Sample records for streptozotocin stz-diabetic rats

  1. Effect of chromium picolinate on histopathological alterations in STZ and neonatal STZ diabetic rats.

    PubMed

    Shinde, Urmila A; Goyal, R K

    2003-01-01

    Earlier studies from our laboratory have indicated insulin sensitizing action of chromium picolinate as the mechanism of its anti-diabetic activity in experimental models of type I and type II diabetes. In the present investigation, we have evaluated the effects of chronic administration of chromium picolinate on the functional and histological alterations of streptozotocin (STZ)-induced diabetes in rats. Type I diabetes was induced by intravenous injection of STZ (40 mg/kg) in adult rats, whereas, type II diabetes was induced by intraperitoneal injection of STZ (90 mg/kg) in 2-day old rat pups which in adulthood develop abnormalities resembling type II diabetes. Chromium picolinate was administered at 8 microg/ml in drinking water for 6 weeks and was found to improve glucose tolerance and increase insulin sensitivity of STZ-diabetic rats. This treatment decrease elevated serum creatinine and urea levels as well as elevated serum levels of hepatic enzymes of both groups of diabetic rats. Histopathological studies of kidney and liver show decrease in the intensity and incidence of vacuolations, cellular infiltration and hypertrophy of STZ and nSTZ (neonatal STZ) diabetic rats. Chronic treatment with chromium picolinate however, did not alter the normal function or morphology of control rats. Chronic chromium picolinate at the therapeutic doses that improved glucose tolerance, was observed to have no hepatotoxic or nephrotoxic potential. It was rather found to improve renal and hepatic function and to reduce abnormalities associated with STZ-diabetes. Chromium picolinate could play an important role in the long term management of diabetes mellitus.

  2. Antihyperglycemic effect of syringaldehyde in streptozotocin-induced diabetic rats.

    PubMed

    Huang, Chia-Hsin; Chen, Mei-Fen; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-08-24

    The antihyperglycemic effect of syringaldehyde (1), purified from the stems of Hibiscus taiwanensis, was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats) showing type-1 like diabetes mellitus. Bolus intravenous injection of 1 showed antihyperglycemic activity in a dose-dependent manner in STZ-diabetic rats. An effective dose of 7.2 mg/kg of 1 attenuated significantly the increase of plasma glucose induced by an intravenous glucose challenge test in normal rats. A glucose uptake test showed that 1 exhibits an increase of glucose uptake activity in a concentration-related manner. Moreover, an effect by 1 was shown for insulin sensitivity in STZ-diabetic rats. The compound was found to increase insulin sensitivity in STZ-diabetic rats. These results suggest that syringaldehyde (1) can increase glucose utilization and insulin sensitivity to lower plasma glucose in diabetic rats.

  3. Silymarin: A Novel Natural Agent to Restore Defective Pancreatic β Cells in Streptozotocin (STZ)-induced Diabetic Rats

    PubMed Central

    Amniattalab, Amir; Malekinejad, Hassan; Rezabakhsh, Aysa; Rokhsartalab-Azar, Shirin; Alizade-Fanalou, Shahin

    2016-01-01

    This study aimed to investigate the potency of silymarin (SMN) and melatonin (MEL) on restoring the pancreatic   cells in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into five groups, including: control (C), untreated diabetic (D), SMN-treated diabetic (50 mg/Kg, orally), MEL-treated diabetic (10 mg/Kg, i.p.), and SMN plus MEL-treated diabetic rats. Diabetes was induced by injection of STZ (50 mg/Kg, i.p.). The blood glucose and insulin levels were measured. After the 28 days treatment period, antioxidant status was analyzed by determination of total antioxidant capacity (TAC) in the liver and serum. The histopathological changes in the pancreatic islets were examined by histochemical staining and enumeration of   cells. Although none of the test compounds reduced the blood glucose level to normal concentration, however SMN alone and in combination with MEL was able to decline it significantly (P<0.05) after 28 days administration. Both SMN and MEL could recover the diabetes-reduced TAC values. Moreover, the diabetes-induced cellular vacuolation and   cells depletion were improved by the SMN treatment. Our data suggest that the SMN and MEL treatment was able to normalize the antioxidant status, while only SMN administration could restore the  cells of Langerhans islets in diabetic rats. PMID:27980584

  4. Extract of Adenanthera pavonina L. seed reduces development of diabetic nephropathy in streptozotocin-induced diabetic rats

    PubMed Central

    Pandhare, Ramdas; Sangameswaran, Balakrishnan

    2012-01-01

    Objective: The aim of the present study was to investigate the renal protective effect of Adenanthera pavonina (A. pavonina) seed aqueous extract (APSAE), in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The renal protective effect of A. pavonina seed aqueous extract (APSAE) was studied in STZ-induced diabetic rats. APSAE (50, 100 and 200 mg/kg per day) was given daily to diabetic rats for 13 weeks. Blood glucose, serum parameters such as albumin, creatinine, total protein, urea, lipid profile, glycated haemoglobin (HbA1c), and urine parameters such as urine protein and albumin were examined. Kidney histopathology was also done. Results: After 13 weeks of treatment, in STZ-induced diabetic rats, severe hyperglycemia was developed, with marked increase in proteinuria and albuminuria. However, APSAE treatment significantly reduced proteinuria, albuminuria, lipid levels, and HbA1c deposition in diabetic rats. Conclusion: These results suggested that APSAE has reduced development of diabetic nephropathy in streptozotocin-induced diabetic rats and could have beneficial effect in reducing the progression of diabetic nephropathy. PMID:25050253

  5. RES hyperphagocytosis by rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Cornell, R P

    1981-03-01

    In contrast to previous studies of neutrophils from diabetic animals and humans in vitro and of macrophages from diabetic humans in vivo, which reported phagocytic depression, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon was observed in rats at 14 and 28 days after diabetes induction with streptozotocin (STZ). Carbon clearance half times were significantly enhanced to 6.3 +/- 0.79 and 8.1 +/- 1.04 min at 14 and 28 days post-STZ, respectively, compared with the nondiabetic value (12.7 +/- 0.98 min). The severity of uncontrolled STZ-induced diabetes in rats was confirmed by significant hypoinsulinemia, hyperglucagonemia, hyperglycemia, and hyperlipidemia. Although body weights of STZ-diabetic animals declined progressively, liver weights as a percent of body weight increased above the control value at 14 and 28 days post-STZ. In fact, expression of carbon phagocytosis as the corrected phagocytic index, which accounts for changes in liver and spleen weights relative to body weight, eliminated the significant difference between STZ-diabetic and nondiabetic animals. Antibiotic treatment of diabetic rats failed to alter the hyperphagocytosis, implying that a chronic bacterial infection was not the cause of phagocytic stimulation. Daily insulin replacements, but not a single large insulin dose to 14-day post-STZ rats, reversed the enhanced phagocytosis of colloidal carbon.

  6. Renoprotective effect of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats.

    PubMed

    Kaur, Rupinder; Sodhi, Rupinder Kaur; Aggarwal, Neha; Kaur, Jaspreet; Jain, Upendra K

    2016-01-01

    Proton pump inhibitors (PPIs) have exhibited glucose lowering action in animal models of diabetes; however, their potential in diabetes-related complications has not yet been evaluated. Hence, the present study has been undertaken to investigate the renoprotective potential of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats. Diabetic nephropathy was induced with a single injection of streptozotocin (STZ, 45 mg/kg, i.p.). Lansoprazole (40 mg/kg; 80 mg/kg, p.o.; 4 weeks) was administered to diabetic rats after 4 weeks of STZ treatment. A battery of biochemical tests such as serum glucose, glycated hemoglobin, blood urea nitrogen (BUN), serum creatinine, albumin, and kidney weight/body weight (%) ratio were performed to evaluate the renal functions. Oxidative stress was determined by estimating renal thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels. Lipid profile was assessed by determining serum cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL). The STZ-treated rats demonstrated deleterious alterations in kidney functions, enhanced oxidative stress, and disturbed lipid profile. Administration of lansoprazole to diabetic rats significantly reduced serum glucose, glycated hemoglobin, BUN, creatinine, albumin levels, and oxidative stress. Serum lipids like TC and TG were decreased, and HDL was enhanced in lansoprazole-treated STZ rats. The findings of our study indicate that renoprotective effects of lansoprazole may be attributed to its glucose-lowering, lipid-lowering, and antioxidative potential.

  7. Effect of N-benzoyl-D-phenylalanine and metformin on carbohydrate metabolic enzymes in neonatal streptozotocin diabetic rats.

    PubMed

    Ashokkumar, Natarajan; Pari, Leelavinothan

    2005-01-01

    The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin was studied on the activities of carbohydrate metabolic enzymes in neonatal streptozotocin (nSTZ) non-insulin-dependent diabetic rats. To induce non-insulin-dependent diabetes mellitus (NIDDM), single dose injection of streptozotocin (STZ; 100 mg/kg body weight; i.p.) was given to 2-day old rats. After 10-12 weeks, rats weighing >150 g were selected for screening in NIDDM model, they were checked for fasting blood glucose concentrations to conform the status of NIDDM. NBDP (50,100 and 200 mg/kg body weight) was administered orally for 6 weeks into the confirmed diabetic rats. The activities of gluconeogenic enzymes were significantly increased, whereas the activities of hexokinase and glucose-6-phosphate dehydrogenase were significantly decreased in nSTZ diabetic rats. Both NBDP and metformin were able to restore the altered enzyme activities to almost control concentrations. Combination treatment was more effective than either drug alone. The administration of NBDP along with metformin to nSTZ diabetic rats normalizes blood glucose and causes marked improvement of altered carbohydrate metabolic enzymes during diabetes.

  8. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.

    PubMed

    Lotfipour, Shahrdad; Smith, Maree T

    2018-01-01

    Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.

  9. Quercetin and pioglitazone synergistically reverse endothelial dysfunction in isolated aorta from fructose-streptozotocin (F-STZ)-induced diabetic rats.

    PubMed

    Kunasegaran, Thubasni; Mustafa, Mohd Rais; Achike, Francis I; Murugan, Dharmani Devi

    2017-03-15

    Pioglitazone is an anti-diabetic drug with potential to cause adverse effects following prolonged use. This study, therefore, investigated the effects of combination treatment of a subliminal concentration of pioglitazone and quercetin, a potent antioxidant, on vascular reactivity of aorta isolated from fructose-streptozotocin (F-STZ)-induced diabetic rats. Relaxation to acetylcholine and sodium nitroprusside, and contraction to phenylephrine were tested in organ bath chambers following pre-incubation with vehicle (DMSO; 0.05%), quercetin (10-7 M), pioglitazone (10-7 M), or their combination (P+Q; 10-7 M each drug). Subliminal concentration of quercetin or pioglitazone did not alter the acetylcholine- induced relaxation nor the phenylephrine-induced contraction in both normal rat and diabetic F-STZ induced tissues. However, P+Q combination synergistically improved the impaired acetylcholine-induced relaxation and decreased the elevated phenylephrine-induced contraction in aortic rings from diabetic, but not in the normal rats. Neither mono nor combination treatment altered sodium nitroprusside-induced relaxation. The combination also synergistically decreased superoxide anion and increased nitric oxide production compared to the individual treatments in aorta from diabetic rats. Overall, these data demonstrated a synergistic effect, in which, a combination (P+Q; 10-7 M each drug) caused a significantly greater effect than 10-6 M of either agent in improving endothelial function of isolated diabetic aorta. In conclusion, a combination of subliminal concentrations of pioglitazone and quercetin is able to decrease oxidative stress and provide synergistic vascular protection in type 2 diabetes mellitus and thus the possibility of using quercetin as a supplement to pioglitazone in the treatment of diabetes with the goal of reducing pioglitazone toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats.

    PubMed

    Raish, Mohammad; Ahmad, Ajaz; Jan, Basit L; Alkharfy, Khalid M; Ansari, Mushtaq Ahmad; Mohsin, Kazi; Jenoobi, Fahad Al; Al-Mohizea, Abdullah

    2016-10-01

    Diabetic nephropathy (DN) has become a primary cause of end-stage kidney disease. Several complex dynamics converge together to accelerate the advancement of DN. The present investigation was postulated to explore the mechanism of reno-protective nature of Momordica Charantia polysaccharides (MCP) by evaluating the anti-hyperglycemic, anti-lipidemic as well as markers for oxidative stress and antioxidant proficiency in streptozotocin (STZ)-induced diabetic rats. The oral administration of MCP showed a significant normalization in the levels of kidney function test in the STZ-induced diabetic rats. The levels of blood urea nitrogen (BUN), urea protein and creatinine increased by 316.58%, 195.14% and 800.97% respectively, in STZ-induced diabetic rats when compared with normal rats. MCP treatment also illustrated a significant improvement in glutathione peroxidase, superoxide dismutase and catalase levels, with a significant decline in MDA in diabetic kidneys. Immunoblots of heme-oxygenase 1 (HO-1) and Nrf2 of MCP treated diabetic rats showed a significant up-regulation of HO-1 and Nrf2 protein. Histological and ultra-structural observations also reveal that MCP efficiently protects the kidneys from hyperglycemia-mediated oxidative damage. These findings illustrate that the reno-protective nature of MCP mitigates the progression of STZ induced DN in rats by suppression of oxidative stress and amelioration of the HO-1/Nrf2 pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of the Effect of Different Doses of Low Energy Shock Wave Therapy on the Erectile Function of Streptozotocin (STZ)-Induced Diabetic Rats

    PubMed Central

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-01-01

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment. PMID:23698784

  12. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-05-21

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.

  13. Effects of Vernonia cinerea on reproductive performance in streptozotocin-induced diabetic rats.

    PubMed

    Pomjunya, Atchariya; Ratthanophart, Jasada; Fungfuang, Wirasak

    2017-03-23

    The present study investigated the effects of Vernonia cinerea (VC) on the reproductive function in streptozotocin (STZ)-induced diabetic male rats. Six-week-old male Sprague-Dawley rats were randomly divided into four groups: group 1, normal control rats; group 2, diabetic untreated rats; group 3, diabetic rats treated with VC (10 mg/kg); and group 4, diabetic rats treated with VC (40 mg/kg). Diabetes mellitus (DM) was induced by intraperitoneal injection of STZ (60 mg/kg). All animals were treated for 30 consecutive days. Body weight, blood glucose, food intake, epididymal sperm parameters, testicular microstructure and serum testosterone levels were evaluated. VC treatment significantly restored the sperm motility and testosterone concentration, and decreased the testicular histopathological changes in DM rats. Moreover, high-dose VC exhibited an antidibetic activity and significantly improved the sperm count. In conclusion, we found, for the first time, that administration of VC significantly restored the testicular function and testosterone concentration in diabetic male rats.

  14. Effects of Vernonia cinerea on reproductive performance in streptozotocin-induced diabetic rats

    PubMed Central

    POMJUNYA, Atchariya; RATTHANOPHART, Jasada; FUNGFUANG, Wirasak

    2017-01-01

    The present study investigated the effects of Vernonia cinerea (VC) on the reproductive function in streptozotocin (STZ)-induced diabetic male rats. Six-week-old male Sprague-Dawley rats were randomly divided into four groups: group 1, normal control rats; group 2, diabetic untreated rats; group 3, diabetic rats treated with VC (10 mg/kg); and group 4, diabetic rats treated with VC (40 mg/kg). Diabetes mellitus (DM) was induced by intraperitoneal injection of STZ (60 mg/kg). All animals were treated for 30 consecutive days. Body weight, blood glucose, food intake, epididymal sperm parameters, testicular microstructure and serum testosterone levels were evaluated. VC treatment significantly restored the sperm motility and testosterone concentration, and decreased the testicular histopathological changes in DM rats. Moreover, high-dose VC exhibited an antidibetic activity and significantly improved the sperm count. In conclusion, we found, for the first time, that administration of VC significantly restored the testicular function and testosterone concentration in diabetic male rats. PMID:28190818

  15. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats

    PubMed Central

    Qinna, Nidal A; Badwan, Adnan A

    2015-01-01

    Streptozotocin (STZ) is currently the most used diabetogenic agent in testing insulin and new antidiabetic drugs in animals. Due to the toxic and disruptive nature of STZ on organs, apart from pancreas, involved in preserving the body’s normal glucose homeostasis, this study aims to reassess the action of STZ in inducing different glucose response states in diabetic rats while testing insulin. Diabetic Sprague-Dawley rats induced with STZ were classified according to their initial blood glucose levels into stages. The effect of randomizing rats in such a manner was investigated for the severity of interrupting normal liver, pancreas, and kidney functions. Pharmacokinetic and pharmacodynamic actions of subcutaneously injected insulin in diabetic and nondiabetic rats were compared. Interruption of glucose homeostasis by STZ was challenged by single and repeated administrations of injected insulin and oral glucose to diabetic rats. In diabetic rats with high glucose (451–750 mg/dL), noticeable changes were seen in the liver and kidney functions compared to rats with lower basal glucose levels. Increased serum levels of recombinant human insulin were clearly indicated by a significant increase in the calculated maximum serum concentration and area under the concentration–time curve. Reversion of serum glucose levels to normal levels pre- and postinsulin and oral glucose administrations to STZ diabetic rats were found to be variable. In conclusion, diabetic animals were more responsive to insulin than nondiabetic animals. STZ was capable of inducing different levels of normal glucose homeostasis disruption in rats. Both pharmacokinetic and pharmacodynamic actions of insulin were altered when different initial blood glucose levels of STZ diabetic rats were selected for testing. Such findings emphasize the importance of selecting predefined and unified glucose levels when using STZ as a diabetogenic agent in experimental protocols evaluating new antidiabetic agents

  16. The effects of dexpanthenol in streptozotocin-induced diabetic rats: histological, histochemical and immunological evidences.

    PubMed

    Gulle, K; Ceri, N G; Akpolat, M; Arasli, M; Demirci, B

    2014-10-01

    This study was designed to investigate the effects of Dexpanthenol (Dxp) on liver and pancreas histology and cytokine levels in streptozotocine (STZ)-induced diabetic rats. Twenty-four Wistar albino male rats were divided into four groups: control, Dxp, STZ-induced diabetic (STZ) and diabetic treatment with Dexpanthenol (STZ-Dxp) groups. Experimental diabetes was induced by single dose STZ (50 mg/kg) intraperitoneally (i.p.). After administration of STZ, the STZ-Dxp group began to receive a 300 mg/kg/day i.p. dose of Dxp for 6 weeks. Liver and pancreas tissues of the control group were in normal morphology. Liver tissue of STZ group showed vacuolisation of hepatocytes in the liver parenchyma with enlargement of sinusoidal spaces and increasing amounts of connective tissue in the portal area. Pancreatic section of STZ group displayed β-cells with of cytoplasmic mass, reduction of islet size, and atrophy. The STZ-Dxp group that received Dxp treatment exhibit partially normal hepatic parenchyma. Histochemical examinations revealed that the diabetes-induced glycogen depletion markedly improved with the Dxp treatment (p⟨0.001). The severity of degenerative alteration was lessened by Dxp supplementation in the STZ-Dxp group. Induction of STZ presented a significant increase both in interleukin-1α (IL-1α) (p=0.033) and monocyte chemotactic protein-1 (MCP-1) (p=0.011) levels, when compared with the control rats. DXP-treated diabetic rats' IL-1α and MCP-1 levels were similar to control value. This evidence suggests that Dxp is effective in reducing STZ-induced, diabetic-related complications and may be beneficial for the treatment of diabetic patients.

  17. Jiangtang Xiaozhi Recipe () prevents diabetic retinopathy in streptozotocin-induced diabetic rats.

    PubMed

    Li, Lin; Li, Yan-Lin; Zhou, Yun-Feng; Ge, Zheng-Yan; Wang, Li-Li; Li, Zhi-Qiang; Guo, Yu-Jie; Jin, Long; Ren, Ye; Liu, Jian-Xun; Xu, Yang

    2017-06-01

    To evaluate the prevention effect of diabetic retinopathy of Jiangtang Xiaozhi Recipe (, JXR) in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were randomly divided into normal control group and diabetic group. Rats in the diabetic group were induced by intraperitoneal administration of STZ (50 mg/kg), and subdivided into 5 groups. Rats in the diabetic control group were given saline; four treatment groups were given metformin (300 mg/kg), JXR (2, 4 and 8 g/kg) respectively for 8 weeks, while rats in the normal control group were injected with citrate buffer and given the same volume of vehicle. Body weight and food intake were measured every week. The hypoglycaemic effects were determined by testing fasting blood glucose (FBG) every other week, and hemoglobin A1c (HbA1c), insulin, and glucagon at the end of the treatment. The preventive effects of JXR on STZ-induced diabetic rats were determined by histopathological examination with hematoxylin and eosin staining, and periodic acid-schiff staining. The effects were further evaluated by serum superoxide dismutase (SOD) activity and malondialdehyde (MDA). High-dose JXR significantly reduced FBG and HbA1c level at the 8th week of administration (P<0.01, P<0.05). JXR significantly increased insulin level (P<0.05), and decreased glucagon level (P<0.05). JXR showed the antioxidant defense with increased SOD activity and decreased MDA contents in diabetic rats. Histopathological studies revealed that there were no basement membrane thickening and mild destruction in the treated groups. Morphometric measurements of retina microvascular showed that acellular capillary and capillary density decreased in treated rats while pericyte and endothelial cell increasing after the treatment. JXR have protective effect of diabetic retinopathy and its mechanism may be associated with the obvious hypoglycemic and antioxidant effect.

  18. Effect of Urtica dioica L. (Urticaceae) on testicular tissue in STZ-induced diabetic rats.

    PubMed

    Ghafari, S; Balajadeh, B Kabiri; Golalipour, M J

    2011-08-15

    Urtica dioica L. (Stinging nettle) has already been known for a long time as a medicinal plant in the world. This histopathological and morphometrical study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on testis of streptozotocin-induced diabetic rats. Eighteen male Wistar rats were allocated to equally normal, diabetic and treatment groups. Hyperglycemia was induced by Streptozotocin (80 mg kg(-1)) in animals of diabetic and treatment groups. One week after STZ injection (80 mg kg(-1)), the rats of treatment group received the extract of U. dioica (100 mg/kg/day) IP for 28 days. After 5 weeks of study, all the rats were sacrificed and testes were removed and fixed in bouin and after tissue processing stained with H and E technique. Tubular cell disintegration, sertoli and spermatogonia cell vacuolization and decrease in sperm concentration in seminiferous tubules were seen in diabetic and treatment groups group in comparison with control. External Seminiferous Tubular Diameter (STD) and Seminiferous Epithelial Height (SEH) significantly reduced (p < 0.05) in the diabetic rats compared with controls and these parameters in the treatment group were similar to diabetics animals. This study showed that hydroalcoholic extract of Urtica dioica leaves, after induction of diabetes; has no treatment effect on seminiferous tubules alterations in streptozotocin-induced diabetic rats.

  19. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats.

    PubMed

    Nasiry, Davood; Khalatbary, Ali Reza; Ahmadvand, Hassan; Talebpour Amiri, Fereshteh; Akbari, Esmaeil

    2017-10-02

    Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Protection against

  20. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    PubMed

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  1. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats

    PubMed Central

    Bădescu, SV; Tătaru, CP; Kobylinska, L; Georgescu, EL; Zahiu, DM; Zăgrean, AM; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations: STZ = streptozotocin, OFT = Open Field Test PMID:27974933

  2. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Xianchu; Liu, Ming; Mo, Yanzhi; Peng, Huan; Gong, Jingbo; Li, Zhuang; Chen, Jiaxue; Xie, Jingtao

    2016-04-01

    Previous research demonstrated that diabetes is one of the leading causes of learning and memory deficits. Naringin, a bioflavonoid isolated from grapefruits and oranges, has potent protective effects on streptozotocin (STZ)-induced diabetic rats. Recently, the effects of naringin on learning and memory performances were monitored in many animal models of cognitive impairment. However, to date, no studies have investigated the ameliorative effects of naringin on diabetes-associated cognitive decline (DACD). In this study, we investigated the effects of naringin, using a STZ-injected rat model and explored its potential mechanism. Diabetic rats were treated with naringin (100 mg/kg/d) for 7 days. The learning and memory function were assessed by Morris water maze test. The oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)] and inflammatory cytokines (TNF-a, IL-1β, and IL-6) were measured in hippocampus using corresponding commercial kits. The mRNA and protein levels of PPARγ were evaluated by real time (RT)-PCR and Western blot analysis. The results showed that supplementation of naringin improved learning and memory performances compared with the STZ group. Moreover, naringin supplement dramatically increased SOD levels, reduced MDA levels, and alleviated TNF-α, IL-1β, and IL-6 compared with the STZ group in the hippocampus. The pretreatment with naringin also significantly increased PPARγ expression. Our results showed that naringin may be a promising therapeutic agent for improving cognitive decline in DACD.

  3. Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats.

    PubMed

    Sureka, Chandrabose; Ramesh, Thiyagarajan; Begum, Vavamohaideen Hazeena

    2015-08-01

    The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190-220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.

  4. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    PubMed Central

    Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N-acetyl-β-hexosaminidase (HEX, HEX A, and HEX B), β-glucuronidase, α-fucosidase, β-galactosidase, and α-mannosidase—was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α-amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands. PMID:29464184

  5. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands-nonstimulated and stimulated salivary flow, α -amylase, total protein-and salivary exoglycosidase activities-N-acetyl- β -hexosaminidase (HEX, HEX A, and HEX B), β -glucuronidase, α -fucosidase, β -galactosidase, and α -mannosidase-was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α -amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  6. Protective Action of Carica papaya on β-Cells in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Miranda-Osorio, Pedro H; Castell-Rodríguez, Andrés E; Vargas-Mancilla, Juan; Tovilla-Zárate, Carlos A; Ble-Castillo, Jorge L; Aguilar-Domínguez, Dora E; Juárez-Rojop, Isela E; Díaz-Zagoya, Juan C

    2016-04-27

    The aim of the present study was to investigate the effect of C. papaya L. leaf extract (CPLE) on pancreatic islets in streptozotocin (STZ)-induced diabetic rats, as well as on cultured normal pancreatic cells with STZ in the medium. CPLE (3-125 mg/Kg) was administered orally for 20 days, while a group of diabetic rats received 5 IU/Kg/day of insulin. At the end of the treatment the rats were sacrificed. Blood was obtained to assess glucose and insulin levels. The pancreas was dissected to evaluate β cells by immunohistochemistry. In addition, normal pancreatic cells were cultured in a medium that included CPLE (3-12 mg). One half of the cultured cells received simultaneously CPLE and STZ (6 mg), while the other half received CPLE and five days later the STZ. After three days of incubation, insulin was assayed in the incubation medium. The CPLE administered to diabetic rats improved the fasting glycemia and preserved the number and structure of pancreatic islets. However, when CPLE was added to pancreatic cells in culture along with STZ, the insulin concentration was higher in comparison with the cells that only received STZ. In conclusion, the CPLE preserves the integrity of pancreatic islets, improves the basal insulin secretion and protects cultured cells from the adverse effects of STZ.

  7. Inhibitory effect of troglitazone on diabetic neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Qiang, X; Satoh, J; Sagara, M; Fukuzawa, M; Masuda, T; Sakata, Y; Muto, G; Muto, Y; Takahashi, K; Toyota, T

    1998-11-01

    Free-radical scavengers and inhibitors of tumour necrosis factor-alpha (TNF-alpha) such as N-acetylcysteine and pentoxifylline have been shown to inhibit the development of peripheral neuropathy in streptozotocin(STZ)-induced diabetic rats. In this study we examined the effect of troglitazone, an anti-diabetic thiazolidinedione, on diabetic neuropathy, since it also is a free-radical scavenger and a TNF-alpha inhibitor. Rats were fed powder chow mixed with troglitazone at 0.5% and 0.125% ad libitum. Although blood glucose concentrations were remarkably higher and body weight lower in diabetic than in nondiabetic rats, troglitazone had no effect on these throughout the 24-week experiment. Serum lipoperoxide concentrations, tibial nerve lipoperoxide content and serum TNF-alpha activity induced by lipopolysaccharide was increased in diabetic rats, but inhibited in troglitazone-treated rats. Motor nerve conduction velocity (MNCV) of the tibial nerve slowed in diabetic rats, compared with that in nondiabetic rats. On the other hand, the slowed MNCV was (p < 0.05-0.01) inhibited after weeks 12 and 16 of the experiment in diabetic rats treated with high and low doses of troglitazone, respectively. Morphometric analysis showed that troglitazone suppressed the decrease of the myelinated fibre area (p < 0.05), axon/myelin ratio (p < 0.01) and fascicular area (p < 0.05) and suppressed the increase of myelinated fibre density (p < 0.001) in diabetic rats. These results indicate that troglitazone has a beneficial effect on peripheral neuropathy in STZ-induced diabetic rats irrespective of blood glucose concentrations.

  8. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    PubMed

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  9. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  10. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    PubMed

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  11. Gliclazide inhibits diabetic neuropathy irrespective of blood glucose levels in streptozotocin-induced diabetic rats.

    PubMed

    Qiang, X; Satoh, J; Sagara, M; Fukuzawa, M; Masuda, T; Miyaguchi, S; Takahashi, K; Toyota, T

    1998-08-01

    N-acetylcysteine and pentoxifylline, free radical scavengers and inhibitors of tumor necrosis factor-alpha (TNF-alpha) production, inhibit the development of peripheral neuropathy in streptozotocin (STZ)-induced diabetic rats. This study was designed to elucidate the effect of gliclazide, an oral hypoglycemic sulfonylurea, on diabetic neuropathy, because it has been indicated to be a free radical scavenger and TNF-alpha inhibitor. Rats were fed with powder chow mixed with gliclazide or glibenclamide as a control ad libitum. Blood glucose levels and body weight were remarkably higher and lower in diabetic than in nondiabetic rats, respectively, while gliclazide and glibenclamide had no effect on these in both diabetic and nondiabetic rats throughout a 24-week experiment. Serum lipoperoxide levels and lipopolysaccharide (LPS)-induced serum TNF-alpha activities were significantly increased in diabetic rats, whereas these were significantly inhibited in gliclazide-treated rats. Motor nerve conduction velocity (MNCV) of the tibial nerve significantly slowed in diabetic rats compared with nondiabetic rats. On the other hand, the slowed MNCV was significantly inhibited in gliclazide-treated diabetic rats after 16 experimental weeks. Morphometric analysis showed that gliclazide prevented decreased myelinated fiber area (P < .05), increased fiber density (P < .001), and decreased axon/myelin ratio (P < .05) in diabetic rats. Glibenclamide treatment did not affect serum lipoperoxide, TNF-alpha, MNCV, or nerve morphology in this experiment. These results indicate that gliclazide has a beneficial effect on peripheral neuropathy in STZ-induced diabetic rats, irrespective of blood glucose levels.

  12. The prophylactic effect of Viscum album in streptozotocin-induced diabetic rats

    PubMed Central

    Turkkan, Asuman; Savas, Hasan Basri; Yavuz, Berire; Yigit, Ayse; Uz, Efkan; Bayram, Nezire Asli; Kale, Banu

    2016-01-01

    OBJECTIVE: Viscum album (VA) is a species of mistletoe in the family Santalaceae that is thought to have therapeutic properties for several diseases, including diabetes. In the present study, conventional experimental rat model was used with diabetes induced with streptozotocin (STZ) to evaluate effect of VA on lipid peroxidation and antioxidant system. METHODS: Total of 32 adult, male Sprague-Dawley rats were divided into 4 groups of 8 rats: Control group, STZ group, VA group, and group administered VA+STZ. VA extract was 100 mg/kg preparation delivered once a day by oral gavage for 10 days. Single dose of 55 mg/kg STZ citrate buffer (0.1 M, pH 4.5) was administered intraperitoneally to induce diabetes. Fasting blood glucose level was measured and recorded. Animals were sacrificed, and catalase (CAT), malondialdehyde (MDA), and protein present in liver and kidney tissue samples were measured. Activity of CAT, an antioxidant enzyme, was studied according to the Aebi method. MDA, a product of lipid peroxidation, was analyzed using Draper and Hadley spectrophotometric procedure. Protein level was determined using supernatant and extract of tissue homogenates according to Lowry method. Data were assessed using one-way analysis of variance and pairwise comparisons between groups. Post-hoc analysis included Dunnet test, Duncan test, and least significant difference test. P<0.05 was considered significant probability value. RESULTS: Oxidative stress is associated with diabetic complications. VA administered to diabetic rats reduced oxidative stress and improved their general condition. CONCLUSION: Further studies are needed to enhance understanding of potential antidiabetic and antioxidant effects of VA. PMID:28058393

  13. Effect of lipoprotein-associated phospholipase A2 inhibitor on insulin resistance in streptozotocin-induced diabetic pregnant rats.

