiments. Since the time of the previously
NASA Technical Reports Server (NTRS)
Psioda, J. A.; Low, J. R., Jr.
1974-01-01
Methods for increasing the strength of maraging steels are discussed. An investigation was conducted to systematically vary the strength of 18 weight percent nickel, 300 grade maraging steel, to isolate any attending microstructural changes, and to study the effects of these changes on the fracture toughness of the alloy. A study aimed at determining the aging behavior of the program alloy was carried out to provide data by which to estimate yield strength. The effects of various alloying materials on the strength of the maraging steel are examined. The mechanical properties of the 300 grade maraging steel were determined by tension tests, fatigue precracked Charpy impact tests, and plane strain fracture toughness tests.
Evaluation of workability and strength of green concrete using waste steel scrap
NASA Astrophysics Data System (ADS)
Neeraja, D.; Arshad, Shaik Mohammed; Nawaz Nadaf, Alisha K.; Reddy, Mani Kumar
2017-11-01
This project works on the study of workability and mechanical properties of concrete using waste steel scrap from the lathe industry. Lathe industries produce waste steel scrap from the lathe machines. In this study, an attempt is made to use this waste in concrete, as accumulation of waste steel scrap cause disposal problem. Tests like compressive test, split tensile test, NDT test (UPV test) were conducted to determine the impact of steel scrap in concrete. The percentages of steel scrap considered in the study were 0%, 0.5%, 1%, 1.5%, and 2% respectively by volume of concrete, 7 day, 28 days test were conducted to find out strength of steel scrap concrete. It is observed that split tensile strength of steel scrap concrete is increased slightly. Split tensile strength of Steel scrap concrete is found to be maximum with volume fraction of 2.0% steel scrap. The steel scrap gives good result in split tensile strength of concrete. From the study concluded that steel scrap can be used in concrete to reduce brittleness of concrete to some extent.
Asakawa, Yuya; Takahashi, Hidekazu; Kobayashi, Masahiro; Iwasaki, Naohiko
2013-10-01
The aim of this study was to clarify the effect of the components and surface treatments of fiber-reinforced composite (FRC) posts on the durable bonding to core build-up resin evaluated using the pull-out and microtensile tests. Four types of experimental FRC posts, combinations of two types of matrix resins (polymethyl methacrylate and urethane dimethacrylate) and two types of fiberglass (E-glass and zirconia-containing glass) were examined. The FRC posts were subjected to one of three surface treatments (cleaned with ethanol, dichloromethane, or sandblasting). The bond strength between the FRC posts and core build-up resin were measured using the pull-out and microtensile tests before and after thermal cycling. The bond strengths obtained by each test before and after thermal cycling were statistically analyzed by three-way ANOVA and Tukey's multiple comparisons test (p<0.05). The bond strengths except for UDMA by the pull-out test decreased after thermal cycling. Regardless the test method and thermal cycling, matrix resins, the surface treatment and their interaction were statistically significant, but fiberglass did not. Dichloromethane treatment was effective for the PMMA-based FRC posts by the pull-out test, but not by the microtensile test. Sandblasting was effective for both PMMA- and UDMA-based FRC posts, regardless of the test method. The bond strengths were influenced by the matrix resin of the FRC post and the surface treatment. The bond strengths of the pull-out test showed a similar tendency of those of the microtensile test, but the value obtained by these test were different. Copyright © 2013 Elsevier Ltd. All rights reserved.
Correlation between strength properties in standard test specimens and molded phenolic parts
NASA Technical Reports Server (NTRS)
Turner, P S; Thomason, R H
1946-01-01
This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.
Clinical tests of ankle plantarflexor strength do not predict ankle power generation during walking.
Kahn, Michelle; Williams, Gavin
2015-02-01
The aim of this study was to investigate the relationship between a clinical test of ankle plantarflexor strength and ankle power generation (APG) at push-off during walking. This is a prospective cross-sectional study of 102 patients with traumatic brain injury. Handheld dynamometry was used to measure ankle plantarflexor strength. Three-dimensional gait analysis was performed to quantify ankle power generation at push-off during walking. Ankle plantarflexor strength was only moderately correlated with ankle power generation at push-off (r = 0.43, P < 0.001; 95% confidence interval, 0.26-0.58). There was also a moderate correlation between ankle plantarflexor strength and self-selected walking velocity (r = 0.32, P = 0.002; 95% confidence interval, 0.13-0.48). Handheld dynamometry measures of ankle plantarflexor strength are only moderately correlated with ankle power generation during walking. This clinical test of ankle plantarflexor strength is a poor predictor of calf muscle function during gait in people with traumatic brain injury.
Push-off tests and strength evaluation of joints combining shrink fitting with bonding
NASA Astrophysics Data System (ADS)
Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi
1997-03-01
Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.
Xu, Kan; He, Fan; Geng, Yi
2009-12-01
To study the influence of different opaque thickness on the bond strength of porcelain-fused-to metal (PFM) restorations. The testing sheets were made as the samples of ISO9693. With different sintering temperature and different opaque thickness on the bond strength of PFM restorations, the primary pressure of porcelain crack was measured by using three-points-bending test. Statistical analysis was carried out using a SPSS 10.0 software package. A post hoc multiple comparison test (Student-Newman-Keuls) was performed to evaluate the differences between the individual groups. In low sintering temperature group, the thin layer of opaque significantly improved the bond strength compared with thick layer of opaque (P<0.05). In high sintering temperature group, the thickness of opaque has no significant influence on the PFM bonding strength. Using the opaque, the bonding strength was better than those without opaque. The thickness of opaque has a little influence on the PFM bonding strength.
Comparative evaluation of tensile strength of Gutta-percha cones with a herbal disinfectant.
Mahali, Raghunandhan Raju; Dola, Binoy; Tanikonda, Rambabu; Peddireddi, Suresh
2015-01-01
To evaluate and compare the tensile strength values and influence of taper on the tensile strength of Gutta-percha (GP) cones after disinfection with sodium hypochlorite (SH) and Aloe vera gel (AV). Sixty GP cones of size 110, 2% taper, 60 GP cones F3 ProTaper, and 60 GP of size 30, 6% taper were obtained from sealed packs as three different groups. Experimental groups were disinfected with 5.25% SH and 90% AV gel except the control group. Tensile strengths of GP were measured using the universal testing machine. The mean tensile strength values for Group IA, IIA and IIIA are 11.8 MPa, 8.69 MPa, and 9.24 MPa, respectively. Results were subjected to statistical analysis one-way analysis of variance test and Tukey post-hoc test. 5.25% SH solutions decreased the tensile strength of GP cones whereas with 90% AV gel it was not significantly altered. Ninety percent Aloe vera gel as a disinfectant does not alter the tensile strength of GP cones.
Shear bond strength of a new one-bottle dentin adhesive.
Swift, E J; Bayne, S C
1997-08-01
To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.
Influences of pretreatment and hard baking on the mechanical reliability of SU-8 microstructures
NASA Astrophysics Data System (ADS)
Morikaku, Toshiyuki; Kaibara, Yoshinori; Inoue, Masatoshi; Miura, Takuya; Suzuki, Takaaki; Oohira, Fumikazu; Inoue, Shozo; Namazu, Takahiro
2013-10-01
In this paper, the influences of pretreatment and hard baking on the mechanical characteristics of SU-8 microstructures are described. Four types of samples with different combinations of O2 plasma ashing, primer coating and hard baking were prepared for shear strength tests and uniaxial tensile tests. Specially developed shear test equipment was used to experimentally measure the shear adhesion strength of SU-8 micro posts on a glass substrate. The adhesiveness was strengthened by hard baking at 200 °C for 60 min, whereas other pretreatment processes hardly affected the strength. The pretreatment and hard baking effects on the adhesive strength were compared with those on the fracture strength measured by uniaxial tensile testing. There were no influences of O2 plasma ashing on both the strengths, and primer coating affected only tensile strength. The primer coating effect as well as the hard baking effect on stress relaxation phenomena in uniaxial tension was observed as well. Fourier transform infrared spectroscopy demonstrated that surface degradation and epoxide-ring opening polymerization would have given rise to the primer coating effect and the hard baking effect on the mechanical characteristics, respectively.
NASA Astrophysics Data System (ADS)
Radna, Lidia; Sakharov, Volodymyr
2017-12-01
Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.
Schulz, William H.; Wang, Gonghui
2014-01-01
Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.
Álvarez, C; Ramírez-Campillo, R; Ramírez-Vélez, R; Martínez, C; Castro-Sepúlveda, M; Alonso-Martínez, A; Izquierdo, M
2018-01-01
Little evidence exists on which variables of body composition or muscular strength mediates more glucose control improvements taking into account inter-individual metabolic variability to different modes of exercise training. We examined 'mediators' to the effects of 6-weeks of resistance training (RT) or high-intensity interval training (HIT) on glucose control parameters in physically inactive schoolchildren with insulin resistance (IR). Second, we also determined both training-induce changes and the prevalence of responders (R) and non-responders (NR) to decrease the IR level. Fifty-six physically inactive children diagnosed with IR followed a RT or supervised HIT program for 6 weeks. Participants were classified based on ΔHOMA-IR into glycemic control R (decrease in homeostasis model assessment-IR (HOMA-IR) <3.0 after intervention) and NRs (no changes or values HOMA-IR⩾3.0 after intervention). The primary outcome was HOMA-IR associated with their mediators; second, the training-induced changes to glucose control parameters; and third the report of R and NR to improve body composition, cardiovascular, metabolic and performance variables. Mediation analysis revealed that improvements (decreases) in abdominal fat by the waist circumference can explain more the effects (decreases) of HOMA-IR in physically inactive schoolchildren under RT or HIT regimes. The same analysis showed that increased one-maximum repetition leg-extension was correlated with the change in HOMA-IR (β=-0.058; P=0.049). Furthermore, a change in the waist circumference fully mediated the dose-response relationship between changes in the leg-extension strength and HOMA-IR (β'=-0.004; P=0.178). RT or HIT were associated with significant improvements in body composition, muscular strength, blood pressure and cardiometabolic parameters irrespective of improvement in glycemic control response. Both glucose control RT-R and HIT-R (respectively), had significant improvements in mean HOMA-IR, mean muscular strength leg-extension and mean measures of adiposity. The improvements in the lower body strength and the decreases in waist circumference can explain more the effects of the improvements in glucose control of IR schoolchildren in R group after 6 weeks of RT or HIT, showing both regimes similar effects on body composition or muscular strength independent of interindividual metabolic response variability.
Souza-Junior, Tácito P; Willardson, Jeffrey M; Bloomer, Richard; Leite, Richard D; Fleck, Steven J; Oliveira, Paulo R; Simão, Roberto
2011-10-27
The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR). Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging. Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group. We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the DI group, yet strength gains were similar, the creatine supplementation appeared to bolster adaptations for the DI group, even in the presence of significantly less volume. However, further research is needed with the inclusion of a control group not receiving supplementation combined and resistance training with decreasing rest intervals to further elucidate such hypotheses.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea
2017-01-01
Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (p<0.05) in the maximal isokinetic bilateral knee flexion torque. The multi-joint evaluation system for the assessment of knee and ankle isokinetic and isometric strength provided reliable test-retest measures in healthy older adults. Ib.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi
2008-08-01
Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.
Reuse of waste iron as a partial replacement of sand in concrete.
Ismail, Zainab Z; Al-Hashmi, Enas A
2008-11-01
One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.
The dynamic properties behavior of high strength concrete under different strain rate
NASA Astrophysics Data System (ADS)
Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul
2005-04-01
This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.
Mechanical properties of contemporary composite resins and their interrelations.
Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros
2013-08-01
To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.
2004-03-01
A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.
Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.
Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O
2012-01-01
To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible hydrocolloid.
Chen, Tzurei; Chou, Li-Shan
2017-12-01
To examine the association of muscle strength and balance control with the amount of time taken to perform sit-to-walk (STW) or turning components of the Timed Up and Go (TUG) test in older adults. Correlations; multiple regression models. General community. Older adults (N=60) age >70 years recruited from the community. Not applicable. Muscle strength, balance control, and TUG test performance time. Muscle strength was quantified by peak joint moments during the isometric maximal voluntary contraction test for bilateral hip abductors, knee extensors, and ankle plantar flexors. Balance control was assessed with the Berg Balance Scale, Fullerton Advanced Balance Scale, and center of mass and ankle inclination angle derived during the TUG test performance. We found that balance control measures were significantly associated with both STW and turning durations even after controlling for muscle strength and other confounders (STW duration: P<.001, turning duration: P=.001). Adding strength to the regression model was found to significantly improve its prediction of STW duration (F change =5.945, P=.018), but not turning duration (F change =1.03, P=.14). Our findings suggest that poor balance control is an important factor that contributes to longer STW and turning durations on the TUG test. Furthermore, strength has a higher association with STW than turning duration. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ROBNCA: robust network component analysis for recovering transcription factor activities.
Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem
2013-10-01
Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA
Minimum spanning tree analysis of the human connectome
Sommer, Iris E.; Bohlken, Marc M.; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A.; Douw, Linda; Otte, Willem M.; Mandl, René C.W.; Stam, Cornelis J.
2018-01-01
Abstract One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion‐weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null‐model. The MST of individual subjects matched this reference MST for a mean 58%–88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so‐called rich club nodes (a subset of high‐degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical–subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. PMID:29468769
Tensile properties of nicalon fiber-reinforced carbon following aerospace turbine engine testing
NASA Astrophysics Data System (ADS)
Pierce, J. L.; Zawada, L. P.; Srinivasan, R.
