Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.
Lee, Jae Sun; Chi, Won-Jae; Hong, Soon-Kwang; Yang, Ji-Won; Chang, Yong Keun
2013-07-01
Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7% based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, L-arabinose, mannose, L-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3%, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8%, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.
Cone, M C; Petrich, A K; Gould, S J; Zabriskie, T M
1998-06-01
Two small chromosomal DNA fragments (2.6 and 4.8 kb) from the blasticidin S producer Streptomyces griseochromogenes were cloned in the high copy number vector pIJ702 and shown to confer increased resistance to blasticidin S upon S. lividans TK24. These fragments were used to screen a library of S. griseochromogenes DNA prepared in the cosmid shuttle vector pOJ446. Cosmids containing DNA inserts of at least 23 kb were identified which hybridized to one or the other resistance fragment, but not to both. Transformation of S. lividans TK24 with several cosmids hybridizing with the 4.8 kb resistance fragment resulted in clones that produced cytosylglucuronic acid, the first intermediate of the blasticidin S biosynthetic pathway, and other blasticidin-related metabolites. A strain of S. lividans TK24 harboring both the 4.8 kb-hybridizing cosmid and the 2.6 kb resistance fragment cloned in pIJ702 produced 12.5 times as much demethylblasticidin S as the transformant harboring the cosmid alone.
A recombinant actinomycete, Streptomyces lividans TK23.1, expressing a pIJ702-encoded extracellular lignin peroxidase gene cloned from the chromosome of Streptomyces virodosporus T7A, was released into soil in flask- and microcosm-scale studies to determine its effects on humific...
Weitnauer, G; Gaisser, S; Trefzer, A; Stockert, S; Westrich, L; Quiros, L M; Mendez, C; Salas, J A; Bechthold, A
2001-03-01
Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 microg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 microg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA.
Liu, Song; Wang, Miao; Du, Guocheng; Chen, Jian
2016-10-28
Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from -693 to -48. We also identified a negative element (-198 to -148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.
Weitnauer, Gabriele; Gaisser, Sibylle; Trefzer, Axel; Stockert, Sigrid; Westrich, Lucy; Quiros, Luis M.; Mendez, Carmen; Salas, Jose A.; Bechthold, Andreas
2001-01-01
Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 μg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 μg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA. PMID:11181344
Chen, Wenqing; Huang, Tingting; He, Xinyi; Meng, Qingqing; You, Delin; Bai, Linquan; Li, Jialiang; Wu, Mingxuan; Li, Rui; Xie, Zhoujie; Zhou, Huchen; Zhou, Xiufen; Tan, Huarong; Deng, Zixin
2009-01-01
A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics. PMID:19233844
Pettis, Gregg S.; Prakash, Shubha
1999-01-01
A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24.2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems. PMID:10419972
Hong, S T; Carney, J R; Gould, S J
1997-01-01
The genes for the complete pathways for two polycyclic aromatic polyketides of the angucyclinone class have been cloned and heterologously expressed. Genomic DNAs of Streptomyces rimosus NRRL 3016 and Streptomyces strain WP 4669 were partially digested with MboI, and libraries (ca. 40-kb fragments) in Escherichia coli XL1-Blue MR were prepared with the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes from each organism. After transfer of the four clusters to Streptomyces lividans TK24, expression of one cluster from each organism was established through the identification of pathway-specific products by high-performance liquid chromatography with photodiode array detection. Peaks were identified from the S. rimosus cluster (pksRIM-1) for tetrangulol, tetrangomycin, and fridamycin E. Peaks were identified from the WP 4669 cluster (pksWP-2) for tetrangulol, 19-hydroxytetrangulol, 8-O-methyltetrangulol, 19-hydroxy-8-O-methyltetrangulol, and PD 116740. Structures were confirmed by 1H nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. PMID:8990300
Hong, S T; Carney, J R; Gould, S J
1997-01-01
The genes for the complete pathways for two polycyclic aromatic polyketides of the angucyclinone class have been cloned and heterologously expressed. Genomic DNAs of Streptomyces rimosus NRRL 3016 and Streptomyces strain WP 4669 were partially digested with MboI, and libraries (ca. 40-kb fragments) in Escherichia coli XL1-Blue MR were prepared with the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes from each organism. After transfer of the four clusters to Streptomyces lividans TK24, expression of one cluster from each organism was established through the identification of pathway-specific products by high-performance liquid chromatography with photodiode array detection. Peaks were identified from the S. rimosus cluster (pksRIM-1) for tetrangulol, tetrangomycin, and fridamycin E. Peaks were identified from the WP 4669 cluster (pksWP-2) for tetrangulol, 19-hydroxytetrangulol, 8-O-methyltetrangulol, 19-hydroxy-8-O-methyltetrangulol, and PD 116740. Structures were confirmed by 1H nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry.
Smith, T M; Jiang, Y F; Shipley, P; Floss, H G
1995-10-16
A common approach to identify and clone biosynthetic gene from an antibiotic-producing streptomycete is to clone the resistance gene for the antibiotic of interest and then use that gene to clone DNA that is linked to it. As a first step toward cloning the genes responsible for the biosynthesis of thiostrepton (Th) in Streptomyces laurentii (Sl), the Th resistance-encoding gene (tsnR) was cloned as a 1.5-kb BamHI-PvuII fragment in Escherichia coli (Ec), and shown to confer Th resistance when introduced into S. lividans TK24. The tsnR-containing DNA fragment was used as a probe to isolate clones from cosmid libraries of DNA in the Ec cosmid vector SuperCos, and pOJ446 (an Ec/streptomycete) cosmid vector. Sequence and genetic analysis of the DNA flanking the tsnR indicates that the Sl tsnR is not closely linked to biosynthetic genes. Instead it is located within a cluster of ribosomal protein operons.
Boukhris, Ines; Farhat-Khemakhem, Ameny; Bouchaala, Kameleddine; Virolle, Marie-Joëlle; Chouayekh, Hichem
2016-10-01
A gene encoding an extracellular phytase was cloned for the first time from an Actinomycete, Streptomyces sp. US42 and sequenced. The sequence of this gene revealed an encoded polypeptide (PHY US42) exhibiting one and six residues difference with the putative phytases of Streptomyces lividans TK24 and Streptomyces coelicolor A3(2), respectively. The molecular modeling of PHY US42 indicated that this phytase belongs to the group of β-propeller phytases that are usually calcium-dependent. PHY US42 was purified and characterized. Its activity was calcium-dependent and maximal at pH 7 and 65 °C. The enzyme was perfectly stable at pH ranging from 5 to 10 and its thermostability was greatly enhanced in the presence of calcium. Indeed, PHY US42 maintained 80% of activity after 10 min of incubation at 75 °C in the presence of 5 mM CaCl 2 . PHY US42 was also found to exhibit high stability after incubation at 37 °C for 1 h in the presence of bovine bile and digestive proteases like of pepsin, trypsin, and chymotrypsin. Considering its biochemical properties, PHY US42 could be used as feed additive in combination with an acid phytase for monogastric animals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hong, Joo-Bin; Dhakshnamoorthy, Vijayalakshmi; Lee, Chang-Ro
2016-09-01
The sco0765 gene was annotated as a glycosyl hydrolase family 5 endoglucanase from the genomic sequence of Streptomyces coelicolor A3(2) and consisted of 2,241 bp encoding a polypeptide of 747 amino acids (molecular weight of 80.5 kDa) with a 29-amino acid signal peptide for secretion. The SCO0765 recombinant protein was heterogeneously over-expressed in Streptomyces lividans TK24 under the control of a strong ermE* promoter. The purified SCO0765 protein showed the expected molecular weight of the mature form (718 aa, 77.6 kDa) on sodium dodecyl sulfate-polyacryl amide gel electrophoresis. SCO0765 showed high activity toward β-glucan and carboxymethyl cellulose (CMC) and negligible activity to Avicel, xylan, and xyloglucan. The SCO0765 cellulase had a maximum activity at pH 6.0 and 40°C toward CMC and at pH 9.0 and 50-60°C toward β-glucan. Thin layer chromatography of the hydrolyzed products of CMC and β-glucan by SCO0765 gave cellotriose as the major product and cellotetraose, cellopentaose, and longer oligosaccharides as the minor products. These results clearly demonstrate that SCO0765 is an endo-β-1,4-cellulase, hydrolyzing the β-1,4 glycosidic bond of cellulose into cellotriose.
Lim, Ju-Hyeon; Lee, Chang-Ro; Dhakshnamoorthy, Vijayalakshmi; Park, Jae Seon; Hong, Soon-Kwang
2016-02-01
Genomic sequencing analysis and previous studies have shown that there are eight genes in Streptomyces coelicolor A3(2) encoding putative cellulases. One of these genes, sco6548, was cloned into the Streptomyces/Escherichia coli shuttle vector pUWL201PW. The recombinant protein was successfully overexpressed in S. lividans TK24 under the control of the strong ermE promoter. Sco6548 was 1740 bp in length, and encoded a 579-amino acid-, 60.8-kDa protein with strong hydrolyzing activity toward Avicel and filter paper, yielding cellobiose as the final product. SCO6548 showed optimal activity at 50°C and pH 5. The Km values of SCO6548 toward Avicel and filter paper were 15.38 and 16.1 mg/mL, respectively. The Vmax values toward Avicel and filter paper were 0.432 and 0.084 μM/min, respectively. EDTA did not affect cellulase activity; however, several divalent cations, including Co(2+), Cu(2+), Ni(2+) and Mn(2+) (at 10 mM) had severe inhibitory effects on enzyme activity. Our analysis showed that SCO6548 is a cellulose 1,4-β-cellobiosidase that hydrolyzes cellulose into cellobiose. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57.
Gaisser, S; Trefzer, A; Stockert, S; Kirschning, A; Bechthold, A
1997-01-01
A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins. PMID:9335272
Analysis of the site-specific integration system of the Streptomyces aureofaciens phage μ1/6.
Farkašovská, Jarmila; Godány, Andrej
2012-03-01
The bacteriophage μ1/6 integrates its DNA into the chromosome of tetracycline producing strains of Streptomyces aureofaciens by a site-specific recombination process. A bioinformatic analysis of the μ1/6 genome revealed that orf5 encodes a putative integrase, a basic protein of 416 amino acids. The μ1/6 integrase was found to belong to the integrase family of site-specific tyrosine recombinases. The phage attachment site (attP) was localized downstream of the int gene. The attachment junctions (attL and attR) were determined, allowing identification of the bacterial attachment site (attB). All attachment sites shared a 46-bp common core sequence within which a site-specific recombination occurs. This core sequence comprises the 3' end of a putative tRNA(Thr) gene (anticodon TGT) which is completely restored in attL after integration of the phage into the host genome. An integration vector containing μ1/6 int-attP region was inserted stably into the S. aureofaciens B96, S. lividans TK24, and S. coelicolor A3. The μ1/6 integrase was shown to be functional in vivo in heterologous Escherichia coli without any other factors encoded by Streptomyces. In vitro recombination assay using purified μ1/6 integrase demonstrated its ability to catalyze integrative recombination in the presence of a crude extract of E. coli cells.
Noda, Shuhei; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko
2015-01-13
Streptavidin is a tetrameric protein derived from Streptomyces avidinii, and has tight and specific biotin binding affinity. Applications of the streptavidin-biotin system have been widely studied. Streptavidin is generally produced using protein expression in Escherichia coli. In the present study, the secretory production of streptavidin was carried out using Streptomyces lividans as a host. In this study, we used the gene encoding native full-length streptavidin, whereas the core region is generally used for streptavidin production in E. coli. Tetrameric streptavidin composed of native full-length streptavidin monomers was successfully secreted in the culture supernatant of S. lividans transformants, and had specific biotin binding affinity as strong as streptavidin produced by E. coli. The amount of Sav using S. lividans was about 9 times higher than using E. coli. Surprisingly, streptavidin produced by S. lividans exhibited affinity to biotin after boiling, despite the fact that tetrameric streptavidin is known to lose its biotin binding ability after brief boiling. We successfully produced a large amount of tetrameric streptavidin as a secretory-form protein with unique thermotolerance.
Roles of small laccases from Streptomyces in lignin degradation.
Majumdar, Sudipta; Lukk, Tiit; Solbiati, Jose O; Bauer, Stefan; Nair, Satish K; Cronan, John E; Gerlt, John A
2014-06-24
Laccases (EC 1.10.3.2) are multicopper oxidases that can oxidize a range of substrates, including phenols, aromatic amines, and nonphenolic substrates. To investigate the involvement of the small Streptomyces laccases in lignin degradation, we generated acid-precipitable polymeric lignin obtained in the presence of wild-type Streptomyces coelicolor A3(2) (SCWT) and its laccase-less mutant (SCΔLAC) in the presence of Miscanthus x giganteus lignocellulose. The results showed that strain SCΔLAC was inefficient in degrading lignin compared to strain SCWT, thereby supporting the importance of laccase for lignin degradation by S. coelicolor A3(2). We also studied the lignin degradation activity of laccases from S. coelicolor A3(2), Streptomyces lividans TK24, Streptomyces viridosporus T7A, and Amycolatopsis sp. 75iv2 using both lignin model compounds and ethanosolv lignin. All four laccases degraded a phenolic model compound (LM-OH) but were able to oxidize a nonphenolic model compound only in the presence of redox mediators. Their activities are highest at pH 8.0 with a low krel/Kapp for LM-OH, suggesting that the enzymes’ natural substrates must be different in shape or chemical nature. Crystal structures of the laccases from S. viridosporus T7A (SVLAC) and Amycolatopsis sp. 75iv2 were determined both with and without bound substrate. This is the first report of a crystal structure for any laccase bound to a nonphenolic β-O-4 lignin model compound. An additional zinc metal binding site in SVLAC was also identified. The ability to oxidize and/or rearrange ethanosolv lignin provides further evidence of the utility of laccase activity for lignin degradation and/or modification.
Asamizu, Shumpei; Ozaki, Taro; Teramoto, Kanae; Satoh, Katsuya; Onaka, Hiroyasu
2015-01-01
Co-culture of Streptomyces with mycolic acid-containing bacteria (MACB), which we termed "combined-culture," alters the secondary metabolism pattern in Streptomyces and has been a useful method for the discovery of bioactive natural products. In the course of our investigation to identify the inducing factor(s) of MACB, we previously observed that production of pigments in Streptomyces lividans was not induced by factors such as culture extracts or mycolic acids. Although dynamic changes occurred in culture conditions because of MACB, the activation of pigment production by S. lividans was observed in a limited area where both colonies were in direct contact. This suggested that direct attachment of cells is a requirement and that components on the MACB cell membrane may play an important role in the response by S. lividans. Here we examined whether this response was influenced by dead MACB that possess intact mycolic acids assembled on the outer cell membrane. Formaldehyde fixation and γ-irradiation were used to prepare dead cells that retain their shape and mycolic acids of three MACB species: Tsukamurella pulmonis, Rhodococcus erythropolis, and Rhodococcus opacus. Culturing tests verified that S. lividans does not respond to the intact dead cells of three MACB. Observation of combined-culture by scanning electron microscopy (SEM) indicated that adhesion of live MACB to S. lividans mycelia were a significant interaction that resulted in formation of co-aggregation. In contrast, in the SEM analysis, dead cells were not observed to adhere. Therefore, direct attachment by live MACB cells is proposed as one of the possible factors that causes Streptomyces to alter its specialized metabolism in combined-culture.
Growth of streptomycetes in soil and their impact on bioremediation.
Schütze, Eileen; Klose, Michael; Merten, Dirk; Nietzsche, Sandor; Senftleben, Dominik; Roth, Martin; Kothe, Erika
2014-02-28
The impact of the extremely heavy metal resistant actinomycete Streptomyces mirabilis P16B-1 on heavy metal mobilization/stabilization, phytoremediation and stress level of plants was analyzed in the presence and absence of Sorghum bicolor in sterile microcosms containing highly metal contaminated or control soil. For control, a metal sensitive S. lividans TK24 was used. The metal contents with respect to the mobile and specifically adsorbed fractions of the contaminated soil were considerably decreased by addition of both, living and dead biomass of the strains, with the heavy metal resistant S. mirabilis P16B-1 showing considerably higher impact. Both strains could grow in control soil, while only S. mirabilis P16B-1 formed new tip growth in the metal contaminated soil. A plant growth promoting effect was visible for S. mirabilis P16B-1 in contaminated soil enhancing the dry weight of inoculated Sorghum plants. Thus, metal resistant strains like S. mirabilis P16B-1 are able to enhance phytoremediation of heavy metal contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, C J; Janssen, G R
1996-10-01
The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.
Kasuga, Kano; Sasaki, Akira; Matsuo, Takashi; Yamamoto, Chika; Minato, Yuiko; Kuwahara, Naoya; Fujii, Chikako; Kobayashi, Masayuki; Agematu, Hitosi; Tamura, Tomohiro; Komatsu, Mamoru; Ishikawa, Jun; Ikeda, Haruo; Kojima, Ikuo
2017-05-01
Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I-III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.
Bröker, Daniel; Dietz, David; Arenskötter, Matthias; Steinbüchel, Alexander
2008-01-01
The latex-clearing protein (LcpK30) from the rubber-degrading bacterium Streptomyces sp. strain K30 is involved in the cleavage of poly(cis-1,4-isoprene), yielding isoprenoid aldehydes and ketones. Lcp homologues have so far been detected in all investigated clearing-zone-forming rubber-degrading bacteria. Internal degenerated oligonucleotides derived from lcp genes of Streptomyces sp. strain K30 (lcpK30), Streptomyces coelicolor strain A3(2), and Nocardia farcinica strains IFM10152 and E1 were applied in PCR to investigate whether lcp homologues occur also in the non-clearing-zone-forming rubber-utilizing bacteria Gordonia polyisoprenivorans strains VH2 and Y2K, Gordonia alkanivorans strain 44187, and Gordonia westfalica strain Kb1, which grow adhesively on rubber. The 1,230- and 1,224-bp lcp-homologous genes from G. polyisoprenivorans strain VH2 (lcpVH2) and G. westfalica strain Kb1 (lcpKb1) were obtained after screening genomic libraries by degenerated PCR amplification, and their translational products exhibited 50 and 52% amino acid identity, respectively, to LcpK30. Recombinant lcpVH2 and lcpKb1 harboring cells of the non-rubber-degrading Streptomyces lividans strain TK23 were able to form clearing zones and aldehydes on latex overlay-agar plates, thus indicating that lcpVH2 and lcpKb1 encode functionally active proteins. Analysis by gel permeation chromatography demonstrated lower polymer concentrations and molecular weights of the remaining polyisoprenoid molecules after incubation with these recombinant S. lividans strains. Reverse transcription-PCR analysis demonstrated that lcpVH2 was transcribed in cells of G. polyisoprenivorans strain VH2 cultivated in the presence of poly(cis-1,4-isoprene) but not in the presence of sodium acetate. Anti-LcpK30 immunoglobulin Gs, which were raised in this study, were rather specific for LcpK30 and did not cross-react with LcpVH2 and LcpKb1. A lcpVH2 disruption mutant was still able to grow with poly(cis-1,4-isoprene) as sole carbon source; therefore, lcpVH2 seems not to be essential for rubber degradation in G. polyisoprenivorans. PMID:18296529
Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.
2005-01-01
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733
Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang
2014-01-01
ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. PMID:24423427
Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans.
Valverde, José R; Gullón, Sonia; Mellado, Rafael P
2018-06-14
Streptomyces lividans has demonstrated its value as an efficient host for protein production due to its ability to secrete functional proteins directly to the media. Secretory proteins that use the major Sec route need to be properly folded outside the cell, whereas secretory proteins using the Tat route appear outside the cell correctly folded. This feature makes the Tat system very attractive for the production of natural or engineered Tat secretory proteins. S. lividans cells are known to respond differently to overproduction and secretion of Tat versus Sec proteins. Increased understanding of the impact of protein secretion through the Tat route can be obtained by a deeper analysis of the metabolic impact associated with protein production, and its dependence on protein origin, composition, secretion mechanisms, growth phases and nutrients. Flux Balance Analysis of Genome-Scale Metabolic Network models provides a theoretical framework to investigate cell metabolism under different constraints. We have built new models for various S. lividans strains to better understand the mechanisms associated with overproduction of proteins secreted through the Tat route. We compare models of an S. lividans Tat-dependent agarase overproducing strain with those of the S. lividans wild-type, an S. lividans strain carrying the multi-copy plasmid vector and an α-amylase Sec-dependent overproducing strain. Using updated genomic, transcriptomic and experimental data we could extend existing S. lividans models and produce a new model which produces improved results largely extending the coverage of S. lividans strains, the number of genes and reactions being considered, the predictive behaviour and the dependence on specification of exchange constraints. Comparison of the optimized solutions obtained highlights numerous changes between Tat- and Sec-dependent protein secreting strains affecting the metabolism of carbon, amino acids, nucleotides, lipids and cofactors, and variability analysis predicts a large potential for protein overproduction. This work provides a detailed look to metabolic changes associated to Tat-dependent protein secretion reproducing experimental observations and identifying changes that are specific to each secretory route, presenting a novel, improved, more accurate and strain-independent model of S. lividans, thus opening the way for enhanced metabolic engineering of protein overproduction in S. lividans.
Vionis, A P; Niemeyer, F; Karagouni, A D; Schrempf, H
1996-01-01
Streptomyces lividans (pCHIO12), which carries the previously cloned Streptomyces olivaceoviridis exo-chiO1 gene on a multicopy vector, secretes a 59-kDa exochitinase, consisting of a catalytic domain (40 kDa), a central fibronectin type III-like module, and a chitin-binding domain (12 kDa). The propagation rate of S. lividans (pCHIO12) was higher in soil microcosms amended with fungal mycelia than in those containing crab chitin. Comparative biochemical and immunological studies allowed the following conclusions to be drawn. Within soil microcosm systems amended with crab shell chitin or chitin-containing Aspergillus proliferans mycelia, the strain expressed the clones exo-chiO1 gene and produced high quantities of a 59-kDa exochitinase. The enzyme was preferentially attached via its binding domain to the pellet from soil or liquid cultures. In contrast, truncated forms of 47, 40, and 25 kDa could be easily extracted from soil. The relative proportions of the 59-kDa enzyme and its truncated forms varied depending on the source of chitin and differed in soil and in liquid cultures. PMID:8633877
Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R
2018-01-24
Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.
Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N
2016-06-01
The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.
Théberge, M; Lacaze, P; Shareck, F; Morosoli, R; Kluepfel, D
1992-01-01
The endoglucanase isolated from culture filtrates of Streptomyces lividans IAF74 was shown to have an Mr of 46,000 and a pI of 3.3. The specific enzyme activity of 539 IU/mg, determined by the reducing assay method on carboxymethyl cellulose, is among the highest reported in the literature. The cellulase showed typical endo-type activity when reacting on oligocellodextrins. Optimal enzyme activity was obtained at 50 degrees C and pH 5.5. The kinetic constants for this endoglucanase, determined with carboxymethyl cellulose as the substrate, were a Vmax of 24.9 IU/mg of enzyme and a Km of 4.2 mg/ml. Activity was found against neither methylumbelliferyl- nor p-nitrophenyl-cellobiopyranoside nor with xylan. The DNA sequence contains one possible reading frame validated by the N terminus of the mature purified protein. However, neither ATG nor GTG starting codons were identified near the ribosome-binding site. A putative TTG codon was found as a good candidate for the start codon. Comparison of the primary amino acid sequence of the endoglucanase of S. lividans revealed that the N terminus contains a bacterial cellulose-binding domain. The catalytic domain at the C terminus showed similarity to endoglucanases from a Bacillus sp. Thus, the endoglucanase CelA belongs to family A of cellulases as described before (N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, Microbiol. Rev. 55:303-315, 1991. Images PMID:1575483
Genetic Stability of Streptomyces Lividans pIJ702 in Response to Spaceflight
NASA Astrophysics Data System (ADS)
Lim, K. S.; Goins, T. L.; Voeikova, T. A.; Pyle, B. H.
2008-06-01
Streptomyces lividans carrying plasmid pIJ702 encoding genes for thiostrepton resistance (tsr-) and melanin production (mel+) was plated on agar and flown on the Russian satellite Foton-M3 for 16 days. The percentage loss of plasmid expression in flight samples was lower than that in ground samples when both samples were grown in enriched (ISP) media. Differences in media content also affect plasmid expression rate; ISP media have a higher loss of plasmid expression than samples in minimum media when both were grown on ground conditions. Results suggest that stress resulted in the increased expression of plasmid pIJ702 by S. lividans. Screening of thiostrepton resistant white (tsr+ mel-) mutants showed similar proportions of variants in ground samples and flight samples. To determine if there are mutations in the mel gene, DNA extracted from flight and control white mutants was amplified and gel electrophoresis of amplified products show no major mutation in the products. Sequencing of amplified products is required to identify mutations resulting in loss of pigmentation.
Zhang, Gaiyun; Zhang, Haibo; Li, Sumei; Xiao, Ji; Zhang, Guangtao; Zhu, Yiguang; Niu, Siwen; Ju, Jianhua
2012-01-01
Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis. PMID:22267658
Reaction mechanism of chitosanase from Streptomyces sp. N174.
Fukamizo, T; Honda, Y; Goto, S; Boucher, I; Brzezinski, R
1995-01-01
Chitosanase was produced by the strain of Streptomyces lividans TK24 bearing the csn gene from Streptomyces sp. N174, and purified by S-Sepharose and Bio-Gel A column chromatography. Partially (25-35%) N-acetylated chitosan was digested by the purified chitosanase, and structures of the products were analysed by NMR spectroscopy. The chitosanase produced heterooligosaccharides consisting of D-GlcN and GlcNAc in addition to glucosamine oligosaccharides [(GlcN)n, n = 1, 2 and 3]. The reducing- and non-reducing-end residues of the heterooligosaccharide products were GlcNAc and GlcN respectively, indicating that the chitosanase can split the GlcNAc-GlcN linkage in addition to that of GlcN-GlcN. Time-dependent 1H-NMR spectra showing hydrolysis of (GlcN)6 by the chitosanase were obtained in order to determine the anomeric form of the reaction products. The chitosanase was found to produce only the alpha-form; therefore it is an inverting enzyme. Separation and quantification of (GlcN)n was achieved by HPLC, and the time course of the reaction catalysed by the chitosanase was studied using (GlcN)n (n = 4, 5 and 6) as the substrate. The chitosanase hydrolysed (GlcN)6 in an endo-splitting manner producing (GlcN)2, (GlcN)3 and (GlcN)4, and did not catalyse transglycosylation. Product distribution was (GlcN)3 >> (GlcN)2 > (GlcN)4. Cleavage to (GlcN)3 + (GlcN)3 predominated over that to (GlcN)2 + (GlcN)4. Time courses showed a decrease in rate of substrate degradation from (GlcN)6 to (GlcN)5 to (GlcN)4. It is most likely that the substrate-binding cleft of the chitosanase can accommodate at least six GlcN residues, and that the cleavage point is located at the midpoint of the binding cleft. PMID:7487871
Gamboa-Suasnavart, Ramsés A; Marín-Palacio, Luz D; Martínez-Sotelo, José A; Espitia, Clara; Servín-González, Luis; Valdez-Cruz, Norma A; Trujillo-Roldán, Mauricio A
2013-08-01
Culture conditions in shake flasks affect filamentous Streptomyces lividans morphology, as well the productivity and O-mannosylation of recombinant Ala-Pro-rich O-glycoprotein (known as the 45/47 kDa or APA antigen) from Mycobacterium tuberculosis. In order to scale up from previous reported shake flasks to bioreactor, data from the literature on the effect of agitation on morphology of Streptomyces strains were used to obtain gassed volumetric power input values that can be used to obtain a morphology of S. lividans in bioreactor similar to the morphology previously reported in coiled/baffled shake flasks by our group. Morphology of S. lividans was successfully scaled-up, obtaining similar mycelial sizes in both scales with diameters of 0.21 ± 0.09 mm in baffled and coiled shake flasks, and 0.15 ± 0.01 mm in the bioreactor. Moreover, the specific growth rate was successfully scaled up (0.09 ± 0.02 and 0.12 ± 0.01 h(-1), for bioreactors and flasks, respectively), and the recombinant protein productivity measured by densitometry, as well. More interestingly, the quality of the recombinant glycoprotein measured as the amount of mannoses attached to the C-terminal of APA was also scaled- up; with up to five mannose residues in cultures carried out in shake flasks; and six in the bioreactor. However, final biomass concentration was not similar, indicating that although the process can be scaled-up using the power input, others factors like oxygen transfer rate, tip speed or energy dissipation/circulation function can be an influence on bacterial metabolism.
Lampel, J S; Aphale, J S; Lampel, K A; Strohl, W R
1992-01-01
The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase. Images PMID:1569011
Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J
1983-11-30
The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.
High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.
Wang, Y; Cobb, R E; Zhao, H
2016-01-01
Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces. © 2016 Elsevier Inc. All rights reserved.
Establishing a high yielding streptomyces-based cell-free protein synthesis system.
Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C
2017-06-01
Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lamp, Jessica; Weber, Maren; Cingöz, Gökhan; Ortiz de Orué Lucana, Darío; Schrempf, Hildgund
2013-05-01
We have identified, cloned and characterized a formerly unknown protein from Streptomyces lividans spores. The deduced protein belongs to a novel member of the metallophosphatase superfamily and contains a phosphatase domain and predicted binding sites for divalent ions. Very close relatives are encoded in the genomic DNA of many different Streptomyces species. As the deduced related homologues diverge from other known phosphatase types, we named the protein MptS (metallophosphatase type from Streptomyces). Comparative physiological and biochemical investigations and analyses by fluorescence microscopy of the progenitor strain, designed mutants carrying either a disruption of the mptS gene or the reintroduced gene as fusion with histidine codons or the egfp gene led to the following results: (i) the mptS gene is transcribed in the course of aerial mycelia formation. (ii) The MptS protein is produced during the late stages of growth, (iii) accumulates within spores, (iv) functions as an active enzyme that releases inorganic phosphate from an artificial model substrate, (v) is required for spore dormancy and (vi) MptS supports the interaction amongst Streptomyces lividans spores with conidia of the fungus Aspergillus proliferans. We discuss the possible role(s) of MptS-dependent enzymatic activity and the implications for spore biology. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Influence of Space Flight Factors on the Genetic Properties of Streptomyces Lividans 66 (PIJ702)
NASA Technical Reports Server (NTRS)
Tabakov, V. Yu.; Voeikova, T. A.; Tairbekov, M. G.; Goins, T. L.; Martinson, V. G.; Pyle, B. H.
2006-01-01
Gram-positive Streptomyces bacteria display genetic instability in response to external factors. Strain S. lividans 66 harbors the multicopy plasmid pIJ702 with selective and differential marker genes for antibiotic thiostrepton resistance and melanin production. Culture plates of modified ISP agar medium with and without thiostrepton were flown on Foton-M2. Suboptimal flight temperatures, which were simulated for asynchronous ground controls, resulted in slow growth and failure to differentiate and sporulate. Flight samples and asynchronous controls showed a high frequency of failing to express plasmid markers compared to laboratory controls. This was associated with loss of plasmid DNA and likely resulted from suboptimal temperatures for flight cultures and controls. Neither restriction fragment length polymorphism, nor polymerase chain reaction amplification coupled with denaturing gradient gel electrophoresis, revealed differences between pIJ702 DNA from flight vs. control clones. Mutations of the plasmid marker genes resulting from specific spaceflight factors, e.g., microgravity and radiation, were not detected.
A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1.
Fayed, Bahgat; Younger, Ellen; Taylor, Gabrielle; Smith, Margaret C M
2014-05-30
Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp. We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1. pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics.
Spaceflight Effects on Genetics and Plasmids of Streptomycetes
NASA Astrophysics Data System (ADS)
Voeikova, T. A.; Emelyanova, L. K.; Tyaglov, B. V.; Novikova, L. M.; Goins, T. L.; Pyle, B. H.
2008-06-01
In 2007, experiments with streptomycetes were conducted during a 12-day flight of the Russian Foton-M3 spacecraft. The flight (F), synchronous control (SC) and laboratory control (LC) specimens were kept at 30°C. The objective of the experiments was to study spaceflight effects on the streptomycetes growth, differentiation, pigmentation, enzyme formation, genetic stability of plasmid and crossing between strains. It was found that the frequency of strain Streptomyces lividans segregation, the enzyme synthesis, pigmentation, and the level of sporulation were higher in F than in SC organisms. The study of pIJ702 plasmid inheritance in S. lividans showed that the frequency of plasmid loss in F and LC was similar and lower than that in SC specimens. The study of melanin synthesis in S. lividans (pIJ702) strain demonstrated decreased melanin specific yield and increased biomass accumulation in F microorganisms. HPTLC analysis of melanin showed that the number, molecular mass and the percentage of fractions were similar in SC and LC but different in F organisms. The study of spaceflight effects on genetic recombination in crosses between Streptomyces coelicolor A3(2) auxotrophic mutants showed that the frequency of various recombinant classes in F specimens differed from that in SC and LC. The frequency of a distal donor marker entry to the recipient in F was higher than in SC and LC.
Wu, Xueyun; Yang, Dong; Zhu, Xiangcheng; Feng, Zhiyang; Lv, Zhengbin; Zhang, Yaozhou; Shen, Ben; Xu, Zhinan
2011-01-01
The heterologous production of iso-migrastatin (iso-MGS) was successfully demonstrated in an engineered S. lividans SB11002 strain, which was derived from S. lividans K4–114, following introduction of pBS11001, which harbored the entire mgs biosynthetic gene cluster. However, under similar fermentation conditions, the iso-MGS titer in the engineered strain was significantly lower than that in the native producer - Streptomyces platensis NRRL 18993. To circumvent the problem of low iso-MGS titers and to expand the utility of this heterologous system for iso-MGS biosynthesis and engineering, systematic optimization of the fermentation medium was carried out. The effects of major components in the cultivation medium, including carbon, organic and inorganic nitrogen sources, were investigated using a single factor optimization method. As a result, sucrose and yeast extract were determined to be the best carbon and organic nitrogen sources, resulting in optimized iso-MGS production. Conversely, all other inorganic nitrogen sources evaluated produced various levels of inhibition of iso-MGS production. The final optimized R2YE production medium produced iso-MGS with a titer of 86.5 mg/L, about 3.6-fold higher than that in the original R2YE medium, and 1.5 fold higher than that found within the native S. platensis NRRL 18993 producer. PMID:21625393
Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo
2017-05-31
Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem clusters of pikromycin biosynthetic gene clusters. The 60 kb pikromycin biosynthetic gene cluster was isolated in a single integration pSBAC vector. Introduction of the pikromycin biosynthetic gene cluster into the pikromycin non-producing strains resulted in higher pikromycin production. The utility of the pSBAC system as a precise cloning tool for large-sized biosynthetic gene clusters was verified through heterologous expression of the pikromycin biosynthetic gene cluster. Moreover, this pSBAC-driven heterologous expression strategy was confirmed to be an ideal approach for production of low and inconsistent natural products such as pikromycin in S. venezuelae, implying that this strategy could be employed for development of a custom overexpression scheme of natural product biosynthetic gene clusters in actinomycetes.
Vicente, Rebeca L.; Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.
2016-01-01
Overproduction of Sec-proteins in S. lividans accumulates misfolded proteins outside of the cytoplasmic membrane where the accumulated proteins interfere with the correct functioning of the secretion machinery and with the correct cell functionality, triggering the expression in S. lividans of a CssRS two-component system which regulates the degradation of the accumulated protein, the so-called secretion stress response. Optimization of secretory protein production via the Sec route requires the identification and characterisation of quality factors involved in this process. The phosphorylated regulator (CssR) interacts with the regulatory regions of three genes encoding three different HtrA-like proteases. Individual mutations in each of these genes render degradation of the misfolded protein inoperative, and propagation in high copy number of any of the three proteases encoding genes results on indiscriminate alpha-amylase degradation. None of the proteases could complement the other two deficiencies and only propagation of each single copy protease gene can restore its own deficiency. The obtained results strongly suggest that the synthesis of the three HtrA-like proteases needs to be properly balanced to ensure the effective degradation of misfolded overproduced secretory proteins and, at the same time, avoid negative effects in the secreted proteins and the secretion machinery. This is particularly relevant when considering the optimisation of Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application. PMID:27977736
Bion M1. Peculiarities of life activities of microbes in 30-day spaceflight
NASA Astrophysics Data System (ADS)
Viacheslav, Ilyin; Korshunov, Denis; Morozova, Julia; Voeikova, Tatiana; Tyaglov, Boris; Novikova, Liudmila; Krestyanova, Irina; Emelyanova, Lydia
The aim of this work was to analyze the influence of space flight factors ( SFF) to microorganism strains , exposed inside unmanned spacecraft Bion M-1 during the 30- day space flight. Objectives of the work - the study of the influence of the SFF exchange chromosomal DNA in crosses microorganisms of the genus Streptomyces; the level of spontaneous phage induction of lysogenic strains fS31 from Streptomyces lividans 66 and Streptomyces coelicolor A3 ( 2 ) on the biosynthesis of the antibiotic tylosin strain of Streptomyces fradiae; survival electrogenic bacteria Shewanella oneidensis MR- 1 is used in the microbial fuel cell As a result of this work it was found that the SFF affect the exchange of chromosomal DNA by crossing strains of Streptomyces. Was detected polarity crossing , expressed in an advantageous contribution chromosome fragment of one of the parent strains in recombinant offspring. This fact may indicate a more prolonged exposure of cells in microgravity and , as a consequence, the transfer of longer fragments of chromosomal DNA This feature is the transfer of genetic material in microgravity could lead to wider dissemination and horizontal transfer of chromosomal and plasmid DNA of symbiotic microflora astronauts and other strains present in the spacecraft. It was shown no effect on the frequency of recombination PCF and the level of mutation model reversion of auxotrophic markers to prototrophy It was demonstrated that PCF increase the level of induction of cell actinophage fS31 lysogenic strain of S. lividans 66, but did not affect the level of induction of this phage cells S. coelicolor A3 ( 2). It is shown that the lower the level of synthesis PCF antibiotic aktinorodina (actinorhodin) in lysogenic strain S. coelicolor A3 ( 2). 66 Strains of S. lividans and S. coelicolor A3 ( 2 ) can be used as a biosensor for studying the effect on microorganisms PCF It is shown that the effect of the PCF reduces synthesis of tylosin and desmicosyn S. fradiae at about 30 % as compared with the synchronous control, but the ratio of desmycosine to tylosin does not change. It was estimated that the strain S. oneidensis MR- 1 under the conditions of flight remains viable in all types of culture media Reducing the level of activity of the cells is similar in flight samples and the laboratory strain Strain S. oneidensis MR- 1 can be used in the microbial fuel cell while conducting experiments on board the spacecraft
Ibrahim, Ebaid M A; Arenskötter, Matthias; Luftmann, Heinrich; Steinbüchel, Alexander
2006-05-01
The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50 degrees C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage.
Ibrahim, Ebaid M. A.; Arenskötter, Matthias; Luftmann, Heinrich; Steinbüchel, Alexander
2006-01-01
The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50°C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage. PMID:16672480
Bode, Helge B.; Zeeck, Axel; Plückhahn, Kirsten; Jendrossek, Dieter
2000-01-01
Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6,10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of β-oxidation, (iii) oxidation of the conjugated double bond resulting in a β-keto acid, and (iv) decarboxylation. PMID:10966376
Zhao, Chen; Huang, Ying; Guo, Chao; Yang, Bolei; Zhang, Yan; Lan, Zhou; Guan, Xiong; Song, Yuan; Zhang, Xiaolin
2017-01-01
Spinosyns are a group of macrolide insecticides produced by Saccharopolyspora spinosa. Although S. spinosa can be used for industrial-scale production of spinosyns, this might suffer from several limitations, mainly related to its long growth cycle, low fermentation biomass, and inefficient utilization of starch. It is crucial to generate a robust strain for further spinosyn production and the development of spinosyn derivatives. A BAC vector, containing the whole biosynthetic gene cluster for spinosyn (74 kb) and the elements required for conjugal transfer and site-specific integration, was introduced into different Streptomyces hosts in order to obtain heterologous spinosyn-producing strains. The exconjugants of different Streptomyces strains did not show spinosyn production unless the rhamnose biosynthesis genes from S. spinosa genomic DNA were present and expressed under the control of a strong constitutive ermE*p promoter. Using this heterologous expression system resulted in yields of 1 μg/mL and 1.5 μg/mL spinosyns in Streptomyces coelicolor and Streptomyces lividans, respectively. This report demonstrates spinosyn production in 2 Streptomyces strains and stresses the essential role of rhamnose in this process. This work also provides a potential alternative route for producing spinosyn analogs by means of genetic manipulation in the heterologous hosts. © 2017 S. Karger AG, Basel.
Tan, Benedict G.; Vijgenboom, Erik; Worrall, Jonathan A. R.
2014-01-01
Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl–DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. PMID:24121681
Gamboa-Suasnavart, Ramsés A; Valdez-Cruz, Norma A; Cordova-Dávalos, Laura E; Martínez-Sotelo, José A; Servín-González, Luis; Espitia, Clara; Trujillo-Roldán, Mauricio A
2011-12-20
The Ala-Pro-rich O-glycoprotein known as the 45/47 kDa or APA antigen from Mycobacterium tuberculosis is an immunodominant adhesin restricted to mycobacterium genus and has been proposed as an alternative candidate to generate a new vaccine against tuberculosis or for diagnosis kits. In this work, the recombinant O-glycoprotein APA was produced by the non-pathogenic filamentous bacteria Streptomyces lividans, evaluating three different culture conditions. This strain is known for its ability to produce heterologous proteins in a shorter time compared to M. tuberculosis. Three different shake flask geometries were used to provide different shear and oxygenation conditions; and the impact of those conditions on the morphology of S. lividans and the production of rAPA was characterized and evaluated. Small unbranched free filaments and mycelial clumps were found in baffled and coiled shake flasks, but one order of magnitude larger pellets were found in conventional shake flasks. The production of rAPA is around 3 times higher in small mycelia than in larger pellets, most probably due to difficulties in mass transfer inside pellets. Moreover, there are four putative sites of O-mannosylation in native APA, one of which is located at the carboxy-terminal region. The carbohydrate composition of this site was determined for rAPA by mass spectrometry analysis, and was found to contain different glycoforms depending on culture conditions. Up to two mannoses residues were found in cultures carried out in conventional shake flasks, and up to five mannoses residues were determined in coiled and baffled shake flasks. The shear and/or oxygenation parameters determine the bacterial morphology, the productivity, and the O-mannosylation of rAPA in S. lividans. As demonstrated here, culture conditions have to be carefully controlled in order to obtain recombinant O-glycosylated proteins with similar "quality" in bacteria, particularly, if the protein activity depends on the glycosylation pattern. Furthermore, it will be an interesting exercise to determine the effect of shear and oxygen in shake flasks, to obtain evidences that may be useful in scaling-up these processes to bioreactors. Another approach will be using lab-scale bioreactors under well-controlled conditions, and study the impact of those on rAPA productivity and quality.
Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro
2016-08-03
Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Mi-Kyung; Ha, Heon-Su; Choi, Sun-Uk
2008-04-01
To facilitate molecular genetic studies of Streptomyces ambofaciens that produces spiramycin, a commercially important macrolide antibiotic used in human medicine against Gram-positive pathogenic bacteria, the conditions for the conjugal transfer of DNA from E. coli to S. ambofaciens were established using a bacteriophage phiC31 att/int system. The transconjugation efficiency of S. ambofaciens varied with the medium used; the highest frequency was obtained on AS-1 medium containing 10 mM MgCl(2) without heat treatment of the spores. In addition, by cloning and sequencing the attB site, we identified that S. ambofaciens contains a single attB site within an ORF coding for a pirin homolog, and its attB site sequence shows 100% nt identity to the sequence of S. coelicolor and S. lividans, which have the highest efficiency in transconjugation using the phiC31 att/int system.
Gould, S J; Hong, S T; Carney, J R
1998-01-01
The genes for most of the biosynthesis of the kinamycin antibiotics have been cloned and heterologously expressed. Genomic DNA of Streptomyces murayamaensis was partially digested with MboI and a library of approximately 40 kb fragments in E. coli XL1-BlueMR was prepared using the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes. After transferal of these clusters to S. lividans ZX7, expression of one cluster was established by HPLC with photodiode array detection. Peaks were identified from the kin cluster for dehydrorabelomycin, kinobscurinone, and stealthin C, which are known intermediates in kinamycin biosynthesis. Two shunt metabolites, kinafluorenone and seongomycin were also identified. The structure of the latter was determined from a quantity obtained from large-scale fermentation of one of the clones.