    PubMed

    Wang, Guo-Hua; Jin, Jun; Sun, Li-Zhou

    2018-06-21

    This paper aims to investigate the influence of lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, darapladib, on insulin resistance (IR) in streptozotocin (STZ)-induced diabetic pregnant rats. The rat models were divided into Control (normal pregnancy), STZ + saline (STZ-induced diabetic pregnant rats), STZ + Low-dose and STZ + High-dose darapladib (STZ-induced diabetic pregnant rats treated with low-/high-dose darapladib) groups. Pathological changes were observed by Hematoxylin-eosin (HE) and Immunohistochemistry staining. Lp-PLA2 levels were determined by enzyme-linked immunosorbent assay (ELISA). An automatic biochemical analyzer was used to measure the serum levels of biochemical indicators, and homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity index (ISI) were calculated. Western blot was applied to determine levels of inflammatory cytokines. Compared with Control group, rats in the STZ + saline group were significantly decreased in body weight, the number of embryo implantation, the number of insulin positive cells and pancreatic islet size as well as the islet endocrine cells, and high-density lipoprotein (HDL-C) level, but substantially increased in Lp-PLA2, low-density lipoprotein (LDL-C), fatty acids (FFA), serum total cholesterol (TC), triglyceride (TG) levels. Moreover, the increased fasting plasma glucose (FPG) and HOMA-IR and inflammatory cytokines but decreased fasting insulin (FINS) and ISI were also found in diabetic pregnant rats. On the contrary, rats in the darapladib-treated groups were just opposite to the STZ + saline group, and STZ + High-dose group improved better than STZ + Low-dose group. Thus, darapladib can improve lipid metabolism, and enhance insulin sensitivity of diabetic pregnant rats by regulating inflammatory cytokines.

  14. Comparative effects of Citrullus colocynthis, sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats.

    PubMed

    Sebbagh, N; Cruciani-Guglielmacci, C; Ouali, F; Berthault, M-F; Rouch, C; Sari, D Chabane; Magnan, C

    2009-06-01

    Citrullus colocynthis (colocynth) seeds are traditionally used as antidiabetic medication in Mediterranean countries. The present study evaluated the differential effects of diets enriched with C. colocynthis, sunflower or olive oils on the pancreatic beta-cell mass in streptozotocin (STZ)-induced diabetes in rats. STZ injection induced rapid hyperglycaemia in all animals. However, 2 months later, hyperglycaemia was significantly less pronounced in the rats fed a C. colocynthis oil-enriched diet compared with other rat groups (7.9mM versus 12mM and 16mM with colocynth versus olive and sunflower oils, respectively). Assessment of insulin sensitivity using the homoeostasis model assessment (HOMA) method also indicated less insulin resistance in the rats fed a C. colocynthis oil-enriched diet versus the other rats. Finally, 2 months after STZ injection, the pancreatic beta-cell mass was similar in both the STZ-treated rats fed the colocynth oil-enriched diet and their controls fed the same diet. In contrast, the pancreatic beta-cell mass remained lower in the STZ-induced diabetic rats fed with olive oil- and sunflower oil-enriched diets compared with the C. colocynthis group. We conclude that C. colocynthis oil supplementation may have a beneficial effect by partly preserving or restoring pancreatic beta-cell mass in the STZ-induced diabetes rat model.

  15. Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats.

    PubMed

    Wang, Yue-Hua; Liu, Yan-Hong; He, Guo-Rong; Lv, Yang; Du, Guan-Hua

    2015-11-09

    Increasing studies have shown that dyslipidemia and inflammatory responses play important roles in the progression of microvascular diabetic complications. Esculin (ES), a coumarin derivative, was extracted from Fraxinus rhynchophylla. The present study was to evaluate the potential effects of ES on lipid metabolism, inflammation responses and renal damage in streptozotocin (STZ)-induced experimental diabetic rats and explore the possible mechanism. Diabetic rat model was established by administration high-glucose-fat diet and intraperitoneal injection of STZ 45 mg/kg. ES was administrated to diabetic rats intragastrically at 10, 30 and 90 mg/kg for 10 weeks respectively. The levels of triglycerides (TG), total cholesterol (T-CHO), low density lipoproteins (LDL), and high-density-cholesterol (HDL-C) in serum were measured. IL-1, IL-6, ICAM-1, NO, NAGL, and AGEs level in serum were detected by ELISA assay. The accumulation of AGEs in kidney tissue was examined by immunohistochemistry assay. The results showed that ES could decrease TG, T-CHO, LDL levels in serum of diabetic rats in a dose dependent manner. ES also decreased IL-1, IL-6, ICAM-1, NO and NGAL levels in serum of diabetic rats in a dose dependent manner. Furthermore, ES at 30 and 90 mg/kg significantly decreased AGEs level in serum and alleviated AGEs accumulation in renal in diabetic rats. Our findings indicate that ES could improve dyslipidemia, inflammation responses, renal damage in STZ-induced diabetic rats and the possible mechanism might be associated with the inhibition of AGEs formation.

  16. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    PubMed Central

    Hwang, Seung Hwan; Kang, Il-Jun

    2017-01-01

    The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement. PMID:28303158

  17. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    PubMed

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  18. Improvement of Insulin Secretion and Pancreatic β-cell Function in Streptozotocin-induced Diabetic Rats Treated with Aloe vera Extract

    PubMed Central

    Noor, Ayesha; Gunasekaran, S.; Vijayalakshmi, M. A.

    2017-01-01

    Background: Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. Plant extracts and their products are being used as an alternative system of medicine for the treatment of diabetes. Aloe vera has been traditionally used to treat several diseases and it exhibits antioxidant, anti-inflammatory, and wound-healing effects. Streptozotocin (STZ)-induced Wistar diabetic rats were used in this study to understand the potential protective effect of A. vera extract on the pancreatic islets. Objective: The aim of the present study was to evaluate the A. vera extract on improvement of insulin secretion and pancreatic β-cell function by morphometric analysis of pancreatic islets in STZ-induced diabetic Wistar rats. Materials and Methods: After acclimatization, male Wistar rats, maintained as per the Committee for the Purpose of Control and Supervision of Experiments on Animals guidelines, were randomly divided into four groups of six rats each. Fasting plasma glucose and insulin levels were assessed. The effect of A. vera extract in STZ-induced diabetic rats on the pancreatic islets by morphometric analysis was evaluated. Results: Oral administration of A. vera extract (300 mg/kg) daily to diabetic rats for 3 weeks showed restoration of blood glucose levels to normal levels with a concomitant increase in insulin levels upon feeding with A. vera extract in STZ-induced diabetic rats. Morphometric analysis of pancreatic sections revealed quantitative and qualitative gain in terms of number, diameter, volume, and area of the pancreatic islets of diabetic rats treated with A. vera extract when compared to the untreated diabetic rats. Conclusion: A. vera extract exerts antidiabetic effects by improving insulin secretion and pancreatic β-cell function by restoring pancreatic islet mass in STZ-induced diabetic Wistar rats. SUMMARY Fasting plasma glucose (FPG) and insulin levels were restored to normal levels in diabetic rats treated with Aloe vera extract

  19. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, O O; Omotayo, Erejuwa O; Gurtu, Sunil; Sulaiman, Siti Amrah; Ab Wahab, Mohd Suhaimi; Sirajudeen, K N S; Salleh, Md Salzihan Md

    2010-01-01

    Oxidative stress plays a crucial role in the development of diabetic complications. The aims of this study were to investigate whether honey could reduce hyperglycemia and ameliorate oxidative stress in kidneys of streptozotocin-induced diabetic rats. Diabetes was induced by a single dose of STZ (60 mg/kg; i. p.). Diabetic rats were randomly grouped and administered distilled water (0.5 mL/day) and honey (0.2 g/kg/day, 1.2 g/kg/day and 2.4 g/kg/day) by oral gavage for four weeks. Each group consisted of six rats. Total antioxidant status (TAS), activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) were significantly reduced, while superoxide dismutase (SOD) activity was up-regulated in kidneys of diabetic rats. Lipid peroxidation (TBARS) and fasting plasma glucose (FPG) were significantly elevated while body weight was reduced in diabetic rats. Honey significantly increased body weight, TAS, activities of CAT, GPx, GR, and GST in diabetic rats. It significantly restored SOD activity, and reduced FPG and TBARS levels in diabetic rats. Histopathological examinations of the kidneys revealed that mesangial matrix expansion and thickening of glomerular basement membrane were reduced in the honey-treated diabetic rats. Honey exerts a hypoglycemic effect and ameliorates oxidative stress in kidneys of streptozotocin-induced diabetic rats.

  20. Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats.

    PubMed

    Pushparaj, P; Tan, C H; Tan, B K

    2000-09-01

    The present study was designed to investigate the hypoglycemic and hypolipidemic activities of an ethanolic extract of Averrhoa bilimbi Linn. leaves (Oxalidaceae, Common name: Bilimbi) in streptozotocin (STZ)-diabetic rats. The optimal hypoglycemic dose (125 mg kg(-1)) was determined by performing the oral glucose tolerance test (OGTT) in both normal and STZ-diabetic rats. To investigate the effect of repeated administration of an ethanolic extract of Averrhoa bilimbi (ABe) leaves, diabetic rats were treated with vehicle (distilled water), ABe (125 mg kg(-1)) or metformin (500 mg kg(-1)) twice a day for 2 weeks. Like metformin, ABe significantly lowered blood glucose by 50% and blood triglyceride by 130% when compared with the vehicle. ABe also significantly increased the HDL-cholesterol concentrations by 60% compared with the vehicle. ABe thus significantly increased the anti-atherogenic index and HDL-cholesterol/total cholesterol ratio. However, like metformin, ABe did not affect total cholesterol and LDL-cholesterol concentrations, but significantly reduced the kidney lipid peroxidation level. These data show that ABe has hypoglycemic, hypotriglyceridemic, anti-lipid peroxidative and anti-atherogenic properties in STZ-diabetic rats.

  1. Bio-optic signatures for advanced glycation end products in the skin in streptozotocin (STZ) Induced Diabetes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saidian, Mayer; Ponticorvo, Adrien; Rowland, Rebecca A.; Balbado, Melisa L.; Lentsch, Griffin; Balu, Mihaela; Alexander, Micheal; Shiri, Li; Lakey, Jonathan R. T.; Durkin, Anthony J.; Kohen, Roni; Tromberg, Bruce J.

    2017-02-01

    Type 1diabetes (T1D) is an autoimmune disorder that occurs due to the rapid destruction of insulin-producing beta cells, leading to insulin deficiency and the inability to regulate blood glucose levels and leads to destructive secondary complications. Advanced glycation end (AGEs) products, the result of the cross-linking of reducing sugars and proteins within the tissues, are one of the key causes of major complications associated with diabetes such as renal failure, blindness, nerve damage and vascular changes. Non-invasive techniques to detect AGEs are important for preventing the harmful effects of AGEs during diabetes mellitus. In this study, we utilized multiphoton microscopy to image biopsies taken from control rats and compared them to biopsies taken from streptozotocin (STZ) induced adult male diabetic rats. This was done at two and four weeks after the induction of hyperglycemia (>400 mg/dL) specifically to evaluate the effects of glycation on collagen. We chose to use an in-situ multiphoton microscopy method that combines multiphoton auto-florescence (AF) and second harmonic generation (SHG) to detect the microscopic influence of glycation. Initial results show high auto-florescence levels were present on the collagen, as a result of the accumulation of AGEs only two weeks after the STZ injection and considerably higher levels were present four weeks after the STZ injection. Future projects could involve evaluating advanced glycation end products in a clinical trial of diabetic patients.

  2. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats.

    PubMed

    Bhaskar, Anusha; Vidhya, V G; Ramya, M

    2008-12-01

    The hypoglycemic effect of the aqueous extract of the seeds of Mucuna pruriens was investigated in normal, glucose load conditions and streptozotocin (STZ)-induced diabetic rats. In normal rats, the aqueous extract of the seeds of Mucuna pririens (100 and 200 mg/kg body weight) significantly (P<0.001) reduced the blood glucose levels after an oral glucose load from 127.5+/-3.2 to 75.6+/-4.8 mg% 2 h after oral administration of seed extract. It also significantly lowered the blood glucose in STZ diabetic rats from 240.5+/-7.2 to 90.6+/-5.6 mg% after 21 days of daily oral administration of the extract (P<0.001). Thus, this study shows that M. pruriens has an anti-hyperglycemic action and it could be a source of hypoglycemic compounds.

  3. Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect.

    PubMed

    Wayhs, Carlos Alberto Yasin; Manfredini, Vanusa; Sitta, Angela; Deon, Marion; Ribas, Graziela; Vanzin, Camila; Biancini, Giovana; Ferri, Marcelo; Nin, Maurício; Barros, Helena Maria Tannhauser; Vargas, Carmen Regla

    2010-09-01

    Diabetes may modify central nervous system functions and is associated with moderate cognitive deficits and changes in the brain, a condition that may be referred to as diabetic encephalopathy. The prevalence of depression in diabetic patients is higher than in the general population, and clonazepam is being used to treat this complication. Oxidative stress may play a role in the development of diabetes complications. We investigated oxidative stress parameters in streptozotocin-induced diabetic rats submitted to forced swimming test (STZ) and evaluated the effect of insulin (STZ-INS) and/or clonazepam (STZ-CNZ and STZ-INS-CNZ) acute treatment on these animal model. Oxidative damage to proteins measured as carbonyl content in plasma was significantly increased in STZ group compared to STZ treated groups. Malondialdehyde plasma levels were significantly reduced in STZ-INS and STZ-INS-CNZ groups when compared to STZ rats, being significantly reduced in STZ-INS-CNZ than STZ-INS rats. The activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase showed no significant differences among all groups of animals. These findings showed that protein and lipid damage occurs in this diabetes/depression animal model and that the associated treatment of insulin and clonazepam is capable to protect against oxidative damage in this experimental model.

  4. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats

    PubMed Central

    2013-01-01

    Background The available drugs for diabetes, Insulin or Oral hypoglycemic agents have one or more side effects. Search for new antidiabetic drugs with minimal or no side effects from medicinal plants is a challenge according to WHO recommendations. In this aspect, the present study was undertaken to evaluate the antihyperglycemic and antihyperlipidemic effects of Piper longum root aqueous extract (PlrAqe) in streptozotocin (STZ) induced diabetic rats. Methods Diabetes was induced in male Wister albino rats by intraperitoneal administration of STZ (50 mg/kg.b.w). Fasting blood glucose (FBG) levels were measured by glucose-oxidase & peroxidase reactive strips. Serum biochemical parameters such as glycosylated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol were estimated. The activities of liver and kidney functional markers were measured. The statistical analysis of results was carried out using Student t-test and one-way analysis (ANOVA) followed by DMRT. Results During the short term study the aqueous extract at a dosage of 200 mg/kg.b.w was found to possess significant antidiabetic activity after 6 h of the treatment. The administration of aqueous extract at the same dose for 30 days in STZ induced diabetic rats resulted in a significant decrease in FBG levels with the corrections of diabetic dyslipidemia compared to untreated diabetic rats. There was a significant decrease in the activities of liver and renal functional markers in diabetic treated rats compared to untreated diabetic rats indicating the protective role of the aqueous extract against liver and kidney damage and its non-toxic property. Conclusions From the above results it is concluded that the plant extract is capable of managing hyperglycemia and complications of diabetes in STZ induced diabetic rats. Hence this plant may be considered as one of the potential sources

  5. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  6. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers.

    PubMed

    Cornell, R P

    1982-02-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125I-albumin microaggregates, and 125I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans.

  7. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Ramkumar, Kunga Mohan; Rajaguru, Palanisamy; Suresh, Thangaraj; Dhanabal, Thangavel; Sitasawad, Sandhya; Bhonde, Ramesh

    2009-01-01

    We evaluated the antihyperglycaemic effect of scoparic acid D (SAD), a diterpenoid isolated from the ethanol extract of Scoparia dulcis in streptozotocin (STZ)-induced diabetic male Wistar rats. SAD was administered orally at a dose of 10, 20 and 40 mg kg(-1) bodyweight for 15 days. At the end of the experimental period, the SAD-treated STZ diabetic rats showed decreased levels of glucose as compared with diabetic control rats. The improvement in blood glucose levels of SAD-treated rats was associated with a significant increase in plasma insulin levels. SAD at a dose of 20 mg kg(-1) bodyweight exhibited a significant effect when compared with other doses. Further, the effect of SAD was tested on STZ-treated rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. SAD at a dose of 20 microg mL(-1) evoked two-fold stimulation of insulin secretion from isolated islets, indicating its insulin secretagogue activity. Further, SAD protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. The present study thus confirms the antihyperglycaemic effect of SAD and also demonstrated the consistently strong cytoprotective properties of SAD.

  8. Protective Effect of Ethyl Acetate Fraction of Stereospermum Suaveolens Against Hepatic Oxidative Stress in STZ Diabetic Rats.

    PubMed

    Balasubramanian, Thirumalaiswamy; Senthilkumar, G P; Karthikeyan, M; Chatterjee, Tapan Kumar

    2013-07-01

    Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ)-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), and serum alkaline phosphatase (SALP) were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). It was found that administration of ethyl acetate fraction (200 and 400 mg/kg) produced a significant (P < 0.001) fall in fasting blood glucose level, TBARS, bilirubin, AST, ALT, and SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats.

  9. In vivo assessment of antihyperglycemic and antioxidant activity from oil of seeds of brassica nigra in streptozotocin induced diabetic rats.

    PubMed

    Kumar, Manoj; Sharma, Sunil; Vasudeva, Neeru

    2013-01-01

    This study was made to investigate the antihyperglycemic and antioxidant potential of oil of seeds of Brassica nigra (BNO) in streptozotocin -nicotinamide (STZ) induced type 2 diabetic rats. BNO was orally administered to diabetic rats to study its effect in both acute and chronic antihyperglycemic study. The body weight, oral glucose tolerance test and biochemical parameters viz. glucose level, insulin level, liver glycogen content, glycosylated hemoglobin and antioxidant parameters were estimated for all treated groups and compared against diabetic control group. Administration of BNO at a dose 500 mg/kg and 1000 mg/kg body weight p.o. to STZ diabetic rats showed reduction in blood glucose level from 335 mg/dl to 280 mg/dl at 4th h and from 330 mg/dl to 265 mg/dl respectively which was found significant (p<0.01) as compared with diabetic control. BNO (500 mg/kg and 1000 mg/kg) and glibenclamide (0.6 mg/kg) in respective groups of diabetic animals administered for 28 days reduced the blood glucose level in streptozotocin-nicotinamide induced diabetic rats. There was significant increase in body weight, liver glycogen content, plasma insulin level and decrease in glycosylated hemoglobin in test groups as compared to control group. In vivo antioxidant studies on STZ-nicotinamide induced diabetic rat's revealed decreased malondialdehyde (MDA) and increased reduced glutathione (GSH). Thus the results showed that the oil of seeds of Brassica nigra has significant antihyperglycemic and antioxidant activity.

  10. Ultrastructural Analysis of In Vivo Hypoglycemiant Effect of Two Polyoxometalates in Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Bâlici, Ştefana; Wankeu-Nya, Modeste; Rusu, Dan; Nicula, Gheorghe Z; Rusu, Mariana; Florea, Adrian; Matei, Horea

    2015-10-01

    Two polyoxometalates (POMs), synthesized through a self-assembling method, were used in the treatment of streptozotocin (STZ)-induced diabetic rats. One of these nanocompounds [tris(vanadyl)-substituted tungsto-antimonate(III)-anions—POM1] was previously described in the literature, whereas the second [tris-butyltin-21-tungsto-9-antimonate(III)-anions—POM2], was prepared by us based on our original formula. In rats with STZ-induced diabetes treated with POMs (up to a cumulative dose of 4 mg/kg bodyweight at the end of the treatments), statistically significant reduced levels of blood glucose were measured after 3 weeks, as compared with the diabetic control groups (DCGs). Ultrastructural analysis of pancreatic β-cells (including the mean diameter of secretory vesicles and of their insulin granules) in the treated diabetic rats proved the POMs contribute to limitation of cellular degeneration triggered by STZ, as well as to the presence of increased amounts of insulin-containing vesicles as compared with the DCG. The two POMs also showed hepatoprotective properties when ultrastructural aspects of hepatocytes in the experimental groups of rats were studied. Based on our in vivo studies, we concluded that the two POMs tested achieved hypoglycemiant effects by preventing STZ-triggered apoptosis of pancreatic β-cells and stimulation of insulin synthesis.

  11. Anti-diabetic activity of methanolic extract of Alpinia galanga Linn. aerial parts in streptozotocin induced diabetic rats

    PubMed Central

    Verma, Ramesh Kumar; Mishra, Garima; Singh, Pradeep; Jha, Keshri K.; Khosa, Ratan L.

    2015-01-01

    Introduction: Alpinia galanga Linn. belongs to the family Zingiberaceae has been used as a traditional medicine in China for relieving stomach ache, treating cold, invigorating the circulatory systems, diabetes, and reducing swelling. Aim: To evaluate the antidiabetic activity of methanolic extract of A. galanga aerial parts on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced by single intraperitoneal injection of STZ at a dose of 60 mg/kg bodyweight. Test drug methanolic extract of A. galanga (200 and 400 mg/kg b.w.) and glibenclamide (10 mg/kg b.w.) as standard drug was administered orally for 21 consecutive days in STZ-induced diabetic rats. Fasting blood glucose level, serum lipid profiles, as well as initial and final changes in body weight were assessed along with histopathology. All the parameters were statistically analyzed by using one-way ANOVA followed by Bonferroni t-test. Results: Experimental findings showed significant dose dependent antidiabetic potential of methanolic extract in terms of reduction of fasting blood glucose level and various biochemical parameters in diabetic rats when compared with that of the diabetic control group, which might be due to the stimulatory effect of methanolic extracts on the regenerating β-cells and also on the surviving β-cells. Conclusion: Methanolic extract of aerial parts of A. galanga was effective in controlling blood glucose level and improve lipid profile in euglycemic as well as diabetic rats. PMID:26730146

  12. Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats.

    PubMed

    Tan, Benny Kwong Huat; Tan, Chee Hong; Pushparaj, Peter Natesan

    2005-04-29

    The present study was designed to investigate the hypoglycemic and hypolipidemic activities of the semi-purified fractions of an ethanolic leaf extract of Averrhoa bilimbi (ABe) in high fat diet (HFD)-streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats aged 10 weeks (200-250 g) were fed with a high fat diet obtained from Glen Forrest stock feeders (Western Australia) for 2 weeks prior to intraperitoneal injection with streptozotocin (STZ, 50 mg/kg). The leaves of A.bilimbi were exhaustively extracted with 80% ethanol, concentrated at 40 degrees C using a rotavapor and partitioned successively with butanol, ethylacetate and hexane to get aqueous (AF), butanol (BuF), ethylacetate (EF), and hexane fractions (HF). The fractions were freeze-dried to obtain powders of each. To investigate the effect of long term administration of the hypoglycemic fractions, diabetic animals were treated with vehicle (distilled water), AF (125 mg/kg), or BuF (125 mg/kg), twice a day for 14 days. The long term administration of AF and BuF at a dose of 125 mg/kg significantly (P < 0.05) lowered blood glucose and triglyceride concentrations when compared to the vehicle. The hepatic glycogen content was significantly higher (P < 0.05) in AF-treated rats when compared to diabetic control, however no change was found in the BuF-treated rats. Moreover, AF as well as BuF did not cause any significant change in the total cholesterol and HDL-cholesterol. There was also no difference in liver thiobarbituric acid reactive substances (TBARS) and cytochrome P450 values between AF, BuF and vehicle-treated control rats. In conclusion, the results indicate that AF is more potent than BuF in the amelioration of hyperglycemia and hyperlipidemia in HFD fed-STZ diabetic rats. Hence, AF is a potential source for the isolation of active principle(s) for oral anti-diabetic therapy.

  13. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  14. Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes.

    PubMed

    Nishimura, C; Kuriyama, K

    1985-08-01

    Neurochemical alterations, which may be associated with the development of diabetic retinal dysfunction, were investigated using streptozotocin (STZ)-induced hyperglycemia in rats. Young male Wistar rats, weighing 100-150 g, were made diabetic with daily intraperitoneal injections of STZ (30 mg/kg) for 5 days. This treatment caused a continuous hyperglycemia (400-600 mg/dl) and suppressed gain in body weight. Nine weeks after the STZ treatment, a significant increment in retinal valine and a decline in phenylalanine were noted, while the concentrations of other neuroactive amino acids, such as gamma-aminobutyric acid and aspartic acid, in the retina remained unchanged. On the other hand, the concentration of retinal dopamine (DA) was found to decrease significantly from the third week of hyperglycemia, when [3H]spiperone binding showed a tendency to increase in the retinal particulate fraction. However, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase (AADC) and the uptake of [3H]tyrosine showed no alteration in the retina of diabetic rats. The accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) in vivo in the retina of diabetic rats, measured following the administration of the AADC inhibitor m-hydroxybenzyl-hydrazine (100 mg/kg i.p.), was also unchanged. Although [3H]DA uptake by retinal tissue was similar in control and diabetic animals, the spontaneous efflux of [3H]DA from the retina was found to be significantly accelerated in STZ-treated animals. In addition, the release of preloaded [3H]DA, elicited by repeated photic stimulation, was significantly attenuated in retina from diabetic rats. These results suggest that an accelerated efflux of DA, possibly leading to the depletion of DA from the retinal DA system, may account for early retinal dysfunctions known to occur in diabetic subjects.

  15. Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat.

    PubMed

    Howarth, F C; Jacobson, M; Shafiullah, M; Adeghate, E

    2006-04-01

    1. Streptozotocin (STZ)-induced diabetic cardiomyopathy is frequently associated with depressed diastolic/systolic function and altered heart rhythm. 2. The effects of insulin treatment on heart rhythm, body temperature and physical activity in STZ-induced diabetic rats were investigated using biotelemetry techniques. 3. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar - Lead II configuration. Electrocardiogram, physical activity and body temperature data were recorded with a telemetry system for 10 days before STZ treatment, for 20 days following administration of STZ (60 mg/kg) and thereafter, for 30 days while rats received daily insulin. 4. Heart rate, physical activity and body temperature declined rapidly 3-5 days after administration of STZ. Pre-STZ heart rate was 362 +/- 7 b.p.m., falling to 266 +/- 12 b.p.m. 5-15 days after STZ with significant recovery to 303 +/- 14 b.p.m. 10-20 days after commencement of insulin. Pre-STZ body temperature was 37.5 +/- 0.1C, falling to 37.2 +/- 0.2C 5-15 days after STZ with significant recovery to 37.5 +/- 0.1C 10-20 days after commencement of insulin. Physical activity and heart rate variability were also reduced after STZ but there was no significant recovery during insulin replacement. 5. Defective autonomic regulation and/or mechanisms of control that are intrinsic to the heart may underlie disturbances in heart rhythm in the STZ-induced diabetic rat.

  16. Effects of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on intestinal function in streptozotocin-induced diabetic rats.

    PubMed

    Hirotani, Yoshihiko; Ikeda, Takuya; Ikeda, Kenji; Yamamoto, Kaoru; Onda, Mitsuko; Arakawa, Yukio; Li, Jun; Kitamura, Kazuyuki; Kurokawa, Nobuo

    2007-09-01

    We examined the effects of Hachimi-jio-gan (HJ) on the small intestinal function in streptozotocin (STZ)-induced diabetic rats. The rats had free access to pellets containing 1% HJ extract powder for 4 weeks after STZ administration. The intestinal disaccharidase (sucrase and maltase) activity was elevated in STZ-treated rats compared with control rats, whereas it was significantly reduced by HJ administration. This suggested that HJ suppresses or delays monosaccharide production in the small intestinal epithelium. In addition, the intestinal mucosal weights and DNA contents that were significantly increased in the STZ-treated rats were restrained to the control level by HJ treatment. Simultaneously, we examined the changes in the plasma levels of glucagon-like peptide 2 (GLP-2), which is a trophic factor specific for the intestine. The plasma GLP-2 levels significantly increased in the STZ-treated rats, whereas HJ decreased the plasma GLP-2 levels. Thus intestinal mucosal weights and DNA contents correlated with plasma GLP-2 levels in diabetes-associated bowel growth. These results suggest that HJ may normalize or suppress the small intestinal disaccharidase activity and the epithelial cell proliferation mediated by GLP-2 in the animal model rats.

  17. Protective Effect of Ethyl Acetate Fraction of Stereospermum Suaveolens Against Hepatic Oxidative Stress in STZ Diabetic Rats

    PubMed Central

    Balasubramanian, Thirumalaiswamy; Senthilkumar, G. P; Karthikeyan, M.; Chatterjee, Tapan Kumar

    2013-01-01

    Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ)-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), and serum alkaline phosphatase (SALP) were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). It was found that administration of ethyl acetate fraction (200 and 400 mg/kg) produced a significant (P < 0.001) fall in fasting blood glucose level, TBARS, bilirubin, AST, ALT, and SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats. PMID:24716175

  18. Hypoglycemic effect of Bromelia plumieri (E. Morren) L.B. Sm., leaves in STZ-NA-induced diabetic rats

    PubMed Central

    Andrade-Cetto, Adolfo; Medina-Hernández, Anamarel E.

    2013-01-01

    This study confirms the hypoglycemic effects of two extracts obtained from the Bromelia plumieri (BP) plant in streptozotocin-nicotinamide-induced diabetic rats (STZ-NA). BP has been traditionally used in the municipality of Tlanchinol Hidalgo, Mexico, to treat type 2 diabetes. Two different BP extracts were prepared and tested. The first extract was a water extract (WE), similar to that traditionally used to make tea, and the second extract was an ethanol:water extract (EWE). The extracts (WE at 35 and 350 mg/kg, and EWE at 30 and 300 mg/kg) were tested in STZ-NA-induced diabetic rats to determine whether hypoglycemia occurred after oral administration of the extracts. Phytochemistry: Two different extracts were prepared, n-hexane and butanol, to determine the presence of alkaloids, terpenes and flavonoids. The extracts that were administered to the STZ-NA-induced diabetic rats produced a significant hypoglycemic effect as compared with the control group, similar to that achieved with glibenclamide. We also determined that flavonoids were the main components of BP leaves. The results presented here support the hypothesis that extracts obtained from this plant have hypoglycemic effects, which are in agreement with the traditional uses of this plant. PMID:23576986

  19. Antidiabetic Effects of Aqueous and Dichloromethane/Methanol Stem Bark Extracts of Pterocarpus soyauxii Taub (Papilionaceae) on Streptozotocin-induced Diabetic Rats

    PubMed Central

    Tchamadeu, Marie Claire; Dzeufiet, Paul Désiré Djomeni; Blaes, Nelly; Girolami, Jean-Pierre; Kamtchouing, Pierre; Dimo, Théophile

    2017-01-01

    Aim of the Study: The aim is to evaluate the hypoglycemic and antidiabetic effects of aqueous and CH2Cl2/CH3OH stem bark extracts of Pterocarpus soyauxii Taub in normal and diabetic rats. Materials and Methods: Streptozotocin (STZ)-induced diabetic and normal adult Wistar rats were orally administered with aqueous and CH2Cl2/CH3OH plant extracts of P. soyauxii at various doses (38–300 mg/kg) in a single administration. In addition, STZ-induced diabetic rats received prolonged daily administration for 14 days. Glibenclamide (GB) (10 mg/kg) was used as reference treatment. In acute test, fasting blood glucose was followed for 5 h. In subacute test, body weight, food and water intakes, and blood glucose were followed weekly and serum biochemical parameters evaluated after 14 days treatment. Results: Acute administration of aqueous and CH2Cl2/CH3OH stem bark extracts moderately decreased fasting blood glucose compared to GB, significantly in normal rats (P < 0.05 to P < 0.01) but, as GB, not significantly in diabetic rats. Prolonged treatments in diabetic rats with aqueous and CH2Cl2/CH3OH extracts reduced blood glucose to an extent, respectively, superior or similar to GB. Moreover, P. soyauxii also significantly (P < 0.01) reduced weight loss, and diabetes increased serum triglycerides, total cholesterol, and transaminases (alanine aminotransferase/aspartate aminotransferase) elevations. Conclusion: P. soyauxii Taub stem bark extracts have possible value for antidiabetic oral medication. SUMMARY Aqueous and Dichloromethane/Methanol stem bark extracts of Pterocarpus soyauxii Taub have potent (compared to Glibenclamide) antidiabetic effects in STZ-diabetic rats, with specific kinetics and dose-responses.Moderate hypoglycemia effects upon acute P. soyauxii administration.Potent anti-hyperglycemic effects of sub-acute P. soyauxii administration in STZ-diabetic rats.Potent anti-hyperlipidemic effects of sub-acute P. soyauxii administration in STZ-diabetic rats

  20. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    PubMed

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  1. Short-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats.

    PubMed

    Howarth, F C; Jacobson, M; Naseer, O; Adeghate, E

    2005-03-01

    A variety of contractility defects have been reported in the streptozotocin (STZ)-induced diabetic rat heart including alterations to the amplitude and time course of cardiac muscle contraction. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. Electrocardiogram (ECG), physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg-1). Heart rate (HR), physical activity and body temperature declined rapidly 3-5 days after administration of STZ. The effects became more conspicuous with time and reached a new steady state approximately 10 days after STZ treatment when HR was 255+/-8 beats min-1 in diabetic rats compared to 348+/-17 beats min-1 in age-matched controls. Heart rate variability (HRV) was also significantly reduced after STZ treatment (18+/-3 beats min-1) compared to controls (36+/-3 beats min-1). Reduced physical activity and/or body temperature may partly underlie the reduction in HR and HRV. Reductions in power spectral density at higher frequencies (2.5-3.5 Hz) suggest that parasympathetic drive to the heart may be altered during the early stages of STZ-induced diabetes. Short-term diabetes-induced changes in vital signs can be effectively tracked by continuous recording using a telemetry system.