2003-06-01
The durability of coated Nicalon silicon carbide fiber-reinforced carbon (SiC/C) as the flap and seal exhaust nozzle components in a military aerospace turbine engine was studied. Test specimens machined from both a flap and a seal component were tested for residual strength following extended ground engine testing on a General Electric F414 afterburning turbofan engine. Although small amounts of damage to the protective exterior coating were identified on each component following engine testing, the tensile strengths were equal to the as-fabricated tensile strength of the material. Differences in strength between the two components and variability within the data sets could be traced back to the fabrication process using witness coupon test data from the manufacturer. It was also observed that test specimens machined transversely across the flap and seal components were stronger than those machined along the length. The excellent retained strength of the coated SiC/C material after extended exposure to the severe environment in the afterburner exhaust section of an aerospace turbofan engine has resulted in this material being selected as the baseline material for the F414 exhaust nozzle system.
Processing and characterization of unidirectional thermoplastic nanocomposites
NASA Astrophysics Data System (ADS)
Narasimhan, Kameshwaran
The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.
NASA Technical Reports Server (NTRS)
Snider, H. L.; Reeder, F. L.; Dirkin, W. J.
1972-01-01
Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.
NASA Astrophysics Data System (ADS)
Thompson, N.; Watters, R. J.; Schiffman, P.
2004-12-01
Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.
Willigenburg, Nienke; Hewett, Timothy E.
2016-01-01
Objective To define the relationship between FMS™ scores and hop performance, hip strength, and knee strength in collegiate football players. Design Cross-sectional cohort. Participants Freshmen of a division I collegiate American football team (n=59). Main Outcome Measures The athletes performed the FMS™, as well as a variety of hop tests, isokinetic knee strength and isometric hip strength tasks. We recorded total FMS™ score, peak strength and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman’s correlation coefficients quantified the relationships these measures, and chi-square analyses compared the number of athletes with asymmetries on the different tasks. Results We observed significant correlations (r=0.38–0.56, p≤0.02) between FMS™ scores and hop distance, but not between FMS™ scores and hip or knee strength (all p≥0.21). The amount of asymmetry on the FMS™ test was significantly correlated to the amount of asymmetry on the timed 6m hop (r=0.44, p<0.01), but not to hip or knee strength asymmetries between limbs (all p≥0.34). Conclusions FMS™ score was positively correlated to hop distance, and limb asymmetry in FMS™ tasks was correlated to limb asymmetry in 6m hop time in football players. No significant correlations were observed between FMS™ score and hip and knee strength, or between FMS™ asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time and cost efficient alternative to FMS™ testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries. PMID:26886801
Willigenburg, Nienke; Hewett, Timothy E
2017-03-01
To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.
Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad
2016-10-01
Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.
Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Thomas, Job; Ramadass, S.
2016-09-01
Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.
Autohesive strength development in polysulfone resin and graphite-polysulfone composites
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1988-01-01
The effects of bonding temperature and contact time on autohesive strength development in thermoplastic polysulfone resin and graphite-polysulfone composites were investigated. Two test methods were examined to measure autohesion in the neat resin samples. These included an interfacial tension test and a compact tension fracture toughness test. Autohesive strength development in fiber-reinforced composites was measured using a double cantilever beam interlaminar fracture toughness test. The results of the tests were compared with current diffusion theories explaining crack healing and welding of glassy polymers. Discrepancies between the results of the present investigation and the diffusion theories are discussed.
NASA Technical Reports Server (NTRS)
Lopez, O. F.
1984-01-01
Part of the NASA/ACEE Program was to determine the effect of long-term durability testing on the residual strength of graphite-epoxy cover panel and spar components of the Lockheed L-1011 aircraft vertical stabilizer. The results of these residual strength tests are presented herein. The structural behavior and failure mode of both cover panel and spar components were addressed, and the test results obtained were compared with the static test results generated by Lockheed. The effect of damage on one of the spar specimens was described.
Hatamleh, Muhanad M; Watts, David C
2010-07-01
The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.
Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.
Alp, Gülce; Murat, Sema; Yilmaz, Burak
2018-01-28
To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p < 0.05). CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p < 0.05), and conventional PMMA (p < 0.0001), and significantly lower flexural strength compared to CAD/CAM PMMA-based M (p < 0.05). The flexural strength of CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.
REPORT OF THE QUALIFICATION TESTING OF SNAP 10A FUSISTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtwick, J.S. III; Nowell, V.P.
1963-07-31
Qualification testing of SNAP 10A fusistors was performed. Test operations included: visual inspection, insulation resistance, dielectric strength, and d-c resistance testing prior to subjecting the fusisters to environmental testing; opening-time testing prior to, during, and following vacuum and temperature testing; and insulation resistance, dielectric strength, and d-c resistance testing following environmental applications of temperature, vacuum, and sinusoidal vibration. (auth)
USDA-ARS?s Scientific Manuscript database
The effects of the relative humidity (RH) of testing conditions on stelometer cotton flat bundle strength and elongation measurements, and on the morphology of fiber fractures will be discussed in this talk. We observed a trend for stelometer strength and elongations measurements. Testing in conditi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, A.
2008-03-03
A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less
Concrete probe-strength study : final report.
DOT National Transportation Integrated Search
1969-12-01
The Windsor probe - test system was evaluated for determining compressive strength of concrete by comparing probe strengths against cylinder and core strengths from both laboratory and field-poured concrete. Advantages and disadvantages of this syste...
Aljabo, Anas; Abou Neel, Ensanya A; Knowles, Jonathan C; Young, Anne M
2016-03-01
The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Hamstring injury prevention in soccer: Before or after training?
Lovell, R; Knox, M; Weston, M; Siegler, J C; Brennan, S; Marshall, P W M
2018-02-01
We examined the effects of a 12-week program of Nordic hamstring exercises (NHE), administered before or after football training, upon eccentric hamstring strength, muscle activity, and architectural adaptations. Amateur soccer players were randomized into three groups. The control group (CON; n=11) undertook core stability exercises, whereas a periodized NHE program was delivered either before (NHE BEF ; n=10) or after (NHE AFT ; n=14) biweekly training sessions. Outcome measures included peak torque and concomitant normalized peak surface electromyography signals (sEMG) of the biceps femoris (BF) and medial hamstring (MH) muscles during knee flexor maximal eccentric contractions, performed at 30°·s -1 . Ultrasonography was used to determine BF muscle thickness, muscle fiber pennation angle, and fascicle length. Performing the NHE derived likely moderate peak torque increases in both NHE BEF (+11.9%; 90% confidence interval: 3.6%-20.9%) and NHE AFT (+11.6%; 2.6%-21.5%) vs CON. Maximum sEMG increases were moderately greater in the BF of both NHE training groups vs CON. There were likely moderate increases in BF muscle thickness (+0.17 cm; 0.05-0.29 cm) and likely small pennation angle increases (+1.03°; -0.08° to 2.14°) in NHE AFT vs CON and NHE BEF . BF fascicle length increases were likely greater in NHE BEF (+1.58 cm; 0.48-2.68 cm; small effect) vs CON and NHE AFT . A 12-week eccentric hamstring strengthening program increased strength and sEMG to a similar magnitude irrespective of its scheduling relative to the football training session. However, architectural adaptations to support the strength gains differed according to the timing of the injury prevention program. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wardenaar, Floris; Brinkmans, Naomi; Ceelen, Ingrid; Van Rooij, Bo; Mensink, Marco; Witkamp, Renger; De Vries, Jeanne
2017-01-01
Web-based 24-h dietary recalls and questionnaires were obtained from 553 Dutch well-trained athletes. The total energy and macronutrient intake was compared between discipline-categories (endurance, team, and strength) within gender, and dietary inadequacy, i.e., too low or high intakes, according to selected recommendations and guidelines, was evaluated by applying a probability approach. On average, 2.83 days per person were reported with a mean energy intake of 2566–2985 kcal and 1997–2457 kcal per day, for men and women, respectively. Between disciplines, small differences in the mean intake of energy and macronutrients were seen for both men and women. Overall, 80% of the athletes met the suggested lower-limit sport nutrition recommendation of 1.2 g·kg−1 of protein per day. The carbohydrate intake of 50%–80% of athletes was between 3 and 5 g·kg−1 bodyweight, irrespective of the category of their discipline. This can be considered as low to moderate, in view of their daily total exercise load (athletes reported on average ~100 min per day). In conclusion, only small differences in the mean energy and macronutrient intake between elite endurance, strength, and team sport athletes, were found. The majority of the athletes were able to meet the generally accepted protein recommendation for athletes, of 1.2 g·kg−1. However, for most athletes, the carbohydrate intake was lower than generally recommended in the existing consensus guidelines on sport nutrition. This suggests that athletes could either optimize their carbohydrate intake, or that average carbohydrate requirements merit a re-evaluation. PMID:28208581
Wardenaar, Floris; Brinkmans, Naomi; Ceelen, Ingrid; Van Rooij, Bo; Mensink, Marco; Witkamp, Renger; De Vries, Jeanne
2017-02-10
Web-based 24-h dietary recalls and questionnaires were obtained from 553 Dutch well-trained athletes. The total energy and macronutrient intake was compared between discipline-categories (endurance, team, and strength) within gender, and dietary inadequacy, i.e., too low or high intakes, according to selected recommendations and guidelines, was evaluated by applying a probability approach. On average, 2.83 days per person were reported with a mean energy intake of 2566-2985 kcal and 1997-2457 kcal per day, for men and women, respectively. Between disciplines, small differences in the mean intake of energy and macronutrients were seen for both men and women. Overall, 80% of the athletes met the suggested lower-limit sport nutrition recommendation of 1.2 g·kg -1 of protein per day. The carbohydrate intake of 50%-80% of athletes was between 3 and 5 g·kg -1 bodyweight, irrespective of the category of their discipline. This can be considered as low to moderate, in view of their daily total exercise load (athletes reported on average ~100 minutes per day). In conclusion, only small differences in the mean energy and macronutrient intake between elite endurance, strength, and team sport athletes, were found. The majority of the athletes were able to meet the generally accepted protein recommendation for athletes, of 1.2 g·kg -1 . However, for most athletes, the carbohydrate intake was lower than generally recommended in the existing consensus guidelines on sport nutrition. This suggests that athletes could either optimize their carbohydrate intake, or that average carbohydrate requirements merit a re-evaluation.
Skaczkowski, Gemma; Durkin, Sarah; Kashima, Yoshihisa; Wakefield, Melanie
2017-01-16
To examine the effect of branding, as indicated by brand name, on evaluation of the cigarette smoking experience. Between-subjects and within-subjects experimental study. Participants were randomly allocated to smoke a cigarette from a pack featuring a premium brand name and a cigarette from a pack featuring a value brand name. Within each condition, participants unknowingly smoked two identical cigarettes (either two premium or two value cigarettes). Australia, October 2014, 2 years after tobacco plain packaging implementation. 81 current cigarette smokers aged 19-39 years. From apparently premium and value brand-name packs, 40 smokers were allocated to smoke the same actual premium cigarettes and 41 were allocated to smoke the same actual value cigarettes. Experienced taste (flavour, satisfaction, enjoyment, quality, liking, mouthfeel and aftertaste), harshness, dryness, staleness, harm/strength measures (strength, tar, lightness, volume of smoke), draw effort and purchase intent. Cigarettes given a premium brand name were rated as having a better taste, were less harsh and less dry than identical cigarettes given a value brand name. This pattern was observed irrespective of whether the two packs actually contained premium or value cigarettes. These effects were specific: the brand name did not influence ratings of cigarette variant attributes (strength, tar, volume of smoke, lightness and draw effort). Despite the belief that brand names represent genuine differences between cigarette products, the results suggest that at least some of this perceived sensory difference is attributable to brand image. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Wagner, Herbert; Fuchs, Philip X; von Duvillard, Serge P
2018-01-01
Team handball is a dynamic sport game that is played professionally in numerous countries. However, knowledge about training and competition is based mostly on practical experience due to limited scientific studies. Consequently, the aims of our study were to compare specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. Thirty-six elite, sub-elite and non-elite male team handball players performed a game based performance test, upper-body and lower-body strength tests, 30-m sprint test, counter movement jump test and an incremental treadmill running test. Significant differences (P<0.05) were found for the peak oxygen uptake, heart rate, offense and defense time, jump height and ball velocity during the jump throw in the game based performance test, maximal oxygen uptake in the incremental treadmill running test as well as in maximal leg strength and leg explosive strength in the isometric strength test. Elite male players have an enhanced specific agility, a better throwing performance, a higher team handball specific oxygen uptake and higher leg strength compared to sub-elite and non-elite players. Based on these results we recommend that training in team handball should focus on game based training methods to improve performance in specific agility, endurance and technique.
Validity and test–retest reliability of a novel simple back extensor muscle strength test
Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth
2017-01-01
Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442
Parameters of tensile strength, elongation, and tenacity of 70mm IIaO spectroscopic film
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Peters, Kevin A.
1989-01-01
The 70mm IIaO spectroscopic film was tested to determine its tensile strength, elongation, and breaking strength, using an Instron (strength and compression) 4201 Test Instrument. These data provide information leading to the upper and lower limits of the above parameters for 70mm IIaO spectroscopic film. This film will be developed by a commercial developing machine after the Ultraviolet Telescope Space Shuttle Mission returns to the Earth in the early 1990's; thus, it is necessary to understand these force parameters. Several test strips of approximately 200mm in length were used. The results indicate that when a stress load of 100 kg was applied, the film elongated approximately 1.06mm and the break strength was 19.45 kilograms.
Room Temperature and Elevated Temperature Composite Sandwich Joint Testing
NASA Technical Reports Server (NTRS)
Walker, Sandra P.
1998-01-01
Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.