Wang, Jiang; Yu, Yi; Tang, Kexuan; Liu, Wen; He, Xinyi; Huang, Xi; Deng, Zixin
2010-01-01
Thiopeptide antibiotics are an important class of natural products resulting from posttranslational modifications of ribosomally synthesized peptides. Cyclothiazomycin is a typical thiopeptide antibiotic that has a unique bridged macrocyclic structure derived from an 18-amino-acid structural peptide. Here we reported cloning, sequencing, and heterologous expression of the cyclothiazomycin biosynthetic gene cluster from Streptomyces hygroscopicus 10-22. Remarkably, successful heterologous expression of a 22.7-kb gene cluster in Streptomyces lividans 1326 suggested that there is a minimum set of 15 open reading frames that includes all of the functional genes required for cyclothiazomycin production. Six genes of these genes, cltBCDEFG flanking the structural gene cltA, were predicted to encode the enzymes required for the main framework of cyclothiazomycin, and two enzymes encoded by a putative operon, cltMN, were hypothesized to participate in the tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure. This rigorous bioinformatics analysis based on heterologous expression of cyclothiazomycin resulted in an ideal biosynthetic model for us to understand the biosynthesis of thiopeptides. PMID:20154110
Hemker, Michael; Stratmann, Ansgar; Goeke, Klaus; Schröder, Werner; Lenz, Jürgen; Piepersberg, Wolfgang; Pape, Hermann
2001-01-01
An extracellular enzyme activity in the culture supernatant of the acarbose producer Actinoplanes sp. strain SE50 catalyzes the transfer of the acarviosyl moiety of acarbose to malto-oligosaccharides. This acarviosyl transferase (ATase) is encoded by a gene, acbD, in the putative biosynthetic gene cluster for the α-glucosidase inhibitor acarbose. The acbD gene was cloned and heterologously produced in Streptomyces lividans TK23. The recombinant protein was analyzed by enzyme assays. The AcbD protein (724 amino acids) displays all of the features of extracellular α-glucosidases and/or transglycosylases of the α-amylase family and exhibits the highest similarities to several cyclodextrin glucanotransferases (CGTases). However, AcbD had neither α-amylase nor CGTase activity. The AcbD protein was purified to homogeneity, and it was identified by partial protein sequencing of tryptic peptides. AcbD had an apparent molecular mass of 76 kDa and an isoelectric point of 5.0 and required Ca2+ ions for activity. The enzyme displayed maximal activity at 30°C and between pH 6.2 and 6.9. The Km values of the ATase for acarbose (donor substrate) and maltose (acceptor substrate) are 0.65 and 0.96 mM, respectively. A wide range of additional donor and acceptor substrates were determined for the enzyme. Acceptors revealed a structural requirement for glucose-analogous structures conserving only the overall stereochemistry, except for the anomeric C atom, and the hydroxyl groups at positions 2, 3, and 4 of d-glucose. We discuss here the function of the enzyme in the extracellular formation of the series of acarbose-homologous compounds produced by Actinoplanes sp. strain SE50. PMID:11443082
Wang, Yung Lin; Lin, Yi Ting; Chen, Chia Lin; Shaw, Gwo Chyuan; Liaw, Shwu Huey
2014-10-01
Poly[(R)-3-hydroxybutyrate] (PHB) is a microbial biopolymer that has been commercialized as biodegradable plastics. The key enzyme for the degradation is PHB depolymerase (PhaZ). A new intracellular PhaZ from Bacillus thuringiensis (BtPhaZ) has been screened for potential applications in polymer biodegradation. Recombinant BtPhaZ was crystallized using 25% polyethylene glycol 3350, 0.2 M ammonium acetate, 0.1 M bis-tris pH 6.5 at 288 K. The crystals belonged to space group P1, with unit-cell parameters a = 42.97, b = 83.23, c = 85.50 Å, α = 73.45, β = 82.83, γ = 83.49°. An X-ray diffraction data set was collected to 1.42 Å resolution with an Rmerge of 6.4%. Unexpectedly, a molecular-replacement solution was obtained using the crystal structure of Streptomyces lividans chloroperoxidase as a template, which shares 24% sequence identity to BtPhaZ. This is the first crystal structure of an intracellular poly(3-hydroxybutyrate) depolymerase.
Imai, Yu; Sato, Seizo; Tanaka, Yukinori; Ochi, Kozo; Hosaka, Takeshi
2015-06-01
Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.
Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra
2010-06-01
An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces. 2010 Elsevier Masson SAS. All rights reserved.
Leskiw, B K; Lawlor, E J; Fernandez-Abalos, J M; Chater, K F
1991-01-01
In Streptomyces coelicolor A3(2) and the related species Streptomyces lividans 66, aerial mycelium formation and antibiotic production are blocked by mutations in bldA, which specifies a tRNA(Leu)-like gene product which would recognize the UUA codon. Here we show that phenotypic expression of three disparate genes (carB, lacZ, and ampC) containing TTA codons depends strongly on bldA. Site-directed mutagenesis of carB, changing its two TTA codons to CTC (leucine) codons, resulted in bldA-independent expression; hence the bldA product is the principal tRNA for the UUA codon. Two other genes (hyg and aad) containing TTA codons show a medium-dependent reduction in phenotypic expression (hygromycin resistance and spectinomycin resistance, respectively) in bldA mutants. For hyg, evidence is presented that the UUA codon is probably being translated by a tRNA with an imperfectly matched anticodon, giving very low levels of gene product but relatively high resistance to hygromycin. It is proposed that TTA codons may be generally absent from genes expressed during vegetative growth and from the structural genes for differentiation and antibiotic production but present in some regulatory and resistance genes associated with the latter processes. The codon may therefore play a role in developmental regulation. Images PMID:1826053
NASA Astrophysics Data System (ADS)
Shantappa, Anil; Talukdar, Keka
2018-04-01
Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.
Yang, Dong; Zhu, Xiangcheng; Wu, Xueyun; Feng, Zhiyang; Huang, Lei; Shen, Ben; Xu, Zhinan
2011-01-01
iso-Migrastatin (iso-MGS) has been actively pursued recently as an outstanding candidate of antimetastasis agents. Having characterized the iso-MGS biosynthetic gene cluster from its native producer Streptomyces platensis NRRL 18993, we have recently succeeded in producing iso-MGS in five selected heterologous Streptomyces hosts, albeit the low titers failed to meet expectations and cast doubt on the utility of this novel technique for large-scale production. To further explore and capitalize on the production capacity of these hosts, a thorough investigation of these five engineered strains with three fermentation media for iso-MGS production was undertaken. Streptomyces albus J1074 and Streptomyces lividans K4-114 were found to be preferred heterologous hosts, and subsequent analysis of carbon and nitrogen sources revealed that sucrose and yeast extract were ideal for iso-MGS production. After the initial optimization, the titers of iso-MGS in all five hosts were considerably improved by 3–18-fold in the optimized R2YE medium. Furthermore, the iso-MGS titer of S. albus J1074 (pBS11001) was significantly improved to 186.7 mg/L by a hybrid medium strategy. Addition of NaHCO3 to the latter finally afforded an optimized iso-MGS titer of 213.8 mg/L, about 5-fold higher than the originally reported system. With S. albus J1074 (pBS11001) as a model host, the expression of iso-MGS gene cluster in four different media was systematically studied via the quantitative RT–PCR technology. The resultant comparison revealed the correlation of gene expression and iso-MGS production for the first time; synchronous expression of the whole gene cluster was crucial for optimal iso-MGS production. These results reveal new insights into the iso-MGS biosynthetic machinery in heterologous hosts and provide the primary data to realize large-scale production of iso-MGS for further preclinical studies. PMID:21132287
Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.
Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin
2017-02-17
The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.
Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin
2016-01-01
ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery. PMID:27451447
Tobin, M B; Kovacevic, S; Madduri, K; Hoskins, J A; Skatrud, P L; Vining, L C; Stuttard, C; Miller, J R
1991-01-01
Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete. Images PMID:1917855
Tn4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae.
Chung, S T
1987-01-01
A 6.8-kilobase-pair (kbp) transposable element (Tn4556) was found in a neomycin-producing strain of Streptomyces fradiae. This element was first observed in two 30.3-kbp plasmids (pUC1123 and pUC1124) which arose when a thiostrepton resistance gene (1 kbp) was ligated with the BclI-2 fragment (22.5 kbp) that contains the origin of replication of phage SF1. The Tn4556 segment was deleted when these plasmids were transduced into another S. fradiae host with phage SF1. These deletion plasmids (pUC1210 and pUC1211) had copy numbers of less than 1 per chromosome and were unstable. In contrast, pUC1123 and pUC1124, with copy numbers of 12 to 15 per chromosome, respectively, were relatively stable. When pUC1210 and pUC1211 were reintroduced into S. fradiae by protoplast transformation, the Tn4556 element transposed again to the plasmids at numerous new locations in either of two orientations. A copy of Tn4556 was found in the S. fradiae chromosome by hybridization studies. It appears that Tn4556 originated from the chromosome, transposed into unstable pUC1210 and pUC1211, and made stable plasmids. A temperature-sensitive hybrid plasmid carrying a viomycin resistance derivative of Tn4556 (pMT660::Tn4556::vph) was constructed. When Streptomyces lividans UC8390 containing the hybrid plasmid was grown at 39 degrees C, Tn4556::vph (Tn4560) transposed to random positions in the host chromosome. Images PMID:2820925
Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R
2000-08-18
Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.
A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance
Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco
1998-01-01
In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745
Sugimori, Daisuke; Kano, Kota; Matsumoto, Yusaku
2012-01-01
A novel metal ion-independent phospholipase A1 of Streptomyces albidoflavus isolated from Japanese soil has been purified and characterized. The enzyme consists of a 33-residue N-terminal signal secretion sequence and a 269-residue mature protein with a deduced molecular weight of 27,199. Efficient and extracellular production of the recombinant enzyme was successfully achieved using Streptomyces lividans cells and an expression vector. A large amount (25 mg protein, 14.7 kU) of recombinant enzyme with high specific activity (588 U/mg protein) was purified by simple purification steps. The maximum activity was found at pH 7.2 and 50 °C. At pH 7.2, the enzyme preferably hydrolyzed phosphatidic acid and phosphatidylserine; however, the substrate specificity was dependent on the reaction pH. The enzyme hydrolyzed lysophosphatidylcholine and not triglyceride and the p-nitrophenyl ester of fatty acids. At the reaction equilibrium, the molar ratio of released free fatty acids (sn-1:sn-2) was 63:37. The hydrolysis of phosphatidic acid at 50 °C and pH 7.2 gave apparent V max and k cat values of 1389 μmol min(-1) mg protein(-1) and 630 s(-1), respectively. The apparent K m and k cat/K m values were 2.38 mM and 265 mM(-1) s(-1), respectively. Mutagenesis analysis showed that Ser11 is essential for the catalytic function of the enzyme and the active site may include residues Ser216 and His218.
Coppella, S J; DelaCruz, N; Payne, G F; Pogell, B M; Speedie, M K; Karns, J S; Sybert, E M; Connor, M A
1990-01-01
Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.
The Cremeomycin Biosynthetic Gene Cluster Encodes a Pathway for Diazo Formation.
Waldman, Abraham J; Pechersky, Yakov; Wang, Peng; Wang, Jennifer X; Balskus, Emily P
2015-10-12
Diazo groups are found in a range of natural products that possess potent biological activities. Despite longstanding interest in these metabolites, diazo group biosynthesis is not well understood, in part because of difficulties in identifying specific genes linked to diazo formation. Here we describe the discovery of the gene cluster that produces the o-diazoquinone natural product cremeomycin and its heterologous expression in Streptomyces lividans. We used stable isotope feeding experiments and in vitro characterization of biosynthetic enzymes to decipher the order of events in this pathway and establish that diazo construction involves late-stage N-N bond formation. This work represents the first successful production of a diazo-containing metabolite in a heterologous host, experimentally linking a set of genes with diazo formation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moczydlowski, Edward G.
Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability wasmore » investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.« less
Koebsch, Ilona; Overbeck, Jens; Piepmeyer, Sophie; Meschke, Holger; Schrempf, Hildgund
2009-05-01
Streptomycetes produce many metabolites with medical and biotechnological applications. During fermentations, their hyphae build aggregates, a process in which the newly identified protein HyaS plays an important role. The corresponding hyaS gene is present within all investigated Streptomyces species. Reporter fusions indicate that transcription of hyaS occurs within substrate hyphae of the Streptomyces lividans wild type (WT). The HyaS protein is dominantly associated with the substrate hyphae. The WT strain forms cylindrically shaped clumps of densely packed substrate hyphae, often fusing to higher aggregates (pellets), which remain stably associated during shaking. Investigations by electron microscopy suggest that HyaS induces tight fusion-like contacts among substrate hyphae. In contrast, the pellets of the designed hyaS disruption mutant ΔH are irregular in shape, contain frequently outgrowing bunches of hyphae, and fuse less frequently. ΔH complemented with a plasmid carrying hyaS resembles the WT phenotype. Biochemical studies indicate that the C-terminal region of HyaS has amine oxidase activity. Investigations of ΔH transformants, each carrying a specifically mutated gene, lead to the conclusion that the in situ oxidase activity correlates with the pellet-inducing role of HyaS, and depends on the presence of certain histidine residues. Furthermore, the level of undecylprodigiosin, a red pigment with antibiotic activity, is influenced by the engineered hyaS subtype within a strain. These data present the first molecular basis for future manipulation of pellets, and concomitant production of secondary metabolites during biotechnological processes. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Kumagai, Takanori; Koyama, Yusuke; Oda, Kosuke; Noda, Masafumi; Matoba, Yasuyuki; Sugiyama, Masanori
2010-03-01
In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster includes two ORFs encoding D-alanyl-D-alanine ligase (dcsI) and a putative membrane protein (dcsJ) as the self-resistance determinants of the producer organism, indicated by our previous work. When the 10 ORFs were introduced into DCS-nonproducing Streptomyces lividans 66 as a heterologous host cell, the transformant acquired DCS productivity. This reveals that the introduced genes are responsible for the biosynthesis of DCS. As anticipated, the disruption of dcsG, seen in the DCS biosynthetic gene cluster, made it possible for the strain ATCC 11924 to lose its DCS production. We here propose the DCS biosynthetic pathway. First, L-serine is O acetylated by a dcsE-encoded enzyme homologous to homoserine O-acetyltransferase. Second, O-acetyl-L-serine accepts hydroxyurea via an O-acetylserine sulfhydrylase homolog (dcsD product) and forms O-ureido-L-serine. The hydroxyurea must be supplied by the catalysis of a dcsB-encoded arginase homolog using the L-arginine derivative, N(G)-hydroxy-L-arginine. The resulting O-ureido-L-serine is then racemized to O-ureido-D-serine by a homolog of diaminopimelate epimerase. Finally, O-ureido-D-serine is cyclized to form DCS with the release of ammonia and carbon dioxide. The cyclization must be done by the dcsG or dcsH product, which belongs to the ATP-grasp fold family of protein.
Dhote, Vidya; Gupta, Shuchi; Reynolds, Kevin A.
2008-01-01
The antibiotic hygromycin A (HA) binds to the 50S ribosomal subunit and inhibits protein synthesis in gram-positive and gram-negative bacteria. The HA biosynthetic gene cluster in Streptomyces hygroscopicus NRRL 2388 contains 29 open reading frames, which have been assigned putative roles in biosynthesis, pathway regulation, and self-resistance. The hyg21 gene encodes an O-phosphotransferase with a proposed role in self-resistance. We observed that insertional inactivation of hyg21 in S. hygroscopicus leads to a greater than 90% decrease in HA production. The wild type and the hyg21 mutant were comparably resistant to HA. Using Escherichia coli as a heterologous host, we expressed and purified Hyg21. Kinetic analyses revealed that the recombinant protein catalyzes phosphorylation of HA (Km = 30 ± 4 μM) at the C-2‴ position of the fucofuranose ring in the presence of ATP (Km = 200 ± 20 μM) or GTP (Km = 350 ± 60 μM) with a kcat of 2.2 ± 0.1 min−1. The phosphorylated HA is inactive against HA-sensitive ΔtolC E. coli and Streptomyces lividans. Hyg21 also phosphorylates methoxyhygromycin A and desmethylenehygromycin A with kcat and Km values similar to those observed with HA. Phosphorylation of the naturally occurring isomers of 5‴-dihydrohygromycin A and 5‴-dihydromethoxyhygromycin A was about 12 times slower than for the corresponding non-natural isomers. These studies demonstrate that Hyg21 is an O-phosphotransferase with broad substrate specificity, tolerating changes in the aminocyclitol moiety more than in the fucofuranose moiety, and that phosphorylation by Hyg21 is one of several possible mechanisms of self-resistance in S. hygroscopicus NRRL 2388. PMID:18644964
Dhote, Vidya; Gupta, Shuchi; Reynolds, Kevin A
2008-10-01
The antibiotic hygromycin A (HA) binds to the 50S ribosomal subunit and inhibits protein synthesis in gram-positive and gram-negative bacteria. The HA biosynthetic gene cluster in Streptomyces hygroscopicus NRRL 2388 contains 29 open reading frames, which have been assigned putative roles in biosynthesis, pathway regulation, and self-resistance. The hyg21 gene encodes an O-phosphotransferase with a proposed role in self-resistance. We observed that insertional inactivation of hyg21 in S. hygroscopicus leads to a greater than 90% decrease in HA production. The wild type and the hyg21 mutant were comparably resistant to HA. Using Escherichia coli as a heterologous host, we expressed and purified Hyg21. Kinetic analyses revealed that the recombinant protein catalyzes phosphorylation of HA (K(m) = 30 +/- 4 microM) at the C-2''' position of the fucofuranose ring in the presence of ATP (K(m) = 200 +/- 20 microM) or GTP (K(m) = 350 +/- 60 microM) with a k(cat) of 2.2 +/- 0.1 min(-1). The phosphorylated HA is inactive against HA-sensitive Delta tolC E. coli and Streptomyces lividans. Hyg21 also phosphorylates methoxyhygromycin A and desmethylenehygromycin A with k(cat) and K(m) values similar to those observed with HA. Phosphorylation of the naturally occurring isomers of 5'''-dihydrohygromycin A and 5'''-dihydromethoxyhygromycin A was about 12 times slower than for the corresponding non-natural isomers. These studies demonstrate that Hyg21 is an O-phosphotransferase with broad substrate specificity, tolerating changes in the aminocyclitol moiety more than in the fucofuranose moiety, and that phosphorylation by Hyg21 is one of several possible mechanisms of self-resistance in S. hygroscopicus NRRL 2388.
Wilson, S E; Smith, M C
1998-05-15
Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.
Optimization and purification of L-asparaginase produced by Streptomyces tendae TK-VL_333.
Kavitha, Alapati; Vijayalakshmi, Muvva
2010-01-01
Cultural factors affecting the production of L-asparaginase by Streptomyces tendae isolated from laterite soil samples of Guntur region were investigated on glycerol-asparagine-salts (modified ISP-5) broth. Optimal yields of L-asparaginase were recorded in the culture medium with the initial pH 7.0 incubated at 30 degrees C for 72 h. The strain utilized sucrose (2%) and yeast (2%) extract as carbon and nitrogen sources for L-asparaginase production. The productivity of L-asparaginase was slightly enhanced when the strain was treated with cell-disrupting agents like EDTA. The crude enzyme was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-100 and CM-Sephadex G-50 gel filtration. By employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the enzyme was recorded as 97.4 kDa. This is the first report on production and purification of L-asparaginase from S. tendae.
Plant growth-promoting activities of Streptomyces spp. in sorghum and rice.
Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Sree Vidya, Meesala; Rathore, Abhishek
2013-01-01
Five strains of Streptomyces (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were earlier reported by us as biological control agents against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri (FOC). In the present study, the Streptomyces were characterized for enzymatic activities, physiological traits and further evaluated in greenhouse and field for their plant growth promotion (PGP) of sorghum and rice. All the Streptomyces produced lipase, β-1-3-glucanase and chitinase (except CAI-121 and CAI-127), grew in NaCl concentrations of up to 6%, at pH values between 5 and 13 and temperatures between 20 and 40°C and were highly sensitive to Thiram, Benlate, Captan, Benomyl and Radonil at field application level. When the Streptomyces were evaluated in the greenhouse on sorghum all the isolates significantly enhanced all the agronomic traits over the control. In the field, on rice, the Streptomyces significantly enhanced stover yield (up to 25%; except CAI-24), grain yield (up to 10%), total dry matter (up to 18%; except CAI-24) and root length, volume and dry weight (up to 15%, 36% and 55%, respectively, except CAI-24) over the control. In the rhizosphere soil, the Streptomyces significantly enhanced microbial biomass carbon (except CAI-24), nitrogen, dehydrogenase (except CAI-24), total N, available P and organic carbon (up to 41%, 52%, 75%, 122%, 53% and 13%, respectively) over the control. This study demonstrates that the selected Streptomyces which were antagonistic to FOC also have PGP properties.
Jacob, F; Joris, B; Lepage, S; Dusart, J; Frère, J M
1990-10-15
Ser130, Asp131 and Asn132 ('SDN') are highly conserved residues in class A beta-lactamases forming one wall of the active-site cavity. All three residues of the SDN loop in Streptomyces albus G beta-lactamase were modified by site-directed mutagenesis. The mutant proteins were expressed in Streptomyces lividans, purified from culture supernatants and their kinetic parameters were determined for several substrates. Ser130 was substituted by Asn, Ala and Gly. The first modification yielded an almost totally inactive protein, whereas the smaller-side-chain mutants (A and G) retained some activity, but were less stable than the wild-type enzyme. Ser130 might thus be involved in maintaining the structure of the active-site cavity. Mutations of Asp131 into Glu and Gly proved to be highly detrimental to enzyme stability, reflecting significant structural perturbations. Mutation of Asn132 into Ala resulted in a dramatically decreased enzymic activity (more than 100-fold) especially toward cephalosporin substrates, kcat. being the most affected parameter, which would indicate a role of Asn132 in transition-state stabilization rather than in ground-state binding. Comparison of the N132A and the previously described N132S mutant enzymes underline the importance of an H-bond-forming residue at position 132 for the catalytic process.
Deeble, V J; Lindley, H K; Fazeli, M R; Cove, J H; Baumberg, S
1995-10-01
Streptomyces griseus ATCC 12475 fails to produce streptomycin when grown at 34 degrees C or above, although growth is appreciable up to at least 37 degrees C. This depression of streptomycin production at elevated growth temperature is manifest equally in liquid and on solid, and with complex and minimal, media. We report studies with gene fusions of the reporter genes aph or xyIE to restriction fragments containing the streptomycin biosynthesis promoter PstrB1. aph constructs were in high, and xyIE constructs in low, copy number vectors. Two strB1 promoter fragments were used, one requiring activation by the pathway-specific activator StrR of S. griseus, the other reportedly activator independent. PstrB1 expression in the aph constructs in S. griseus and in S. lividans was significantly reduced at 37 degrees C compared to 30 degrees C. Some of this reduction could be explained by lower plasmid copy number at the higher temperature, but strR-dependent expression was clearly temperature controlled. Using the xyIE reporter system, the temperature dependence of PstrB1 expression was confirmed but, surprisingly, the strR dependence of the two promoter fragments differed from that observed in the multicopy aph constructs. These data identify a temperature-dependent promoter which may contribute to the depressive effect of elevated growth temperature on streptomycin production.
Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle
2016-01-01
Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2).
Viens, Pascal; Dubeau, Marie-Pierre; Kimura, Akane; Desaki, Yoshitake; Shinya, Tomonori; Shibuya, Naoto; Saito, Akihiro; Brzezinski, Ryszard
2015-05-01
The csnR gene, localized at the beginning of an operon, csnR-K, which organization is conserved through many actinomycete genomes, was previously shown to repress the transcription of the chitosanase gene csnA in Streptomyces lividans. However, knowledge on the function of the whole csnR-K operon in the metabolism of chitosan (an N-deacetylated derivative of chitin) remained limited. Mutants of S. coelicolor A3(2) harboring partial or total deletions of the csnR-K operon were analyzed for their capacity to uptake glucosamine oligosaccharides (GlcN)n. The csnR-K operon was autoregulated by CsnR repressor and its transcription was inducible by GlcN oligosaccharides. The operon controlled the uptake of GlcN oligosaccharides in S. coelicolor A3(2), with a minor contribution to the consumption of monomeric GlcN but not chitin-related N-acetylated derivatives. The deletion of the whole operon abolished the uptake of GlcN oligosaccharides. The CsnEFG transporter encoded by this operon is the front door for the assimilation of chitosan-derived hydrolysis products in S. coelicolor A3(2). The ATP-binding component MsiK was essential for CsnEFG transport function. Also, deletion of msiK abolished the induction of csnA transcription by GlcN oligosaccharides. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mathermycin, a Lantibiotic from the Marine Actinomycete Marinactinospora thermotolerans SCSIO 00652.
Chen, Erquan; Chen, Qi; Chen, Shaoming; Xu, Bing; Ju, Jianhua; Wang, Huan
2017-08-01
Lantibiotics are antimicrobial peptides belonging to the family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) and feature thioether linkages in their structures. In this study, we identified the biosynthetic gene cluster of a cinnamycin analog, named mathermycin, from Marinactinospora thermotolerans SCSIO 00652 and reconstituted its biosynthesis in Streptomyces lividans and Escherichia coli Key posttranslational modification enzymes of mathermycin were characterized. Mathermycin exhibited antimicrobial activity and therefore represents an example of cinnamycin-like lantibiotics from Marinactinospora species. IMPORTANCE The discovery of new antimicrobial compounds that can be used as potential drugs is in urgent need due to increasing bacterial resistance to current antibiotics. Lantibiotics are important antimicrobial compounds that have found applications in both the clinic setting and food industry. We report here the discovery of a new lantibiotic, mathermycin, from a marine-derived Marinactinospora thermotolerans strain and elucidation of its biosynthesis. We also demonstrate that mathermycin possesses antimicrobial activity toward a Bacillus strain. Copyright © 2017 American Society for Microbiology.
Yao, Li-li
2015-01-01
Nitrogen and phosphate source sensing, uptake, and assimilation are essential for the growth and development of microorganisms. In this study, we demonstrated that SACE_6965 encodes the phosphate regulator PhoP, which controls the transcription of genes involved in phosphate metabolism in the erythromycin-producing Saccharopolyspora erythraea. We found that PhoP and the nitrogen regulator GlnR both regulate the transcription of glnR as well as other nitrogen metabolism-related genes. Interestingly, both GlnR- and PhoP-binding sites were identified in the phoP promoter region. Unlike the nonreciprocal regulation of GlnR and PhoP observed in Streptomyces coelicolor and Streptomyces lividans, GlnR negatively controls the transcription of the phoP gene in S. erythraea. This suggests that GlnR directly affects phosphate metabolism and demonstrates that the cross talk between GlnR and PhoP is reciprocal. Although GlnR and PhoP sites in the glnR and phoP promoter regions are located in close proximity to one another (separated by only 2 to 4 bp), the binding of both regulators to their respective region was independent and noninterfering. These results indicate that two regulators could separately bind to their respective binding sites and control nitrogen and phosphate metabolism in response to environmental changes. The reciprocal cross talk observed between GlnR and PhoP serves as a foundation for understanding the regulation of complex primary and secondary metabolism in antibiotic-producing actinomycetes. PMID:26519391
Xiang, Longkuan; Kalaitzis, John A.; Moore, Bradley S.
2004-01-01
The bacteriostatic natural product enterocin from the marine microbe “Streptomyces maritimus” has an unprecedented carbon skeleton that is derived from an aromatic polyketide biosynthetic pathway. Its caged tricyclic, nonaromatic core is derived from a linear poly-β-ketide precursor that formally undergoes a Favorskii-like oxidative rearrangement. In vivo characterization of the gene encM through mutagenesis and heterologous biosynthesis demonstrated that its protein product not only is solely responsible for the oxidative C—C rearrangement, but also facilitates two aldol condensations plus two heterocycle forming reactions. In total, at least five chiral centers and four rings are generated by this multifaceted flavoprotein. Heterologous expression of the enterocin biosynthesis genes encABCDLMN in Streptomyces lividans resulted in the formation of the rearranged metabolite desmethyl-5-deoxyenterocin and the shunt products wailupemycins D-G. Addition of the methyltransferase gene encK, which was previously proposed through mutagenesis to additionally assist EncM in the Favorskii rearrangement, shifted the production to the O-methyl derivative 5-deoxyenterocin. The O-methyltransferase EncK seems to be specific for the pyrone ring of enterocin, because bicyclic polyketides bearing pyrone rings are not methylated in vivo. Expression of encM with different combinations of homologous actinorhodin biosynthesis genes did not result in the production of oxidatively rearranged enterocin-actinorhodin hybrid compounds as anticipated, suggesting that wild-type EncM may be specific for its endogenous type II polyketide synthase or for benzoyl-primed polyketide precursors. PMID:15505225
Smith, Wyatt C.; Xiang, Longkuan; Shen, Ben
2000-01-01
The macrotetrolides are a family of cyclic polyethers derived from tetramerization, in a stereospecific fashion, of the enantiomeric nonactic acid (NA) and its homologs. Isotope labeling experiments established that NA is of polyketide origin, and biochemical investigations demonstrated that 2-methyl-6,8-dihydroxynon-2E-enoic acid can be converted into NA by a cell-free preparation from Streptomyces lividans that expresses nonS. These results lead to the hypothesis that macrotetrolide biosynthesis involves a pair of enantiospecific polyketide pathways. In this work, a 55-kb contiguous DNA region was cloned from Streptomyces griseus DSM40695, a 6.3-kb fragment of which was sequenced to reveal five open reading frames, including the previously reported nonR and nonS genes. Inactivation of nonS in vivo completely abolished macrotetrolide production. Complementation of the nonS mutant by the expression of nonS in trans fully restored its macrotetrolide production ability, with a distribution of individual macrotetrolides similar to that for the wild-type producer. In contrast, fermentation of the nonS mutant in the presence of exogenous (±)-NA resulted in the production of nonactin, monactin, and dinactin but not in the production of trinactin and tetranactin. These results prove the direct involvement of nonS in macrotetrolide biosynthesis. The difference in macrotetrolide production between in vivo complementation of the nonS mutant by the plasmid-borne nonS gene and fermentation of the nonS mutant in the presence of exogenously added (±)-NA suggests that NonS catalyzes the formation of (−)-NA and its homologs, supporting the existence of a pair of enantiospecific polyketide pathways for macrotetrolide biosynthesis in S. griseus. The latter should provide a model that can be used to study the mechanism by which polyketide synthase controls stereochemistry during polyketide biosynthesis. PMID:10858335
Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P
2017-08-01
On the basis of whole genome comparisons of Streptomyces griseorubiginosus and Streptomyces phaeopurpureus it could by shown that these two species are subjective synonyms. The names of both species have been published in the Approved Lists of Bacterial Names and, in such a case, normally Rule 24b (1) of the Prokaryotic Code applies, which reads: 'If two names compete for priority and if both names date from 1 January 1980 on an Approved List, the priority shall be determined by the date of the original publication of the name before 1 January 1980'. Streptomyces griseorubiginosus and Streptomyces phaeopurpureus were both effectively published in 1957, and for both publications, the exact date cannot be obtained. In this case a further statement of Rule 24 applies, which reads: 'If the names or epithets are of the same date, the author who first unites the taxa has the right to choose one of them, and his choice must be followed.' Hence we propose that Streptomyces phaeopurpureus is a later heterotypic subjective synonym of Streptomyces griseorubiginosus.
TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer
2008-02-01
or pARR3tk-Luc), and the Renilla luciferase vector (pRL-TK) as an internal control. Cells were then treated with or without R1881 for 24 h prior to...increasing amount of HA tagged full length TAF1 (pCS2+/TAF1), pRL-TK- Renilla (83 ng/well), and pARR3-tk-Luc (167 ng/well) (A) or pPSA-Luc (1ug/well...numbers of pRL-TK- Renilla , as a non androgenic reporter was also enhanced by TAF1 over-expression in both LNCaP and PC3 cells, the ARR3tk-Luc
Park, Juyi; Hong, Soon-Kwang; Chang, Yong Keun
2015-09-01
A novel two-step fermentation process using a mixed-sugar medium mimicking microalgal hydrolysate has been proposed to avoid glucose repression and thus to maximize substrate utilization efficiency. When DagA, a β-agarase was produced in one step in the mixed-sugar medium by using a recombinant Streptomyces lividans, glucose was found to have negative effects on the consumption of the other sugars and DagA biosynthesis causing low substrate utilization efficiency and low DagA productivity. To overcome such difficulties, a new strategy of sequential substrate utilization was developed. In the first step, glucose was consumed by Saccharomyces cerevisiae together with galactose and mannose producing ethanol, after which DagA was produced from the remaining sugars of xylose, rhamnose and ribose. Fucose was not consumed. By adopting this two-step process, the overall substrate utilization efficiency was increased approximately 3-fold with a nearly 2-fold improvement of DagA production, let alone the additional benefit of ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya
2017-10-01
Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.
McCoy, Alene T; Bartels, Michael J; Rick, David L; Saghir, Shakil A
2012-07-01
TK Modeler 1.0 is a Microsoft® Excel®-based pharmacokinetic (PK) modeling program created to aid in the design of toxicokinetic (TK) studies. TK Modeler 1.0 predicts the diurnal blood/plasma concentrations of a test material after single, multiple bolus or dietary dosing using known PK information. Fluctuations in blood/plasma concentrations based on test material kinetics are calculated using one- or two-compartment PK model equations and the principle of superposition. This information can be utilized for the determination of appropriate dosing regimens based on reaching a specific desired C(max), maintaining steady-state blood/plasma concentrations, or other exposure target. This program can also aid in the selection of sampling times for accurate calculation of AUC(24h) (diurnal area under the blood concentration time curve) using sparse-sampling methodologies (one, two or three samples). This paper describes the construction, use and validation of TK Modeler. TK Modeler accurately predicted blood/plasma concentrations of test materials and provided optimal sampling times for the calculation of AUC(24h) with improved accuracy using sparse-sampling methods. TK Modeler is therefore a validated, unique and simple modeling program that can aid in the design of toxicokinetic studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P
2018-01-01
Streptomyces canuswas described in 1953 and the name was listed in the Approved List of Bacterial Names in 1980. Three years later, Streptomyces ciscaucasicus was published and the name was subsequently validated in Validation List no. 22 in 1986. On the basis of genome comparison and multilocus sequence analysis of the type strains of Streptomyces canus and Streptomyces ciscaucasicus it can now be shown that these two species despite some phenotypic differences are subjective synonyms. In such a case Rule 24 of the Bacteriological Code applies, in which priority of names is determined by the date of the original publication. Hence, we propose that S. ciscaucasicus is a later subjective synonym of S. canus.
Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis
Vargas-Bautista, Carol; Rahlwes, Kathryn
2014-01-01
Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085
Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.
Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul
2014-02-01
Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua
2017-02-15
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK - ) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK - HSV-1 remain elusive. Using three genetically engineered HSV-1 TK - mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK - mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK - HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. Copyright © 2017 American Society for Microbiology.
Lymphocyte thymidine kinase and treatment response in acute lymphocytic leukemia.
Russo, S A; Harris, M B; Greengard, O
1987-01-01
The activity of thymidine kinase (TK) and the proportion of its isozymes (TK1/TK2) were studied in peripheral lymphoid cells of 37 children with acute lymphocytic leukemia (ALL). The high TK in 25 untreated subjects (31.5 +/- 8.9) decreased during chemotherapy-induced remission to uniformly low (5.3 +/- 0.4) normal values, and rose again during relapse to a mean of (24.8 +/- 8.1). The proportion of isozyme 1 followed the same pattern but TK was a more sensitive indicator of disease state. The lymphocyte fractions' TK (per mg protein) correlated with the number (per ml blood) of WBCs, blasts and lymphocytes. Although the higher TK of blasts than of apparently normal lymphocytes was confirmed in cases permitting clean physical separation, the lymphocyte fraction of several untreated subjects with minimal blast counts also exhibited elevated TK. Moreover, this elevation was also seen in relapsed cases even if their blood (unlike bone marrow) was devoid of blasts. The results indicate that quantification of TK can reveal a subpopulation of maldifferentiated lymphocytes which are microscopically normal and that it may provide an objective parameter of prognostic differences between ALL subjects with similar hematological characteristics.
Saghir, Shakil A; Marty, Mary S; Zablotny, Carol L; Passage, Julie K; Perala, Adam W; Neal, Barbara H; Hammond, Larry; Bus, James S
2013-12-01
Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥ 1200 ppm (63 mg/kg/day) for P1 males and between 200 and 400 ppm (14-27 mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21-35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies.
Marty, Mary S.
2013-01-01
Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥1200 ppm (63mg/kg/day) for P1 males and between 200 and 400 ppm (14–27mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21–35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies. PMID:24105888
Wang, L; Eriksson, S
2000-01-01
The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy. PMID:11023833
Nagai-Okatani, Chiaki; Nagasawa, Hiromichi
2016-01-01
Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A24 as an ion transport peptide-like (ITPL) receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs), we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1–5). In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling. PMID:27248837
The Computational Science Environment (CSE)
2009-08-01
supported CSE platforms. Developers can also build against different versions of a particular package (e.g., Python-2.4 vs . Python-2.5) via a...8.2.1 TK Testing Error and Workaround It has been found that TK tends to produces more testing errors when using KDE , and in some instances, the test...suite freezes when reaching the TK select test. These issues have not been seen when using Gnome . 8.2.2 VTK Testing Error and Workaround VTK test
dndDB: a database focused on phosphorothioation of the DNA backbone.
Ou, Hong-Yu; He, Xinyi; Shao, Yucheng; Tai, Cui; Rajakumar, Kumar; Deng, Zixin
2009-01-01
The Dnd DNA degradation phenotype was first observed during electrophoresis of genomic DNA from Streptomyces lividans more than 20 years ago. It was subsequently shown to be governed by the five-gene dnd cluster. Similar gene clusters have now been found to be widespread among many other distantly related bacteria. Recently the dnd cluster was shown to mediate the incorporation of sulphur into the DNA backbone via a sequence-selective, stereo-specific phosphorothioate modification in Escherichia coli B7A. Intriguingly, to date all identified dnd clusters lie within mobile genetic elements, the vast majority in laterally transferred genomic islands. We organized available data from experimental and bioinformatics analyses about the DNA phosphorothioation phenomenon and associated documentation as a dndDB database. It contains the following detailed information: (i) Dnd phenotype; (ii) dnd gene clusters; (iii) genomic islands harbouring dnd genes; (iv) Dnd proteins and conserved domains. As of 25 December 2008, dndDB contained data corresponding to 24 bacterial species exhibiting the Dnd phenotype reported in the scientific literature. In addition, via in silico analysis, dndDB identified 26 syntenic dnd clusters from 25 species of Eubacteria and Archaea, 25 dnd-bearing genomic islands and one dnd plasmid containing 114 dnd genes. A further 397 other genes coding for proteins with varying levels of similarity to Dnd proteins were also included in dndDB. A broad range of similarity search, sequence alignment and phylogenetic tools are readily accessible to allow for to individualized directions of research focused on dnd genes. dndDB can facilitate efficient investigation of a wide range of aspects relating to dnd DNA modification and other island-encoded functions in host organisms. dndDB version 1.0 is freely available at http://mml.sjtu.edu.cn/dndDB/.
Liu, Shuai; Dai, Haofu; Makhloufi, Gamall; Heering, Christian; Janiak, Christoph; Hartmann, Rudolf; Mándi, Attila; Kurtán, Tibor; Müller, Werner E G; Kassack, Matthias U; Lin, Wenhan; Liu, Zhen; Proksch, Peter
2016-09-23
Seven new 14-membered macrolides, pestalotioprolides C (2), D-H (4-8), and 7-O-methylnigrosporolide (3), together with four known analogues, pestalotioprolide B (1), seiricuprolide (9), nigrosporolide (10), and 4,7-dihydroxy-13-tetradeca-2,5,8-trienolide (11), were isolated from the mangrove-derived endophytic fungus Pestalotiopsis microspora. Their structures were elucidated by analysis of NMR and MS data and by comparison with literature data. Single-crystal X-ray diffraction analysis was used to confirm the absolute configurations of 1, 2, and 10, while Mosher's method and the TDDFT-ECD approach were applied to determine the absolute configurations of 5 and 6. Compounds 3-6 showed significant cytotoxicity against the murine lymphoma cell line L5178Y with IC50 values of 0.7, 5.6, 3.4, and 3.9 μM, respectively, while compound 5 showed potent activity against the human ovarian cancer cell line A2780 with an IC50 value of 1.2 μM. Structure-activity relationships are discussed. Coculture of P. microspora with Streptomyces lividans caused a roughly 10-fold enhanced accumulation of compounds 5 and 6 compared to axenic fungal control.
Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).
Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L
2010-12-01
A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.
JBIR-23 and -24, novel anticancer agents from Streptomyces sp. AK-AB27.
Motohashi, Keiichiro; Hwang, Ji-Hwan; Sekido, Yoshitaka; Takagi, Motoki; Shin-ya, Kazuo
2009-01-15
The screening for active compounds against malignant pleural mesothelioma (MPM) cells produced by Streptomyces sp. AK-AB27 resulted in the isolation of two compounds with a dodecahydrodibenzo[b,d]furan skeleton named JBIR-23 (1) and -24 (2). Their structures were established on the basis of extensive NMR and MS analyses. Compounds 1 and 2 exhibited cytotoxic effects against several MPM cell lines.
De Franceschi, Lucia; Mura, Paolo; Schweiger, Vittorio; Vencato, Elisa; Quaglia, Francesca Maria; Delmonte, Letizia; Evangelista, Maurizio; Polati, Enrico; Olivieri, Oliviero; Finco, Gabriele
2016-07-01
Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder. The principal clinical manifestations of SCD are the chronic hemolytic anemia and the acute vaso-occlusive crisis (VOCs), which are mainly characterized by ischemic/reperfusion tissue injury. Pain is the main symptom of VOCs, and its management is still a challenge for hematologists, requiring a multidisciplinary approach. We carried out a crossover study on adult SCD patients, who received two different types of multimodal analgesia during two separate severe VOCs with time interval between VOCs of at least 6 months. The first VOC episode was treated with ketorolac (0.86 mg/kg/day) and tramadol (7.2 mg/kg/day) (TK treatment). In the second VOC episode, fentanyl buccal tablet (FBT; 100 μg) was introduced in a single dose after three hours from the beginning of TK analgesia (TKF treatment). We focused on the first 24 hours of acute pain management. The primary efficacy measure was the time-weighted-sum of pain intensity differences (SPID24). The secondary efficacy measures included the pain intensity difference (PID), the total pain relief (TOTPAR), and the time-wighted sum of anxiety (SAID24). SPID24 was significantly higher in TKF than in TK treatment. All the secondary measures were significantly ameliorated in TKF compared to TK treatment, without major opioid side effects. Patients satisfaction was higher with TKF treatment than with TK one. We propose that VOCs might require breakthrough pain drug strategy as vaso-occlusive phenomena and enhanced vasoconstriction promoting acute ischemic pain component exacerbate the continuous pain of VOCs. FBT might be a powerful and feasible tool in early management of acute pain during VOCs in emergency departments. © 2015 World Institute of Pain.
Multi-objective experimental design for (13)C-based metabolic flux analysis.
Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel
2015-10-01
(13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi-objective design should stimulate its application within the field of (13)C-based metabolic flux analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu
2016-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484–490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK−) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK− HSV-1 remain elusive. Using three genetically engineered HSV-1 TK− mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK− mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK− HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. PMID:27974554
Chen, Yufeng; Zhou, Dengbo; Qi, Dengfeng; Gao, Zhufen; Xie, Jianghui; Luo, Yanping
2018-01-01
An actinomycete strain, CB-75, was isolated from the soil of a diseased banana plantation in Hainan, China. Based on phenotypic and molecular characteristics, and 99.93% sequence similarity with Streptomyces spectabilis NBRC 13424 (AB184393), the strain was identified as Streptomyces sp. This strain exhibited broad-spectrum antifungal activity against 11 plant pathogenic fungi. Type I polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) were detected, which were indicative of the antifungal compounds that Streptomyces sp. CB-75 could produce. An ethyl acetate extract from the strain exhibited the lowest minimum inhibitory concentration (MIC) against Colletotrichum musae (ATCC 96167) (0.78 μg/ml) and yielded the highest antifungal activity against Colletotrichum gloeosporioides (ATCC 16330) (50.0 μg/ml). Also, spore germination was significantly inhibited by the crude extract. After treatment with the crude extract of Streptomyces sp. CB-75 at the concentration 2 × MIC, the pathogenic fungi showed deformation, shrinkage, collapse, and tortuosity when observed by scanning electron microscopy (SEM). By gas chromatography-mass spectrometry (GC-MS) of the crude extract, 18 chemical constituents were identified; (Z)-13-docosenamide was the major constituent. Pot experiments showed that the incidence of banana seedlings was reduced after using Streptomyces sp. CB-75 treatment. The disease index was 10.23, and the prevention and control effect was 83.12%. Furthermore, Streptomyces sp. CB-75 had a growth-promoting effect on banana plants. The chlorophyll content showed 88.24% improvement, the leaf area, root length, root diameter, plant height, and stem showed 88.24, 90.49, 136.17, 61.78, and 50.98% improvement, respectively, and the shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight showed 82.38, 72.01, 195.33, and 113.33% improvement, respectively, compared with treatment of fermentation broth without Streptomyces sp. CB-75. Thus, Streptomyces sp. CB-75 is an important microbial resource as a biological control against plant pathogenic fungi and for promoting banana growth. PMID:29387049
Recombinant protein production and streptomycetes.
Anné, Jozef; Maldonado, Bárbara; Van Impe, Jan; Van Mellaert, Lieve; Bernaerts, Kristel
2012-04-30
The biopharmaceutical market has come a long way since 1982, when the first biopharmaceutical product, recombinant human insulin, was launched. Just over 200 biopharma products have already gained approval. The global market for biopharmaceuticals which is currently valued at over US$99 billion has been growing at an impressive compound annual growth rate over the previous years. To produce these biopharmaceuticals and other industrially important heterologous proteins, different prokaryotic and eukaryotic expression systems are used. All expression systems have some advantages as well as some disadvantages that should be considered in selecting which one to use. Choosing the best one requires evaluating the options--from yield to glycosylation, to proper folding, to economics of scale-up. No host cell from which all the proteins can be universally expressed in large quantities has been found so far. Therefore, it is important to provide a variety of host-vector expression systems in order to increase the opportunities to screen for the most suitable expression conditions or host cell. In this overview, we focus on Streptomyces lividans, a Gram-positive bacterium with a proven excellence in secretion capacity, as host for heterologous protein production. We will discuss its advantages and disadvantages, and how with systems biology approaches strains can be developed to better producing cell factories. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng
2016-09-01
Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.