  2. Hypoglycemic and hypolipidemic effects of Saururus chinensis Baill in streptozotocin-induced diabetic rats.

    PubMed

    Hwang, Ji-Yeon; Zhang, Jian; Kang, Min-Jung; Lee, Soo-Kyung; Kim, Hyun-A; Kim, Jong-Jin; Kim, Jung-In

    2007-01-01

    Saururus chinensis Baill was reported to inhibit alpha-glucosidase in vitro and flatten postprandial increase in blood glucose in streptozotocin (STZ)-induced diabetic rats. We studied the effect of chronic consumption of S. chinensis Baill on blood glucose and lipid profile in STZ-induced diabetic male rats fed high fat diet. Male rats weighing 100-120 g were fed 30% fat diet with and without 10% freeze-dried leaves of S. chinensis Baill for 7 weeks after 1 week of adaptation. The rats were rendered diabetic by intravenous injection of STZ (60 mg/kg) after 6-week feeding of the assigned diets. At 1 week after the injection, the rats were sacrificed after an overnight fast. Plasma glucose (380.2 +/- 14.4 mg/dL), total cholesterol (93.9 +/- 7.9 mg/dL) and triglyceride levels (123.6 +/- 7.5 mg/dL) of the S. chinensis Baill group were significantly lower than those of the control group (418.1 +/- 12.0 mg/dL, 119.9 +/- 9.4 mg/dL, 152.0 +/- 10.3 mg/dL, respectively, p<0.05). Chronic consumption of S. chinesis Baill significantly decreased maltase activity of the small intestinal mucosa (120.1 +/- 8.7 U/g protein) compared with the control group (96.8 +/- 7.0 U/g protein, p<0.05). These results suggest that S. chinensis Baill have hypoglycemic and hypolipidemic effects by inhibiting alpha-glucosidase activity in the animal model of diabetes mellitus.

  3. Antihyperglycemic activity of Piper betle leaf on streptozotocin-induced diabetic rats.

    PubMed

    Santhakumari, P; Prakasam, A; Pugalendi, K V

    2006-01-01

    Piper betle, an indigenous medicinal plant, has a folk (Siddha and Ayurvedha) reputation in the rural southern India. The present study was carried out to evaluate the effect of P. betle on glucose metabolism since it is consumed as betel-quid after meals. Plasma levels of glucose and glycosylated hemoglobin and activities of liver hexokinase and gluconeogenic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase in control and streptozotocin (STZ) diabetic rats were assayed. Oral administration of leaf suspension of P. betle (75 and 150 mg/kg of body weight) for 30 days resulted in significant reduction in blood glucose (from 205.00 +/- 10.80 mg/dL to 151.30 +/- 6.53 mg/dL) and glycosylated hemoglobin and decreased activities of liver glucose-6-phosphatase and fructose-1,6-bisphosphatase, while liver hexokinase increased (P < .05), in STZ diabetic rats when compared with untreated diabetic rats. P. betle at a dose of 75 mg/kg of body weight exhibited better sugar reduction than 150 mg/kg of body weight. In addition, protection against body weight loss of diabetic animals was also observed. The effects produced by P. betle were compared with the standard drug glibenclamide. Thus, the present study clearly shows that P. betle intake influences glucose metabolism beneficially.

  4. Consumption of Dietary Resistant Starch Partially Corrected the Growth Pattern Despite Hyperglycemia and Compromised Kidney Function in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Koh, Gar Yee; Rowling, Matthew J; Schalinske, Kevin L; Grapentine, Kelly; Loo, Yi Ting

    2016-10-12

    We previously demonstrated that feeding of dietary resistant starch (RS) prior to the induction of diabetes delayed the progression of diabetic nephropathy and maintained vitamin D balance in streptozotocin (STZ)-induced type 1 diabetic (T1D) rats. Here, we examined the impact of RS on kidney function and vitamin D homeostasis following STZ injection. Male Sprague-Dawley rats were administered STZ and fed a standard diet containing cornstarch or 20, 10, or 5% RS for 4 weeks. T1D rats fed 10 and 20% RS, but not 5% RS, gained more weight than cornstarch-fed rats. Yet, renal health and glucose metabolism were not improved by RS. Our data suggest that RS normalized growth patterns in T1D rats after diabetes induction in a dose-dependent manner despite having no effect on blood glucose and vitamin D balances. Future interventions should focus on the preventative strategies with RS in T1D.

  5. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, Omotayo Owomofoyon; Sulaiman, Siti Amrah; Wahab, Mohd Suhaimi Abdul; Salam, Sirajudeen Kuttulebbai Nainamohammed; Salleh, Md Salzihan Md; Gurtu, Sunil

    2010-05-05

    Hyperglycemia exerts toxic effects on the pancreatic beta-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.

  6. Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats.

    PubMed

    Dimo, Théophile; Rakotonirina, Silvere V; Tan, Paul V; Azay, Jacqueline; Dongo, Etienne; Kamtchouing, Pierre; Cros, Gérard

    2007-04-04

    Sclerocarya birrea (Anacardiaceae) is used as a traditional treatment of diabetes in Cameroon. In this study, we investigated the possible antidiabetic effect of the stem bark extract in diabetic rats. Diabetes was induced by intravenous injection of streptozotocin (STZ, 55 mg/kg) to male Wistar rats. Experimental animals (six per group), were treated by oral administration of plant extract (150 and 300 mg/kg body weight) and metformin (500 mg/kg; reference drug) for comparison, during 21 days. The stem bark methanol/methylene chloride extract of Sclerocarya birrea exhibited at termination, a significant reduction in blood glucose and increased plasma insulin levels in diabetic rats. The extract also prevented body weight loss in diabetic rats. The effective dose of the plant extract (300 mg/kg) tended to reduce plasma cholesterol, triglyceride and urea levels toward the normal levels. Four days after diabetes induction, an oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The results showed a significant improvement in glucose tolerance in rats treated with Sclerocarya birrea extract. Metformin, a known antidiabetic drug (500 mg/kg), significantly decreased the integrated area under the glucose curve. These data indicate that Sclerocarya birrea treatment may improve glucose homeostasis in STZ-induced diabetes which could be associated with stimulation of insulin secretion.

  7. Streptozotocin diabetes attenuates the effects of nondepolarizing neuromuscular relaxants on rat muscles.

    PubMed

    Huang, Lina; Chen, Dan; Li, Shitong

    2014-12-01

    The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs.

  8. Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Rony, Kuttikkadan A; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Phellinus rimosus is a parasitic host specific polypore mushroom with profound antioxidant, antihepatotoxic, anti-inflammatory, antitumor, and antimutagenic activities. This study investigated the hypoglycemic and hypolipidemic activities of the wood-inhabiting polypore mushroom Ph. Rimosus in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by single intraperitoneal injection of STZ (45 mg/kg) to Wistar rats. The effects of 30 days treatment with Ph. Rimosus (50 and 250 mg/ kg) and glibenclamide (0.65 mg/kg) on blood glucose level, serum insulin, serum lipid profile, liver glycogen, liver function enzymes, and non-enzymic and enzymic antioxidants activities in pancreas, liver, and kidney were evaluated in STZ-induced diabetic rats. Oral administration of Ph. Rimosus extract exhibited a significant reduction in blood glucose, triacylglycerol, total cholesterol, LDL-cholesterol, and liver function enzymes, and increased serum insulin, liver glycogen, and HDL-cholesterol levels in STZ-induced diabetic rats. Furthermore, Ph. Rimosus treatment increased antioxidant status in pancreas, liver, and kidney tissues with concomitant decreases in levels of thiobarbituric acid- reactive substances. Results of this study indicated that Ph. Rimosus possessed significant hypoglycemic and hypolipidemic activities and this effect may be related to its insulinogenic and antioxidant effect.

  9. Beneficial Effects of Scutellaria baicalensis on Penile Erection in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Li, Xiang; Lee, Yun Jung; Kim, Hye Yoom; Tan, Rui; Park, Min Cheol; Kang, Dae Gill; Lee, Ho Sub

    2016-01-01

    We have reported that ethanol extracts of the root from Scutellaria baicalensis Georgi (ESB) relax cavernous smooth muscles via the NO/cGMP system and Ca[Formula: see text]-sensitive K[Formula: see text] channels in the rabbit corpus cavernosum. In the present study, erectile function was assessed by intracavernous pressure (ICP) and mean arterial pressure (MAP) during electrical stimulation of the cavernous nerve. The ICP/MAP ratio was dose-dependently increased by the treatment of ESB in normal SD rats ([Formula: see text]). To investigate the beneficial effect of ESB on erectile dysfunction in a diabetic animal model, male SD rats were injected with streptozotocin (60[Formula: see text]mg/kg) and then 300[Formula: see text]mg/kg/day ESB was administered daily for eight weeks. In our in vivo study, administration of ESB in STZ rats significantly increased the ICP, ICP/MAP ratio, area under the curve (AUC), as well as the cavernous cGMP levels. Morphometric analyses showed that ESB administration increased both smooth muscle volume and the regular arrangement of collagen fibers compared to the STZ group. The protein expression levels of endothelial nitric oxide synthase (eNOS) and SM [Formula: see text]-actin from penile tissues were also significantly increased in the ESB-treated rats. Taken together, these results suggest that ESB ameliorates penile erectile dysfunction via the activation of the NO/cGMP pathways of the penile corpus cavernosum in a streptozotocin-induced diabetic rat model.

  10. Effect of N-benzoyl-d-phenylalanine on lipid profile in liver of neonatal streptozotocin diabetic rats.

    PubMed

    Pari, Leelavinothan; Ashokkumar, Natarajan

    2005-10-01

    The effect of N-benzoyl-d-phenylalanine (NBDP) and metformin combination treatment on liver lipids and lipid peroxidation markers was studied in neonatal streptozotocin (nSTZ) diabetic rats. Oral administration of NBDP (50, 100 and 200 mg/kg body weight) and metformin (500 mg/kg body weight) for 6 weeks significantly reduced the elevated blood glucose, liver cholesterol, triglycerides, free fatty acids and phospholipids. The combination treatment also caused a significant decrease in hepatic hydroxymethyl glutaryl-coenzyme A reductase, Thiobarbituric Acid Reactive Substances (TBARS) and significant increase in reduced glutathione levels. The results show that NBDP and metformin improve the hepatic lipid profile and antioxidant status in nSTZ diabetic rats. Combination treatment was more effective than either drug alone.

  11. The effect of Stevia rebaudiana on serum omentin and visfatin level in STZ-induced diabetic rats.

    PubMed

    Akbarzadeh, Samad; Eskandari, Fatemeh; Tangestani, Hadis; Bagherinejad, Somaieh Tangerami; Bargahi, Afshar; Bazzi, Parviz; Daneshi, Adel; Sahrapoor, Azam; O'Connor, William J; Rahbar, Ali Reza

    2015-03-01

    Recently the role of adipocytokines in relationship to incidence of diabetes has been demonstrated. One of the medicinal plants that are used in the treatment of diabetes is stevia. This study investigates the effect of stevia on serum omentin and visfatin levels as novel adipocytokines in diabetic induced rats to find potential mechanisms for the anti hyperglycemic effect of stevia. Forty male wistar rats weighing 180-250 g were induced with diabetes by intraperitoneal injection of streptozotocin (STZ). The animals were divided into 5 groups of 8. Rats in group 1 (non-diabetic control) and group 2 (diabetic control) were treated with distilled water, and the rats in the treated groups, group 3 (T250), group 4 (T500), and group 5 (T750) were treated with stevia, gavaged every day at 9 a.m. in doses of 250, 500, and 750 mg/kg, respectively. At the end of the study significant reductions in fasting blood sugar (FBS), the homeostasis model assessment insulin resistance (HOMA-IR), triglyceride (TG), alkaline phosphatase (ALP), and Omentin level were found in groups 3 and 4 in comparison with group 2. Pancreatic histopathology slides demonstrated that stevia extract did not induce any increase in the number of β-cells. The conclusion is that prescription of stevia in the doses of 250 and 500 mg/kg/d decreases the omentin level indirectly via activating insulin sensitivity and lowering blood glucose in STZ-induced diabetic rats.

  12. Effects of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on hyperglycemia in streptozotocin-induced diabetic rats.

    PubMed

    Hirotani, Yoshihiko; Ikeda, Takuya; Yamamoto, Kaoru; Kurokawa, Nobuo

    2007-05-01

    The present study investigated the effects of Hachimi-jio-gan (HJ) on diabetic hyperglycemia in streptozotocin (STZ)-induced diabetic rats. After STZ administration, rats had free access to pellets containing 1% HJ extract powder for four weeks. HJ markedly suppressed hyperglycemia in STZ-induced diabetic rats at three and four weeks after the start of administration. There were also significant increases in serum and pancreatic immunoreactive insulin levels in STZ and HJ co-administering rats. However, in the present study, the number of beta cells in the pancreatic Langerhans' islets did not increase. Next, in order to investigate the action mechanism besides the glycemic control action of insulin, the expression of glucose transporter 2 (GLUT2) protein, which is involved in glucose uptake and release in the liver, was investigated. GLUT2 protein expression was increased by STZ administration but was normalized after four weeks of HJ administration. Therefore, irrespective of the structural changes in pancreatic beta-cells due to STZ, HJ increased insulin production and secretion by the pancreas and significantly suppressed GLUT2 synthesis in the liver. Amylase secretion from the pancreas was measured to assess pancreatic secretion. Amylase activity was decreased by STZ but was increased by HJ. Therefore, the effects of HJ on STZ-induced hyperglycemia in rats could be summarized as follows: besides increasing insulin synthesis and release, HJ normalizes GLUT2 protein expression in the liver to suppress hyperglycemia. Hence, the results of the present study suggest for the first time that HJ affects not only the production and secretion of insulin, but also the release of glucose from the liver.

  13. Antidepressant-like Effect of Insulin in Streptozotocin-induced Type 2 Diabetes Mellitus Rats.

    PubMed

    Sestile, Caio C; Maraschin, Jhonatan C; Rangel, Marcel P; Cuman, Roberto K N; Audi, Elisabeth A

    2016-09-01

    This study evaluated the antidepressant-like effect of insulin compared to sertraline and a combination of insulin and sertraline in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats submitted to the forced swim test (FST). Male Wistar rats were daily treated for 21 days with insulin (1 or 2 IU/kg, i.p.), with the selective serotonin reuptake inhibitor (SSRI), sertraline (10 mg/kg, i.p.), or with a combination of insulin (1 or 2 IU/kg, i.p.) and sertraline (10 mg/kg, i.p.) and submitted to the FST. We also evaluated the water and food intake, urine volume and weight gain of the rats. Rats treated with STZ showed impaired glucose tolerance. Chronic treatment with sertraline showed an antidepressant-like effect in non-diabetic and diabetic rats. Furthermore, sertraline promoted lower weight gain in diabetic rats. Insulin reduced the immobility behaviour in T2DM rats with impaired glucose tolerance. In conclusion, our results showed that insulin has an antidepressant-like effect comparable to that of sertraline. Sertraline is effective as an antidepressant and reduces weight gain, which reinforces its superiority over other SSRIs in the treatment of major depression disorder in patients with T2DM. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Combined n-benzoyl-d-phenylalanine and metformin treatment reverses changes in the fatty acid composition of streptozotocin diabetic rats.

    PubMed

    Kumar, Natarajan Ashok; Pari, Leelavinothan

    2006-01-01

    The present investigation was carried out to evaluate the effect of N-benzoyl-D-phenylalanine (NBDP) and metformin on blood glucose, plasma insulin, and on the fatty acid composition of total lipids in the livers and kidneys of control and experimental diabetic rats. When compared with nondiabetic control rats, neonatal streptozotocin (nSTZ) diabetic rats showed a significant increase in blood glucose and decreased plasma insulin. Analysis of fatty acids revealed a significant increase in the concentration of palmitic, stearic, and oleic acids in liver and kidney, whereas linolenic and arachidonic acids were significantly decreased. In diabetic rats, the oral administration of combined NBDP/metformin for 6 wk decreased the high concentrations of palmitic, stearic, and oleic acids and elevated the low levels of linolenic and arachidonic acids. The results suggest that the NBDP/metformin combination exhibits both antidiabetic and antihyperlipidemic effects in nSTZ diabetic rats and prevents the fatty acid changes produced during diabetes.

  15. Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats.

    PubMed

    Chakraphan, Daroonwan; Sridulyakul, Patarin; Thipakorn, Bundit; Bunnag, Srichitra; Huxley, Virginia H; Patumraj, Suthiluk

    2005-01-01

    The protective effects of exercise training on the diabetic-induced endothelial cell (EC) dysfunction were determined using intravital fluorescent microscopy. Male Sprague-Dawley rats were divided into three groups of control (Con), diabetes (DM), and diabetes with exercise--training (DM+Ex). Diabetes was induced by single intravenous injection of streptozotocin (STZ; 50 mg/kg BW). The exercise training protocol consisted of treadmill running, 5 times/week with the velocity of 13-15 m/min, 30 min/day periods for 12 and 24 weeks (wks). 24 wks after the STZ injection, blood glucose (BG), glycosylated hemoglobin (HbA1C), mean arterial blood pressure (MAP) and heart weight (HW) were significantly higher in DM rats (p < 0.001). However, DM+Ex rats had reduced the abnormalities of MAP (p < 0.01) and HW (p < 0.05) compared with DM rats. Furthermore, there was a significant decrease in heart rate (HR) of DM+Ex rats (p < 0.05) relative to Con rats. To examine the influence of exercise training on EC dysfunction, leukocyte-EC interactions in mesenteric venules and vascular reactivity responses to vasodilators in mesenteric arterioles were monitored by using intravital fluorescence microscopy. The diabetic state enhanced leukocyte adhesion in mesenteric postcapillary venules (p < 0.001). Moreover, an impaired vasodilatory response to the EC-dependent vasodilator, acetylcholine (Ach), not to sodium nitroprusside (SNP), was found in 12- and 24-wk diabetic rats (p < 0.01). The leukocyte adhesion and the impairment of EC-dependent vasodilation to Ach were attenuated by exercise training (p < 0.05). In addition, exercise training was also shown to have favorable preventive effects on hyperglycemia induced oxidative stress, as lower malondialdehyde (MDA) levels were observed from both groups of 12 and 24 weeks DM+Ex compared with DM (p < 0.01). In conclusion, our findings indicate that the endothelial dysfunction of diabetic rats could be characterized by increased leukocyte

  16. Pharmacological Evaluation of “Sugar Remedy,” A Polyherbal Formulation, on Streptozotocin-Induced Diabetic Mellitus in Rats

    PubMed Central

    Singhal, Sandeep; Rathore, Arvind Singh; Lohar, Vikram; Dave, Rakesh; Dave, Jeetesh

    2014-01-01

    In the present study, Sugar Remedy, a polyherbal formulation (manufactured by Umalaxmi Organics Pvt Ltd, Jodhpur, Rajasthan, India) was evaluated for its antihyperglycemic, antihyperlipidemic, and antioxidant effects against normal and streptozotocin (STZ)-induced diabetic rats. Type II diabetes was induced in male Wistar rats by administration of a single intraperitoneal (IP) injection of STZ at a dose of 60 mg/kg. Effects of three different doses of Sugar Remedy suspension (185, 370, and 740 mg/kg/day, orally) and Metformin (500 mg/kg/day, orally) administered for 21 days were studied on parameters such as blood glucose, lipid profile, and antioxidant levels. Results were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett's test. No significant changes were noticed in blood glucose, serum lipid levels, and kidney parameters in normal rats treated with Sugar Remedy suspension alone. The efficacy of Sugar Remedy as an antihyperglycemic, antihyperlipidemic, and antioxidant agent in STZ-induced diabetes was comparable to that of the standard, 500 mg/kg of Metformin. Present findings provide experimental evidence that Sugar Remedy has significant antihyperglycemic, antihyperlipidemic, and antioxidative effects in diabetic experimental rats. Hence, Sugar Remedy may be regarded as a promising natural and safe remedy for the prevention or delay of diabetic complications. PMID:25161924

  17. Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats.

    PubMed

    Kamtchouing, P; Kahpui, S M; Dzeufiet, P-D Djomeni; Tédong, L; Asongalem, E A; Dimo, T

    2006-04-06

    Stem bark extracts of Terminalia superba Engl. and Diels and Canarium schweinfurthii Engl. are used in Africa for the treatment of various ailments, including diabetes mellitus. The anti-diabetic effects of the methanol/methylene chloride extracts of the stem barks on streptozotocin (STZ)-induced diabetes were evaluated on male rats. Through the subcutaneous route, diabetes was induced using 60 mg/mL of streptozotocin. After 2 days, the rats received, by gavage, 150 mg/kg and 300 mg/kg of extract daily for 14 days. At 300 mg/kg, the two extracts (Terminalia superba and Canarium schweinfurthii), significantly showed at least 67.1% and 69.9% reduction in blood glucose level, respectively, while insulin (three units) given subcutaneously and once daily, had 76.8% reduction compared to diabetic untreated control rats. Similarly, the weight gains were 6.6% and 4.9%, respectively, and were comparable to the normal rats, whereas, diabetic untreated rats lost 14.1% body weight. Still with the same dose, there was 68.5% and 58.5% (p < 0.001) significant decrease in food consumption and 79.7% and 64.0% (p < 0.001) in fluid intake by diabetic rats treated with the respective plant extracts. The insulin-treated rats showed 56.4% and 75.8% decrease in food and fluid intake compared to an augmentation for diabetic control rats, 43.0% and 383.8%, respectively, at the end of the second week of experimentation. These results showed that the plant extracts can reverse hyperglycemia, polyphagia and polydipsia provoked by streptozotocin, and thus, they have anti-diabetic properties.

  18. Effect of N-benzoyl-D-phenylalanine, a new potential oral antidiabetic agent, in neonatal streptozotocin-induced diabetes in rats.

    PubMed

    Pari, Leelavinothan; Ashokkumar, Natarajan

    2005-01-01

    The present investigation was undertaken to study the effect of treatment with D-phenylalanine derivative and metformin in neonatal streptozotocin (nSTZ)-induced non-insulin-dependent diabetes mellitus (NIDDM) in rats. To induce NIDDM, a single dose injection of streptozotozin (STZ) (100 mg kg(-1); ip) was given to 2-day-old rats. After 10-12 weeks, rats weighing above 150 g were selected for screening in NIDDM model. They were checked for fasting blood glucose levels to conform the status of NIDDM. D-phenylalanine derivative (50, 100 and 200 mg kg(-1)) was administered per os (po) for 6 weeks to the rats with confirmed diabetes. A group of diabetic rats was also maintained and this group received metformin as comparative drug. Significant decrease in blood glucose with significant increase in plasma insulin was observed in group receiving 100 mg of D-phenylalanine derivative plus 500 mg of metformin.

  19. Magnetic resonance imaging of the pancreas in streptozotocin-induced diabetic rats: Gadofluorine P and Gd-DOTA.

    PubMed

    Cho, Hye Rim; Lee, Youkyung; Doble, Philip; Bishop, David; Hare, Dominic; Kim, Young-Jae; Kim, Kwang Gi; Jung, Hye Seung; Park, Kyong Soo; Choi, Seung Hong; Moon, Woo Kyung

    2015-05-21

    To investigate the performance of Gadofluorine P-enhanced magnetic resonance imaging (MRI) on the diagnosis of diabetes in a streptozotocin (STZ) -induced diabetic rat model. Fischer 344 rats were treated with STZ. Rats not treated with STZ served as controls. T1-weighted MRI was performed using a 3T scanner before and after the injection of Gd-DOTA or Gadofluorine P (6 diabetic rats, 5 controls). The normalized signal intensity (SI) and the enhancement ratio (ER) of the pancreas were measured at each time point, and the values were compared between the normal and diabetic rats using the Mann-Whitney test. In addition, the values were correlated with the mean islet number. Optimal cut-off values were calculated using a positive test based on receiver operating characteristics. Intrapancreatic Gd concentration after the injection of each contrast media was measured using laser ablation-inductively coupled plasma-mass spectrometry in a separate set of rats (4 diabetic rats, 4 controls for Gadofluorine P; 2, 2 for Gd-DOTA). The normalized SI and ER of the pancreas using Gd-DOTA were not significantly different between diabetic rats and controls. With Gadofluorine P, the values were significantly higher in the diabetic rats than in the control rats 30 min after injection (P < 0.05). The area under the receiver operating characteristic curve that differentiated diabetic rats from the control group was greater for Gadofluorine P than for Gd-DOTA (0.967 vs 0.667, P = 0.085). An increase in normalized SI 30 min after Gadofluorine P was correlated with a decrease in the mean number of islets (r (2) = 0.510, P = 0.014). Intra-pancreatic Gd was higher in rats with Gadofluorine P injection than Gd-DOTA injection (Gadofluorine P vs Gd-DOTA, 7.37 vs 0.00, P < 0.01). A significant difference in the concentration of intrapancreatic Gd was observed between the control and diabetic animals that were sacrificed 30 min after Gadofluorine P injection (control vs diabetic, 3.25 ng/g vs

  20. Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin

    PubMed Central

    Köksal, Burcu; Emre, Memet Hanifi; Polat, Alaadin

    2015-01-01

    BACKGROUND: Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content. AIM: In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated. MATERIALS AND METHODS: The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized. RESULTS: The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups. CONCLUSION: Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed. PMID:27275196

  1. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    PubMed

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  2. Effect of Calendula officinalis hydroalcoholic extract on passive avoidance learning and memory in streptozotocin-induced diabetic rats

    PubMed Central

    Moradkhani, Shirin; Salehi, Iraj; Abdolmaleki, Somayeh; Komaki, Alireza

    2015-01-01

    Background: Medicinal plants, owing to their different mechanisms such as antioxidants effects, may improve learning and memory impairments in diabetic rats. Calendula officinalis (CO), has a significant antioxidant activity. Aims: To examine the effect of hydroalcoholic extract of CO on passive avoidance learning (PAL) and memory in streptozotocin (STZ)-induced diabetic male rats. Settings and Design: A total of 32 adult male Wistar rats were randomly allocated to four groups: Control, diabetic, control + extract of CO and diabetic control + extract of CO groups with free access to regular rat diet. Subjects and Methods: Diabetes in diabetic rats was induced by single intraperitoneal injection of 60 mg/kg STZ. After confirmation of diabetes, oral administration of 300 mg/kg CO extract to extract-treated groups have been done. PAL was tested 8 weeks after onset of treatment, and blood glucose and body weight were measured in all groups at the beginning and end of the experiment. Statistical Analysis Used: The statistical analysis of data was performed by ANOVA followed by least significant difference post-hoc analysis. Results: Diabetes decreased learning and memory. Effect of CO extract in retention test (after 24 and 48 h) has been shown a significant decrease in step-through latency and increase in time spent in the dark compartment part. Also the extract partially improved hyperglycemia and reduced body weight. Conclusion: Taken together, CO extract can improve PAL and memory impairments in STZ-diabetic rats. This improvement may be due to its antioxidant, anticholinergic activities or its power to reduce hyperglycemia. PMID:26120230

  3. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model.

    PubMed

    Elmas, Onur; Erbas, Oytun; Yigitturk, Gurkan

    2016-10-01

    Cytokines, such as transforming growth factor (TGF)-ß1, and increased oxidative stress are considered to be responsible for the development of diabetic nephropathy. We hypothesized that Aesculus hippocastanum (AH) seeds may have preventive effects on oxidative stress and TGF-β-related diabetic nephropathy in streptozotocin (STZ)-induced diabetic nephropathy in rats. Twenty-one male Sprague-Dawley albino rats were divided into three groups (n=7). Except for the control group, they all had diabetic nephropathy induced by an intraperitoneal injection of STZ. While the diabetes group did not receive any medication, the diabetes+AH group was given the medication for 4 weeks. After the experiment, analyses were performed to evaluate the glomerular area, severity of sclerosis, and fibronectin immunoexpression, as well as levels of malondialdehyde (MDA), TGF-β, blood urea nitrogen (BUN), blood glucose, creatinine, and proteinuria. It was found that glomerular area, severity of sclerosis, fibronectin immunoexpression, and levels of MDA, TGF-β, BUN, creatinine, and proteinuria were decreased in the diabetes+AH group. It is known that diabetic nephropathy is induced, to a large extent, by hyperglycemia. In the present study, AH extract ameliorated diabetic nephropathy without decrease in blood glucose levels. In the study, AH seeds showed beneficial effects on the functional properties of the kidney and microscopic improvements in diabetic nephropathy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats.

    PubMed

    Howarth, F C; Jacobson, M; Shafiullah, M; Adeghate, E

    2005-11-01

    In vivo biotelemetry studies have demonstrated that short-term streptozotocin (STZ)-induced diabetes is associated with a reduction in heart rate (HR) and heart rate variability (HRV) and prolongation of QT and QRS intervals. This study investigates the long-term effects of STZ-induced diabetes on the electrocardiogram (ECG), physical activity and body temperature. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. ECG, physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg(-1)) for a period of 22 weeks. HR, physical activity and body temperature declined rapidly 3-5 days after the administration of STZ. The effects became conspicuous with time reaching a new steady state approximately 1-2 weeks after STZ treatment. HR at 4 weeks was 268 +/- 5 beats min(-1) in diabetic rats compared to 347 +/- 12 beats min(-1) in age-matched controls. HRV at 4 weeks was also significantly reduced after STZ treatment (18 +/- 3 beats min(-1)) compared to controls (33 +/- 3 beats min(-1)). HR and HRV were not additionally altered in either diabetic rats (266 +/- 5 and 20 +/- 4 beats min(-1)) or age-matched controls (316 +/- 6 and 25 +/- 4 beats min(-1)) at 22 weeks. Reduced physical activity and/or body temperature may partly underlie the reductions in HR and HRV. In addition, the increased power spectral low frequency/high frequency ratio from 4 weeks after STZ treatment may indicate an accompanying disturbance in sympathovagal balance.

  5. Vascular mechanisms of cyanidin-3-glucoside response in streptozotocin-diabetic rats.

    PubMed

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Rabani, Tahereh; Balvardi, Mahboubeh

    2011-09-01

    Considering the high incidence of cardiovascular disorders in diabetes mellitus and some evidence on the antioxidant and antidiabetic potential of cyanidin-3-glucoside (C3G), this study was conducted to evaluate the possible beneficial effect of C3G administration on vascular reactivity of isolated thoracic aorta in diabetic rats and some of its underlying mechanisms. Male diabetic rats received C3G (10mg/kg; i.p.) on alternate days for 8 weeks one week after streptozotocin (STZ) diabetes induction. It was found out that treatment of diabetic rats with C3G exerted a hypoglycaemic effect and attenuated the increased malondialdehyde (MDA) content and reduced the activity of superoxide dismutase (SOD) in aortic tissue. Maximum contractile response of endothelium-intact aortic rings to phenylephrine (PE) was significantly lower in C3G-treated diabetic rats relative to untreated diabetics and endothelium removal abolished this difference. Meanwhile, endothelium-dependent relaxation to acetylcholine (ACh) was significantly higher in C3G-treated diabetic rats as compared to diabetic group. Chronic treatment with C3G may prevent some diabetes-related changes in vascular reactivity observed in diabetic rats directly and/or indirectly due to its hypoglycaemic effect and attenuation of lipid peroxidation and through endothelial-derived factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Resolvin D1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: Possible involvement of NLRP3 inflammasome and NF-κB signaling pathway.

    PubMed

    Yin, Yizhou; Chen, Fei; Wang, Wenyan; Wang, Han; Zhang, Xuedong

    2017-01-01

    To investigate the effect of resolvin D1 (RvD1) on the Nod-like receptor family pyrin domain-containing (NLRP3) inflammasome and the nuclear factor-kappa beta (NF-κB) pathway in streptozotocin (STZ)-induced diabetic retinopathy in rats. Ninety-six male rats were divided into four groups: control, STZ, RvD1, and vehicle. The rats with diabetic retinopathy induced by STZ in the RvD1 and vehicle groups were given an intravitreal injection of RvD1 (1,000 ng/kg) or the same dosage of vehicle, respectively. All rats were euthanized 7 days following treatment. Hematoxylin and eosin staining was used to observe the pathological changes in the retinal tissues. The location and expression of the NLRP3 inflammasome components, including NLRP3, caspase-associated recruitment domain (ASC), and caspase-1, in the retinas were detected using immunohistochemistry, real-time PCR, and western blot, respectively. Retinal homogenate of rats were collected for the detection of the downstream molecules interleukin 1 beta (IL-1β) and IL-18 of the NLRP3 inflammasome with enzyme-linked immunosorbent assay kits. The levels of NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 were upregulated in the retinas of the STZ-induced diabetic rats; however, these changes were partially inhibited by the RvD1 treatment. Furthermore, the administration of RvD1 suppressed activation of NF-kB, which was upregulated in STZ-induced diabetic retinopathy. RvD1 plays a protective role in STZ-induced diabetic retinopathy by inhibiting the level of activation of the NLRP3 inflammasome and associated cytokine production, suggesting targeting of this pathway might be an effective strategy in treatment of diabetic retinopathy.