Sharan, Smitha; Kavitha, H R; Konde, Harish; Kalahasti, Deepthi
2012-05-01
To evaluate the effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing. A total of 256 rectangular specimens (65 * 10 * 3 mm) 128 per resin (Lucitone-199 and Acralyn-H) were fabricated. One side of each specimen was not polished and the other was either mechanically (n = 96) or chemically (n = 96) polished and immersed for 10, 30 and 60 minutes in 2% alkaline glutaraldehyde. Mechanically polished (n = 32) and chemically polished (n = 32) control specimens were immersed only in distilled water. The transverse strength (N/mm(2)) was tested for failure in a universal testing machine, at a crosshead speed of 5 mm/min. Data were statistically analyzed using 2-way ANOVA and Student t-test. chemical polishing resulted in significantly lower transverse strength values than mechanical polishing. Lucitone- 199 resin demonstrated the highest overall transverse strength for the materials tested. Heat-polymerized acrylic resins either mechanically or chemically polished, did not demonstrate significant changes in transverse strength during immersion in the disinfecting solution tested, regardless of time of immersion. Lucitone-199 resin demonstrated the highest overall transverse strength for the materials tested and significantly stronger than Acralyn-H with either type of polishing following immersion in 2% alkaline glutaraldehyde. There is a concern that immersion in chemical solutions often used for cleansing and disinfection of prostheses may undermine the strength and structure of denture base resins. In this study it was observed that, the transverse strength of samples of Lucitone-199 was higher than that of the samples of Acralyn-H. The chances of fracture of the denture made of Lucitone-199 are less than that of dentures made of Acralyn-H. The chemically polished dentures may be more prone to fracture than mechanically polished dentures.
Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.
2017-08-01
The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.
Forearm Torque and Lifting Strength: Normative Data.
Axelsson, Peter; Fredrikson, Per; Nilsson, Anders; Andersson, Jonny K; Kärrholm, Johan
2018-02-10
To establish reference values for new methods designed to quantitatively measure forearm torque and lifting strength and to compare these values with grip strength. A total of 499 volunteers, 262 males and 237 females, aged 15 to 85 (mean, 44) years, were tested for lifting strength and forearm torque with the Kern and Baseline dynamometers. These individuals were also tested for grip strength with a Jamar dynamometer. Standardized procedures were used and information about sex, height, weight, hand dominance, and whether their work involved high or low manual strain was collected. Men had approximately 70% higher forearm torque and lifting strength compared with females. Male subjects aged 26 to 35 years and female subjects aged 36 to 45 years showed highest strength values. In patients with dominant right side, 61% to 78% had a higher or equal strength on this side in the different tests performed. In patients with dominant left side, the corresponding proportions varied between 41% and 65%. There was a high correlation between grip strength and forearm torque and lifting strength. Sex, body height, body weight, and age showed a significant correlation to the strength measurements. In a multiple regression model sex, age (entered as linear and squared) could explain 51% to 63% of the total variances of forearm torque strength and 30% to 36% of lifting strength. Reference values for lifting strength and forearm torque to be used in clinical practice were acquired. Grip strength has a high correlation to forearm torque and lifting strength. Sex, age, and height can be used to predict forearm torque and lifting strength. Prediction equations using these variables were generated. Normative data of forearm torque and lifting strength might improve the quality of assessment of wrist and forearm disorders as well as their treatments. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Ransing, Ramdas Sarjerao; Khairkar, Praveen Homdeorao; Mishra, Kshirod; Sakekar, Gajanan
2017-01-01
The Clock-Drawing Test (CDT) is a brief, relatively time-efficient, easy to administer at bedside, and well-proven cognitive screening test that assesses a broad range of cognitive abilities in stroke, delirium, and dementia. However, challenges of comprehensive therapeutic outcome evaluations in schizophrenia can also be potentially overcome using CDT. The authors aimed to measure the therapeutic outcome using CDT in 101 schizophrenia patients, irrespective of their diagnostic subtypes. A repeated measures analysis of variance found that improvements on CDT and the Positive and Negative Syndrome Scale were closely correlated, reflecting critical information about therapeutic response measures in schizophrenia.
Munguía-Izquierdo, Diego; Legaz-Arrese, Alejandro
2012-11-01
To evaluate the reliability, standard error of the mean (SEM), clinical significant change, and known group validity of 2 assessments of endurance strength to low loads in patients with fibromyalgia syndrome (FS). Cross-sectional reliability and comparative study. University Pablo de Olavide, Seville, Spain. Middle-aged women with FS (n=95) and healthy women (n=64) matched for age, weight, and body mass index (BMI) were recruited for the study. Not applicable. The endurance strength to low loads tests of the upper and lower extremities and anthropometric measures (BMI) were used for the evaluations. The differences between the readings (tests 1 and 2) and the SDs of the differences, intraclass correlation coefficient (ICC) model (2,1), 95% confidence interval for the ICC, coefficient of repeatability, intrapatient SD, SEM, Wilcoxon signed-rank test, and Bland-Altman plots were used to examine reliability. A Mann-Whitney U test was used to analyze the differences in test values between the patient group and the control group. We hypothesized that patients with FS would have an endurance strength to low loads performance in lower and upper extremities at least twice as low as that of the healthy controls. Satisfactory test-retest reliability and SEMs were found for the lower extremity, dominant arm, and nondominant arm tests (ICC=.973-.979; P<.001; SEMs=1.44-1.66 repetitions). The differences in the mean between the test and retest were lower than the SEM for all performed tests, varying from -.10 to .29 repetitions. No significant differences were found between the test and retest (P>.05 for all). The Bland-Altman plots showed 95% limits of agreement for the lower extremity (4.7 to -4.5), dominant arm (3.8 to -4.4), and nondominant arm (3.9 to -4.1) tests. The endurance strength to low loads test scores for the patients with FS were 4-fold lower than for the controls in all performed tests (P<.001 for all). The endurance strength to low loads tests showed good reliability and known group validity and can be recommended for evaluating endurance strength to low loads in patients with FS. For individual evaluation, however, an improved score of at least 4 and 5 repetitions for the upper and lower extremities, respectively, was required for the differences to be considered as substantial clinical change. Patients with FS showed impaired endurance strength to low loads performance when compared with the general population. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
The influence of total suction on the brittle failure characteristics of clay shales
NASA Astrophysics Data System (ADS)
Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.
2013-12-01
Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.
Evaluation of bond strength of various epoxy resin based sealers in oval shaped root canals.
Cakici, Fatih; Cakici, Elif Bahar; Ceyhanli, Kadir Tolga; Celik, Ersan; Kucukekenci, Funda Fundaoglu; Gunseren, Arif Onur
2016-09-30
The aim of this study was to evaluate the bond strength of AH plus, Acroseal, and Adseal to the root canal dentin. A total of 36 single-rooted, mandibular premolar teeth were used. Root canal shaping procedures were performed with ProTaper rotary instruments (Dentsply Maillefer) up to size F4. The prepared samples were then randomly assembled into 3 groups (n = 12). For each group, an ultrasonic tip (size 15, 0.02 taper) which was also coated with an epoxy resin based sealer and placed 2 mm shorter than the working length. The sealer was then activated for 10 s. A push-out test was used to measure the bond strength between the root canal dentine and the sealer. Kruskal-Wallis test to evaluate the push-out bond strength of epoxy based sealer (P = 0.05). The failure mode data were statistically analyzed using Pearson's chi square test (P = 0.05). Kruskal-Wallis test indicated that there were no statistically significant difference among the push out bond strength values of 3 mm (p = 0.123) and 6 mm (P = 0.057) for groups, there was statistically significant difference push out bond strength value of 9 mm (P = 0.032). Pearson's chi square test showed statistically significant differences for the failure types among the groups. Various epoxy resin based sealers activated ultrasonically showed similar bond strength in oval shaped root canals. Apical sections for all groups have higher push out bond strength values than middle and coronal sections.
Mayson, Douglas J.; Kiely, Dan K.; LaRose, Sharon I.; Bean, Jonathan F.
2009-01-01
Objective To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. Design In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Results Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01–1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance [BERG 14.23 (1.84–109.72), performance-oriented mobility assessment 33.92 (3.69–312.03), and Dynamic Gait Index 35.80 (4.77–268.71))]. Strength was only associated with the BERG 1.08 (1.01–1.14). Conclusions Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity. PMID:19033758
Raut, Anjana; Rao, Polsani Laxman; Vikas, B V J; Ravindranath, T; Paradkar, Archana; Malakondaiah, G
2013-01-01
Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.
Variability of the pullout strength of cancellous bone screws with cement augmentation.
Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S
2015-06-01
Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.
Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco
2007-08-01
Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.
Critical decay exponent of the pair contact process with diffusion
NASA Astrophysics Data System (ADS)
Park, Su-Chan
2014-11-01
We investigate the one-dimensional pair contact process with diffusion (PCPD) by extensive Monte Carlo simulations, mainly focusing on the critical density decay exponent δ . To obtain an accurate estimate of δ , we first find the strength of corrections to scaling using the recently introduced method [S.-C. Park. J. Korean Phys. Soc. 62, 469 (2013), 10.3938/jkps.62.469]. For small diffusion rate (d ≤0.5 ), the leading corrections-to-scaling term is found to be ˜t-0.15, whereas for large diffusion rate (d =0.95 ) it is found to be ˜t-0.5. After finding the strength of corrections to scaling, effective exponents are systematically analyzed to conclude that the value of critical decay exponent δ is 0.173 (3 ) irrespective of d . This value should be compared with the critical decay exponent of the directed percolation, 0.1595. In addition, we study two types of crossover. At d =0 , the phase boundary is discontinuous and the crossover from the pair contact process to the PCPD is found to be described by the crossover exponent ϕ =2.6 (1 ) . We claim that the discontinuity of the phase boundary cannot be consistent with the theoretical argument supporting the hypothesis that the PCPD should belong to the DP. At d =1 , the crossover from the mean field PCPD to the PCPD is described by ϕ =2 which is argued to be exact.
Enzyme replacement therapy and fatigue in adults with Pompe disease.
Güngör, Deniz; de Vries, Juna M; Brusse, Esther; Kruijshaar, Michelle E; Hop, Wim C J; Murawska, Magda; van den Berg, Linda E M; Reuser, Arnold J J; van Doorn, Pieter A; Hagemans, Marloes L C; Plug, Iris; van der Ploeg, Ans T
2013-06-01
Pompe disease is a hereditary metabolic myopathy, for which enzyme replacement therapy (ERT) has been available since 2006. We investigated whether ERT reduces fatigue in adult patients with Pompe disease. In this prospective international observational survey, we used the Fatigue Severity Scale (FSS) to measure fatigue. Repeated measures ANOVA was used to analyze the data over time. In a subgroup of patients, we also evaluated muscle strength using the Medical Research Council Scale, measured pulmonary function as Forced Vital Capacity, and assessed depression using the Hospital Anxiety and Depression Scale. We followed 163 patients for a median period of 4 years before ERT and for 3 years during ERT. Before ERT, the mean FSS score remained stable at around 5.3 score points; during ERT, scores improved significantly by 0.13 score points per year (p < 0.001). Fatigue decreased mainly in women, in older patients and in those with shorter disease duration. Patients' improvements in fatigue were moderately correlated with the effect of ERT on depression (r 0.55; CI 95% 0.07 to 0.70) but not with the effect of ERT on muscle strength or pulmonary function. Fatigue is a common and disabling problem in patients with early and advanced stages of Pompe disease. Our finding that ERT helps to reduce fatigue is therefore important for this patient population, irrespective of the mechanisms underlying this effect. Copyright © 2013 Elsevier Inc. All rights reserved.
Genetic and environmental factors affecting cryptic variations in gene regulatory networks
2013-01-01
Background Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Results Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Conclusions Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity. PMID:23622056
Genetic and environmental factors affecting cryptic variations in gene regulatory networks.
Iwasaki, Watal M; Tsuda, Masaki E; Kawata, Masakado
2013-04-26
Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie
In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006more » ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.« less
Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.
Meng, Pan; Wang, Qingyun; Lu, Qishao
2013-06-01
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Hyun, Yoon; Byun, Thak Sang; Strizak, Joe P
2011-01-01
The mechanical properties of NBG-18 nuclear grade graphite have been characterized using small specimen test techniques and statistical treatment on the test results. New fracture strength and toughness test techniques were developed to use subsize cylindrical specimens with glued heads and to reuse their broken halves. Three sets of subsize cylindrical specimens with the different diameters of 4 mm, 8 mm, and 12 mm were tested to obtain tensile fracture strength. The longer piece of the broken halves was cracked from side surfaces and tested under three-point bend loading to obtain fracture toughness. Both the strength and fracture toughness datamore » were analyzed using Weibull distribution models focusing on size effect. The mean fracture strength decreased from 22.9 MPa to 21.5 MPa as the diameter increased from 4 mm to 12 mm, and the mean strength of 15.9 mm diameter standard specimen, 20.9 MPa, was on the extended trend line. These fracture strength data indicate that in the given diameter range the size effect is not significant and much smaller than that predicted by the Weibull statistics-based model. Further, no noticeable size effect existed in the fracture toughness data, whose mean values were in a narrow range of 1.21 1.26 MPa. The Weibull moduli measured for fracture strength and fracture toughness datasets were around 10. It is therefore believed that the small or negligible size effect enables to use the subsize specimens and that the new fracture toughness test method to reuse the broken specimens to help minimize irradiation space and radioactive waste.« less
The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.
Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph
2013-05-01
To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Rani, Sapna; Verma, Mahesh; Gill, Shubhra; Gupta, Rekha
2016-01-01
Background/Purpose: The aim of this study was to compare the shear bond strength of computer aided design/computer aided machined ceramic (CAD/CAM), pressable ceramic, and milled metal implant copings on abutment and the effect of surface conditioning on bonding strength. Materials and Methods: A total of 90 test samples were fabricated on three titanium abutments. Among 90 test samples, 30 copings were fabricated by CAD/CAM, 30 by pressable, and 30 by milling of titanium metal. These 30 test samples in each group were further subdivided equally for surface treatment. Fifteen out of 30 test samples in each group were surface conditioned with airborne particle abrasion. All the 90 test samples were luted on abutment with glass ionomer cement. Bonding strength was evaluated for all the samples using universal testing machine at a crosshead speed of 5 mm/min. The results obtained were compared and evaluated using one-way ANOVA with post-hoc and unpaired t-test at a significance level of 0.05. Results: The mean difference for CAD/CAM surface conditioned subgroup was 1.28 ± 0.12, for nonconditioned subgroup was 1.20 ± 0.11. The mean difference for pressable surface conditioned subgroup was 1.18 ± 0.04, and for nonconditioned subgroup was 0.75 ± 0.28. The mean difference for milled metal surface conditioned subgroup was 2.57 ± 0.58, and for nonconditioned subgroup was 1.49 ± 0.15. Conclusions: On comparison of bonding strength, milled metal copings had an edge over the other two materials, and surface conditioning increased the bond strength. PMID:27141163
Kim, Namhee; De Souza, Grace M.
2017-01-01
Objective To determine the effects of whitening strips on bovine dentin fatigue resistance and flexural strength in vitro. Materials and methods A total of eighty bovine dentin specimens (2x2x17mm) were treated with either: control glycerine gel on plastic film wrap or whitening strips containing 9.5% hydrogen peroxide. Treatment was applied for 30 minutes, twice a day, for 1- or 4-weeks. After the last treatment, ten specimens per group were randomly selected to undergo fatigue testing (106 cycles, 3Hz, 20N) while the other ten were subjected to flexural strength testing after ten days of storage in artificial saliva. Kaplan-Meier method with a log rank test, Wilcoxon test and Cox regression were used to assess fatigue test results (p<0.05). One-way ANOVA and Tukey’s tests were used to compare the flexural strength results (p<0.05). Results There were significant differences in survival during the fatigue test among the groups (p<0.001). Treatment (control or bleach) was a significant factor for specimen survival (p<0.001, Exp(B) = 33.45). There were significant differences in mean flexural strength (p<0.001). No significant difference was found between “1-wk control” and “4-wk control”. The mean flexural strength and fatigue resistance of the “4-wk bleach” were significantly lower than all the other groups. Conclusions The use of whitening strips reduced the fatigue resistance and flexural strength of bovine dentin in vitro. Until the effect of whitening strips on mechanical properties of human dentin is fully elucidated, it remains prudent to advise patients to avoid excessive direct use of whitening strips on dentin. PMID:28278191
Dulac, Maude; Boutros, Guy El Hajj; Pion, Charlotte; Barbat-Artigas, Sébastien; Gouspillou, Gilles; Aubertin-Leheudre, Mylène
2016-01-01
To investigate whether handgrip strength normalized to body weight could be a useful clinical tool to identify dynapenia and assess functional capacity in post-menopausal women. A total of 136 postmenopausal women were recruited. Body composition (Dual Energy X-ray Absorptiometry [DEXA], Bio-electrical Impedence Analysis [BIA]), grip strength (dynamometer) and functional capacity (senior fitness tests) were evaluated. Dynapenia was established according to a handgrip strength index (handgrip strength divided by body weight (BW) in Kg/KgBW) obtained from a reference population of young women: Type I dynapenic (<0.44 kg/KgBW) and type II dynapenic (<0.35 kg/KgBW). The results show a positive correlation between handgrip strength index (in kg/KgBW) and alternate-step test (r=0.30, p<0.001), chair-stand test (r=0.25, p<0.005) and one-leg stance test (r=0.335, p<0.001). The results also showed a significant difference in non-dynapenic compared to type I dynapenic and type II dynapenic for the chair-stand test (Non-dynapenic: 12.0±3.0; Type I: 11.7±2.5; Type II: 10.3±3.0) (p=0.037 and p=0.005, respectively) and the one-leg stance test (Non-dynapenic: 54.2±14.2; Type I: 43.8±21.4; Type II: 35.0±21.8) (p=0.030 and p=0.004, respectively). Finally, a significant difference was observed between type II dynapenic and non-dynapenic for the chair-stand test (p=0.032), but not with type I dynapenic. The results showed that handgrip strength was positively correlated with functional capacity. In addition, non-dynapenic women displayed a better functional status when compared to type I and type II dynapenic women. Thus, the determination of the handgrip strength thresholds could be an accessible and affordable clinical tool to identify people at risk of autonomy loss.
Kahn Bani Sa’ad Correctional Facility, Kahn Bani Sa’ad, Iraq
2008-07-25
building (Building No. 07/03): 1. Ground floor columns were tested with a Schmidt hammer devise (measures the elastic properties or strength of...3. First floor columns – Schmidt hammer and ultrasonic tests were conducted on all the first floor columns. The test results showed the strength...Building Nos. 07/02 and 07/01): 1. Ground floor columns – Using a Schmidt hammer device, very few columns showed low strength. Further study and
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.
Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E
2013-01-01
The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.
Evaluation of EA-934NA with 2.5 percent Cab-O-Sil
NASA Technical Reports Server (NTRS)
Caldwell, Gordon A.
1990-01-01
Currently, Hysol adhesive EA-934NA is used to bond the Field Joint Protection System on the Shuttle rocket motors at Kennedy Space Center. However, due to processing problems, an adhesive with a higher viscosity is needed to alleviate these difficulties. One possible solution is to add Cab-O-Sil to the current adhesive. The adhesive strength and bond strengths that can be obtained when 2.5 percent Cab-O-Sil is added to adhesive EA-934NA are examined and tested over a range of test temperatures from -20 to 300 F. Tensile adhesion button and lap shear specimens were bonded to D6AC steel and uniaxial tensile specimens (testing for strength, initial tangent modulus, elongation and Poisson's ratio) were prepared using Hysol adhesive EA-934NA with 2.5 percent Cab-O-Sil added. These specimens were tested at -20, 20, 75, 100, 125, 150, 200, 250, and 300 F, respectively. Additional tensile adhesion button specimens bonding Rust-Oleum primed and painted D6AC steel to itself and to cork using adhesive EA-934NA with 2.5 percent Cab-O-Sil added were tested at 20, 75, 125, 200, and 300 F, respectively. Results generally show decreasing strength values with increasing test temperatures. The bond strengths obtained using cork as a substrate were totally dependent on the cohesive strength of the cork.
Andreasi, Viviane; Michelin, Edilaine; Rinaldi, Ana Elisa M; Burini, Roberto Carlos
2010-01-01
To analyze associations between health-related physical fitness and the anthropometric and demographic indicators of children at three elementary schools in Botucatu, SP, Brazil. The sample for this cross-sectional study was 988 elementary school students, recruited from the second to ninth grades (an age range of 7 to 15 years). The children underwent anthropometric assessment (weight, height, waist circumference and tricipital and subscapular skin folds) and were tested for health-related physical fitness (flexibility: sit and reach test; abdominal strength/stamina: 1-minute abdominal test; and aerobic stamina: 9-minute running/walking test). Data were analyzed using descriptive statistics plus Student's t test, the chi-square test or Fisher's exact test and logistic regression with a significance level of 5%. The physical fitness levels observed were significantly influenced by age (all levels), sex (abdominal strength/stamina), obesity (all levels), body adiposity (flexibility, abdominal strength/stamina) and abdominal adiposity (abdominal strength/stamina and aerobic stamina). Females were more prone to be unfit in abdominal strength/stamina. Both obesity and excessive abdominal adiposity predisposed children to be unfit in abdominal strength/stamina and aerobic stamina. Excess body adiposity increased the likelihood of poor trunk flexibility. Unhealthy physical fitness levels were related to female sex, obesity and excessive abdominal adiposity. Implementing programs designed to effect lifestyle changes to achieve physical fitness and healthy nutrition in these schools would meet the objectives of promoting healthy body weight and increased physical fitness among these schoolchildren.
Measurement of in-situ strength using projectile penetration: Tests of a new launching system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearst, J.R.; Newmark, R.L.; Charest, J.A.
1987-10-01
The Lawrence Livermore National Laboratory has a continuing need to measure rock strength in situ, both for simple prediction of cavity size, and as input to computational models. In a previous report we compared two methods for measuring formation strength in situ: projectile penetration and a cone penetrometer. We determined that the projectile method was more promising for application to our large-diameter (2-4-m) hole environment. A major practical problem has been the development of a launcher and an apparatus for measuring depth of penetration that would be suitable for use in large-diameter holes. We are developing a gas-gun launcher systemmore » that will be capable of measuring both depth of penetration and deceleration of a reusable projectile. The current version of the launcher is trailer-mounted for testing at our Nevada Test Site (NTS) in tunnels and outcrops, but its design is such that it can be readily adapted for emplacement hole use. We test the current launcher on 60-cm cubes of gypsum cement, mixed to provie a range of densities (1.64 to 2.0 g/cc) and strengths (3 to 17 MPa). We compared depth of penetration of a 84-g projectile from a ''Betsy'' seismic gun - traveling on the order of 500 m/s - with the depth of penetration of a 13-kg projectile from the gas gun - traveling on the order of 30 m/s. For projectiles with the same nose size and shape, impacting targets of approximately constant strength, penetration depth was proportional to projectile kinetic energy. The ratio of kinetic energy to penetration depth was approximately proportional to target strength. Tests in tuffs with a wide range of strengths at NTS gave a similar linear relationship between the ratio of kinetic energy to penetration and target strength, and also a linear relationship between deceleration and strength. It appears that penetration can indeed be used as a semiquantitative measure of strength.« less
Conformity of modified O-ring test and maximal pinch strength for cross tape application direction.
Lee, Jung-Hoon; Choi, Hyun-Su
2018-06-01
Although cross tape has recently been used by clinicians for various musculoskeletal conditions, scientific studies on the direction of cross tape application are lacking. The present study aimed to investigate whether the direction of cross tape application affected the outcomes of the modified O-ring test and maximal pinch strength using a pinch gauge and the conformity between these 2 tests when cross tape was applied to the forearm muscles of individuals with no upper extremity pain and no restriction of joint range of motion.This study used a single-blinding crossover design. The subjects comprised 39 adults (16 men and 23 women). Cross tape was applied to the dominant hand so that the 4 rows were at an angle of 45° to the right or left of the direction of the flexor digitorum superficialis muscle fibers, and then the subjects underwent a modified O-ring test and a test of maximal pinch strength using a pinch gauge. Both tests were performed in both directions, and the order of the directions and tests was randomized. SPSS 18.0 was used for statistical analysis. Cohen's kappa coefficient was used to analyze the conformity of the results from the 2 tests. The statistical significance level was P < .05. A positive response in the modified O-ring test and maximal pinch strength were both affected by cross tape direction. The modified O-ring test and maximal pinch strength using pinch gauge results were in agreement (P < .00), and the kappa coefficient was significant at 1.00. The direction of cross tape application that produced a positive response in the modified O-ring test also produced greater maximal pinch strength. Thus, we propose that when applying cross tape to muscles, the direction of the 4 lines of the cross tape should be 45° relative to the direction of the muscle fibers, toward the side that produces a positive response in the modified O-ring test or produces the greatest maximal pinch strength using a pinch gauge.
Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L
2016-09-01
This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials
NASA Astrophysics Data System (ADS)
Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa
2015-09-01
Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a
Hanson, Erik D.; Srivatsan, Sindhu R.; Agrawal, Siddhartha; Menon, Kalapurakkal S.; Delmonico, Matthew J.; Wang, Min Q.; Hurley, Ben F.
2010-01-01
The purpose of this study was to determine (a) the effects of strength training (ST) on physical function and (b) the influence of strength, power, muscle volume (MV), and body composition on physical function. Healthy, inactive adults (n = 50) aged 65 years and older underwent strength, power, total body composition (% fat and fat free mass [FFM]), and physical function testing before and after 22 weeks of ST. Physical function testing consisted of tasks designed to mimic common physical activities of daily living (ADL). To improve internal validity of the assessment of mid-thigh intermuscular fat, subcutaneous fat, and knee extensors MV, a 10-week unilateral ST program using the untrained leg as an internal control preceded 12 weeks of whole-body ST. Strength, power, and FFM increased significantly with ST (all p < 0.05), whereas rapid walk, 5 chair stands, and get up and go time decreased significantly with ST in the overall group (all p < 0.05). Women improved significantly in both walking test times (both p < 0.05) but not in the stair climb test, whereas men improved in the stair climb test (p < 0.05) but not in walking test times. Multiple regression analysis revealed the highest R2 (0.28) for the change in chair stands time, followed by stair climb and usual walk at 0.27 and 0.21, respectively. ST improves performance in functional tasks important for ADLs. Changes in strength, power, and FFM are predictors of ST-induced improvements in these tasks. PMID:19910811
NASA Technical Reports Server (NTRS)
Falcone, Anthony; Dow, Marvin B.
1993-01-01
The resin transfer molding (RTM) process offers important advantages for cost-effective composites manufacturing, and consequently has become the subject of intense research and development efforts. Several new matrix resins have been formulated specifically for RTM applications in aircraft and aerospace vehicles. For successful use on aircraft, composite materials must withstand exposure to the fluids in common use. The present study was conducted to obtain comparative screening data on several state-ofthe-art RTM resins after environmental exposures were performed on RTM composite specimens. Four graphite/epoxy composites and one graphite/bismaleimide composite were tested; testing of two additional graphite epoxy composites is in progress. Zero-deg tension tests were conducted on specimens machined from eight-ply (+45-deg, -45-deg) laminates, and interlaminar shear tests were conducted on 32-ply 0-deg laminate specimens. In these tests, the various RTM resins demonstrated widely different strengths, with 3501-6 epoxy being the strongest. As expected, all of the matrix resins suffered severe strength degradation from exposure to methylene chloride (paint stripper). The 3501-6 epoxy composites exhibited about a 30 percent drop in tensile strength in hot, wet tests. The E905-L epoxy exhibited little loss of tensile strength (less than 8 percent) after exposure to water. The CET-2 and 862 epoxies as well as the bismaleimide exhibited reduced strengths at elevated temperature after exposure to oils and fuel. In terms of the percentage strength reductions, all of the RTM matrix resins compared favorably with 3501-6 epoxy.