Saghir, Shakil A; Bartels, Michael J; Rick, David L; McCoy, Alene T; Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Sue Marty, M; Terry, Claire; Bailey, Jason P; Billington, Richard; Bus, James S
2012-07-01
Integrated toxicokinetics (TK) data provide information on the rate, extent and duration of systemic exposure across doses, species, strains, gender, and life stages within a toxicology program. While routine for pharmaceuticals, TK assessments of non-pharmaceuticals are still relatively rare, and have never before been included in a full range of guideline studies for a new agrochemical. In order to better understand the relationship between diurnal systemic dose (AUC(24h)) and toxicity of agrochemicals, TK analyses in the study animals is now included in all short- (excluding acute), medium- and long-term guideline mammalian toxicity studies including reproduction/developmental tests. This paper describes a detailed procedure for the implementation of TK in short-, medium- and long-term regulatory toxicity studies, without the use of satellite animals, conducted on three agrochemicals (X11422208, 2,4-D and X574175). In these studies, kinetically-derived maximum doses (KMD) from short-term studies instead of, or along with, maximum tolerated doses (MTD) were used for the selection of the high dose in subsequent longer-term studies. In addition to leveraging TK data to guide dose level selection, the integrated program was also used to select the most appropriate method of oral administration (i.e., gavage versus dietary) of test materials for rat and rabbit developmental toxicity studies. The integrated TK data obtained across toxicity studies (without the use of additional/satellite animals) provided data critical to understanding differences in response across doses, species, strains, sexes, and life stages. Such data should also be useful in mode of action studies and to improve human risk assessments. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.
1995-11-01
The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growingmore » in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.« less
Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia
2016-01-01
Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and xylanase preparations from Genencore (Accellerase BG and Accellerase XY). Cellulose and xylan conversion, when conducted using commercial (hemi)cellulases, gave glucose and xylose yields of 30.17 and 68.9%, respectively. The replacement of the cellulolytic preparation from Genencor (Accellerase 1500), with the endo-cellulase from S. argenteolus AE58P resulted in almost 76% of the glucose yield obtained in the presence of the commercial counterpart. Due to the promising results obtained by using the enzymatic crude extracts from S. argenteolus AE58P in the pretreated A. donax saccharification experiments, the proteins putatively responsible for endo-cellulase activity in this strain were identified by proteomics. Several proteins were confidently identified in different Streptomyces spp., eight of which belong to the class of Carbohydrate active enzymes. Overall results highlighted the biotechnological potential of S. argenteolus AE58P being an interesting candidate biocatalyst-producing bacterium for lignocellulose conversion and production of biochemicals and bioenergy.
Fuentes, María S; Briceño, Gabriela E; Saez, Juliana M; Benimeli, Claudia S; Diez, María C; Amoroso, María J
2013-01-01
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques.
Fuentes, María S.; Briceño, Gabriela E.; Saez, Juliana M.; Benimeli, Claudia S.; Diez, María C.; Amoroso, María J.
2013-01-01
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques. PMID:23865051
Biotransformation of trinitrotoluene (TNT) by Streptomyces species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funk, S.B.; Pasti-Grigsby, M.B.; Felicione, E.C.
1995-12-31
Composting has been proposed as one process for use in the bioremediation of 2,4,6 trinitrotoluene (TNT)-contaminated soils. However, the biotransformations of TNT that occur during composting, and the specific compost microorganisms involved in TNT metabolism, are not well understood. Both mesophilic and thermophilic actinomycetes are important participants in the biodegradation of organic matter, and possibly TNT, in composts. Here the authors report on the biotransformation of TNT by Streptomyces species growing aerobically in a liquid medium supplemented with 10 to 100 mg/L of TNT. Streptomyces spp. are able to completely remove TNT from the culture medium within 24 hours. Asmore » has been observed with other bacteria, these streptomycetes transform TNT first by reducing the 4-nitro and 2-nitro groups to the corresponding amino group; reducing TNT first to 4-amino-2,6-dinitrotoluene and then 2,4-diamino-6-nitrotoluene. These intermediates are transitory and are themselves removed from the medium within 7 days.« less
Siti Junaidah, Ahmad; Suhaini, Sudi; Mohd Sidek, Hasidah; Basri, Dayang Fredalina; Zin, Noraziah Mohamad
2015-01-01
Background: The potential of secondary metabolites extracted from Streptomyces sp. to treat bacterial infections including infections with Staphylococcus aureus is previously documented. The current study showed significant antimicrobial activities associated with endophytic Streptomyces sp. isolated from medicinal plants in Peninsular Malaysia. Objectives: The current study aimed to determine anti-methicillin-resistant-Staphylococcus aureus (MRSA) activities of Streptomyces sp. isolates. Materials and Methods: Disc diffusion and Minimum Inhibitory Concentration (MIC) assay were used to determine the antibacterial activity of Streptomyces sp. isolates. Optimization of fermentation parameters for the most potent anti-MRSA extract in terms of medium type, pH, aeration rate, and culture period was also carried out. Lastly, toxicity of the extract against Chang liver cells was determined employing the MTT, 2- (3, 5- diphenyltetrazol-2-ium-2-yl) -4, 5-dimethyl -1, 3 - thiazole; bromide assay. Results: The results indicated Streptomyces sp. SUK 25 isolates showed the most potent anti-MRSA activity. Disc diffusion assay revealed that spread plate technique was more efficient in screening anti-MRSA activity compared to pour plate (P < 0.05). To determine anti–MRSA MIC of Streptomyces sp. SUK 25, Thronton media was used. Therefore, MIC was determined as 2.44 ± 0.01 µg/mL, and accordingly, the lowest MIC was 1.95 µg/mL based on a seven-day culture, pH7, and aeration rate of 140 rpm. The crude extract was not toxic against Chang liver cells (IC50 = 43.31 ± 1.24 µg/mL). Conclusions: The Streptomyces sp. SUK 25 culturing was optimized using Thronton media, at pH 7 and aeration of 140 rpm. Further isolation and identification of bioactive compounds will develop anti-MRSA therapeutics. PMID:26060562
Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.
Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F
2015-01-01
The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro.
Salama, S A; Kamel, M; Christman, G; Wang, H Q; Fouad, H M; Al-Hendy, A
2007-01-01
Uterine leiomyomas (LM) affect a high percentage of reproductive-age women. They develop as discrete, well-defined tumors that are easily accessible with imaging techniques--making this disease ideal for localized gene therapy approaches. In this study, we determined the efficacy of adenovirus-mediated herpes simplex virus thymidine kinase gene transfer in combination with ganciclovir (Ad-TK/GCV) as a potential therapy for LM. Rat ELT-3 LM cells and human LM cells were transfected with different multiplicity of infections (10-100 plaque forming units [PFU]/cell) of Ad-TK and treated with GCV (5, 10, or 20 microg/ml) for 5 days. To test the bystander effect, Ad-TK-transfected ELT-3 cells (100 PFU/cell) or LM cells (10 PFU/cell) were cocultured with corresponding nontransfected cells at increasing percentages and treated with GCV followed by cell counting. In ELT-3 cells transfected with Ad-TK/GCV (10, 20, 50, or 100 PFU/cell), the cell count was reduced by 24, 42, 77, and 87%, respectively, compared with the control cells (transfected with Ad-Lac Z/GCV). Similarly, in LM cells transfected with Ad-TK/GCV (10, 50, or 100 PFU/cell), the cell count was reduced by 31, 62, and 82%, respectively, compared with the control. A strong bystander effect was noted in both ELT-3 and LM cells with significant killing (p = 0.001) at a ratio of infected:uninfected cells of only 1:99 and maximal killing at 1:4. This study demonstrates the potential efficacy of the Ad-TK/GCV gene therapy approach as a viable nonsurgical alternative treatment for uterine LM.
Wang, Liya; Limongelli, Anna; Vila, Maya R; Carrara, Franco; Zeviani, Massimo; Eriksson, Staffan
2005-01-01
Thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) are the two key enzymes in mitochondrial DNA (mtDNA) precursor synthesis. Deficiencies in TK2 or dGK activity, due to genetic alteration, have been shown to cause tissue-specific depletion of mtDNA. In the case of TK2 deficiency, affected individuals suffer severe myopathy and, in the case of dGK deficiency, devastating liver or multi-systemic disease. Here, we report clinical and biochemical findings from two patients with mtDNA depletion syndrome. Patient A was a compound heterozygote carrying the previously reported T77M mutation and a novel mutation (R161K) in the TK2 gene. Patient B carried a novel mutation (L250S) in the dGK gene. The clinical symptoms of patient A included muscular weakness and exercise intolerance due to a severe mitochondrial myopathy associated with a 92% reduction in mtDNA. There was minimal involvement of other organs. Patient B suffered from rapidly progressive, early onset fatal liver failure associated with profoundly decreased mtDNA levels in liver and, to a lesser extent, in skeletal muscle. Site-directed mutagenesis was used to introduce the mutations detected in patients A and B into the TK2 and dGK cDNAs, respectively. We then characterized each of these recombinant enzymes. Catalytic activities of the three mutant enzymes were reduced to about 2-4% for TK2 and 0.5% for dGK as compared to the wild-type enzymes. Altered competition between dCyd and dThd was observed for the T77M mutant. The residual activities of the two mitochondrial enzymes correlated directly with disease development.
Naine, S Jemimah; Devi, C Subathra
2014-01-01
The aim of the present study was to assess the larvicidal and repellent properties of marine Streptomyces sp. VITJS4 crude extracts. The marine soil samples were collected from the Puducherry coast, Tamil Nadu, India. The isolate Streptomyces sp. VITJS4 was taxonomically characterized and identified. The ethyl acetate crude extract tested for larvicidal property showed 100% mortality for all the 3 species after 24 h exposure against the early fourth instar larvae of malarial vector--Anopheles stephensi at 50% and 90% lethal concentration (LC50 = 132.86, LC90 396.14 ppm); dengue vector--Aedes aegypti (LC50 = 112.78, LC90 336.42 ppm) and filariasis vector--Culex quinquefasciatus (LC50 = 156.53, LC90 468.37 ppm). The Streptomyces sp. VITJS4 solvent extracts of hexane, ethyl acetate, benzene, chloroform and methanol were tested for repellent activity against A. stephensi, A. aegypti and C. quinquefasciatus. The ethyl acetate extract showed complete protection for 210 min at 6 mg/cm2 against these mosquito bites. The crude extract was analyzed further for Fourier Transform-infrared spectroscopy (FT-IR) analysis. In addition to the importance of bioactive compounds, the utilization of Streptomyces sp. VITJS4 crude extracts revealed effective larvicidal and repellent activity against the vectors, which perhaps represents a promising tool in the management of mosquito control.
Tenser, R B; Jones, J C; Ressel, S J; Fralish, F A
1983-01-01
Plaques formed by herpes simplex virus (HSV), pseudorabies virus, and varicella-zoster virus were studied by plaque autoradiography after [14C]thymidine labeling. Standard thymidine kinase-positive (TK+) viruses and TK- mutants of HSV types 1 and 2 and pseudorabies virus were studied, including cell cultured viruses and viruses isolated from animals. Autoradiography was performed with X-ray film with an exposure time of 5 days. After development of films, TK+ plaques showed dark rims due to isotope incorporation, whereas TK- plaques were minimally labeled. Plaque autoradiography of stock TK- viruses showed reversion frequencies to the TK+ phenotype of less than 10(-3). Autoradiography indicated that TK- virus retained the TK- phenotype after replication in vivo. In addition, it was shown that TK- HSV could be isolated from mouse trigeminal ganglion tissue after corneal inoculation of TK- HSV together with TK+ HSV. The plaque autoradiographic procedure was very useful to evaluate proportions of TK+ and TK- virus present in TK+-TK- virus mixtures. Images PMID:6826696
Bromovinyl-deoxyuridine: A selective substrate for mitochondrial thymidine kinase in cell extracts.
Franzolin, Elisa; Rampazzo, Chiara; Pérez-Pérez, María-Jesús; Hernández, Ana-Isabel; Balzarini, Jan; Bianchi, Vera
2006-05-26
Cellular models of mitochondrial thymidine kinase (TK2) deficiency require a reliable method to measure TK2 activity in whole cell extracts containing two interfering deoxyribonucleoside kinases, thymidine kinase 1 (TK1) and deoxycytidine kinase. We tested the value of the thymidine analog (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) as a TK2-specific substrate. With extracts of OSTTK1- cells containing TK2 as the only thymidine kinase and a highly specific TK2 inhibitor we established conditions to detect the low TK2 activity commonly present in cells. With extracts of TK1-proficient osteosarcoma cells and normal human fibroblasts we showed that BVDU, but not 1-(beta-d-arabinofuranosyl)thymine (Ara-T), discriminates TK2 activity even in the presence of 100-fold excess TK1. A comparison with current procedures based on TK2 inhibition demonstrated the better performance of the new TK2 assay. When cultured human fibroblasts passed from proliferation to quiescence TK2 activity increased by 3-fold, stressing the importance of TK2 function in the absence of TK1.
Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575.
Pickens, Lauren B; Kim, Woncheol; Wang, Peng; Zhou, Hui; Watanabe, Kenji; Gomi, Shuichi; Tang, Yi
2009-12-09
SF2575 1 is a tetracycline polyketide produced by Streptomyces sp. SF2575 and displays exceptionally potent anticancer activity toward a broad range of cancer cell lines. The structure of SF2575 is characterized by a highly substituted tetracycline aglycon. The modifications include methylation of the C-6 and C-12a hydroxyl groups, acylation of the 4-(S)-hydroxyl with salicylic acid, C-glycosylation of the C-9 of the D-ring with D-olivose and further acylation of the C4'-hydroxyl of D-olivose with the unusual angelic acid. Understanding the biosynthesis of SF2575 can therefore expand the repertoire of enzymes that can modify tetracyclines, and facilitate engineered biosynthesis of SF2575 analogues. In this study, we identified, sequenced, and functionally analyzed the ssf biosynthetic gene cluster which contains 40 putative open reading frames. Genes encoding enzymes that can assemble the tetracycline aglycon, as well as installing these unique structural features, are found in the gene cluster. Biosynthetic intermediates were isolated from the SF2575 culture extract to suggest the order of pendant-group addition is C-9 glycosylation, C-4 salicylation, and O-4' angelylcylation. Using in vitro assays, two enzymes that are responsible for C-4 acylation of salicylic acid were identified. These enzymes include an ATP-dependent salicylyl-CoA ligase SsfL1 and a putative GDSL family acyltransferase SsfX3, both of which were shown to have relaxed substrate specificity toward substituted benzoic acids. Since the salicylic acid moiety is critically important for the anticancer properties of SF2575, verification of the activities of SsfL1 and SsfX3 sets the stage for biosynthetic modification of the C-4 group toward structure-activity relationship studies of SF2575. Using heterologous biosynthesis in Streptomyces lividans, we also determined that biosynthesis of the SF2575 tetracycline aglycon 8 parallels that of oxytetracycline 4 and diverges after the assembly of 4-keto-anhydrotetracycline 51. The minimal ssf polyketide synthase together with the amidotransferase SsfD produced the amidated decaketide backbone that is required for the formation of 2-naphthacenecarboxamide skeleton. Additional enzymes, such as cyclases C-6 methyltransferase and C-4/C-12a dihydroxylase, were functionally reconstituted.
Does repeated and heavy exercise impair blood rheology in carriers of sickle cell trait?
Tripette, Julien; Hardy-Dessources, Marie-Dominique; Sara, Fagnété; Montout-Hedreville, Mona; Saint-Martin, Christian; Hue, Olivier; Connes, Philippe
2007-11-01
To determine if the time courses of hemorheologic parameters are different between carriers of sickle cell trait (SCT) and subjects with normal hemoglobin in response to exercise. Observational and comparative study. Testing was conducted in a laboratory of exercise physiology. Nine carriers of sickle cell trait (SCT group) and 7 subjects with normal hemoglobin (CONT group) performed an exercise protocol of the repetition of 3 successive maximal ramp exercise tests. Blood was sampled at rest (TR), at the end of each of the 3 tests (T1, T2, T3), and during the immediate (T2h) and late (T24h, T48h) recovery periods. Blood and plasma viscosity (etab and etap, respectively), hematocrit (Hct), and red blood cell (RBC) rigidity (Tk and k indexes) were determined. In both groups, etab significantly increased in response to exercise but the SCT group had significantly higher etab at T3 and T2h. etab then returned to baseline value at T2h in the CONT group and at T24h in the SCT group. Tk and k were not changed by exercise but significantly increased above baseline value in both groups at T24h and T48h. The increase in Tk and k during late recovery was higher in the SCT group than in the CONT group, indicating that SCT carriers had significantly higher RBC rigidity than the CONT group at that time. The hemorheologic changes induced by exercise in the SCT carriers could trigger microcirculatory disorders during the recovery.
Biochemistry and genetics of actinomycete cellulases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D.B.
1992-01-01
The order Actinomycetales includes a number of genera that contain species that actively degrade cellulose and these include both mesophilic and facultative thermophilic species. Cellulases produced by strains from two of the genera containing thermophilic organisms have been studied extensively: Microbispora bispora and Thermomonospora fusca. Fractionation of M. bispora cellulases has identified six different enzymes, all of which were purified to near homogeneity and partially characterized. Two of these enzymes appear to be exocellulases and gave synergism with each other and with the endocellulases. The structural genes of five M. bispora cellulases have been cloned and one was sequenced. Fractionationmore » of T. fusca cellulases has identified five different enzymes, all of which were purified to near homogeneity and partially characterized. One of the T. fusca enzymes gives synergism in the hydrolysis of crystalline cellulose with several T. fusca endocellulases and with Trichoderma reesei CBHI but not with T. reesei CBHII. Each T. fusca cellulase contains distinct catalytic and cellulose binding domains. The structural genes of four of the T. fusca endoglucanases have been cloned and sequenced, while three cellulase genes have been cloned from T. curvata. The T. fusca cellulase genes are expressed at a low level in Escherichia coli, but at a high level in Streptomyces lividans. Sequence comparisons have shown that there are no significant amino acid homologies between any of the catalytic domains of the four T. fusca cellulases, but each of them shows extensive homology to several other cellulases and fits in one of the five existing cellulase gene families. 73 refs., 8 figs., 4 tabs.« less
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.
Vargas-Tah, Alejandra; Gosset, Guillermo
2015-01-01
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes
Vargas-Tah, Alejandra; Gosset, Guillermo
2015-01-01
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861
Horsman, Geoff P.; Chen, Yihua; Thorson, Jon S.; Shen, Ben
2010-01-01
Enediynes are potent antitumor antibiotics that are classified as 9- or 10-membered according to the size of the enediyne core structure. However, almost nothing is known about enediyne core biosynthesis, and the determinants of 9- versus 10-membered enediyne core biosynthetic divergence remain elusive. Previous work identified enediyne-specific polyketide synthases (PKSEs) that can be phylogenetically distinguished as being involved in 9- versus 10-membered enediyne biosynthesis, suggesting that biosynthetic divergence might originate from differing PKSE chemistries. Recent in vitro studies have identified several compounds produced by the PKSE and associated thioesterase (TE), but condition-dependent product profiles make it difficult to ascertain a true catalytic difference between 9- and 10-membered PKSE-TE systems. Here we report that PKSE chemistry does not direct 9- versus 10-membered enediyne core biosynthetic divergence as revealed by comparing the products from three 9-membered and two 10-membered PKSE-TE systems under identical conditions using robust in vivo assays. Three independent experiments support a common catalytic function for 9- and 10-membered PKSEs by the production of a heptaene metabolite from: (i) all five cognate PKSE-TE pairs in Escherichia coli; (ii) the C-1027 and calicheamicin cognate PKSE-TEs in Streptomyces lividans K4-114; and (iii) selected native producers of both 9- and 10-membered enediynes. Furthermore, PKSEs and TEs from different 9- and 10-membered enediyne biosynthetic machineries are freely interchangeable, revealing that 9- versus 10-membered enediyne core biosynthetic divergence occurs beyond the PKSE-TE level. These findings establish a starting point for determining the origins of this biosynthetic divergence. PMID:20534556
The ClgR protein regulates transcription of the clpP operon in Bifidobacterium breve UCC 2003.
Ventura, Marco; Zhang, Ziding; Cronin, Michelle; Canchaya, Carlos; Kenny, John G; Fitzgerald, Gerald F; van Sinderen, Douwe
2005-12-01
Five clp genes (clpC, clpB, clpP1, clpP2, and clpX), representing chaperone- and protease-encoding genes, were previously identified in Bifidobacterium breve UCC 2003. In the present study, we characterize the B. breve UCC 2003 clpP locus, which consists of two paralogous genes, designated clpP1 and clpP2, whose deduced protein products display significant similarity to characterized ClpP peptidases. Transcriptional analyses showed that the clpP1 and clpP2 genes are transcribed in response to moderate heat shock as a bicistronic unit with a single promoter. The role of a clgR homologue, known to control the regulation of clpP gene expression in Streptomyces lividans and Corynebacterium glutamicum, was investigated by gel mobility shift assays and DNase I footprint experiments. We show that ClgR, which in its purified form appears to exist as a dimer, requires a proteinaceous cofactor to assist in specific binding to a 30-bp region of the clpP promoter region. In pull-down experiments, a 56-kDa protein copurified with ClgR, providing evidence that the two proteins also interact in vivo and that the copurified protein represents the cofactor required for ClgR activity. The prediction of the ClgR three-dimensional structure provides further insights into the binding mode of this protein to the clpP1 promoter region and highlights the key amino acid residues believed to be involved in the protein-DNA interaction.
The ClgR Protein Regulates Transcription of the clpP Operon in Bifidobacterium breve UCC 2003†
Ventura, Marco; Zhang, Ziding; Cronin, Michelle; Canchaya, Carlos; Kenny, John G.; Fitzgerald, Gerald F.; van Sinderen, Douwe
2005-01-01
Five clp genes (clpC, clpB, clpP1, clpP2, and clpX), representing chaperone- and protease-encoding genes, were previously identified in Bifidobacterium breve UCC 2003. In the present study, we characterize the B. breve UCC 2003 clpP locus, which consists of two paralogous genes, designated clpP1 and clpP2, whose deduced protein products display significant similarity to characterized ClpP peptidases. Transcriptional analyses showed that the clpP1 and clpP2 genes are transcribed in response to moderate heat shock as a bicistronic unit with a single promoter. The role of a clgR homologue, known to control the regulation of clpP gene expression in Streptomyces lividans and Corynebacterium glutamicum, was investigated by gel mobility shift assays and DNase I footprint experiments. We show that ClgR, which in its purified form appears to exist as a dimer, requires a proteinaceous cofactor to assist in specific binding to a 30-bp region of the clpP promoter region. In pull-down experiments, a 56-kDa protein copurified with ClgR, providing evidence that the two proteins also interact in vivo and that the copurified protein represents the cofactor required for ClgR activity. The prediction of the ClgR three-dimensional structure provides further insights into the binding mode of this protein to the clpP1 promoter region and highlights the key amino acid residues believed to be involved in the protein-DNA interaction. PMID:16321946
Sompornpisut, Pornthep; Roux, Benoît; Perozo, Eduardo
2008-01-01
We present an approach for incorporating solvent accessibility data from electron paramagnetic resonance experiments in the structural refinement of membrane proteins through restrained molecular dynamics simulations. The restraints have been parameterized from oxygen (ΠO2) and nickel-ethylenediaminediacetic acid (ΠNiEdda) collision frequencies, as indicators of lipid or aqueous exposed spin-label sites. These are enforced through interactions between a pseudoatom representation of the covalently attached Nitroxide spin-label and virtual “solvent” particles corresponding to O2 and NiEdda in the surrounding environment. Interactions were computed using an empirical potential function, where the parameters have been optimized to account for the different accessibilities of the spin-label pseudoatoms to the surrounding environment. This approach, “pseudoatom-driven solvent accessibility refinement”, was validated by refolding distorted conformations of the Streptomyces lividans potassium channel (KcsA), corresponding to a range of 2–30 Å root mean-square deviations away from the native structure. Molecular dynamics simulations based on up to 58 electron paramagnetic resonance restraints derived from spin-label mutants were able to converge toward the native structure within 1–3 Å root mean-square deviations with minimal computational cost. The use of energy-based ranking and structure similarity clustering as selection criteria helped in the convergence and identification of correctly folded structures from a large number of simulations. This approach can be applied to a variety of integral membrane protein systems, regardless of oligomeric state, and should be particularly useful in calculating conformational changes from a known reference crystal structure. PMID:18676641
Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro
2012-06-01
Pyruvate carboxylase (PYC) catalyzes the β-carboxylation of pyruvate to yield oxaloacetate (OAA). We previously isolated a cDNA encoding a putative PYC (EhPYC1) from the haptophyte alga Emiliania huxleyi and then proposed that EhPYC1 contributes to active anaplerotic β-carboxylation during photosynthesis although PYC activity was not detected in the cell extracts. Involvement of PYC in photosynthetic carbon metabolism is unique, since PYC generally functions in non-photosynthetic organisms. In the present study, we demonstrate that EhPYC1 is highly sensitive to endogenous proteases and therefore is easily degraded in cell extracts. By avoiding proteolytic degradation, PYC activity can be detected in the cell extracts of E. huxleyi. The activity of a recombinant His-tagged EhPYC1 expressed in Streptomyces lividans was inhibited by l-malate in a mixed non-competitive manner. Immunofluorescence labeling showed that EhPYC1 is located in the plastid. This result agrees with the prediction that a bipartite plastid-targeting signal is present that functions to deliver proteins into the four-membrane plastid of haptophyte algae. This is the first finding of a plastid-located PYC. These results indicate that E. huxleyi possesses a unique pathway to produce OAA catalyzed by PYC, and the pathway may provide carbon skeletons for amino acid biosynthesis in the plastid. A database search indicates that PYC genes are widespread in green algae, diatoms and brown algae, suggesting the crucial role of PYC in various aquatic phototrophs.
Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William
2007-03-01
Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.
Lin, F L; Sternberg, N
1984-05-01
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.
Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio
2011-01-01
Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.
Dorado, Beatriz; Area, Estela; Akman, Hasan O.; Hirano, Michio
2011-01-01
Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency. PMID:20940150
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... received a certification of eligibility to apply for trade adjustment assistance benefits and such supply... Medical, Hagameyer, T&K, Zachary, Rockdale, Texas: March 24, 2010. TA-W-80,134; Premier Pet Products, Inc...
Lin, F L; Sternberg, N
1984-01-01
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants. Images PMID:6328272
Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William
2007-01-01
Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372
Measuring Acquisition Workforce Quality Through Dynamic Knowledge and Performance
2014-05-14
closeout • Regression: – 3 TK/EK measures (IV): PCOd , DAWIA, AXP – 7 CMMM measures (DV): 6 processes + mean 5 Summary Statistical Results Model Org T...Org R PCOd CMMM R2 = 0.36, p = 0.15 R2 = 0.41, p = 0.25 DAWIA CMMM R2 = 0.64, p = 0.03 R2 = 0.44, p = 0.22 AXP CMMM R2 = 0.59, p = 0.07 R2...0.27, p = 0.37 All CMMM R2 = 0.71, p = 0.24 R2 = 0.72, p = 0.64 6 Contributions • ID 3 TK/EK proxies: PCOd , DAWIA, AXP • Measure CMMM levels: 12 orgs
Zinn, Kurt R; Chaudhuri, Tandra R; Krasnykh, Victor N; Buchsbaum, Donald J; Belousova, Natalya; Grizzle, William E; Curiel, David T; Rogers, Buck E
2002-05-01
To compare two systems for assessing gene transfer to cancer cells and xenograft tumors with noninvasive gamma camera imaging. A replication-incompetent adenovirus encoding the human type 2 somatostatin receptor (hSSTr2) and the herpes simplex virus thymidine kinase (TK) enzyme (Ad-hSSTr2-TK) was constructed. A-427 human lung cancer cells were infected in vitro and mixed with uninfected cells at different ratios. A-427 tumors in nude mice (n = 23) were injected with 1 x 10(6) to 5 x 10(8) plaque-forming units (pfu) of Ad-hSSTr2-TK. The expressed hSSTr2 and TK proteins were imaged owing to internally bound, or trapped, technetium 99m ((99m)Tc)-labeled hSSTr2-binding peptide (P2045) and radioiodinated 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (FIAU), respectively. Iodine 125 ((125)I)-labeled FIAU was used in vitro and iodine 131 ((131)I)-labeled FIAU, in vivo. The (99m)Tc-labeled P2045 and (125)I- or (131)I-labeled FIAU were imaged simultaneously with different window settings with an Anger gamma camera. Treatment effects were tested with analysis of variance. Infected cells in culture trapped (125)I-labeled FIAU and (99m)Tc-labeled P2045; uptake correlated with the percentage of Ad-hSSTr2-TK-positive cells. For 100% of infected cells, 24% +/- 0.4 (mean +/- SD) of the added (99m)Tc-labeled P2045 was trapped, which is significantly lower (P <.05) than the 40% +/- 2 of (125)I-labeled FIAU that was trapped. For the highest Ad-hSSTr2-TK tumor dose (5 x 10(8) pfu), the uptake of (99m)Tc-labeled P2045 was 11.1% +/- 2.9 of injected dose per gram of tumor (thereafter, dose per gram), significantly higher (P <.05) than the uptake of (131)I-labeled FIAU at 1.6% +/- 0.4 dose per gram. (99m)Tc-labeled P2045 imaging consistently depicted hSSTr2 gene transfer in tumors at all adenovirus doses. Tumor uptake of (99m)Tc-labeled P2045 positively correlated with Ad-hSSTr2-TK dose; (131)I-labeled FIAU tumor uptake did not correlate with vector dose. The hSSTr2 and TK proteins were simultaneously imaged following dual gene transfer with an adenovirus vector. Copyright RSNA, 2002
Tropospheric GOM at the Pic du Midi Observatory-Correcting Bias in Denuder Based Observations.
Marusczak, Nicolas; Sonke, Jeroen E; Fu, Xuewu; Jiskra, Martin
2017-01-17
Gaseous elemental mercury (GEM, Hg) emissions are transformed to divalent reactive Hg (RM) forms throughout the troposphere and stratosphere. RM is often operationally quantified as the sum of particle bound Hg (PBM) and gaseous oxidized Hg (GOM). The measurement of GOM and PBM is challenging and under mounting criticism. Here we intercompare six months of automated GOM and PBM measurements using a Tekran (TK) KCl-coated denuder and quartz regenerable particulate filter method (GOM TK , PBM TK , and RM TK ) with RM CEM collected on cation exchange membranes (CEMs) at the high altitude Pic du Midi Observatory. We find that RM TK is systematically lower by a factor of 1.3 than RM CEM . We observe a significant relationship between GOM TK (but not PBM TK ) and Tekran flush TK blanks suggesting significant loss (36%) of labile GOM TK from the denuder or inlet. Adding the flush TK blank to RM TK results in good agreement with RM CEM (slope = 1.01, r 2 = 0.90) suggesting we can correct bias in RM TK and GOM TK . We provide a bias corrected (*) Pic du Midi data set for 2012-2014 that shows GOM* and RM* levels in dry free tropospheric air of 198 ± 57 and 229 ± 58 pg m -3 which agree well with in-flight observed RM and with model based GOM and RM estimates.
Ponomarev, Vladimir; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Balatoni, Julius; Blasberg, Ronald; Tjuvajev, Juri Gelovani
2003-01-01
Abstract To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a “cryptic” testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improvedmetabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [131I]FIAU and a γ-camera. PMID:12869307
Yang, Mingyuan; Yang, Changwei; Chen, Ziqiang; Wei, Xianzhao; Chen, Yuanyuan; Zhao, Jian; Shao, Jie; Zhu, Xiaodong; Li, Ming
2016-03-01
A retrospective study. To explore the relationship between the change of lumbar lordosis (LL) and thoracic kyphosis (TK) in AIS patients after correction surgery. TK tends to decrease in Lenke 1 and Lenke 2 AIS patients after correction surgery using pedicle screws, with the compensation of LL decrease. We hypothesize that lumbar lordosis minus thoracic kyphosis (LL-TK) remains constant after correction surgery to achieve the sagittal balance in AIS patients. Medical records of Lenke 1 or Lenke 2 AIS patients who received posterior correction surgery using pedicle screws in our hospital from January 2010 to January 2013 were reviewed. General characters of patients and radiological parameters were evaluated before the surgery and at two years' follow-up. Correlation analysis between TK and LL was conducted. LL-TK and the change of LL and TK were analyzed at preoperation and final follow-up. A total of 76 Lenke 1 and Lenke 2 AIS patients were included. Both TK and LL decreased significantly after correction surgery (P = 0.019 and P = 0.040, respectively). There were significant correlations between TK and LL before and after surgery, respectively (preoperative: r = 0.234, P = 0.042; postoperative: r = 0.310, P = 0.006). Preoperative and postoperative LL-TK was 23.80° and 25.09°, respectively, and no significant difference of LL-TK was observed (P = 0.372). The same tendency was observed in the change of LL and TK, and significant correlation was also found between the change of TK and LL (r = 0.626, P = 0.002). The same change of LL and TK and no significant difference in LL-TK indicated that LL-TK might be an important compensatory mechanism in keeping sagittal balance.
Buick, Julie K.; Moffat, Ivy; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Hyduke, Daniel R.; Li, Heng‐Hong; Fornace, Albert J.; Aubrecht, Jiri
2015-01-01
The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation. Specifically, chemical exposures were conducted in the presence of rat liver S9. The ability of the biomarker to classify genotoxic (benzo[a]pyrene, BaP; aflatoxin B1, AFB1) and nongenotoxic (dexamethasone, DEX; phenobarbital, PB) agents correctly was evaluated. Cells were exposed to increasing chemical concentrations for 4 hr and collected 0 hr, 4 hr, and 20 hr postexposure. Relative survival, apoptosis, and micronucleus frequency were measured at 24 hr. Transcriptome profiles were measured with Agilent microarrays. Statistical modeling and bioinformatics tools were applied to classify each chemical using the genomic biomarker. BaP and AFB1 were correctly classified as genotoxic at the mid‐ and high concentrations at all three time points, whereas DEX was correctly classified as nongenotoxic at all concentrations and time points. The high concentration of PB was misclassified at 24 hr, suggesting that cytotoxicity at later time points may cause misclassification. The data suggest that the use of S9 does not impair the ability of the biomarker to classify genotoxicity in TK6 cells. Finally, we demonstrate that the biomarker is also able to accurately classify genotoxicity using a publicly available dataset derived from human HepaRG cells. Environ. Mol. Mutagen. 56:520–534, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:25733247
Jagarlamudi, Kiran Kumar; Moreau, Laura; Westberg, Sara; Rönnberg, Henrik; Eriksson, Staffan
2015-01-01
Thymidine kinase 1 (TK1) is a DNA precursor enzyme whose expression is closely correlated with cell proliferation and cell turnover. Sensitive serum TK1 activity assays have been used for monitoring and prognosis of hematological malignancies in both humans and dogs. Here we describe the development of a specific sandwich TK1-ELISA for the quantification of TK1 protein levels in sera from dogs with different malignancies. A combination of rabbit polyclonal anti-dog TK1 antibody and a mouse monoclonal anti-human TK1 antibody was used. Different concentrations of recombinant canine TK1 was used as standard. Clinical evaluation of the ELISA was done by using sera from 42 healthy dogs, 43 dogs with hematological tumors and 55 with solid tumors. An established [3H]-dThd phosphorylation assay was used to determine the TK1 activity levels in the same sera. The mean TK1 activities in dogs with hematological tumors were significantly higher than those found in healthy dogs. In agreement with earlier studies, no significant difference was observed in serum TK1 activities between healthy dogs and dogs with solid tumors. However, the mean TK1 protein levels determined by new TK1-ELISA were significantly higher not only in hematological tumors but also in solid tumors compared to healthy dogs (mean ± SD = 1.30 ± 1.16, 0.67 ± 0.55 and 0.27± 0.10 ng/mL, respectively). Moreover, TK1-ELISA had significantly higher ability to distinguish lymphoma cases from healthy based on receiver operating characteristic analyses (area under the curve, AUC, of 0.96) to that of the activity assay (AUC, 0.84). Furthermore, fluctuations in TK1 protein levels during the course of chemotherapy in dogs with lymphoma closely associated with clinical outcome. Overall, the TK1-ELISA showed significant linear correlation with the TK1 activity assay (r s = 0.6, p<0.0001). Thus, the new TK1-ELISA has sufficient sensitivity and specificity for routine clinical use in veterinary oncology. PMID:26366881
Remediation of Cd-contaminated soil around metal sulfide mines
NASA Astrophysics Data System (ADS)
Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan
2017-04-01
The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is the key to the remediation of Cd-contaminated soils, and apply the composite material of zeolite combining apatite is the best choice for the remediation of Cd-contaminated soils.
Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway.
Luo, Hao; Liang, Hairong; Chen, Jiajia; Xu, Yongchun; Chen, Yuting; Xu, Longmei; Yun, Lin; Liu, Jiaxian; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen
2017-09-01
Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP-1 regulatory pathway mediated HQ-induced cell cycle arrest and apoptosis, we assessed the effect of PARP-1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP-1 deficientTK6 cells (TK6-shPARP-1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP-1-deficient TK6 cells (TK6-shPARP-1) compared to those negative control cells (TK6-shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up-regulation of Fas expression, followed by caspase-3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6-shPARP-1 cells than in TK6-shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6-shPARP-1 cells than in TK6-shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up-regulation and p53-mediated apoptosis in TK6-shNC cells. The reduction of PARP-1 expression further intensified up-regulation of p53 in TK6-shPARP-1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6-shPARP-1 cells compared to TK6-shNC cells. © 2017 Wiley Periodicals, Inc.
Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L
2017-07-01
Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be critical to mediating the coevolutionary dynamics and selective trajectories for inhibitory and nutrient use phenotypes among Streptomyces and Fusarium populations in soil, with significant implications for microbial community functional characteristics.
Wu, Chuanjing; Yang, Rongjiang; Zhou, Ji; Bao, Shing; Zou, Li; Zhang, Pinggan; Mao, Yongrong; Wu, Jianping; He, Qimin
2003-06-01
Egg yolk is a good source of highly specific antibodies against mammalian antigens because of the phylogenetic distance between birds and mammals. Chicken egg yolk immunoglobulins (IgY) were generated to a synthetic 31-amino acid peptide from the C-terminal of human HeLa thymidine kinase 1 (TK1) enzyme. The anti-TK1 IgY antibody was purified using affinity chromatography against the 31-amino acid peptide. The purified antibody inhibited the catalytic activity of the TK1 enzyme in the CEM TK1(+) cells and recognized the 25-kDa subunit and tetrameric form of TK1, which has a pI value of 8.3. No immunoreaction was observed in CEM TK1(-) cells. Western blot of the serum TK1 (S-TK1) also showed that only a single band was found in the serum of patients with malignancies. No band was seen in healthy serum. Furthermore, dot blots and enhanced chemiluminescence (ECL) detection of S-TK1 performed on sera of preoperative patients with gastric cancer (GC) (n=31) and healthy controls (n=62) showed that the levels of S-TK1 in the sera of cancer patients were significantly different (P<0.01). Using ECL dot blots, 0.1 pg of TK1 in 3 microl sera could be detected. Immunohistostaining of tissues in the 11 advanced-stage cancer patients (four breast carcinomas, three hepatocarcinomas and four thyroid carcinomas) indicated that a strong staining of TK1 enzyme was found in the cytoplasm of malignant cells. No staining or weak staining was seen in normal tissues. We suggest that screening for TK1 using anti-TK1 IgY may be potentially useful for serological and immunohistochemical detection of TK1 as an early prognosis and for monitoring patients undergoing treatment.
El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M
2014-04-01
The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).
Shenkarev, Zakhar O; Lyukmanova, Ekaterina N; Butenko, Ivan O; Petrovskaya, Lada E; Paramonov, Alexander S; Shulepko, Mikhail A; Nekrasova, Oksana V; Kirpichnikov, Mikhail P; Arseniev, Alexander S
2013-02-01
Production of helical integral membrane proteins (IMPs) in a folded state is a necessary prerequisite for their functional and structural studies. In many cases large-scale expression of IMPs in cell-based and cell-free systems results in misfolded proteins, which should be refolded in vitro. Here using examples of the bacteriorhodopsin ESR from Exiguobacterium sibiricum and full-length homotetrameric K(+) channel KcsA from Streptomyces lividans we found that the efficient in vitro folding of the transmembrane domains of the polytopic and multimeric IMPs could be achieved during the protein encapsulation into the reconstructed high-density lipoprotein particles, also known as lipid-protein nanodiscs. In this case the self-assembly of the IMP/nanodisc complexes from a mixture containing apolipoprotein, lipids and the partially denatured protein solubilized in a harsh detergent induces the folding of the transmembrane domains. The obtained folding yields showed significant dependence on the properties of lipids used for nanodisc formation. The largest recovery of the spectroscopically active ESR (~60%) from the sodium dodecyl sulfate (SDS) was achieved in the nanodiscs containing anionic saturated lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPG) and was approximately twice lower in the zwitterionic DMPC lipid. The reassembly of tetrameric KcsA from the acid-dissociated monomer solubilized in SDS was the most efficient (~80%) in the nanodiscs containing zwitterionic unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The charged and saturated lipids provided lower tetramer quantities, and the lowest yield (<20%) was observed in DMPC. The overall yield of the ESR and KcsA folding was mainly restricted by the efficiency of the protein encapsulation into the nanodiscs. Copyright © 2012 Elsevier B.V. All rights reserved.
Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607
NASA Astrophysics Data System (ADS)
Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.
1991-07-01
SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villarroya, Joan, E-mail: joanvillarroya@gmail.com; Institut de Recerca l'Hospital de la Santa Creu i Sant Pau, Barcelona; Lara, Mari-Carmen
Highlights: {yields} We impaired TK2 expression in Ost TK1{sup -} cells via siRNA-mediated interference (TK2{sup -}). {yields} TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. {yields} Despite mtDNA depletion, TK2{sup -} cells show high cytochrome oxidase activity. {yields} Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. {yields} Nuclear-encoded ENT1, DNA-pol {gamma}, TFAM and TP gene expression is lowered in TK2{sup -} cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed themore » first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1{sup -} cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase {gamma}, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.« less
Dumpa, Srikanth Reddy; Shetty, Ajoy Prasad; Aiyer, Siddharth N; Kanna, Rishi Mugesh; Rajasekaran, S
2018-04-01
Retrospective observational study. To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. PCA changed significantly from 57.6°±13.9° to 19°±8.4° ( p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK ( p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in patients with hypokyphosis or hyperkyphosis.
Dumpa, Srikanth Reddy; Aiyer, Siddharth N.; Kanna, Rishi Mugesh; Rajasekaran, S
2018-01-01
Study Design Retrospective observational study. Purpose To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. Overview of Literature LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. Methods A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. Results PCA changed significantly from 57.6°±13.9° to 19°±8.4° (p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK (p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). Conclusions LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in patients with hypokyphosis or hyperkyphosis. PMID:29713412
Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy
Cao, Pengfei; Rong, Li-Han; Mangadlao, Joey; ...
2017-02-07
We synthesized a synthetic trefoil knotted poly(e-caprolatone) block-poly(L-lactide) (TK-PLA-b-PCL) via a ring expansion strategy from a trefoil knotted tin (Sn) initiator. Ring closing reaction between the bis-copper(I) templated phenanthro line complex and dibutyldimethoxytin results in a templated trefoil knotted initiator. Furthermore, the bis-copper(I) templated trefoil knotted poly(L-lactide) (TK-PLA) can be synthesized by ring-opening polymerization of L-lactide monomer, and decomplexation reaction of the templated TK-PLA will result in a geniune TK-PLA without constraint from the copper template. Subsequent insertion of e caprolactone in the bis-copper(I) templated TK-PLA forms the templated trefoil knotted block copolymer, i.e., TK-PLA-b-PCL, and the copper-free TK-PLA-b-PCL canmore » be obtained by decomplexation reaction. Finally, both TK-PLA and TK-PLA-b-PCL are analyzed by the 1 H NMR, FT-IR, UV-vis, DLS, and GPC.« less
Lo, Hsin-Yi; Li, Tsai-Chung; Yang, Tse-Yen; Li, Chia-Cheng; Chiang, Jen-Huai; Hsiang, Chien-Yun; Ho, Tin-Yun
2017-01-18
Diabetes is a serious chronic metabolic disorder. Trichosanthes kirilowii Maxim. (TK) is traditionally used for the treatment of diabetes in traditional Chinese medicine (TCM). However, the clinical application of TK on diabetic patients and the hypoglycemic efficacies of TK are still unclear. A retrospective cohort study was conducted to analyze the usage of Chinese herbs in patients with type 2 diabetes in Taiwan. Glucose tolerance test was performed to analyze the hypoglycemic effect of TK. Proteomic approach was performed to identify the protein constituents of TK. Insulin receptor (IR) kinase activity assay and glucose tolerance tests in diabetic mice were further used to elucidate the hypoglycemic mechanisms and efficacies of TK. By a retrospective cohort study, we found that TK was the most frequently used Chinese medicinal herb in type 2 diabetic patients in Taiwan. Oral administration of aqueous extract of TK displayed hypoglycemic effects in a dose-dependent manner in mice. An abundant novel TK protein (TKP) was further identified by proteomic approach. TKP interacted with IR by docking analysis and activated the kinase activity of IR. In addition, TKP enhanced the clearance of glucose in diabetic mice in a dose-dependent manner. In conclusion, this study applied a bed-to-bench approach to elucidate the hypoglycemic efficacies and mechanisms of TK on clinical usage. In addition, we newly identified a hypoglycemic protein TKP from TK. Our findings might provide a reasonable explanation of TK on the treatment of diabetes in TCM.
Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin
2006-08-01
To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.
L-Phenylalanine and L-tyrosine catabolism by selected Streptomyces species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pometto, A.L. III; Crawford, D.L.
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by the thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts.
L-Phenylalanine and L-tyrosine catabolism by selected Streptomyces species.
Pometto, A L; Crawford, D L
1985-01-01
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts. PMID:3994376
Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR).