  7. Therapeutic effects of adipose-derived stem cells-based microtissues on erectile dysfunction in streptozotocin-induced diabetic rats

    PubMed Central

    Zhou, Feng; Hui, Yu; Xin, Hua; Xu, Yong-De; Lei, Hong-En; Yang, Bi-Cheng; Guan, Rui-Li; Li, Meng; Hou, Jian-Quan; Xin, Zhong-Cheng

    2017-01-01

    This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors. PMID:27345005

  8. Antihyperglycemic and antihyperlipidemic effects of n-hexane fraction from the hydro-methanolic extract of sepals of Salmalia malabarica in streptozotocin-induced diabetic rats.

    PubMed

    De, Debasis; Ali, Kazi Monjur; Chatterjee, Kausik; Bera, Tushar Kanti; Ghosh, Debidas

    2012-06-21

    Bio-efficacy of n-hexane fraction of sepal of Salmalia malabarica was evaluated covering the biochemical sensors for the management of hyperglycemic and hyperlipidemic effects. Evaluation of n-hexane fraction of Salmalia malabarica (SMH) from hydro-methanolic (2:3) extract at the dose of 0.1 gm/kg body weight twice a day were investigated in normal and streptozotocin (STZ) induced diabetic rats. Normal and STZ-induced diabetic rats were divided into five groups. The effect of the fraction on fasting blood glucose (FBG), serum insulin, hemoglobin, glycated hemoglobin, total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), very low density lipoprotein cholesterol (VLDLc), phospholipids, free fatty acids, urea, uric acid, creatinine, albumin and transaminases were investigated in STZ-induced diabetic rat. A significant reduction of FBG level was observed after SMH treatment in STZ-induced diabetic rat. Treatment of diabetic rats with n-hexane fraction of this plant restored the levels of the above biochemical sensors significantly (p<0.001) in respect to the control. Histological studies of pancreas showed a qualitative diminution in the area of the islet's of Langerhans in diabetic group which was recovered by said fraction. Phytochemical screening of the fraction revealed the presence of flavonoids, terpenoids and steroids.

  9. Potential nephrotoxic effects produced by steroidal saponins from hydro alcoholic extract of Tribulus terrestris in STZ-induced diabetic rats.

    PubMed

    Gandhi, Sonia; Srinivasan, B P; Akarte, Atul S

    2013-09-01

    Chronic hyperglycemia leads to the development of microvascular complications like diabetic nephropathy. The present study investigated the potential effects of the hydroalcoholic extract of Tribulus terrestris, a plant of Zygophyllaceae family, on the renal complications in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by administering STZ (90 mg/kg) to the 2-days old neonates. After 6 weeks of induction, diabetic rats were treated with 50 mg/kg hydroalcoholic extract of T. terrestris for 8 weeks. The anti-hyperglycaemic nature was confirmed by reduction in blood glucose and improvement in insulin levels. Diabetic renal injury associated with decrease in total proteins and albumin levels was observed to be improved by T. terrestris extract. Glomerular filtration rate along with inflammatory and growth factors, adiponectin and erythropoietin were also improved by the treatment, though the findings were not significant. However, the beneficial antidiabetic effects of T. terrestris extract in plasma were not observed in kidney histopathology. This was confirmed by the quantitative estimation of unhydrolyzed fraction of saponins (major component: protodioscin) in plasma and kidney samples of normal and diabetic rats. Hence, it can be concluded that 8 weeks treatment with T. terrestris extract produces potential toxic effects in kidney, which are independent of its anti-diabetic action.

  10. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat.

    PubMed

    Suresh, Sekar; Prithiviraj, Elumalai; Lakshmi, Nagella Venkata; Ganesh, Mohanraj Karthik; Ganesh, Lakshmanan; Prakash, Seppan

    2013-01-09

    Mucuna pruriens Linn. (M. pruriens) is a leguminous plant that has been recognized as an herbal medicine for improving fertility and related disorders in the Indian traditional system of medicine, however without proper scientific validations. To study the effect of ethanolic seed extract of M. pruriens on mitochondrial dysfunction and the DNA damage in hyperglycemic rat epididymal spermatozoa. Male Wistar albino rats were divided as control (Sham), diabetes induced [streptozotocin 60 mg/kg of body weight (b.w.) in 0.1M citrate buffer] (STZ), diabetic rats administered with 200mg/kg b.w. of extract (STZ+MP) and normal rats administered with 200mg/kg b.w. of extract (Sham+MP). M. pruriens was administered (gavage) once daily for a period of 60 days. On 60th day animals were sacrificed by cervical dislocation sperm were collected from epididymis and subjected various analysis like antioxidants, ROS, lipid peroxidation (LPO), DNA damage, chromosomal integrity and mitochondrial membrane potential (MMP). Significant reduction in the sperm count, motility, viability and significant increase in the number of abnormal sperm in STZ compared to sham was noticed. STZ rat sperm showed significant increase in LPO and DNA damage. Both the enzymic and non-enzymic were decreased; MMP and the mitochondrial functions were severely affected in STZ group. The diabetic rats supplemented with M. pruriens showed a remarkable recovery in antioxidant levels and reduced LPO with well preserved sperm DNA. MMP and mitochondrial function test were also preserved in STZ+MP rat sperm. The present study has clearly demonstrated the potency of M. pruriens to reduce the diabetic induced sperm damage induced by oxidative stress (OS). These observations are encouraging to perform similar studies in human. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes.

    PubMed

    Wilson, Rachel D; Islam, Md Shahidul

    2012-01-01

    The main objective of the study was to develop an alternative non-genetic rat model for type 2 diabetes (T2D). Six-week-old male Sprague-Dawley rats (190.56 ± 23.60 g) were randomly divided into six groups, namely: Normal Control (NC), Diabetic Control (DBC), Fructose-10 (FR10), Fructose-20 (FR20), Fructose-30 (FR30) and Fructose-40 (FR40) and were fed a normal rat pellet diet ad libitum for 2 weeks. During this period, the two control groups received normal drinking water whilst the fructose groups received 10, 20, 30 and 40% fructose in drinking water ad libitum, respectively. After two weeks of dietary manipulation, all groups except the NC group received a single injection (i.p.) of streptozotocin (STZ) (40 mg/kg b.w.) dissolved in citrate buffer (pH 4.4). The NC group received only a vehicle buffer injection (i.p.). One week after the STZ injection, animals with non-fasting blood glucose levels > 300 mg/dl were considered as diabetic. Three weeks after the STZ injection, the animals in FR20, FR30 and FR40 groups were eliminated from the study due to the severity of diabetes and the FR10 group was selected for the remainder of the 11 weeks experimental period. The significantly (p < 0.05) higher fluid intake, blood glucose, serum lipids, liver glycogen, liver function enzymes and insulin resistance (HOMA-IR) and significantly (p < 0.05) lower body weight, oral glucose tolerance, number of pancreatic β-cells and pancreatic β-cell functions (HOMA-β) of FR10 group demonstrate that the 10% fructose-fed followed by 40 mg/kg of BWSTZ injected rat can be a new and alternative model for T2D.

  12. Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet.

    PubMed

    Epp, Riley A; Susser, Shanel E; Morissette, Marc P; Kehler, D Scott; Jassal, Davinder S; Duhamel, Todd A

    2013-01-01

    This study tested the hypothesis that exercise training would prevent the development of diabetes-induced cardiac dysfunction and altered expression of sarcoplasmic reticulum Ca(2 +)-transport proteins in the low-dose streptozotocin-induced diabetic rats fed a high-fat diet (HFD+STZ). Male Sprague-Dawley rats (4 weeks old; 125-150 g) were made diabetic using a high-fat diet (40% fat, w/w) and a low-dose of streptozotocin (35 mg·(kg body mass)(-1)) by intravenous injection. Diabetic animals were divided among a sedentary group (Sed+HFD+STZ) or an exercise-trained group (Ex+HFD+STZ) that accumulated 3554 ± 338 m·day(-1) of voluntary wheel running (mean ± SE). Sedentary animals fed a low-fat diet served as the control (Sed+LFD). Oral glucose tolerance was impaired in the sedentary diabetic group (1179 ± 29; area under the curve (a.u.c.)) compared with that in the sedentary control animals (1447 ± 42 a.u.c.). Although left ventricular systolic function was unchanged by diabetes, impaired E/A ratios (i.e., diastolic function) and rates of pressure decay (-dP/dt) indicated the presence of diastolic dysfunction. Diabetes also reduced SERCA2a protein content and maximal SERCA2a activity (V(max)) by 21% and 32%, respectively. In contrast, the change in each parameter was attenuated by exercise training. Based on these data, it appears that exercise training prevented the development of diabetic cardiomyopathy and the dysregulation of sarcoplasmic reticulum protein content in an inducible animal model of type 2 diabetes.

  13. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.

    PubMed

    Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

    2013-07-01

    Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.

  14. Antihyperglycaemic effect of 'Ilogen-Excel', an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus.

    PubMed

    Umamaheswari, Selvaraj; Mainzen Prince, Ponnaian Stanely

    2007-01-01

    'Ilogen-Excel', an Ayurvedic herbal formulation is composed of eight medicinal plants (Curcuma longa, Strychnos potatorum, Salacia oblonga, Tinospora cordifolia, Vetivelia zizanioides, Coscinium fenestratum, Andrographis paniculata and Mimosa pudica). The present study evaluates the antihyperglycemic effect of 'Ilogen-Excel' in streptozotocin induced diabetic rats. Rats were rendered diabetic by streptozotocin (STZ) (45 mg/kg body weight). Oral administration of 'Ilogen-Excel' (50 mg/kg and 100 mg/kg) for 60 days resulted in significantly lowered levels of blood glucose and significantly increased levels of plasma insulin, hepatic glycogen and total hemoglobin. 'Ilogen-Excel' administration also decreased the levels of glycosylated hemoglobin, plasma thiobarbituric acid reactive substances, hydroperoxides, ceruloplasmin and vitamin E in diabetic rats. Plasma reduced glutathione and vitamin C were significantly elevated by oral administration of 'Ilogen-Excel'. Administration of insulin normalized all the biochemical parameters studied in diabetic rats. The effect at a dose of 100 mg/kg was more pronounced than 50 mg/kg and brought back all the parameters to near normal levels. Thus, our study shows the antihyperglycemic effects of 'Ilogen-Excel' in STZ-induced diabetic rats. Our study also shows that combined therapy is better than individual therapy.

  15. Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats.

    PubMed

    El Batsh, Maha M; El Batch, Manal M; Shafik, Noha M; Younos, Ibrahim H

    2015-12-15

    Progression of diabetes mellitus is accompanied by metabolic disorders together with psychological deficits including cognitive dysfunctions. Herein, we used a murine streptozotocin (STZ)-induced diabetes to investigate the beneficial effects of vildagliptin not only on metabolic abnormalities, but also on diabetes-induced cognitive decline. Sixty rats were divided randomly and equally into 2 groups; one remains normal and the other serves as STZ- induced diabetic. Both groups were further divided equally into 2 groups; one received vehicle and the other received oral vildagliptin for 8 weeks. Cognitive behavior was assessed using novel object recognition test. Blood samples were collected to measure metabolic parameters and dipeptidyl peptidase (DPP)-IV activity. Brains were removed and investigated for the levels of inflammatory and oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD) and tumor necrosis factor-α (TNF-α), in addition to brain-derived neurotrophic factor (BDNF) and relative expression of nuclear factor kappa B (NF-κB)/p65. Treatment of STZ-induced diabetic rats with vildagliptin increased their body weight and corrected diabetes-induced memory and learning impairment. Moreover, vildagliptin significantly decreased serum levels of glucose and lipids (except high density lipoprotein) together with brain MDA, TNF-α, serum DPP-IV activities and NF-κB/p65 gene expression. On the other hand, vildagliptin significantly increased brain BDNF, SOD as well as serum insulin. Results suggested that vildagliptin has a protective role in counteracting both metabolic abnormalities and memory deficits in diabetic rats, possibly via its anti-hyperglycemic, anti-inflammatory, antioxidant effects, together with reduction of brain NF-κB/p65 over expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, O O; Sulaiman, S A; Wahab, M S; Sirajudeen, K N S; Salleh, M S Md; Gurtu, S

    2010-09-01

    Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  17. The protective effects of silibinin in the treatment of streptozotocin-induced diabetic osteoporosis in rats.

    PubMed

    Wang, Te; Cai, Leyi; Wang, Yangyang; Wang, Qingqing; Lu, Di; Chen, Hua; Ying, Xiaozhou

    2017-05-01

    Diabetic osteoporosis (DO) is a complication of diabetes mellitus. Our previous study showed that silibinin can attenuate high glucose mediated human bone marrow stem cells dysfunction through antioxidant effect. However, no study has yet investigated the effect of silibinin in diabetic rats. Therefore, we assessed the effects of silibinin on bone characteristics in streptozotocin-induced diabetic rats. The aim of our study was to determine whether providing silibinin in the different supplementation could prevent bone loss in diabetic rats or not. Rats were randomly divided into four groups: (1) control group (CG) (n=10); (2) diabetic group (DG) (n=10); (3) diabetic group with 50mgkg -1 day -1 of silibinin orally (DG-50) (n=10); and (4) diabetic group with 100mgkg -1 day -1 of silibinin orally (DG-100) (n=10). 12 weeks after streptozotocin (STZ) injection, the femora from all rats were assessed and oxidative stress was evaluated. Bone mineral density was significantly decreased in diabetic rats; these effects were prevented by treatment with silibinin (100mgkg -1 day -1 orally). Similarly, in the DG and DG-50 groups, changes in microarchitecture of femoral metaphysis assessed by microcomputed tomography demonstrated simultaneous existence of diabetic osteoporosis; these impairments were prevented by silibinin (100mgkg -1 day -1 orally). In conclusion, silibinin supplementation may have potential use as a possible therapy for maintaining skeletal health and these results can enhance the understanding of diabetic osteoporosis induced by diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Effect of streptozotocin-induced diabetes on left ventricular function in adult rats: an in vivo Pinhole Gated SPECT study

    PubMed Central

    Cosyns, Bernard; Droogmans, Steven; Weytjens, Caroline; Lahoutte, Tony; Van Camp, Guy; Schoors, Danny; Franken, Philippe R

    2007-01-01

    Background Recent studies have suggested that diabetes mellitus (DM) may cause left ventricular (LV) dysfunction directly resulting in increased susceptibility to heart failure. Using pinhole collimators and advances in data processing, gated SPECT was recently adapted to image the rat heart. The present study was aimed to assess this new imaging technique for quantifying LV function and remodeling from the Streptozotocin (STZ) rat model compared to controls. Methods Twenty one rats were randomly assigned to control or diabetic group. Six months after the induction of diabetes by STZ, Pinhole 99 m Tc-sestamibi gated SPECT was performed for determining rat LV volumes and function. Post-mortem histopathologic analysis was performed to evaluate the determinant of LV remodeling in this model. Results After six months, the normalized to body weight LV End-systolic volume was significantly different in diabetic rats compared to controls (0.46 ± 0.02 vs 0.33 ± 0.03 μL/g; p = 0.01). The normalized LV End-diastolic volume was also different in both groups (1.51 ± 0.03 vs 0.88 ± 0.05 μL/g; p = 0.001) and the normalized stroke volume was significantly higher in STZ-rats (1.05 ± 0.02 vs 0.54 ± 0.06 μL/g; p = 0.001). The muscular fibers were thinner at histology in the diabetic rats (0.44 ± 0.07 vs 0.32 ± 0.06 AU; p = 0.01). Conclusion Pinhole 99 m Tc-sestamibi gated SPECT can successfully be applied for the evaluation of cardiac function and remodeling in STZ-induced diabetic rats. In this model, LV volumes were significantly changed compared to a control population, leading to a LV dysfunction. These findings were consistent with the histopathological abnormalities. Finally, these data further suggest the presence of diabetes cardiomyopathy. PMID:17937784

  19. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Samini, Fariborz; Farkhondeh, Tahereh

    2016-04-01

    Chrysin (CH) is a natural flavonoid with pharmacological influences. The purpose of the current study was the assessment of possible protective effects of CH against oxidative damage in the serum, liver, brain, and pancreas of streptozotocin (STZ)- induced diabetic rats. In the present study, the rats were divided into the following groups of 8 animals each: control, untreated diabetic, 3 CH (20, 40, 80 mg/kg/day)-treated diabetic groups. To find out the modulations of cellular antioxidant defense systems, malondialdehyde (MDA) level and antioxidant enzymes including glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities were determined in the serum, liver, brain, and pancreas. STZ caused an elevation of glucose, MDA, TG, TC, LDL-C and with reduction of HDL-C, total protein, SOD, CAT, and GST in the serum, liver, brain, and pancreas (p < 0.01). The findings showed that the significant elevation in the glucose, MDA, TG, TC, LDL-C and reduction of HDL-C, total protein, SOD, CAT, and GST were ameliorated in the CH-treated diabetic groups versus to the untreated groups, in a dose dependent manner (p < 0.05). The current study offers that CH may be recovered diabetes and its complications by modification of oxidative stress.

  20. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats.

    PubMed

    Bacanlı, Merve; Anlar, Hatice Gül; Aydın, Sevtap; Çal, Tuğbagül; Arı, Nuray; Ündeğer Bucurgat, Ülkü; Başaran, A Ahmet; Başaran, Nurşen

    2017-12-01

    It is known that diabetes causes some complications including alterations in lipid profile, hepatic enzyme levels but also it causes oxidative stress. Limonene, a major component of Citrus oils, has important health beneficial effects in lowering the level of oxidative stress due to its antioxidant activity. The aim of this study was to investigate the effects of D-limonene on streptozotocin (STZ)-induced diabetes in Wistar albino rats. For this purpose, DNA damage was evaluated by alkaline comet assay. Changes in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSHPx) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH), malondialdehyde (MDA), insulin, total bilirubin and BCA protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol and triglyceride were also evaluated. D-limonene treatment was found to significantly decrease DNA damage, GR enzyme activities and MDA levels and significantly increase GSH levels and CAT, SOD and GSH-Px enzyme activities and altered lipid and liver enzyme parameters in diabetic rats. According to our results, it seems that D-limonene might have a role in the prevention of the complication of diabetes in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats

    PubMed Central

    2012-01-01

    Background The present investigation was aimed at evaluating the hypoglycemic and hypolipidemic properties of the aqueous and methanolic extracts from Bersama engleriana leaves in streptozotocin/nicotinamide (STZ-NA)-induced type 2 diabetic rats. Methods Animals were orally treated for 4 consecutive weeks with Bersama engleriana extracts at doses of 300 or 600 mg/kg. The anti-diabetic effect was examined by measuring blood glucose (BG) at 0, 1, 14 and 28 days after STZ-NA treatment and, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels at sacrifice (day 29). Glibenclamide (0.25 mg/kg) was used for comparison. Results STZ-NA-induced diabetic rats showed moderate to significant increases in the levels of BG, TG, TC, LDL-C while body weight, HDL-C levels and relative weights of liver and pancreas were decreased compared to controls (non diabetic rats). Administration of the plant extracts to STZ-NA diabetic rats resulted in a significant decrease in BG, TG, TC and LDL-C and the dose 600 mg/kg of the methanolic extract was the most effective; HDL-C level was markedly increased after four weeks compared to untreated diabetic rats. A dose-dependent increase in the relative weights of the diabetogenic organs was observed in the Bersama engleriana groups. It can be also noticed that the methanolic extract, especially the dose 600 mg/kg (p<0.001), produced more effects than glibenclamide and aqueous extract. Rats treated with glibenclamide (0.25 mg/kg) generally gave lower results compared to groups treated with plant extracts. Conclusion Results of the present study showed that Bersama engleriana extracts and especially its methanolic extract possess antidiabetogenic properties and beneficial effects on diabetic hyperlipidemia. All these effects could be due to the bioactive components revealed in the Bersama engleriana extracts such as triterpenes and phenols and which could

  2. Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats.

    PubMed

    El-Fiky, F K; Abou-Karam, M A; Afify, E A

    1996-01-01

    The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.

  3. Anti-diabetic activity of traditional Indian gold containing preparation: Shadguna Balijarita Makaradhwaja on streptozotocin induced diabetic rats.

    PubMed

    Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar

    2016-01-01

    Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21(st) day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect.

  4. Anti-diabetic activity of traditional Indian gold containing preparation: Shadguna Balijarita Makaradhwaja on streptozotocin induced diabetic rats

    PubMed Central

    Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar

    2016-01-01

    Background: Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. Objectives: The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21st day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Results: Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. Conclusion: The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect. PMID:27104037

  5. Antioxidant and triglyceride-lowering effects of vitamin E associated with the prevention of abnormalities in the reactivity and morphology of aorta from streptozotocin-diabetic rats. Antioxidants in Diabetes-Induced Complications (ADIC) Study Group.

    PubMed

    Karasu, C; Ozansoy, G; Bozkurt, O; Erdoğan, D; Omeroğlu, S

    1997-08-01

    In this study, we evaluated the effects of vitamin E on the vascular reactivity and structure of thoracic aorta from streptozotocin (STZ)-diabetic rats. Plasma glucose, cholesterol, and triglyceride concentrations in rats were increased markedly by STZ-diabetes. The thiobarbituric acid (TBA) reactivity level as an index of lipid peroxidation was higher in both plasma and aorta of STZ-diabetic rats compared with controls. The rings of thoracic aorta with or without endothelium were mounted in organ chambers for measurement of isometric tension and were contracted by a single dose (10-5 mol/L) and then cumulative doses of noradrenaline ([NA] 10(-9) to 10(-5) mol/L). Pretreatment with methylene blue (MB) or removal of the endothelium resulted in a similar degree of enhancement in NA-induced contraction of control rings. STZ-diabetes increased the fast and slow components of NA-induced contraction in all experiments. The maximal contractile response of aorta to NA was also augmented by STZ-diabetes, whereas the sensitivity (pD2) remained unaltered. STZ-diabetes resulted in significant increases in the maximum contractile response and sensitivity of aorta to KCl. STZ-diabetic rats showed a significant reduction in the percentage of endothelial response (PER). A group of diabetic rats was treated from the time of diabetes induction with a 0.5% dietary supplement of vitamin E. Vitamin E supplementation of STZ-diabetic rats eliminated accumulation of lipid peroxides and returned plasma triglycerides toward normal levels. Diabetes-induced abnormal contractility and endothelial dysfunction were significantly but not completely prevented by vitamin E treatment. The endothelium-independent relaxation response to sodium nitroprusside (SNP) was not affected by diabetes or vitamin E treatment. Electron microscopic examination of thoracic aorta revealed that normal tissue organization was disrupted in STZ-diabetic rats, and that vitamin E treatment can protect the morphological

  6. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage.

    PubMed

    Adeyemi, David O; Ukwenya, Victor O; Obuotor, Efere M; Adewole, Stephen O

    2014-07-30

    Flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx was evaluated for its anti-hepatotoxic activities in streptozotocin-induced diabetic Wistar rats. Diabetes Mellitus was induced in Wistar rats by a single i.p injection of 80 mg/kg b.w. streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 6.3). The ameliorative effects of the extract on STZ-diabetes induced liver damage was evident from the histopathological analysis and the biochemical parameters evaluated in the serum and liver homogenates. Reduced levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (3.76 ± 0.38 μM, 0.42 ± 0.04 U/L, 41.08 ± 3.04 U/ml, 0.82 ± 0.04 U/L respectively) in the liver of diabetic rats were restored to a near normal level in the Hibiscus sabdariffa-treated rats (6.87 ± 0.51 μM, 0.72 ± 0.06 U/L, 87.92 ± 5.26 U/ml, 1.37 ± 0.06 U/L respectively). Elevated levels of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) in the serum of diabetic rats were also restored in Hibiscus sabdariffa -treated rats. Examination of stained liver sections revealed hepatic fibrosis and excessive glycogen deposition in the diabetic rats. These pathological changes were ameliorated in the extract-treated rats. The anti-hepatotoxic activity of Hibiscus sabdariffa extract in STZ diabetic rats could be partly related to its antioxidant activity and the presence of flavonnoids.

  7. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    PubMed Central

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

  8. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.

    PubMed

    Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H

    2016-05-01

    We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. © 2015 Blackwell Verlag GmbH.

  9. Effect of Mucuna pruriens (Linn.) on oxidative stress-induced structural alteration of corpus cavernosum in streptozotocin-induced diabetic rat.

    PubMed

    Suresh, Sekar; Prakash, Seppan

    2011-07-01

    Erectile dysfunction is one of the major secondary complications of diabetes. Mucuna pruriens (M. pruriens), a leguminous plant identified for its antidiabetic, aphrodisiac, and fertility enhancing properties, has been the choice of Indian traditional medicine. The objective of the present study was to analyze the efficacy of M. pruriens on free radicals-mediated penile tissue alterations in hyperglycemic male rats. Methods.  Male albino rats were divided as group I (sham) control, group II (STZ) diabetes-induced (streptozotocin 60 mg/kg of body weight [bw] in 0.1 M citrate buffer), group III (STZ + MP) diabetic rats administered with 200 mg/kg bw of ethanolic extract of M. pruriens seed, group IV (STZ + SIL) diabetic rats administered with 5 mg/kg bw of sildenafil citrate, group V (sham + MP) administered with 200 mg/kg bw of extract alone, and group VI (sham + SIL) administered with 5 mg/kg bw of sildenafil citrate. The M. pruriens and sildenafil citrate were given (gavage) once daily for a period of 60 days. At the end of 60 days, the animals were sacrificed and subjected to analysis of reactive oxygen species levels, enzymic and nonenzymic antioxidant levels, levels of NOx, histological, and histomorphometrical study of penile tissue. Remedial use of M. pruriens seed extract on diabetes-induced erectile tissue damage. Significantly high levels of oxidative stress and low levels of antioxidants in the penile tissue seem to contribute to the increased collagen deposition and fibrosis of erectile tissue in STZ rats. Relatively, there was increased damage in STZ + SIL group. Supplementation of M. pruriens in STZ + MP group has revealed the potency to overcome oxidative stress, and good preservation of penile histoarchitecture.  The ethanolic extract of M. pruriens seed significantly recovered or protected erectile tissue from the oxidative stress-induced degeneration by its antioxidant potentials. These findings propound to serve mankind by the treatment of

  10. Possible mechanism of protective effect of thalidomide in STZ-induced-neuropathic pain behavior in rats.

    PubMed

    Taliyan, Rajeev; Sharma, Pyare Lal

    2012-04-01

    Diabetes-induced neuropathic pain is recognized as one of the most difficult type of pain to treat and conventional analgesics are well known to be partially effective or associated with potential toxicity. Recently, it has been demonstrated that thalidomide, besides its teratogenic potential, reduced chronic pain in an SNL experimental pain model. The present study was designed to investigate the effect of thalidomide on streptozotocin (STZ)-induced neuropathic pain in rats. Streptozotocin (20 mg/kg, i.p, daily × 4 days) was administered to induce diabetes in the rats. Nociceptive latency was measured using tail-flick and paw-withdrawal test. Thermal hyperalgesia and mechanical allodynia were measured using planter test and dynamic aesthesiometer (Ugo-Basile, Italy), respectively. Urinary and serum nitrite concentration was estimated using Greiss reagent method. Spleen homogenate supernatant was prepared from spleen of 28th day diabetic rats and administered to normal rats (400 ul, i.v) daily for 28 days. Pain threshold progressively decreased in STZ-treated rats, as compared with control rats. 3 weeks after induction of diabetes, the rat exhibited thermal hyperalgesia and mechanical allodynia. The analgesic effect of morphine (8 mg/kg, s.c.) was significantly decreased in both diabetic and in SHS-treated non-diabetic rats. Administration of thalidomide (25 and 50 mg/kg, i.p), a TNF-α inhibitor, significantly prevented hyperglycemia-induced thermal hyperalgesia and mechanical allodynia and also attenuated the increase in serum and urinary nitrite concentration, as compared with untreated diabetic rats. Also, thalidomide (25 and 50 mg/kg, i.p) 1 h before or concurrently with morphine significantly restored the analgesic effect of morphine in diabetic rats. It may be concluded that thalidomide has a beneficial effect in neuropathic pain by decreasing cytokines (TNF-α) and nitric oxide level and may provide a novel promising therapeutic approach for managing

  11. The mechanism of hypoglycemic action of the semi-purified fractions of Averrhoa bilimbi in streptozotocin-diabetic rats.

    PubMed

    Pushparaj, P N; Tan, B K; Tan, C H

    2001-12-21

    In the present study, we have examined the possible mechanism of the hypoglycemic action of the semi-purified fractions of an ethanolic extract of Averrhoa bilimbi Linn (Oxalidaceae) leaves (ABe) in streptozotocin-diabetic male Sprague-Dawley (SD) rats. The ABe was partitioned with water and butanol to yield a butanol-soluble fraction (BuF) and a water-soluble fraction (AF). The AF was further partitioned with ethyl acetate and hexane to obtain ethyl acetate (EF) and hexane (HF) soluble fractions. The hypoglycemic property of each fraction was assessed by the oral glucose tolerance test (OGTT) at a dose of 125-mg/kg-body weight in streptozotocin (STZ)-diabetic rats (STZ 60 mg/kg i.p.). Fractions AF, BuF and the reference drug metformin (500 mg/kg body weight), produced significant blood glucose-lowering effect in the diabetic rats when compared to the vehicle (distilled water). In the long-term study, the diabetic rats were randomly divided into 4 groups and treated orally by gavage with vehicle, AF (125 mg/kg body weight), BuF (125 mg/kg body weight), and metformin (500 mg/kg body weight) respectively twice a day for 14 days. On day 7 and day 14, AF and BuF, like the reference drug, metformin, lowered the fasting blood glucose concentration significantly (P < 0.05) when compared with the vehicle. The serum insulin level was significantly increased in the AF-treated rats only on day 14 when compared to that in the vehicle-treated rats on day zero (P < 0.05). The serum insulin level in BuF-treated rats was also significantly higher (P < 0.05) on both day 7 and day 14 compared to that on day zero. Hepatic glucose-6-phosphatase activity was significantly lower (P<0.05) in AF- and metformin-treated groups, but not in BuF-treated groups, compared to that in vehicle-treated group. However, there was no change in hepatic glycogen content in AF-, BuF- and metformin-treated group compared to the vehicle-treated group. These results indicate that AF is more potent than Bu

  12. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats

    PubMed Central

    2012-01-01

    Background Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Methods Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. Results The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. Conclusions This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas. PMID:23190471

  13. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats.

    PubMed

    Juárez-Rojop, Isela Esther; Díaz-Zagoya, Juan C; Ble-Castillo, Jorge L; Miranda-Osorio, Pedro H; Castell-Rodríguez, Andrés E; Tovilla-Zárate, Carlos A; Rodríguez-Hernández, Arturo; Aguilar-Mariscal, Hidemi; Ramón-Frías, Teresa; Bermúdez-Ocaña, Deysi Y

    2012-11-28

    Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas.

  14. Regional effects of streptozotocin-induced diabetes on shortening and calcium transport in epicardial and endocardial myocytes from rat left ventricle.

    PubMed

    Smail, Manal M A; Qureshi, Muhammad A; Shmygol, Anatoliy; Oz, Murat; Singh, Jaipaul; Sydorenko, Vadym; Arabi, Alya; Howarth, Frank C; Al Kury, Lina

    2016-11-01

    In the heart, the left ventricle pumps blood at higher pressure than the right ventricle. Within the left ventricle, the electromechanical properties of ventricular cardiac myocytes vary transmurally and this may be related to the gradients of stress and strain experienced in vivo across the ventricular wall. Diabetes is also associated with alterations in hemodynamic function. The aim of this study was to investigate shortening and Ca 2+ transport in epicardial (EPI) and endocardial (ENDO) left ventricular myocytes in the streptozotocin (STZ)-induced diabetic rat. Shortening, intracellular Ca 2+ and L-type Ca 2+ current (I Ca,L ) were measured by video detection, fura-2 microfluorimetry, and whole-cell patch clamp techniques, respectively. Time to peak (TPK) shortening was prolonged to similar extents in ENDO and EPI myocytes from STZ-treated rats compared to ENDO and EPI myocytes from controls. Time to half (THALF) relaxation of shortening was prolonged in ENDO myocytes from STZ-treated rats compared to ENDO controls. TPK Ca 2+ transient was prolonged in ENDO myocytes from STZ-treated rats compared to ENDO controls. THALF decay of the Ca 2+ transient was prolonged in ENDO myocytes from STZ-treated rats compared to ENDO controls. Sarcoplasmic reticulum (SR) fractional release of Ca 2+ was reduced in EPI myocytes from STZ-treated rats compared to EPI controls. I C a,L activation, inactivation, and recovery from inactivation were not significantly altered in EPI and ENDO myocytes from STZ-treated rats or controls. Regional differences in Ca 2+ transport may partly underlie differences in ventricular myocyte shortening across the wall of the healthy and the STZ-treated rat left ventricle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals

    PubMed Central

    Sangi, Sibghatullah Muhammad Ali; Sulaiman, Mansour Ibrahim; El-wahab, Mohammed Fawzy Abd; Ahmedani, Elsamoual Ibrahim; Ali, Soad Shaker

    2015-01-01

    Background: Diabetes mellitus is one of the most important diseases related with endocrines. Its main manifestation includes abnormal metabolism of carbohydrates and lipids and inappropriate hyperglycemia that is caused by absolute or relative insulin deficiency. It affects humankind worldwide. Objectives: Our research was aimed to observe antihyperglycemic activity of thymoquinone and oleuropein. Materials and Methods: In this study, rats were divided into six groups, 6 rats in each. Diabetes was inducted by streptozotocin (STZ). The level of fasting blood glucose was determined for each rats during the experiment, doses of thymoquinone and oleuropein (3 mg/kg and 5 mg/kg) for both, were injected intraperitoneal. Pancreatic tissues were investigated to compare β-cells in diabetic and treated rats. Result and Conclusion: It was found that thymoquinone and oleuropein significantly decrease serum Glucose levels in STZ induced diabetic rats. PMID:26664013

  16. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H 2 S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H 2 S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H 2 S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  17. The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats

    PubMed Central

    Al-Malki, Abdulrahman L.; El Rabey, Haddad A.