Mechanical behaviour of fibre reinforced concrete using soft - drink can
NASA Astrophysics Data System (ADS)
Ilya, J.; Cheow Chea, C.
2017-11-01
This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.
Composite Stress Rupture: A New Reliability Model Based on Strength Decay
NASA Technical Reports Server (NTRS)
Reeder, James R.
2012-01-01
A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures
Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea
2017-01-01
Summary Background Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. Objective The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Methods Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. Results All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (p<0.05) in the maximal isokinetic bilateral knee flexion torque. Conclusions The multi-joint evaluation system for the assessment of knee and ankle isokinetic and isometric strength provided reliable test-retest measures in healthy older adults. Level of evidence Ib. PMID:29264344
Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength
NASA Astrophysics Data System (ADS)
Wang, Xiangyu
2015-12-01
For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.
Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2018-01-01
This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055
46 CFR 160.076-21 - Component materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by § 160.076-25(d)(2)(iii). (c) The average grab breaking strength and tear strength of the inflation....076-25(d)(2)(ii), must be at least 90% of the grab breaking strength and tear strength determined from... breaking strength or tear strength may be more than 20% below the results obtained in approval testing. (d...
Ego Depletion Negatively Affects Knowledge Retrieval in Secondary School Students
ERIC Educational Resources Information Center
Englert, Chris; Bertrams, Alex
2017-01-01
In the present study, we tested the assumption that performance in a knowledge retrieval test would be lower in secondary school students with temporarily depleted self-control strength (n = 53) compared to secondary school students with temporarily available self-control strength (n = 56). After manipulating self-control strength, students were…
A reassessment of the compressive strength properties of southern yellow pine bark
Thomas L. Eberhardt
2007-01-01
Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...
Optimal Scoring Methods of Hand-Strength Tests in Patients with Stroke
ERIC Educational Resources Information Center
Huang, Sheau-Ling; Hsieh, Ching-Lin; Lin, Jau-Hong; Chen, Hui-Mei
2011-01-01
The purpose of this study was to determine the optimal scoring methods for measuring strength of the more-affected hand in patients with stroke by examining the effect of reducing measurement errors. Three hand-strength tests of grip, palmar pinch, and lateral pinch were administered at two sessions in 56 patients with stroke. Five scoring methods…
Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate
NASA Astrophysics Data System (ADS)
Jaivignesh, B.; Sofi, A.
2017-07-01
Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.
Habets, Bas; Staal, J Bart; Tijssen, Marsha; van Cingel, Robert
2018-01-10
To determine the intrarater reliability of the Humac NORM isokinetic dynamometer for concentric and eccentric strength tests of knee and shoulder muscles. 54 participants (50% female, average age 20.9 ± 3.1 years) performed concentric and eccentric strength measures of the knee extensors and flexors, and the shoulder internal and external rotators on two different Humac NORM isokinetic dynamometers, which were situated at two different centers. The knee extensors and flexors were tested concentrically at 60° and 180°/s, and eccentrically at 60° s. Concentric strength of the shoulder internal and external rotators, and eccentric strength of the external rotators were measured at 60° and 120°/s. We calculated intraclass correlation coefficients (ICCs), standard error of measurement, standard error of measurement expressed as a %, and the smallest detectable change to determine reliability and measurement error. ICCs for the knee tests ranged from 0.74 to 0.89, whereas ICC values for the shoulder tests ranged from 0.72 to 0.94. Measurement error was highest for the concentric test of the knee extensors and lowest for the concentric test of shoulder external rotators.
Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J
2009-04-01
To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.
Ahmetov, Ildus I; Gavrilov, Dmitry N; Astratenkova, Irina V; Druzhevskaya, Anastasiya M; Malinin, Alexandr V; Romanova, Elena E; Rogozkin, Victor A
2013-01-01
The aim of the study was to determine the association between ACE I/D, ACTN3 R577X and PPARA intron 7 G/C gene polymorphisms and strength-related traits in 457 middle school-age children (219 boys and 238 girls; aged 11 ± 0.4 years). The assessment of different phenotypes was conducted with a number of performance tests. Gene polymorphisms were determined by PCR. The ACE D allele was associated with high results of standing long-jump test in boys [II 148.3 (16.3) cm, ID 152.6 (19.6) cm, DD 158.2 (19.1) cm; P = 0.037]. The ACTN3 R allele was associated with high results of performance tests in males only in combination with other genes (standing long-jump test: P = 0.021; handgrip strength test: P < 0.0001). Furthermore, the male carriers of the PPARA gene C allele demonstrated the best results of handgrip strength testing than GG homozygotes [GG 14.6 (4.0) kg, GC/CC 15.7 (4.3) kg; P = 0.048]. Thus, the ACE, ACTN3 and PPARA gene variants are associated with strength-related traits in physically active middle school-age boys.
In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin
Vellanki, Vinay Kumar; Shetty, Vikram K; Kushwah, Sudhanshu; Goyal, Geeta; Chandra, S.M. Sharath
2015-01-01
Aims: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive. Materials and Methods: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM. Results: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM. Conclusion: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used. PMID:25738077
Sfondrini, Maria Francesca; Gatti, Sara; Scribante, Andrea
2011-07-01
Our aim was to assess the effect of blood contamination on the shear bonding strength and sites of failure of orthodontic brackets and bondable buttons. We randomly divided 160 bovine permanent mandibular incisors into 8 groups of 20 specimens each. Both orthodontic brackets (Step brackets, Leone, Sesto Fiorentino, Italy) and bondable buttons (Flat orthodontic buttons, Leone, Sesto Fiorentino, Italy) were tested on four different enamel surfaces: dry; contamination with blood before priming; after priming; and before and after priming. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bonding strength and the rate of adhesive failures were recorded. Data were analysed using the analysis of variance (ANOVA), Scheffè tests, and the chi-square test. Uncontaminated enamel surfaces showed the highest bonding strengths for both brackets and buttons. When they were contaminated with blood, orthodontic brackets had significantly lower shear strengths than bondable buttons (P=0.0001). There were significant differences in sites of failure among the groups for the various enamel surfaces (P=0.001). Contamination of enamel by blood during bonding lowers the strength of the bond, more so with orthodontic brackets than with bondable buttons. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength
Lv, Pin; Yang, Xin; Jiang, Ting
2015-01-01
This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement. PMID:28793699
Chutia, T; Biswas, R K; Tamuli, M K; Deka, B C; Sinha, S; Goswami, J; Banik, S; Kayastha, R B
2014-03-01
The present study was aimed to reveal the effect on keeping quality of boar semen on holding or not holding at an elevated temperature than that used for preservation when combined with washing or not washing of seminal plasma. Twenty ejaculates, four from each of five Hampshire boars were used to hold for 0 and 4h in GEPS extender at 22°C and subsequently washed (1500×g for 10min) of seminal plasma or left unwashed and preserved at 15°C for 72h after extending with the same extender. The seminal parameters in terms of sperm motility, live spermatozoa, and live spermatozoa with intact acrosome (LIA) were evaluated at 0h-(immediately after extension) and thereafter at 24h intervals. The mean percentage of sperm motility was significantly (P<0.01) higher in unwashed than washed semen at both 0h and 4h of holding irrespective of preservation period. It was significantly (P<0.01) higher in semen held for 4h than 0h irrespective of washing and significantly (P<0.01) lower in washed than in unwashed semen irrespective of holding during preservation. Irrespective of preservation period the mean percentage of live spermatozoa was significantly (P<0.01) higher with 4h than 0h of holding in both unwashed and washed semen and was significantly (P<0.01) higher in unwashed than washed semen at both 0h and 4h of holding. It was significantly (P<0.01) higher for 4h held semen irrespective of washing and was significantly (P<0.01) lower in washed than in unwashed semen irrespective of holding during preservation. The mean percentage of LIA was significantly (P<0.01) higher with 4h than with 0h holding in both unwashed and washed semen and was significantly (P<0.01) higher in unwashed than in washed semen at both 0h and 4h of holding irrespective of preservation period. It was significantly (P<0.01) higher for 4h held as compared to unheld semen irrespective of washing and was significantly (P<0.01) lower in washed than unwashed semen irrespective of holding during preservation. The mean percentage of sperm motility, live spermatozoa and LIA decreased significantly (P<0.01) in 0h and 4h holding irrespective of washing and in unwashed and washed semen irrespective of holding with increase in preservation period. Among all the treatments unwashed semen held for 4h yielded superior sperm quality on preservation. A total of 32 female pigs were inseminated using preserved semen obtained with the best processing technique found in the study. The conception rate, farrowing rate and litter size at birth were recorded to be 81.25%, 78.13% and 7.96 respectively as compared to 73.38%, 67.57% and 6.68 respectively in the control group. It could be concluded that unwashed Hampshire boar semen held for 4h, extended with GEPS and preserved at 15°C for 72h was conducive to obtain optimum fertility and fecundity in females when used for artificial insemination. Copyright © 2014 Elsevier B.V. All rights reserved.
Dikicier, Sibel; Ayyildiz, Simel; Ozen, Julide; Sipahi, Cumhur
2017-05-31
The purpose of this study was to investigate the flexural strength of all-ceramics with varying core thicknesses submitted to aging. In-Ceram Alumina (IC), IPS e.max Press (EM) and Katana (K) (n=40), were selected. Each group contained two core groups based on the core thickness as follows: IC/0.5, IC/0.8, EM/0.5, EM/0.8, K/0.5 and K/0.8 mm in thickness (n=20 each). Ten specimens from each group were subjected to aging and all specimens were tested for strength in a testing machine either with or without being subjected aging. The mean strength of the K were higher (873.05 MPa) than that of the IC (548.28 MPa) and EM (374.32 MPa) regardless of core thickness. Strength values increased with increasing core thickness for all IC, EM and K regardless of aging. Results of this study concluded that strength was not significantly affected by aging. Different core thicknesses affected strength of the all-ceramic materials tested (p<0.05).
NASA Technical Reports Server (NTRS)
Williams, J. G.
1981-01-01
Structural tests were conducted on thermal protection systems (TPS) LI 900 and LI 2200 tiles and .41 cm and .23 cm thick strain isolation pads. The bond surface of selected tiles was densified to obtain improved strength. Four basic types of experiments were conducted including tension tests, substrate mismatch (initial imperfection) tests, tension loads eccentrically applied, and pressure loads applied rapidly to the tile top surface. A small initial imperfection mismatch (2.29 m spherical radius on the substrate) did not influence significantly the ultimate failure strength. Densification of the tile bond region improved the strength of TPS constructed both of LI 900 tile and of LI 2200 tile. Pressure shock conditions studied did not significantly affect the TPS strength.
Foot and ankle muscle strength in people with gout: A two-arm cross-sectional study.
Stewart, Sarah; Mawston, Grant; Davidtz, Lisa; Dalbeth, Nicola; Vandal, Alain C; Carroll, Matthew; Morpeth, Trish; Otter, Simon; Rome, Keith
2016-02-01
Foot and ankle structures are the most commonly affected in people with gout. However, the effect of gout on foot and ankle muscle strength is not well understood. The primary aim of this study was to determine whether differences exist in foot and ankle muscle strength for plantarflexion, dorsiflexion, inversion and eversion between people with gout and age- and sex-matched controls. The secondary aim was to determine whether foot and ankle muscle strength was correlated with foot pain and disability. Peak isokinetic concentric muscle torque was measured for ankle plantarflexion, dorsiflexion, eversion and inversion in 20 participants with gout and 20 matched controls at two testing velocities (30°/s and 120°/s) using a Biodex dynamometer. Foot pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI). Participants with gout demonstrated reduced muscle strength at both the 30°/s and 120°/s testing velocities for plantarflexion, inversion and eversion (P<0.05). People with gout also displayed a reduced plantarflexion-to-dorsiflexion strength ratio at both 30°/s and 120°/s (P<0.05). Foot pain and disability was higher in people with gout (P<0.0001) and MFPDI scores were inversely correlated with plantarflexion and inversion muscle strength at the 30°/s testing velocity, and plantarflexion, inversion and eversion muscle strength at the 120°/s testing velocity (all P<0.05). People with gout have reduced foot and ankle muscle strength and experience greater foot pain and disability compared to controls. Foot and ankle strength reductions are strongly associated with increased foot pain and disability in people with gout. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strength and Conditioning and Concurrent Training Practices in Elite Rugby Union.
Jones, Thomas W; Smith, Andrew; Macnaughton, Lindsay S; French, Duncan N
2016-12-01
Jones, TW, Smith, A, Macnaughton, LS, and French, DN. Strength and Conditioning and Concurrent Training Practices in Elite Rugby Union. J Strength Cond Res 30(12): 3354-3366, 2016-There is limited published research on strength and conditioning (S&C) practices in elite rugby union (RU). Information regarding testing batteries and programme design would provide valuable information to both applied practitioners and researchers investigating the influence of training interventions or preperformance strategies. The aim of this study was to detail the current practices of S&C coaches and sport scientists working in RU. A questionnaire was developed that comprised 7 sections: personal details, physical testing, strength and power development, concurrent training, flexibility development, unique aspects of the programme, and any further relevant information regarding prescribed training programmes. Forty-three (41 men, 2 women; age: 33.1 ± 5.3 years) of 52 (83%) coaches responded to the questionnaire. The majority of practitioners worked with international level and/or professional RU athletes. All respondents believed strength training benefits RU performance and reported that their athletes regularly performed strength training. The clean and back squat were rated the most important prescribed exercises. Forty-one (95%) respondents reported prescribing plyometric exercises and 38 (88%) indicated that periodization strategies were used. Forty-two (98%) practitioners reported conducting physical testing, with body composition being the most commonly tested phenotype. Thirty-three (77%) practitioners indicated that the potential muted strength development associated with concurrent training was considered when programming and 27 (63%) believed that strength before aerobic training was more favorable for strength development than vice versa. This research represents the only published survey to date of S&C practices in northern and southern hemisphere RU.