Hapner, S J; Boeshore, K L; Large, T H; Lefcort, F
1998-09-01
trkC receptors, which serve critical functions during the development of the nervous system, are alternatively spliced to yield isoforms containing the catalytic tyrosine kinase domain (TK+) and truncated isoforms which lack this domain (TK-). To test for potential differences in their roles during early stages of neural development, TK+ and TK- isoforms were ectopically expressed in cultures of neural crest, the stem cell population that gives rise to the vast majority of the peripheral nervous system. NT-3 activation of ectopically expressed trkC TK+ receptors promoted both proliferation of neural crest cells and neuronal differentiation. Strikingly, the trkC TK- isoform was significantly more effective at promoting neuronal differentiation, but had no effect on proliferation. Furthermore, the trkC TK- response was dependent on a conserved receptor cytoplasmic domain and required the participation of the p75(NTR) neurotrophin receptor. Antibody-mediated receptor dimerization of TK+ receptors, but not TK- receptors, was sufficient to stimulate differentiation. These data identify a phenotypic response to activation of the trkC TK- receptor and demonstrate a functional interaction with p75(NTR), indicating there may be multiple trkC receptor-mediated systems guiding neuronal differentiation. Copyright 1998 Academic Press.
USDA-ARS?s Scientific Manuscript database
Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...
Uhong Lü, Yuhong; Liu, Xiaoli; Wang, Miao; Li, Yuanyuan; Liu, Ning; Bao, Yuxin; Liu, Minghao; Li, Xiaoqian; Wang, Yinyin; Qian, Shenyan; Yue, Changwu; Huang, Ying
2016-09-01
In order to obtain the natural products synthesized by the three putative xiamycin biosynthesis gene clusters which were predicted via antiSMASH during the genome mining of marine Streptomyces sp. FXJ 7.388, Streptomyces sp. FXJ 8.012, and Streptomyces olivaceus FXJ 7.023. Sixteen genes involved in xiamycin assembly, modification, and regulation with higher identity than the newest reported xiamycin biosynthetic gene cluster from marine Streptomyces sp. SCSIO 02999, Streptomyces sp. HKI0576, and Streptomyces sp. FXJ 7.388 were discovered via gene cluster comparative analysis. A ribosome engineering strategy was adopted to activate such cryptic gene clusters with different final concentrations antibiotics that act on the ribosome, and two indolosesquiterpenes were isolated from idlethaldose streptomycin-resistant Streptomyces sp. FXJ 7.388 strains. However, no such product was detected in Streptomyces sp. FXJ 8.012 and Streptomyces olivaceus FXJ 7.023 under the same treatment. This result suggested that these genes might hold the least gene content for xiamycin biosynthesis.
Lee, Hyo-Jin; Whang, Kyung-Sook
2016-09-01
Three novel isolates belonging to the genus Streptomyces, designated JR-35T, JR-46 and WH-9T, were isolated from bamboo forest soil in Damyang, Korea. The 16S rRNA gene sequences of strains JR-35T and JR-46 showed highest similarities with Streptomyces olivochromogenes NBRC 3178T (99.1 %), Streptomyces siamensis KC-038T (98.9 %), Streptomyces chartreusis NBRC 12753T (98.9 %), Streptomyces resistomycificus NRRL ISP-5133T (98.9 %) and Streptomyces bobili JCM 4627T (98.8 %), and strain WH-9Tshowed highest sequence similarities with Streptomyces. bobili JCM 4627T (99.2 %), Streptomyces phaeoluteigriseus NRRL ISP-5182T (99.2 %), Streptomyces alboniger NBRC 12738T (99.2 %), Streptomyces galilaeus JCM 4757T (99.1 %) and Streptomyces pseudovenezuelae NBRC 12904T (99.1 %). The predominant menaquinones were MK-9 (H6) and MK-9 (H8). The major fatty acids were anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0 for strains JR-35T and JR-46 and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 for strain WH-9T. The G+C content of the genomic DNA of strains JR-35T, JR-46 and WH-9T were 69.4, 74.4 and 74.1 mol%, respectively. Based on the phenotypic and genotypic data, the three strains are assigned to two novel species of the genus Streptomyces, for which the names Streptomyces rhizosphaerihabitans sp. nov. (type stain JR-35T=KACC 17181T=NBRC 109807T) and Streptomyces adustus sp. nov. (type strain WH-9T=KACC 17197T=NBRC 109810T) are proposed.
Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka; Tolani, Harish A; Anděra, Ladislav; Arntzen, Magnus Ø; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Agger, Jane W
2016-10-04
Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of d-glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β-glucosaminidase, Tk-Glm, from the archaeon Thermococcus kodakarensis KOD1. Moreover, we developed a fast, reliable quantitative method for analysis of GlcN using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The sensitivity of this method is high and less than 50 pmol was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
[Efficacy of HSV-tk/GCV system on human laryngeal squamous cell cancer in vitro].
Ding, Xiu-yong; Qin, Yong; Li, Fu-ying; Cong, Tie-chuan
2006-05-01
Efficacy of HSV-tk/GCV system antitumor effects was assessed on human laryngeal cancer cell line Hep-2 in vitro. To assess the HSV-tk/CGV system whether has an antitumour effect on human laryngeal squamous cell cancer Hep-2 in vitro. The mechanisms of cytotoxity were also assessed. Hep-2 cells were transfected with HSV-tk gene by lipofection. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the HSV-tk gene expression. MTT was utilized to test for the cytotoxicity of this system. The cell-circle arrest and apoptosis were analyzed by flowcytometry assay. HSV-tk gene transfected cells demonstrated obvious cytoreductivity followed by ganciclovir (GCV) administration and this cytoreductivity showed partial GCV dose-independent. HSV-tk gene transfected cells demonstrated obvious s-phase arrest, no apoptosis and necrosis occurred. The HSV-tk/GCV system can inhabit the growth of Hep-2 cells effectively. S-phase arrest perhaps is the main reason that leads to the cell inhibition in our study. HSV-tk/GCV system has potential antitumor effects for the future clinical practice.
Kwon, Sunghark; Nishitani, Yuichi; Hirao, Yoshinori; Kanai, Tamotsu; Atomi, Haruyuki; Miki, Kunio
2018-04-15
The immature large subunit of [NiFe] hydrogenases undergoes C-terminal cleavage by a specific protease in the final step of the post-translational process before assembly with other subunits. It has been reported that the [NiFe] hydrogenase maturation protease HycI from Thermococcus kodakarensis (TkHycI) has the catalytic ability to target the membrane-bound hydrogenase large subunit MbhL from T. kodakarensis. However, the detailed mechanism of its substrate recognition remains elusive. We determined the crystal structure of TkHycI at 1.59 Å resolution to clarify how TkHycI recognizes its own substrate MbhL. Although the overall structure of TkHycI is similar to that of its homologous protease TkHybD, TkHycI adopts a larger loop than TkHybD, thereby creating a broad and deep cleft. We analyzed the structural properties of the TkHycI cleft probably involved in its substrate recognition. Our findings provide novel and profound insights into the substrate selectivity of TkHycI. Copyright © 2018 Elsevier Inc. All rights reserved.
Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency
Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Marti; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio
2017-01-01
Objective Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene TK2 cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, dCMP and dTMP, prolongs the lifespan of Tk2-deficient (Tk2-/-) mice by 2-3 fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: 1) deoxynucleosides might be the major active agents and 2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. Methods To test these hypotheses, we assessed two therapies in Tk2-/- mice: 1) dT+dC and 2) co-administration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. Results We observed that dC+dT delayed disease onset, prolonged lifespan of Tk2-deficient mice, and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased lifespan of Tk2-/- animals compared to dCMP+dTMP. Interpretation Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. PMID:28318037
Sudo, Hideki; Abe, Yuichiro; Kokabu, Terufumi; Ito, Manabu; Abumi, Kuniyoshi; Ito, Yoichi M; Iwasaki, Norimasa
2016-09-01
Controversy exists regarding the effects of multilevel facetectomy and screw density on deformity correction, especially thoracic kyphosis (TK) restoration in adolescent idiopathic scoliosis (AIS) surgery. This study aimed to evaluate the effects of multilevel facetectomy and screw density on sagittal plane correction in patients with main thoracic (MT) AIS curve. A retrospective correlation and comparative analysis of prospectively collected, consecutive, non-randomized series of patients at a single institution was undertaken. Sixty-four consecutive patients with Lenke type 1 AIS treated with posterior correction and fusion surgery using simultaneous double-rod rotation technique were included. Patient demographics and preoperative and 2-year postoperative radiographic measurements were the outcome measures for this study. Multiple stepwise linear regression analysis was conducted between change in TK (T5-T12) and the following factors: age at surgery, Risser sign, number of facetectomy level, screw density, preoperative main thoracic curve, flexibility in main thoracic curve, coronal correction rate, preoperative TK, and preoperative lumbar lordosis. Patients were classified into two groups: TK<15° group defined by preoperative TK below the mean degree of TK for the entire cohort (<15°) and the TK≥15° group, defined by preoperative TK above the mean degree of kyphosis (≥15°). Independent sample t tests were used to compare demographic data as well as radiographic outcomes between the two groups. There were no study-specific biases related to conflicts of interest. The average preoperative TK was 14.0°, which improved significantly to 23.1° (p<.0001) at the 2-year final follow-up. Greater change in TK was predicted by a low preoperative TK (p<.0001). The TK <15° group showed significant correlation between change in TK and number of facetectomy level (r=0.492, p=.002). Similarly, significant correlation was found between change in TK and screw density (r=0.333, p=.047). Conversely, in the TK ≥15° group, correlation was found neither between change in TK and number of facetectomy level (r=0.047, p=.812), nor with screw density (r=0.030, p=.880). Furthermore, in patients with preoperative TK<15°, change in TK was significantly correlated with screw density at the concave side (r=0.351, p=.036) but not at the convex side (r=0.144, p=.402). In patients with hypokyphotic thoracic spine, significant positive correlation was found between change in TK and multilevel facetectomy or screw density at the concave side. This indicates that in patients with AIS who have thoracic hypokyphosis as part of their deformity, the abovementioned factors must be considered in preoperative planning to correct hypokyphosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of caffeine on radiation-induced apoptosis in TK6 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, W.; Vaughan, A.T.M.
1995-02-01
Apoptosis has been measured in cells of the human TK6 lymphoblastoid cell line by recording the release of endonuclease-digested DNA from affected cells using flow cytometry. In asynchronously dividing cells, DNA degradation characteristic of apoptosis was first seen 12 h after irradiation as a defined DNA fluorescent peak of sub-G{sub 1}-phase content, reaching a maximum of 30-50% of the population by 24-72 h. Treating cells with 2 mM caffeine either before or up to 3 h after irradiation eliminated the degradation of DNA entirely. In addition, the percentage of cells in which apoptosis could be detected microscopically decreased from 62.4more » {+-} 0.95% to 16.7 {+-} 1.5% 72 h after caffeine treatment. Delaying caffeine treatment for 12 h after irradiation reduced DNA degradation by approximately 50% compared to cells receiving radiation alone. DNA degradation induced by serum deprivation was unaffected by caffeine treatment. These data support the contention that irradiation of TK6 cells produces a long-lived cellular signal which triggers apoptosis. Apoptosis produced by serum deprivation does not operate through the same pathway. 36 refs., 5 figs.« less
Sun, Ren; Eriksson, Staffan; Wang, Liya
2012-01-01
Protein glutathionylation in response to oxidative stress can affect both the stability and activity of target proteins. Mitochondrial thymidine kinase 2 (TK2) is a key enzyme in mitochondrial DNA precursor synthesis. Using an antibody specific for glutathione (GSH), S-glutathionylated TK2 was detected after the addition of glutathione disulfide (GSSG) but not GSH. This was reversed by the addition of dithiothreitol, suggesting that S-glutathionylation of TK2 is reversible. Site-directed mutagenesis of the cysteine residues and subsequent analysis of mutant enzymes demonstrated that Cys-189 and Cys-264 were specifically glutathionylated by GSSG. These cysteine residues do not appear to be part of the active site, as demonstrated by kinetic studies of the mutant enzymes. Treatment of isolated rat mitochondria with hydrogen peroxide resulted in S-glutathionylation of added recombinant TK2. Treatment of intact cells with hydrogen peroxide led to reduction of mitochondrial TK2 activity and protein levels, as well as S-glutathionylation of TK2. Furthermore, the addition of S-glutathionylated recombinant TK2 to mitochondria isolated from hydrogen peroxide-treated cells led to degradation of the S-glutathionylated TK2, which was not observed with unmodified TK2. S-Glutathionylation on Cys-189 was responsible for the observed selective degradation of TK2 in mitochondria. These results strongly suggest that oxidative damage-induced S-glutathionylation and degradation of TK2 have significant impact on mitochondrial DNA precursor synthesis. PMID:22661713
Frangini, Miriam; Rampazzo, Chiara; Franzolin, Elisa; Lara, Mari-Carmen; Vilà, Maya R; Martí, Ramon; Bianchi, Vera
2009-02-01
Mitochondrial thymidine kinase (TK2) catalyzes the phosphorylation of thymidine in mitochondria. Its function becomes essential for dTTP synthesis in noncycling cells, where cytosolic dTTP synthesis via R1/R2 ribonucleotide reductase and thymidine kinase 1 is turned down. Mutations in the nuclear gene for TK2 cause a fatal mtDNA depletion syndrome. Only selected cell types are affected, suggesting that the other cells compensate for the TK2 deficiency by adapting the enzyme network that regulates dTTP synthesis outside S-phase. Here we looked for such metabolic adaptation in quiescent cultures of fibroblasts from two TK2-deficient patients with a slow-progressing syndrome. In cell extracts, we measured the activities of TK2, deoxycytidine kinase, thymidine phosphorylase, deoxynucleotidases and the amounts of the three ribonucleotide reductase subunits. Patient cells contained 40% or 5% TK2 activity and unchanged activities of the other enzymes. However, their mitochondrial and cytosolic dTTP pools were unchanged, and also the overall composition of the dNTP pools was normal. TK2-dependent phosphorylation of [(3)H]thymidine in intact cells and the turnover of the dTTP pool showed that even the fibroblasts with 5% residual TK2 activity synthesized dTTP at an almost normal rate. Normal fibroblasts apparently contain more TK2 than needed to maintain dTTP during quiescence, which would explain why TK2-mutated fibroblasts do not manifest mtDNA depletion despite their reduced TK2 activity.
Gaudio, A C; Richards, W G; Takahata, Y
2000-02-01
A quantitative structure-activity relationship study of N2-(substituted)-phenylguanines (PHG) as inhibitors of herpes simplex virus thymidine kinase (HSV TK) was performed. The activity of a set of PHG derivatives were analyzed against the thymidine kinase of herpes simplex virus types 1 (HSV1 TK) and 2 (HSV2 TK). Classic and calculated physicochemical parameters were included in the analysis. The results showed that there is an important difference in the activity of the meta substituted PHG derivatives against HSV1 TK and HSV2 TK. The activity of the meta derivatives against HSV2 TK is influenced by a steric effect, which is not observed against HSV1 TK. The superposition of the three-dimensional structures of the active sites of HSV1 TK (crystal structure) and HSV2 TK (homology model) revealed that the amino acid Ile97 is located near the meta position in the HSV1 TK active site, whereas the amino acid Leu97 is located near the meta position in the HSV2 TK active site. This single difference in the active sites of both enzymes can explain the source of the steric effect and serves as an indication that our previously proposed binding mode for the PHG derivatives is plausible. However, another observed mutation in the active site region, Ala168 by Ser168, suggests that an alternative binding mode, similar to that of ganciclovir, could be possible.
Nguyen, Thao Bich; Kitani, Shigeru; Shimma, Shuichi; Nihira, Takuya
2018-05-01
In streptomycetes, autoregulators are important signaling compounds that trigger secondary metabolism, and they are regarded as Streptomyces hormones based on their extremely low effective concentrations (nM) and the involvement of specific receptor proteins. Our previous distribution study revealed that butenolide-type Streptomyces hormones, including avenolide, are a general class of signaling molecules in streptomycetes and that Streptomyces albus strain J1074 may produce butenolide-type Streptomyces hormones. Here, we describe metabolite profiling of a disruptant of the S. albus aco gene, which encodes a key biosynthetic enzyme for butenolide-type Streptomyces hormones, and identify four butenolide compounds from S. albus J1074 that show avenolide activity. The compounds structurally resemble avenolide and show different levels of avenolide activity. A dual-culture assay with imaging mass spectrometry (IMS) analysis for in vivo metabolic profiling demonstrated that the butenolide compounds of S. albus J1074 stimulate avermectin production in another Streptomyces species, Streptomyces avermitilis , illustrating the complex chemical interactions through interspecies signals in streptomycetes. IMPORTANCE Microorganisms produce external and internal signaling molecules to control their complex physiological traits. In actinomycetes, Streptomyces hormones are low-molecular-weight signals that are key to our understanding of the regulatory mechanisms of Streptomyces secondary metabolism. This study reveals that acyl coenzyme A (acyl-CoA) oxidase is a common and essential biosynthetic enzyme for butenolide-type Streptomyces hormones. Moreover, the diffusible butenolide compounds from a donor Streptomyces strain were recognized by the recipient Streptomyces strain of a different species, resulting in the initiation of secondary metabolism in the recipient. This is an interesting report on the chemical interaction between two different streptomycetes via Streptomyces hormones. Information on the metabolite network may provide useful hints not only to clarification of the regulatory mechanism of secondary metabolism, but also to understanding of the chemical communication among streptomycetes to control their physiological traits. Copyright © 2018 American Society for Microbiology.
Park, Ju Hui; Kim, Kwang Il; Lee, Kyo Chul; Lee, Yong Jin; Lee, Tae Sup; Chung, Wee Sup; Lim, Sang Moo; Kang, Joo Hyun
2015-02-01
Tumor-specific enhancer/promoter is applicable for targeting gene expression in tumors and helpful for tumor-targeting imaging and therapy. We aimed to acquire α-fetoprotein (AFP)-producing hepatocellular carcinoma (HCC) specific images using adenovirus containing HSV1-tk gene controlled by AFP enhancer/promoter and evaluate in vivo ganciclovir (GCV)-medicated therapeutic effects on AFP-targeted HSV1-tk expression with (18)F-FDG positron emission tomography (PET). Recombinant adenovirus expressing HSV1-tk under AFP enhancer/promoter was produced (AdAFP-TK) and the expression levels were evaluated by RT-PCR and (125)I-IVDU uptake. GCV-mediated HSV1-tk cytotoxicity was determined by MTT assay. After the mixture of AdAFP-fLuc and AdAFP-TK was administrated, bioluminescent images (BLIs) and (18)F-FHBG PET images were obtained in tumor-bearing mice. In vivo therapeutic effects of AdAFP-TK and GCV in the HuH-7 xenograft model were monitored by (18)F-FDG PET. When infected with AdAFP-TK, cell viability in HuH-7 was reduced, but those in HT-29 and SK-Hep-1 were not significantly decreased at any GCV concentration less than 100 μM. AFP-targeted fLuc and HSV1-tk expression were clearly visualized by BLI and (18)F-FHBG PET images in AFP-producing HCC, respectively. In vivo GCV-mediated tumor growth inhibition by AFP-targeted HSV1-tk expression was monitored by (18)F-FDG PET. Recombinant AdAFP-TK could be applied for AFP-targeted HCC gene therapy and imaging in AFP-producing HCC.
Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex
Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.
2015-01-01
Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911
Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna
2010-01-01
Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside analogs tested. This study suggests that nucleoside analog phosphorylation mediated by TK2 may be less important, compared to other deoxyribonucleoside kinases, for the cytotoxic effects of these compounds.
Akman, Hasan O; Dorado, Beatriz; López, Luis C; García-Cazorla, Angeles; Vilà, Maya R; Tanabe, Lauren M; Dauer, William T; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio
2008-08-15
Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous Tk2 mutant (Tk2(-/-)) mice developed rapidly progressive weakness after age 10 days and died between ages 2 and 3 weeks. Tk2(-/-) animals showed Tk2 deficiency, unbalanced dNTP pools, mtDNA depletion and defects of respiratory chain enzymes containing mtDNA-encoded subunits that were most prominent in the central nervous system. Histopathology revealed an encephalomyelopathy with prominent vacuolar changes in the anterior horn of the spinal cord. The H126N TK2 mouse is the first knock-in animal model of human MDS and demonstrates that the severity of TK2 deficiency in tissues may determine the organ-specific phenotype.
Akman, Hasan O.; Dorado, Beatriz; López, Luis C.; García-Cazorla, Ángeles; Vilà, Maya R.; Tanabe, Lauren M.; Dauer, William T.; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio
2008-01-01
Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous Tk2 mutant (Tk2−/−) mice developed rapidly progressive weakness after age 10 days and died between ages 2 and 3 weeks. Tk2−/− animals showed Tk2 deficiency, unbalanced dNTP pools, mtDNA depletion and defects of respiratory chain enzymes containing mtDNA-encoded subunits that were most prominent in the central nervous system. Histopathology revealed an encephalomyelopathy with prominent vacuolar changes in the anterior horn of the spinal cord. The H126N TK2 mouse is the first knock-in animal model of human MDS and demonstrates that the severity of TK2 deficiency in tissues may determine the organ-specific phenotype. PMID:18467430
KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction
Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael
2015-01-01
Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072
Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency.
Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Martí; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio
2017-05-01
Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2 -/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. To test these hypotheses, we assessed two therapies in Tk2 -/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2 -/- animals compared to dCMP+dTMP. Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652. © 2017 American Neurological Association.
2013-01-01
Background Tk-SP is a member of subtilisin-like serine proteases from a hyperthermophilic archaeon Thermococcus kodakarensis. It has been known that the hyper-stable protease, Tk-SP, could exhibit enzymatic activity even at high temperature and in the presence of chemical denaturants. In this work, the enzymatic activity of Tk-SP was measured in the presence of detergents and EDTA. In addition, we focused to demonstrate that Tk-SP could degrade the abnormal prion protein (PrPSc), a protease-resistant isoform of normal prion protein (PrPC). Results Tk-SP was observed to maintain its proteolytic activity with nonionic surfactants and EDTA at 80°C. We optimized the condition in which Tk-SP functions efficiently, and demonstrated that the enzyme is highly stable in the presence of 0.05% (w/v) nonionic surfactants and 0.01% (w/v) EDTA, retaining up to 80% of its activity. Additionally, we also found that Tk-SP can degrade PrPSc to a level undetectable by western-blot analysis. Conclusions Our results indicate that Tk-SP has a great potential for technological applications, such as thermo-stable detergent additives. In addition, it is also suggested that Tk-SP-containing detergents can be developed to decrease the secondary infection risks of transmissible spongiform encephalopathies (TSE). PMID:23448268
Streptomyces exploration is triggered by fungal interactions and volatile signals.
Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A
2017-01-03
It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.
Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming
2008-01-01
Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system.
Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.
Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna
2013-01-01
Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.
Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect β-Oxidation
von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna
2013-01-01
Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies. PMID:23505564
Saleh, Amer F.; Priestley, Catherine C.; Gooderham, Nigel J.; Fellows, Mick D.
2015-01-01
The degradation of phosphorothioate oligonucleotides (PS-ONDs) and the release of potentially genotoxic modified mononucleotides raise a safety concern for OND-based therapeutics. Deoxyadenosine monophosphorothioate (dAMPαS), a PS nucleotide analog, has been reported to be a potent in vitro mutagen at the thymidine kinase (TK) locus in human TK6 lymphoblastoid cells. This led us to explore the mechanism behind the apparent positive response induced by dAMPαS in the TK gene-mutation assay in TK6 cells. In this work, treatment of TK6 cells with dAMPαS produced a dose-dependent increase in cytotoxicity and mutant frequency at the TK locus. Surprisingly, when the colonies from dAMPαS were re-challenged with the selective agent trifluorothymidine (TFT), the TFT-resistant phenotype was lost. Moreover, dAMPαS-induced colonies displayed distinct growth kinetics and required longer incubation time than 4-nitroquinoline-1-oxide-induced colonies to start growing. Treatment of TK6 cells with dAMPαS induced cell cycle arrest at the G1 phase, enabling cells to grow, and form a colony after the efficacy of TFT in the culture medium was lost. Our findings suggest that a fraction of parental “nonmutant” TK6 cells escaped the toxicity of TFT, possibly via G1 arrest, and resumed growth after the degradation of TFT. We conclude that dAMPαS did not induce real TFT-resistant mutants and caution should be taken with interpretation of mutation data from TK gene-mutation assay in TK6 cells when assessing modified nucleotides. PMID:25711235
Is the renal kallikrein-kinin system a factor that modulates calciuria?
Negri, Armando Luis
Renal tubular calcium reabsorption is one of the principal factors that determine serum calcium concentration and calcium excretion. Calcium excretion is regulated by the distal convoluted tubule and connecting tubule, where the epithelial calcium channel TRPV5 can be found, which limits the rate of transcellular calcium transport. The dynamic presence of the TRPV5 channel on the surface of the tubular cell is mediated by an endosomal recycling process. Different intrarenal factors are involved in calcium channel fixation in the apical membrane, including the anti-ageing hormone klotho and tissue kallikrein (TK). Both proteins are synthesised in the distal tubule and secreted in the tubular fluid. TK stimulates active calcium reabsorption through the bradykinin receptor B2 that compromises TRPV5 activation through the protein kinase C pathway. TK-deficient mice show hypercalciuria of renal origin comparable to that seen in TRPV5 knockout mice. There is a polymorphism with loss of function of the human TK gene R53H (allele H) that causes a marked decrease in enzymatic activity. The presence of the allele H seems to be common at least in the Japanese population (24%). These individuals have a tendency to greater calcium and sodium excretion in urine that is more evident during furosemide infusion. Future studies should analyse if manipulating the renal kallikrein-kinin system can correct idiopathic hypercalciuria with drugs other than thiazide diuretics. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
2011-01-01
Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628
Reversion of mtDNA depletion in a patient with TK2 deficiency.
Vilà, M R; Segovia-Silvestre, T; Gámez, J; Marina, A; Naini, A B; Meseguer, A; Lombès, A; Bonilla, E; DiMauro, S; Hirano, M; Andreu, A L
2003-04-08
Mutations in the thymidine kinase 2 (TK2) gene cause a myopathic form of the mitochondrial DNA depletion syndrome (MDS). Here, the authors report the unusual clinical, biochemical, and molecular findings in a 14-year-old patient in whom pathogenic mutations were identified in the TK2 gene. This report extends the phenotypic expression of primary TK2 deficiency and suggests that factors other than TK2 may modify expression of the clinical phenotype in patients with MDS syndrome.
Streptomyces exploration is triggered by fungal interactions and volatile signals
Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A
2017-01-01
It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells ‘explorers’, for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches. DOI: http://dx.doi.org/10.7554/eLife.21738.001 PMID:28044982
Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.
Zhang, Yucheng; Bignell, Dawn R D; Zuo, Ran; Fan, Qiurong; Huguet-Tapia, Jose C; Ding, Yousong; Loria, Rosemary
2016-08-01
Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.
Connecting Metabolic Pathways: Sigma Factors in Streptomyces spp.
Sun, Di; Liu, Cong; Zhu, Jingrong; Liu, Weijie
2017-01-01
The gram-positive filamentous bacterium Streptomyces is one of the largest resources for bioactive metabolites, particularly antibiotics. Antibiotic production and other metabolic processes are tightly regulated at the transcriptional level. Sigma (σ) factors are components of bacterial RNA polymerases that determine promoter specificity. In Streptomyces, σ factors also play essential roles in signal transduction and in regulatory networks, thereby assisting in their survival in complex environments. However, our current understanding of σ factors in Streptomyces is still limited. In this mini-review, we demonstrate the roles of Streptomyces σ factors, illustrating that these serve as linkers of different metabolic pathways. Further investigations on σ factors may improve our knowledge of Streptomyces physiology and benefit exploitation of Streptomyces resources. PMID:29312231
Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C
1985-01-01
Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511
Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism
ERIC Educational Resources Information Center
Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko
2016-01-01
The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…
Matselyukh, B P; Matselyukh, D Ya; Golembiovska, S L; Polishchuk, L V; Lavrinchuk, V Ya
2013-01-01
Hyperpigmented mutants of Streptomyces globisporus 1912-Hp7 and Blakeslea trispora 18(+), 184(-) were isolated by action of hydrogen peroxide and nitrosoguanidine, correspondingly, from initial strains S. globisporus 1912-4Lcp and B. trispora 72(-), 198(+). The carotenoids of dry biomass of obtained strains, rubbed thoroughly with glass powder by a pestle in porcelain mortar were extracted by acetone and purified by TLC. Identification of the individual carotenoids was performed by means of HPLC and LC/MS spectrometry. It was shown that strain S. globisporus 1912-4Crt produced beta-carotene/lycopene (6.91/3.24 mg/L), mutants 1912-4Lcp and 1912-7Hp synthesized only lycopene (26.05 and 50.9 mg/L, respectively), and strains B. trispora 18(+) and 184(-)-beta-carotene (6.2% in dry biomass or more 2.5 g/L) without illumination in shake flasks. It is the first example of high constitutive production of the carotenoids by the representative of genus Streptomyces without photoinduction or increased synthesis of sigma factor The improved strains of B. trispora 18(+) and 184(-) can be used for biotechnological production of beta-carotene in industrial conditions.
Xu, Jing; Zhang, Lin; Yang, Dong-Lei; Li, Qun; He, Zuhua
2015-12-01
Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development. © 2015 Institute of Plant Physiology and Ecology, SIBS, CAS New Phytologist © 2015 New Phytologist Trust.
Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.
Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui
2016-09-01
The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Matthews, Christine; Catherwood, Mark A; Morris, T C M; Kettle, Paul J; Drake, Mary B; Gilmore, William S; Alexander, H Denis
2006-10-01
Serum thymidine kinase (TK) levels have been shown to be correlated with survival in many malignancies, including chronic lymphocytic leukaemia (CLL). This study was designed to investigate associations between TK levels and other prognostic markers, in newly and previously diagnosed Binet stage A patients. Furthermore, the use of serum TK measurement to identify subcategories of disease within those defined by IgV(H) mutational status, gene usage and chromosomal aberrations was investigated. Ninety-one CLL patients were enrolled. Serum TK levels were measured using a radioenzyme assay. IgV(H) mutational status and V(H) gene usage were determined using BIOMED-2 primers and protocol. Recurring chromosomal abnormalities were detected by interphase fluorescent in situ hybridisation (FISH). Flow cytometry and reverse transcriptase polymerase chain reaction (RT-PCR) determined CD38 and Zap-70 expression, respectively. Significantly higher serum TK levels were found in IgV(H) unmutated, compared with IgV(H) mutated, patients (P < 0.001). Elevated TK levels were also found in patients with CD38 and Zap-70 positivity (P = 0.004, P < 0.001, respectively), short lymphocyte doubling time (LDT) (P = 0.044) and poor or intermediate prognosis chromosomal aberrations (P < 0.001). A TK level of >8.5 U/L best identified patients with progressive disease. Elevated TK levels could identify patients categorised, at diagnosis, into good prognosis subgroups by the various biological markers (mutated IgV(H), good prognosis chromosomal aberrations, Zap-70(-) and CD38(-)) who subsequently showed disease progression. Additionally, patients with V(H)3-21 gene usage showed high TK levels, irrespective of mutational status, and serum TK measurement retained predictive power as disease progressed in all subcategories studied.
Yatagai, Fumio; Morimoto, Shigeko; Kato, Takesi; Honma, Masamitsu
2004-06-13
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.
Yao, Yuyu; Sheng, Zulong; Li, Yefei; Yan, Fengdi; Fu, Cong; Li, Yongjun; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee
2012-08-01
Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor-Akt signaling pathway.
Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun
2010-01-01
Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.
USDA-ARS?s Scientific Manuscript database
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...
Wink, Joachim; Schumann, Peter; Atasayar, Ewelina; Klenk, Hans-Peter; Zaburannyi, Nestor; Westermann, Martin; Martin, Karin; Glaeser, Stefanie P; Kämpfer, Peter
2017-04-01
'Streptomyces caelicus' DSM 40835 was first reported as the producer of the antibiotic griselimycin by some coworkers of Rhone Poulenc in 1971. The project on isolation of the antibiotic compound was stopped because of the bad solubility and selectivity of the compound towards Mycobacteria. At Sanofi-Aventis, Germany, the project was re-evaluated in 2007 and the gene cluster of griselimycin could be identified, characterized and was patented in 2013. At this time, 'S. caelicus' was an invalid name. During the strain characterization work, it was found that 'S. caelicus' belongs to the group of species of the genus Streptomyces which show an unusual heterogeneity of the 16S rRNA gene sequences. However, high 16S rRNA gene sequence similarities to Streptomyces muensis JCM 17576T and Streptomyces canchipurensis JCM 17575T were obvious. Here, we present a comparative description of 'Streptomyces caelicus' DS 9461 (=DSM 40835=NCCB 100592) with S. muensis and S. canchipurensis by use of a polyphasic taxonomy approach and additional comparison of some housekeeping genes by multilocus sequence analysis (MLSA). An emended description of Streptomyces muensis is provided as a result of this work.
Idris, Hamidah; Labeda, David P; Nouioui, Imen; Castro, Jean Franco; Del Carmen Montero-Calasanz, Maria; Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael
2017-05-01
A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9 T , was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9 T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448 T . The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9 T (=NCIMB 14965 T =NRRL B65268 T ). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.
Lu, Lunhui; Zhang, Jiachao; Chen, Anwei; Chen, Ming; Jiang, Min; Yuan, Yujie; Wu, Haipeng; Lai, Mingyong; He, Yibin
2014-01-01
Traditional three-domain fungal and bacterial laccases have been extensively studied for their significance in various biotechnological applications. Growing molecular evidence points to a wide occurrence of more recently recognized two-domain laccase-like multicopper oxidase (LMCO) genes in Streptomyces spp. However, the current knowledge about their ecological role and distribution in natural or artificial ecosystems is insufficient. The aim of this study was to investigate the diversity and composition of Streptomyces two-domain LMCO genes in agricultural waste composting, which will contribute to the understanding of the ecological function of Streptomyces two-domain LMCOs with potential extracellular activity and ligninolytic capacity. A new specific PCR primer pair was designed to target the two conserved copper binding regions of Streptomyces two-domain LMCO genes. The obtained sequences mainly clustered with Streptomyces coelicolor, Streptomyces violaceusniger, and Streptomyces griseus. Gene libraries retrieved from six composting samples revealed high diversity and a rapid succession of Streptomyces two-domain LMCO genes during composting. The obtained sequence types cluster in 8 distinct clades, most of which are homologous with Streptomyces two-domain LMCO genes, but the sequences of clades III and VIII do not match with any reference sequence of known streptomycetes. Both lignocellulose degradation rates and phenol oxidase activity at pH 8.0 in the composting process were found to be positively associated with the abundance of Streptomyces two-domain LMCO genes. These observations provide important clues that Streptomyces two-domain LMCOs are potentially involved in bacterial extracellular phenol oxidase activities and lignocellulose breakdown during agricultural waste composting. PMID:24657870
Mo, SangJoon; Lee, Sung-Kwon; Jin, Ying-Yu; Suh, Joo-Won
2016-02-01
FK506, a widely used immunosuppressant, is a 23-membered polyketide macrolide that is produced by several Streptomyces species. FK506 high-yielding strain Streptomyces sp. RM7011 was developed from the discovered Streptomyces sp. KCCM 11116P by random mutagenesis in our previous study. The results of transcript expression analysis showed that the transcription levels of tcsA, B, C, and D were increased in Streptomyces sp. RM7011 by 2.1-, 3.1-, 3.3-, and 4.1- fold, respectively, compared with Streptomyces sp. KCCM 11116P. The overexpression of tcsABCD genes in Streptomyces sp. RM7011 gave rise to approximately 2.5-fold (238.1 μg/ml) increase in the level of FK506 production compared with that of Streptomyces sp. RM7011. When vinyl pentanoate was added into the culture broth of Streptomyces sp. RM7011, the level of FK506 production was approximately 2.2-fold (207.7 μg/ml) higher than that of the unsupplemented fermentation. Furthermore, supplementing the culture broth of Streptomyces sp. RM7011 expressing tcsABCD genes with vinyl pentanoate resulted in an additional 1.7-fold improvement in the FK506 titer (498.1 μg/ml) compared with that observed under nonsupplemented condition. Overall, the level of FK506 production was increased approximately 5.2-fold by engineering the supply of allylmalonyl-CoA in the high-yielding strain Streptomyces sp. RM7011, using a combination of overexpressing tcsABCD genes and adding vinyl pentanoate, as compared with Streptomyces sp. RM7011 (95.3 μg/ml). Moreover, among the three precursors analyzed, pentanoate was the most effective precursor, supporting the highest titer of FK506 in the FK506 high-yielding strain Streptomyces sp. RM7011.
Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis
Wang, Zhe; Wang, Fu; Hida, Naoki; Kiesewetter, Dale O; Tian, Jie; Niu, Gang; Chen, Xiaoyuan
2017-01-01
Positron emission tomography (PET) is a sensitive and noninvasive imaging method that is widely used to explore molecular events in living subjects. PET can precisely and quantitatively evaluate cellular apoptosis, which has a crucial role in various physiological and pathological processes. In this protocol, we describe the design and use of an engineered cyclic herpes simplex virus 1–thymidine kinase (HSV1-TK) PET reporter whose kinase activity is specifically switched on by apoptosis. The expression of cyclic TK (cTK) in healthy cells leads to inactive product, whereas the activation of apoptosis through the caspase-3 pathway cleaves cTK, thus restoring its activity and enabling PET imaging. In addition to detailing the design and construction of the cTK plasmid in this protocol, we include assays for evaluating the function and specificity of the cTK reporter in apoptotic cells, such as assays for measuring the cell uptake of PET tracer in apoptotic cells, correlating doxorubicin (Dox)-induced cell apoptosis to cTK function recovery, and in vivo PET imaging of cancer cell apoptosis, and we also include corresponding data acquisition methods. The time to build the entire cTK reporter is ~2–3 weeks. The selection of a stable cancer cell line takes ~4–6 weeks. The time to implement assays regarding cTK function in apoptotic cells and the in vivo imaging varies depending on the experiment. The cyclization strategy described in this protocol can also be adapted to create other reporter systems for broad biomedical applications. PMID:25927390
Streptomyces ziwulingensis sp. nov., isolated from grassland soil.
Lin, Yan Bing; Wang, Xin Ye; Wang, Ting Ting; An, Shao Shan; Shi, Peng; Wei, Ge Hong
2013-04-01
A novel actinobacterium, designated strain F22(T), was isolated from grassland soil collected from the Ziwuling area on the Loess Plateau, China. The novel strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F22(T) belonged to the genus Streptomyces, being most closely related to Streptomyces resistomycificus NBRC 12814(T) (98.28 % sequence similarity), Streptomyces ciscaucasicus NBRC 12872(T) (98.14 %), Streptomyces chartreusis NBRC 12753(T) (98.14 %) and Streptomyces canus NRRL B-1989(T) (98.14 %). In DNA-DNA hybridizations and comparisons of morphological and phenotypic data, strain F22(T) could be distinguished from all of its closest phylogenetic relatives. Strain F22(T) exhibited antibacterial and antifungal activity, especially against Staphylococcus aureus, Bacillus subtilis and Cylindrocarpon destructans. Based on the DNA-DNA hybridization data and morphological, phenotypic and phylogenetic evidence, strain F22(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces ziwulingensis sp. nov. is proposed. The type strain is F22(T) ( = CCNWFX 0001(T) = JCM 18081(T) = ACCC41875(T)).
Heavy metal resistant strains are widespread along Streptomyces phylogeny.
Alvarez, Analía; Catalano, Santiago A; Amoroso, María Julia
2013-03-01
The genus Streptomyces comprises a group of bacteria species with high economic importance. Several of these species are employed at industrial scale for the production of useful compounds. Other characteristic found in different strains within this genus is their capability to tolerate high level of substances toxic for humans, heavy metals among them. Although several studies have been conducted in different species of the genus in order to disentangle the mechanisms associated to heavy metal resistance, little is known about how they have evolved along Streptomyces phylogeny. In this study we built the largest Streptomyces phylogeny generated up to date comprising six genes, 113 species of Streptomyces and 27 outgroups. The parsimony-based phylogenetic analysis indicated that (i) Streptomyces is monophyletic and (ii) it appears as sister clade of a group formed by Kitasatospora and Streptacidiphilus species, both genera also monophyletic. Streptomyces strains resistant to heavy metals are not confined to a single lineage but widespread along Streptomyces phylogeny. Our result in combination with genomic, physiological and biochemical data suggest that the resistance to heavy metals originated several times and by different mechanisms in Streptomyces history. Copyright © 2012 Elsevier Inc. All rights reserved.
Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency
Garone, Caterina; Garcia-Diaz, Beatriz; Emmanuele, Valentina; Lopez, Luis C; Tadesse, Saba; Akman, Hasan O; Tanji, Kurenai; Quinzii, Catarina M; Hirano, Michio
2014-01-01
Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2−/−) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2−/− mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2−/−200dCMP/dTMP) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency. Subject Categories Genetics, Gene Therapy & Genetic Disease; Metabolism PMID:24968719
Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency.
Garone, Caterina; Garcia-Diaz, Beatriz; Emmanuele, Valentina; Lopez, Luis C; Tadesse, Saba; Akman, Hasan O; Tanji, Kurenai; Quinzii, Catarina M; Hirano, Michio
2014-08-01
Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi
2014-03-28
Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less
Topological transformation of a trefoil knot into a [2]catenane.
Prakasam, Thirumurugan; Bilbeisi, Rana A; El-Khoury, Roberto; Charbonnière, Loïc J; Elhabiri, Mourad; Esposito, Gennaro; Olsen, John-Carl; Trabolsi, Ali
2017-12-21
Topological transformation of a zinc-templated trefoil knot, Zn-TK, into a zinc-templated [2]catenane, Zn-[2]C, was studied. The net reaction 2 Zn-TK→3 Zn-[2]C was accomplished in 89% yield by heating a solution of Zn-TK in D 2 O. Kinetic investigation by 1 H NMR spectroscopy and high resolution mass spectrometry revealed that the mechanism is complex, involving a large pool of intermediates that form after imine bond cleavage. Bromide ions, which can occupy the central cavity of Zn-TK, inhibited the reaction. Two similar transformations were also studied, one of a cadmium-containing trefoil knot, Cd-TK, into a cadmium-containing catenane, Cd-[2]C, and the other of Cd-TK into Zn-[2]C. The latter transformation could be achieved in one step at high temperature or in two steps via transmetallation to form Zn-TK at room temperature followed by topological conversion of Zn-TK to Zn-[2]C at high temperature.
Kalimuthu, Senthilkumar; Oh, Ji Min; Gangadaran, Prakash; Zhu, Liya; Lee, Ho Won; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol
2017-01-01
Anaplastic thyroid cancer (ATC) is the most aggressive malignancy of the thyroid, during which undifferentiated tumors arise from the thyroid follicular epithelium. ATC has a very poor prognosis due to its aggressive behavior and poor response to conventional therapies. Gene-directed enzyme/prodrug therapy using genetically engineered mesenchymal stromal cells (MSC) is a promising therapeutic strategy. The doxycycline (DOX)-controlled Tet inducible system is the most widely utilized regulatory system and could be a useful tool for therapeutic gene-based therapies. For example, use a synthetic "tetracycline-on" switch system to control the expression of the therapeutic gene thymidine kinase, which converts prodrugs to active drugs. The aim of this study was to develop therapeutic MSCs, harboring an inducible suicide gene, and to validate therapeutic gene expression using optical molecular imaging of ATC. We designed the Tet-On system using a retroviral vector expressing herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Mouse bone marrow-derived mesenchymal stromal cells (BM-MSC) were transduced using this system with (MSC-Tet-TK/Fluc2) or without (MSC-TK/Fluc) the Tet-On system. Transduced cells were screened and characterized. Engineered MSCs were co-cultured with ATC (CAL62/Rluc) cells in the presence of the prodrug ganciclovir (GCV) and stimulated with DOX. The efficiency of cell killing monitored by assessing Rluc (CAL62/Rluc) and Fluc (MSC-Tet-TK/Fluc and MSC-TK/Fluc) activities using IVIS imaging. Fluc activity increased in MSC-Tet-TK/Fluc cells in a dose dependent manner following DOX treatment (R2 = 0.95), whereas no signal was observed in untreated cells. eGFP could also be visualized after induction with DOX, and the HSV1-TK protein could be detected by western blotting. In MSC-TK/Fluc cells, the Fluc activity increased with increasing cell number (R2 = 0.98), and eGFP could be visualized by fluorescence microscopy. The Fluc activity and cell viability of MSC-Tet-TK/Fluc and MSC-TK/Fluc cells decreased significantly following GCV treatment. A bystander effect of the therapeutic cells confirmed in co-cultures of CAL62 cells, an anaplastic thyroid cancer cell line, with either MSC-Tet-TK/Fluc cells or MSC-TK/Fluc cells. The Rluc activity in MSC-Tet-TK/Fluc co-cultures, derived from the CAL62/Rluc cells, decreased significantly with GCV treatment of DOX treated cultures, whereas no significant changes were observed in untreated cultures. In addition, the Fluc activity of MSC-Tet-TK/Fluc cells also decreased significantly with DOX treatment whereas no signal was present in untreated cultures. A bystander effect also be demonstrated in co-cultures with MSC-TK/Fluc cells and CAL62/Rluc; both the Rluc activity and the Fluc activity were significantly decreased following GCV treatment. We have successfully developed a Tet-On system of gene-directed enzyme/prodrug delivery using MSCs. We confirmed the therapeutic bystander effect in CAL62/Rluc cells with respect to MSC-Tet-TK/Fluc and MSC-TK/Fluc cells after GCV treatment with and without DOX. Our results confirm the therapeutic efficiency of a suicide gene, with or without the Tet-On system, for ATC therapy. In addition, our findings provide an innovative therapeutic approach for using the Tet-On system to eradicate tumors by simple, repeated administration of MSC-Tet-TK/Fluc cells with DOX and GCV.
USDA-ARS?s Scientific Manuscript database
Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included ...
Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae
2018-03-12
Mer tyrosine kinase (MerTK) activity necessary for amyloid-stimulated phagocytosis strongly implicates that MerTK dysregulation might contribute to chronic inflammation implicated in Alzheimer's disease (AD) pathology. However, the precise mechanism involved in the regulation of MerTK expression by amyloid-β (Aβ) in proinflammatory environment has not yet been ascertained. The objective of this study was to determine the underlying mechanism involved in Aβ-mediated decrease in MerTK expression through Aβ-mediated regulation of MerTK expression and its modulation by sulforaphane in human THP-1 macrophages challenged with Aβ1-42. We used protein preparation, Ca 2+ influx fluorescence imaging, nuclear fractionation, Western blotting techniques, and small interfering RNA (siRNA) knockdown to perform our study. Aβ1-42 elicited a marked decrease in MerTK expression along with increased intracellular Ca 2+ level and induction of proinflammatory cytokines such as IL-1β and TNF-α. Ionomycin A and thapsigargin also increased intracellular Ca 2+ levels and production of IL-1β and TNF-α, mimicking the effect of Aβ1-42. In contrast, the Aβ1-42-evoked responses were attenuated by depletion of Ca 2+ with ethylene glycol tetraacetic acid. Furthermore, recombinant IL-1β or TNF-α elicited a decrease in MerTK expression. However, immunodepletion of IL-1β or TNF-α with neutralizing antibodies significantly inhibited Aβ1-42-mediated downregulation of MerTK expression. Notably, sulforaphane treatment potently inhibited Aβ1-42-induced intracellular Ca 2+ level and rescued the decrease in MerTK expression by blocking nuclear factor-κB (NF-κB) nuclear translocation, thereby decreasing IL-1β and TNF-α production upon Aβ1-42 stimulation. Such adverse effects of sulforaphane were replicated by BAY 11-7082, a NF-κB inhibitor. Moreover, sulforaphane's anti-inflammatory effects on Aβ1-42-induced production of IL-1β and TNF-α were significantly diminished by siRNA-mediated knockdown of MerTK, confirming a critical role of MerTK in suppressing Aβ1-42-induced innate immune response. These findings implicate that targeting of MerTK with phytochemical sulforaphane as a mechanism for preventing Aβ1-42-induced neuroinflammation has potential to be applied in AD therapeutics.
Tokuhiro, Shinji; Nagataki, Mitsuru; Jarilla, Blanca R.; Nomura, Haruka; Kim, Tae Im; Hong, Sung-Jong; Agatsuma, Takeshi
2013-01-01
Background Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK) constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. Methology/Principal findings A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK) of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK) gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. Conclusion CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart, creatine. PMID:24278491
Ning, Shufang; Wei, Wene; Li, Jilin; Hou, Bingbing; Zhong, Jianhong; Xie, Yuxuan; Liu, Haizhou; Mo, Xianwei; Chen, Jiansi; Zhang, Litu
2018-01-01
Despite extensive progress in treatment for cancer in recent decades, the early diagnosis for gastric cancer (GC) and colorectal cancer (CRC) remains poor. In this study, we explore the diagnostic value of joint detection of thymidine kinase 1 (TK1), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9) and carbohydrate antigen 72-4 (CA 72-4) in the diagnosis of GC and CRC, and to evaluated the relationship between TK1 expression and clinical pathological characteristics in the patients. Serum TK1, CA 19-9, CA 72-4 and CEA levels were measured in 169 patients with GC, 344 patients with CRC and 75 healthy controls using electro-chemiluminescence. The TK1 concentration was significantly higher in patients with cancer than in healthy controls and patients with clinical stage Ⅲ+Ⅳ had higher TK1 levels than clinical stage Ⅰ+Ⅱ ( P <0.05). The levels of TK1 is significantly associated with tumor stage, lymph node metastasis, distant metastasis, tumor differentiation and age ( P <0.05). When the tumor markers (TK1, CA 19-9 and CA 72-4) were detected respectively, the area under receiver operating characteristics curve (AUC) of TK1 for three cancers was the highest (0.823-0.895). However, the combination of AUC was higher than that for each tumor marker detected respectively (0.934-0.953), and the Hosmer-Lemeshow test showed an adequate model of calibration (P>0.05). Moreover, the AUCs varied significantly between the combination tests and single biomarker tests (Z test, P <0.01). In conclusion, serum TK1 may be an independent tumor marker for GC and CRC patients, and the combination of TK1, CA 19-9 and CA 72-4 and CEA performed even better. This study suggests that combination detection of four tumor markers may prove to be useful for the diagnosis of GC and CRC.
Characterization of multilocus lesions in human cells exposed to X radiation and radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhry, M.A.; Jiang, Q.; Ricanati, M.
Human TK6 lymphoblasts were exposed to X radiation or radon, and thymidine kinase negative (TK{sup -/-}) mutants were selected, isolated and harvested for analysis of structural changes in the TK gene. A large majority (82%) of the radon-induced mutants, 74% of the X-radiation-induced mutants and 45% of the spontaneous mutants lost the entire active TK allele. To analyze these mutants further we measured the loss of heterozygosity at several loci neighboring the TK locus on chromosome 17q. A greater proportion (61%) of the radon-induced mutants than X-radiation-induced or spontaneous mutants harbored the smaller lesions involving the TK allele alone ormore » extending from the TK locus to one or both of the closest neighboring sequences tested. Further, 21% of the X-radiation-induced mutants but only 5% of the radon-induced mutants lost heterozygosity at the col1A1 locus, 31 Mb from the TK gene. These results are in agreement with a recent analysis of radon- and X-radiation-induced lesions inactivating the HPRT gene of TK6 cells, in which we reported that a lower percentage of radon- than X-radiation-induced mutants showed lesions extending to markers 800 kb or more from the HPRT gene on the X chromosome. In the present study, we observed that the percentage of slowly growing and very slowly growing TK{sup -/-} mutants was greater after treatment with radon than after treatment with X radiation, regardless of the type of lesion present. It is possible, therefore, that the radon-induced lesions are complex and/or less easily repaired, leading to slow growth in a large proportion of the surviving mutant cells. 36 refs., 6 figs., 2 tabs.« less
Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.
2008-01-01
Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform βII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent fashion. How these molecules cooperate to induce phagocytosis is unknown. Because the phosphatidylinositol-specific phospholipase (PI-PLC) PLC γ2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that MerTK signals via PLC γ2. To test this hypothesis, we examined the interaction of MerTK and PLC γ2 in resident murine PMø and in the murine Mø cell line J774A.1 (J774) following exposure to apoptotic thymocytes. We found that, as with PMø, J774 phagocytosis of apoptotic thymocytes was inhibited by antibody against MerTK. Western blotting and immunoprecipitation showed that exposure to apoptotic cells produced three time-dependent changes in PMø and J774: (1) tyrosine phosphorylation of MerTK; (2) association of PLC γ2 with MerTK; and (3) tyrosine phosphorylation of PLC γ2. Phosphorylation of PLC γ2 and its association with MerTK was also induced by cross-linking MerTK using antibody. A PI-PLC appears to be required for phagocytosis of apoptotic cells because the PI-PLC inhibitor Et-18-OCH3 and the PLC inhibitor U73122, but not the inactive control U73343, blocked phagocytosis without impairing adhesion. On apoptotic cell adhesion to Mø, MerTK signals at least in part via PLC γ2. PMID:14704368
Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo
2017-01-01
The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate-buffered saline; SD: standard deviation; ARE: androgenresponsive element; KLK: kallikrein.
Jiang, Z F; Wang, M; Xu, J L
2018-02-01
Thymidine kinase 1 (TK1) is a tumor biomarker in human malignancies. The purpose of this study was to evaluate the diagnostic efficiency of this marker for lung cancer using the combined analysis of carcinoembryonic antigen (CEA), cytokeratin-19 fragment (CYFRA21-1), neuron specific enolase (NSE) and TK1. From 2013 to 2014, 147 patients with lung cancer and 228 patients with lung benign diseases who were admitted to our hospital were reviewed. Peripheral blood samples were collected for the detection of TK1, CEA, CYFRA21-1 and NSE. The diagnostic value of each marker was analyzed using receiver operating characteristic (ROC) curves and logistic regression equations. The serum levels of TK1, CEA, CYFRA21-1 and NSE were significantly higher than those in patients with lung benign diseases (all P<0.05). The TK1 concentration was dependent on TNM stage (P=0.005). The ROC curve analyses showed that the diagnostic value of TK1 combined with CEA, CYFRA21-1 and NSE in lung cancer was significantly higher than that of each biomarker alone (all P<0.0001). In addition, TK1 combined with CEA, CYFRA21-1, or NSE could also improve the diagnosis of the squamous cell carcinoma, adenocarcinoma and small cell lung cancer subtypes, respectively. The combined detection of TK1 and the other three markers significantly improved the diagnosis of lung cancer. Furthermore, the detection of TK1 combined with that of CYFRA21-1, CEA or NSE increased the diagnostic value of TK1 for lung squamous cell carcinoma, adenocarcinoma and SCLC, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
Restiawaty, Elvi; Honda, Kohsuke; Okano, Kenji; Hirota, Ryuichi; Omasa, Takeshi; Kuroda, Akio; Ohtake, Hisao
2012-04-01
We previously demonstrated the stoichiometric conversion of glycerol to glycerol-3-phosphate (G3P) using Escherichia coli recombinants producing the ATP-dependent glycerol kinase of the hyperthermophile Thermococcus kodakaraensis (TkGK) and the polyphosphate kinase of Thermus thermophilus HB27 (TtPPK). TtPPK was associated with the membrane fraction of E. coli recombinants, whereas TkGK was released from the cells during the reaction at 70°C. In this study, TkGK was fused with either TtPPK or an E. coli membrane-intrinsic protein, YedZ, to minimize the heat-induced leakage of TkGK. When the E. coli recombinants having these fusion proteins were incubated at 70°C for 2h, more than 80% of TkGK activity was retained in the heated E. coli cells. However, the yields of G3P production by E. coli having the fusion proteins of TtPPK and TkGK were only less than 35%. Polyphosphate is a strong chelator for metal ions and has an inhibitory effect on TkGK which requires magnesium. Insufficient space between TtPPK and TkGK might enhance the inhibitory effect of polyphosphate on TkGK activity of the fusion protein. The mixture of E. coli cells having TtPPK and those having TkGK fused with YedZ converted 80% of glycerol into G3P. These recombinant cells could be easily recovered from the reaction mixture by centrifugation and repeatedly used without a significant loss of enzyme activities. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf
2016-01-01
ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected acyltransferase were studied. As discussed in this paper, and in contrast to many other bacteria, streptomycetes seem to possess a complex metabolic network to synthesize lipids, whereof crucial steps are still largely unknown. This paper therefore provides insights into a range of topics, including extremophile bacteria, the physiology of lipid accumulation, and the biotechnological production of bacterial lipids. PMID:27474711
Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces
Jones, George H.
2018-01-01
Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichia coli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally. PMID:29562650
40 CFR 180.1253 - Streptomyces lydicus WYEC 108; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomyces lydicus WYEC 108... RESIDUES IN FOOD Exemptions From Tolerances § 180.1253 Streptomyces lydicus WYEC 108; exemption from the... the microbial pesticide Streptomyces lydicus WYEC 108 when used in or on all agricultural commodities...
Bonechi, Martina; Galardi, Francesca; Biagioni, Chiara; De Luca, Francesca; Bergqvist, Mattias; Neumüller, Magnus; Guarducci, Cristina; Boccalini, Giulia; Gabellini, Stefano; Migliaccio, Ilenia; Di Leo, Angelo; Pestrin, Marta; Malorni, Luca
2018-01-01
The aim of this study was to investigate if thymidine kinase-1 (TK1), a well-known proliferation marker, could represent a valid circulating biomarker to identify hormone receptor positive (HR+)/HER2 negative (HER2neg) metastatic breast cancer (MBC) patients most likely to benefit from endocrine therapy (ET). We used the DiviTum™ assay to analyze TK1 activity in cell lysates of three HR+/HER2neg BC cell lines and in plasma of 31 HR+/HER2neg MBC patients receiving ET. Blood samples were collected at treatment initiation, after one month and at disease progression. CTCs count and ESR1/PIK3CA mutations in circulating tumor DNA were performed and correlated with TK1 activity. TK1 activity was reduced in the two endocrine-sensitive cell lines after 2 days of treatment. In patients, high baseline TK1 activity correlated with CTCs positivity (p-value=0.014). Patients with low baseline levels of TK1 activity had a significantly better PFS compared to those with high baseline TK1 activity (p-value=0.012). Patients with an early drop of TK1 activity after one month of treatment had a significantly better PFS compared to those who experienced an increase (p-value=0.0026). Our study suggests that TK1 could be a potential prognostic, predictive and monitoring marker of early ET response in HR+/HER2neg MBC patients. PMID:29662653
Bonechi, Martina; Galardi, Francesca; Biagioni, Chiara; De Luca, Francesca; Bergqvist, Mattias; Neumüller, Magnus; Guarducci, Cristina; Boccalini, Giulia; Gabellini, Stefano; Migliaccio, Ilenia; Di Leo, Angelo; Pestrin, Marta; Malorni, Luca
2018-03-27
The aim of this study was to investigate if thymidine kinase-1 (TK1), a well-known proliferation marker, could represent a valid circulating biomarker to identify hormone receptor positive (HR+)/HER2 negative (HER2neg) metastatic breast cancer (MBC) patients most likely to benefit from endocrine therapy (ET). We used the DiviTum™ assay to analyze TK1 activity in cell lysates of three HR+/HER2neg BC cell lines and in plasma of 31 HR+/HER2neg MBC patients receiving ET. Blood samples were collected at treatment initiation, after one month and at disease progression. CTCs count and ESR1 / PIK3CA mutations in circulating tumor DNA were performed and correlated with TK1 activity. TK1 activity was reduced in the two endocrine-sensitive cell lines after 2 days of treatment. In patients, high baseline TK1 activity correlated with CTCs positivity (p-value=0.014). Patients with low baseline levels of TK1 activity had a significantly better PFS compared to those with high baseline TK1 activity (p-value=0.012). Patients with an early drop of TK1 activity after one month of treatment had a significantly better PFS compared to those who experienced an increase (p-value=0.0026). Our study suggests that TK1 could be a potential prognostic, predictive and monitoring marker of early ET response in HR+/HER2neg MBC patients.
Klejbor, Ilona; Myers, Jason M; Hausknecht, Kathy; Corso, Thomas D; Gambino, Angelo S; Morys, Janusz; Maher, Pamela A; Hard, Robert; Richards, Jerry; Stachowiak, Ewa K; Stachowiak, Michal K
2006-06-01
Developing and mature midbrain dopamine (DA) neurons express fibroblast growth factor (FGF) receptor-1 (FGFR1). To determine the role of FGFR1 signaling in the development of DA neurons, we generated transgenic mice expressing a dominant negative mutant [FGFR1(TK-)] from the catecholaminergic, neuron-specific tyrosine hydroxylase (TH) gene promoter. In homozygous th(tk-)/th(tk-) mice, significant reductions in the size of TH-immunoreactive neurons were found in the substantia nigra compacta (SNc) and the ventral tegmental area (VTA) at postnatal days 0 and 360. Newborn th(tk-)/th(tk-) mice had a reduced density of DA neurons in both SNc and VTA, and the changes in SNc were maintained into adulthood. The reduced density of DA transporter in the striatum further demonstrated an impaired development of the nigro-striatal DA system. Paradoxically, the th(tk-)/th(tk-) mice had increased levels of DA, homovanilic acid and 3-methoxytyramine in the striatum, indicative of excessive DA transmission. These structural and biochemical changes in DA neurons are similar to those reported in human patients with schizophrenia and, furthermore, these th(tk-)/th(tk-) mice displayed an impaired prepulse inhibition that was reversed by a DA receptor antagonist. Thus, this study establishes a new developmental model for a schizophrenia-like disorder in which the inhibition of FGF signaling leads to alterations in DA neurons and DA-mediated behavior.
Du, Hai; Lu, Hu; Xu, Yan
2015-01-14
Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.
Energy Monitoring and Control Systems--Performance Verification and Endurance Test Procedures.
1982-12-01
EM-; tK2 s) trave h.en loadted in qvstem sit ~rp sm:l , o,1 ti-’.~ -1 rouiitthe factoz’, lest. E.VEF.NT Comnmwid the system to display the status of...contractor correction of all outstanding deficiencies . 163 TEST NO: END-i Page I of 1 OBJECTIVE: To demonstrate EMCS normal mode operation 24 TITLE: Endurance
24 CFR Appendix B to Part 1000 - IHBG Block Grant Formula Mechanisms
Code of Federal Regulations, 2012 CFR
2012-04-01
... unit subsidy for Low-Rent units ($2,440*INF). MH+TK = number of Mutual Help and Turnkey III units. HOSUB = national per unit subsidy for Homeownership units ($528*INF). S8 = number of Section 8 units. S8SUB = national per unit subsidy for Section 8 units = ($3,625*INF). AELFMR = greater of AEL Factor or...
24 CFR Appendix B to Part 1000 - IHBG Block Grant Formula Mechanisms
Code of Federal Regulations, 2014 CFR
2014-04-01
... unit subsidy for Low-Rent units ($2,440*INF). MH+TK = number of Mutual Help and Turnkey III units. HOSUB = national per unit subsidy for Homeownership units ($528*INF). S8 = number of Section 8 units. S8SUB = national per unit subsidy for Section 8 units = ($3,625*INF). AELFMR = greater of AEL Factor or...
24 CFR Appendix B to Part 1000 - IHBG Block Grant Formula Mechanisms
Code of Federal Regulations, 2013 CFR
2013-04-01
... unit subsidy for Low-Rent units ($2,440*INF). MH+TK = number of Mutual Help and Turnkey III units. HOSUB = national per unit subsidy for Homeownership units ($528*INF). S8 = number of Section 8 units. S8SUB = national per unit subsidy for Section 8 units = ($3,625*INF). AELFMR = greater of AEL Factor or...
Hendrix, Roger W.; Dedrick, Rebekah; Mitchell, Kaitlin; Ko, Ching-Chung; Russell, Daniel; Bell, Emma; Gregory, Matthew; Bibb, Maureen J.; Pethick, Florence; Jacobs-Sera, Deborah; Herron, Paul; Buttner, Mark J.; Hatfull, Graham F.
2013-01-01
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. PMID:23995638
Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng
2016-02-01
During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)).
Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil.
Sujarit, Kanaporn; Kudo, Takuji; Ohkuma, Moriya; Pathom-Aree, Wasu; Lumyong, Saisamorn
2016-10-01
Actinomycete strain CMU-AB204T was isolated from oil palm rhizosphere soil collected in Chiang Mai University (Chiang Mai, Thailand). Based on morphological and chemotaxonomic characteristics, the organism was considered to belong to the genus Streptomyces. Whole cell-wall hydrolysates consisted of ll-diaminopimelic acid, glucose, ribose and galactose. The predominant menaquinones were MK-9(H4), MK-9(H6), MK-9(H2) and MK-8(H4). The fatty acid profile contained iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0 as major components. The principal phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content of strain CMU-AB204T was 70.9 mol%. Based on 16S rRNA gene sequence similarity, strain CMU-AB204T was closely related to Streptomyces orinoci JCM 4546T (98.7 %), Streptomyces lilacinus NBRC 12884T (98.5 %), Streptomyces abikoensis CGMCC 4.1662T (98.5 %), Streptomyces griseocarneus JCM 4905T (98.4 %) and Streptomyces xinghaiensis JCM 16958T (98.3 %). Phylogenetic trees revealed that the new strain had a distinct taxonomic position from closely related type strains of the genus Streptomyces. Spiny to hairy spores clearly differentiated strain CMU-AB204T from the five most closely related Streptomyces species, which produced smooth spores. On the basis of evidence from this polyphasic study, it is proposed that strain CMU-AB204T represents a novel species of the genus Streptomyces, namely Streptomyces palmae sp. nov. The type strain is CMU-AB204T (=JCM 31289T=TBRC 1999T).
Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run
2014-01-25
This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration
Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi
2010-01-01
Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS. PMID:20123860
Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.
Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi
2010-05-01
Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.
Piao, Chenyu; Zheng, Weiwei; Li, Yao; Liu, Chongxi; Jin, Liying; Song, Wei; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng
2017-09-01
Two novel actinomycetes, designated strains 2C-SSA16(2) T and 1C-GS8 T , were isolated from the cuticle of Camponotus japonicus Mayr, collected from Northeast Agricultural University, Heilongjiang Province, north China. Both of them contained genes (involved in antibiotics biosynthesis) of the ketosynthase (KS) and methyl malonyl transferase domains (PKS-I) and the adenylation domain (NRPS). A polyphasic study was carried out to establish the taxonomic positions of these strains. The 16S rRNA gene sequence analysis showed that the two novel isolates 2C-SSA16(2) T and 1C-GS8 T exhibited 98.8% similarity with each other and that they are most closely related to Streptomyces umbrinus JCM 4521 T (99.0, 98.6%), Streptomyces ederensis JCM 4958 T (98.9, 98.7%), Streptomyces aurantiacus JCM 4453 T (98.6, 98.2%), Streptomyces glomeroaurantiacus JCM 4677 T (98.6, 98.1%), Streptomyces tauricus JCM4837 T (98.2, 98.0%) and Streptomyces phaeochromogenes JCM 4070 T (98.2, 99.2%). The corresponding phylogenetic analysis based on partial gyrB gene sequences showed that strains 2C-SSA16(2) T and 1C-GS8 T formed a cluster with the above-mentioned strains. The DNA-DNA hybridization data and phenotypic characteristics indicated that strains 2C-SSA16(2) T and 1C-GS8 T could be readily distinguished from each other and their closest phylogenetic relatives. Therefore, these two strains are suggested to represent two novel species of the genus Streptomyces, for which the names Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. are proposed. The type strains are 2C-SSA16(2) T (=CGMCC 4.7276 T = DSM 100522 T ) and 1C-GS8 T (=CGMCC 4.7348 = DSM 103127 T ), respectively.
Doroghazi, J. R.; Ju, K.-S.; Metcalf, W. W.
2014-01-01
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T. PMID:24277863
Lesko, Nicole; Naess, Karin; Wibom, Rolf; Solaroli, Nicola; Nennesmo, Inger; von Döbeln, Ulrika; Karlsson, Anna; Larsson, Nils-Göran
2010-03-01
Deficiency of thymidine kinase-2 (TK2) has been described in children with early onset fatal skeletal myopathy. TK2 is a mitochondrial deoxyribonucleoside kinase required for the phosphorylation of deoxycytidine and deoxythymidine and hence is vital for the maintenance of a balanced mitochondrial dNTP pool in post-mitotic tissues. We describe a patient with two novel TK2 mutations, which caused disease onset shortly after birth and death at the age of three months. One mutation (219insCG) generated an early stop codon, thus preventing the synthesis of a functional protein. The second mutation (R130W) resulted in an amino acid substitution, which caused a severe reduction (<3%) of TK2 enzyme activity. These two novel TK2 mutations cause an extremely severe phenotype with overwhelming central nervous system symptoms not commonly seen in patients with TK2-deficiency. We conclude that the severe clinical presentation in this patient was due to a virtual lack of mitochondrial TK2 activity. Copyright 2009 Elsevier B.V. All rights reserved.
Plenty Is No Plague: Streptomyces Symbiosis with Crops.
Rey, Thomas; Dumas, Bernard
2017-01-01
Streptomyces spp. constitute a major clade of the phylum Actinobacteria. These Gram-positive, filamentous prokaryotes are ubiquitous in soils and marine sediments, and are commonly found in the rhizosphere or inside plant roots. Plant-interacting Streptomyces have received limited attention, in contrast to Streptomyces spp. extensively investigated for decades in medicine given their rich potential for secondary metabolite biosynthesis. Recent genomic, metabolomic, and biotechnological advances have produced key insights into Streptomyces spp., paving the way to the use of their metabolites in agriculture. In this Opinion article we propose how Streptomyces spp. could dominate future aspects of crop nutrition and protection. Risks and benefits of the use of these microorganisms in agriculture are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Universal and measurable entanglement entropy in the spin-boson model.
Kopp, Angela; Le Hur, Karyn
2007-06-01
We study the entanglement between a qubit and its environment from the spin-boson model with Ohmic dissipation. Through a mapping to the anisotropic Kondo model, we derive the entropy of entanglement of the spin E(alpha,Delta,h), where alpha is the dissipation strength, Delta is the tunneling amplitude between qubit states, and h is the level asymmetry. For 1-alpha>Delta/omegac and (Delta,h)
A Genetic Approach to Promoter Recognition during Trans Induction of Viral Gene Expression
NASA Astrophysics Data System (ADS)
Coen, Donald M.; Weinheimer, Steven P.; McKnight, Steven L.
1986-10-01
Viral infection of mammalian cells entails the regulated induction of viral gene expression. The induction of many viral genes, including the herpes simplex virus gene encoding thymidine kinase (tk), depends on viral regulatory proteins that act in trans. Because recognition of the tk promoter by cellular transcription factors is well understood, its trans induction by viral regulatory proteins may serve as a useful model for the regulation of eukaryotic gene expression. A comprehensive set of mutations was therefore introduced into the chromosome of herpes simplex virus at the tk promoter to directly analyze the effects of promoter mutations on tk transcription. The promoter domains required for efficient tk expression under conditions of trans induction corresponded to those important for recognition by cellular transcription factors. Thus, trans induction of tk expression may be catalyzed initially by the interaction of viral regulatory proteins with cellular transcription factors.
Sahu, Maloy Kumar; Poorani, E; Sivakumar, K; Thangaradjou, T; Kannan, L
2007-07-01
The actinomycete strain LA-29 isolated from the gut contents of the fish, Mugil cephalus of the Vellar estuary showed excellent L-asparaginase activity The enzyme was purified 18-fold and the final recovery of protein was 1.9%, which exhibited an activity of 13.57 IU/mg protein. The partially purified L-asparaginase inhibited the growth of leukemia cells in male wistar rats. Average survival period of the rats was more in an optimum enzyme dose of 100 units and the survival period was less when the dosages were increased and at the same time the enzyme became less effective when the dosages were decreased. Higher survival of 17.2 days was recorded when 100 units of the enzyme was given in three intermittent doses (50/25/25 units) at the interval of 24 hr. Analysis of cell components of the strain LA-29 has revealed the wall type-I which is the characteristic of the genus Streptomyces. Further the morphological, physiological and biochemical features along with the micromorphological results obtained for the strain LA-29 were compared with that of the Streptomyces species found in Bergey's Manual of Determinative Bacteriology and the strain LA-29 has been tentatively identified as Streptomyces canus.
Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan
2017-01-01
Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV-TK/GCV therapy. Moreover, STAT3/NF-κB signaling targeting could further sensitize tumor cells to cisplatin. This study successfully established a theranositic approach to treat triple-negative breast cancer via STAT3-NF-κB responsive element-driven suicide gene therapy. This platform may also be an alternative strategy to handle with drug-resistant cancer cells. PMID:28255357
Prevalence of Intrathecal Acyclovir Resistant Virus in Herpes Simplex Encephalitis Patients.
Mitterreiter, Johanna G; Titulaer, Maarten J; van Nierop, Gijsbert P; van Kampen, Jeroen J A; Aron, Georgina I; Osterhaus, Albert D M E; Verjans, Georges M G M; Ouwendijk, Werner J D
2016-01-01
Herpes simplex encephalitis (HSE) is a life-threatening complication of herpes simplex virus (HSV) infection. Acyclovir (ACV) is the antiviral treatment of choice, but may lead to emergence of ACV-resistant (ACVR) HSV due to mutations in the viral UL23 gene encoding for the ACV-targeted thymidine kinase (TK) protein. Here, we determined the prevalence of intrathecal ACVR-associated HSV TK mutations in HSE patients and compared TK genotypes of sequential HSV isolates in paired cerebrospinal fluid (CSF) and blister fluid of mucosal HSV lesions. Clinical samples were obtained from 12 HSE patients, encompassing 4 HSV type 1 (HSV-1) and 8 HSV-2 encephalitis patients. HSV DNA load was determined by real-time PCR and complete HSV TK gene sequences were obtained by nested PCR followed by Sanger sequencing. All HSV-1 HSE patients contained viral TK mutations encompassing 30 unique nucleotide and 13 distinct amino acid mutations. By contrast, a total of 5 unique nucleotide and 4 distinct amino acid changes were detected in 7 of 8 HSV-2 patients. Detected mutations were identified as natural polymorphisms located in non-conserved HSV TK gene regions. ACV therapy did not induce the emergence of ACVR-associated HSV TK mutations in consecutive CSF and mucocutaneous samples of 5 individual patients. Phenotypic susceptibility analysis of these mucocutaneous HSV isolates demonstrated ACV-sensitive virus in 2 HSV-1 HSE patients, whereas in two HSV-2 HSE patients ACVR virus was detected in the absence of known ACVR-associated TK mutations. In conclusion, we did not detect intrathecal ACVR-associated TK mutations in HSV isolates obtained from 12 HSE patients.
Landwehr, Wiebke; Kämpfer, Peter; Glaeser, Stefanie P; Rückert, Christian; Kalinowski, Jörn; Blom, Jochen; Goesmann, Alexander; Mack, Matthias; Schumann, Peter; Atasayar, Ewelina; Hahnke, Richard L; Rohde, Manfred; Martin, Karin; Stadler, Marc; Wink, Joachim
2018-01-01
Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named 'Streptomyces davawensis' JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that 'S. davawensis' JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate 'S. davawensis' as Streptomyces davaonensis sp. nov. with the type strain JCM 4913 T (=DSM 101723 T ). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360 T (=NCCB 100590 T =DSM 101724 T ) as the type strain.
Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster.
García Bernal, M; Trabal Fernández, N; Saucedo Lastra, P E; Medina Marrero, R; Mazón-Suástegui, J M
2017-03-01
To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81·4-95·1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio. This is the first culture-independent study showing the effect of Streptomyces over the oyster microbiota. It also sheds light about the potential use of Streptomyces to improve mollusc health and safety for consumers after the depuration process. © 2016 The Society for Applied Microbiology.
Streptomyces solisilvae sp. nov., isolated from tropical forest soil.
Zhou, Shuangqing; Yang, Xiaobo; Huang, Dongyi; Huang, Xiaolong
2017-09-01
A novel streptomycete (strain HNM0141T) was isolated from tropical forest soil collected from Bawangling mountain of Hainan island, PR China and its taxonomic position was established in a polyphasic study. The organism had chemical and morphological properties consistent with its classification as a member of the Streptomyces violaceusnigerclade. On the basis of the results of 16S rRNA gene sequence analysis, HNM0141T showed highest similarity to Streptomyces malaysiensisCGMCC4.1900T (99.4 %), Streptomyces samsunensis DSM 42010T (98.9 %), Streptomyces yatensis NBRC 101000T (98.3 %), Streptomyces rhizosphaericus NBRC 100778T (98.0 %) and Streptomyces sporoclivatus NBRC 100767T (97.9 %). The strain formed a well-delineated subclade with S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T. The levels of DNA-DNA relatedness between HNM0141T and S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T were 62 and 44 %, respectively. On the basis of phenotypic and genotypic characteristics, HNM0141T represents a novel species in the S. violaceusnigerclade for which the name Streptomyces solisilvae sp. nov. is proposed. The type strain is HNM0141 T (=CCTCC AA 2016045T=KCTC 39905T).
Occurrence and characterization of hitherto unknown Streptomyces species in semi-arid soils.
Kumar, Surendra; Priya, E; Singh Solanki, Dilip; Sharma, Ruchika; Gehlot, Praveen; Pathak, Rakesh; Singh, S K
2016-09-01
Streptomyces the predominant genus of Actinobacteria and plays an important role in the recycling of soil organic matter and production of important secondary metabolites. The occurrence and diversity assessment of Streptomyces species revealed alkaline and poor nutrient status of soils of semi-arid region of Jodhpur, Rajasthan. The morphological and biochemical characterization of 21 Streptomyces isolates facilitated Genus level identification but were insufficient to designate species. Species designation based on 16S rRNA gene delineated 21 isolates into 14 Streptomyces species. Upon BLAST search, the test isolates exhibited 98 to 100% identities with that of the best aligned sequences of the NCBI database. The GC content of 16S rRNA gene sequences of all the Streptomyces isolates tested ranged from 59.03% to 60.94%. The multiple sequence alignment of all the 21 Streptomyces isolates generated a phylogram with high bootstrap values indicating reliable grouping of isolates based on nucleotide sequence variations by way of insertion, deletion and substitutions and 16S rRNA length polymorphism. Some of the Streptomyces species molecularly identified under present study are reported for the first time from semi-arid region of Jodhpur.
Saada, Ann; Shaag, Avraham; Elpeleg, Orly
2003-05-01
Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.
Schmidt, Kathrin; Spiteller, Dieter
2017-08-01
Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.
Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing
2017-04-01
During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11 T , was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098 T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098 T . Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11 T (=CGMCC 4.7304 T =DSM 101531 T ).
Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.
Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A
2012-02-28
In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.
Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.
Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu
2014-04-01
Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.
Merceron, Romain; Awama, Ayman M.; Montserret, Roland; Marcillat, Olivier; Gouet, Patrice
2015-01-01
The taurocyamine kinase from the blood fluke Schistosoma mansoni (SmTK) belongs to the phosphagen kinase (PK) family and catalyzes the reversible Mg2+-dependent transfer of a phosphoryl group between ATP and taurocyamine. SmTK is derived from gene duplication, as are all known trematode TKs. Our crystallographic study of SmTK reveals the first atomic structure of both a TK and a PK with a bilobal structure. The two unliganded lobes present a canonical open conformation and interact via their respective C- and N-terminal domains at a helix-mediated interface. This spatial arrangement differs from that observed in true dimeric PKs, in which both N-terminal domains make contact. Our structures of SmTK complexed with taurocyamine or l-arginine compounds explain the mechanism by which an arginine residue of the phosphagen specificity loop is crucial for substrate specificity. An SmTK crystal was soaked with the dead end transition state analog (TSA) components taurocyamine-NO32−-MgADP. One SmTK monomer was observed with two bound TSAs and an asymmetric conformation, with the first lobe semiclosed and the second closed. However, isothermal titration calorimetry and enzyme kinetics experiments showed that the two lobes function independently. A small angle x-ray scattering model of SmTK-TSA in solution with two closed active sites was generated. PMID:25837252
Characterisation of Streptomyces spp. isolated from water-damaged buildings.
Suutari, Merja; Rönkä, Elina; Lignell, Ulla; Rintala, Helena; Nevalainen, Aino
2002-01-01
Abstract Saprophytic Streptomyces spp. common in soil and producing biologically active compounds have been related to abnormal microbial growth in buildings where occupants may have health problems. We characterised 11 randomly selected water-damaged building isolates. The 16S rDNA sequence similarity was over 95.4% between strains so that seven, three, and one sequences had greater than 99.8, 99.7 and 99.7% similarity with those of Streptomyces griseus ATCC 10137 (Y15501), Streptomyces albidoflavus DSM 40455(T) (Z76676), and Streptomyces coelicolor A3(2) (Y00411), respectively. Although differences in morphology, pigmentation, fatty acids, biological activity and pH tolerance indicated that strains did not necessarily match with three single phenotypes, they all appeared to belong to two or three branches of Streptomyces spp. most common environmental isolates.
Mehbub, Mohammad F; Tanner, Jason E; Barnett, Stephen J; Franco, Christopher M M; Zhang, Wei
2016-12-01
Sponge-associated bacteria play a critical role in sponge biology, metabolism and ecology, but how they interact with their host sponges and the role of these interactions are poorly understood. This study investigated the role of the interaction between the sponge Aplysilla rosea and its associated actinobacterium, Streptomyces ACT-52A, in modifying sponge microbial diversity, metabolite profile and bioactivity. A recently developed experimental approach that exposes sponges to bacteria of interest in a controlled aquarium system was improved by including the capture and analysis of secreted metabolites by the addition of an absorbent resin in the seawater. In a series of controlled aquaria, A. rosea was exposed to Streptomyces ACT-52A at 10 6 cfu/ml and monitored for up to 360 h. Shifts in microbial communities associated with the sponges occurred within 24 to 48 h after bacterial exposure and continued until 360 h, as revealed by TRFLP. The metabolite profiles of sponge tissues also changed substantially as the microbial community shifted. Control sponges (without added bacteria) and Streptomyces ACT-52A-exposed sponges released different metabolites into the seawater that was captured by the resin. The antibacterial activity of compounds collected from the seawater increased at 96 and 360 h of exposure for the treated sponges compared to the control group due to new compounds being produced and released. Increased antibacterial activity of metabolites from treated sponge tissue was observed only at 360 h, whereas that of control sponge tissue remained unchanged. The results demonstrate that the interaction between sponges and their associated bacteria plays an important role in regulating secondary metabolite production.
Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair.
Jin, Huiyan; Ciechanowicz, Andrzej K; Kaplan, Alanna R; Wang, Lin; Zhang, Ping-Xia; Lu, Yi-Chien; Tobin, Rachel E; Tobin, Brooke A; Cohn, Lauren; Zeiss, Caroline J; Lee, Patty J; Bruscia, Emanuela M; Krause, Diane S
2018-05-01
Surfactant protein C (SPC), a key component of pulmonary surfactant, also plays a role in regulating inflammation. SPC deficiency in patients and mouse models is associated with increased inflammation and delayed repair, but the key drivers of SPC-regulated inflammation in response to injury are largely unknown. This study focuses on a new mechanism of SPC as an anti-inflammatory molecule using SPC-TK/SPC-KO (surfactant protein C-thymidine kinase/surfactant protein C knockout) mice, which represent a novel sterile injury model that mimics clinical acute respiratory distress syndrome (ARDS). SPC-TK mice express the inducible suicide gene thymidine kinase from by the SPC promoter, which targets alveolar type 2 (AT2) cells for depletion in response to ganciclovir (GCV). We compared GCV-induced injury and repair in SPC-TK mice that have normal endogenous SPC expression with SPC-TK/SPC-KO mice lacking SPC expression. In contrast to SPC-TK mice, SPC-TK/SPC-KO mice treated with GCV exhibited more severe inflammation, resulting in over 90% mortality; there was only 8% mortality of SPC-TK animals. SPC-TK/SPC-KO mice had highly elevated inflammatory cytokines and granulocyte infiltration in the bronchoalveolar lavage (BAL) fluid. Consistent with a proinflammatory phenotype, immunofluorescence revealed increased phosphorylated signal transduction and activation of transcription 3 (pSTAT3), suggesting enhanced Janus kinase (JAK)/STAT activation in inflammatory and AT2 cells of SPC-TK/SPC-KO mice. The level of suppressor of cytokine signaling 3, an anti-inflammatory mediator that decreases pSTAT3 signaling, was significantly decreased in the BAL fluid of SPC-TK/SPC-KO mice. Hyperactivation of pSTAT3 and inflammation were rescued by AZD1480, a JAK1/2 inhibitor. Our findings showing a novel role for SPC in regulating inflammation via JAK/STAT may have clinical applications.
Functional characterization of the turkey macrophage migration inhibitory factor.
Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A
2016-08-01
Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo
2017-01-01
Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate-buffered saline; SD: standard deviation; ARE: androgenresponsive element; KLK: kallikrein PMID:28216900
Genetic Regulation of Charged Particle Mutagenesis in Human Cells
NASA Technical Reports Server (NTRS)
Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.
1999-01-01
Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.
Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran
2015-12-01
A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy.
Computer Models for Two-Dimensional Transient Heat Conduction,
1983-04-01
8217) 88) WRITE(6910) (DSDELTDITDEL) 89) WRITE(6923)U90 23 FORMAT(/ hlA 4x,’xx ’Y’,1X:NISO ITRT IMIAX ITPC ’) 91) WRITE( 6 1) X YoNISOITAT.IMAX.ITPC) 92... 1042 ) E8(KONT)=-(TK4.TK(IJ) )/(2.0DO*Dl)-.50ODI2*R4 *1043) C(KONT)=TK4/(2.ODO*DI) 1044) D(KONT)=-H(INDEX) *D12*T54P8(J)-(TK(IJ)I(2.ODO*O1) )*THPL(I
α-Glucosidase inhibitors and phytotoxins from Streptomyces xanthophaeus.
Wei, Jing; Zhang, Xiu-Yun; Deng, Shan; Cao, Lin; Xue, Quan-Hong; Gao, Jin-Ming
2017-09-01
Twenty-four metabolites 1-24 were isolated from the fermentation broth of Streptomyces xanthophaeus. Their structures were elucidated on the basis of spectroscopic analysis and by comparison of their NMR data with literature data reported. Daidzein (1), genistein (2) and gliricidin (3) inhibited α-glucosidase in vitro with IC 50 values of 174.2, 36.1 and 47.4 μM, respectively, more potent than the positive control, acarbose. Docking study revealed that the amino acid residue Thr 215 is the essential binding site for active ligands 2. In addition, the phytotoxic effects of all compounds were assayed on radish seedlings, five of which, 3, 8, 13, 15 and 18, inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 100 ppm, which was comparable or superior to the positive control glyphosate. This is the first report of the phytotoxicity of the compounds.
Streptomyces tremellae sp. nov., isolated from a culture of the mushroom Tremella fuciformis.
Wen, Zhi-Qiang; Chen, Bingzhi; Li, Xiao; Li, Bing-Bing; Li, Cheng-Huan; Huang, Qing-Hua; Zhang, Qi-Hui; Dai, Wei-Hao; Jiang, Yu-Ji
2016-12-01
A novel actinomycete strain, designated Js-1T, was isolated from Tremella fuciformis collected from Gutian, Fujian Province, in southeastern China. The taxonomic status of this strain was determined by a polyphasic approach, which demonstrated that the novel strain was a member of the genus Streptomyces. The cell walls of this strain were found to contain ll-diaminopimelic acid, muramic acid and glycine. An analysis of whole-cell hydrolysates revealed that no characteristic sugar was present. The key identified menaquinones were MK-9 (H6) and MK-9 (H8), while the diagnostic polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmethylethanolamine and phosphatidylglycerol. The main cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. An analysis of an almost complete 16S rRNA gene sequence showed that the strain shared the highest levels of sequence similarity with Streptomyces sannanensisKC-7038T (97.87 %), Streptomyces hebeiensis YIM 001T (97.84 %), Streptomyces pathocidini NBRC 13812T (97.80 %), Streptomyces cocklensis BK168T (97.25 %), Streptomyces coerulescens NBRC 12758T (97.12 %), Streptomyces aurantiogriseus NBRC 12842T (97.06 %) and Streptomyces rimosussubsp. rimosus ATCC 10970T (97.04 %). The DNA G+C content of the genomic DNA of strain Js-1T was 70.1 mol%. Furthermore, DNA-DNA hybridization tests revealed that the relatedness values between strain Js-1T and the most closely related species ranged from 15.10 to 47.20 %. Based on its phenotypic and genotypic characteristics, strain Js-1T (=CCTCC M 2011365T=JCM 30846T) is considered to represent a novel species within the genus Streptomyces, which we classified as Streptomycestremellae sp. nov.
Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.
Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun
2016-10-01
A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)).
Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man.
Potier, Louis; Waeckel, Ludovic; Fumeron, Fréderic; Bodin, Sophie; Fysekidis, Marinos; Chollet, Catherine; Bellili, Naima; Bonnet, Fabrice; Gusto, Gaëlle; Velho, Gilberto; Marre, Michel; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine
2014-05-01
The kallikrein-kinin system has been suggested to participate in the control of glucose metabolism. Its role and the role of angiotensin-I-converting enzyme, a major kinin-inactivating enzyme, are however the subject of debate. We have evaluated the consequence of deficiency in tissue kallikrein (TK), the main kinin-forming enzyme, on the development of insulin resistance and diabetes in mice and man. Mice with inactivation of the TK gene were fed a high-fat diet (HFD) for 3 months, or crossed with obese, leptin-deficient (ob/ob) mice to generate double ob/ob-TK-deficient mutants. In man, a loss-of-function polymorphism of the TK gene (R53H) was studied in a large general population cohort tested for insulin resistance, the DESIR study (4843 participants, 9 year follow-up). Mice deficient in TK gained less weight on the HFD than their WT littermates. Fasting glucose level was increased and responses to glucose (GTT) and insulin (ITT) tolerance tests were altered at 10 and 16 weeks on the HFD compared with standard on the diet, but TK deficiency had no influence on these parameters. Likewise, ob-TK⁻/⁻ mice had similar GTT and ITT responses to those of ob-TK⁺/⁺ mice. TK deficiency had no effect on blood pressure in either model. In humans, changes over time in BMI, fasting plasma glucose, insulinemia, and blood pressure were not influenced by the defective 53H-coding TK allele. The incidence of diabetes was not influenced by this allele. These data do not support a role for the TK-kinin system, protective or deleterious, in the development of insulin resistance and diabetes.
[Experimental research in vitro of TK/GCV system for osteosarcoma MG-63 cell damage].
Zhang, Hua-Dong; Lu, Zhi; Feng, Yi; Liu, Xiao-Li; Hou, Hui-Ming
2014-03-01
To study the killing effects of the liposome-mediated thymidine kinase (TK)/ganciclovir (GCV) system on MG-63 osteosarcoma (OS) cells and its bystander effects. Liposome-mediated TK gene transfected into MG-63 OS cells, the efficiency of transfection was analyzed by flow cytometry and observed under inverted fluorescence microscope. Non-transfected osteosarcoma MG-63 cells were divided into three groups,in the experimental group 1 transfected TK/GCV cells cultured in solutiona liquid mixture by supernatant by 1/10,1/7,1/5,1/2 ratio to original broth; in the experimental group 2 transfected cells cultured in solutiona liquid mixture of supernatant filtered through 0.22 microm filter by 1/10,1/7, 1/5, 1/2 ratio to original broth, in control group the transfection cells cultured in original culture solution. Cell growth inhibition rate and osteosarcoma cell sensitivity to TK/GCV system were measured by MTT assay in each group. The TK gene was transfected into MG-63 OS cells successfully by liposome-mediated, flow cytometry instrument detection TK gene transfection cell transfection efficiency can reach 75.5%. Six days later the MTT assay showed that in the experimental group 1 inhibition rate of all concentration ratio of the mixed culture fluid were statistically significant as compared with the control group (P < 0.05), and in the experimental group 2 that of the 1/10 and 1/7 of concentration ratio of mixed culture medium was not statistically significant as compared with the control group (P > 0.05). TK gene transfected MG-63 cells increased with the the GCV concentration,the cell apoptosis rate increased. The experiment demonstrated that the MG-63 OS cells are sensitive to the liposome-mediated TK/GCV system and bystander effects are significant.
Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina
2017-02-02
Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.
Murakami, Taira; Kanai, Tamotsu; Takata, Hiroki; Kuriki, Takashi; Imanaka, Tadayuki
2006-01-01
Branching enzyme (BE) catalyzes formation of the branch points in glycogen and amylopectin by cleavage of the α-1,4 linkage and its subsequent transfer to the α-1,6 position. We have identified a novel BE encoded by an uncharacterized open reading frame (TK1436) of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. TK1436 encodes a conserved protein showing similarity to members of glycoside hydrolase family 57 (GH-57 family). At the C terminus of the TK1436 protein, two copies of a helix-hairpin-helix (HhH) motif were found. TK1436 orthologs are distributed in archaea of the order Thermococcales, cyanobacteria, some actinobacteria, and a few other bacterial species. When recombinant TK1436 protein was incubated with amylose used as the substrate, a product peak was detected by high-performance anion-exchange chromatography, eluting more slowly than the substrate. Isoamylase treatment of the reaction mixture significantly increased the level of short-chain α-glucans, indicating that the reaction product contained many α-1,6 branching points. The TK1436 protein showed an optimal pH of 7.0, an optimal temperature of 70°C, and thermostability up to 90°C, as determined by the iodine-staining assay. These properties were the same when a protein devoid of HhH motifs (the TK1436ΔH protein) was used. The average molecular weight of branched glucan after reaction with the TK1436ΔH protein was over 100 times larger than that of the starting substrate. These results clearly indicate that TK1436 encodes a structurally novel BE belonging to the GH-57 family. Identification of an overlooked BE species provides new insights into glycogen biosynthesis in microorganisms. PMID:16885460
Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12.
Colbere-Garapin, F; Chousterman, S; Horodniceanu, F; Kourilsky, P; Garapin, A C
1979-08-01
A herpes simplex virus DNA fragment that is produced by digestion with BamHI endonuclease and carries the thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) gene has been cloned in Escherichia coli. A recombinat plasmid, pFG5, has been analyzed extensively and a detailed restriction map is presented. pFG5 DNA efficiently transforms TK- mouse L cells. The TK coding sequence in the cloned fragment has been localized and a smaller recombinant plasmid, pAG0, also carrying an active TK gene, has been constructed to serve as a more convenient vector for transfer, into TK- cells, of genes previously cloned in E. coli.
Jiang, Shanwen; Piao, Chenyu; Yu, Yang; Cao, Peng; Li, Chenxu; Yang, Fan; Li, Mutong; Xiang, Wensheng; Liu, Chongxi
2018-01-01
A novel actinomycete, designated strain 1H-SSA4 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce angucyclinone antibiotics. A polyphasic approach was used to determine the taxonomic status of strain 1H-SSA4 T . The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.0 mol%. 16S rRNA gene sequence similarity studies showed that strain 1H-SSA4 T belongs to the genus Streptomyces with the highest sequence similarity to Streptomyces hygroscopicus subsp. ossamyceticus NBRC 13983 T (98.9 %), and phylogenetically clustered with this species, Streptomyces torulosus LMG 20305 T (98.8 %), Streptomyces ipomoeae NBRC 13050 T (98.5 %) and Streptomyces decoyicus NRRL 2666 T (98.4 %). The morphological and chemotaxonomic properties of the strain were also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-SSA4 T and the above-mentioned strains, which further clarified their relatedness and demonstrated that strain 1H-SSA4 T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces capitiformicae sp. nov. is proposed. The type strain is 1H-SSA4 T (=CGMCC 4.7403 T =DSM 104537 T ).
Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.
Ogawara, Hiroshi
2016-05-10
Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.
High-Throughput Toxicokinetics (HTTK) R package (CompTox CoP presentation)
Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting tissue concentrations due to exposure, but traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to determine range of effic...
Kutanan, Wibhu; Kampuansai, Jatupol; Srikummool, Metawee; Kangwanpong, Daoroong; Ghirotto, Silvia; Brunelli, Andrea; Stoneking, Mark
2017-01-01
The Tai-Kadai (TK) language family is thought to have originated in southern China and spread to Thailand and Laos, but it is not clear if TK languages spread by demic diffusion (i.e., a migration of people from southern China) or by cultural diffusion, with native Austroasiatic (AA) speakers switching to TK languages. To address this and other questions, we obtained 1234 complete mtDNA genome sequences from 51 TK and AA groups from Thailand and Laos. We find high genetic heterogeneity across the region, with 212 different haplogroups, and significant genetic differentiation among different samples from the same ethnolinguistic group. TK groups are more genetically homogeneous than AA groups, with the latter exhibiting more ancient/basal mtDNA lineages, and showing more drift effects. Modeling of demic diffusion, cultural diffusion, and admixture scenarios consistently supports the spread of TK languages by demic diffusion.
Pathogenic Streptomyces spp. abundance affected by potato cultivars.
Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean
2018-04-16
Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest. .
Latitude delineates patterns of biogeography in terrestrial Streptomyces.
Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H
2016-12-01
The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Azab, Walid; Tsujimura, Koji; Kato, Kentaro; Arii, Jun; Morimoto, Tomomi; Kawaguchi, Yasushi; Tohya, Yukinobu; Matsumura, Tomio; Akashi, Hiroomi
2010-02-01
Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease among horses worldwide. A thymidine kinase (TK)-deletion mutant has been generated by using bacterial artificial chromosome (BAC) technology to investigate the role of TK in pathogenesis. Deletion of TK had virtually no effect on the growth characteristics of WA79DeltaTK in cell culture when compared to the parent virus. Also, virus titers and plaque formation were unaffected in the absence of the TK gene. The sensitivity of EHV-4 to inhibition by acyclovir (ACV) and ganciclovir (GCV) was studied by means of a plaque reduction assay. GCV proved to be more potent and showed a superior anti-EHV-4 activity. On the other hand, ACV showed very poor ability to inhibit EHV-4 replication. As predicted, WA79DeltaTK was insensitive to GCV. Although EHV-4 is normally insensitive to ACV, it showed >20-fold increase in sensitivity when the equine herpesvirus-1 (EHV-1) TK was supplied in trans. Furthermore, both ACV and GCV resulted in a significant reduction of plaque size induced by EHV-4 and 1. Taken together, these data provided direct evidence that GCV is a potent selective inhibitor of EHV-4 and that the virus-encoded TK is an important determinant of the virus susceptibility to nucleoside analogues. Copyright 2009 Elsevier B.V. All rights reserved.
Wu, Chan-Han; Huang, Chun-Ming; Chung, Fu-Yen; Huang, Ching-Wen; Tsai, Hsiang-Lin; Chen, Chin-Fan; Wang, Jaw-Yuan
2013-01-01
This study is to investigate multiple chemotherapeutic agent- and radiation-related genetic biomarkers in locally advanced rectal cancer (LARC) patients following fluoropyrimidine-based concurrent chemoradiotherapy (CCRT) for response prediction. We initially selected 6 fluoropyrimidine metabolism-related genes (DPYD, ORPT, TYMS, TYMP, TK1, and TK2) and 3 radiotherapy response-related genes (GLUT1, HIF-1 α, and HIF-2 α) as targets for gene expression identification in 60 LARC cancer specimens. Subsequently, a high-sensitivity weighted enzymatic chip array was designed and constructed to predict responses following CCRT. After CCRT, 39 of 60 (65%) LARC patients were classified as responders (pathological tumor regression grade 2 ~ 4). Using a panel of multiple genetic biomarkers (chip), including DPYD, TYMS, TYMP, TK1, and TK2, at a cutoff value for 3 positive genes, a sensitivity of 89.7% and a specificity of 81% were obtained (AUC: 0.915; 95% CI: 0.840–0.991). Negative chip results were significantly correlated to poor CCRT responses (TRG 0-1) (P = 0.014, hazard ratio: 22.704, 95% CI: 3.055–235.448 in multivariate analysis). Disease-free survival analysis showed significantly better survival rate in patients with positive chip results (P = 0.0001). We suggest that a chip including DPYD, TYMS, TYMP, TK1, and TK2 genes is a potential tool to predict response in LARC following fluoropyrimidine-based CCRT. PMID:24455740
Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna
2013-01-01
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Sun, Ren; Eriksson, Staffan
2014-01-01
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of deoxynucleosides in the synthesis of the DNA precursors required for mitochondrial DNA (mtDNA) replication and are essential for mitochondrial function. Antiviral nucleosides are known to cause toxic mitochondrial side effects. Here, we examined the effects of 3′-azido-2′,3′-dideoxythymidine (AZT) (zidovudine) on mitochondrial TK2 and dGK levels and found that AZT treatment led to downregulation of mitochondrial TK2 and dGK in U2OS cells, whereas cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) levels were not affected. The AZT effects on mitochondrial TK2 and dGK were similar to those of oxidants (e.g., hydrogen peroxide); therefore, we examined the oxidative effects of AZT. We found a modest increase in cellular reactive oxygen species (ROS) levels in the AZT-treated cells. The addition of uridine to AZT-treated cells reduced ROS levels and protein oxidation and prevented the degradation of mitochondrial TK2 and dGK. In organello studies indicated that the degradation of mitochondrial TK2 and dGK is a mitochondrial event. These results suggest that downregulation of mitochondrial TK2 and dGK may lead to decreased mitochondrial DNA precursor pools and eventually mtDNA depletion, which has significant implications for the regulation of mitochondrial nucleotide biosynthesis and for antiviral therapy using nucleoside analogs. PMID:25182642
Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system
NASA Astrophysics Data System (ADS)
Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong
2008-02-01
HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.
Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna
2013-01-01
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978
Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.
Nelson, Peter Hugo
2003-12-01
The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.
Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel
NASA Astrophysics Data System (ADS)
Nelson, Peter Hugo
2003-12-01
The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.
Sajid, Imran; Shaaban, Khaled A; Hasnain, Shahida
2013-01-01
A newly isolated strain Streptomyces sp. BG5 was investigated for the production of bioactive compounds. The strain exhibited broad-spectrum activity against an array of nine test organisms including gram-positive bacteria, gram-negative bacteria, and fungal and microalgal pathogens, along with a moderate cytotoxic response (28.9% mortality) in a microwell cytotoxicity assay against the brine shrimp Artimia salina. The morphological, physiological, and biochemical characterization of the Streptomyces sp. BG5 strongly suggested it to be a member of the genus Streptomyces. The nucleotide sequence of 16S rRNA gene (1433 pb) of the Streptomyces sp. BG5 (Gene bank accession number EU301836) exhibited high similarity (98%) with Streptomyces matensis. The large-scale fermentation of Streptomyces sp. BG5 and subsequent extraction, isolation, and purification of the crude extract afforded three pure compounds. The structures of these compounds were identified as ochromycinone (1a), emycin D (2), and 1-acetyl-β-carbolin (3), based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and by comparison with reference data from the literature.
Labeda, David P
2016-03-01
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 strains identified as Streptomyces scabiei deposited at various times since the 1950s and these were subjected to multi-locus sequence analysis utilising partial sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB. Phylogenetic analyses confirmed the identity of 17 of these strains as Streptomyces scabiei, 9 of the strains as the potato-pathogenic species Streptomyces europaeiscabiei and 6 strains as potentially new phytopathogenic species. Of the 16 other strains, 12 were identified as members of previously described non-pathogenic Streptomyces species while the remaining 4 strains may represent heretofore unrecognised non-pathogenic species. This study demonstrated the value of this technique for the relatively rapid, simple and sensitive molecular identification of Streptomyces strains held in culture collections.
Zhou, Shuyu; Li, Zhilei; Bai, Lu; Yan, Kai; Zhao, Junwei; Lu, Chang; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng
2017-01-01
During an investigation of microbial diversity in medicinal herbs, a novel actinomycete, strain NEAU-QHHV11 T was isolated from the rhizosphere of Peucedanum praeruptorum Dunn collected from Xianglu Mountain in Heilongjiang Province, northeast China and characterized using a polyphasic approach. The organism was found to have typical characteristics of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequence also indicated that strain NEAU-QHHV11 T belongs to the genus Streptomyces and was most closely related to Streptomyces graminilatus NBRC 108882 T (98.7 % sequence similarity) and Streptomyces turgidiscabies NBRC 16080 T (98.7 % sequence similarity). The results of DNA-DNA hybridization and some phenotypic characteristics indicated that strain NEAU-QHHV11 T could be distinguished from its close phylogenetic relatives. Thus, strain NEAU-QHHV11 T represents a novel species of the genus Streptomyces, for which the name Streptomyces castaneus sp. nov. is proposed. The type strain is NEAU-QHHV11 T (=CGMCC 4.7235 T = DSM 100520 T ).
Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by predicting tissue concentrations due to exposure, however traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to...
Penicillin-binding proteins in Actinobacteria.
Ogawara, Hiroshi
2015-04-01
Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.
Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by predicting tissue concentrations due to exposure. However traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to...
NASA Astrophysics Data System (ADS)
Yanagisawa, Takashi
2015-07-01
We investigate the Kondo effect in Dirac systems, where Dirac electrons interact with the localized spin via the s-d exchange coupling. The Dirac electron in solid state has the linear dispersion and is described typically by the Hamiltonian such as Hk = vk · σ for the wave number k where σj are Pauli matrices. We derived the formula of the Kondo temperature TK by means of the Green's function theory for small J. The TK is determined from a singularity of Green's functions in the form TK ≃ bar{D}exp ( - const./ρ |J|) when the exchange coupling |J| is small where bar{D} = D/√{1 + D2/(2μ )2} for a cutoff D and ρ is the density of states at the Fermi surface. When |μ| ≪ D, TK is proportional to |μ|: TK ≃ |μ| exp(-const./ρ|J|). The Kondo screening will, however, disappear when the Fermi surface shrinks to a point called the Dirac point, that is, TK vanishes when the chemical potential μ is just at the Dirac point. The resistivity and the specific heat exhibit a log-T singularity in the range TK < T ≪ |μ|/kB. Instead, for T ˜ O(|μ|) or T > |μ|, they never show log-T.
Geary, Janis; Jardine, Cynthia G.; Guebert, Jenilee; Bubela, Tania
2013-01-01
Background Research in northern Canada focused on Aboriginal peoples has historically benefited academia with little consideration for the people being researched or their traditional knowledge (TK). Although this attitude is changing, the complexity of TK makes it difficult to develop mechanisms to preserve and protect it. Protecting TK becomes even more important when outside groups become interested in using TK or materials with associated TK. In the latter category are genetic resources, which may have commercial value and are the focus of this article. Objective This article addresses access to and use of genetic resources and associated TK in the context of the historical power-imbalances in research relationships in Canadian north. Design Review. Results Research involving genetic resources and TK is becoming increasingly relevant in northern Canada. The legal framework related to genetic resources and the cultural shift of universities towards commercial goals in research influence the environment for negotiating research agreements. Current guidelines for research agreements do not offer appropriate guidelines to achieve mutual benefit, reflect unequal bargaining power or take the relationship between parties into account. Conclusions Relational contract theory may be a useful framework to address the social, cultural and legal hurdles inherent in creating research agreements. PMID:23986896
Geary, Janis; Jardine, Cynthia G; Guebert, Jenilee; Bubela, Tania
2013-01-01
Research in northern Canada focused on Aboriginal peoples has historically benefited academia with little consideration for the people being researched or their traditional knowledge (TK). Although this attitude is changing, the complexity of TK makes it difficult to develop mechanisms to preserve and protect it. Protecting TK becomes even more important when outside groups become interested in using TK or materials with associated TK. In the latter category are genetic resources, which may have commercial value and are the focus of this article. This article addresses access to and use of genetic resources and associated TK in the context of the historical power-imbalances in research relationships in Canadian north. Review. Research involving genetic resources and TK is becoming increasingly relevant in northern Canada. The legal framework related to genetic resources and the cultural shift of universities towards commercial goals in research influence the environment for negotiating research agreements. Current guidelines for research agreements do not offer appropriate guidelines to achieve mutual benefit, reflect unequal bargaining power or take the relationship between parties into account. Relational contract theory may be a useful framework to address the social, cultural and legal hurdles inherent in creating research agreements.
2012-01-01
Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose following a Michaelis–Menten kinetics with a KM of 9.13 mg/ml and a vmax of 3469 μM min-1. The enzyme exhibits a half life of around 24 h and 96 h at 60°C and 50°C, respectively and shows a retention of around 80% of activity after 96 h at 40°C. Conclusions In this manuscript, we describe the isolation of a new cellulolytic strain, Streptomyces sp. G12, from industrial waste based compost, the identification of the enzymes putatively responsible for its cellulolytic activity, the cloning and the recombinant expression of the gene coding for the Streptomyces sp. G12 cellulase CelStrep, that was characterized showing to exhibit a relevant thermoresistance increasing its potential for cellulose conversion. PMID:23267666
Undabarrena, Agustina; Ugalde, Juan A.; Seeger, Michael
2017-01-01
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment. PMID:28229018
Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M
2015-01-01
In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.
Streptomyces fuscichromogenes sp. nov., an actinomycete from soil.
Zhang, Hao; Zheng, Jimei; Zhuang, Junli; Xin, Yuhua; Zheng, Xiaowei; Zhang, Jianli
2017-01-01
A novel actinomycete, designated strain m16T, was isolated from a soil sample collected from the tropical rain forest of Xishuangbanna, a prefecture in Yunnan Province, south-west China, and characterized by using polyphasic taxomomy. Cells were aerobic and Gram-reaction-positive, and spore chains were observed to be of the helical type, with elliptical spores and smooth spore surfaces. The novel strain grew over a temperature range of 15-35 °C, at pH 5.0-11.0 and in the presence of 0-3 % (w/v) NaCl. The DNA G+C content of strain m16T was 70.0 mol%. The main fatty acids were iso-C16 : 0 (29.3 %), iso-C15: 0 (15.4 %) and anteiso-C15:0 (14.6 %), and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Comparative 16S rRNA gene sequence analysis showed that strain m16T was most closely related to Streptomyces jiujiangensis KCTC 29262T (98.7 %), Streptomyces panaciradicis KACC 17632T (98.7 %), Streptomyces rhizophilus NBRC 108885T (98.5 %), Streptomyces shenzhenensis DSM 42034T (98.4 %), Streptomyces graminisoli JR-19T (98.4 %) and Streptomyces gramineus JR-43T (98.3 %). Phylogenetic, chemotaxonomic and phenotypic analyses indicated that strain m16T represents a novel species within the genus Streptomyces, for which the name Streptomyces fuscichromogenes is proposed. The type strain is m16T (=CGMCC 4.7110T=KCTC 29195T).
Complete Genome Sequence of the Streptomyces Phage Nanodon.
Erill, Ivan; Caruso, Steven M
2016-10-06
Streptomyces phage Nanodon is a temperate double-stranded DNA Siphoviridae belonging to cluster BD1. It was isolated from soil collected in Kilauea, HI, using Streptomyces griseus subsp. griseus as a host. Copyright © 2016 Erill et al.
New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae.
Pullen, Christian; Schmitz, Petra; Meurer, Kristina; Bamberg, Daniel D v; Lohmann, Stephanie; De Castro França, Suzelei; Groth, Ingrid; Schlegel, Brigitte; Möllmann, Ute; Gollmick, Friedrich; Gräfe, Udo; Leistner, Eckhard
2002-11-01
Wood from three different plants of the Celastraceae growing in their natural habitats in Brazil (Maytenus aquifolia Mart.) and South Africa [Putterlickia retrospinosa van Wyk and Mostert, P. verrucosa (E. Meyer ex Sonder) Szyszyl.] was established as a source of endophytic bacteria using a medium selective for actinomycetes. Two isolates were identified as Streptomyces setonii and S. sampsonii whereas two others were not assignable to any of the known Streptomyces species. They were preliminarily named Streptomyces Q21 and Streptomyces MaB-QuH-8. The latter strain produces a new chloropyrrol and chlorinated anthracyclinone. The chloropyrrol showed high activity against a series of multiresistent bacteria and mycobacteria.
Challis, Gregory L; Hopwood, David A
2003-11-25
In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of beta-lactam antibiotics and beta-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes.
Challis, Gregory L.; Hopwood, David A.
2003-01-01
In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of β-lactam antibiotics and β-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes. PMID:12970466
Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe
Haley, Joshua A.; Stark, W. Marshall
2016-01-01
ABSTRACT Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor, by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo. Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo. The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae, an emerging model bacterium in Streptomyces research. PMID:28003200
Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Saravanan, Venkatakrishnan Sivaraj; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah; Pragatheswari, Dhandapani; Santhanakrishnan, Palani; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo
2016-10-01
A novel siderophore-producing actinomycete, designated PL19T, was isolated from the Scots-pine needle-like leaves collected from TNAU campus, Coimbatore, India. The isolate was chemoorganotrophic in nutrition and able to grow at 30 °C, and the optimum pH and NaCl facilitated the growth pH 6-11 and 0-8 % (w/v), respectively. The cells are filamentous and the mycelia formed are basically of wide and intricately branched substrate mycelium from which aerial mycelia arises, later gets differentiated into spores that are warty and arranged spirally. The 16S rRNA gene of strain PL19T was sequenced and was highly similar to the type strains of species of the genus Streptomyces, including Streptomyces barkulensis RC1831T (98.8 % pairwise similarity), Streptomyces fenghuangensis GIMN4.003T (98.2 %), Streptomyces nanhaiensis SCSIO 01248T (98.0 %), Streptomyces radiopugnans R97T (97.9 %), Streptomyces atacamensis C60T (97.8 %) and Streptomyces macrosporus NBRC 14749T (97.2 %), all of which were subjected to taxonomical characterization using a polyphasic approach. The strains showed unique carbon utilization patterns, and it possesses iso-C16 : 0 anteiso-C15 : 0 and anteiso-C17 : 0 as a major cellular fatty acids. The cell-wall was dominated with ll-type diaminopimelic acid, and the menaquinone type was MK-9(H6, H8). These chemotaxonomic evidences placed strain PL19T within the genus Streptomyces. The determination of G+C ratio (69.5 mol%) and DNA-DNA hybridization values (13.4-31.8 % with the phylogenetically related species) helped in further hierarchical classification of strain PL19T. Based on morphological, physiological and chemotaxonomic data as well as DNA-DNA hybridization values, strain PL19T could be distinguished from the evolutionarily closest species currently available. All these collective data show that strain PL19T represents a novel species of the genus Streptomyces, for which the name Streptomyces pini sp. nov. is proposed. The type strain is PL19T (=NRRL B-24728T=ICMP 17783T).
Krishnan, Shuba; Paredes, João A.; Zhou, Xiaoshan; Kuiper, Raoul V.; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna
2014-01-01
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. PMID:25296759
Krishnan, Shuba; Paredes, João A; Zhou, Xiaoshan; Kuiper, Raoul V; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna
2014-11-21
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK(+/-)Tk2(-/-) mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK(+/-) mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Russ, Pamela; Schelling, Pierre; Scapozza, Leonardo; Folkers, Gerd; Clercq, Erik De; Marquez, Victor E
2003-11-06
The conformationally locked nucleoside, (north)-methanocarbathymine (1a), is a potent and selective anti-herpes agent effective against herpes simplex type 1 (HSV1) and type 2 (HSV2) viruses. Hereby, we report on the synthesis and biological evaluation of a small set of 5-substituted pyrimidine nucleosides belonging to the same class of bicyclo[3.1.0]hexane nucleosides. Both the 5-bromovinyl (4) and the 5-bromo analogue (3) appeared to be exclusive substrates of HSV1 thymidine kinase (TK), contrasting with the 5-iodo analogue (2), which was significantly phosphorylated by the human cytosolic TK. The binding affinity constant and catalytic turnover for HSV1 TK were measured to assess the influence of the substitution on these parameters. In the plaque reduction and cytotoxicity assays, the 5-bromo analogue (3) showed good activity against HSV1 and HSV2 with less general toxicity than 1a. Against varicella-zoster virus (VZV), the north-locked 5-bromovinyl analogue (4) proved to be as potent as its conformationally unlocked 2'-deoxyriboside equivalent BVDU. The three compounds were also tested in vitro as prodrugs used in a gene therapy context on three osteosarcoma cell lines, either deficient in TK (TK(-)), nontransduced, or stably transduced with HSV1 TK. The 5-iodo compound (2, CC(50) 25 +/- 7 microM) was more efficient than ganciclovir (GCV, CC(50) 75 +/- 35 microM) in inhibiting growth of HSV1-TK transfected cells and less inhibitory than GCV toward TK(-) cells, whereas compound 3 inhibited transfected and nontransfected cell lines in a relatively similar dose-dependent manner.
Leonis, Mike A; Toney-Earley, Kenya; Degen, Sandra J F; Waltz, Susan E
2002-11-01
The targeted deletion of the cytoplasmic domain of the Ron receptor tyrosine kinase (TK) in mice leads to exaggerated responses to injury in several murine models of inflammation as well as increased lethality in response to endotoxin (lipopolysaccharide [LPS]). Using a well-characterized model of LPS-induced acute liver failure (ALF) in galactosamine (GalN)-sensitized mice, we show that Ron TK(-/-) mice display marked protection compared with control Ron TK(+/+) mice. Whereas control mice have profound elevation of serum aminotransferase levels (a marker of hepatocyte injury) and hemorrhagic necrosis of the liver, in dramatic contrast, Ron TK(-/-) mice have mild elevation of aminotransferase levels and relatively normal liver histology. These findings are associated with a reduction in the number of liver cells undergoing apoptosis in Ron TK(-/-) mice. Paradoxically, treatment of Ron TK(-/-) mice with LPS/GalN leads to markedly elevated (3.5-fold) serum levels of tumor necrosis factor (TNF) alpha, a key inflammatory mediator in this liver injury model, as well as reduced amounts of interleukin (IL) 10 (a suppressor of TNF-alpha production) and interferon (IFN)-gamma (a TNF-alpha sensitizer). These results show that ablation of the TK activity of the Ron receptor leads to protection from the development of hepatocellular apoptosis in response to treatment with LPS/GalN, even in the presence of excessive levels of serum TNF-alpha. In conclusion, our studies show that the Ron receptor TK plays a critical role in modulating the response of the liver to endotoxin.
Syrkina, Olga; Hales, Charles H; Bonab, Ali A; Hamrahi, Victoria; Paul, Kasie; Jung, Walter J; Tompkins, Ronald G; Fischman, Alan J; Carter, Edward A
Many inflammatory responses are mediated by activation of the transcription factor, nuclear factor-kappa B (NF-κB), and a wide variety of human diseases involve abnormal regulation of its expression. In this investigation, we evaluated the effect of smoke inhalation injury on NF-κB expression in lung using two strains of NF-κB reporter mice. Groups of reporter mice with viral thymidine kinase (TK) or "fire fly" luciferase (Luc) genes under control by the NF-κB promoter (TK/NF-κB mice and Luc/NF-κB mice) were subjected to nonlethal smoke inhalation injury. Sham-treated animals served as controls. Twenty-four hours (each animal was injected intravenously with either 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (FHBG) (~ 1.0 mCi) or luciferin (1.0 mg). One hour later, the TK/NF-κB mice were studied by micro-positron emission tomography (µ-PET) imaging using a Concord P4 µ-PET camera, and the Luc/NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. The µ-PET data demonstrated that smoke injury produced massive increases in NF-κB expression (FHBG-standardized uptake value: 3.1 vs 0.0) 24 hours after smoke inhalation, which was reduced 48 hours after smoke inhalation, but still significantly different than the control. Qualitative analysis of the bioluminescence data revealed a remarkably similar effect of burn NF-κB luciferase expression in vivo. Biodistribution studies of FHBG uptake and luciferase activity in lung tissue demonstrated a similar increase 24 hours after injury, which was reduced 48 hours later, but still significantly higher than the sham. The present data with these models providing longitudinal imaging data on the same mouse may prove useful in the examination of the factors producing lung injury by smoke inhalation, as well as the treatment(s) for the damage produced with and without burn injury.
CHROMOSOME 11 ABERRATIONS IN SMALL COLONY L5178Y TK-/-MUTANTS EARLY IN THEIR CLONAL HISTORY
The authors have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments they show that the major proportion (...
Wang, L; Eriksson, S
2010-06-01
Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.
Applications of temporal kernel canonical correlation analysis in adherence studies.
John, Majnu; Lencz, Todd; Ferbinteanu, Janina; Gallego, Juan A; Robinson, Delbert G
2017-10-01
Adherence to medication is often measured as a continuous outcome but analyzed as a dichotomous outcome due to lack of appropriate tools. In this paper, we illustrate the use of the temporal kernel canonical correlation analysis (tkCCA) as a method to analyze adherence measurements and symptom levels on a continuous scale. The tkCCA is a novel method developed for studying the relationship between neural signals and hemodynamic response detected by functional MRI during spontaneous activity. Although the tkCCA is a powerful tool, it has not been utilized outside the application that it was originally developed for. In this paper, we simulate time series of symptoms and adherence levels for patients with a hypothetical brain disorder and show how the tkCCA can be used to understand the relationship between them. We also examine, via simulations, the behavior of the tkCCA under various missing value mechanisms and imputation methods. Finally, we apply the tkCCA to a real data example of psychotic symptoms and adherence levels obtained from a study based on subjects with a first episode of schizophrenia, schizophreniform or schizoaffective disorder.
Novel selective human mitochondrial kinase inhibitors: design, synthesis and enzymatic activity.
Ciliberti, Nunzia; Manfredini, Stefano; Angusti, Angela; Durini, Elisa; Solaroli, Nicola; Vertuani, Silvia; Buzzoni, Lisa; Bonache, Maria Cruz; Ben-Shalom, Efrat; Karlsson, Anna; Saada, Ann; Balzarini, Jan
2007-04-15
Selective and effective TK2 inhibitors can be obtained by introduction of bulky lipophilic chains (acyl or alkyl entities) at the 2' position of araT and BVaraU, nucleoside analogues naturally endowed with a low TK2 affinity. These derivatives showed a competitive inhibitory activity against TK2 in micromolar range. BVaraU nucleoside analogues, modified on the 2'-O-acyl chain with a terminal N-Boc amino-group, conserved or increased the inhibitory activity against TK2 (7l and 7m IC(50): 6.4 and 3.8 microM, respectively). The substitution of an ester for a carboxamide moiety at the 2' position of araT afforded a consistent reduction of the inhibitory activity (25, IC(50): 480 microM). On the contrary, modifications at 2'-OH position of araC and araG, have provided inactive derivatives against TK2 and dGK, respectively. The biological activity of a representative compound, 2'-O-decanoyl-BVaraU, was also investigated in normal human fibroblasts and was found to impair mitochondrial function due to TK2 inhibition.
Mechanisms of mutagenesis in human cells exposed to 55 MeV protons
NASA Technical Reports Server (NTRS)
Gauny, S.; Wiese, C.; Kronenberg, A.
2001-01-01
Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.
Sanford, B; Holinka, L G; O'Donnell, V; Krug, P W; Carlson, J; Alfano, M; Carrillo, C; Wu, Ping; Lowe, Andre; Risatti, G R; Gladue, D P; Borca, M V
2016-02-02
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically deleting virus genes involved in virulence, including the thymidine kinase (TK) gene. TK has been shown to be involved in the virulence of several viruses, including ASFV. Here we report the construction of a recombinant virus (ASFV-G/V-ΔTK) obtained by deleting the TK gene in a virulent strain of ASFV Georgia adapted to replicate in Vero cells (ASFV-G/VP30). ASFV-G/P-ΔTK demonstrated decreased replication both in primary swine macrophage cell cultures and in Vero cells compared with ASFV-G/VP30. In vivo, intramuscular administration of up to 10(6) TCID50 of ASFV-G/V-ΔTK does not result in ASF disease. However, these animals are not protected when challenged with the virulent parental Georgia strain. Published by Elsevier B.V.
Fuentes, María S; Colin, Verónica L; Amoroso, María J; Benimeli, Claudia S
2016-02-01
Chlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains. The strains did not show growth inhibition, and they were assayed for chlordane removal, either as pure or as mixed cultures. In pure cultures, all of the strains showed specific dechlorination activity (1.42-24.20 EU mg(-1)) and chlordane removal abilities (91.3-95.5%). The specific dechlorination activity was mainly improved with cultures of three or four microorganisms. The mixed culture consisting of Streptomyces sp. A2-A5-A13 was selected. Their ability to produce bioemulsifiers in the presence of glucose or chlordane was tested, but no significant differences were observed (p > 0.05). However, the stability of the emulsions formed was linked to the carbon source used. Only in chlordane presence the emulsions retained 100% of their initial height. Finally, the selected consortium showed a high degree of sporulation in the pesticide presence. This is the first study on the effects that chlordane exerts on microbe morphology and emulsifier production for a defined mixed culture of Streptomyces with ability to remediate the pesticide. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares
2016-11-01
The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183 T (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475 T (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103 T (=NRRL B-65309 T = CMAA 1378 T ) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.
Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces.
Lu, Fengjuan; Hou, Yanyan; Zhang, Heming; Chu, Yiwen; Xia, Haiyang; Tian, Yongqiang
2017-08-01
The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.
Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.
Field, H J; Darby, G; Wildy, P
1980-07-01
Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.
The -omics Era- Toward a Systems-Level Understanding of Streptomyces
Zhou, Zhan; Gu, Jianying; Du, Yi-Ling; Li, Yong-Quan; Wang, Yufeng
2011-01-01
Streptomyces is a group of soil bacteria of medicinal, economic, ecological, and industrial importance. It is renowned for its complex biology in gene regulation, antibiotic production, morphological differentiation, and stress response. In this review, we provide an overview of the recent advances in Streptomyces biology inspired by -omics based high throughput technologies. In this post-genomic era, vast amounts of data have been integrated to provide significant new insights into the fundamental mechanisms of system control and regulation dynamics of Streptomyces. PMID:22379394
Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives
Yagüe, Paula; López-García, Maria T.; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Ángel
2013-01-01
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. PMID:23496097
Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee
2013-05-01
Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by enhanced angiogenesis and reducing apoptosis.
Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer.
Wang, Zhao-Xia; Bian, Hai-Bo; Yang, Jing-Song; De, Wei; Ji, Xiao-Hui
2009-08-01
Colorectal cancer is a most frequent type of gastrointestinal tract cancers. The prognosis of patients with colorectal cancer remains poor despite intensive interventions. Tumor specific promoter-directed gene therapy and adenoviral technology can be promising strategies for such advanced disease. This study was conducted to explore the possible therapeutic approach of Cox-2 promoter-directed suicide gene therapy with herpes simplex virus thymidine kinase (HSV-tk) in combination with adenoviral technology for advanced colorectal cancer. Firstly, the activity of Cox-2 promoter was assessed by dual luciferase and enhanced green fluorescent protein reporter gene assays in colorectal cancer cell lines and normal human intestinal epithelial cell line. Then, the expression of coxsackievirus and adenovirus receptor (CAR) was detected in colorectal cancer cell lines. The Cox-2 promoter-directed HSV-tk/ganciclovir (GCV) system mediated by adenovirus (Ad-Cp-TK) was developed (Ad-CMVp-TK, Ad-null and no Ad as controls). In vitro cytoxicity, colony formation and apoptosis assays were performed using Ad-Cp-TK. An animal study was carried out in which BALB/C nude mice bearing tumors were treated with Ad-Cp-TK and GCV treatments. Results showed that Cox-2 promoter possessed high transcriptional activity in a tumor-specific manner. All colorectal cancer cells were detected CAR-positive. In vitro cytotoxic and colony formation assays showed that colorectal cancer cells infected with Ad-Cp-TK became more sensitive to GCV but the sensitivity of normal cells infected with Ad-Cp-TK to GCV were not altered. Moreover, the Ad-Cp-TK system combined with GCV treatment could significantly induce apoptosis of colorectal cancer cells but not normal intestinal epithelial cells. Furthermore, this system also significantly inhibited the growth of subcutaneous tumors and prolonged survival of mice. Thus, adenovirus primary receptor was positive in colorectal cancer cells and adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter could provide a promising treatment modality for advanced colorectal cancer with tumor specificity.
Park, Keiichi; Amano, Hideki; Ito, Yoshiya; Mastui, Yoshio; Kamata, Mariko; Yamazaki, Yasuharu; Takeda, Akira; Shibuya, Masabumi; Majima, Masataka
2018-06-01
Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-β) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK -/- ) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-β, and VEGF-A was significantly suppressed in VEGFR1 TK -/- mice, and the accumulation of VEGFR1 + cells in granulation tissue was reduced in VEGFR1 TK -/- mice compared to that in WT mice. The numbers of VEGFR1 + cells and S100A4 + cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK -/- mice transplanted with GFP transgenic VEGFR1 TK -/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1 + cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.
Lei, Jian-Lin; Xia, Shui-Li; Wang, Yimin; Du, Mingliang; Xiang, Guang-Tao; Cong, Xin; Luo, Yuzi; Li, Lian-Feng; Zhang, Lingkai; Yu, Jiahui; Hu, Yonghao; Qiu, Hua-Ji; Sun, Yuan
2016-06-01
Classical swine fever (CSF) and pseudorabies (PR) are both major infectious diseases of pigs, causing enormous economic losses to the swine industry in many countries. A marker vaccine that enables differentiation of infected from vaccinated animals (DIVA) is highly desirable for control and eradication of these two diseases in endemic areas. Since late 2011, PR outbreaks have been frequently reported in many Bartha-K61-vaccinated pig farms in China. It has been demonstrated that a pseudorabies virus (PRV) variant with altered antigenicity and increased pathogenicity was responsible for the outbreaks. Previously, we showed that rPRVTJ-delgE/gI/TK, a gE/gI/TK-deleted PRV variant, was safe for susceptible animals and provided a complete protection against lethal PRV variant challenge, indicating that rPRVTJ-delgE/gI/TK can be used as an attractive vaccine vector. To develop a safe bivalent vaccine against CSF and PR, we generated a recombinant virus rPRVTJ-delgE/gI/TK-E2 expressing the E2 protein of classical swine fever virus (CSFV) based on rPRVTJ-delgE/gI/TK and evaluated its safety and immunogenicity in pigs. The results indicated that pigs (n=5) immunized with rPRVTJ-delgE/gI/TK-E2 of different doses did not exhibit clinical signs or viral shedding following immunization, the immunized pigs produced anti-PRV or anti-CSFV neutralizing antibodies and the pigs immunized with 10(6) or 10(5) TCID50 rPRVTJ-delgE/gI/TK-E2 were completely protected against the lethal challenge with either CSFV Shimen strain or variant PRV TJ strain. These findings suggest that rPRVTJ-delgE/gI/TK-E2 is a promising bivalent DIVA vaccine candidate against CSFV and PRV coinfections. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
The Major Portal of Entry of Koi Herpesvirus in Cyprinus carpio Is the Skin▿
Costes, B.; Raj, V. Stalin; Michel, B.; Fournier, G.; Thirion, M.; Gillet, L.; Mast, J.; Lieffrig, F.; Bremont, M.; Vanderplasschen, A.
2009-01-01
Koi herpesvirus (KHV), recently designated Cyprinid herpesvirus 3, is the causative agent of a lethal disease in koi and common carp. In the present study, we investigated the portal of entry of KHV in carp by using bioluminescence imaging. Taking advantage of the recent cloning of the KHV genome as a bacterial artificial chromosome (BAC), we produced a recombinant plasmid encoding a firefly luciferase (LUC) expression cassette inserted in the intergenic region between open reading frame (ORF) 136 and ORF 137. Two viral strains were then reconstituted from the modified plasmid, the FL BAC 136 LUC excised strain and the FL BAC 136 LUC TK revertant strain, including a disrupted and a wild-type thymidine kinase (TK) locus, respectively. In vitro, the two recombinant strains replicated comparably to the parental FL strain. The FL BAC 136 LUC TK revertant strain was shown in vitro to induce a bioluminescent signal allowing the detection of single positive cells as early as 24 h postinfection, while in vivo, it induced KHV infection in carp that was indistinguishable from that induced by the parental FL strain. To identify the KHV portal of entry, carp were analyzed by bioluminescence imaging at different times postinfection with the FL BAC 136 LUC TK revertant strain. These analyses demonstrated that the skin of the fish covering the fins and also the body is the major portal of entry for KHV in carp. Finally, to further demonstrate the role of the skin as the KHV portal of entry, we constructed an original system, nicknamed “U-tube,” to perform percutaneous infection restricted to the posterior part of the fish. All the data obtained in the present study demonstrate that the skin, and not the gills, is the major portal of entry for KHV in carp. PMID:19153228
Post-synthetic modifications of cadmium-based knots and links.
Prakasam, Thirumurugan; Bilbeisi, Rana A; Lusi, Matteo; Olsen, John-Carl; Platas-Iglesias, Carlos; Trabolsi, Ali
2016-05-31
Three topologically non-trivial cadmium(ii)-based complexes-Cd-[2]C, Cd-TK and Cd-SL-were simultaneously self-assembled in a dynamic library, individually isolated and fully characterized using solid-state, gas-phase and solution-phase techniques. Post-synthetic modifications, including reduction and transmetalation, were subsequently achieved. Imine bond reduction followed by demetallation led to the isolation of the corresponding organic molecules [2]C, TK and SL. Transmetalation of Cd-TK and Cd-SL with the zinc(ii) cation resulted in isolation of the corresponding zinc(ii)-containing complexes Zn-TK and Zn-SL.
Mae, Nobukazu; Makino, Yoshio; Oshita, Seiichi; Kawagoe, Yoshinori; Tanaka, Atsushi; Aoki, Koh; Kurabayashi, Atsushi; Akihiro, Takashi; Akama, Kazuhito; Koike, Satoshi; Takayama, Mariko; Matsukura, Chiaki; Ezura, Hiroshi
2012-02-01
The storage of ripe tomatoes in low-O(2) conditions with and without CO(2) promotes γ-aminobutyric acid (GABA) accumulation. The activities of glutamate decarboxylase (GAD) and α-ketoglutarate-dependent GABA transaminase (GABA-TK) were higher and lower, respectively, following storage under hypoxic (2.4 or 3.5% O(2)) or adjusted aerobic (11% O(2)) conditions compared to the activities in air for 7 days at 25 °C. GAD activity was consistent with the expression level of mRNA for GAD. The GABA concentration in tomatoes stored under hypoxic conditions and adjusted aerobic conditions was 60-90% higher than that when they are stored in air on the same day. These results demonstrate that upregulation of GAD activity and downregulation of GABA-TK activity cause GABA accumulation in tomatoes stored under low-O(2) conditions. Meanwhile, the effect of CO(2) on GABA accumulation is probably minimal.
Zhang, Binglin; Tang, Shukun; Chen, Ximing; Zhang, Ling; Zhang, Gaoseng; Zhang, Wei; Liu, Guangxiu; Chen, Tuo; Li, Shiweng; Dyson, Paul
2016-12-01
A novel actinobacterial strain, designated Z1027T, was isolated from a soil sample collected near the Tuotuo River, Qinghai-Tibet Plateau (China). The strain exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. The taxonomic position of strain Z1027T was determined using a polyphasic approach. The organism had chemotaxonomic and morphological properties consistent with its classification in the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree, together with Streptomyces turgidiscabies ATCC 700248T (99.19 % similarity), Streptomyces graminilatus JL-6T (98.84 %) and Streptomyces reticuliscabiei CFBP 4531T (98.36 %). The genomic DNA G+C content of strain Z1027T was 74±1 mol%. The DNA-DNA relatedness values between strain Z1027T and Streptomyces turgidiscabies ATCC 700248T and Streptomyces reticuliscabiei CFBP 4531T were 38.5±0.4 and 26.2±1.2 %, respectively, both of them significantly lower than 70 %. Chemotaxonomic data revealed that strain Z1027T possessed MK-9(H6) and MK-9(H8) as the major menaquinones, ll-diaminopimelic acid as the diagnostic diamino acid and galactose as a whole-cell sugar. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatydilinositol and seven other unknown polar lipids were detected; iso-C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 were the major fatty acids. On the basis of these genotypic and phenotypic data, it is proposed that isolate Z1027T (=CGMCC 4.7272T=JCM 31054T) should be classified as the type strain of a novel species of the genus Streptomyces,Streptomyces lacrimifluminis sp. nov.
Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C
2016-08-01
Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Streptomyces xylanilyticus sp. nov., isolated from soil.
Moonmangmee, Duangtip; Kanchanasin, Pawina; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn
2017-10-01
A novel actinomycete, strain SR2-123 T , belonging to the genus Streptomyces, was isolated from a soil sample collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic study. Strain SR2-123 T contained ll-diaminopimelic acid, glucose, mannose and ribose in whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. Menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, unknown glycolipids, an unknown aminophospholipid, unknown lipids and an unknown aminolipid. The DNA G+C content was 74.8 mol%. The strain was closely related to Streptomyces coeruleorubidus JCM 4359 T (98.5 %), Streptomyces flavofungini JCM 4753 T (98.5 %), Streptomyces coerulescens NBRC 12758 T (98. 5 %) and Streptomyces alboflavus JCM 4615 T (98.4 %), based on 16S rRNA gene sequence similarities. The novel strain exhibited low DNA-DNA relatedness values with the type strains (11.4-25.0 %) of closely related species. On the basis of phenotypic and genotypic characteristics, strain SR2-123 T could be distinguished from closely related species of the genus Streptomyces and represents a novel species of the genus Streptomyces for which the name Streptomyces xylanilyticus sp. nov. is proposed. The type strain is SR2-123 T (=TISTR 2493 T =KCTC 39909 T ).
Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).
Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng
2016-09-01
A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)).
Sun, Ren; Wang, Liya
2014-10-07
Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.
Structural stability of E. coli transketolase to temperature and pH denaturation.
Jahromi, Raha R F; Morris, Phattaraporn; Martinez-Torres, Ruben J; Dalby, Paul A
2011-09-10
We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.
Feasibility Analysis of Incorporating In-Vitro Toxicokinetic Data ...
The underlying principle of read-across is that biological activity is a function of physical and structural properties of chemicals. Analogs are typically identified on the basis of structural similarity and subsequently evaluated for their use in read-across on the basis of their bioavailability, reactivity and metabolic similarity. While the concept of similarity is the major tenet in grouping chemicals for read-across, a critical consideration is to evaluate if structural differences significantly impact toxicological activity. This is a key source of uncertainty in read-across predictions. We hypothesize that inclusion of toxicokinetic (TK) information will reduce the uncertainty in read-across predictions. TK information can help substantiate whether chemicals within a category have similar ADME properties and, hence, increase the likelihood of exhibiting similar toxicological properties. This current case study is part of a larger study aimed at performing a systematic assessment of the extent to which in-vitro TK data can obviate in-vivo TK data, while maintaining or increasing scientific confidence in read-across predictions. The analysis relied on a dataset of ~7k chemicals with predicted exposure data (chemical inventory), of which 819 chemicals had rat and/or human in-vitro TK data (analog inventory), and 33 chemicals had rat in-vivo TK data (target inventory). The set of chemicals with human in vitro TK data was investigated to determine whether str
Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces
USDA-ARS?s Scientific Manuscript database
The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...
Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig
2017-07-01
Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.
MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS
MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS
The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...
Ye, Lan; Zhao, Shanshan; Li, Yao; Jiang, Shanwen; Zhao, Yue; Li, Jinmeng; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng; Liu, Chongxi
2017-05-01
During a screening for novel and biotechnologically useful actinobacteria in insects, a kanchanamycin-producing actinomycete with antifungal activity, designated strain 3H-HV17(2)T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-HV17(2)T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces spectabilis NBRC 13424T (98.90 %, with which it phylogenetically clustered, Streptomyces alboflavus NRRL B-2373T (98.65 %) and Streptomyces flavofungini NBRC 13371T (98.36 %). Phylogenetic analysis based on the gyrB gene also supported the close relationship of these strains. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-HV17(2)T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that strain 3H-HV17(2)T could be distinguished from these strains. Therefore, strain 3H-HV17(2)T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasiicapitis sp. nov. is proposed. The type strain is 3H-HV17(2)T (=CGMCC 4.7349T=DSM 103124T).
Streptomyces verrucosisporus sp. nov., isolated from marine sediments.
Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon
2016-09-01
Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).
Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.
2017-01-01
Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071
Jung, Woongsic; Kim, Eun Jae; Han, Se Jong; Choi, Han-Gu; Kim, Sanghee
2016-10-01
Stearoyl-CoA desaturase is a key regulator in fatty acid metabolism that catalyzes the desaturation of stearic acid to oleic acid and controls the intracellular levels of monounsaturated fatty acids (MUFAs). Two stearoyl-CoA desaturases (SCD, Δ9 desaturases) genes were identified in an Antarctic copepod, Tigriopus kingsejongensis, that was collected in a tidal pool near the King Sejong Station, King George Island, Antarctica. Full-length complementary DNA (cDNA) sequences of two T. kingsejongensis SCDs (TkSCDs) were obtained from next-generation sequencing and isolated by reverse transcription PCR. DNA sequence lengths of the open reading frames of TkSCD-1 and TkSCD-2 were determined to be 1110 and 681 bp, respectively. The molecular weights deduced from the corresponding genes were estimated to be 43.1 kDa (TkSCD-1) and 26.1 kDa (TkSCD-2). The amino acid sequences were compared with those of fatty acid desaturases and sterol desaturases from various organisms and used to analyze the relationships among TkSCDs. As assessed by heterologous expression of recombinant proteins in Escherichia coli, the enzymatic functions of both stearoyl-CoA desaturases revealed that the amount of C16:1 and C18:1 fatty acids increased by greater than 3-fold after induction with isopropyl β-D-thiogalactopyranoside. In particular, C18:1 fatty acid production increased greater than 10-fold in E. coli expressing TkSCD-1 and TkSCD-2. The results of this study suggest that both SCD genes from an Antarctic marine copepod encode a functional desaturase that is capable of increasing the amounts of palmitoleic acid and oleic acid in a prokaryotic expression system.
Robie, R.A.; Haselton, H.T.; Hemingway, B.S.
1989-01-01
Heat capacities of synthetic MgTiO3 (geikielite), ZnO (zincite), and natural crystals of smithsonite (ZnCO3) were measured between 9 and 366 K using an automatic adiabatically shielded calorimeter. At 298.15 K the standard molar entropies Smo of MgTiO3, ZnO, and ZnCO3 are (74.64 ?? 0.15), (43.16 ?? 0.09), and (81.19 ?? 0.16) J??K-1??mol-1, respectively. Debye temperatures for MgTiO3 and ZnO calculated from our Cp, mo values below 20 K are (900 ?? 20) K and (440 ?? 25) K respectively. Heat capacities for MgTiO3 and ZnO were combined with enthalpy increments from the literature to derive heat-capacity equations for these phases from 260 to about 1800 K. The heat capacities of MgTiO3 between 260 and 1720 K were fitted with an average deviation of 0.3 per cent by the equation: C??p,m/(J??K-1??mol-1) = 222.5-0.05274(T/K)-6.092x105(T/K)-1-1874.6(T/K) -1/2+1.878x10-5(T/K)2 and for ZnO the equation: C??p,m/(J??K-1??mol-1) = 53.999+7.851x10-4(T/K)-5.868x105(T/K)-2 -127.50(T/K)-:1/2+1.9376x10-6(T/K)2 fits the heat capacities in the temperature interval of 250 to 1800 K with an average deviation of 0.7 per cent. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhendong, E-mail: zdyu@hotmail.com; Wang, Hao; Zhang, Libin
CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrugmore » system.« less
Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang
2010-06-01
In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, D.B.; Brown, A.; Cattanach, P.
Seventy-two chemicals were tested for their mutagenic potential in the L51781Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay, using procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before planting in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with allyl isothiocyanate, p-benzoquinone dioxime, benzyl acetate, 2-biphenylamine HCl, bis(2-chloro-1-methylethyl)ether, cadmium chloride, chlordane, chlorobenzene, chlorobenzilate, 2-chloroethanol, chlorothalonil, cytarabine x HCl, p,p'-DDE, diazinon, 2,6-dichloro-p-phenylenediamine, N,N-diethylthiourea, diglycidylresorcinol ether, 2,4-dimethoxy aniline x HCl, disperse yellow 3, endosulfan, 1,2-epoxyhexadecane, ethylmore » acrylate, ethyl benzene, ethylene thiourea, F D and C yellow Number 6, furan, heptachlor, isophorone, mercuric chloride, 4,4'-methylenedianiline x 2 HCl, methyl viologen, nickel sulfate x 6H/sub 2/O, 4,4'-oxydianiline, pentachloroethane, piperonyl butoxide, propyl gallate, quinoline, rotenone, 2,4,5,6-tetrachloro-4-nitro-anisole, 1,1,1,2-tetrachloroethane, trichlorfon, 2,4,6-trichlorophenol, 2,4,5-trimethoxybenzaldehyde, 1,1,3-trimethyl-2-thiourea, 1-vinyl-3-cyclopetene dioxide, vinyl toluene, and ziram. The assay was incapable of providing a clear indication of whether some chemicals were mutagens; these benzyl alcohol, 1,4-dichlorobenzene, phenol, succinic acid-2,2-dimethyl hydrazide, and toluene.« less
USDA-ARS?s Scientific Manuscript database
Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this w...
USDA-ARS?s Scientific Manuscript database
Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...
Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.
El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A
2008-07-01
In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.
Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.
Jones, Stephanie E; Elliot, Marie A
2017-07-01
Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strain-Level Diversity of Secondary Metabolism in Streptomyces albus
Seipke, Ryan F.
2015-01-01
Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820
Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe.
Fogg, Paul C M; Haley, Joshua A; Stark, W Marshall; Smith, Margaret C M
2017-03-01
Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces , most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor , by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae , an emerging model bacterium in Streptomyces research. Copyright © 2017 Fogg et al.
The mechanical properties of polyimide films after exposure to high pH
NASA Technical Reports Server (NTRS)
Croall, Catharine I.; St.clair, Terry L.
1992-01-01
Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.
Deoxyribonucleoside kinases in mitochondrial DNA depletion.
Saada-Reisch, Ann
2004-10-01
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.
Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A; Kuiper, Raoul V; Curbo, Sophie; Karlsson, Anna
2013-02-15
A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK(+/-) transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK(+/-)TK2(-/-) mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK(+/-)TK2(-/-) mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency.
Ye, C; Chen, S; Pei, X; Li, L; Feng, K
1999-08-01
To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.
The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.
Schnitzler, P; Handermann, M; Szépe, O; Darai, G
1991-06-01
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
Terry, Claire; Hays, Sean; McCoy, Alene T; McFadden, Lisa G; Aggarwal, Manoj; Rasoulpour, Reza J; Juberg, Daland R
2016-03-01
A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use. Copyright © 2015 Elsevier Inc. All rights reserved.
Collins-Silva, Jillian; Nural, Aise Taban; Skaggs, Amanda; Scott, Deborah; Hathwaik, Upul; Woolsey, Rebekah; Schegg, Kathleen; McMahan, Colleen; Whalen, Maureen; Cornish, Katrina; Shintani, David
2012-07-01
Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, R; Falardeau, J; Avis, T J; Tambong, J T
2016-02-01
The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.
Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani
2013-10-01
Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.
Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben
2016-03-01
The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.
Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione.
Yan, Peng; Sun, Haoben; Lu, Pengqi; Liu, Haili; Tang, Lei
2018-01-01
Our previous work indicated that the vigor of Streptomyces decreased at the later stage of ε-poly-L-lysine (ε-PL) fermentation. In this study, we observed that the level of reactive oxygen species (ROS) in vivo increased sharply after 24 h, and the addition of an antioxidant glutathione (GSH) before this increase in ROS stimulated ε-PL synthesis in shake-flask fermentation. The enhancement of ε-PL production by GSH was further verified in batch and fed-batch fermentations. On a 5-l fermenter scale, the highest increasement was 68.8% in batch fermentation and the highest ε-PL level was 46.5 g l - 1 in fed-batch fermentation. The RT-qPCR analysis showed that the transcriptional level of the catalase gene was down-regulated, and the decrease in cell activity was alleviated by the addition of GSH. The results revealed that exogenous antioxidant might maintain the cell vigor by reducing the excess ROS which provided a novel approach to regulate ε-PL synthesis.
Kim, Keon Young; Kim, Sunmin; Park, Jeong Kuk; Song, HyoJin; Park, SangYoun
2014-01-01
Full-length SigR from Streptomyces coelicolor A3(2) was overexpressed in Escherichia coli, purified and submitted to crystallization trials using either polyethylene glycol 3350 or 4000 as a precipitant. X-ray diffraction data were collected to 2.60 Å resolution under cryoconditions using synchrotron X-rays. The crystal packs in space group P43212, with unit-cell parameters a = b = 42.14, c = 102.02 Å. According to the Matthews coefficient, the crystal asymmetric unit cannot contain the full-length protein. Molecular replacement with the known structures of region 2 and region 4 as independent search models indicates that the crystal contains only the −35 element-binding carboxyl-terminal region 4 of full-length SigR. Mass-spectrometric analysis of the harvested crystal confirms this, suggesting a crystal volume per protein weight (V M) of 2.24 Å3 Da−1 and 45.1% solvent content. PMID:24915084
Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse -Yuan S.; ...
2015-11-12
Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere.
Genome Sequences of Streptomyces Phages Amela and Verse
Layton, Sonya R.; Hemenway, Ryan M.; Munyoki, Christine M.; Barnes, Emory B.; Barnett, Sierra E.; Bond, Alec M.; Narvaez, Jessi M.; Sirisakd, Christie D.; Smith, Brandt R.; Swain, Justin; Syed, Orooj; Bowman, Charles A.; Russell, Daniel A.; Bhuiyan, Swapan; Donegan-Quick, Richard; Benjamin, Robert C.
2016-01-01
Amela and Verse are two Streptomyces phages isolated by enrichment on Streptomyces venezuelae (ATCC 10712) from two different soil samples. Amela has a genome length of 49,452, with 75 genes. Verse has a genome length of 49,483, with 75 genes. Both belong to the BD3 subcluster of Actinobacteriophage. PMID:26893416
USDA-ARS?s Scientific Manuscript database
Streptomyces spp. cause scab disease in plants like potato and radish. To seek effective control methods of this disease, biologically based materials were examined on their efficacies for disease control. In greenhouse or growth chamber tests, potting soil was infested with Streptomyces scabies (10...
Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis
USDA-ARS?s Scientific Manuscript database
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...
USDA-ARS?s Scientific Manuscript database
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34T, which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural, and morphological properties consistent with it...
USDA-ARS?s Scientific Manuscript database
Isolates of Nocardia cummidelens, Nocardia fluminea, Streptomyces albidoflavus, and Streptomyces luridiscabiei attributing to geosmin-related off-flavor in rainbow trout (Oncorhynchus mykiss) raised in recirculating aquaculture systems (RAS) were evaluated for the effect of temperature (10-30 degree...
Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.
2016-01-01
Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232
The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.
Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.
2016-01-01
Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423
Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.
Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang
2012-11-01
Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.
2017-12-01
Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of vegetation and soil physical and biogeochemical attributes to develop new parameterizations for TK wetlands and permafrost plateau forest land cover types. Preliminary simulations from 2000 to 2100 estimate that the conversion of permafrost plateau forest to young TK wetlands would result in a 7.5% (sd 3.5%) decrease in Net Ecosystem Exchange.
Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil.
Röttig, Annika; Atasayar, Ewelina; Meier-Kolthoff, Jan Philipp; Spröer, Cathrin; Schumann, Peter; Schauer, Jennifer; Steinbüchel, Alexander
2017-06-01
A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).
Streptomyces metabolites in divergent microbial interactions.
Takano, Hideaki; Nishiyama, Tatsuya; Amano, Sho-ichi; Beppu, Teruhiko; Kobayashi, Michihiko; Ueda, Kenji
2016-03-01
Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.
Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives.
Yagüe, Paula; López-García, Maria T; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Angel
2013-05-01
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Streptomyces communities in soils polluted with heavy metals
NASA Astrophysics Data System (ADS)
Grishko, V. N.; Syshchikova, O. V.
2009-02-01
The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.
1999-12-01
be accounted for by conventional descriptions of the system response. To remedy this deficiency , researchers developed a theory or model of the...timex,tO, tev, tps REAL*8 uO, width, x, xx, yy, zz, zr REAL*8 FRACi, FRAC2,F0_XX,F0_YY,F0_ZZ REAL*8 TKl, TK2 ,TQl,Tq2 INTEGER I, J, JJ, K, KK, L, NUM...UU2(J+1) !KK = Layer J+i’s time counter. TK1 = TAU(J+1) TK2 = TK1 + DELTAT(KK) j LOOP MCM C: DO KQ = UU2(J+1), KSUM PLTTIME = TIME * 1E+09 DO
Streptomyces pharmamarensis sp. nov. isolated from a marine sediment.
Carro, Lorena; Zúñiga, Paz; de la Calle, Fernando; Trujillo, Martha E
2012-05-01
A Gram-stain-positive actinobacterium, strain PM267(T), was isolated from a marine sediment sample in the Mediterranean Sea. The novel strain produced extensively branched substrate and aerial hyphae that carried spiral spore chains. Substrate and aerial mycelia were cream-white and white, respectively. Diffusible pigments were not observed. 16S rRNA gene sequence analysis revealed that strain PM267(T) belonged to the genus Streptomyces and shared a gene sequence similarity of 97.1 % with Streptomyces artemisiae YIM 63135(T) and Streptomyces armeniacus JCM 3070(T). Values <97 % were obtained with other sequences representing members of the genus Streptomyces. The cell wall peptidoglycan contained ll-diaminopimelic acid. MK-9(H(8)) was the major menaquinone. The phospholipid pattern included phosphatidylethanolamine as diagnostic lipid (type II). Major fatty acids found were iso- and anteiso- fatty acids. The G+C content of the DNA was 71.2 mol%. The strain was halotolerant and was able to grow in the presence of 9 % (w/v) NaCl (with an optimum of 2 %). On the basis of these results and additional physiological data obtained in the present study, strain PM267(T) represents a novel species within the genus Streptomyces for which the name Streptomyces pharmamarensis sp. nov. is proposed (type strain PM267(T) = CECT 7841(T) = DSM 42032(T)).
Maleki, Hadi; Dehnad, Alireza; Hanifian, Shahram; Khani, Sajjad
2013-01-01
Introduction: Streptomyces are a group of prokaryotes that are usually found in all types of ecosystems including water and soil. This group of bacteria is noteworthy as antibiotic producers; so the isolation and characterization of new species seemed to be crucial in introduction of markedly favorable antibiotics. Therefore, in this study we aim to isolate and characterize novel strains of Streptomyces with high antibiotic production capability. Methods: To achieve this goal, from 140 isolates collected throughout northwest of Iran, 12 selected Streptomyces isolates which exhibited high antibacterial activity against pathogenic bacteria were subjected to PCR reaction for identification via 16S rDNA gene and random amplified polymorphic DNA (RAPD) pattern analysis. Results: Analysis of morphological and biochemical characteristics and the 16S rDNA gene sequence indicated that all 12 selected isolates belonged to the genus Streptomyces. Moreover, screening of the isolates with regard to their antimicrobial activity against indicator bacteria as well as their classification using RAPD analysis revealed that G614C1 and K36C5 isolates have considerable antimicrobial activity and high similarity to Streptomyces coelicolor and Sreptomyces albogriseolus, respectively. Conclusion: Since many isolates in this study showed inhibitory effects against pathogenic bacteria, soil of northwest of Iran could be used as a rich source to be explored for novel Streptomyces strains with high potency of antibiotic production. PMID:24163805
Maleki, Hadi; Dehnad, Alireza; Hanifian, Shahram; Khani, Sajjad
2013-01-01
Streptomyces are a group of prokaryotes that are usually found in all types of ecosystems including water and soil. This group of bacteria is noteworthy as antibiotic producers; so the isolation and characterization of new species seemed to be crucial in introduction of markedly favorable antibiotics. Therefore, in this study we aim to isolate and characterize novel strains of Streptomyces with high antibiotic production capability. To achieve this goal, from 140 isolates collected throughout northwest of Iran, 12 selected Streptomyces isolates which exhibited high antibacterial activity against pathogenic bacteria were subjected to PCR reaction for identification via 16S rDNA gene and random amplified polymorphic DNA (RAPD) pattern analysis. Analysis of morphological and biochemical characteristics and the 16S rDNA gene sequence indicated that all 12 selected isolates belonged to the genus Streptomyces. Moreover, screening of the isolates with regard to their antimicrobial activity against indicator bacteria as well as their classification using RAPD analysis revealed that G614C1 and K36C5 isolates have considerable antimicrobial activity and high similarity to Streptomyces coelicolor and Sreptomyces albogriseolus, respectively. Since many isolates in this study showed inhibitory effects against pathogenic bacteria, soil of northwest of Iran could be used as a rich source to be explored for novel Streptomyces strains with high potency of antibiotic production.
2013-01-01
Background Ribosome assembly cofactor RimP is one of the auxiliary proteins required for maturation of the 30S subunit in Escherichia coli. Although RimP in protein synthesis is important, its role in secondary metabolites biosynthesis has not been reported so far. Considering the close relationship between protein synthesis and the production of secondary metabolites, the function of ribosome assembly cofactor RimP on antibiotics production was studied in Streptomyces coelicolor and Streptomyces venezuelae. Results In this study, the rimP homologue rimP-SC was identified and cloned from Streptomyces coelicolor. Disruption of rimP-SC led to enhanced production of actinorhodin and calcium-dependent antibiotics by promoting the transcription of actII-ORF4 and cdaR. Further experiments demonstrated that MetK was one of the reasons for the increment of antibiotics production. In addition, rimP-SC disruption mutant could be used as a host to produce more peptidyl nucleoside antibiotics (polyoxin or nikkomycin) than the wild-type strain. Likewise, disruption of rimP-SV of Streptomyces venezuelae also significantly stimulated jadomycin production, suggesting that enhanced antibiotics production might be widespread in many other Streptomyces species. Conclusion These results established an important relationship between ribosome assembly cofactor and secondary metabolites biosynthesis and provided an approach for yield improvement of secondary metabolites in Streptomyces. PMID:23815792
Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity
Shetty, Prakasham Reddy; Buddana, Sudheer Kumar; Tatipamula, Vinay Bharadwaj; Naga, Yaswanth Varanasi Venkata; Ahmad, Jamal
2014-01-01
A highly potent secondary metabolite producing actinomycetes strain is isolated from marine soil sediments of Visakhapatnam sea coast, Bay of Bengal. Over all ten strains are isolated from the collected soil sediments. Among the ten actinomycetes strains the broad spectrum strain RSPSN2 was selected for molecular characterization, antibiotic production and its purification. The nucleotide sequence of the 1 rRNA gene (1261 base pairs) of the most potent strain evidenced a 96% similarity with Streptomyces parvulus 1044 strain, Streptomyces parvulus NBRC 13193 and Streptomyces parvulus BY-F. From the taxonomic features, the actinomycetes isolate RSPSN2 matches with Streptomyces parvulus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces parvulus RSPSN2. The active metabolite was extracted using ethyl acetate (1:3, v/v) at pH 7.0. The separation of active ingredient and its purification was performed by using both thin layer chromatography (TLC) and column chromatography (CC) techniques. Spectrometric studies such as UV-visible, FTIR, and NMR and mass were performed. The antibacterial activity of pure compound was performed by cup plate method against some pathogenic bacteria including of streptomycin resistant bacteria like (Pseudomonas mirabilis, Pseudomonas putida and Bacillus cereus). In conclusion, the collected data emphasized the fact that a polypeptide antibiotic (Actinomycin D) was produced by Streptomyces parvulus RSPSN2. PMID:24948949
Streptomyces krungchingensis sp. nov., isolated from soil.
Sripreechasak, Paranee; Phongsopitanun, Wongsakorn; Tamura, Tomohiko; Tanasupawat, Somboon
2017-01-01
A novel actinomycete, designated strain KC-035T, was isolated from soil collected from Krung Ching Waterfall National Park, Nakhon Si Thammarat Province, Thailand. Its taxonomic position was determined using a polyphasic approach. The strain had morphological and chemotaxonomic properties typical of members of the genus Streptomyces: flexuous spore chain; ll-diaminopimelic acid in the cell-wall peptidoglycan; MK-9(H8), MK-9(H6) and MK-9(H4) as menaquinones; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside as phospholipids; anteiso-C15 : 0, C16 : 0, iso-C16 : 0, iso-C15 : 0 and iso-C14 : 0 as major cellular fatty acids; and DNA G+C content of 72 mol%. 16S rRNA gene sequence analysis revealed that strain KC-035T showed high similarity to Streptomyces albiflavescens n20T (99.16 %) and Streptomyces siamensis KC-038T (98.43 %) as well as formed a monophyletic clade with them in the phylogenetic tree. On the basis of comparison of phenotypic properties and the low level of DNA-DNA relatedness, strain KC-035T could be distinguished from its closely related Streptomyces species and is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces krungchingensis sp. nov. is proposed. The type strain is KC-035T (=NBRC 110087T=KCTC 29503T=TISTR 2402T).
Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D
2008-07-01
Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.
Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.
Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco
2016-02-29
Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.
Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.
Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco
2017-01-01
Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.
New insights from Thailand into the maternal genetic history of Mainland Southeast Asia.
Kutanan, Wibhu; Kampuansai, Jatupol; Brunelli, Andrea; Ghirotto, Silvia; Pittayaporn, Pittayawat; Ruangchai, Sukhum; Schröder, Roland; Macholdt, Enrico; Srikummool, Metawee; Kangwanpong, Daoroong; Hübner, Alexander; Arias, Leonardo; Stoneking, Mark
2018-02-26
Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intine, R.V.; Rainbow, A.J.
1990-01-01
A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in partmore » at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.« less
The success story of Fatima Begum.
1999-12-01
This article tells the success story of Fatima Begum from Jhenaidaha, Bangladesh. Having learned of the Integrated Rural Women Development Program of the Bangladesh Rural Development Board, Fatima started a Mohila Samobaya Samity or Women's Cooperative Society on August 21, 1993, with a deposit of Tk. 15 as savings and Tk. 10 as share. In 1994 and 1997 she received loans which she used to purchase a cow, for small trade, and for starting a grocery shop. She had repaid all her loans and had increased her savings deposit to Tk. 1530 and share to Tk. 710. She also had purchased 5 decimals of land and constructed a small house. Meanwhile, Fatima had adopted family planning methods and had two children. Fatima is now the elected Director of Jhenaidaha Sadar Thana Cooperative Societies Federation. Her own society is considered an ideal organization under her leadership. Her society now has 28 members and the amount of thrift-deposit has become Tk. 25,590.
Remali, Juwairiah; Sarmin, Nurul ‘Izzah Mohd; Ng, Chyan Leong; Tiong, John J.L.; Aizat, Wan M.; Keong, Loke Kok
2017-01-01
Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites. PMID:29201559
Lyu, Ang; Liu, Hao; Che, Hongjie; Yang, Long; Zhang, Jing; Wu, Mingde; Chen, Weidong; Li, Guoqing
2017-01-01
This study was conducted to determine the antifungal activity of the metabolites from Streptomyces sp. 3–10, and to purify and identify the metabolites. Meanwhile, the taxonomic status of strain 3–10 was re-evaluated. The cultural filtrates of strain 3–10 in potato dextrose broth were extracted with ethyl acetate. The resulting crude extract at 1 and 5 μg/ml inhibited growth of 22 species in 18 genera of plant pathogenic fungi and Oomycetes, accounting for 92% of the total 24 tested species, suggesting that it has a wide antifungal spectrum. Two compounds were purified from the crude extract and were identified as reveromycins A and B, which demonstrated high antifungal activity against Botrytis cinerea, Mucor hiemails, Rhizopus stolonifer, and Sclerotinia sclerotiorum under acidic pH conditions. Both the crude extract and reveromycin A from strain 3–10 at 10, 50, and 100 μg/ml showed high efficacy in suppression of strawberry fruit rot caused by the above-mentioned four pathogens. The efficacy was comparable to that of corresponding commercial fungicides (pyrimethanil, captan, dimetachlone) used in management of these pathogens. Morphological, physiological, and phylogenetic characterization showed that strain 3–10 is closely related to Streptomyces yanglinensis 1307T, representing a novel phylotype in that species. This study reported a new strain with reveromycins-producing capability. The finding is important for further exploitation of reveromycins for agricultural use. PMID:28421050
Wang, Lifei; Xie, Yunying; Li, Qinglian; He, Ning; Yao, Entai; Xu, Hongzhang; Yu, Ying; Chen, Ruxian; Hong, Bin
2012-12-01
Streptomyces sp. SS produces a series of uridyl peptide antibiotic sansanmycins. Here, we present a draft genome sequence of Streptomyces sp. SS containing the biosynthetic gene cluster for the antibiotics. The identification of the biosynthetic gene cluster of sansanmycins may provide further insight into biosynthetic mechanisms for uridyl peptide antibiotics.
Draft Genome Sequence of Thiostrepton-Producing Streptomyces azureus ATCC 14921
Sakihara, Kengo; Maeda, Jumpei; Tashiro, Kosuke; Fujino, Yasuhiro; Kuhara, Satoru; Ohshima, Toshihisa; Ogata, Seiya
2015-01-01
Streptomyces azureus ATCC 14921 belongs to the Streptomyces cyaneus cluster and is known to be a thiostrepton producer. Here, we report a draft genome sequence for this strain, consisting of 350 contigs containing a total of 8,790,525 bp, 8,164 predicted coding sequences, and a G+C content of 70.9%. PMID:26494661
USDA-ARS?s Scientific Manuscript database
The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...
The use of Tcl and Tk to improve design and code reutilization
NASA Technical Reports Server (NTRS)
Rodriguez, Lisbet; Reinholtz, Kirk
1995-01-01
Tcl and Tk facilitate design and code reuse in the ZIPSIM series of high-performance, high-fidelity spacecraft simulators. Tcl and Tk provide a framework for the construction of the Graphical User Interfaces for the simulators. The interfaces are architected such that a large proportion of the design and code is used for several applications, which has reduced design time and life-cycle costs.
NASA Astrophysics Data System (ADS)
Kurahashi, Toshikazu; Iwatsuki, Katsuyuki; Onishi, Tetsuro; Arai, Tetsuya; Teranishi, Katsunori; Hirata, Hitoshi
2016-08-01
We investigated the optical properties of a near-infrared (NIR) fluorochrome, di-β-cyclodextrin-binding indocyanine derivative (TK-1), and its pharmacokinetic differences with indocyanine green (ICG). TK-1 was designed to have hydrophilic cyclodextrin molecules and, thus, for higher water solubility and smaller particle sizes than the plasma protein-bound ICG. We compared optical properties such as the absorption and fluorescence spectra, quantum yield, and photostability between both dyes in vitro. In addition, we subcutaneously injected a 1 mM solution of TK-1 or ICG into the hind footpad of rats and observed real-time NIR fluorescence intensities in their femoral veins and accompanying lymphatics at the exposed groin site to analyze the dye pharmacokinetics. These optical experiments demonstrated that TK-1 has high water solubility, a low self-aggregation tendency, and high optical and chemical stabilities. Our in vivo imaging showed that TK-1 was transported via peripheral venous flow and lymphatic flow, whereas ICG was drained only through lymphatics. The results of this study showed that lymphatic and venous transport can be differentially regulated and is most likely influenced primarily by particle size, and that TK-1 can enable real-time NIR fluorescence imaging of whole fluids and solute movement via both microvessels and lymphatics, which conventional ICG cannot achieve.
Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan
2017-01-01
Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977
Wild, K.; Bohner, T.; Folkers, G.; Schulz, G. E.
1997-01-01
Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments. PMID:9336833
Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A.; Kuiper, Raoul V.; Curbo, Sophie; Karlsson, Anna
2013-01-01
A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK+/− transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK+/−TK2−/− mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK+/−TK2−/− mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency. PMID:23288848
Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique
NASA Astrophysics Data System (ADS)
Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming
2006-05-01
Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.
Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique
NASA Astrophysics Data System (ADS)
Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming
2006-09-01
Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.
Neural stem cell-based dual suicide gene delivery for metastatic brain tumors.
Wang, C; Natsume, A; Lee, H J; Motomura, K; Nishimira, Y; Ohno, M; Ito, M; Kinjo, S; Momota, H; Iwami, K; Ohka, F; Wakabayashi, T; Kim, S U
2012-11-01
In our previous works, we demonstrated that human neural stem cells (NSCs) transduced with the cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on glioma and medulloblastoma cells after administration of the prodrug 5-fluorocytosine (5-FC). In addition, herpes simplex virus thymidine kinase (TK) is a widely studied enzyme used for suicide gene strategies, for which the prodrug is ganciclovir (GCV). To apply this strategy to brain metastasis treatment, we established here a human NSC line (F3.CD-TK) expressing the dual suicide genes CD and TK. We examined whether F3.CD-TK cells intensified the antitumor effect on lung cancer brain metastases. In vitro studies showed that F3.CD-TK cells exerted a marked bystander effect on human lung cancer cells after treatment with 5-FC and GCV. In a novel experimental brain metastases model, intravenously administered F3 cells migrated near lung cancer metastatic lesions, which were induced by the injection of lung cancer cells via the intracarotid artery. More importantly, F3.CD-TK cells in the presence of prodrugs 5-FC and GCV decreased tumor size and considerably prolonged animal survival. The results of the present study indicate that the dual suicide gene-engineered, NSC-based treatment strategy might offer a new promising therapeutic modality for brain metastases.
Wang, Ling-Yan; Li, Shi-Tao; Guo, Lian-Hong; Jiang, Rong; Li, Yuan
2003-08-01
Recently in our laboratory, Streptomyces sp. 139 has been identified to produce a new exopolysaccharide designated EPS 139A that shows anti-rheumatic arthritis activity. The strategy of studying EPS 139A biosynthesis is to clone the key gene in the EPS biosynthesis pathway, i.e. the priming glycosyltransferase gene catalyzing the first step of nucleotide sugar transfer. Degenerate primers-based PCR approach was adopted to isolate the putative priming glycosyltransferase gene in Streptomyces sp. 139. According to the genes encoding the priming glycosyltransferases that have been identified in several microorganisms, a multiple alignment of the amino acid sequences of these genes was used to identify regions conserved between all genes. To clone the priming glycosyltransferase gene in Streptomyces sp. 139, degenerate primers were designed from these conserved regions taking into account information on Streptomyces codon usage to amplify an internal DNA fragment of this gene. A distinctive PCR product with the expected size of 0.3 kb was amplified from Streptomyces sp. 139 total genomic DNA. Sequence analysis showed that it is part of a putative priming glycosyltransferase gene and contains the predicted conserved domain B. To isolate the complete priming glycosyltransferase gene, a Streptomyces sp. 139 genomic library was constructed in the E. coli--Streptomyces shuttle vector pOJ446. Using the 0.3 kb PCR product of priming glycosyltransferase gene as a probe, 17 positive colonies were isolated by colony hybridization. A 4.0 kb BamHI fragment from all positive cosmids that hybridized to this probe was sequenced, which revealed the complete priming glycosyltransferase gene. The priming glycosyltransferase gene ste5 (GenBank under accession number AY131229) most likely begins with GTG, preceded by a probable ribosome binding site (RBS), GGGGA. It encodes a 492-amino-acid protein with molecular weight of 54 kDa and isoelectric point of 10.6. The G + C content of ste5 is 73%, close to the average of G + C content (74%) for Streptomyces. Moreover, the preference usage of G or C as third base of codons are found in the ste5, which is in accordance with the Streptomyces codon usage. A BlastP search showed that the C-terminal region of Ste5 shows highly homology with a number of priming glycosyltransferases from many different organisms. Ste5 contains two putative catalytic residues, Glu and Asp (residues 423 and 474) with a spacing of approximately 50 amino acids that conserved in various beta-glycosyltransferases. Moreover, the C-terminal one third of Ste5 contains three domains, A, B and C that is reported to be common to glycosyltransferases. By hydrophilicity plot prediction, the N-terminal two thirds of Ste5 exhibits 5 putative transmembrane domains. To investigate the involvement of the identified polysaccharide gene cluster in EPS 139A biosynthesis, the gene ste5 encoding priming glycosyltransferase was insertionally disrupted by a single-crossover homologous recombination event. A 0.85 kb internal fragment of ste5 was cloned into vector pKC1139 to yield pLY5015 that was transduced into Streptomyces sp. 139. Correct integration in Streptomyces LY1001 ste5- mutant strain was confirmed by Southern hybridization. After fermentation, no EPS 139A could be detected in the cultures of ste5- mutant strain Streptomyces LY1001. Therefore, the gene ste5 identified in this work is involved in the synthesis of the Streptomyces sp. 139 EPS.
Matsumi, Rie; Manabe, Kenji; Fukui, Toshiaki; Atomi, Haruyuki; Imanaka, Tadayuki
2007-04-01
We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.
Koczor, Christopher A.; Torres, Rebecca A.; Fields, Earl J.; Boyd, Amy; He, Stanley; Patel, Nilamkumar; Lee, Eva K.; Samarel, Allen M.
2013-01-01
This study addresses how depletion of human cardiac left ventricle (LV) mitochondrial DNA (mtDNA) and epigenetic nuclear DNA methylation promote cardiac dysfunction in human dilated cardiomyopathy (DCM) through regulation of pyrimidine nucleotide kinases. Samples of DCM LV and right ventricle (n = 18) were obtained fresh at heart transplant surgery. Parallel samples from nonfailing (NF) controls (n = 12) were from donor hearts found unsuitable for clinical use. We analyzed abundance of mtDNA and nuclear DNA (nDNA) using qPCR. LV mtDNA was depleted in DCM (50%, P < 0.05 each) compared with NF. No detectable change in RV mtDNA abundance occurred. DNA methylation and gene expression were determined using microarray analysis (GEO accession number: GSE43435). Fifty-seven gene promoters exhibited DNA hypermethylation or hypomethylation in DCM LVs. Among those, cytosolic thymidine kinase 1 (TK1) was hypermethylated. Expression arrays revealed decreased abundance of the TK1 mRNA transcript with no change in transcripts for other relevant thymidine metabolism enzymes. Quantitative immunoblots confirmed decreased TK1 polypeptide steady state abundance. TK1 activity remained unchanged in DCM samples while mitochondrial thymidine kinase (TK2) activity was significantly reduced. Compensatory TK activity was found in cardiac myocytes in the DCM LV. Diminished TK2 activity is mechanistically important to reduced mtDNA abundance and identified in DCM LV samples here. Epigenetic and genetic changes result in changes in mtDNA and in nucleotide substrates for mtDNA replication and underpin energy starvation in DCM. PMID:23695887
Ragupathy, Subramanyam; Newmaster, Steven G
2009-01-01
A mounting body of critical research is raising the credibility of Traditional Knowledge (TK) in scientific studies. These studies have gained credibility because their claims are supported by methods that are repeatable and provide data for quantitative analyses that can be used to assess confidence in the results. The theoretical importance of our study is to test consensus (reliability/replicable) of TK within one ancient culture; the Irulas of the Kodiakkarai Reserve Forest (KRF), India. We calculated relative frequency (RF) and consensus factor (Fic) of TK from 120 Irulas informants knowledgeable of medicinal plants. Our research indicates a high consensus of the Irulas TK concerning medicinal plants. The Irulas revealed a diversity of plants that have medicinal and nutritional utility in their culture and specific ethnotaxa used to treat a variety of illnesses and promote general good health in their communities. Throughout history aboriginal people have been the custodians of bio-diversity and have sustained healthy life-styles in an environmentally sustainable manner. However this knowledge has not been transferred to modern society. We suggest this may be due to the asymmetry between scientific and TK, which demands a new approach that considers the assemblage of TK and scientific knowledge. A greater understanding of TK is beginning to emerge based on our research with both the Irulas and Malasars; they believe that a healthy lifestyle is founded on a healthy environment. These aboriginal groups chose to share this knowledge with society-at-large in order to promote a global lifestyle of health and environmental sustainability. PMID:19366462
Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G
2004-08-04
BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.
Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics
MacMillan, Denise K; Ford, Jermaine; Fennell, Timothy R; Black, Sherry R; Snyder, Rodney W; Sipes, Nisha S; Westerhout, Joost; Setzer, R Woodrow; Pearce, Robert G; Simmons, Jane Ellen; Thomas, Russell S
2018-01-01
Abstract Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks. PMID:29385628
Impact of kitchen organization on oral intake of malnourished inpatients: A two-center study.
Calleja-Fernández, Alicia; Velasco-Gimeno, Cristina; Vidal-Casariego, Alfonso; Pintor-de-la-Maza, Begoña; Frías-Soriano, Laura; Villar-Taibo, Rocío; García-Peris, Pilar; Cano-Rodríguez, Isidoro; García-Fernández, Camino; Ballesteros-Pomar, María D
2017-10-01
To determine the impact of the type of hospital kitchen on the dietary intake of patients. A cross-sectional, two-centre study, of cooking in a traditional kitchen (TK) and in a chilled kitchen (CK). Subjective global assessment (SGA) was used for nutritional diagnosis. Before study start, a dietician performed a nutritional assessment of the menus of each hospital. All dishes were weighed upon arrival to the ward and at the end of the meal. 201 and 41 patients from the centres with TK and CK respectively were evaluated. Prevalence of malnutrition risk was 50.2% at the hospital with TK and 48.8% at the hospital with CK (p=0.328). Forty-eight and 56 dishes were nutritionally evaluated at the hospitals with TK and CK respectively. Intake analysis consisted of 1993 and 846 evaluations in the hospitals with TK and CK respectively. Median food consumption was 76.83% at the hospital with TK (IQR 45.76%) and 83.43% (IQR 40.49%) at the hospital with CK (p<0.001). Based on the prevalence of malnutrition, a higher protein and energy intake was seen in malnourished patients from the CK as compared to the TK hospital, but differences were not significant after adjustment for other factors. Cooking in a chilled kitchen, as compared to a traditional kitchen, may increase energy and protein intake in hospitalized patients, which is particularly beneficial for malnourished patients. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
Pasti-Grigsby, M B; Paszczynski, A; Goszczynski, S; Crawford, D L; Crawford, R L
1992-01-01
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1482183
Shariffah-Muzaimah, S A; Idris, A S; Madihah, A Z; Dzolkhifli, O; Kamaruzzaman, S; Maizatul-Suriza, M
2017-12-18
Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.
Streptomyces salilacus sp. nov., an actinomycete isolated from a salt lake.
Luo, Xiao-Xia; Gao, Guang-Bin; Xia, Zhan-Feng; Chen, Zheng-Jun; Wan, Chuan-Xing; Zhang, Li-Li
2018-05-01
The taxonomic position of a novel actinomycete, strain TRM 41337 T , isolated from sediment of a salt lake, Xiaoerkule Lake, Xinjiang, China, was determined by a polyphasic approach. Strain TRM 41337 T grew optimally at 28 °C and in the presence of 1 % (w/v) NaCl. It grew at up to pH 12. The whole-cell sugars of strain TRM 41337 T were ribose and xylose. The diagnostic diamino acid contained ll-diaminopimelic acid. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside and two other unidentified phospholipids. The predominant menaquinones were MK-9(H8), MK-9, MK-9(H4) and MK-9(H6). The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 1 H. Based on morphological and chemotaxonomic characteristics, the isolate was determined to belong to the genus Streptomyces. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1498 nt) with representative strains showed that the strain consistently falls into a distinct phyletic lineage together with Streptomyces barkulensis DSM 42082 T (97.48 % similarity) and a subclade consisting of Streptomyces fenghuangensis GIMN 4.003 T (97.20 %), Streptomyces macrosporus NBRC 14748 T (97.14 %) and Streptomyces radiopugnans R97 T (97.01 %). On the basis of these data, strain TRM 41337 T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces salilacus sp. nov. is proposed. The type strain is TRM 41337 T (=CCTCC AA 2015030 T =KCTC 39726 T ).
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236
Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest.
Biswas, Kaushik; Choudhury, Jayanta D; Mahansaria, Riddhi; Saha, Malay; Mukherjee, Joydeep
2017-06-01
A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20 T ) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H 8 ) and MK-9(H 6 ). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C 15:0 (17.53%), iso-C 16:0 (23.89%) and anteiso-C 17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825 T , Streptomyces erythrogriseus LMG 19406 T , Streptomyces griseoincarnatus LMG 19316 T and Streptomyces labedae NBRC 15864 T . However, strain MS 3/20 T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20 T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20 T from other phylogenetic relatives. Strain MS 3/20 T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20 T (=CICC 11032 T =DSM 103378 T ).
Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc
2011-01-01
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.
Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc
2011-01-01
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345
Luo, Ming; Jiang, Honghui; Wang, Wengang; Li, Ning; Shen, Mingkui; Li, Peng; Xu, Genzhong; Xia, Lei
2017-12-13
Previous studies have reported that rod composition and diameter, as well as the correction technique are key factors associated with thoracic kyphosis (TK) restoration. However, few study has analyzed the correlation between screw density and TK restoration in hypokyphotic adolescent idiopathic scoliosis (AIS). Fifty-seven thoracic AIS patients with preoperative TK < 10° treated with all pedicle screw fixation with a minimum 2-year follow-up were recruited. Preoperative and postoperative radiographic measurements, and information of posterior instrumentation were reviewed. Pearson and Spearman correlation coefficient analysis were used to assess relationships between change in TK and number of variables. Then, the included patients were classified into two groups (Group 1: postoperative TK ≥ 20°; Group 2: postoperative TK < 20°) to evaluate the influence factors of TK restoration. The average preoperative TK was 4.75°, which was significantly restored to 17.30° (P < 0.001). Significant correlations were found between change in TK and flexibility of major thoracic curve (r = 0.357, P = 0.006), preoperative TK (r = -0.408, P = 0.002), and screw density of concave side (r = 0.306, P = 0.021), respectively. In the subgroup comparison, 17 patients (29.8%) maintain the postoperative TK ≥ 20°, increased flexibility of major thoracic curve (P < 0.001), screw number of concave side (P = 0. 029), and cobalt chromium rods (P = 0.041) were found in the group of postoperative TK ≥ 20°. TK restoration remains a challenge for AIS patients with hypokyphosis, especially for the poor flexibility ones. Except for thicker and cobalt chromium rods, screw density of concave side might be another positive predictor of restoring normal kyphosis, which provides a stronger corrective force on the sagittal plane with more pedicle screws.
Wei, Junhong; Tian, Jinjin; Pan, Guoqing; Xie, Jie; Bao, Jialing; Zhou, Zeyang
2017-06-01
To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces. A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h. The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.
Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina
2017-09-01
Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9T, was found to have chemotaxonomic, cultural, and morphological properties that...
USDA-ARS?s Scientific Manuscript database
A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Str...
Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji
2013-07-01
To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.
NASA Astrophysics Data System (ADS)
Sahin, Nurettin
2004-10-01
The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.
Tsai, Hsiu-Hui; Huang, Chih-Hung; Tessmer, Ingrid; Erie, Dorothy A.; Chen, Carton W.
2011-01-01
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA. PMID:21109537
[Progress in developing and applying Streptomyces chassis - A review].