    2015-01-01

    The antidiabetic activity of two low doses of Moringa seed powder (50 and 100 mg/kg body weight, in the diet) on streptozotocin (STZ) induced diabetes male rats was investigated. Forty rats were divided into four groups. The diabetic positive control (STZ treated) group showed increased lipid peroxide, increased IL-6, and decreased antioxidant enzyme in the serum and kidney tissue homogenate compared with that of the negative control group. Immunoglobulins (IgA, IgG), fasting blood sugar, and glycosylated hemoglobin (HbA1c) were also increased as a result of diabetes in G2 rats. Moreover albumin was decreased, and liver enzymes and α-amylase were not affected. In addition, the renal functions and potassium and sodium levels in G2 were increased as a sign of diabetic nephropathy. Urine analysis showed also glucosuria and increased potassium, sodium, creatinine, uric acid, and albumin levels. Kidney and pancreas tissues showed also pathological alteration compared to the negative control group. Treating the diabetic rats with 50 or 100 mg Moringa seeds powder/kg body weight in G3 and G4, respectively, ameliorated the levels of all these parameters approaching the negative control values and restored the normal histology of both kidney and pancreas compared with that of the diabetic positive control group. PMID:25629046

  18. Piperine, a Natural Bioenhancer, Nullifies the Antidiabetic and Antioxidant Activities of Curcumin in Streptozotocin-Diabetic Rats

    PubMed Central

    Arcaro, Carlos Alberto; Gutierres, Vânia Ortega; Assis, Renata Pires; Moreira, Thais Fernanda; Costa, Paulo Inácio; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2014-01-01

    Knowing that curcumin has low bioavailability when administered orally, and that piperine has bioenhancer activity by inhibition of hepatic and intestinal biotransformation processes, the aim of this study was to investigate the antidiabetic and antioxidant activities of curcumin (90 mg/kg) and piperine (20 or 40 mg/kg), alone or co-administered, incorporated in yoghurt, in streptozotocin (STZ)-diabetic rats. The treatment for 45 days of STZ-diabetic rats with curcumin-enriched yoghurt improved all parameters altered in this experimental model of diabetes: the body weight was increased in association with the weight of skeletal muscles and white adipose tissues; the progressive increase in the glycemia levels was avoided, as well as in the glycosuria, urinary urea, dyslipidemia, and markers of liver (alanine and aspartate aminotransferases and alkaline phosphatase) and kidney (urinary protein) dysfunction; the hepatic oxidative stress was decreased, since the activities of the antioxidant enzymes superoxide dismutase, catalase and gluthatione peroxidase were increased, and the levels of malondialdehyde and protein carbonyl groups were reduced. The dose of 20 mg/kg piperine also showed antidiabetic and antioxidant activities. The treatment of STZ-diabetic rats with both curcumin and 20 mg/kg piperine in yoghurt did not change the antidiabetic and antioxidant activities of curcumin; notably, the treatment with both curcumin and 40 mg/kg piperine abrogated the beneficial effects of curcumin. In addition, the alanine aminotransferase levels were further increased in diabetic rats treated with curcumin and 40 mg/kg piperine in comparison with untreated diabetic rats. These findings support that the co-administration of curcumin with a bioenhancer did not bring any advantage to the curcumin effects, at least about the antidiabetic and antioxidant activities, which could be related to changes on its biotransformation. PMID:25469699

  19. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats.

    PubMed

    Jayachandran, Muthukumaran; Zhang, Tongze; Ganesan, Kumar; Xu, Baojun; Chung, Stephen Sum Man

    2018-06-15

    Among the foremost common flavonoids within the human diet, quercetin glycosides possess neuroprotective, cardioprotective, anti-oxidative, chemopreventive, and anti-allergic properties. Isoquercetin is one such promising candidate with anti-diabetic potential. However, complete studies of its molecular action on insulin signaling pathway and carbohydrate metabolizing enzymes remain unclear. Hence, we have designed this study to accumulate the experimental evidence in support of anti-diabetic effects of isoquercetin. Male albino Wistar rats were divided into seven groups. Rats (Groups 3-7) were administered a single intraperitoneal injection of streptozotocin (STZ; 40 mg/kg b.w) to induce diabetes mellitus. As an extension, STZ rats received isoquercetin at three different doses (20, 40 and 80 mg/kg b.w), and Group 7 rats received glibenclamide (standard drug) (600 μg/kg b.w). The results showed that STZ exaggerated blood sugar, decreased insulin, altered metabolizing enzymes, and impaired the mRNA expression of insulin signaling genes and carbohydrate metabolizing enzyme genes. Supplementation with isoquercetin significantly normalized blood sugar levels, insulin and regulated the mRNA expression of insulin signaling genes and carbohydrate metabolizing enzyme genes. The results achieved with isoquercetin are similar to that of standard drug glibenclamide. The findings suggest isoquercetin could be a possible therapeutic agent for treating diabetes mellitus in the near future. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effects of streptozotocin-induced diabetes on taste buds in rat vallate papillae.

    PubMed

    Pai, Man-Hui; Ko, Tsui-Ling; Chou, Hsiu-Chu

    2007-01-01

    Some studies have documented taste changes in patients with diabetes mellitus (DM). In order to understand the relationships between taste disorders caused by DM and the innervation and morphologic changes in the taste buds, we studied the vallate papillae and their taste buds in rats with DM. DM was induced in these rats with streptozotocin (STZ), which causes the death of beta cells of the pancreas. The rats were sacrificed and the vallate papillae were dissected for morphometric and quantitative immunohistochemical analyses. The innervations of the vallate papillae and taste buds in diabetic and control rats were detected using immunohistochemistry employing antibodies directed against protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP). The results showed that PGP 9.5- and CGRP-immunoreactive nerve fibers in the trench wall of diabetic vallate papillae, as well as taste cells in the taste buds, gradually decreased both intragemmally and intergemmally. The morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds per papilla (per animal). The quantification of innervation in taste buds of the diabetic rats supported the visual assessment of immunohistochemical labeling, that the innervation of taste cells was significantly reduced in diabetic animals. These findings suggest that taste impairment in diabetic subjects may be caused by neuropathy defects and/or morphological changes in the taste buds.

  1. The antidiabetic effects of an herbal formula composed of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng in the streptozotocin-induced diabetic rats.

    PubMed

    Hu, Weicheng; Yeo, Jin-Hee; Jiang, Yunyao; Heo, Seong-Il; Wang, Myeong-Hyeon

    2013-04-01

    A folk prescription consisting of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng has been used in the treatment of diabetes mellitus. The aim of the present investigation was to evaluate the antidiabetic effects of the herb formula extract (HFE) composed of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng in the streptozotocin (STZ)-induced diabetic rats. The HFE was mixed in the food supply of the healthy and STZ-induced diabetic male Sprague-Dawley rats, and its effects on the body weight, water and food intake, hyperglycemia, hypolipidemic and islet structure were studied. The treatment of the rats with STZ for 6 weeks resulted in marasmus, polydipsia, polyphagia, hyperglycemia and hypoinsulinemia. In addition, the diabetic rats showed an apparent decrease in the insulin immunoreactivity and the number of β-cells in the pancreas. The addition of the HFE to the rats' food supply significantly lowered the serum glucose and the serum triglycerides level and preserved the normal histological appearance of the pancreatic islets. These results indicate that the HEF have a strong antidiabetic potential along with the significant hypoglycemic and hypolipidemic effects, which may be applicable in the pharmaceutical industry.

  2. Correction of protein metabolic disorders by composite extract of Musa paradisiaca and Coccinia indica in streptozotocin-induced diabetic albino rat: an approach through the pancreas.

    PubMed

    Mallick, Chhanda; De, Debasis; Ghosh, Debidas

    2009-04-01

    The study focused on the ability of the extracts of Musa paradisiaca and Coccinia indica on protein metabolic disorders in streptozotocin (STZ)-induced diabetes. Wistar strain rats were divided into 6 groups as control, control + composite extract treated, STZ-induced diabetes, diabetic + composite extract treated, composite extract-pretreated diabetes, and composite extract-pretreated diabetes + composite extract treated. Protein metabolic status was assessed by serum levels of urea, uric acid, albumin, and creatinine along with urine urea and albumin levels. Diabetic therapeutic ability was assessed by blood glucose, glycated hemoglobin, and serum insulin levels. Histology of the pancreas, liver, and kidney was evaluated. Indices of protein metabolic disorders were deviated from control in STZ-induced diabetes, which were protected significantly after the treatment of composite extract of M. paradisiaca and C. indica. This protection was more prominent when the extract-pretreated animals were subjected to diabetes induction by STZ. The composite extract has a protective therapeutic effect against diabetes through beta-cell regeneration capacity.

  3. Low-intensity Pulsed Ultrasound Improves Erectile Function in Streptozotocin-induced Type I Diabetic Rats.

    PubMed

    Lei, Hongen; Xin, Hua; Guan, Ruili; Xu, Yongde; Li, Huixi; Tian, Wenjie; Wang, Lin; Gao, Zhezhu; Guo, Yinglu; Lue, Tom F; Lin, Guiting; Xin, Zhongcheng

    2015-12-01

    To investigate the effect of low-intensity pulsed ultrasound (LIPUS) as a treatment for erectile dysfunction (ED) in a rat model of type I diabetes mellitus (DM) induced by streptozotocin (STZ). Seventy male Sprague-Dawley rats were randomly assigned to 2 cohorts: a normal control (NC) group and an STZ-induced DM group, which was further subdivided into DM, DM+LIPUS 100, DM+LIPUS 200, and DM+LIPUS 300 groups and a DM+LESWT (low-energy shock wave therapy) 300 positive control group. Animals in the LIPUS subgroups were treated at different energy levels (100, 200, and 300 mW/cm(2)) for 3 minutes, and animals in the LESWT group received 300 shocks at 0.09 mJ/mm(2). All procedures were repeated 3 times per week for 2 weeks. After a 2-week wash-out period, intracavernous pressure (ICP) was measured; the midpenile region was examined histologically; and VEGF, αSMA, eNOS, and nNOS expression, and activity of the TGF-β1/Smad/CTGF signaling pathway were examined in penile tissue by Western blot analysis. LIPUS therapy significantly improved erectile function in diabetic rats, as evidenced by enhanced ICP levels, increased endothelial and smooth muscle content, a higher collagen I/collagen III ratio, increased quantity of elastic fibers, and elevated eNOS and nNOS expression. Interestingly, LIPUS was also associated with downregulation of the TGF-β1/Smad/CTGF signaling pathway in penile tissue, whose activation is correlated with ED pathology. LIPUS therapy improved erectile function and reversed pathologic changes in penile tissue of STZ-induced diabetic rats. LIPUS therapy has potential as a noninvasive therapy for diabetic ED in the clinic. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Altered profile of mRNA expression in atrioventricular node of streptozotocin-induced diabetic rats

    PubMed Central

    Howarth, Frank Christopher; Parekh, Khatija; Jayaprakash, Petrilla; Inbaraj, Edward Samuel; Oz, Murat; Dobrzynski, Halina; Adrian, Thomas Edward

    2017-01-01

    Prolonged action potential duration, reduced action potential firing rate, upstroke velocity and rate of diastolic depolarization have been demonstrated in atrioventricular node (AVN) cells from streptozotocin (STZ)-induced diabetic rats. To further clarify the molecular basis of these electrical disturbances, the mRNA profiles encoding a variety of proteins associated with the generation and conduction of electrical activity in the AVN, were evaluated in the STZ-induced diabetic rat heart. Expression of mRNA was measured in AVN biopsies using reverse transcription-quantitative polymerase chain reaction techniques. Notable differences in mRNA expression included upregulation of genes encoding membrane and intracellular Ca2+ transport, including solute carrier family 8 member A1, transient receptor potential channel 1, ryanodine receptor 2/3, hyperpolarization-activated cyclic-nucleotide 2 and 3, calcium channel voltage-dependent, β2 subunit and sodium channels 3a, 4a, 7a and 3b. In addition to this, potassium channels potassium voltage-gated channel subfamily A member 4, potassium channel calcium activated intermediate/small conductance subfamily N α member 2, potassium voltage-gated channel subfamily J members 3, 5, and 11, potassium channel subfamily K members 1, 2, 3 and natriuretic peptide B (BNP) were upregulated in AVN of STZ heart, compared with controls. Alterations in gene expression were associated with upregulation of various proteins including the inwardly rectifying, potassium channel Kir3.4, NCX1 and BNP. The present study demonstrated notable differences in the profile of mRNA encoding proteins associated with the generation, conduction and regulation of electrical signals in the AVN of the STZ-induced diabetic rat heart. These data will provide a basis for a substantial range of future studies to investigate whether variations in mRNA translate into alterations in electrophysiological function. PMID:28731153

  5. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats.

    PubMed

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai

    2015-07-18

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (P<0.05), improved serum lipid profiles, liver enzymes and kidney functions in diabetic rats after 14 days. The extracts also improved damage of islet of Langerhan's in diabetic rats. The plant material reduced the post-prandial glucose level (P<0.001) at the dose of 750 mg/kg. These findings revealed that both the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.

  6. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    PubMed

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.

  7. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling.

    PubMed

    Huang, Pei-Chen; Wang, Guei-Jane; Fan, Ming-Jen; Asokan Shibu, Marthandam; Liu, Yin-Tso; Padma Viswanadha, Vijaya; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Liao, Hung-En; Huang, Chih-Yang

    2017-12-01

    Anthocyanins are known cyto-protective agents against various stress conditions. In this study cardio-protective effect of anthocyanins from black rice against diabetic mellitus (DM) was evaluated using a streptozotocin (STZ)-induced DM rat model. Five-week-old male Wistar rats were administered with STZ (55 mg kg -1 , IP) to induce DM; rats in the treatment group received 250 mg oral anthocyanin/kg/day during the 4-week treatment period. DM and the control rats received normal saline through oral gavage. The results reveal that STZ-induced DM elevates myocardial apoptosis and associated proapoptotic proteins but down-regulates the proteins of IGF1R mediated survival signaling mechanism. Furthermore, the functional parameters such as the ejection-fraction and fraction-shortening in the DM rat hearts declined considerably. However, the rats treated with anthocyanins significantly reduced apoptosis and the associated proapoptotic proteins and further increased the survival signals to restore the cardiac functions in DM rats. Anthocyanin supplementation enhances cardiomyocyte survival and restores cardiac function. © 2017 Wiley Periodicals, Inc.

  8. Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats.

    PubMed

    Zhang, Shu; Chai, Fei-Yan; Yan, Hong; Guo, Yong; Harding, J J

    2008-05-12

    To evaluate the effect of N-acetylcysteine (NAC) and glutathione ethyl ester (GSH-EE) eye drops on the progression of diabetic cataract formation induced by streptozotocin (STZ). One hundred and thirty Sprague-Dawley (SD) rats were selected, and diabetes was induced by streptozotocin (65 mg/kg bodyweight) in a single intraperitoneal injection. The control group (group I) received only vehicle. Then, 78 rats with random blood glucose above 14 mmol/l were divided into four groups (group II-V). The drug-treated rats received NAC and GSH-EE eye drops five days before STZ injection. Group I and V animals received sodium phosphate buffer drops (pH 7.4), and those in groups II, III, and IV received 0.01% NAC, 0.05% NAC, and 0.1% GSH-EE drops, respectively. Lens transparency was monitored with a slit lamp biomicroscope and classified into six stages. At the end of four weeks, eight weeks, and 13 weeks, animals were killed and components involved in the pathogenesis of diabetic cataract including thiols (from glutathione and protein), glutathione reductase (GR), catalase (CAT), and glycated proteins were investigated in the lens extracts. Blood glucose, urine glucose, and bodyweight were also determined. The progression in lens opacity induced by diabetes showed a biphasic pattern in which an initial slow increase in the first seven weeks after STZ injection was followed by a rapid increase in the next six weeks. The progression of lens opacity in the treated groups (group II-IV) was slower than that of the untreated group (group V) in the earlier period and especially in the fourth week. There were statistically significant differences between the treated groups and the untreated group (p<0.05). However, these differences became insignificant after the sixth week, and the progression of lens opacification in all diabetic groups became aggravated. The content of thiol (from glutathione and protein), glutathione reductase (GR), and catalase (CAT) were lower in the lens

  9. Extract of Bauhinia vahlii Shows Antihyperglycemic Activity, Reverses Oxidative Stress, and Protects against Liver Damage in Streptozotocin-induced Diabetic Rats

    PubMed Central

    Elbanna, Ahmed H.; Nooh, Mohammed M.; Mahrous, Engy A.; Khaleel, Amal E.; Elalfy, Taha S.

    2017-01-01

    Background: Several studies have affirmed the effectiveness of some Bauhinia plants as antihyperglycemic agents. Objective: We investigated the possible effect of Bauhinia vahlii leaves extract in reducing hyperglycemia and reversing signs of organ damage associated with diabetes in streptozotocin (STZ) rat model. Materials and Methods: Both polar fraction of the B. vahlii leaves (defatted ethanolic extract [DEE]) and nonpolar fraction (n-hexane extract) were evaluated in vitro for α-glucosidase inhibition and 2,2-diphenyl-1-picrylhydrazyl radical scavenging potential. DEE was selected for further in vivo studies and was administered at two doses, i.e., 150 or 300 mg/kg to STZ-diabetic rats for 4 weeks. Results: Only DEE exhibited in vitro antioxidant and antihyperglycemic activities and its oral administration at both dose levels resulted in significant reduction in fasting blood glucose and glycated hemoglobin. Furthermore, signs of oxidative stress as indicated by hepatic reduced glutathione, nitric oxide, and malondialdehyde levels were completely reversed. In addition, histopathological examination and measurement of serum aspartate transaminase and alanine transaminase levels showed that DEE protected the liver from signs of liver pathogenesis when compared to diabetic untreated animals and those treated with metformin. Phytochemical analysis of DEE showed high flavonoids content with quercitrin as the major constituent along with other quercetin glycosides. Conclusion: This study strongly highlights the possible beneficial effect of B. vahlii leaves extract in relieving hyperglycemia and liver damage in STZ-diabetic rats and recommends further investigation of the value of quercetin derivatives in controlling diabetes and ameliorating liver damage associated with it. SUMMARY The polar fraction of the Bauhinia vahlii leaves (defatted ethanolic extract [DEE]) exhibited both in vitro antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenging assay and

  10. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine.

    PubMed

    Brahmanaidu, Parim; Uddandrao, V V Sathibabu; Sasikumar, Vadivukkarasi; Naik, Ramavat Ravindar; Pothani, Suresh; Begum, Mustapha Sabana; Rajeshkumar, M Prasanna; Varatharaju, Chandrasekar; Meriga, Balaji; Rameshreddy, P; Kalaivani, A; Saravanan, Ganapathy

    2017-08-01

    Dietary measures and plant-based therapies as prescribed by native systems of medicine have gained attraction among diabetics with claims of efficacy. The present study investigated the effects of S-Allylcysteine (SAC) on body weight gain, glucose, insulin, insulin resistance, and nitric oxide synthase in plasma and argininosuccinate synthase (AS) and argininosuccinate lyase (ASL), lipid peroxides and antioxidant enzymes in aorta of control and streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. Changes in body weight, glucose, insulin, insulin resistance, and antioxidant profiles of aorta and mRNA expressions of nitric oxide synthase, AS, and ASL were observed in experimental rats. SAC (150 mg/kg b.w) showed its therapeutic effects similar to gliclazide in decreasing glucose, insulin resistance, lipid peroxidation, and increasing body weight; insulin, antioxidant enzymes, and mRNA levels of nitric oxide synthase, argininosuccinate synthase, and argininosuccinate lyase genes in STZ-NA rats. Histopathologic studies also revealed the protective nature of SAC on aorta. In conclusion, garlic and its constituents mediate the anti-diabetic potential through mitigating hyperglycemic status, changing insulin resistance by alleviating endothelial dysregulation in both plasma and tissues.

  11. Peripheral nerve metabolism and zinc levels in streptozotocin induced diabetic rats. Effect of diets high in fish and corn oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J.P.; Fenton, M.R.

    1991-03-15

    This study was designed to assess the effects of diets high in fish and corn oil on peripheral nerve metabolism in streptozotocin (STZ) induced diabetic rats. A type I diabetic state was induced in female Sprague-Dawley rats by injection of STZ. Animals were divided into three dietary groups; normal rat chow, high corn oil diet and high fish oil diet. After 4 weeks animals were analyzed for nerve conduction velocity, bled and then sacrificed. Sciatic nerves were removed, processed and several biochemical parameters determined. Plasma zinc levels were elevated in the STZ normal chow group compared to non-diabetic controls. Bothmore » corn oil and fish oil diets tended to eliminate the rise in plasma zinc. Differences in subcellular distribution of zinc in sciatic nerves were also observed. Normal chow STZ animals displayed a 20% decrease in nerve conduction velocity compared to control. Dietary supplementation with either fish or corn oil seemed to ameliorate these effects. Biochemical analysis of Na{sup +}-K{sup +}-ATPase and protein kinase C revealed a decrease in activity in normal chow animals compared to control groups. Again, dietary intervention with either fish or corn oil seemed to return these activities back to normal. The results suggest a link between zinc metabolism and peripheral nerve metabolism which can be modified by dietary intervention.« less

  12. Impaired testicular function in rats with diet-induced hypercholesterolemia and/or streptozotocin-induced diabetes mellitus.

    PubMed

    Tanaka, M; Nakaya, S; Kumai, T; Watanabe, M; Matsumoto, N; Kobayashi, S

    2001-01-01

    Hypercholesterolemia and diabetes mellitus are known to be accompanied by reproductive dysfunction. In this study, we investigated the effects of hypercholesterolemia, hyperglycemia, and these conditions combined, on testosterone (T) and testicular luteinizing hormone/human chorionic gonadotropin (LH/hCG) binding. Sprague-Dawley rats (8 weeks old) were divided into four groups: Group 1 was the control, group 2 was fed standard chow containing 2% cholesterol (C-diet), group 3 was administered streptozotocin (STZ, 65 mg/kg, i.p.), group 4 was treated with both the C-diet and STZ. After 4 weeks, rats were sacrificed. Serum glucose was significantly higher in the STZ group (304% that of controls) and the C-diet plus STZ group (345%), but there was no difference between the C-diet group (89%) and the control group. Serum cholesterol was significantly higher in the C-diet group (206% that of controls), the STZ group (452%) and the C-diet plus STZ group (2042%). Serum T, testicular T, and LH/hCG binding were significantly lower in the C-diet group (49%, 52%, and 81% that of controls, respectively), the STZ group (15%, 32%, and 72%) and the C-diet plus STZ group (8%, 21%, and 57%). These results suggest that hypercholesterolemia is an independent risk factor for testicular dysfunction and that the reduction of serum and testicular T levels is due at least in part to a reduction in testicular LH/hCG binding in rats with hypercholesterolemia, hyperglycemia, and these conditions combined. It is further suggested that the reduction in LH/hCG binding is mainly related to a rise in serum cholesterol levels.

  13. The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats.

    PubMed

    Kou, Ling; Du, Mingzhao; Zhang, Chaopu; Dai, Zhiyin; Li, Xuan; Zhang, Baohai

    2017-07-01

    Zeaxanthin (ZA), an important compound found in Lycium barbarum, shows various pharmacodynamic effects. In our present study, a high-fat, high-sucrose diet and streptozotocin (STZ)-induced diabetic rat model was used to investigate the antidiabetic activities of ZA. After a 4-week administration of 200 and 400 mg/kg of ZA and 100 mg/kg of metformin hydrochloride, various blood biochemical indexes were detected. ZA strongly normalized the reduced bodyweight and enhanced fasting blood glucose in diabetic rats. The positive data obtained from the oral glucose tolerance test further confirmed its antidiabetic effects. ZA displayed significant hypolipidemic activities indicated by its modulation of serum levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. The antidiabetic nephropathy of ZA was confirmed by its regulation of pathological kidney structures, urine levels of n-acetyl-β-d-glucosaminidase and albuminuria, and serum levels of urea nitrogen. ZA inhibited the serum levels of inflammatory factors including interleukin-2 (IL-2), IL-6, tumor necrosis factor-α, and nuclear factor kappa B, further confirming its renal protection. Moreover, the serum imbalances in superoxide dismutase, glutathione peroxidase, methane dicarboxylic aldehyde, and catalase were normalized by ZA, suggesting its antioxidant properties. Altogether, ZA produced hypoglycemic, hypolipidemic, and antidiabetic nephritic effects in a diet-STZ-induced diabetic rat model.

  14. Ameliorating effect of Semecarpus anacardium Linn. nut milk extract on altered glucose metabolism in high fat diet STZ induced type 2 diabetic rats.

    PubMed

    Khan, Haseena Banu Hedayathullah; Vinayagam, Kaladevi Siddhi; Palanivelu, Shanthi; Panchanadham, Sachdanandam

    2012-12-01

    To explore the protective effect of the drug Semecarpus anacardium (S. anacardium)on altered glucose metabolism in diabetic rats. Type 2 diabetes mellitus was induced by feeding rats with high fat diet followed by single intraperitoneal injection of streptozotocin (STZ) (35 mg/kg b.w.). Seven days after STZ induction, diabetic rats received nut milk extract of S. anacardium Linn. nut milk extract orally at a dosage of 200 mg/kg daily for 4 weeks. The effect of nut milk extract of S. anacardium on blood glucose, plasma insulin, glucose metabolising enzymes and GSK were studied. Treatment with SA extract showed a significant reduction in blood glucose levels and increase in plasma insulin levels and also increase in HOMA - β and decrease in HOMA -IR. The drug significantly increased the activity of glycolytic enzymes and glucose-6-phosphate dehydrogenase activity and increased the glycogen content in liver of diabetic rats while reducing the activities of gluconeogenic enzymes. The drug also effectively ameliorated the alterations in GSK-3 mRNA expression. Overall, the present study demonstrates the possible mechanism of glucose regulation of S. anacardium suggestive of its therapeutic potential for the management of diabetes mellitus. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. Evaluation of antihyperglycemic activity of Cocos nucifera Linn. on streptozotocin induced type 2 diabetic rats.

    PubMed

    Naskar, Sagar; Mazumder, Upal K; Pramanik, Goutam; Gupta, Malaya; Kumar, R B Suresh; Bala, Asis; Islam, Aminul

    2011-12-08

    The plant Cocos nucifera Linn. (Arecaceae) is commonly known as coconut. Traditionally the juice of the young spadix when fresh is used in diarrhea and diabetes. The objective of the present study was to investigate the effect of antidiabetic activity and effect on lipid profile as well as cardioprotective effect of hydro-methanol extract of Cocos nucifera (HECN) on streptozotocin (STZ)-induced diabetic rats. After 72 h of STZ (50 mg/kg, b.w. i.p.) administration, animals showing plasma sugar level more than 250 mg/dl were considered as diabetic rat. Fasting blood glucose (FBG) levels were measured on 0th (after 72 h of STZ), 5th, 10th, and 15th day. On the 15th day all the animals were sacrificed and the serum biochemical parameters and antioxidant enzyme status were measured. HECN treated animals showed a significant reduction in FBG level as compared with diabetic control group. Serum enzyme level (SGOT, SGPT, SALP), lipid peroxidation and antioxidant enzyme level such as CAT, GSH, SOD and cholesterol and triglycerides in the HECN treated groups were restored towards normal level as compared to diabetic control groups and the values were comparable with the standard groups (glibenclamide). Improvement in the FBG and the restoration of all other biomarker as well as enzymes indicates that HECN has very good antidiabetic activity with very low side effects and provides a scientific rationale for the use as an antidiabetic agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats.

    PubMed

    Rath, Diptirani; Kar, Durga Madhab; Panigrahi, Sandeep Kumar; Maharana, Laxmidhar

    2016-11-04

    Cuscuta reflexa Roxb. (Convolvulaceae) is traditionally used to treat diabetes mellitus by tribal people of north-east India and Bangladesh. To evaluate the anti-diabetic effects of methanol and aqueous extracts of the aerial parts of Cuscuta reflexa Roxb. in normal, glucose loaded and Streptozotocin (STZ) induced diabetic rats. The methanol (MECR) and aqueous (AECR) extracts (200 and 400mg/kg body weight) were administered orally to normal and diabetic rats with Metformin and solvent control as comparison groups. Long term effects like FBG, OGTT, lipid profile, HbA1c, body weight, histopathology of major organs, etc. were investigated. MECR and AECR did not have hypoglycemic effects in normal rats. Both AECR and MECR (400mg/kg) treatments showed significant reduction in blood glucose during OGTT in diabetic rats at 3h. Single oral administration of methanol and aqueous extracts (400mg/kg) to diabetic rats significantly reduced (p<0.05) blood glucose level to 61.90% and 55.39% respectively as compared to the Metformin group i.e. 68.32% at the end of 8h. MECR (400mg/kg body weight for 30 days to diabetic rats) showed a significant decrease (p<0.01) of blood glucose level to 60.00% as compared to other groups. The treatment also resulted an improvement in body weights, decreased HbA1c and restored lipid profile. Histopathological injury was not observed, rather repair of beta cells was seen in extract treated diabetic rats. Methanolic extract of C. reflexa has significant antidiabetic effects and improves metabolic alterations thereby justifying its traditional folkloric claims. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Protective effect of Psidium guajava leaf extract on altered carbohydrate metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Khan, Haseena Banu Hedayathullah; Shanmugavalli, R; Rajendran, Deepa; Bai, Mookambikai Ramya; Sorimuthu, Subramanian

    2013-12-01

    Psidium guajava is an important plant of high medicinal value and has been used in traditional systems of medicine against various ailments. The antidiabetic effect of the ethanolic extract of Psidium guajava leaves and also its protective effect on altered glucose metabolism was evaluated in streptozotocin (stz)-induced diabetic rat model. Diabetes was induced in rats by means of intraperitoneal injection of 50-mg/kg body weight (b.wt.) of stz. Diabetes-induced rats were randomly divided into two groups. One group of rats was treated with Psidium guajava leaf extract at a dosage of 300-mg/kg b.wt. and the other group of rats was treated with the standard drug glyclazide at a dosage of 5-mg/kg b.wt. for 30 days. The blood glucose levels, plasma insulin, Hb, HbA1c were measured. The effect on the drug on altered glucose metabolizing enzymes were also studied. Treatment with Psidium guajava extract showed a significant reduction in blood glucose and HbA1c levels and a significant increase in plasma insulin levels. The drug also significantly restored the activities of carbohydrate metabolizing enzymes. This suggests that the potential antidiabetic effect of the ethanolic extract of the Psidium guajava leaves may be due to the presence of flavonoids and other phenolic components present in the drug.