Effect of moisture content on dowel-bearing strength
Douglas R. Rammer; Steve G. Winistorfer
2001-01-01
Dowel bearing strength (embedment strength) is a critical component of wood connection design. Previous tests have concentrated on defining the relationship between dowel-bearing strength, specific gravity, and fastener characteristics such as diameter. However, because adoption of yield theory in defining connection strength is relatively new in the United States, few...
High-Strength Composite Fabric Tested at Structural Benchmark Test Facility
NASA Technical Reports Server (NTRS)
Krause, David L.
2002-01-01
Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.
Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E
2009-08-04
We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.
NASA Astrophysics Data System (ADS)
Guo, Jingfeng; Cao, Tieshan; Cheng, Congqian; Meng, Xianming; Zhao, Jie
2018-04-01
The microstructure and mechanical properties of ethylene cracking furnace tube (HPNb alloy) are investigated by scanning electronic microscopy (SEM), tensile tests and Charpy impact tests at room temperature, tensile tests and creep tests at high temperature in this paper. The primary carbides of HPNb alloy coarsened and formed a continuous network after a five-year service. Furthermore, a lot of fine secondary carbides precipitated in the dendrite interior. The primary carbides M7C3 and NbC transformed into M23C6 and G phase after service, respectively. The furnace tube after service exhibits higher yield strength, lower tensile strength, worse ductility and toughness than as-cast tube at room temperature. At high temperature, the tensile strength and yield strength of service tube are higher than as-cast tube, but its tensile elongation is lower. The creep strength of HPNb alloy at high temperature decreases after a five-year service. Both microstructure and mechanical properties of ethylene cracking furnace tube have deteriorated after a five-year service.
Prediction of residual shear strength of corroded reinforced concrete beams
NASA Astrophysics Data System (ADS)
Imam, Ashhad; Azad, Abul Kalam
2016-09-01
With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.
DOT National Transportation Integrated Search
2008-01-01
This research involved a detailed laboratory study of a new test method for evaluating road base materials based on : the strength of the soil binder. In this test method, small test specimens (5.0in length and 0.75in square cross : section) of binde...
Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.
Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty
2003-01-01
The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.
Luque-Ramírez, Manuel; Mendieta-Azcona, Covandonga; del Rey Sánchez, José M; Matíes, Milagro; Escobar-Morreale, Héctor F
2009-03-01
To study the blood clotting tests and endothelial function of polycystic ovary syndrome (PCOS) patients and non-hyperandrogenic women, and their changes during PCOS treatment, as a function of the presence of obesity and smoking. Case-control study followed by a randomized clinical trial. Blood clotting and endothelial function were analyzed in 40 PCOS patients and 20 non-hyperandrogenic women. Thirty-four PCOS women were randomized to an oral contraceptive containing 35 microg ethinyl-estradiol plus 2 mg cyproterone acetate (Diane(35)Diario) or metformin (850 mg twice daily), monitoring the changes on these parameters during 24 weeks of treatment. The influence of obesity and smoking was also analyzed. Blood clotting and endothelial function tests were similar among PCOS patients and controls with the exception of a higher platelet count in the former. Obesity increased circulating fibrinogen levels, prothrombin activity and platelet counts, and reduced prothrombin and activated partial thromboplastin times. Smoking increased fibrinogen levels, platelet counts, and prothrombin activity, and reduced prothrombin time, in relation to the larger waist circumference of smokers. Irrespective of the treatment received, PCOS patients showed a decrease in prothrombin time and an increase in prothrombin activity, with a parallel increase in homocysteine levels in metformin users. The activated partial thromboplastin time decreased markedly in the patients treated with Diane(35)Diario. Finally, flow-mediated dilation improved in non-smokers irrespective of the drug received, but worsened in smokers. Oral contraceptives and metformin may exert deleterious effects on blood clotting tests of PCOS women, yet the effects of metformin appear to be milder. Because smoking potentiates some of these effects and deteriorates endothelial function, smoking cessation should be promoted in PCOS patients.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1973-01-01
The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.
Tensile test of pressureless-sintered silicon nitride at elevated temperature
NASA Technical Reports Server (NTRS)
Matsusue, K.; Fujisawa, Y.; Takahara, K.
1985-01-01
Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.
2016-08-01
quasi -static mechanical properties, deformation behavior, and damage mechanisms in HSHDC and compare the behavior with VHSC. 2. Develop experimental ...using the experimental setup described in Chapter 6. The quasi -static strain rate was approximately 10-4/s. All panels tested have nominal dimensions...ER D C TR -1 6- 13 Force Protection Basing; TeCD 1a Equipment and Protocols for Quasi -Static and Dynamic Tests of Very-High-Strength
Fatigue and Impact Strength of Diffusion Bonded Titanium Alloy Joints
1989-02-01
likely to be due to the void level being such that the chance of a pore cluster being present at or near the test piece surface was less probable...in sub-surface crack initiation and reduced fatigue strength; it was concluded that small single voids were insignificant but clusters of voids...strength is reduced when clusters of pores are present, and is, in turn, a much more sensitive test than the tensile test. In the current work the
A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics
NASA Technical Reports Server (NTRS)
Dwight, D. W.; Wightman, J. P.
1977-01-01
The effects of composites as adherends was studied. Several other variables were studied by fractography: aluminum powder adhesive filler, fiber glass cloth scrim or adhesive carrier, new adhesives PPQ-413 and LARC-13, and strength-test temperature. When the new results were juxtaposed with previous work, it appeared that complex interactions between adhesive, adherend, bonding, and testing conditions govern the observed strength and fracture-surface features. The design parameters likely to have a significant effect upon strength-test results are listed.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin; Paris, Isabelle
2001-01-01
The influence of specimen polishing, configuration, and size on the transverse tension strength of two glass-epoxy materials, and one carbon-epoxy material, loaded in three and four point bending was evaluated. Polishing machined edges, arid/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was typically lower for longer span lengths due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law typically over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, this scaling law was not adequate for predicting transverse tension strength of heterogeneous, fiber-reinforced, polymer matrix composites.
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Gao, Xiguang; Song, Yingdong
2018-04-01
A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.
van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L; Kumar, Bhavesh D; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik
2016-07-01
A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding the role of isokinetic strength and strength testing in HSIs. To examine whether differences in isokinetic strength measures of knee flexion and extension represent risk factors for hamstring injuries in a large cohort of professional soccer players in an adequately powered study design. Cohort study; Level of evidence, 2. A total of 614 professional soccer players from 14 teams underwent isokinetic strength testing during preseason screening. Testing consisted of concentric knee flexion and extension at 60 deg/s and 300 deg/s and eccentric knee extension at 60 deg/s. A clustered multiple logistic regression analysis was used to identify variables associated with the risk of HSIs. Receiver operating characteristic (ROC) curves were calculated to determine sensitivity and specificity. Of the 614 players, 190 suffered an HSI during the 4 seasons. Quadriceps concentric strength at 60 deg/s (odds ratio [OR], 1.41; 95% CI, 1.03-1.92; P = .03) and hamstring eccentric strength at 60 deg/s (OR, 1.37; 95% CI, 1.01-1.85; P = .04) adjusted for bodyweight were independently associated with the risk of injuries. The absolute differences between the injured and uninjured players were 6.9 N·m and 9.1 N·m, with small effect sizes (d < 0.2). The ROC analyses showed an area under the curve of 0.54 and 0.56 for quadriceps concentric strength and hamstring eccentric strength, respectively, indicating a failed combined sensitivity and specificity of the 2 strength variables identified in the logistic regression models. This study identified small absolute strength differences and a wide overlap of the absolute strength measurements at the group level. The small associations between lower hamstring eccentric strength and lower quadriceps concentric strength with HSIs can only be considered as weak risk factors. The identification of these risk factors still does not allow the identification of individual players at risk. The use of isokinetic testing to determine the association between strength differences and HSIs is not supported. © 2016 The Author(s).
Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel
NASA Astrophysics Data System (ADS)
Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.
2018-04-01
The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.
Humidity effects on wire insulation breakdown strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appelhans, Leah
2013-08-01
Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layermore » Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.« less
NASA Astrophysics Data System (ADS)
Murakami, Yuki; Dong, Wei; Oshita, Hideki; Suzuki, Shuichi; Tsutsumi, Tomoaki
In this study, to evaluate flexural strength and shear strength with def ective anchorages due to corrosion of reinforcemen t, the bending test of the RC beams r eceived damage in the anchorage region due to corrosion was carried out. As a result, it is se ems that the residual shear strength of RC beams with defective anchorages depends on shear span ratio in addition to the anchorage performance. Furthermore, the authors propose an evaluation model for an shear strength of RC beams with defective anchorages on the basis of these experimental results and analy tical result. The value of residual shear strength calculated using this model corresponds to the test results in the past.
Effect of insertion torque on bone screw pullout strength.
Lawson, K J; Brems, J
2001-05-01
The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-11-01
Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.
NASA Astrophysics Data System (ADS)
Yasui, M.; Arakawa, M.
2011-12-01
Most of asteroids are expected to be impact fragments produced by collisions among planetesimals or rubble-pile bodies produced by re-accumulation of fragments. In order to study the formation processes of asteroids, it is necessary to examine the collisional disruption and re-accumulation conditions of planetesimals. Most of meteorites recovered on the Earth are ordinary chondrites (OCs). The OCs have the components of millimeter-sized round grains (chondrules) and submicron-sized dusts (matrix). So, the planetesimals forming the parent bodies of OCs could be mainly composed of chondrules and matrix. Therefore, we conducted impact experiments with porous gypsum mixed with glass beads having the spherical shape with various diameters simulating chondrules, and examined the effect of chondrules on the ejecta velocity and the impact strength. The targets included glass beads with a diameter ranging from 100 μm to 3 mm and the volume fraction was 0.6, similar to that of ordinary chondrites, which is about 0.65-0.75. We also prepared the porous gypsum sample without glass bead to examine the effect of volume fraction. Nylon projectiles with the diameters of 10 mm and 2 mm were impacted at 60-180 m/s by a single-stage gas gun and at about 4 km/s by a two-stage light gas gun, respectively. After the shot, we measured the mass of the recovered fragments to calculate the impact strength Q defined by Q=mpVi^2/2(mp+Mt), where Vi is the impact velocity, and mp and Mt are the mass of projectile and target, respectively. The collisional disruption of the target was observed by a high-speed video camera to measure the ejecta velocity. The antipodal velocity Va increased with the increase of Q, irrespective of glass bead size and volume fraction. However, the Va for low-velocity collisions at 60-180 m/s was an order magnitude larger than that for high-velocity collisions at 4 km/s. The velocities of fragments ejected from two corners on the impact surface of the target Vc-g measured in the center of the mass system, were independent on the target materials. The impact strength of the mixture target was found to range from 56 to 116 J/kg depending on the glass bead size, and was several times smaller than that of the gypsum target, 446 J/kg in low-velocity collisions. The impact strengths of the 100 μm bead target and the gypsum target strongly depended on the impact velocity: those obtained in high-velocity collisions were several times greater than those obtained in low-velocity collisions. The obtained results of Vc-g were compared to the escape velocity of chondrule-including planetesimals (CiPs) to study the conditions for the formation of rubble-pile bodies after the catastrophic disruption. The fragments of CiPs for catastrophic disruption could be re-accumulated at the radius of a body larger than 3 km, irrespective of chondrule size included in the CiPs, which is rather smaller than that for basalt bodies. Thus, we suggested that there were more parent bodies of OCs having a rubble-pile structure.
Importance and challenges of measuring intrinsic foot muscle strength
2012-01-01
Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing. PMID:23181771
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Evaluation of flexural, diametral tensile, and shear bond strength of composite repairs.
Imbery, T A; Gray, T; DeLatour, F; Boxx, C; Best, A M; Moon, P C
2014-01-01
Repairing composite restorations may be a more conservative treatment than replacing the entire restoration. The objective of this in vitro study was to determine the best repair method by measuring flexural, diametral tensile, and shear bond strength of repaired composites in which the surfaces were treated with chemical primers (Add & Bond or Silane Bond Enhancer), a bonding agent (Optibond Solo Plus [OBSP]), or mechanical retention with a bonding agent. Filtek Supreme Ultra shade B1B was placed in special molds to fabricate specimens that served to test the flexural, diametral tensile, or shear strength of the inherent resin substrate. The same molds were modified to make specimens for testing repair strength of the resin. Repairs were made immediately or after aging in deionized water at 37°C for seven days. All repair sites were finished with coarse Sof-Lex discs to simulate finishing new restorations or partially removing aged restorations. Repair surfaces were treated with one of the following: 1) phosphoric-acid etching and OBSP; 2) Add & Bond; 3) phosphoric-acid etching, Silane Bond Enhancer, and OBSP; or 4) quarter round bur, phosphoric-acid etching, and OBSP. Specimens were placed back in the original molds to fabricate specimens for diametral tensile or flexural testing or in an Ultradent jig to make specimens for shear bond testing. Composite resin in shade B5B was polymerized against the treated surfaces to make repairs. Two negative control groups for the three testing methods consisted of specimens in which repairs were made immediately or after aging without any surface treatments. Controls and experimental repairs were aged (water 37°C, 24 hours) before flexural, diametral tensile, or shear testing in an Instron Universal testing machine at a crosshead speed of 0.5 mm/min. Experimental flexural repair strengths ranged from 26.4% to 88.6% of the inherent substrate strength. Diametral tensile repair strengths ranged from 40% to 80% of the inherent substrate strength, and shear bond strength repairs ranged from 56% to 102%. Geometric means were statistically analyzed with two-way analysis of variance on their log-transformed values. Significant differences were determined using Tukey honestly significant difference (p<0.05). Depending on the mechanical property being tested, surface treatments produced different results. OBSP produced more consistent results than chemical primers.
Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.; Taylor, R. E.
1973-01-01
Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.
Castrati, Luca; Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Rossi, Alessandra; Colombo, Paolo; Tchoreloff, Pierre
2016-11-20
The bilayer tableting technology is gaining more acceptance in the drug industry, due to its ability to improve the drug delivery strategies. It is currently assessed by the European Pharmacopoeia, that the mechanical strength of tablets can be evaluated using a diametral breaking tester. This device applies a force diametrically, and records the tablet breaking point. This approach has been used to measure the structural integrity of single layer tablets as well as bilayer (and multi-layer) tablets. The latter ones, however, have a much complex structure. Therefore, testing a bilayer tablet with the currently used breaking test methodology might not be appropriate. The aim of this work was to compare results from several tests that have been proposed to quantify the interfacial strength of bilayer tablets. The obtained results would provide an indication on which tests are appropriate to evaluate the robustness of a bilayer tablet. Bilayer tablets were fabricated using a model formulation: Microcrystalline Cellulose (MCC) for the first layer, and spray dried lactose (SDLac) as second layer. Each set of tablets were tested using the following tests: Diametral Test, Shear Test and Indentation Test. The tablets were examined before and after the breaking test using Scanning Electron Microscopy (SEM). When a bilayer tablet was subjected to shearing or indentation, it showed signs of clear delamination. Differently, using the diametral test system, the tablets showed no clear difference, before and after the testing. However, when examining each layer via SEM, it was clear that a fracture occurred in the layer made of SDLac. Thus, the diametral test is a measure of the strength of one of the two layers and therefore it is not suited to test the mechanical strength of bilayer tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.
2014-01-01
High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido
2016-01-01
The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).
NASA Astrophysics Data System (ADS)
Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman
2018-02-01
Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.
Venugopal, L; Lakshmi, M Narasimha; Babu, Devatha Ashok; Kiran, V Ravi
2014-01-01
Background: To test and compare the impact strength of fragment bonded teeth with that of intact teeth by using impact testing machine (pendulum type) as a mode of load. Materials and Methods: Forty extracted, maxillary, central incisors selected for this study (20 control group and 20 experimental group). In experimental group, teeth crowns were fractured with a microtome at 2.5 mm from mesioincisal angle cervically, fractured portion is attached to original crown portion with 3 M single bond dentin bonding agent and 3 M Z ‘100’, composite resin. Impact strength of fragment bonded teeth and intact teeth tested with impact testing machine and compared. Results: Mean impact strength of fragment bonded teeth (30.76 KJ/M2 ) is not statistically significant deferent from mean impact strength of intact teeth (31.11 KJ/M2 ). Conclusion: Mean impact strength of fragment bonded teeth is not statistically different with that of intact teeth. Hence, after fracture of teeth if it is restored with fragment reattachment by using 3 M single bond dentin bonding agent and 3 M Z ‘100’ composite resin is having impact strength like that of intact teeth. How to cite the article: Venugopal L, Lakshmi MN, Babu DA, Kiran VR. Comparative evaluation of impact strength of fragment bonded teeth and intact teeth: An in vitro study. J Int Oral Health 2014;6(3):73-6. PMID:25083037
The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints.
Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam
2015-12-01
Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (p< 0.05). The mean tensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint.
Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.
2016-11-01
Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.
Effect of water storage on the silanization in porcelain repair strength.
Berry, T; Barghi, N; Chung, K
1999-06-01
This study examined the long-term water storage affect of silanization on shear bond strength of composite resin to porcelain. One hundred and sixty square-shaped specimens were fabricated and sanded flat sequentially with silicone carbide papers. The specimens were then placed into four groups and 16 subgroups of 10 specimens each randomly. Four commercially available silane systems, two one-mix and two two-mix, were tested in this study. Teflon tubes with an internal diameter of 2.97 mm and 2 mm in height were filled with a dual cure composite resin (Mirage FLC), placed on the silanated surfaces and light-cured for 120 s. Specimens were stored in room temperature water and subjected to shear bond strength testing after 24 h, 1 week, 1 month and 3 month periods of immersion. An Instron Universal testing machine with a crosshead speed of 0.5 mm/min was used for the testing. The mean values of the shear bond strengths ranged from 4.38 MPa (24-h period) to 23.90 MPa (3-month period). ANOVA and Scheffe' tests were used to analyse data with confidence level at 95%. All groups recorded an increase in bond strength after one week as compared with the 24-h period (P<0.05). With the exception of a one-mix system, all systems showed significantly higher bond strength at 3 weeks as compared with the 24-h and 1-week water storage periods. In conclusion, bond strength of composite resin to porcelain resulting from silanization of porcelain increased during the experimental period. The bond strength also varied for different silanes used in this study.
Microtensile bond strength of three simplified adhesive systems to caries-affected dentin.
Scholtanus, J D; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J; Feilzer, Albert J
2010-08-01
The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft caries-infected dentin was excavated with the help of caries detector dye. On the remaining hard dentin, a standardized smear layer was created by polishing with 600-grit SiC paper. Teeth were divided into three groups and treated with one of the three tested adhesives: Adper Scotchbond 1 XT (3M ESPE), a 2-step etch-andrinse adhesive, Clearfil S3 Bond (Kuraray), a 1-step self-etching or all-in-one adhesive, and Clearfil SE Bond (Kuraray), a 2-step self-etching adhesive. Five-mm-thick composite buildups (Z-250, 3M ESPE) were built and light cured. After water storage for 24 h at 37ºC, the bonded specimens were sectioned into bars (1.0 x 1.0 mm; n = 20 to 30). Microtensile bond strength of normal dentin specimens and caries-affected dentin specimens was measured in a universal testing machine (crosshead speed = 1 mm/min). Data were analyzed using two-way ANOVA and Tukey's post-hoc test (p < 0.05). No significant differences in bond strength values to normal dentin between the three adhesives were found. Adper Scotchbond 1 XT and Clearfil S3 Bond showed significantly lower bond strength values to caries-affected dentin. For Clearfil SE Bond, bond strength values to normal and caries-affected dentin were not significantly different. All the tested simplified adhesives showed similar bond strength values to normal dentin. For the tested 2-step etch-and-rinse adhesive and the all-in-one adhesive, the bond strength values to caries-affected dentin were lower than to normal dentin.
Threshold values of physical performance tests for locomotive syndrome.
Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Tauchi, Ryoji; Ishiguro, Naoki; Hasegawa, Yukiharu
2013-07-01
Our previous study determined which physical performance tests were the most useful for evaluating locomotive syndrome. Our current study establishes reference values for these major physical performance tests with regards to diagnosing and assessing risk of locomotive syndrome (LS). We measured timed-up-and-go test, one-leg standing time, back muscle strength, grip strength, 10-m gait time and maximum stride in 406 individuals (167 men, 239 women) between the ages of 60-88 years (mean 68.8 ± 6.7 years) during Yakumo Study 2011-12. The LS was defined as having a score of >16 points on the 25-Question Geriatric Locomotive Function Scale (GLFS-25). The reference value of each physical test was determined using receiver operating characteristics analysis. Women had a significantly higher prevalence of LS than men did and also scored significantly higher on the GLFS-25: women, 9.2 ± 10.3 pts; men, 6.7 ± 8.0 pts. Both genders in the non-LS group performed significantly better in all physical performance test gender except for back muscle strength in men and grip strength in both genders than those in the LS group, even after adjusting for age. The results of all the physical performance tests correlated significantly with the GLFS-25 scores of both genders even after adjusting for age except for grip strength. Reference values for TUG, one-leg standing time, back muscle strength, 10-m gait time, maximum stride and grip strength in men were 6.7 s, 21 s, 78 kg, 5.5 s and, 119 cm and 34 kg, respectively, and those for women were 7.5 s, 15 s, 40 kg, 6.2 s, 104 cm, and 22 kg, respectively. We established reference values for major physical performance tests used when assessing locomotive syndrome as defined by the GLFS-25. Our results can be used to characterize physical function and to help tailor an anti-LS training program for each individual.
Evaluation of in-place concrete strength by core testing.
DOT National Transportation Integrated Search
2016-11-01
The overall objective of the work contained in this report is to develop an ALDOT procedure to evaluate core strength results obtained under various conditions. Since there are many factors that influence the apparent strength of cores, strength corr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Jong-Pil, E-mail: jpwon@konkuk.ac.kr; Hwang, Un-Jong; Lee, Su-Jin
This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyzemore » long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.« less
Hurd, Wendy J.; Axe, Michael J.; Snyder-Mackler, Lynn
2010-01-01
Objectives To clarify the determinants of dynamic knee stability early after anterior cruciate ligament (ACL) injury. Materials and Methods 345 consecutive patients who were regular participants in IKDC level I/II sports before injury and had an acute isolated ACL injury from the practice of a single orthopaedic surgeon underwent a screening examination including clinical measures, knee laxity, quadriceps strength, hop testing, and patient self-reported knee function an average of 6 weeks after injury when impairments were resolved. Independent t-tests were performed to evaluate differences in quadriceps strength and anterior knee laxity between potential copers and noncopers. Hierarchical regression was performed to determine the influence of quadriceps strength, pre-injury activity level, and anterior knee laxity on hop test performance, as well as the influence of timed hop, cross-over hop, quadriceps strength, pre-injury activity level, and anterior knee laxity on self-assessed global function. Results Neither anterior knee laxity nor quadriceps strength differed between potential copers and non-copers. Quadriceps strength influenced hop test performance more significantly than pre-injury activity level or anterior knee laxity, but the variance accounted for by quadriceps strength was low (Range: 4-8%). Timed hop performance was the only variable that impacted self-assessed global function. Conclusions Traditional surgical decision making based on passive anterior knee laxity and pre-injury activity level is not supported by the results, as neither are good predictors of dynamic knee stability. Clinical tests that capture neuromuscular adaptations, including the timed hop test, may be useful in predicting function and guiding individualized patient management after ACL injury. PMID:17932399
Relationship between isometric and dynamic strength in recreationally trained men.
McGuigan, Michael R; Newton, Michael J; Winchester, Jason B; Nelson, Arnold G
2010-09-01
The purpose of this investigation was to examine the relationships between measures of maximal isometric force (peak force [PF]), rate of force development (RFD), vertical jump performance (VJ) and 1-repetition maximum (1RM) strength in recreationally trained men. The subjects in this study were 26 men ([mean +/- SD]: age 22 +/- 1 years; height 175 +/- 7 cm; mass 90 +/- 10 kg). They were tested for PF using the isometric midthigh pull exercise. The 1RM for the squat and bench press exercise were determined as a measure of dynamic strength. Explosive strength was measured as RFD from the isometric force-time curve. Correlations between the variables were calculated using Pearson product moment correlation coefficient. There was a nearly perfect correlation between measures of PF and 1RM squat (r = 0.97, p < 0.05) and 1RM bench press (r = 0.99, p < 0.05). The correlations were very strong between VJ and PF (r = 0.72, p < 0.05) and 1RM bench press (r = 0.70, p < 0.05). There were also strong correlations between VJ and 1RM squat (r = 0.69, p < 0.05). There were no significant correlations with RFD. The results showed that isometric maximum strength determined during the isometric midthigh pull test correlated well with 1RM and VJ testing. However, RFD measured during the same test did not appear to correlate as well with other measures. The isometric midthigh pull provides an efficient method for assessing strength in recreationally trained individuals. Practitioners wishing to obtain performance data related to maximum strength may wish to consider isometric testing as a less time intensive method of testing.
Relationship between strength, power and balance performance in seniors.
Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs
2012-01-01
Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.
Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.
Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A
2018-05-01
To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
García-Pinillos, Felipe; Delgado-Floody, Pedro; Martínez-Salazar, Cristian; Latorre-Román, Pedro Á.
2018-01-01
Abstract The present study analyzed the acute effects of an incremental running test on countermovement jump (CMJ) and handgrip strength performance in endurance athletes, considering the effect of post-exercise recovery time and sex. Thirty-three recreationally trained long-distance runners, 20 men and 13 women, participated voluntarily in this study. The participants performed the Léger test, moreover, the CMJ and handgrip strength tests were carried out before and after the running test and during different stages of recovery (at the 1st min of recovery (posttest1), 5th min of recovery (posttest2), and 10th min of recovery (posttest3)). Two-way analysis of variance revealed a significant improvement in the CMJ (pre-posttest1, p = 0.001) and handgrip strength (pre-posttest2, p = 0.017) during recovery time. The Pearson’s Chi-2 test showed no significant relationship (p ≥ 0.05) between sex and post-activation potentiation (PAP). A linear regression analysis pointed to heart rate recovery as a predictive factor of CMJ improvement (PAP). In conclusion, despite significant fatigue reached during the Léger test, the long-distance runners did not experience an impaired CMJ and handgrip strength performance, either men or women, achieving an improvement (PAP) in posttest conditions. The results obtained showed no significant relationship between sex and PAP. Moreover, significant effect of recovery after running at high intensity on CMJ performance and handgrip strength was found. Finally, the data suggest that PAP condition can be predicted by heart rate recovery in endurance runners. PMID:29599872
Hatch, Ainslie; Madden, Sloane; Kohn, Michael R.; Clarke, Simon; Touyz, Stephen; Gordon, Evian; Williams, Leanne M.