Xiao, Liping; Deng, Zixin; Liu, Tiangang
2016-03-04
Natural products and their derivatives play an important role in modern healthcare. Their diversity in bioactivity and chemical structure inspires scientists to discover new drug entities for clinical use. However, chemical synthesis of natural compounds has insurmountable difficulties in technology and cost. Also, many original-producing bacteria have disadvantages of needing harsh cultivation conditions, having low productivity and other shortcomings. In addition, some gene clusters responsible for secondary metabolite biosynthesis are silence in the original strains. Therefore, it is of great significance to exploit strategy for the heterologous expression of natural products guided by synthetic biology. Recently, researchers pay more attention on using actinomycetes that are the main source of many secondary metabolites, such as antibiotics, anticancer agents, and immunosuppressive drugs. Especially, with huge development of genome sequencing, abundant resources of natural product biosynthesis in Streptomyces have been discovered, which highlight the special advantages on developing Streptomyces as the heterologous expression chassis cells. This review begins with the significance of the development of Streptomyces chassis, focusing on the strategies and the status in developing Streptomyces chassis cells, followed by examples to illustrate the practical applications of a variety of Streptomyces chassis.
Sultan, Suandi Pratama; Kitani, Shigeru; Miyamoto, Kiyoko T; Iguchi, Hiroyuki; Atago, Tokitaka; Ikeda, Haruo; Nihira, Takuya
2016-11-01
Streptomyces hormones, sometimes called as autoregulators, are important signaling molecules to trigger secondary metabolism across many Streptomyces species. We recently identified a butenolide-type autoregulator (termed avenolide) as a new class of Streptomyces hormone from Streptomyces avermitilis that produces important anthelmintic agent avermectin. Avenolide triggers the production of avermectin with minimum effective concentration of nanomolar. Here, we describe the characterization of avaR1 encoding an avenolide receptor in the regulation of avermectin production and avenolide biosynthesis. The disruption of avaR1 resulted in transcriptional derepression of avenolide biosynthetic gene with an increase in avenolide production, with no change in the avermectin production profile. Moreover, the avaR1 mutant showed increased transcription of avaR1. Together with clear DNA-binding capacity of AvaR1 toward avaR1 upstream region, it suggests that AvaR1 negatively controls the expression of avaR1 through the direct binding to the promoter region of avaR1. These findings revealed that the avenolide receptor AvaR1 functions as a transcriptional repressor for avenolide biosynthesis and its own synthesis.
The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces
Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire
2014-01-01
Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Hua; Nakamura, Hirohiko; Dong, Menghong; Nishina, Ayako; Yamashiro, Toru
2017-03-01
From 2003 to 2011, current surveys, using an acoustic Doppler current profiler (ADCP) mounted on the Ferry Naminoue, were conducted across the Tokara Strait (TkS). Resulting velocity sections (1234) were used to estimate major tidal current constituents in the TkS. The semidiurnal M2 tidal current (maximum amplitude 27 cm s-1) was dominant among all the tidal constituents, and the diurnal K1 tidal current (maximum amplitude 21 cm s-1) was the largest among all the diurnal tidal constituents. Over the section, the ratios, relative to M2, of averaged amplitudes of M2, S2, N2, K2, K1, O1, P1, and Q1 tidal currents were 1.00:0.44:0.21:0.12:0.56:0.33:0.14:0.10. Tidal currents estimated from the ship-mounted ADCP data were in good agreement with those from the mooring ADCP data. Their root-mean-square difference for the M2 tidal current amplitude was 2.0 cm s-1. After removing the tidal currents, the annual-mean of the net volume transport (NVT) through the TkS ± its standard derivation was 23.03 ± 3.31 Sv (Sv = 106 m3 s-1). The maximum (minimum) monthly mean NVT occurred in July (November) with 24.60 (21.47) Sv. NVT values from the ship-mounted ADCP were in good agreement with previous geostrophic volume transports calculated from conductivity temperature depth data, but the former showed much finer temporal structure than those from the geostrophic calculation.
A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; ...
2016-04-12
We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less
Ian, Elena; Malko, Dmitry B.; Sekurova, Olga N.; Bredholt, Harald; Rückert, Christian; Borisova, Marina E.; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S.; Zotchev, Sergey B.
2014-01-01
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts. PMID:24819608
A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.
2016-01-01
ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097
Ian, Elena; Malko, Dmitry B; Sekurova, Olga N; Bredholt, Harald; Rückert, Christian; Borisova, Marina E; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S; Zotchev, Sergey B
2014-01-01
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts.
Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification
Garg, Himanshu; Joshi, Anjali
2016-01-01
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572
Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.
2013-01-01
In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.
Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification.
Garg, Himanshu; Joshi, Anjali
2016-05-01
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.
The mouse lymphoma assay detects recombination, deletion, and aneuploidy.
Wang, Jianyong; Sawyer, Jeffrey R; Chen, Ling; Chen, Tao; Honma, Masamitsu; Mei, Nan; Moore, Martha M
2009-05-01
The mouse lymphoma assay (MLA) uses the thymidine kinase (Tk) gene of the L5178Y/Tk(+/-)-3.7.2C mouse lymphoma cell line as a reporter gene to evaluate the mutagenicity of chemical and physical agents. The MLA is recommended by both the United States Food and Drug Administration and the United States Environmental Protection Agency as the preferred in vitro mammalian cell mutation assay for genetic toxicology screening because it detects a wide range of genetic alterations, including both point mutations and chromosomal mutations. However, the specific types of chromosomal mutations that can be detected by the MLA need further clarification. For this purpose, three chemicals, including two clastogens and an aneugen (3'-azido-3'-deoxythymidine, mitomycin C, and taxol), were used to induce Tk mutants. Loss of heterozygosity (LOH) analysis was used to select mutants that could be informative as to whether they resulted from deletion, mitotic recombination, or aneuploidy. A combination of additional methods, G-banding analysis, chromosome painting, and a real-time PCR method to detect the copy number (CN) of the Tk gene was then used to provide a detailed analysis. LOH involving at least 25% of chromosome 11, a normal karyotype, and a Tk CN of 2 would indicate that the mutant resulted from recombination, whereas LOH combined with a karyotypically visible deletion of chromosome 11 and a Tk CN of 1 would indicate a deletion. Aneuploidy was confirmed using G-banding combined with chromosome painting analysis for mutants showing LOH at every microsatellite marker on chromosome 11. From this analysis, it is clear that mouse lymphoma Tk mutants can result from recombination, deletion, and aneuploidy.
Guo, Yi; Lingala, Sajan Goud; Zhu, Yinghua; Lebel, R Marc; Nayak, Krishna S
2017-10-01
The purpose of this work was to develop and evaluate a T 1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Qin, Song; Zhang, Hongyu; Li, Fuchao; Zhu, Benwei; Zheng, Huajun
2012-03-01
A series of angucyclinone antibiotics have been isolated from marine Streptomyces sp. strain W007 and identified. Here, a draft genome sequence of Streptomyces sp. W007 is presented. The genome contains an intact biosynthetic gene cluster for angucyclinone antibiotics, which provides insight into the combinatorial biosynthesis of angucyclinone antibiotics produced by marine streptomycetes.
Li, Jie; Sun, Chunyang; Tao, Wei; Cao, Ziyang; Qian, Haisheng; Yang, Xianzhu; Wang, Jun
2018-07-01
Controlling poly(ethylene glycol) (PEG) shielding/deshielding at the desired site of action exhibits great advantages for nanocarrier-based on-demand drug delivery in vivo. However, the current PEG deshielding strategies were mainly designed for anticancer drug delivery; even so, their applications are also limited by tumor heterogeneity. As a proof-of-concept, we explored a photoinduced PEG deshielding nanocarrier TK-NP Ce6&PTX to circumvent the aforementioned challenge. The TK-NP Ce6&PTX encapsulating chlorin e6 (Ce6) and paclitaxel (PTX) was self-assembled from an innovative thioketal (TK) linkage-bridged diblock copolymer of PEG with poly(d,l-lactic acid) (PEG-TK-PLA). We demonstrated that the high PEGylation of TK-NP Ce6&PTX in blood helps the nanocarrier efficiently avoid rapid clearance and consequently prolongs its circulation time. At the desired site (tumor), 660-nm red light irradiation led to ROS generation in situ, which readily cleaved the TK linkage, resulting in PEG deshielding. Such photoinduced PEG deshielding at the desired site significantly enhances the cellular uptake of the nanocarriers, achieving on-demand drug delivery and superior therapeutic efficacy. More importantly, this strategy of photoinducing PEG deshielding of nanocarriers could potentially extend to a variety of therapeutic agents beyond anticancer drugs for on-demand delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Huber, B E; Richards, C A; Krenitsky, T A
1991-01-01
An approach involving retroviral-mediated gene therapy for the treatment of neoplastic disease is described. This therapeutic approach is called "virus-directed enzyme/prodrug therapy" (VDEPT). The VDEPT approach exploits the transcriptional differences between normal and neoplastic cells to achieve selective killing of neoplastic cells. We now describe development of the VDEPT approach for the treatment of hepatocellular carcinoma. Replication-defective, amphotrophic retroviruses were constructed containing a chimeric varicella-zoster virus thymidine kinase (VZV TK) gene that is transcriptionally regulated by either the hepatoma-associated alpha-fetoprotein or liver-associated albumin transcriptional regulatory sequences. Subsequent to retroviral infection, expression of VZV TK was limited to either alpha-fetoprotein- or albumin-positive cells, respectively. VZV TK metabolically activated the nontoxic prodrug 6-methoxypurine arabinonucleoside (araM), ultimately leading to the formation of the cytotoxic anabolite adenine arabinonucleoside triphosphate (araATP). Cells that selectively expressed VZV TK became selectively sensitive to araM due to the VZV TK-dependent anabolism of araM to araATP. Hence, these retroviral-delivered chimeric genes generated tissue-specific expression of VZV TK, tissue-specific anabolism of araM to araATP, and tissue-specific cytotoxicity due to araM exposure. By utilizing such retroviral vectors, araM was anabolized to araATP in hepatoma cells, producing a selective cytotoxic effect. Images PMID:1654555
Kamimura, Hidetaka; Ito, Satoshi; Nozawa, Kohei; Nakamura, Shota; Chijiwa, Hiroyuki; Nagatsuka, Shin-ichiro; Kuronuma, Miyuki; Ohnishi, Yasuyuki; Suemizu, Hiroshi; Ninomiya, Shin-ichi
2015-03-01
3'-Hydroxy-4'-methoxydiclofenac (VI) is a human-specific metabolite known to accumulate in the plasma of patients after repeated administration of diclofenac sodium. Diclofenac also produces glutathione-conjugated metabolites, some of which are human-specific. In the present study, we investigated whether these metabolites could be generated in humanized chimeric mice produced from TK-NOG mice. After a single oral administration of diclofenac to humanized mice, the unchanged drug in plasma peaked at 0.25 hour and then declined with a half-life (t1/2) of 2.4 hours. 4'-Hydroxydiclofenac (II) and 3'-hydroxydiclofenac also peaked at 0.25 hour and were undetectable within 24 hours. However, VI peaked at 8 hours and declined with a t1/2 of 13 hours. When diclofenac was given once per day, peak and trough levels of VI reached plateau within 3 days. Studies with administration of II suggested VI was generated via II as an intermediate. Among six reported glutathione-conjugated metabolites of diclofenac, M1 (5-hydroxy-4-(glutathion-S-yl)diclofenac) to M6 (2'-(glutathion-S-yl)monoclofenac), we found three dichlorinated conjugates [M1, M2 (4'-hydroxy-3'-(glutathion-S-yl)diclofenac), and M3 (5-hydroxy-6-(glutathion-S-yl)diclofenac)], and a single monochlorinated conjugate [M4 (2'-hydroxy-3'-(glutathion-S-yl)monoclofenac) or M5 (4'-hydroxy-2'-(glutathion-S-yl)monoclofenac)], in the bile of humanized chimeric mice. M4 and M5 are positional isomers and have been previously reported as human-specific in vitro metabolites likely generated via arene oxide and quinone imine-type intermediates, respectively. The biliary monochlorinated metabolite exhibited the same mass spectrum as those of M4 and M5, and we discuss whether this conjugate corresponded to M4 or M5. Overall, humanized TK-NOG chimeric mice were considered to be a functional tool for the study of drug metabolism of diclofenac in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Laboratory course on Streptomyces genetics and secondary metabolism.
Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko
2016-09-10
The "Streptomyces genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria Streptomyces and their secondary metabolism. The course combines genetic modification of Streptomyces; growing of the strain and protoplast preparation, plasmid isolation by alkaline lysis and phenol precipitation, digestions, and ligations prior to protoplast transformation, as well as investigating the secondary metabolites produced by the strains. Thus, the course is a combination of microbiology, molecular biology, and chemistry. After the course the students should understand the relationship between genes, proteins, and the produced metabolites. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):492-499, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Wehmeier, U F
1995-11-07
Four new shuttle vectors for Escherichia coli (Ec) and Streptomyces, pUWL218, pUWL219, pUWL-SK and pUWL-KS, which permit recognition of recombinant (re-) plasmids on XGal plates in Ec, were constructed. These vectors contain the replication functions of the Streptomyces wide-host-range multicopy plasmid pIJ101, the tsr gene conferring resistance to thiostrepton in Streptomyces, the ColEI origin of replication from the pUC plasmids for replication in Ec and the bla gene conferring resistance to ampicillin in Ec. They possess multiple cloning sites with a number of unique restriction sites and allow direct sequencing of re-derivatives using the pUC sequencing primers.
Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces
Ser, Hooi-Leng; Tan, Loh Teng-Hern; Law, Jodi Woan-Fei; Chan, Kok-Gan; Duangjai, Acharaporn; Saokaew, Surasak; Pusparajah, Priyia; Ab Mutalib, Nurul-Syakima; Khan, Tahir Mehmood; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal. PMID:29163380
Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence
Clark, Laura C.; Seipke, Ryan F.; Prieto, Pilar; Willemse, Joost; van Wezel, Gilles P.; Hutchings, Matthew I.; Hoskisson, Paul A.
2013-01-01
Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms. PMID:23346366
Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains.
Zucchi, T D; de Moraes, L A B; de Melo, I S
2008-12-01
To evaluate the ability of Streptomyces sp. (strain ASBV-1) to restrict aflatoxin accumulation in peanut grains. In the control of many phytopathogenic fungi the Streptomyces sp. ASBV-1 strain showed promise. An inhibitory test using this strain and A. parasiticus was conducted in peanut grains to evaluate the effects of this interaction on spore viability and aflatoxin accumulation. In some treatments the Streptomyces sp ASBV-1 strain reduced the viability of A. parasiticus spores by c. 85%, and inhibited aflatoxin accumulation in peanut grains. The values of these reductions ranged from 63 to 98% and from 67% to 96% for aflatoxins B(1) and G(1), respectively. It was demonstrated that Streptomyces sp. ASBV-1 is able to colonize peanut grains and thus inhibit the spore viability of A. parasiticus, as well as reducing aflatoxin production. The positive finding for aflatoxin accumulation reduction in peanut grains seems promising and suggests a wider use of this actinobacteria in biological control programmes.
Interplay of antiferromagnetism and Kondo effect in (Ce1-xLax) 8Pd24 Al
NASA Astrophysics Data System (ADS)
Bashir, A. K.; Tchoula Tchokonté, M. B.; Britz, D.; Strydom, A. M.; Kaczorowski, D.
2017-07-01
The interplay of antiferromagnetic (AFM) and Kondo effect in Ce8Pd24 Al with the dilution of Ce with La is investigated by means of electrical and thermal transport and magnetic properties measurements. X - ray diffraction studies confirm a cubic AuCu3 - type crystal structure with space group Pm 3 bar m for all compositions in the alloy series (Ce1-xLax) 8Pd24 Al (0 ≤ x ≤ 1) . Electrical resistivity, ρ (T) results show evolution from coherent Kondo lattice scattering with a well defined Kondo peak at Tmax to incoherent single-ion Kondo scattering with increasing La content x. Magnetoresistivity MR measurements on Ce dilute alloys are negative and analyzed based on the calculations by Schlottmann for the Bethe - ansatz in the framework of the Coqblin - Schrieffer model and yield values of the Kondo temperature TK and the effective moment of the Kondo ion μK. The decrease of Tmax and TK is described by the compressible Kondo lattice model. The thermoelectric power, S(T) measurements are interpreted within the phenomenological resonance model. The Lorentz number, L /L0 increases rapidly on cooling the samples and reaches a maximum value around 6 K. The magnetic susceptibility, χ (T) data at high temperature follow the Curie - Weiss behaviour and yield effective magnetic moments, μeff values across the series close to the value of 2.54 μB expected for the free Ce3+ - ion. The low temperature χ (T) shows an AFM anomaly associated with a Néel temperature TN for alloys in the range 0 ≤ x ≤ 0.2 . No metamagnetic transition was observed from the magnetization results, M (μ0 H) .
Komaki, Hisayuki; Sakurai, Kenta; Hosoyama, Akira; Kimura, Akane; Igarashi, Yasuhiro; Tamura, Tomohiko
2018-05-02
To identify the species of butyrolactol-producing Streptomyces strain TP-A0882, whole genome-sequencing of three type strains in a close taxonomic relationship was performed. In silico DNA-DNA hybridization using the genome sequences suggested that Streptomyces sp. TP-A0882 is classified as Streptomyces diastaticus subsp. ardesiacus. Strain TP-A0882, S. diastaticus subsp. ardesiacus NBRC 15402 T , Streptomyces coelicoflavus NBRC 15399 T , and Streptomyces rubrogriseus NBRC 15455 T harbor at least 14, 14, 10, and 12 biosynthetic gene clusters (BGCs), respectively, coding for nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). All 14 gene clusters were shared by S. diastaticus subsp. ardesiacus strains TP-A0882 and NBRC 15402 T , while only four gene clusters were shared by the three distinct species. Although BGCs for bacteriocin, ectoine, indole, melanine, siderophores such as deferrioxamine, terpenes such as albaflavenone, hopene, carotenoid and geosmin are shared by the three species, many BGCs for secondary metabolites such as butyrolactone, lantipeptides, oligosaccharide, some terpenes are species-specific. These results indicate the possibility that strains belonging to the same species possess the same set of secondary metabolite-biosynthetic pathways, whereas strains belonging to distinct species have species-specific pathways, in addition to some common pathways, even if the strains are taxonomically close.
Liu, Chongxi; Ye, Lan; Li, Yao; Jiang, Shanwen; Liu, Hui; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing
2016-12-01
A phoslactomycin-producing actinomycete, designated strain NEAU-ML8T, was isolated from a millipede (Kronopolites svenhedind Verhoeff) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ML8T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces lydicus NBRC 13058T (99.39 %) and Streptomyces chattanoogensis DSM 40002T (99.25 %). The maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with NBRC 13058T and S. chattanoogensis DSM 40002T. This branching pattern was also supported by the tree rconstructed with the neighbour-joining method. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-ML8T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that NEAU-ML8T could be distinguished from NBRC 13058T and S. chattanoogensis DSM 40002T. Therefore, it is concluded that strain NEAU-ML8T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces kronopolitis sp. nov. is proposed. The type strain is NEAU-ML8T (=DSM 101986T=CGMCC 4.7323T).
Latha, Selvanathan; Sivaranjani, Govindhan; Dhanasekaran, Dharumadurai
2017-09-01
Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.
1987-06-01
not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free...crossed. Failing the proper denvatcin of a new pressure equation appiicabie to unsteady rotational flows, care must be exercised :, o -e-gard the present...time tk . U(T) - Chordwise translation velocity ( postive forward) at time tk. V(T) - Transverse translational velocity (positive downward) at trie tk
Chemical Genetics of 14-3-3 Regulation and Role in Tumor Development
2005-11-01
inhibitors , our group had identified a series of inhibitory compounds. When tested one of these, TK10, shows an inhibitory effect on 14-3-3 sigma nuclear...potential regulators of 14-3-3 sigma function. 5 BODY Determine the biological activity of the newly identified inhibitor of 14-3- &T nuclear export TKI0 I...have previously shown that an inhibitor of FOXOla nuclear export, TK10, inhibits the export of 14- 3-3 from the nucleus while TK10 does not affect
Three-Dimensional Route Planning for a Cruise Missile for Minimal Detection by Observer
1989-06-01
detect the enemy’s weakest avenues of approach are needed. Such systems could also be used to identify our own deficiencies and allow for...vector-k (oval (line-segment-direction-vector (oval line-i))))) ( Tk2 (vector-k (eval (line-segment-direction-voctor (oval line-2))))) (Tval ’nil...zerop Tkl)) (not (zerop Tk2 ))) (setf Tval (/ Tkl Tk2 ))) (t (return-from parallel-lines ’nil))) (cond ((and (equal Til (* Tval Ti2)) (equal Tjl (* Tval
Writing instrument interfaces with xf/tktcl
NASA Technical Reports Server (NTRS)
Henden, A. A.
1992-01-01
Tcl is an embedded control language written in C, running primarily under Unix and with an interpreted C look-and-feel. Tk is an X11 toolkit based on tcl. Xf is an application builder for tk. The entire package is public domain and available from sprite.berkeley.edu. This paper discusses the use of tk to develop a user interface for OSIRIS, an infrared camera/spectrograph now operational on the OSU Perkins 1.8m telescope. The good and bad features of the development process are described.
Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China.
Guan, Xuejiao; Li, Wenchao; Liu, Chongxi; Jin, Pinjiao; Guo, Siyu; Wang, Xiangjing; Xiang, Wensheng
2016-12-01
During a screening for novel and biotechnologically useful actinobacteria, a novel actinobacteria with weak antifungal activity, designated strain NEAU-Spg19 T , was isolated from a soil sample collected from pine forest in Songpinggou, Sichuan, southwest China. The strain was characterized using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth occurred at a temperature range of 10-30 °C, pH 5.0-11.0 and NaCl concentrations of 0-5 %. The cell wall peptidoglycan consisted of LL-diaminopimelic acid and glycine. The major menaquinones were MK-9(H 6 ), MK-9(H 8 ) and MK-9(H 4 ). The phospholipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C 15:0 , iso-C 16:0 , and C 16:0 . 16S rRNA gene sequence similarity studies showed that strain NEAU-Spg19 T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces tauricus JCM 4837 T (98.6 %) and Streptomyces rectiviolaceus JCM 9092 T (98.3 %). Some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. tauricus JCM 4837 T and S. rectiviolaceus JCM 9092 T . Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NEAU-Spg19 T represents a novel species of the genus Streptomyces, for which the name Streptomyces songpinggouensis sp. nov. is proposed. The type strain is NEAU-Spg19 T (=CGMCC 4.7140 T =DSM 42141 T ).
Li, Yao; Ye, Lan; Wang, Xiangjing; Zhao, Junwei; Ma, Zhaoxu; Yan, Kai; Xiang, Wensheng; Liu, Chongxi
2016-10-01
A novel single-spore-producing actinomycete, designated strain 2H-TWYE14T, was isolated from the head of an ant (Camponotus japonicus Mayr) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 2H-TWYE14T belongs to the genus Streptomyces, with highest sequence similarity to Streptomyces niveus NRRL 2466T (98.84 %). Analysis based on the gyrB gene also indicated that strain 2H-TWYE14T should be assigned to the genus Streptomyces. The chemotaxonomic properties of strain 2H-TWYE14T were consistent with those of members of the genus Streptomyces. The cell wall contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0 and iso-C15 : 0. DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 2H-TWYE14T and its phylogenetically closely related strain S. niveus JCM 4251T, which further clarified their relatedness and demonstrated that 2H-TWYE14T could be distinguished from S. niveus. Therefore, it is concluded that strain 2H-TWYE14T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces camponoticapitis sp. nov. is proposed. The type strain is 2H-TWYE14T (=DSM 100523T=CGMCC 4.7275T).
Degradation of latex and of natural rubber by Streptomyces strain La 7.
Gallert, C
2000-10-01
Streptomyces strain La 7 was isolated from the banquete of a city high way in Karlsruhe. According to partial 16S rRNA gene sequencing it was identical with Streptomyces albogriseolus and Streptomyces viridodiastaticus. DNA-DNA-similarity studies revealed 80.3-82.4% similarity between each of two of the three strains. Although phylogenetically closely related, Streptomyces strain La 7 differed from the two reference strains by morphological as well as physiological features and might represent a new species aside of S. albogriseolus and S. viridodiastaticus. The new Streptomyces strain La 7 was grown in a medium containing a latex emulsion or squares of natural rubber gloves as the only carbon source. On agar plates with a latex overlay agar, translucent halo formation around the colonies was observed. The unvulcanized latex was metabolized and the carbon from the isoprene units was apparently used for cell growth. In shake cultures with unlimited oxygen supply, during 60 days of incubation, 140 mg of the 175 mg totally emulgated latex were degraded exponentially. In sterile control flasks about 3% of the initial amount of latex could not be recovered after incubation on a shaker, presumably due to photochemical transformation. During static incubation of sterile medium, the latex formed a sticky layer at the surface of the medium and on the glass walls and recovery of the material was more difficult. Estimation of the protein content of cells from total nitrogen resulted in about 50% of the degraded latex being incorporated into cells, if a standard cell composition was assumed. Direct protein analysis according to Bradford (1976) gave much lower estimates, presumably due to a low content of aromatic amino acids. Stripes of natural rubber were degraded by Streptomyces strain La 7 during 70 days to an extent of about 30%. Scanning electron microscopy demonstrated, that hyphes of Streptomyces strain La 7 colonized and penetrated the latex surface with a concomitant deterioration of the latex material.
Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F; Reyes, Fernando; García, Luis A; Blanco, Gloria
2018-01-01
A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyc es species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products.
Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria
2018-01-01
A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products. PMID:29740412
Bercovier, Herve; Fishman, Yolanta; Nahary, Ronen; Sinai, Sharon; Zlotkin, Amir; Eyngor, Marina; Gilad, Oren; Eldar, Avi; Hedrick, Ronald P
2005-01-01
Background Outbreaks with mass mortality among common carp Cyprinus carpio carpio and koi Cyprinus carpio koi have occurred worldwide since 1998. The herpes-like virus isolated from diseased fish is different from Herpesvirus cyprini and channel catfish virus and was accordingly designated koi herpesvirus (KHV). Diagnosis of KHV infection based on viral isolation and current PCR assays has a limited sensitivity and therefore new tools for the diagnosis of KHV infections are necessary. Results A robust and sensitive PCR assay based on a defined gene sequence of KHV was developed to improve the diagnosis of KHV infection. From a KHV genomic library, a hypothetical thymidine kinase gene (TK) was identified, subcloned and expressed as a recombinant protein. Preliminary characterization of the recombinant TK showed that it has a kinase activity using dTTP but not dCTP as a substrate. A PCR assay based on primers selected from the defined DNA sequence of the TK gene was developed and resulted in a 409 bp amplified fragment. The TK based PCR assay did not amplify the DNAs of other fish herpesviruses such as Herpesvirus cyprini (CHV) and the channel catfish virus (CCV). The TK based PCR assay was specific for the detection of KHV and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. The TK based PCR was compared to previously described PCR assays and to viral culture in diseased fish and was shown to be the most sensitive method of diagnosis of KHV infection. Conclusion The TK based PCR assay developed in this work was shown to be specific for the detection of KHV. The TK based PCR assay was more sensitive for the detection of KHV than previously described PCR assays; it was as sensitive as virus isolation which is the golden standard method for KHV diagnosis and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. PMID:15774009
Karpova, Nina N; Lindholm, Jesse Saku Olavi; Kulesskaya, Natalia; Onishchenko, Natalia; Vahter, Marie; Popova, Dina; Ceccatelli, Sandra; Castrén, Eero
2014-01-01
Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg exposure.
Karpova, Nina N.; Lindholm, Jesse Saku Olavi; Kulesskaya, Natalia; Onishchenko, Natalia; Vahter, Marie; Popova, Dina; Ceccatelli, Sandra; Castrén, Eero
2014-01-01
Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg exposure. PMID:25309367
Effect of depletion of interstitial hyaluronan on hydraulic conductance in rabbit knee synovium
Coleman, P J; Scott, D; Abiona, A; Ashhurst, D E; Mason, R M; Levick, J R
1998-01-01
The hydraulic resistance of the synovial lining to fluid outflow from a joint cavity () is important for the retention of intra-articular lubricant. The resistance has been attributed in part to extracellular glycosaminoglycans, including hyaluronan and chondroitin sulphates. Increased permeability in joints infused with testicular hyaluronidase, which digests both chondroitin sulphates and hyaluronan, supports this view. In this study the importance of interstitial hyaluronan per se was assessed using leech and Streptomyces hyaluronidases, which degrade only hyaluronan. Ringer solution was infused into the knee joint cavity of anaesthetized rabbits for 30 min, with or without hyaluronidase, after which intra-articular pressure (Pj) was raised and the relation between pressure and outflow determined. Treatment with Streptomyces, leech or testicular hyaluronidases increased the fluid escape rates by similar factors, namely 4- to 6-fold. After Streptomyces hyaluronidase treatment the slope d/dPj, which at low pressures represents synovial hydraulic conductance, increased from a control of 0.90 ± 0.20 μl min−1 cmH2O−1 (mean ± s.e.m., n = 6) to 4.52 ± 0.70 μl min−1 cmH2O−1. The slope d/dPj increased to a similar level after testicular hyaluronidase, namely to 4.14 ± 1.06 μl min−1 cmH2O−1 (control, 0.54 ± 0.24 μl min−1 cmH2O−1). Streptomyces and leech hyaluronidases were as effective as testicular hyaluronidase (no statistically significant differences) despite differences in substrate specificity. It was shown using histochemical and immunohistochemical techniques that hyaluronan was removed from the synovium by leech, Streptomyces and testicular hyaluronidases. The binding of antibodies 2-B-6 and 3-B-3 showed that the core proteins of the chondroitin sulphate proteoglycans remained intact after treatment with hyaluronidases, and the binding of 5-D-4 showed that keratan sulphate was unaffected. An azocasein digestion assay confirmed that the hyaluronidase preparations had no significant proteolytic activity. The effect of the hyaluronidases was four times greater than predicted from the low concentration of interstitial hyaluronan and its resistivity. Factors that might amplify the effect of hyaluronan depletion include the matrix-organizing role of hyaluronan, and/or non-uniformity of hyaluronan distribution. It is concluded that interstitial hyaluronan makes a major contribution to synovial hydraulic resistance, but the mechanisms are as yet poorly understood. PMID:9596792
Tn5099, a xylE promoter probe transposon for Streptomyces spp.
Hahn, D R; Solenberg, P J; Baltz, R H
1991-01-01
Tn5099, a promoter probe transposon for Streptomyces spp., was constructed by inserting a promoterless xylE gene and a hygromycin resistance gene into IS493. Tn5099 transposed into different sites in the Streptomyces griseofuscus genome, and the xylE reporter gene was expressed in some of the transposition mutants. Strains containing Tn5099 insertions that gave regulated expression of the xylE gene were identified. Images PMID:1653213
The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato
Lian, Qinggui; Zhang, Jing; Gan, Liang; Ma, Qing; Zong, Zhaofeng
2017-01-01
LMM15, an actinomycete with broad spectrum antifungal activity, was isolated from a diseased tomato leaf using the baiting technique. A phylogenetic tree analysis based on similarity percentage of 16S rDNA sequences showed that the bacterium was 97.0% affiliated with the species Streptomyces pratensis. This strain was therefore coded as S. pratensis LMM15. The ferment filtrate of LMM15 had ability to inhibit mycelia growth of Botrytis cinerea and reduce lesion expansion of gray mold on detached leaves and fruits. In greenhouse experiments, both the fresh and dry weights of tomato seedlings were significantly increased with the increased concentrations of total chlorophyll. The incidence of tomato gray mold decreased by 46.35%; this was associated with the increase of proline content and malondialdehyde (MDA) and the changes in defense-related enzymes on tomato leaves when the strain was sprayed on the tomato leaves 24 h prior to inoculation with pathogens. This study showed that the strain S. pratensis LMM15 could be a potential agent for controlling tomato gray mold. PMID:29318156
Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10.
Balagurunathan, R; Radhakrishnan, M; Rajendran, R Babu; Velmurugan, D
2011-10-01
Biosynthesis of gold nanoparticles by Streptomycetes from Himalayan Mountain was undertaken for the first time. Out of 10 actinomycete strains tested, four strains (D10, HM10, ANS2 and MSU) showed evidence for the intracellular biosynthesis of gold nanoparticles, among which the strain HM10 showed high potency. Presence of spherical and rod shaped gold nanoparticles in mycelium of the strain HM10 was determined by transmission electron microscopy (TEM) and X-ray diffraction analysis. The average particle size ranged from 18-20 nm. UV spectral analysis indicated that the reduction of chloroauric acid (HAuCl4) occurred within 24 h of reaction period. Further, the strain HM10 showed enhanced growth at 1 and 10 mM concentration of HAuCl4. The gold nanoparticles synthesized by the strain HM10 showed good antibacterial activity against S. aureus and E. coli in well-diffusion method. The potential actinomycete HM10 strain was phenotypically characterized and identified as Streptomyces viridogens (HM10). Thus, actinomycete strain HM10 reported in this study is a newly added source for the biosynthesis of gold nanoparticles.
Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl; Ravin, Ariela; Komal, Ronica; Rudolf, Jeffrey D; Shen, Ben; Gullo, Vincent; Demain, Arnold L
2017-07-01
Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only l-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule.
Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl; Ravin, Ariela; Komal, Ronica; Rudolf, Jeffrey D; Shen, Ben; Gullo, Vincent; Demain, Arnold L
2017-01-01
Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only L-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule. PMID:28465627
Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F.J.; van Wezel, Gilles P.; Claessen, Dennis; Hae Choi, Young
2015-01-01
Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782
Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680.
Roh, Changhyun; Seo, Su-Hyun; Choi, Kwon-Young; Cha, Minho; Pandey, Bishnu Prasad; Kim, June-Hyung; Park, Jun-Seong; Kim, Duck Hee; Chang, Ih Seop; Kim, Byung-Gee
2009-07-01
Screening of bacterial whole cells was performed for regioselective hydroxylation of daidzein and genistein. Among the strains examined, Streptomyces avermitilis MA-4680 showed high ortho-dihydroxylation activity to produce 3',4',7-trihydroxyisoflavone and 3',4',5,7-tetrahydroxyisoflavone from daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone), respectively. Using 100 mg cells (wet wt.) and 1% (v/v) Triton X100 in 1 ml of total reaction volume, where 100 microl of the substrate solution (0.5 mM in 10% (v/v) mixed solvent of DMSO:MeOH = 3:7) was added to 900 microl of potassium phosphate buffer (100 mM, pH 7.2), a 16% molar conversion yield of 3',4',7-trihydroxyisoflavone was obtained from 0.5 mM daidzein after 24 h of reaction time at 28 degrees C and 200 rpm. Ketoconazole significantly (ca. 90%) inhibited the ortho-hydroxylation activity of daidzein, suggesting that cytochrome P450 enzymes putatively play roles in regiospecific daidzein hydroxylation. The analysis of the reaction products was determined by gas chromatography/mass spectrometry (GC/MS) and (1)H NMR.
Determination of ionophore antibiotics nactins produced by fecal Streptomyces from sheep.
Wang, Jun; Tan, Hongming; Lu, Yu; Cao, Lixiang
2014-04-01
To investigate the correlation between fecal actinobacteria and host animals, Streptomyces was isolated from fresh faeces of healthy sheep and secondary metabolites were analyzed. The most frequently isolated strain S161 with antibiotic activity against bacteria and fungi were analyzed. The S161 showed the highest 99 % similarity to Streptomyces canus DSB17 based on the 16S rRNA gene sequence analysis. Metabolite analysis based on MS and NMR spectra showed that S161 produces nactins, cyclotetralactones derived from nonactic acid and homononactic acid as building units of ionophoretic character. Due to ionophores are antimicrobial compounds that are commonly fed to ruminant animals to improve feed efficiency, stable beneficial interactions between Streptomyces bacteria and vertebrates have been demonstrated.
NASA Astrophysics Data System (ADS)
Gaudio, Anderson Coser; Takahata, Yuji; Richards, William Graham
1998-01-01
The probable binding mode of the herpes simplex virus thymidine kinase (HSV1 TK) N2-[substituted]-phenylguanine inhibitors is proposed. A computational experiment was designed to check some qualitative binding parameters and to calculate the interaction binding energies of alternative binding modes of N2-phenylguanines. The known binding modes of the HSV1 TK natural substrate deoxythymidine and one of its competitive inhibitors ganciclovir were used as templates. Both the qualitative and quantitative parts of the computational experiment indicated that the N2-phenylguanine derivatives bind to the HSV1 TK active site in the deoxythymidine-like binding mode. An experimental observation that N2-phenylguanosine derivatives are not phosphorylated during the interaction with the HSV1 TK gives support to the proposed binding mode.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2014-12-01
An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.
Lintnerová, Lucia; García-Caballero, Melissa; Gregáň, Fridrich; Melicherčík, Milan; Quesada, Ana R; Dobiaš, Juraj; Lác, Ján; Sališová, Marta; Boháč, Andrej
2014-01-24
VEGFR2 is an important mediator of angiogenesis and influences fate of some cancer stem cells. Here we analysed all 34 structures of VEGFR2 TK available from PDB database. From them a complex PDB: 1Y6A has an exceptional AAZ ligand bound to TK in form of two conformers (U- and S-shaped). This observation inspired us to develop three chimeric bispyridyl VEGFR2 inhibitors by combining structural features of both AAZ conformers and/or their relative ligand AAX (PDB: 1Y6B). Our most interesting inhibitor 22SYM has an enzymatic VEGFR2 TK activity (IC50: 15.1 nM) comparable or better to the active compounds from clinical drugs Nexavar and Sutent. 22SYM inhibits growth, migration and tube formation of endothelial cells (EC) and selectively induces EC apoptosis. 22SYM also inhibits in vivo angiogenesis in Zebrafish embryo assay. Additionally to the above results, we proved here that tyrosine kinases in an inactive form possessing Type I inhibitors can adopt both a closed or an opened conformation of kinase A-loop independently on their DFG-out arrangement. We proposed here that an activity of certain Type I inhibitors (e.g. 22SYM-like) in complex with DFG-out TK can be negatively influenced by collisions with a dynamically moving TK A-loop. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi
2018-02-01
1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.
[Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].
Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I
1985-11-01
The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.;
2008-01-01
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.
Saxena, Kul B; Ravikoti, V Kumar; Dalvi, Vijay A; Pandey, Lalji B; Gaddikeri, Guruprasad
2010-01-01
Pigeonpea [Cajanus cajan (L.) Millsp.] is a unique food legume because of its partial (20-30%) outcrossing nature, which provides an opportunity to breed commercial hybrids. To achieve this, it is essential to have a stable male-sterility system. This paper reports the selection of a cytoplasmic-nuclear male-sterility (CMS) system derived from an interspecific cross between a wild relative of pigeonpea (Cajanus sericeus Benth. ex. Bak.) and a cultivar. This male-sterility source was used to breed agronomically superior CMS lines in early (ICPA 2068), medium (ICPA 2032), and late (ICPA 2030) maturity durations. Twenty-three fertility restorers and 30 male-sterility maintainers were selected to develop genetically diverse hybrid combinations. Histological studies revealed that vacuolation of growing tetrads and persistence of tetrad wall were primary causes of the manifestation of male sterility. Genetic studies showed that 2 dominant genes, of which one had inhibitory gene action, controlled fertility restoration in the hybrids. The experimental hybrids such as TK 030003 and TK 030009 in early, ICPH 2307 and TK 030625 in medium, and TK 030861 and TK 030851 in late maturity groups exhibited 30-88% standard heterosis in multilocation trials.
Microbial solubilization of coal
Strandberg, Gerald W.; Lewis, Susan N.
1990-01-01
This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.
Dalisay, Doralyn S; Williams, David E; Wang, Xiao Ling; Centko, Ryan; Chen, Jessie; Andersen, Raymond J
2013-01-01
Representatives of the genus Streptomyces from terrestrial sources have been the focus of intensive research for the last four decades because of their prolific production of chemically diverse and biologically important compounds. However, metabolite research from this ecological niche had declined significantly in the past years because of the rediscovery of the same bioactive compounds and redundancy of the sample strains. More recently, a new picture has begun to emerge in which marine-derived Streptomyces bacteria have become the latest hot spot as new source for unique and biologically active compounds. Here, we investigated the marine sediments collected in the temperate cold waters from British Columbia, Canada as a valuable source for new groups of marine-derived Streptomyces with antimicrobial activities. We performed culture dependent isolation from 49 marine sediments samples and obtained 186 Streptomyces isolates, 47 of which exhibited antimicrobial activities. Phylogenetic analyses of the active isolates resulted in the identification of four different clusters of bioactive Streptomyces including a cluster with isolates that appear to represent novel species. Moreover, we explored whether these marine-derived Streptomyces produce new secondary metabolites with antimicrobial properties. Chemical analyses revealed structurally diverse secondary metabolites, including four new antibacterial novobiocin analogues. We conducted structure-activity relationships (SAR) studies of these novobiocin analogues against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we revealed the importance of carbamoyl and OMe moieties at positions 3" and 4" of novobiose as well as the hydrogen substituent at position 5 of hydroxybenzoate ring for the anti-MRSA activity. Changes in the substituents at these positions dramatically impede or completely eliminate the inhibitory activity of novobiocins against MRSA.
Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp
Viegelmann, Christina; Margassery, Lekha Menon; Kennedy, Jonathan; Zhang, Tong; O’Brien, Ciarán; O’Gara, Fergal; Morrissey, John P.; Dobson, Alan D. W.; Edrada-Ebel, RuAngelie
2014-01-01
Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont. PMID:24893324
Promnuan, Yaowanoot; Kudo, Takuji; Ohkuma, Moriya; Chantawannakul, Panuwan
2013-05-01
Two novel actinomycetes, strains TA4-1(T) and TA4-8(T,) were isolated from the South-East Asian stingless bee (Tetragonilla collina Smith 1857), collected from Chiang Mai Province, Thailand. The morphological and chemotaxonomic properties of strains TA4-1(T) and TA4-8(T) were consistent with the genus Streptomyces, i.e. the formation of aerial mycelia bearing spiral spore chains, the presence of the ll-isomer of diaminopimelic acid in cell walls, iso- and anteiso-branched fatty acids with carbon chain lengths 14-17 atoms as the major fatty acids and MK-9(H8) as the predominant menaquinone plus minor amounts of MK-9(H6) and MK-9(H10). Analysis of 16S rRNA gene sequences showed that strains TA4-1(T) and TA4-8(T) exhibited 98.8 and 98.1% sequence similarity, respectively, with Streptomyces chromofuscus NRRL B-12175(T) and 98.9% sequence similarity with each other. This study suggested that strains TA4-1(T) and TA4-8(T) were distinct from previously described species of the genus Streptomyces. In addition, the low degrees of DNA-DNA relatedness between the isolates and S. chromofuscus JCM 4354(T) warranted assigning strains TA4-1(T) and TA4-8(T) to two novel species. The names Streptomyces chiangmaiensis sp. nov. (type strain TA4-1(T) = JCM 16577(T) = TISTR 1981(T)) and Streptomyces lannensis sp. nov. (type strain TA4-8(T) = JCM 16578(T) = TISTR 1982(T)) are proposed. The species names indicate the geographical locations where the stingless bees reside.
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae ). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyce s bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae . The ability of various S treptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae . In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.
Law, Jodi Woan-Fei; Ser, Hooi-Leng; Duangjai, Acharaporn; Saokaew, Surasak; Bukhari, Sarah I.; Khan, Tahir M.; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-01-01
Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%). The DNA–DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T). PMID:28559892
Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.
Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat
2016-11-01
The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).
Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota.
Dahal, Bibha; NandaKafle, Gitanjali; Perkins, Lora; Brözel, Volker S
2017-01-01
Biological Nitrogen Fixation is critical for ecosystem productivity. Select members of Bacteria and Archaea express a nitrogenase enzyme complex that reduces atmospheric nitrogen to ammonia. Several nitrogen fixing bacteria form symbiotic associations with plants, but free-living diazotrophs also contribute a substantial amount of nitrogen to ecosystems. The aim of this study was to isolate and characterize free-living diazotrophs in arid lands of South Dakota Badlands. Samples were obtained from sod tables and the surrounding base in spring and fall. Diazotrophs were isolated on solid nitrogen free medium (NFM) under hypoxic conditions, and their16S rRNA and nifH genes sequenced. nifH was also amplified directly from soil DNA extracts. The 16S rRNA gene data indicated a diversity of putative free-living diazotrophs across 4 phyla (Actinomycetes, Proteobacteria, Bacteroidetes, and Firmicutes), but ∼50% of these clustered with Streptomyces. These Streptomyces isolates grew in liquid NFM in an ammonia-depleted environment. Only 5 of these yielded a nifH gene product using the PolF/PolR primer set. Four of these aligned with nifH of the cyanobacteria Scytonema and Nostoc, and the other one aligned with nifH of Bradyrhizobium. Six selected Streptomyces isolates, three of which were nifH positive by PCR, all indicated 15 N 2 incorporation, providing strong support of nitrogen fixation. All nifH amplicons from soil DNA extract resembled Cyanobacteria. This is the first known report of diazotrophic Streptomyces, other than the thermophilic, autotrophic S. thermoautotrophicus. nifH genes of these Streptomyces were related to those from Cyanobacteria. It is possible that the cyanobacteria-like nifH amplicons obtained from soil DNA were associated with Streptomyces. Copyright © 2016 Elsevier GmbH. All rights reserved.
Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.
Godderis, Lode; Thomas, Reuben; Hubbard, Alan E; Tabish, Ali M; Hoet, Peter; Zhang, Luoping; Smith, Martyn T; Veulemans, Hendrik; McHale, Cliona M
2012-01-01
Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.
Effect of Chemical Mutagens and Carcinogens on Gene Expression Profiles in Human TK6 Cells
Godderis, Lode; Thomas, Reuben; Hubbard, Alan E.; Tabish, Ali M.; Hoet, Peter; Zhang, Luoping; Smith, Martyn T.; Veulemans, Hendrik; McHale, Cliona M.
2012-01-01
Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control. PMID:22723965