  18. Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B1 and B2 receptors

    PubMed Central

    Abdouh, M; Talbot, S; Couture, R; Hasséssian, H M

    2008-01-01

    Background and purpose: We investigated whether or not kinin receptors play a role in diabetic blood–retinal barrier breakdown, which is a leading cause of vision loss. Experimental approach: Blood–retinal barrier breakdown was quantified using Evans blue, and expression of kinin B1 receptor mRNA was measured using quantitative reverse transcrition-PCR. Diabetic rats (streptozotocin (STZ), 65 mg kg−1) received a single intraocular injection of bradykinin (BK) or des-Arg9-BK, alone, or in combination with antagonists for B1 (des-Arg10-Hoe140, R-715) and/or B2 (Hoe140) receptors, given intraocularly or intravenously (i.v.). Key results: In control rats, BK (0.1–10 nmol) dose-dependently increased plasma extravasation, which was inhibited by Hoe140 (0.2 nmol), whereas des-Arg9-BK (0.1 and 1 nmol) was without effect. B1 receptor mRNA was markedly increased in retinas of diabetic rats, and this was prevented by N-acetyl-L-cysteine (1 g kg−1 day−1 for 7 days). Plasma extravasation in retinas of STZ-diabetic rats was higher than in controls and enhanced by des-Arg9-BK. Response to des-Arg9-BK was inhibited by intraocular or i.v. injection of B1 receptor antagonists. Diabetes-induced plasma extravasation was inhibited only by a combination of des-Arg10-Hoe140 and Hoe 140 (100 nmol kg−1, i.v. 15 min earlier) or by R-715 (1 μmol kg−1, i.v.) injected daily for 7 days. Conclusions and implications: Kinin B1 receptors are upregulated in retinas of STZ-diabetic rats through a mechanism involving oxidative stress. Both kinin B1 and B2 receptors contribute to increased plasma extravasation in diabetic retinopathy. Chronic inhibition of both kinin receptors, possibly with antioxidant adjuvants, may be a novel therapeutic strategy for diabetic retinopathy. PMID:18311190

  19. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats

    PubMed Central

    2012-01-01

    Aim of the study This study was made to investigate the antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala, (Buch.-Ham.) Nees & Eberm (Tejpat) oil (CTO) in streptozotocin (STZ) induced diabetes in rats along with evaluation of chemical constituents. Materials and methods The GC-MS (Gas chromatography–mass spectrometry) analysis of the oil showed 31 constituents of which cinnamaldehyde was found the major component (44.898%). CTO and cinnamaldehyde was orally administered to diabetic rats to study its effect in both acute and chronic antihyperglycemic models. The body weight, oral glucose tolerance test and biochemical parameters viz. glucose level, insulin level, liver glycogen content, glycosylated hemoglobin, total plasma cholesterol, triglyceride and antioxidant parameters were estimated for all treated groups and compared against diabetic control group. Results CTO (100 mg/kg and 200 mg/kg), cinnamaldehyde (20 mg/kg) and glibenclamide (0.6 mg/kg) in respective groups of diabetic animals administered for 28 days reduced the blood glucose level in streptozotocin induced diabetic rats. There was significant increase in body weight, liver glycogen content, plasma insulin level and decrease in the blood glucose, glycosylated hemoglobin and total plasma cholesterol in test groups as compared to control group. The results of CTO and cinnamaldehyde were found comparable with standard drug glibenclamide. In vitro antioxidant studies on CTO using various models showed significant antioxidant activity. In vivo antioxidant studies on STZ induced diabetic rats revealed decreased malondialdehyde (MDA) and increased reduced glutathione (GSH). Conclusion Thus the investigation results that CTO has significant antidiabetic, antioxidant and hypolipidemic activity. PMID:22882757

  20. Oral administration of Dictyostelium differentiation-inducing factor 1 lowers blood glucose levels in streptozotocin-induced diabetic rats.

    PubMed

    Kawaharada, Ritsuko; Nakamura, Akio; Takahashi, Katsunori; Kikuchi, Haruhisa; Oshima, Yoshiteru; Kubohara, Yuzuru

    2016-06-15

    Differentiation-inducing factor 1 (DIF-1), originally discovered in the cellular slime mold Dictyostelium discoideum, and its derivatives possess pharmacological activities, such as the promotion of glucose uptake in non-transformed mammalian cells in vitro. Accordingly, DIFs are considered promising lead candidates for novel anti-diabetic drugs. The aim of this study was to assess the anti-diabetic and toxic effects of DIF-1 in mouse 3T3-L1 fibroblast cells in vitro and in diabetic rats in vivo. Main methods We investigated the in vitro effects of DIF-1 and DIF-1(3M), a derivative of DIF-1, on glucose metabolism in 3T3-L1 cells by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We also examined the effects of DIF-1 on blood glucose levels in streptozotocin (STZ)-induced rats. CE-TOF-MS revealed that 20μM DIF-1 and 20μM DIF-1(3M) promoted glucose uptake and metabolism in 3T3-L1 cells. Oral administration of DIF-1 (30mg/kg) significantly lowered basal blood glucose levels in STZ-treated rats and promoted a decrease in blood glucose levels after oral glucose loading (2.5g/kg) in the rats. In addition, daily oral administration of DIF-1 (30mg/kg/day) for 1wk significantly lowered the blood glucose levels in STZ-treated rats but did not affect their body weight and caused only minor alterations in the levels of other blood analytes. These results indicate that DIF-1 may be a good lead compound for the development of anti-diabetic drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats.

    PubMed

    Fatani, Amal Jamil; Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Al-Assaf, Abdullah; Parmar, Mihir Yogeshkumar; Ola, Mohammad Shamsul; Ahmed, Mohammed Mahboobuddin

    2015-05-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  2. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats

    PubMed Central

    FATANI, AMAL JAMIL; AL-REJAIE, SALIM SALIH; ABUOHASHISH, HATEM MUSTAFA; AL-ASSAF, ABDULLAH; PARMAR, MIHIR YOGESHKUMAR; OLA, MOHAMMAD SHAMSUL; AHMED, MOHAMMED MAHBOOBUDDIN

    2015-01-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  3. Effect of L-carnitine on diabetogenic action of streptozotocin in rats.

    PubMed

    Uysal, Nazan; Yalaz, Giray; Acikgoz, Osman; Gonenc, Sevil; Kayatekin, Berkant Muammer

    2005-08-01

    L-carnitine is a naturally compound widely distributed in the body. It has an antiradical effect and decreases lipid peroxidation. In acute or chronic streptozotocin (STZ)-induced diabetic rats, the pancreatic content of carnitine was found to be significantly lower than nondiabetic group. We investigated the effects of L-carnitine on the development of STZ-induced diabetes in rats, to determine if L-carnitine can prevent the onset of diabetes or reduce the severity of hyperglycemia and this prevention/reduction is associated with the reduction in oxidative stress. The rats were divided into 3 groups: Control, STZ-treated (65 mg/kg intraperitoneally) and L-carnitine (500 mg/kg) and STZ-treated. Oxidative stress was assessed by measuring pancreatic thiobarbituric acid reactive substance (TBARS) formation levels using the method of Rehncrona et al, pancreatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities using a Randox test combination (RANSOD and RANDOX). L-carnitine did not prevent the onset of diabetes at this dose. Development of diabetes was associated with an increase in pancreatic TBARS (0.028 +/- 0.008 and 0.046 +/- 0.017 nmol/mg Protein, respectively), and GPx activity (0.067 +/- 0.011 and 0.098 +/- 0.016 U/mg Protein, respectively). L-carnitine prevented this increase induced by diabetes; TBARS (0.039 +/- 0.006 nmol/mg Protein) and GPx activity (0.053 +/- 0.011 U/mg Protein). These results suggest that L-carnitine exerts anti-oxidative effect in experimental diabetes.

  4. Effect of N-benzoyl-D-phenylalanine on streptozotocin-induced changes in the lipid and lipoprotein profile in rats.

    PubMed

    Ashokkumar, N; Pari, L; Manimekalai, A; Selvaraju, K

    2005-03-01

    The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin combination treatment on circulatory lipids, lipoproteins and lipid peroxidation markers were studied in neonatal streptozotocin (nSTZ) non-insulin dependent diabetic rats. Non-insulin dependent diabetes mellitus (NIDDM) was induced by a single dose injection of streptozotocin (100 mg kg(-1), i. p.) to two-day-old rats. After 10-12 weeks, rats weighing above 150 g were selected for screening for the NIDDM model. The rats were checked for fasting blood glucose levels to confirm the status of NIDDM. NBDP (50,100 or 200 mg kg(-1) ) was administered orally for six weeks to the confirmed diabetic rats (to evaluate the effective dose). The levels of serum lipids and lipid peroxidation markers were significantly increased, whilst the activity of glucose-6-phosphate dehydrogenase was significantly decreased in nSTZ diabetic rats. NBDP and metformin were able to restore the altered serum lipids, lipoproteins, lipid peroxidation marker levels and glucose-6-phosphate dehydrogenase activity to almost control levels. The results showed the antihyperlipidaemic properties of NBDP and metformin in addition to its antidiabetic action. Combination treatment was more effective then either drug alone. The results indicated that the coadministration of NBDP with metformin to nSTZ diabetic rats normalized blood glucose and caused marked improvement in altered serum lipids, lipoproteins and lipid peroxidation markers during diabetes. The data indicated that NBDP represented an effective antihyperglycaemic and antihyperlipidaemic adjunct for the treatment of diabetes, and may be a potential source of new orally active agents for future therapy.

  5. Effect of Carnosine on Renal Function, Oxidation and Glycation Products in the Kidneys of High-Fat Diet/Streptozotocin-Induced Diabetic Rats.

    PubMed

    Fatih Aydın, Abdurrahman; Küçükgergin, Canan; Bingül, İlknur; Doğan-Ekici, Işın; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2017-05-01

    High fat diet (HFD) and low dose of streptozotocin (STZ)-treated rats provide an animal model for type 2 Diabetes Mellitus (T2DM). Oxidative stress plays a role in the development of diabetic complications. Carnosine (CAR) has antioxidant and antiglycating properties. We investigated effects of CAR on renal function, oxidation and glycation products in HFD+STZ-rats. Rats were fed with HFD (60% of total calories from fat) for 4 weeks and then a single dose STZ (40 mg/kg; i.p.) was applied. Rats with blood glucose levels above 200 mg/dL were fed with HFD until the end of the 12 th week. CAR (250 mg/kg body weight; i.p.; 5 times a week) was administered to rats for the last 4 weeks. Glycated hemoglobin (HbA1c), glucose, lipids, and andrenal function tests in serum as well as reactive oxygen species, malondialdehyde, protein carbonyl, advanced oxidation protein products, advanced glycation end products (AGEs), antioxidant power, and antioxidant enzyme activities and their mRNA expressions in kidneys were determined. CAR treatment did not alter glucose and HbA1c, but it decreased serum lipids, creatinine, and urea levels in HFD+STZ rats. Oxidation products of lipids and proteins and AGEs levels decreased, but antioxidant enzyme activities and their mRNA expressions remained unchanged due to CAR treatment. Our results indicate that CAR treatment alleviated renal function and decreased accumulation of oxidation and glycation products in kidneys in HFD+STZ-rats. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect.

    PubMed

    Sherif, Iman O

    2014-12-01

    Due to substantial morbidity and high complication rate of diabetes mellitus, which is considered as the third killer in the world, a search for the effective blockade of the progression of diabetic nephropathy (DN) remains a therapeutic challenge. Alternative antidiabetic drugs from natural plants are highly demanded nowadays. The aim of this study was to investigate the renoprotective effect of secoisolariciresinol diglucoside (SDG) on DN induced in rats. Diabetes was induced in male Sprague-Dawley rats by a high-fat diet (HFD) and an intraperitoneal 35 mg/kg streptozotocin (STZ) injection. Rats were divided into four groups: normal control rats, diabetic control rats, diabetic rats treated with SDG at 10 mg/kg/day for 4 weeks, and diabetic rats treated with SDG at 20 mg/kg/day for 4 weeks. At the end of the treatment, blood and renal tissue samples were collected for biochemical examination. The results revealed that SDG treatment significantly increased insulin level and decreased blood glucose, fructosamine, creatinine, and blood urea nitrogen levels in diabetic rats. Also, SDG significantly increased renal reduced glutathione, superoxide dismutase and decreased malondialdehyde and nitric oxide levels. In addition, SDG downregulated the renal nuclear factor kappa-B (NF-κB), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) and upregulated renal survivin and B-cell lymphoma-2 (Bcl-2) expressions when compared with untreated diabetic control rats. This study demonstrated, for the first time, the renoprotective effects of SDG in HFD/STZ-induced DN in rats through correction of hyperglycemia; attenuation of oxidative/nitrosative stress markers; downregulation of renal expressions of inflammatory markers NF-κB, TNF-α, and iNOS; along with upregulation of renal expressions of antiapoptotic markers survivin and Bcl-2.

  7. Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo.

    PubMed

    Christ, George J; Hsieh, Yi; Zhao, Weixin; Schenk, Gregory; Venkateswarlu, Karicheti; Wang, Hong-Zhan; Tar, Moses T; Melman, Arnold

    2006-05-01

    To establish the methods, feasibility and utility of evaluating the impact of diabetes on bladder and erectile function in the same rat, as more than half of diabetic patients have bladder dysfunction, and half of diabetic men have erectile dysfunction, but the severity of coincident disease has not been rigorously assessed. In all, 16 F-344 rats had diabetes induced by streptozotocin (STZ), and were divided into insulin-treated (five) and untreated (11), and compared with age-matched controls (10), all assessed in parallel. All STZ rats were diabetic for 8-11 weeks. Cystometric studies were conducted on all rats, with cavernosometric studies conducted on a subset of rats. There were insulin-reversible increases in the following cystometric variables; bladder weight, bladder capacity, micturition volume, residual volume, micturition pressure and spontaneous activity (P < 0.05, in all, one-way analysis of variance, anova). Cavernosometry showed a diabetes-related, insulin-reversible decline in the cavernosal nerve-stimulated intracavernosal pressure (ICP) response at all levels of current stimulation (P < 0.05, in all one-way anova). Plotting erectile capacity (i.e. ICP) against bladder capacity showed no correlation between the extent of the decline in erectile capacity and the magnitude of the increase in bladder capacity. These studies extend previous work to indicate that the extent of diabetes-related bladder and erectile dysfunction can vary in the same rat. As such, these findings highlight the importance of evaluating the impact of diabetes on multiple organ systems in the lower urinary tract. Future studies using this model system should lead to a better understanding of the initiation, development, progression and coincidence of these common diabetic complications.

  8. Interleukin-6 (IL-6) mediated the increased contraction of distal colon in streptozotocin-induced diabetes in rats via IL-6 receptor pathway

    PubMed Central

    Chang, Xin-Wen; Qin, Ying; Jin, Zhi; Xi, Tao-Fang; Yang, Xiao; Lu, Ze-Hao; Tang, Yu-Ping; Cai, Wen-Ting; Chen, Shao-Jun; Xie, Dong-Ping

    2015-01-01

    Colonic dysmotility occurs in diabetes and blood plasma interleukin (IL)-6 levels are significantly elevated in type 1 diabetes mellitus. The aim of this study was to investigate whether IL-6 and the IL-6 receptor pathway mediates colonic dysfunction in type 1 diabetes mellitus. Male SD rats were treated with a single intraperitoneally injected dose of streptozotocin (STZ), and those displaying sustained high blood glucose were selected as diabetes mellitus models. Longitudinal muscle strips of colon were prepared to monitor colonic contraction in vitro. Contractile responses of strips of colon were recorded following treatment with IL-6 in control animals, and following anti IL-6 antibody treatment in STZ-induced diabetes in rats. Concentration of IL-6 in plasma and colon were determined by ELISA. Expressions of IL-6 α-receptor and IL-6 β-receptor in colon tissues were determined by immunohistochemistry or Western blot analysis. The non-diabetes rats treated with IL-6 and the untreated diabetes rats showed increased contraction of distal colon, whereas the diabetes rats treated with anti-IL-6 antibody showed decreased contraction of distal colon compared with the untreated diabetes rats. The IL-6 levels of plasma but not colon increased in diabetes rats. The expression of IL-6 α-receptor increased in diabetes rats. These results indicate that diabetes rats show an increase in the contractions of distal colon partly via the IL-6-IL-6 receptor pathway. PMID:26191141

  9. Oral Lactobacillus reuteri GMN-32 treatment reduces blood glucose concentrations and promotes cardiac function in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Lin, Chih-Hsueh; Lin, Cheng-Chieh; Shibu, Marthandam Asokan; Liu, Chiu-Shong; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hsieh, Cheng-Hong; Chen, Yi-Hsing; Huang, Chih-Yang

    2014-02-01

    Impaired regulation of blood glucose levels in diabetes mellitus (DM) patients and the associated elevation of blood glucose levels are known to increase the risk of diabetic cardiomyopathy (DC). In the present study, a probiotic bacterium, Lactobacillus reuteri GMN-32, was evaluated for its potential to reduce blood glucose levels and to provide protection against DC risks in streptozotocin (STZ)-induced DM rats. The blood glucose levels of the STZ-induced DM rats when treated with L. reuteri GMN-32 decreased from 4480 to 3620 mg/l (with 10⁷ colony-forming units (cfu)/d) and 3040 mg/l (with 10⁹ cfu/d). Probiotic treatment also reduced the changes in the heart caused by the effects of DM. Furthermore, the Fas/Fas-associated protein with death domain pathway-induced caspase 8-mediated apoptosis that was observed in the cardiomyocytes of the STZ-induced DM rats was also found to be controlled in the probiotic-treated rats. The results highlight that L. reuteri GMN-32 treatment reduces blood glucose levels, inhibits caspase 8-mediated apoptosis and promotes cardiac function in DM rats as observed from their ejection fraction and fractional shortening values. In conclusion, the administration of L. reuteri GMN-32 probiotics can regulate blood glucose levels, protect cardiomyocytes and prevent DC in DM rats.

  10. Decrease of Plasma Glucose by Hibiscus taiwanensis in Type-1-Like Diabetic Rats

    PubMed Central

    Wang, Lin-Yu; Chung, Hsien-Hui

    2013-01-01

    Hibiscus taiwanensis (Malvaceae) is widely used as an alternative herb to treat disorders in Taiwan. In the present study, it is used to screen the effect on diabetic hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats). The extract of Hibiscus taiwanensis showed a significant plasma glucose-lowering action in STZ-diabetic rats. Stems of Hibiscus taiwanensis are more effective than other parts to decrease the plasma glucose in a dose-dependent manner. Oral administration of Hibiscus taiwanensis three times daily for 3 days into STZ-diabetic rats increased the sensitivity to exogenous insulin showing an increase in insulin sensitivity. Moreover, similar repeated administration of Hibiscus taiwanensis for 3 days in STZ-diabetic rats produced a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Taken together, our results suggest that Hibiscus taiwanensis has the ability to lower plasma glucose through an increase in glucose utilization via elevation of skeletal GLUT 4 and decrease of hepatic PEPCK in STZ-diabetic rats. PMID:23690841

  11. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Improvement in Serum Biochemical Alterations and Oxidative Stress of Liver and Pancreas following Use of Royal Jelly in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ghanbari, Elham; Nejati, Vahid; Khazaei, Mozafar

    2016-01-01

    Objective This study aimed to evaluate the effects of royal jelly (RJ) on serum biochemical alterations and oxidative stress status in liver and pancreas of streptozotocin (STZ)- induced diabetic rats. Materials and Methods In this experimental study, thirty two male Wistar rats were divided into the following four groups (n=8/group): i. Control (C), ii. Diabetic (D), iii. Royal jelly (R), and iv. Royal jelly-treated diabetic (D/R) groups. Diabetes was induced by single intraperitoneal (IP) injection of STZ (60 mg/kg). The RJ [100 mg/kg body weight (BW)] was administered orally for 42 days. Blood samples were used to determine serum levels of insulin, high density lipoprotein cholesterol (HDL-c), total protein (TP), albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and fasting blood glucose (FBG). Also, the antioxidant status was evaluated by determining the levels of malondialdehyde (MDA), catalase (CAT) and ferric reducing antioxidant power (FRAP) in liver and pancreas. Data were analyzed by one-way analysis of variance (ANOVA) with P<0.05 as the significant level. Results STZ-induced diabetic rats showed a significant elevation in the serum levels of AST, ALT, ALP and FBG, whereas there was a significant decrease in serum levels of insulin, albumin, HDL-c and TP (P<0.05). Treatment of the diabetic rats with RJ restored the changes of the above parameters to their normal levels (P<0.05). In addition, RJ significantly improved reduced levels of FRAP and CAT as well as high MDA level in liver and pancreas (P<0.05). Conclusion RJ improves oxidative damage induced by STZ in the liver and pancreas of rats; therefore, it can be considered as an effective and alternative treatment for diabetes. PMID:27602318

  13. Improvement in Serum Biochemical Alterations and Oxidative Stress of Liver and Pancreas following Use of Royal Jelly in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Ghanbari, Elham; Nejati, Vahid; Khazaei, Mozafar

    2016-01-01

    This study aimed to evaluate the effects of royal jelly (RJ) on serum biochemical alterations and oxidative stress status in liver and pancreas of streptozotocin (STZ)- induced diabetic rats. In this experimental study, thirty two male Wistar rats were divided into the following four groups (n=8/group): i. Control (C), ii. Diabetic (D), iii. Royal jelly (R), and iv. Royal jelly-treated diabetic (D/R) groups. Diabetes was induced by single intraperitoneal (IP) injection of STZ (60 mg/kg). The RJ [100 mg/kg body weight (BW)] was administered orally for 42 days. Blood samples were used to determine serum levels of insulin, high density lipoprotein cholesterol (HDL-c), total protein (TP), albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and fasting blood glucose (FBG). Also, the antioxidant status was evaluated by determining the levels of malondialdehyde (MDA), catalase (CAT) and ferric reducing antioxidant power (FRAP) in liver and pancreas. Data were analyzed by one-way analysis of variance (ANOVA) with P<0.05 as the significant level. STZ-induced diabetic rats showed a significant elevation in the serum levels of AST, ALT, ALP and FBG, whereas there was a significant decrease in serum levels of insulin, albumin, HDL-c and TP (P<0.05). Treatment of the diabetic rats with RJ restored the changes of the above parameters to their normal levels (P<0.05). In addition, RJ significantly improved reduced levels of FRAP and CAT as well as high MDA level in liver and pancreas (P<0.05). RJ improves oxidative damage induced by STZ in the liver and pancreas of rats; therefore, it can be considered as an effective and alternative treatment for diabetes.

  14. Effects of Gymnema sylvestre extract on the pharmacokinetics and pharmacodynamics of glimepiride in streptozotocin induced diabetic rats.

    PubMed

    Kamble, Bhagyashree; Gupta, Ankur; Moothedath, Ismail; Khatal, Laxman; Janrao, Shirish; Jadhav, Amol; Duraiswamy, B

    2016-02-05

    Gymnema sylvestre, important Indian traditional herbal medicine has been used for diabetes from several years and marketed as single or multi-herb formulations globally. People are consuming G. sylvestre along with conventional hypoglycemic drugs. Therefore, there is need of evidence based assessment of risk versus benefits when G. sylvestre co-administered with conventional oral hypoglycemic drugs. In present investigation, pharmacodynamics and pharmacokinetic interactions with oral hypoglycemic drug, glimepiride (GLM) was studied in streptozotocin (STZ) induced diabetic rats. A specific and rapid HPLC-ESI-MS/MS method was established for simultaneous quantification of GLM and gymnemagenin (GMG) in rat plasma. Pharmacokinetic and pharmacodynamic interaction studies were carried out in STZ induced diabetic rats after concomitant administration of 400 mg/kg of G. sylvestre extract and 0.8 mg/kg of GLM for 28 days. The developed HPLC-ESI-MS/MS method was rapid, specific, and precise. Con-comitant oral administration of G. sylvestre extract (400 mg/kg) and GLM (0.8 mg/kg) in diabetic rats for 28 days showed beneficial pharmacodynamic interactions whereas no major alterations in the pharmacokinetics parameters of GLM and GMG were observed. This interaction demonstrated in animal model implies that significant clinical outcome might occur during concomitant administration of G. sylvestre extract and GLM especially in diabetic patients and warrants further studies in the same set up. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Administration of Lupinus albus gamma conglutin (Cγ) to n5 STZ rats augmented Ins-1 gene expression and pancreatic insulin content.

    PubMed

    Vargas-Guerrero, Belinda; García-López, Pedro M; Martínez-Ayala, Alma L; Domínguez-Rosales, José A; Gurrola-Díaz, Carmen M

    2014-09-01

    Several studies support the health-promoting benefits of lupins, particularly lupin proteins. It has been demonstrated that Lupinus albus gamma conglutin (Cγ) protein lowered blood glucose levels; thus, Cγ showed promise as a new anti-diabetic compound for type 2 diabetes (T2D) treatment. The aim of this study was to evaluate the effect of Cγ on Ins-1 gene expression and on pancreatic insulin content in streptozotocin-mediated diabetic rats. Cγ was isolated from Lupinus albus seeds. Its identification was confirmed with polyacrylamide gel electrophoresis under native and denaturing conditions. We used streptozotocin (STZ) to induce T2D on the 5th day of life of newborn male Wistar rats (n5-STZ). After 20 weeks post-induction, these animals (glycemia > 200 mg/dL) were randomly assigned to three groups that received the following one-week treatments: vehicle, 0.90% w/v NaCl (n5 STZ-Ctrl); glibenclamide, 10 mg/kg (n5 STZ-Glib); or Cγ, 120 mg/kg (n5 STZ-Cγ). Glucose and insulin levels were measured before and after treatment. Ins-1 gene expression was quantified using real time polymerase chain reaction and the pancreatic insulin content was evaluated with immunohistochemistry. Post-treatment, the n5 STZ-Cγ and n5 STZ-Glib groups showed reductions in glucose, increments in serum insulin, and increases in Ins-1 gene expression and beta cell insulin content compared to the n5 STZ-Ctrl group. The results showed that Cγ had beneficial effects on Ins-1 gene expression and pancreatic insulin content. These biological effects of Cγ strengthen its promising potential as a nutraceutical and/or new agent for controlling hyperglycemia.

  16. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    PubMed

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Down-regulation of multiple low dose streptozotocin-induced diabetes by mycophenolate mofetil

    PubMed Central

    MAKSIMOVIC-IVANIC, D; TRAJKOVIC, V; MILJKOVIC, DJ; STOJKOVIC, M MOSTARICA; STOSIC-GRUJICIC, S

    2002-01-01

    The new immunosuppressive agent mycophenolate mofetil (MMF) has been shown recently to exert a protective effects in certain animal models of autoimmunity, including diabetes in diabetes-prone bio-breeding (BB) rats. In the present study, the immunomodulatory potential of MMF was investigated in autoimmune diabetes induced by multiple low doses of streptozotocin (MLD-STZ) in genetically susceptible DA rats 20 mg STZ/kg body weight (b.w.) for 5 days] and CBA/H mice (40 mg STZ/kg b.w. for 5 days). In both species, short time treatment of animals with MMF (25 mg/kg) during the early development of the disease, as well as continuous MMF treatment, prevented the appearance of hyperglycaemia and inflammatory infiltrates in the pancreatic tissue. Moreover, clinical manifestations of diabetes were suppressed by application of the drug after the onset of clinical symptoms. Treatment with guanosine (1 mg/kg) in parallel with MMF completely reversed MMF activity in vivo, indicating that inhibition of inosine monophosphate dehydrogenase (IMPDH) was responsible for the observed suppressive effects. MMF-mediated protection from diabetes correlated with reduced ex vivo spontaneous spleen mononuclear cell (MNC) proliferation and defective adhesive cell interactions. MMF-treated animals also had lower local production of IFN-γ, as well as IL-12 and nitric oxide (NO) production by peripheral tissues (spleen and peritoneal cells), compared to that in control diabetic groups, while IL-10 level was elevated. Together, these data demonstrate that MMF interferes with autoimmune process in streptozotocin-induced diabetes at multiple levels, including lymphocyte proliferation and adhesion, as well as pro/anti-inflammatory cytokine balance. PMID:12165076

  18. Treatment of diabetic rats with encapsulated islets.

    PubMed

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-12-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We encapsulated 1000 rat islets and implanted them subcutaneously (SQ) into diabetic biobreeding (BB) rats and STZ-induced diabetic rats, defined as two or more consecutive days of blood glucose>350 mg/dl. Rats were monitored for weight and blood glucose. Untreated BB rats rapidly lost weight and were euthanized at >20% weight loss that occurred between 4 and 10 days from implantation. For period of 30-40 days following islet implantation weights of treated rats remained steady or increased. Rapid weight loss occurred after surgical removal of devices that contained insulin positive islets. STZ-treated rats that received encapsulated islets showed steady weight gain for up to 130 days, whereas untreated control rats showed steady weight loss that achieved >20% at around 55 days. Although islet implants did not normalize blood glucose, treated rats were apparently healthy and groomed normally. Autologous or allogeneic islets were equally effective in providing treatment. TheraCyte devices can sustain islets, protect allogeneic cells from immune attack and provide treatment for diabetic-mediated weight loss in both BB rats and STZ-induced diabetic rats.

  19. Treatment of diabetic rats with encapsulated islets

    PubMed Central

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-01-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte™ immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We encapsulated 1000 rat islets and implanted them subcutaneously (SQ) into diabetic biobreeding (BB) rats and STZ-induced diabetic rats, defined as two or more consecutive days of blood glucose >350 mg/dl. Rats were monitored for weight and blood glucose. Untreated BB rats rapidly lost weight and were euthanized at >20% weight loss that occurred between 4 and 10 days from implantation. For period of 30–40 days following islet implantation weights of treated rats remained steady or increased. Rapid weight loss occurred after surgical removal of devices that contained insulin positive islets. STZ-treated rats that received encapsulated islets showed steady weight gain for up to 130 days, whereas untreated control rats showed steady weight loss that achieved >20% at around 55 days. Although islet implants did not normalize blood glucose, treated rats were apparently healthy and groomed normally. Autologous or allogeneic islets were equally effective in providing treatment. TheraCyte™ devices can sustain islets, protect allogeneic cells from immune attack and provide treatment for diabetic-mediated weight loss in both BB rats and STZ-induced diabetic rats. PMID:18373735

  20. An evaluation of aversive memory and hippocampal oxidative status in streptozotocin-induced diabetic rats treated with resveratrol.

    PubMed

    Bagatini, Pamela Brambilla; Xavier, Léder Leal; Bertoldi, Karine; Moysés, Felipe; Lovatel, Gisele; Neves, Laura Tartari; Barbosa, Sílvia; Saur, Lisiani; de Senna, Priscylla Nunes; Souto, André Arigony; Siqueira, Ionara Rodrigues; Achaval, Matilde

    2017-01-01

    The present study evaluated the effects of streptozotocin (STZ)-induced diabetes on aversive memory, free radical content and enzymatic antioxidant activity in the hippocampus of adult Wistar rats submitted to oral treatment with resveratrol. Animals were divided into eight groups: non-diabetic rats treated with saline (ND SAL), non-diabetic rats treated with resveratrol at a dose 5mg/kg (ND RSV 5), non-diabetic rats treated with resveratrol at a dose 10mg/kg (ND RSV 10), non-diabetic rats treated with resveratrol at a dose 20mg/kg (ND RSV 20), diabetic rats treated with saline (D SAL), diabetic rats treated with resveratrol at a dose 5mg/kg (D RSV 5), diabetic rats treated with resveratrol at a dose 10mg/kg (D RSV 10) and diabetic rats treated with resveratrol at a dose 20mg/kg (D RSV 20). The animals received oral gavage for 35days. The contextual fear conditioning task was performed to evaluate aversive-based learning and memory. The oxidative status was evaluated in the hippocampus, by measuring the free radical content - using a 2',7'-dichlorofluorescein diacetate probe - and enzymatic antioxidant activities, such as superoxide dismutase and glutathione peroxidase. Our main behavioral results demonstrated that rats from the D RSV 10 and D RSV 20 groups showed an increase in freezing behavior when compared, respectively, to the ND RSV 10 (p<0.01) and ND RSV 20 (p<0.05). Oxidative stress parameters remained unchanged in the hippocampus of all the experimental groups. In contrast to previous experimental findings, our study was unable to detect either cognitive impairments or oxidative stress in the hippocampus of the diabetic rats. We suggest additional long-term investigations be conducted into the temporal pattern of STZ-induced diabetic disruption in memory and hippocampal oxidative status, as well as the effects of resveratrol on these parameters, in a time and dose-dependent manner. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Huperzine A Ameliorates Cognitive Deficits in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Mao, Xiao-Yuan; Cao, Dan-Feng; Li, Xi; Yin, Ji-Ye; Wang, Zhi-Bin; Zhang, Ying; Mao, Chen-Xue; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    The present study was designed to probe the effects of Huperzine A (HupA) on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg) for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT), Acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis. PMID:24857910

  2. Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats

    PubMed Central

    KIM, YOUNG-GIUN; LIM, HYUNG-HO; LEE, SUH-HA; SHIN, MAL-SOON; KIM, CHANG-JU; YANG, HYEON JEONG

    2015-01-01

    Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes. PMID:25891515

  3. The Combined Extract of Zingiber officinale and Zea mays (Purple Color) Improves Neuropathy, Oxidative Stress, and Axon Density in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Thiraphatthanavong, Paphaphat; Muchimapura, Supaporn; Thukhammee, Wipawee; Lertrat, Kamol; Suriharn, Bhalang

    2015-01-01

    Based on the protective effect of the combined extract of purple waxy corn and ginger (PWCG) on oxidative stress related disorders in diabetic condition, we aimed to determine the effect of PWCG on the functional, biochemical, and structural change of the lesion nerve in streptozotocin- (STZ-) diabetic rats. PWCG at doses of 100, 200, and 300 mg·kg−1 BW were orally given to STZ-diabetic rats which were subjected to chronic constriction (CCI) at right sciatic nerve for 21 days. The blood sugar was assessed before and at the end of study whereas the sciatic function index (SFI), paw withdrawal threshold intensity (PWTI), and paw withdrawal latency (PWL) were assessed every 3 days until the end of study. At the end of study, the determination of nerve conduction velocity (NCV), axon density, oxidative stress status, and aldose reductase (AR) activity of the lesion nerve were performed. It was found that PWCG improved SFI, PWTI, PWL, and NCV together with the improved oxidative stress status and the axon density in the lesion nerve. No changes of AR activity or blood sugar level were observed. Therefore, PWCG might improve the functional and structural changes in STZ-diabetic rats plus CCI via the improved oxidative stress status. PMID:25969689

  4. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats.