2010-01-01
Background Identification of the biological markers of anorexia nervosa (AN) is crucial for the development of new treatments. We aimed to determine whether AN is associated with disturbances in the nonconscious neural processing of innate signals of emotion and whether these disturbances persist after weight gain. Methods In a retest design, 28 adolescent females with AN were tested at first admission to hospital and again after they had gained weight. Matched healthy control participants were tested at the same times. We assessed emotion-elicited event-related potentials (ERPs) during overt and covert presentation of emotion expressions, scores on an emotion-identification behavioural task, and symptom measures. We performed between and within group analyses. Results Individuals with AN had a marked alteration in ERPs relative to healthy controls. Irrespective of the form of stimulus, early and late ERP components were significantly reduced in AN patients at baseline (when underweight) and on retest (after weight gain), especially in the temporo-occipital regions, suggesting a persistent disruption of the early automatic appraisal of salient emotional signals. Limitations This study could have been improved with a longer standardized retest interval. Conclusion There is likely a core, generic disturbance in AN in the early “automatic” neural processing of emotion irrespective of weight or nutritional status. New innovative emotion-based psychologic or pharmacologic treatments targeting these nonconscious processes may prove beneficial. PMID:20598239
Hatch, Ainslie; Madden, Sloane; Kohn, Michael R; Clarke, Simon; Touyz, Stephen; Gordon, Evian; Williams, Leanne M
2010-07-01
Identification of the biological markers of anorexia nervosa (AN) is crucial for the development of new treatments. We aimed to determine whether AN is associated with disturbances in the nonconscious neural processing of innate signals of emotion and whether these disturbances persist after weight gain. In a retest design, 28 adolescent females with AN were tested at first ad not mission to hospital and again after they had gained weight. Matched healthy control participants were tested at the same times. We assessed emotion-elicited event-related potentials (ERPs) during overt and covert presentation of emotion expressions, scores on an emotion-identification behavioural task, and symptom measures. We performed between and within group analyses. Individuals with AN had a marked alteration in ERPs relative to healthy controls. Irrespective of the form of stimulus, early and late ERP componotnents were significantly reduced in AN patients at baseline (when underweight) and on retest (after weight gain), especially in the temporo-occipital regions, suggesting a persistent disruption of the early automatic appraisal of salient emotional signals. This study could have been improved with a longer standardized retest interval. There is likely a core, generic disturbance in AN in the early "automatic" neural processing of emotion irrespective of weight or nutritional status. New innovative emotion-based psychologic or pharmacologic treatments targeting these nonconscious processes may prove beneficial.
MOLINA, Gustavo Fabián; CABRAL, Ricardo Juan; MAZZOLA, Ignacio; BRAIN LASCANO, Laura; FRENCKEN, Jo. E.
2013-01-01
The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. Objective: To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Material and Methods: Specimens for testing flexural (n=240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. Results: The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). Conclusion: The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers. PMID:23857657
Root strength of tropical plants - An investigation in the Western Ghats of Kerala, India
NASA Astrophysics Data System (ADS)
Lukose Kuriakose, S.; van Beek, L. P. H.; van Westen, C. J.
2009-04-01
Earlier research on debris flows in the Tikovil River basin of the Western Ghats concluded that root cohesion is significant in maintaining the overall stability of the region. In this paper we present the most recent results (December 2008) of root tensile strength tests conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) A variety of Tamarind (Garcinia gummigutta), 8) Coffee (Coffea Arabica) and Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested has a length of 15 cm. Results indicate that the roots of Coffee, Tamarind, Lemon grass and Jackfruit are the strongest of the nine plant types tested whereas Tea and Teak plants had the most fragile roots. Coconut roots behaved atypical to the others, as the bark of the roots was crushed and slipped from the clamp when tested whereas its internal fiber was the strongest of all tested. Root tensile strength decreases with increasing diameters, Rubber showing more ductile behaviour than Coffee and Tamarind that behaved more brittle, root tensile strength increasing exponentially for finer roots. Teak and Tea showed almost a constant root tensile strength over the range of diameters tested and little variability. Jack fruit and mango trees showed the largest variability, which may be explained by the presence of root nodules, preventing the derivation of an unequivocal relationship between root diameters and tensile strength. This results in uncertainty of root strength estimates that are applicable. These results provide important information to quantify the upper limit of the root cohesion at the stand level in combination with land use maps. This is an indispensable component in the evaluation of slope stability in the region.
2011-01-01
Background Several clinical measures of sensory and motor function are used alongside patient-rated questionnaires to assess outcomes of carpal tunnel decompression. However there is a lack of evidence regarding which clinical tests are most responsive to clinically important change over time. Methods In a prospective cohort study 63 patients undergoing carpal tunnel decompression were assessed using standardised clinician-derived and patient reported outcomes before surgery, at 4 and 8 months follow up. Clinical sensory assessments included: touch threshold with monofilaments (WEST), shape-texture identification (STI™ test), static two-point discrimination (Mackinnon-Dellon Disk-Criminator) and the locognosia test. Motor assessments included: grip and tripod pinch strength using a digital grip analyser (MIE), manual muscle testing of abductor pollicis brevis and opponens pollicis using the Rotterdam Intrinsic Handheld Myometer (RIHM). The Boston Carpal Tunnel Questionnaire (BCTQ) was used as a patient rated outcome measure. Results Relative responsiveness at 4 months was highest for the BCTQ symptom severity scale with moderate to large effects sizes (ES = -1.43) followed by the BCTQ function scale (ES = -0.71). The WEST and STI™ were the most responsive sensory tests at 4 months showing moderate effect sizes (WEST ES = 0.55, STI ES = 0.52). Grip and pinch strength had a relatively higher responsiveness compared to thenar muscle strength but effect sizes for all motor tests were very small (ES ≤0.10) or negative indicating a decline compared to baseline in some patients. Conclusions For clinical assessment of sensibility touch threshold assessed by monofilaments (WEST) and tactile gnosis measured with the STI™ test are the most responsive tests and are recommended for future studies. The use of handheld myometry (RIHM) for manual muscle testing, despite more specifically targeting thenar muscles, was less responsive than grip or tripod pinch testing using the digital grip analyser (MIE). When assessing power and pinch strength the effect of other concomitant conditions such as degenerative joint disease on strength needs to be considered. PMID:22032626
Previous concrete as one of the technology to overcome the puddle
NASA Astrophysics Data System (ADS)
Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar
2018-03-01
Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Mathes, Karen L.; Lasley, Mary L.; Tomaselli, Clare Marie; Frey, Mary Anne Bassett; Hoffler, G. Wyckliffe
1993-01-01
Hemodynamic and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic stress is associated with strength and/or aerobic capacity. Subjects underwent treadmill tests to determine peak oxygen uptake (peak VO2) and isokinetic dynamo meter tests to determine leg strength. Based on predetermined criteria, the subjects were classified into one of four fitness profiles of six subjects each matched for age, height, and weight: (1) low strength/low aerobic fitness; (2) low strength/high aerobic fitness; (3) high strength/low aerobic fitness; and (4) high strength/high aerobic fitness. Following 90 min of 6 degree head-down tilt (HDT), each subject underwent graded LBNP through -50 mmHg or presyncope, with maximal duration 15 min. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences except for catecholamines. Seven subjects, distributed among the four fitness profiles, became presyncopal. Subjects who showed greatest reduction in mean arterial pressure (MAP) during LBNP had greater elevations in vasopressin and lesser increases in heart rate and peripheral resistance. Peak VO2 nor leg strength were correlated with fall in MAP or with syncopal episodes. We conclude that neither aerobic nor strength fitness characteristics are good predictors of responses to LBNP stress.
Knutsen, Kirsten V; Madar, Ahmed A; Lagerløv, Per; Brekke, Mette; Raastad, Truls; Stene, Lars C; Meyer, Haakon E
2014-01-01
The effect of vitamin D on muscle strength in adults is not established. Our objective was to test whether vitamin D supplementation increases muscle strength and power compared with placebo. We conducted a randomized, double-blind, placebo-controlled trial. The setting was immigrants' activity centers. Two hundred fifty-one healthy adult males and females aged 18-50 years with non-Western immigrant background performed the baseline test and 86% returned to the follow-up test. Sixteen weeks of daily supplementation with 25 μg (1000 IU) vitamin D3, 10 μg (400 IU) vitamin D3, or placebo. Difference in jump height between pre- and postintervention. Secondary outcomes were differences in handgrip strength and chair-rising test. Percentage change in jump height did not differ between those receiving vitamin D (25 or 10 μg vitamin D3) and those receiving placebo (mean difference -1.4%, 95% confidence interval: -4.9% to 2.2%, P=.44). No significant effect was detected in the subgroup randomized to 25 μg vitamin D or in other preplanned subgroup analyses nor were there any significant differences in handgrip strength or the chair-rising test. Mean serum 25-hydroxyvitamin D3 concentration increased from 27 to 52 nmol/L and from 27 to 43 nmol/L in the 25 and 10 μg supplementation groups, respectively, whereas serum 25-hydroxyvitamin D3 did not change in the placebo group. Daily supplementation with 25 or 10 μg vitamin D3 for 16 weeks did not improve muscle strength or power measured by the jump test, handgrip test, or chair-rising test in this population with low baseline vitamin D status.
Scholtes, Vanessa A; Dallmeijer, Annet J; Rameckers, Eugene A; Verschuren, Olaf; Tempelaars, Els; Hensen, Maartje; Becher, Jules G
2008-01-01
Background Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP. Methods/Results Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events. Conclusion Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive. Trial Registration Trial Register NTR1403 PMID:18842125
Lam, Ngee Wei; Goh, Hui Ting; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Poi, Philip Jun Hua; Tan, Maw Pin
2016-10-01
Hand strength is a good indicator of physical fitness and frailty among the elderly. However, there are no published hand strength references for Malaysians aged > 65 years. This study aimed to establish normative data for hand grip strength (HGS) and key pinch strength (KPS) for Malaysians aged ≥ 60 years, and explore the relationship between hand strength and physical ability. Healthy participants aged ≥ 60 years with no neurological conditions were recruited from rural and urban locations in Malaysia. HGS and KPS were measured using hand grip and key pinch dynamometers. Basic demographic data, anthropometric measures, modified Barthel Index scores and results of the Functional Reach Test (FRT), Timed Up and Go (TUG) test and Jebsen-Taylor Hand Function Test (JTHFT) were recorded. 362 subjects aged 60-93 years were recruited. The men were significantly stronger than the women in both HGS and KPS (p < 0.001). The hand strength of the study cohort was lower than that of elderly Western populations. Significant correlations were observed between hand strength, and residential area (p < 0.001), FRT (r = 0.236, p = 0.028), TUG (r = -0.227, p = 0.009) and JTHFT (r = -0.927, p < 0.001). This study established reference ranges for the HGS and KPS of rural and urban elderly Malaysian subpopulations. These will aid the use of hand strength as a screening tool for frailty among elderly persons in Malaysia. Future studies are required to determine the modifiable factors for poor hand strength. Copyright: © Singapore Medical Association
Tedesco, Tamara K; Calvo, Ana F B; Yoshioka, Laysa; Fukushima, Karen A; Cesar, Paulo F; Raggio, Daniela P
2018-05-31
To evaluate the effect of acidic challenge (AC) on the properties and bond stability of restorative materials to primary enamel and dentin. One hundred twenty primary molars were assigned to 12 groups according to substrate (enamel or dentin), restorative material (composite, high-viscosity glass ionomer cement [HV-GIC] or resin-modified glass-ionomer cement [RM-GIC]), and immersion after restoration (control [saline solution/7 days] or AC [cola-based drink/5 min/3x per day/7 days]). Twenty-four hours after the restorative procedure, specimens were submitted to one of the proposed challenges. Half of the specimens were immediately subjected to the microshear bond strength test, and the other half after 12 months. To determine flexural strength flexural strength and superficial roughness (SR), 30 specimens were built up. After 24 h, the first measurement of SR from 10 specimens was performed. Specimens were then immersed in one of proposed challenges and SR was measured again. Subsequently, flexural strength testing was performed. Bond strength, surface roughness, and flexural strength data were subjected to ANOVA and Tukey's test. Composite showed the highest bond strengths compared to the others materials on both substrates. The storage period negatively influenced the bond strength only for composite groups in dentin. AC after restoration negatively influenced bond strength when the materials were evaluated in eroded dentin. AC affected the second SR measurement, showing increased SR for all restorative materials. AC did not affect flexural strength. The acidic challenge jeopardizes the surface roughness and bond strength of restorations to eroded dentin.
Lam, Ngee Wei; Goh, Hui Ting; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Poi, Philip Jun Hua; Tan, Maw Pin
2016-01-01
INTRODUCTION Hand strength is a good indicator of physical fitness and frailty among the elderly. However, there are no published hand strength references for Malaysians aged > 65 years. This study aimed to establish normative data for hand grip strength (HGS) and key pinch strength (KPS) for Malaysians aged ≥ 60 years, and explore the relationship between hand strength and physical ability. METHODS Healthy participants aged ≥ 60 years with no neurological conditions were recruited from rural and urban locations in Malaysia. HGS and KPS were measured using hand grip and key pinch dynamometers. Basic demographic data, anthropometric measures, modified Barthel Index scores and results of the Functional Reach Test (FRT), Timed Up and Go (TUG) test and Jebsen-Taylor Hand Function Test (JTHFT) were recorded. RESULTS 362 subjects aged 60–93 years were recruited. The men were significantly stronger than the women in both HGS and KPS (p < 0.001). The hand strength of the study cohort was lower than that of elderly Western populations. Significant correlations were observed between hand strength, and residential area (p < 0.001), FRT (r = 0.236, p = 0.028), TUG (r = −0.227, p = 0.009) and JTHFT (r = −0.927, p < 0.001). CONCLUSION This study established reference ranges for the HGS and KPS of rural and urban elderly Malaysian subpopulations. These will aid the use of hand strength as a screening tool for frailty among elderly persons in Malaysia. Future studies are required to determine the modifiable factors for poor hand strength. PMID:26768064