    PubMed

    Singh, Jyotsna; Kakkar, Poonam

    2013-12-01

    A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Dendrobium officinale Prevents Early Complications in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Hou, Shao-zhen; Liang, Chu-yan; Liu, Hua-zhen; Zhu, Dong-mei; Wu, Ya-yun; Liang, Jian; Zhao, Ya; Guo, Jian-ru; Huang, Song; Lai, Xiao-Ping

    2016-01-01

    Background. Dendrobium officinale (DO) Kimura et Migo is a precious Chinese herb that is considered beneficial for health due to its antioxidant and antidiabetes properties, and so on. In this research, we try to determine the preventive effect of DO on the early complications of STZ-induced diabetic rats. Methods. Type 1 diabetic rats were produced with a single intraperitoneal injection of STZ (50 mg/kg). DO (1 g/kg/day) was then orally administered for 5 weeks. Blood glucose, TC, TG, BUN, CREA, and GSH-PX levels were determined, and electroretinographic activity and hypoalgesia were investigated. Pathological sections of the eyes, hearts, aortas, kidneys, and livers were analyzed. Results. Treatment with DO significantly attenuated the serum levels of TC, TG, BUN, and CREA, markedly increased the amplitudes of ERG a- and b-waves and Ops, and reduced the hypoalgesia and histopathological changes of vital organs induced by hyperglycemia. The protective effect of DO in diabetic rats may be associated with its antioxidant activity, as evidenced by the marked increase in the serum level of glutathione peroxidase. However, DO had no significant effect on blood glucose levels and bodyweight of diabetic rats. Conclusions. DO supplementation is an effective treatment to prevent STZ-induced diabetic complications. PMID:27034693

  6. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  7. Beneficial effect of 17{beta}-estradiol on hyperglycemia and islet {beta}-cell functions in a streptozotocin-induced diabetic rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamabe, Noriko; Kang, Ki Sung; Zhu Baoting, E-mail: BTZhu@kumc.ed

    2010-11-15

    The modulating effect of estrogen on glucose homeostasis remains a controversial issue at present. In this study, we sought to determine the beneficial effect of 17{beta}-estradiol (E{sub 2}) on hyperglycemia and islet {beta}-cell functions in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected i.p. with STZ to induce a relatively mild diabetic condition. The rats were then treated with E{sub 2} orally at 500 {mu}g/kg body weight/day for 15 days to evaluate the modulating effect on hyperglycemia, insulin secretion, and islet {beta}-cell proliferation. E{sub 2} administration for 10 days significantly lowered plasma glucose levels, increased plasma insulin levels, andmore » improved glucose tolerance by attenuating insulin response to oral glucose loading. These beneficial effects of E{sub 2} were accompanied by increases in islet number and volume, rate of islet cell proliferation, and the amount of insulin secreted. The growth-stimulatory effect of E{sub 2} on islet cells was linked to the functions of the estrogen receptor {alpha}. Notably, these protective effects of E{sub 2} on diabetic conditions were basically not observed when the STZ-treated rats had a more severe degree of islet damage and hyperglycemia. Taken together, we conclude that E{sub 2} can promote the regeneration of damaged pancreatic islets by stimulating {beta}-cell proliferation in diabetic rats, and this effect is accompanied by improvements in glucose tolerance and a decrease in plasma glucose levels. These findings suggest that oral administration of E{sub 2} may be beneficial in diabetic patients with an accelerated loss of islet {beta}-cells.« less

  8. Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats.

    PubMed

    Sankaranarayanan, Chandrasekaran; Nishanthi, Ramajayam; Pugalendi, Pachaiappan

    2018-07-01

    Aberrations in the activities of key enzymes of carbohydrate metabolism is well documented in diabetes mellitus. Previous studies have shown that active ingredients in the extracts of Berberis aristata exhibits diverse pharmacological activities in animal models. The present study was undertaken to investigate whether berbamine (BBM), an alkaloid from the roots of Berberis aristata can ameliorate the altered activities of carbohydrate metabolic enzymes in high fat diet (HFD)/streptozotocin (STZ) induced diabetic rats. Supplementation of HFD for 4 weeks followed by intraperitonial administration of single low dose of STZ (40 mg/kg b.w.) to Sprague Dawley rats resulted in significant hyperglycemia with a decline in plasma insulin levels. The rats also exhibited decreased hemoglobin with an increase in glycated hemoglobin levels. The activities of hexokinase, glucose-6-phosphate dehydrogenase were decreased whereas increases in the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase were observed in the hepatic tissues of diabetic control rats. Glycogen content in the hepatic and skeletal muscle tissues were found to be decreased in diabetic rats. Oral administration of BBM for 56 days, dose dependently (50, 100, 200 mg/kg b.w.) improved insulin secretion in diabetic treated rats. Immunohistochemical studies on pancreas revealed a strong immunoreactivity to insulin in BBM treated rats. At the effective dose of 100 mg/kg b.w., BBM restored the altered activities of carbohydrate metabolic enzymes and also improved glycogen content in insulin dependent tissues. From the biochemical and histochemical data obtained in this study we conclude that BBM ameliorated the activities of metabolic enzymes and maintained glucose homeostasis in HFD/STZ induced diabetic rats and it can be used as a potential phytomedicine for the management of diabetes mellitus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects.

    PubMed

    Palleria, Caterina; Leo, Antonio; Andreozzi, Francesco; Citraro, Rita; Iannone, Michelangelo; Spiga, Rosangela; Sesti, Giorgio; Constanti, Andrew; De Sarro, Giovambattista; Arturi, Franco; Russo, Emilio

    2017-03-15

    Diabetes has been identified as a risk factor for cognitive dysfunctions. Glucagone like peptide 1 (GLP-1) receptor agonists have neuroprotective effects in preclinical animal models. We evaluated the effects of GLP-1 receptor agonist, liraglutide (LIR), on cognitive decline associated with diabetes. Furthermore, we studied LIR effects against hippocampal neurodegeneration induced by streptozotocin (STZ), a well-validated animal model of diabetes and neurodegeneration associated with cognitive decline. Diabetes and/or cognitive decline were induced in Wistar rats by intraperitoneal or intracerebroventricular injection of STZ and then rats were treated with LIR (300μg/kg daily subcutaneously) for 6 weeks. Rats underwent behavioral tests: Morris water maze, passive avoidance, forced swimming (FST), open field, elevated plus maze, rotarod tests. Furthermore, LIR effects on hippocampal neurodegeneration and mTOR pathway (AKT, AMPK, ERK and p70S6K) were assessed. LIR improved learning and memory only in STZ-treated animals. Anxiolytic effects were observed in all LIR-treated groups but pro-depressant effects in CTRL rats were observed. At a cellular/molecular level, intracerebroventricular STZ induced hippocampal neurodegeneration accompanied by decreased phosphorylation of AMPK, AKT, ERK and p70S6K. LIR reduced hippocampal neuronal death and prevented the decreased phosphorylation of AKT and p70S6K; AMPK was hyper-phosphorylated in comparison to CTRL group, while LIR had no effects on ERK. LIR reduced animal endurance in the rotarod test and this effect might be also linked to a reduction in locomotor activity during only the last two minutes of the FST. LIR had protective effects on cognitive functions in addition to its effects on blood glucose levels. LIR effects in the brain also comprised anxiolytic and pro-depressant actions (although influenced by reduced endurance). Finally, LIR protected from diabetes-dependent hippocampal neurodegeneration likely through an

  10. Hypoglycemic Effects of Exo-biopolymers Produced by Five Different Medicinal Mushrooms in STZ-induced Diabetic Rats

    PubMed Central

    Yang, Byung-Keun; Kim, Guk-Nam; Jeong, Yong-Tae; Jeong, Hun; Mehta, Pradeep

    2008-01-01

    Hypoglycemic effects of exo-biopolymers (EBP) produced by submerged mycelial cultures of Coriolus versicolor, Cordyceps sinensis, Paecilomyces japonica, Armillariella mellea, and Fomes fomentarius were investigated in streptozotocin (STZ)-induced diabetic rats. The rats from each experimental group were orally administered with EBPs (100 mg/kg BW) daily for 2 weeks. Though the hypoglycemic effect was achieved in all the cases, however, C. versicolor EBP proved as the most potent one. The administration of the C. versicolor EBP substantially reduced (29.9%) the plasma glucose level as compared to the saline administered group (control). It also reduced the plasma total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and, alanine aminotransferase (ALT) levels by 9.22, 23.83, 16.93, and 27.31%, respectively. The sugar and amino acid compositions of this EBP were also analyzed in detail. PMID:23997607

  11. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  12. Experimental Type 2 Diabetes Induces Enzymatic Changes in Isolated Rat Enterocytes

    PubMed Central

    Martínez, Isabel M.; Morales, Inmaculada; García-Pino, Guadalupe; Campillo, José E.

    2003-01-01

    Diabetes in humans and in experimental animals produces changes in the function and structure of the small intestine. The authors determined the activity of intestinal disaccharidases (maltase and sucrase) and of 6-phosphofructo-1-kinase (PFK-1) in enterocytes isolated from the small intestine of male Wistar rats (2.5 to 3 months old) with experimental nonobese type 2 diabetes, induced by streptozotocin (STZ) injection on the day of birth (n0-STZ) or on the 5th day of life (n5-STZ), with different degrees of hyperglycemia and insulinemia (n0-STZ and n5-STZ models). The glycemia (mmol/L) of the diabetic rats (n0-STZ: 8.77 ± 0.47; n5-STZ: 20.83 ± 0.63) was higher (P < .01) than that of the nondiabetic (ND) rats (5.99 ± 0.63); on the contrary, the insulinemia (ng/mL) was significantly lower in both n0-STZ (1.74 ± 0.53; P < .05) and n5-STZ (1.12 ± 0.44; P < .01) diabetic rats than in normal rats (3.77 ± 0.22). The sucrase and maltase activities (U/g protein) in diabetic rats (n0-STZ: 89 ± 9 and 266 ± 12; n5-STZ: 142 ± 23 and 451 ± 57) were significantly higher than those in the ND group (66 ± 5 and 228 ± 22). The PFK-1 activities (mU/mg protein) in the diabetic models (n0-STZ: 14.89 ± 1.51; n5-STZ: 13.35 ± 3.12) were significantly lower (P < .05) than in ND rats (20.54 ± 2.83). The data demonstrated enzymatic alterations in enterocytes isolated fromthe small intestine of n0-STZ rats that are greater (P < .05) than in the more hyperglycemic and hypoinsulinemic n5-STZ animals. The results also show that nonobese type 2–like diabetes in the rat produces modifications that favor an increase in glucose absorption rates. PMID:14630573

  13. Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats.

    PubMed

    Lima, C R; Vasconcelos, C F B; Costa-Silva, J H; Maranhão, C A; Costa, J; Batista, T M; Carneiro, E M; Soares, L A L; Ferreira, F; Wanderley, A G

    2012-05-07

    The leaves of Persea americana Mill. (Lauraceae) have been popularly used in the treatment of diabetes in countries in Latin America and Africa. To investigate the hypoglycaemic properties and to determine the molecular mechanism by which the hydroalcoholic extract of the leaves of Persea americana reduce blood glucose levels in streptozotocin (STZ)-induced diabetes in rats via the enzymatic pathway of protein kinase B (PKB/Akt). The hydroalcoholic extract of the leaves of Persea americana (0.15 and 0.3g/kg/day), vehicle and metformin (0.5g/kg/day) were administered orally to STZ-diabetic rats (n=7/group) for 4 weeks. Changes in body weight, food and water intake, fasting glucose levels and oral glucose tolerance were evaluated. Phosphorylation and the expression of PKB in the liver and soleus muscle were determined by Western blot. The hydroalcoholic extract of the leaves of Persea americana reduced blood glucose levels and improved the metabolic state of the animals. Additionally, PKB activation was observed in the liver and skeletal muscle of treated rats when compared with untreated rats. The results indicate that the hydroalcoholic extract of the leaves of Persea americana has anti-diabetic properties and possibly acts to regulate glucose uptake in liver and muscles by way of PKB/Akt activation, restoring the intracellular energy balance. Copyright © 2012. Published by Elsevier Ireland Ltd.

  14. Evaluation of the Effects of Photobiomodulation on Partial Osteotomy in Streptozotocin-Induced Diabetes in Rats.

    PubMed

    Mostafavinia, Ataroalsadat; Masteri Farahani, Reza; Abdollahifar, Mohammad-Amin; Ghatrehsamani, Mahdi; Ghoreishi, Seyed Kamran; Hajihossainlou, Behnam; Chien, Sufan; Dadras, Sara; Rezaei, Fatemehalsadat; Bayat, Mohammad

    2018-05-31

    We examined the effects of photobiomodulation (PBM) on stereological parameters, and gene expression of Runt-related transcription factor 2 (RUNX2), osteocalcin, and receptor activator of nuclear factor kappa-B ligand (RANKL) in repairing tissue of tibial bone defect in streptozotocin (STZ)-induced type 1 diabetes mellitus (TIDM) in rats during catabolic response of fracture healing. There were conflicting results regarding the efficacy of PBM on bone healing process in healthy and diabetic animals. Forty-eight rats have been distributed into four groups: group 1 (healthy control, no TIDM and no PBM), group 2 (healthy test, no TIDM and PBM), group 3 (diabetic control, TIDM and no PBM), and group 4 (diabetic test, no TIDM and PBM). TIDM was induced in the groups 3 and 4. A partial bone defect in tibia was made in all groups. The bone defects of groups second and fourth were irradiated by a laser (890 nm, 80 Hz, 1.5 J/cm 2 ). Thirty days after the surgery, all bone defects were extracted and were submitted to stereological examination and real-time polymerase chain reaction (RT-PCR). PBM significantly increased volumes of total callus, total bone, bone marrow, trabecular bone, and cortical bone, and the numbers of osteocytes and osteoblasts of callus in TIDM rats compared to those of callus in diabetic control. In addition, TIDM increased RUNX2, and osteocalcin in callus of tibial bone defect compared to healthy group. PBM significantly decreased osteocalcin gene expression in TIDM rats. PBM significantly increased many stereological parameters of bone repair in an STZ-induced TIDM during catabolic response of fracture healing. Further RT-PCR test demonstrated that bone repair was modulated in diabetic rats during catabolic response of fracture healing by significant increase in mRNA expression of RUNX2, and osteocalcin compared to healthy control rats. PBM also decreased osteocalcin mRNA expression in TIDM rats.

  15. Preventive Effect of Garlic (Allium sativum L.) on Serum Biochemical Factors and Histopathology of Pancreas and Liver in Streptozotocin- Induced Diabetic Rats

    PubMed Central

    Masjedi, Fatemeh; Gol, Ali; Dabiri, Shahriar

    2013-01-01

    Antidiabetic action of garlic is established in animal studies. Since all of the pervious studies have focused on the therapeutic role of garlic, this study investigated the preventive effect of garlic juice on biochemical factors and histological features in Streptozotocin (STZ)- induced diabetic rats. Forty male rats were divided into five groups (n = 8): 1-Normal group (N), 2-Normal+Garlic group (N+G) received garlic juice (1 mL/100g BW) for 6 weeks, 3-Diabetic group (D) was injected with STZ (60 mg/kg, IP), 4-Diabetic+Garlic-before group (D+Gb) received garlic juice for 3 weeks before STZ injection and continued for another 3 weeks, 5-Diabetic+Garlic-after group (D+Ga), three days after STZ injection, they received garlic juice for 3 weeks. Serum biochemical factors were measured by the enzymatic methods and H&E stained sections of pancreas and liver were prepared for light microscopy. In diabetic rats, elevated levels of glucose, cholesterol and triglycerides, the increment of the activities of ALT and AST, increased food and water consumption were observed. The abnormal increases were significantly (p < 0.05) decreased in D+Gb groups compared to D group. In D group, scattered degeneration of the hepatocytes with lymphocytic infiltration in the portal areas, decrease of pancreatic islets numbers and diameter, atrophy of pancreatic islets were observed. These abnormal histological signs were dramatically ameliorated in D+Gb group compared to D group. In D+Ga group compared to D+Gb group slighter effects of garlic juice on histopathological and biochemical changes were seen. These results indicate that garlic juice may help in the prevention of the complications of diabetes. PMID:24250639

  16. Guava Leaf Extract Diminishes Hyperglycemia and Oxidative Stress, Prevents β-Cell Death, Inhibits Inflammation, and Regulates NF-kB Signaling Pathway in STZ Induced Diabetic Rats

    PubMed Central

    Jayachandran, Muthukumaran; Vinayagam, Ramachandran

    2018-01-01

    Traditional Chinese medication has been utilized by Chinese medical practitioners to treat the varied symptoms of diabetes mellitus (DM). Notably, guava leaf has been used to treat diabetes in Asia. Our present study has been designed to analyze the action of guava leaf extract (GLE) at the molecular level in treating DM. A low dose of streptozotocin (STZ) was used to induce experimental diabetes in animals. Rats were treated with GLE at different concentrations (100, 200, and 400 mg/kg b.w.). The standard drug glibenclamide (GB) (600 μg/kg b.w.) was used for comparison. The diabetic rats showed a reduced level of insulin, accompanied by exaggerated levels of blood glucose, lipid peroxidation product, and augmented expressions of inflammatory cytokines, and showed reduced levels of antioxidants compared to the control rats. Supplementation with GLE counteracted the consequences of STZ. It suppresses the oxidative stress and inhibits the state of inflammation and the results are almost similar to that of standard drug group (GB group 5). Our present research, therefore, provides useful data concerning guava leaf extract by a thorough assessment in diabetes management. Being a natural product, additional analysis on GLE can shed light on finding effective phytochemicals within the field of diabetes mellitus. PMID:29670899

  17. Antihyperglycemic effect of the traditional Chinese scutellaria-coptis herb couple and its main components in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Sheng-Zi; Deng, Yuan-Xiong; Chen, Bo; Zhang, Xiao-Jie; Shi, Qun-Zhi; Qiu, Xi-Min

    2013-01-30

    Scutellaria-coptis herb couple (SC) is the main herb couple in many traditional Chinese compound formulas used for the treatment of diabetes mellitus, which has been used to treat diabetes mellitus for thousands of years in China. In this study we provide experimental evidence for the clinical use of SC in the treatment of diabetes mellitus. To confirm the anti-diabetic effect of SC extract and its main components, and to explore its mechanism from the effect on intestinal disaccharidases by in vivo and in vitro experiment. SC extract was prepared and the main components (namely berberine and baicalin) contained in the extract were assayed with high performance liquid chromatography (HPLC). And diabetic model rats were induced by intraperitoneal injection of streptozotocin (STZ). After grouped randomly, diabetic rats were administered SC extract, berberine, baicalin, berberine+baicalin, acarbose and vehicle for 33d, respectively. Body weight, food intake, urine volume, urine sugars, fasting plasma glucose and fasting plasma insulin were monitored to evaluate the antidiabetic effects on diabetic rats. Intestinal mucosa homogenate was prepared and the activities of intestinal disaccharidases were assayed. Moreover, oral sucrose tolerance test (OSTT) was performed and the inhibitory effects of SC extract and its main components (berberine and baicalin) on the maltase and sucrase in vitro was evaluated. After the treatment of SC extract and its main components, the body weight and the fasting plasma insulin level were found to be increased while food intake, urine volume, urine sugars and fasting plasma were decreased. OSTT showed that SC extract and its main components could lower the postprandial plasma glucose level of diabetic rats. Furthermore, SC extract and its main components could inhibit the activities of intestinal disaccharidases in diabetic rats, whereas only SC extract and berberine could inhibit the activity of maltase in vitro. According to our present

  18. Treadmill exercise decreases incidence of Alzheimer's disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong

    2015-04-01

    Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer's disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence.

  19. Antidiabetic effects of Artemisia sphaerocephala Krasch. gum, a novel food additive in China, on streptozotocin-induced type 2 diabetic rats.

    PubMed

    Xing, Xiao-Hui; Zhang, Zheng-Mao; Hu, Xin-Zhong; Wu, Rui-Qin; Xu, Chao

    2009-09-25

    Since ancient times, practicians of traditional Chinese medicine have discovered that Artemisia sphaerocephala Krasch. (Asteraceae) seed powder was useful for the treatment of diabetes. Artemisia sphaerocephala Krasch. gum (ASK gum), which is extracted from seed powder of the plant, is a novel food additive favored by the food industry in China. The objective of this study was to determine the antidiabetic function of ASK gum on type 2 diabetes. Type 2 diabetic rat model was induced with high fat diet and low dose of streptozotocin (STZ). The effects of ASK gum on hyperglycemia, hyperlipemia, insulin resistance, and liver fat accumulation in type 2 diabetic rats were evaluated. The results were compared to those of normal rats and diabetic rats treated with metformin. The addition of ASK gum to the rats' food supply significantly lowered fasting blood glucose, glycated serum protein, serum cholesterol, and serum triglyceride in type 2 diabetic rats, and significantly elevated liver glucokinase, liver glycogen, and serum high density protein cholesterol in the diabetic rats. ASK gum significantly reduced insulin resistance and liver fat accumulation of type 2 diabetes. Artemisia sphaerocephala Krasch. gum can alleviate hyperglycemia, hyperlipemia and insulin resistance of type 2 diabetes.

  20. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    PubMed

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Insulin and growth hormone-releasing peptide-6 (GHRP-6) have differential beneficial effects on cell turnover in the pituitary, hypothalamus and cerebellum of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Granado, Miriam; García-Cáceres, Cristina; Tuda, María; Frago, Laura M; Chowen, Julie A; Argente, Jesús

    2011-04-30

    Poorly controlled type1 diabetes is associated with hormonal imbalances and increased cell death in different tissues, including the pituitary, hypothalamus and cerebellum. In the pituitary, lactotrophs are the cell population with the greatest increase in cell death, whereas in the hypothalamus and cerebellum astrocytes are most highly affected. Insulin treatment can delay, but does not prevent, diabetic complications. As ghrelin and growth hormone (GH) secretagogues are reported to prevent apoptosis in different tissues, and to modulate glucose homeostasis, a combined hormonal treatment may be beneficial. Hence, we analyzed the effect of insulin and GH-releasing peptide 6 (GHRP-6) on diabetes-induced apoptosis in the pituitary, hypothalamus and cerebellum of diabetic rats. Adult male Wistar rats were made diabetic by streptozotocin injection (65 mg/kg ip) and divided into four groups from diabetes onset: those receiving a daily sc injection of saline (1 ml/kg/day), GHRP-6 (150 μg/kg/day), insulin (1-8U/day) or insulin plus GHRP-6 for 8 weeks. Control non-diabetic rats received saline (1 ml/kg/day). Diabetes increased cell death in the pituitary, hypothalamus and cerebellum (P<0.05). In the pituitary, insulin treatment prevented diabetes-induced apoptosis (P<0.01), as well as the decline in prolactin and GH mRNA levels (P<0.05). In the hypothalamus, neither insulin nor GHRP-6 decreased diabetes-induced cell death. However, the combined treatment of insulin+GHRP-6 prevented the diabetes induced-decrease in glial fibrillary acidic protein (GFAP) levels (P<0.05). In the cerebellum, although insulin treatment increased GFAP levels (P<0.01), only the combined treatment of insulin+ GHRP-6 decreased diabetes-induced apoptosis (P<0.05). In conclusion, insulin and GHRP-6 exert tissue specific effects in STZ-diabetic rats and act synergistically on some processes. Indeed, insulin treatment does not seem to be effective on preventing some of the diabetes-induced alterations

  2. Morphologic and biomechanical changes of rat oesophagus in experimental diabetes

    PubMed Central

    Zeng, Yan-Jun; Yang, Jian; Zhao, Jing-Bo; Liao, Dong-Hua; Zhang, En-Ping; Gregersen, Hans; Xu, Xiao-Hu; Xu, Hong; Xu, Chuan-Qing

    2004-01-01

    AIM: To study morphologic and biomechanical changes of oesophagus in diabetes rats. METHODS: Diabetes was induced by a single injection of streptozotocin (STZ). The type of diabetes mellitus induced by parenteral STZ administration in rats was insulin-dependent (type I). The samples were excised and studied in vitro using a self-developed biomaterial test machine. RESULTS: The body mass was decreased after 4 d with STZ treatment. The length of esophagus shortened after 4, 7, 14 d. The opening angle increased after 14 d. The shear, longitudinal and circumferential stiffness were obviously raised after 28 d of STZ treatment. CONCLUSION: The changes of passive biomechanical properties reflect intra-structural alteration of tissue to a certain extent. This alteration will lead to some dysfunction of movement. For example, tension of esophageal wall will change due to some obstructive disease. PMID:15300896

  3. Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats.

    PubMed

    Vinayagam, Ramachandran; Jayachandran, Muthukumaran; Chung, Stephen Sum Man; Xu, Baojun

    2018-07-01

    Psidium guajava (PG) is a short shrub or tree cultivated in tropical and subtropical regions around the world. The leaf extract of PG (guava leaf) has been used historically to cure many ailments. However, mechanisms of action of guava leaf in treating diabetes are not fully understood. Effects and underlying mechanisms of guava leaf on gluconeogenesis and glycogenesis in hepatocytes, insulin signaling proteins, liver function markers, and lipid profile in streptozotocin (STZ) injected diabetic Wistar rats were investigated within the current study. PG was given orally at the dose of 100, 200, and 400 mg/kg b.w to diabetic rats for the period of 45 days. The results reveal that oral administration of PG (200 mg/kg b.w) has considerably raised the levels of insulin, glycogen, hexokinase, glucose-6-phosphatase dehydrogenase and significant (p < 0.05) belittled hepatic markers, gluconeogenic enzymes, and OGTT fasting blood glucose levels. OGTT has shown least statistical significance between the group 5 (200 mg/kg b.w) and group 6 and vital difference between group 5 and group 4 (400 mg/kg). PG has attenuated the triglycerides, total cholesterol, phospholipids, free fatty acid, and LDL levels and raised HDL levels. PG considerably (p < 0.05) activated IRS-1, IRS-2, Akt, p-Akt, PI3K, GLUT2, AMPK, p-AMPK, and p-ACC, which are the key effector molecules of the PI3K/Akt pathway in STZ rats. The results of our study specify that treatment with PG ameliorated glucose-metabolism and lipid profile in STZ evoked diabetic rats; the rationale ought to be the activation of PI3K/Akt, phosphorylation of AMPK pathway in liver and therefore has beneficial anti-diabetic activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Advanced glycation end products and antioxidant status in nondiabetic and streptozotocin induced diabetic rats: effects of copper treatment.

    PubMed

    Civelek, S; Gelişgen, R; Andican, G; Seven, A; Küçük, S H; Ozdoğan, M; Burçak, G

    2010-02-01

    The effects of Cu(II) supplementation on glycemic parameters, advanced glycation end products (AGEs), antioxidant status (glutathione; GSH and total antioxidant capacity; TAOC) and lipid peroxidative damage (thiobarbituric acid-reactive substances, TBARS) were investigated in streptozotocin (STZ) induced diabetic rats. The study was carried out on Wistar albino rats grouped as control (n = 10), CuCl(2) treated (n = 9), STZ (n = 10) and STZ,CuCl(2) treated (n = 9). STZ was administered intraperitoneally at a single dose of 65 mg/kg and CuCl(2), 4 mg copper/kg, subcutaneously, every 2 days for 60 days. At the end of this period, glucose(mg/dl), Cu(microg/dl), TBARS(micromol/l), TAOC(mmol/l) were measured in plasma, GSH(mg/gHb) in erythrocytes and glycated hemoglobin (GHb)(%) in blood. Plasma AGE-peptides(%) were measured by HPLC flow system with spectrofluorimetric and spectrophotometric detectors connected on-line. Data were analyzed by the non-parametric Kruskal-Wallis and Mann-Whitney U test. In the STZ group glucose, GHb and AGE-peptide levels were all significantly higher than the control group (P < 0.01, P < 0.05, and P < 0.01, respectively). CuCl(2) treated group had significantly lower glucose but significantly higher GHb, TAOC and TBARS levels than the control group (P < 0.05, P < 0.001, P < 0.05 and P < 0.001, respectively). STZ,CuCl(2) treated group had significantly higher GHb, TAOC and TBARS levels compared with the control group (P < 0.001, P < 0.05 and P < 0.05, respectively); but only TAOC level was significantly higher than the STZ group (P < 0.01). This experimental study provides evidence that copper intake increases total antioxidant capacity in both nondiabetic and diabetic states. However despite the potentiated antioxidant defence, lipid peroxidation and glycation enhancing effects of CuCl(2) are evident under nondiabetic conditions.

  5. Kefir administration reduced progression of renal injury in STZ-diabetic rats by lowering oxidative stress.

    PubMed

    Punaro, Giovana R; Maciel, Fabiane R; Rodrigues, Adelson M; Rogero, Marcelo M; Bogsan, Cristina S B; Oliveira, Marice N; Ihara, Silvia S M; Araujo, Sergio R R; Sanches, Talita R C; Andrade, Lucia C; Higa, Elisa M S

    2014-02-15

    This study aimed at assessing the effects of Kefir, a probiotic fermented milk, on oxidative stress in diabetic animals. The induction of diabetes was achieved in adult male Wistar rats using streptozotocin (STZ). The animals were distributed into four groups as follows: control (CTL); control Kefir (CTLK); diabetic (DM) and diabetic Kefir (DMK). Starting on the 5th day of diabetes, Kefir was administered by daily gavage at a dose of 1.8 mL/day for 8 weeks. Before and after Kefir treatment, the rats were placed in individual metabolic cages to obtain blood and urine samples to evaluate urea, creatinine, proteinuria, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and C-reactive protein (CRP). After sacrificing the animals, the renal cortex was removed for histology, oxidative stress and NOS evaluation. When compared to CTL rats, DM rats showed increased levels of glycemia, plasmatic urea, proteinuria, renal NO, superoxide anion, TBARS, and plasmatic CRP; also demonstrated a reduction in urinary urea, creatinine, and NO. However, DMK rats showed a significant improvement in most of these parameters. Despite the lack of differences observed in the expression of endothelial NO synthase (eNOS), the expression of inducible NO synthase (iNOS) was significantly lower in the DMK group when compared to DM rats, as assessed by Western blot analysis. Moreover, the DMK group presented a significant reduction of glycogen accumulation within the renal tubules when compared to the DM group. These results indicate that Kefir treatment may contribute to better control of glycemia and oxidative stress, which is associated with the amelioration of renal function, suggesting its use as a non-pharmacological adjuvant to delay the progression of diabetic complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats.

    PubMed

    Altan, Mehmet Fatih; Kanter, Mehmet; Donmez, Senayi; Kartal, Murat Emre; Buyukbas, Sadik

    2007-01-01

    Extracts of the seeds of Nigella sativa (NS), an annual herbaceous plant of the Ranunculaceae family, have been used for many years for therapeutic purposes, including their potential anti-diabetic properties. The aim of the present study was to test the hypothesis that combined treatment with NS and human parathyroid hormone (hPTH) is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, biomechanical behaviour and strength in insulin-dependent diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) at a single dose of 50mg/kg. The diabetic rats received NS (2ml/kg/day, i.p.), hPTH (6microg/kg/day, i.p.) or NS and hPTH combined for 4 weeks, starting 8 weeks after STZ injection. The beta-cells of the pancreatic islets of Langerhans were examined by immunohistochemical methods. In addition, bone sections of femora were processed for histomorphometry and biomechanical analysis. In diabetic rats, the beta-cells were essentially negative for insulin-immunoreactivity. NS treatment (alone or in combination with hPTH) significantly increased the area of insulin immunoreactive beta-cells in diabetic rats; however, hPTH treatment alone only led to a slightly increase in the insulin-immunoreactivity. These results suggest that NS might be used in a similar manner to insulin as a safe and effective therapy for diabetes and might be useful in the treatment of diabetic osteopenia.

  7. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Babukumar, Sukumar; Vinothkumar, Veerasamy; Sankaranarayanan, Chandrasekaran; Srinivasan, Subramani

    2017-12-01

    Geraniol, an acyclic monoterpene alcohol is found in medicinal plants, is used traditionally for several medical purposes including diabetes. The present study evaluates the antihyperglycemic potential of geraniol on key enzymes of carbohydrate metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in experimental rats, by a single intraperitoneal (i.p) injection of STZ [40 mg/kg body weight (b.w.)]. Different doses of geraniol (100, 200 and 400 mg/kg b.w.) and glyclazide (5 mg/kg b.w.) were administrated orally to diabetic rats for 45 days. Body weight, food intake, plasma glucose, insulin, blood haemoglobin (Hb), glycosylated haemoglobin (HbA 1c ), hepatic glucose metabolic enzymes and glycogen were examined. The LD 50 value of geraniol is 3600 mg/kg b.w. at oral administration in rats. Administration of geraniol in a dose-dependent manner (100, 200, 400 mg/kg b.w.) and glyclazide (5 mg/kg b.w.) for 45 days significantly improved the levels of insulin, Hb and decreased plasma glucose, HbA 1C in diabetic-treated rats. Geraniol at its effective dose (200 mg/kg b.w.) ameliorated the altered activities of carbohydrate metabolic enzymes near normal effects compared with two other doses (100 and 400 mg/kg b.w.). Geraniol treatment to diabetic rats improved hepatic glycogen content suggesting its anti-hyperglycemic potential. Geraniol supplement was found to preserve the normal histological appearance of hepatic cells and pancreatic β-cells in diabetic rats. The present findings suggest that geraniol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes even though clinical studies used to evaluate this possibility are warranted.

  8. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in Sprague Dawely rats.

    PubMed

    Faheem, Nermeen Mohammed; El Askary, Ahmad

    2017-06-01

    Diabetes mellitus causes impaired memory and cognitive functions. The hippocampus plays a key role in memory and learning. Curcumin attenuates diabetic nephropathy in vivo . Curcumin has shown a neurogenic effect and cognition-enhancing potential in aged rats. The aim of this study is to evaluate the possible protective role of curcumin on the histological and serological changes of the hippocampus in diabetic rats. Forty albino rats were divided into four groups, ten rats each. Group 1 control rats, group 2 rats received curcumin orally (200 mg/kg/day for six weeks), group 3 rats were injected intraperitoneally with streptozotocin (STZ) (100 mg/kg, single dose), group 4 received a single injection of STZ and received curcumin orally for six weeks. Paraffin sections of hippocampus were prepared and stained with hematoxylin and eosin stain, and immnunohistochemical staining for GFAP and caspase-3. Morphometrical and statistical analyses were performed. Glycemic status and parameters of oxidative stress was measured. Examination of hippocampus of diabetic rats showed disorganization of small pyramidal cells in CA1, many cellular losses in the pyramidal cells of CA3, many degenerated granule cells in the dentate gyrus. GFAP positive astrocyte and caspase-3 positive neuron counts were significantly increased. There were significant serum glucose elevation and significant lowered levels of oxidative stress parameters as compared to control rats. Curcumin administration improved the structural and serological alterations of the hippocampus with significant reduction in serum glucose level. Curcumin ameliorates the deterious effect of diabetes on the hippocampus through its antioxidant, antiapoptotic and anti-inflammatory efficacies.

  9. Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats.

    PubMed

    Bathina, Siresha; Srinivas, Nanduri; Das, Undurti N

    2017-04-29

    Neurodegenerative disorders, such as deficits in learning, memory and cognition and Alzheimer's disease are associated with diabetes mellitus. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor and is known to possess anti-obesity, anti-diabetic actions and is believed to have a role in memory and Alzheimer's disease. To investigate whether STZ can reduce BDNF production by rat insulinoma (RIN5F) cells in vitro and decrease BDNF levels in the pancreas, liver and brain in vivo. Streptozotocin (STZ)-induced cytotoxicity to RIN5F cells in vitro and type 2 DM in Wistar rats was employed in the present study. Cell viability, activities of various anti-oxidants and secretion of BDNF by RIN5F cells in vitro were measured using MTT assay, biochemical methods and ELISA respectively. In STZ-induced type 2 DM rats: plasma glucose, interleukin-6 and tumor necrosis factor-α levels and BDNF protein expression in the pancreas, liver and brain tissues were measured. In addition, neuronal count and morphology in the hippocampus and hypothalamus areas was assessed. STZ-induced suppression of RIN5F cell viability was abrogated by BDNF. STZ suppressed BDNF secretion by RIN5F cells in vitro. STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6 and TNF-αlevels and reduced plasma and pancreas, liver and brain tissues (P < 0.001) and increased oxidative stress compared to untreated control. Hypothalamic and hippocampal neuron in STZ-treated animals showed a decrease in the number of neurons and morphological changes suggesting of STZ cytotoxicity. The results of the present study suggest that STZ is not only cytotoxic to pancreatic beta cells but also to hypothalamic and hippocampal neurons by inducing oxidative stress. STZ ability to suppress BDNF production by pancreas, liver and brain tissues suggests that impaired memory, learning, and cognitive dysfunction seen in diabetes mellitus could be due to BDNF deficiency. Copyright © 2017 Elsevier

  10. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats.

    PubMed

    Ahmed, Danish; Kumar, Vikas; Verma, Amita; Gupta, Pushpraj S; Kumar, Hemant; Dhingra, Vishal; Mishra, Vatsala; Sharma, Manju

    2014-07-16

    Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. Albizzia Lebbeck Benth. stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of Albizzia Lebbeck Benth. in streptozotocin induced diabetic rats. The powdered stem bark of Albizzia Lebbeck Benth.. was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of Albizzia Lebbeck Benth. (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated heamoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats. Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a momentous decrease in fasting blood glucose, glycated heamoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p < 0.05) decreased the level of TC, TG, and LDL-c, VLDL-c. While it increases the level of HDL-c to a significant (p < 0.05) level. The treatment also resulted in a marked increase in reduced glutathione, glutathione Peroxidase, catalase and superoxide

  11. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats

    PubMed Central

    2014-01-01

    Background Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. Albizzia Lebbeck Benth. stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of Albizzia Lebbeck Benth. in streptozotocin induced diabetic rats. Methods The powdered stem bark of Albizzia Lebbeck Benth.. was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of Albizzia Lebbeck Benth. (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated heamoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats. Results Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a momentous decrease in fasting blood glucose, glycated heamoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p < 0.05) decreased the level of TC, TG, and LDL-c, VLDL-c. While it increases the level of HDL-c to a significant (p < 0.05) level. The treatment also resulted in a marked increase in reduced glutathione

  12. Chromium picolinate and chromium histidinate protects against renal dysfunction by modulation of NF-κB pathway in high-fat diet fed and Streptozotocin-induced diabetic rats.

    PubMed

    Selcuk, Mustafa Yavuz; Aygen, Bilge; Dogukan, Ayhan; Tuzcu, Zeynep; Akdemir, Fatih; Komorowski, James R; Atalay, Mustafa; Sahin, Kazim

    2012-04-08

    Diabetic nephropathy is one of major complications of diabetes mellitus. Although chromium is an essential element for carbohydrate and lipid metabolism, its effects on diabetic nephropathy are not well understood. The present study was conducted to investigate the effects of chromium picolinate (CrPic) and chromium histidinate (CrHis) on nuclear factor-kappa B (NF-κB) and nuclear factor-E2-related factor-2 (Nrf2) pathway in the rat kidney. Male Wistar rats were divided into six groups. Group I received a standard diet (8% fat) and served as a control; Group II was fed with a standard diet and received CrPic; Group III was fed with a standard diet and received CrHis; Group IV received a high fat diet (HFD, 40% fat) for 2 weeks and then were injected with streptozotocin (STZ) (HFD/STZ); Group V was treated as group IV (HFD/STZ) but supplemented with CrPic for 12 weeks. Group VI was treated as group IV (HFD/STZ) but supplemented with CrHis. The increased NF-κβ p65 in the HFD/STZ group was inhibited by CrPic and CrHis supplementation (P < 0.05). In STZ-treated rats, a significant decrease in levels of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) was found in kidney tissues when compared to control rats (P < 0.05). A significant increase in the levels of IκBα was observed in CrPic- and CrHis-treated rats when compared with STZ-treated rats. Renal Nrf2 levels were significantly decreased in diabetic rats compared with the control rats. There was a higher tendency for increase of kidney Nrf2 level and decrease in kidney NFκBp65 levels and 4- hydroxyl nonenal (4-HNE) protein adducts (P < 0.05) in diabetic rats. Our result show that in kidney tissue CrHis/CrPic increases Nrf2 level, parallelly decreases NF-κB and partially restores IκBα levels in HFD/STZ group, suggesting that CrPic and CrHis may play a role in antioxidant defense system via the Nrf2 pathway by reducing inflammation through NF-κβ p65 inhibition

  13. Effects of the Hydroalcoholic Extract of Zingiber officinale on Arginase I Activity and Expression in the Retina of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Lamuchi-Deli, Nasrin; Aberomand, Mohammad; Babaahmadi-Rezaei, Hossein; Mohammadzadeh, Ghorban

    2017-04-01

    Emerging evidence suggests that an increased arginase activity is involved in vascular dysfunction in experimental animals. Zingiber officinale Roscoe, commonly known as ginger, has been widely used in the traditional medicine for treatment of diabetes. This study aimed at investigating the effects of the hydroalcoholic extract of Z. officinale on arginase I activity and expression in the retina of streptozotocin (STZ)-induced diabetic rats. In this experimental study, 16 male Wistar rats weighing 200 - 250 g were assessed. Diabetes was induced via a single intraperitoneal injection of STZ (60 mg/kg body weight). The rats were randomly allocated into four experimental groups. Untreated healthy and diabetic controls received 1.5 mL/kg distilled water. Treated diabetic rats received 200, and 400 mg/kg of the Z. officinale extract dissolved in distilled water (1.5 mL/kg). Body weight, blood glucose and insulin concentration were measured by standard methods. The arginase I activity and expression were determined by spectrophotometric and western blot analysis, respectively. Our results showed that blood glucose concentration was significantly decreased in diabetic rats treated with the extract compared to untreated diabetic controls (P < 0.01). Treatment with 400 mg/kg of the extract reduced arginase I activity and expression (P < 0.05). A significant elevation in body weight was observed in diabetic rats treated with the extract. Serum insulin was significantly increased in diabetic rats treated with 400 mg/kg of the extract compared to diabetic controls (P < 0.05). Our results suggest that the Z. officinale hydroalcoholic extract may potentially be a promising therapeutic option for treating diabetes-induced vascular disorders, possibly through reducing arginase I activity and expression in the retina.

  14. Characterization of L-type calcium channel activity in atrioventricular nodal myocytes from rats with streptozotocin-induced Diabetes mellitus

    PubMed Central

    Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher

    2015-01-01

    Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM. PMID:26603460

  15. Evaluation of the hypoglycemic and hypolipidemic effects of an ethylacetate fraction of Artocarpus heterophyllus (jak) leaves in streptozotocin-induced diabetic rats

    PubMed Central

    Chackrewarthy, S.; Thabrew, M. I.; Weerasuriya, M. K. B.; Jayasekera, S.

    2010-01-01

    Aqueous extracts of mature leaves of Artocarpus heterophyllus (jak) are used by traditional medical practitioners in Sri Lanka and India for the treatment of diabetes. This study was conducted to investigate the hypoglycemic and hypolipidemic effects of an ethylacetate (EA) fraction of the mature leaves of A. heterophyllus in a streptozotocin (STZ) induced diabetic rat model. In normoglycemic rats, administration of a single dose (20 mg/kg) of the EA fraction resulted in a significant (P < 0.05) reduction in the fasting blood glucose concentration and a significant improvement in glucose tolerance (P < 0.05), compared to the controls. In STZ-induced diabetic rats, chronic administration of the EA fraction of A. heterophyllus leaves daily for 5 weeks resulted in a significant lowering of serum glucose, cholesterol and triglyceride (TG) levels. Compared to control diabetic rats, the extract-treated rats had 39% less serum glucose, 23% lower serum total cholesterol and 40% lower serum TG levels and 11% higher body weight at the end of the fifth week. The percentage reductions in the serum parameters mediated by the test fraction were comparable with those produced by glibenclamide (0.6 mg/kg), the reference drug used in this study. It can be concluded that the EA fraction of A. heterophyllus leaves contains one or more hypoglycemic and hypolipidemic principles which have the potential to be developed further for the treatment of diabetes specifically associated with a hyperlipidemic state. PMID:20931077

  16. Evaluation of the hypoglycemic and hypolipidemic effects of an ethylacetate fraction of Artocarpus heterophyllus (jak) leaves in streptozotocin-induced diabetic rats.

    PubMed

    Chackrewarthy, S; Thabrew, M I; Weerasuriya, M K B; Jayasekera, S

    2010-07-01

    Aqueous extracts of mature leaves of Artocarpus heterophyllus (jak) are used by traditional medical practitioners in Sri Lanka and India for the treatment of diabetes. This study was conducted to investigate the hypoglycemic and hypolipidemic effects of an ethylacetate (EA) fraction of the mature leaves of A. heterophyllus in a streptozotocin (STZ) induced diabetic rat model. In normoglycemic rats, administration of a single dose (20 mg/kg) of the EA fraction resulted in a significant (P < 0.05) reduction in the fasting blood glucose concentration and a significant improvement in glucose tolerance (P < 0.05), compared to the controls. In STZ-induced diabetic rats, chronic administration of the EA fraction of A. heterophyllus leaves daily for 5 weeks resulted in a significant lowering of serum glucose, cholesterol and triglyceride (TG) levels. Compared to control diabetic rats, the extract-treated rats had 39% less serum glucose, 23% lower serum total cholesterol and 40% lower serum TG levels and 11% higher body weight at the end of the fifth week. The percentage reductions in the serum parameters mediated by the test fraction were comparable with those produced by glibenclamide (0.6 mg/kg), the reference drug used in this study. It can be concluded that the EA fraction of A. heterophyllus leaves contains one or more hypoglycemic and hypolipidemic principles which have the potential to be developed further for the treatment of diabetes specifically associated with a hyperlipidemic state.

  17. Hypoglycemic action of vitamin K1 protects against early-onset diabetic nephropathy in streptozotocin-induced rats.

    PubMed

    Sai Varsha, M K N; Raman, Thiagarajan; Manikandan, R; Dhanasekaran, G

    2015-10-01

    Vitamin K is a potent regulator of vascular dynamics and prevents vascular calcification. Vitamin K is increasingly being recognized for its antioxidant and antiinflammatory properties. Recently we demonstrated that vitamin K1 (5 mg/kg) protects against streptozotocin-induced type 1 diabetes and diabetic cataract. The aim of this study was to determine whether the hypoglycemic action of vitamin K1 could inhibit early-onset diabetic nephropathy in a streptozotocin-induced rat kidney. Male Wistar rats were administered with 35 mg/kg STZ and after 3 days were treated with vitamin K1 (5 mg/kg, twice a week) for 3 months. Blood glucose was monitored once a month. At the end of the study, animals were sacrificed and kidney was dissected out and analysed for free radicals, antioxidants, aldose reductase, membrane ATPases, histopathology evaluation and expression of pro- and anti-inflammatory cytokines. Urea, uric acid, creatinine, albumin and insulin levels were also estimated. Treatment of diabetic rats with vitamin K1 resulted in a decrease in blood glucose and prevented microalbuminuria. Vitamin K1 also reduced oxidative stress and protected renal physiology by modulating Ca(2+) and Na(+)/K(+)-ATPases. Vitamin K1 inhibited renal inflammation by reducing nuclear factor-κB and inducible nitric oxide synthase. Interleukin-10 levels were increased in renal tissues, suggesting the ability of vitamin K1 to trigger antiinflammatory state. The hypoglycemic action of vitamin K1 could have an indirect effect by inhibiting early-onset diabetic nephropathy triggered by high blood glucose. Vitamin K1 could be an important nutrient based interventional strategy for early onset diabetic nephropathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. L-arginine transport in retinas from streptozotocin diabetic rats: correlation with the level of IL-1 beta and NO synthase activity.

    PubMed

    Carmo, A; Cunha-Vaz, J G; Carvalho, A P; Lopes, M C

    1999-11-01

    Several evidences suggest that the pro-inflammatory cytokines IL-1 beta and the radical NO are implicated as effectors molecules in the pancreatic beta-cells dysfunction; an event preceding the pathogenesis of diabetes. IL-1 beta induces the expression of the inducible isoform of NO synthase (iNOS), which use L-arginine as substrate to overproduce NO. However, it is not known whether these events may participate in the development of diabetic retinopathy, which is the main cause of blindness. In this work, we found an increased level of IL-1 beta in retinas from streptozotocin-induced (STZ) diabetic rats. We also observed that the activity of the NO synthase (NOS) and the L-arginine uptake are enhanced in retinas from STZ-induced diabetic rats as compared to retinas from control rats. We found that the uptake of L-arginine in retinas from control and diabetic rats occurs through a transporter resembling the Y + system, i.e. it is saturable, not affected over the pH range 6.5 to 7.4, and is independent of the extracellular Na+. Nevertheless, the L-arginine transport in retinas from diabetic rats occurs through a carrier with lower affinity (K(m) = 25 microM) and higher capacity (Vmax = 295 +/- 22.4 pmol L-arginine/mg protein) than in retinas from control rats (K(m) = 5 microM and Vmax = 158 +/- 12.8 pmol L-arginine/mg protein) which is correlated with the increased NOS activity and consequent depletion of the intracellular pool of L-arginine.

  19. Polyphenolic enriched extract of Cassia glauca Lamk, improves streptozotocin-induced type-1 diabetes linked with partial insulin resistance in rats.

    PubMed

    Veerapur, V P; Pratap, V; Thippeswamy, B S; Marietta, P; Bansal, Punit; Kulkarni, P V; Kulkarni, V H

    2017-02-23

    Traditionally Cassia glauca (CG) has been used to treat diabetes. The study was undertaken to evaluate anti-diabetic and antioxidant activity of polyphenolic enriched extract of CG in standardized streptozotocin (STZ)-induced diabetic rats. The effect of ethanol (CGE) and water (CGW) extracts of CG (200 and 400mg/kg) treatment were evaluated in STZ (50mg/kg, iv) induced diabetic rats. On 10 th day, oral glucose tolerance test and degree of insulin resistance was calculated. On 13 th day, insulin tolerance test was performed to know the peripheral utilization of glucose. On 15 th day, blood glucose, lipid profiles and endogenous antioxidant levels were estimated. In addition, the effects on oral glucose/sucrose tolerance test in normal rats. Further, HPLC fingerprinting profile of CGE and simultaneous quantification of biomarkers were carried out. Supplementation with CGE and CGW significantly reduced STZ-induced deleterious effects and improved glucose tolerance, and insulin tolerance. In addition, supplementation also decreased oxidative stress by improving endogenous antioxidant levels. Furthermore, administration significantly improves sucrose tolerance suggesting that extract possess inhibition of α-glucosidase enzyme. Further, HPLC studies revealed that CGE contains three bioactive polyphenolic compounds viz., rutin (0.10±0.01mg/g), luteolin-7-glucoside (0.06±0.01mg/g) and isorhoifolin (0.7±0.05mg/g). Observed beneficial outcome of CG might be attributed to the presence of polyphenolic compounds and mediated by interacting with multiple targets of diabetes and oxidative stress. Taken together, this study provided the scientific evidence for the traditional use of CG. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Protective potential of Averrhoa bilimbi fruits in ameliorating the hepatic key enzymes in streptozotocin-induced diabetic rats.

    PubMed

    Kurup, Surya B; S, Mini

    2017-01-01

    Diabetes is a mutifactorial disease which leads to several complications. Currently available drug regimens for management of diabetes have certain drawbacks. Need for safer and effective medicines from natural sources having potent antidiabetic activity. Averrhoa bilimbi Linn. (Oxalidaceae) is a medicinal plant and is reported to possess hypoglycemic activity. To investigate the antidiabetic potential of Averrhoa bilimbi fruit extract in streptozotocin-induced diabetic rats. Diabetes was induced in male Sprague Dawley rats by single intraperitoneal injection of streptozotocin (STZ) (40mg/kg body weight). The diabetic rats were treated orally with ethyl acetate fraction of A. bilimbi fruits (ABE) (25mg/kg body weight) and metformin (100mg/kg body weight) by intragastric intubation for 60days. After 60days, the rats were sacrificed; blood, liver and pancreas were collected. Several indices such as blood glucose, plasma insulin, toxicity markers and the activities of carbohydrate-metabolizing enzymes were assayed. The phytochemicals present in the ABE was identified by gas chromatography-mass spectrometry analysis. ABE significantly (p<0.05) reduced the level of blood glucose and hepatic toxicity markers and increased plasma insulin in diabetic rats. ABE modulated the activities of carbohydrate-metabolizing enzymes, significantly increased the activities of hexokinase (59%) and pyruvate kinase (68%) and reduced the activities of glucose-6-phosphatase (32%) and fructose-1, 6-bisphosphatase (20%). The histological studies of the pancreas also supported our findings. The results were compared with metformin, a standard oral hypoglycemic drug. GC-MS analysis of ABE revealed the presence of 11 chemical constituents in the extract. ABE exerts its antidiabetic effect by promoting glucose metabolism via glycolysis and inhibiting hepatic endogenous glucose production via gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats.

    PubMed

    Valcheva-Kuzmanova, S; Kuzmanov, K; Tancheva, S; Belcheva, A

    2007-03-01

    Aronia melanocarpa fruit juice (AMFJ) is rich in phenolic antioxidants, especially flavonoids from the anthocyanin subclass. The aim of the present study was to investigate the influence of AMFJ on plasma glucose and lipids in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg). AMFJ was applied by gavage at doses of 10 and 20 ml/kg for 6 weeks to normal and diabetic rats. Streptozotocin caused a significant elevation of plasma glucose by 141% and of plasma triglycerides (TG) by 64% in comparison with normal control rats and induced statistically insignificant elevations of total cholesterol and LDL-cholesterol and a reduction of HDL-cholesterol. Applied to normal rats, AMFJ did not influence plasma glucose and lipid levels. Applied to diabetic rats, AMFJ (10 and 20 ml/kg) significantly reduced plasma glucose by 44% and 42% and TG by 35% and 39%, respectively, to levels that did not significantly differ from those of the normal control rats and counteracted the influence of streptozotocin on total cholesterol, LDL-cholesterol and HDL-cholesterol. In conclusion, AMFJ significantly decreased the streptozotocin-induced abnormalities in blood glucose and TG in diabetic rats and might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. Copyright 2007 Prous Science.

  2. Hypoxis hemerocallidea Significantly Reduced Hyperglycaemia and Hyperglycaemic-Induced Oxidative Stress in the Liver and Kidney Tissues of Streptozotocin-Induced Diabetic Male Wistar Rats

    PubMed Central

    Oguntibeju, Oluwafemi O.; Meyer, Samantha; Aboua, Yapo G.; Goboza, Mediline

    2016-01-01

    Background. Hypoxis hemerocallidea is a native plant that grows in the Southern African regions and is well known for its beneficial medicinal effects in the treatment of diabetes, cancer, and high blood pressure. Aim. This study evaluated the effects of Hypoxis hemerocallidea on oxidative stress biomarkers, hepatic injury, and other selected biomarkers in the liver and kidneys of healthy nondiabetic and streptozotocin- (STZ-) induced diabetic male Wistar rats. Materials and Methods. Rats were injected intraperitoneally with 50 mg/kg of STZ to induce diabetes. The plant extract-Hypoxis hemerocallidea (200 mg/kg or 800 mg/kg) aqueous solution was administered (daily) orally for 6 weeks. Antioxidant activities were analysed using a Multiskan Spectrum plate reader while other serum biomarkers were measured using the RANDOX chemistry analyser. Results. Both dosages (200 mg/kg and 800 mg/kg) of Hypoxis hemerocallidea significantly reduced the blood glucose levels in STZ-induced diabetic groups. Activities of liver enzymes were increased in the diabetic control and in the diabetic group treated with 800 mg/kg, whereas the 200 mg/kg dosage ameliorated hepatic injury. In the hepatic tissue, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), catalase, and total glutathione were reduced in the diabetic control group. However treatment with both doses improved the antioxidant status. The FRAP and the catalase activities in the kidney were elevated in the STZ-induced diabetic group treated with 800 mg/kg of the extract possibly due to compensatory responses. Conclusion. Hypoxis hemerocallidea demonstrated antihyperglycemic and antioxidant effects especially in the liver tissue. PMID:27403200

  3. Effect of dipyrone and thalidomide alone and in combination on STZ-induced diabetic neuropathic pain.

    PubMed

    Chauhan, Neha; Taliyan, Rajeev; Sharma, Pyare Lal

    2012-05-01

    Diabetic neuropathy is recognized as one of the most common complications of chronic diabetes, but its pathophysiological mechanism is complex and yet to be completely explored. Monotherapy with conventional analgesics fails to provide adequate pain relief in peripheral diabetic neuropathy. There are a number of evidence suggesting that tumor necrosis factor (TNF-α) plays an important role in the pathogenesis of peripheral diabetic neuropathy. TNF-α up-regulation activates nuclear factor κB, which further up-regulates cyclooxygenase (COX)-2 leading to altered prostaglandin profile. Inhibition of TNF-α and COX-2 provides beneficial effect on diabetic neuropathy by decreasing the oxidative stress level and by preventing neuronal hypersensitivity due to an increased prostaglandin level. The present study was designed to assess the effect of dipyrone and thalidomide on streptozotocin (STZ)-induced neuropathic pain behavior in rats. STZ 50 mg/kg, i.p. was administered to induce experimental diabetes in the rats. Three weeks following STZ, dipyrone (300 and 600 mg/kg, i.p.) and thalidomide (25 and 50 mg/kg, i.p.) alone and subeffective dose combination of dipyrone and thalidomide (300 and 25 mg/kg(-1), i.p.) administered daily for 2 weeks significantly attenuated thermal hyperalgesia, mechanical allodynia, and formalin-induced phase-2 flinching response. Moreover, the subeffective dose combination of dipyrone and thalidomide and preemptive treatment with thalidomide (50 mg/kg) reduces oxidative stress in diabetic rats. In conclusion, the combination of subeffective dose of dipyrone and thalidomide prevented the development and maintenance of experimental diabetic neuropathy. The combination of thalidomide (TNF-α inhibitor) and dipyrone (COX inhibitor) may be used as a potential therapeutic agent for the treatment of diabetic neuropathy.

  4. Effect of Bauhinia holophylla treatment in Streptozotocin-induced diabetic rats.

    PubMed

    Pinheiro, Marcelo S; Rodrigues, Luhara S; S, Leila; Moraes-Souza, Rafaianne Q; Soares, Thaigra S; Américo, Madileine F; Campos, Kleber E; Damasceno, Débora C; Volpato, Gustavo T

    2017-01-01

    Bauhinia holophylla, commonly known as "cow's hoof", is widely used in Brazilian folk medicine for the diabetes treatment. Therefore, the aim of this study was at evaluating the aqueous extract effect of Bauhinia holophylla leaves treatment on the streptozotocin-induced diabetic rats. Diabetes was induced by Streptozotocin (40 mg/Kg) in female Wistar rats. Oral administration of aqueous extract of Bauhinia holophylla leaves was given to non-diabetic and diabetic rats at a dose of 400 mg/kg during 21 days. On day 17 of treatment, the Oral Glucose Tolerance Test was performed to determine the area under the curve. At the end of the treatment, the animals were anesthetized and blood was collected for serum biochemical parameters analysis. After treatment with Bauhinia holophylla extract, non-diabetic and diabetic rats presented no glycemic changes. On the other hand, the plant treatment decreased body weight and increased ALT and AST activities. In conclusion, the treatment with aqueous extract of B. holophylla leaves given to diabetic rats presented no hypoglycemic effect in nondiabetic animals and no antidiabetic effect in diabetic animals with the doses studied. In addition, the diabetic animals treated with the B. holophylla extract showed inconvenient effects and its indiscriminate consumption requires particular carefulness.

  5. Effect of the Polyphenol Rich Ethyl Acetate Fraction from the Leaves of Lycium chinenseMill. on Oxidative Stress, Dyslipidemia, and Diabetes Mellitus in Streptozotocin-Nicotinamide Induced Diabetic Rats.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2017-10-01

    Lycium chinenseMill., popularly known as boxthorn, is a plant that is traditionally used for treating night sweat, cough, inflammation and diabetes mellitus. However, the leaves have received little or no attention despite their potentials as a potent therapeutic agent. This study was aimed at investigating the hypoglycemic and hypolipidemic effects of the polyphenols-rich ethyl acetate fraction from the leaves of Lycium chinenseMill. on streptozotocin-nicotinamide induced diabetic rats. The ethyl acetate fraction (LFE) was selected and orally gavaged at 100, 200, and 400 mg/kg dose to streptozotocin (STZ)-nicotinamide induced diabetic rats. The rats' body weight, fasting blood glucose (FBG), lipid profile and oxidative stress markers were evaluated after the treatment period. Treatment with LFE resulted in a significant decrease in the FBG level, altered lipid profiles, and reduced the activities of the enzymes alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT) in the treated diabetic rats. Furthermore, LFE significantly elevated the antioxidant status (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities) and reducing malondialdehyde (MDA) levels in the treated rats. The present study has revealed that L. chinenseMill. possess anti-hyperglycemic and anti-hyperlipidemic properties which is mediated through modulation of oxidative stress and polyphenolics might be responsible for the action. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of the Hydroalcoholic Extract of Zingiber officinale on Arginase I Activity and Expression in the Retina of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Lamuchi-Deli, Nasrin; Aberomand, Mohammad; Babaahmadi-Rezaei, Hossein; Mohammadzadeh, Ghorban

    2017-01-01

    Background Emerging evidence suggests that an increased arginase activity is involved in vascular dysfunction in experimental animals. Zingiber officinale Roscoe, commonly known as ginger, has been widely used in the traditional medicine for treatment of diabetes. Objectives This study aimed at investigating the effects of the hydroalcoholic extract of Z. officinale on arginase I activity and expression in the retina of streptozotocin (STZ)-induced diabetic rats. Methods In this experimental study, 16 male Wistar rats weighing 200 – 250 g were assessed. Diabetes was induced via a single intraperitoneal injection of STZ (60 mg/kg body weight). The rats were randomly allocated into four experimental groups. Untreated healthy and diabetic controls received 1.5 mL/kg distilled water. Treated diabetic rats received 200, and 400 mg/kg of the Z. officinale extract dissolved in distilled water (1.5 mL/kg). Body weight, blood glucose and insulin concentration were measured by standard methods. The arginase I activity and expression were determined by spectrophotometric and western blot analysis, respectively. Results Our results showed that blood glucose concentration was significantly decreased in diabetic rats treated with the extract compared to untreated diabetic controls (P < 0.01). Treatment with 400 mg/kg of the extract reduced arginase I activity and expression (P < 0.05). A significant elevation in body weight was observed in diabetic rats treated with the extract. Serum insulin was significantly increased in diabetic rats treated with 400 mg/kg of the extract compared to diabetic controls (P < 0.05). Conclusions Our results suggest that the Z. officinale hydroalcoholic extract may potentially be a promising therapeutic option for treating diabetes-induced vascular disorders, possibly through reducing arginase I activity and expression in the retina. PMID:28835766

  8. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  9. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  10. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats

    PubMed Central

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Sheikh Abdul Kadir, Siti Hamimah; Vasudevan, Sushil; Tripathy, Minaketan; Iezhitsa, Igor; Mohammad Daher, Aqil; Ibrahim, Mohd Ikraam; Mohd Ismail, Nafeeza

    2017-01-01

    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase

  11. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats.

    PubMed

    Abdul Nasir, Nurul Alimah; Agarwal, Renu; Sheikh Abdul Kadir, Siti Hamimah; Vasudevan, Sushil; Tripathy, Minaketan; Iezhitsa, Igor; Mohammad Daher, Aqil; Ibrahim, Mohd Ikraam; Mohd Ismail, Nafeeza

    2017-01-01

    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase

  12. Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein.

    PubMed

    Ebaid, Hossam; Ahmed, Osama M; Mahmoud, Ayman M; Ahmed, Rasha R

    2013-07-25

    Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of β-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-α, IL-1β and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats.

  13. Anti-atherogenic effect of chromium picolinate in streptozotocin-induced experimental diabetes.

    PubMed

    Sundaram, Bhuvaneshwari; Singhal, Kirti; Sandhir, Rajat

    2013-03-01

    Several studies have implicated changes in the levels of trace elements in diabetes. Chromium is one such element that seems to potentiate insulin action, thereby regulating carbohydrate and lipid metabolism. The aim of the present study was to evaluate the effect of chromium supplementation as chromium picolinate on the lipid profile of streptozotocin (STZ)-induced diabetic rats. Rats were rendered diabetic by a single injection of STZ (50 mg/kg, i.p.). Chromium picolinate (1 mg/kg per day, p.o.) was administered to rats for a period of 4 weeks. At the end of the treatment period, plasma total lipids, triglycerides, total cholesterol and lipoprotein levels were determined, as was hepatic glucose-6-phosphate dehydrogenase activity. Total plasma lipids increased significantly in diabetic rats and this increase was ameliorated by chromium treatment for 4 weeks. Elevated total lipids in diabetic rats were due to increased plasma triglyceride and cholesterol levels. Chromium supplementation lowered plasma triglyceride and cholesterol levels to near normal. Chromium treatment also normalized low-density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein-cholesterol levels and improved the total cholesterol:high-density lipoprotein-cholesterol (HDL-C) and HDL-C:LDL-C ratios, suggesting an anti-atherogenic effect. In addition to improving the plasma lipid profile, chromium supplementation normalized liver glucose-6-phosphate dehydrogenase activity in diabetic rats. These results provide evidence that chromium picolinate effectively attenuates the dyslipidemia associated with diabetes and thus can be used as an adjuvant therapy in the treatment of diabetes and its associated complications. © 2012 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  14. Effect of Mucuna pruriens (Linn.) on sexual behavior and sperm parameters in streptozotocin-induced diabetic male rat.

    PubMed

    Suresh, Sekar; Prakash, Seppan

    2012-12-01

    Sexual dysfunction is one of the major secondary complications in the diabetic. Mucuna pruriens, a leguminous plant identified for its antidiabetic, aphrodisiac, and improving fertility properties, has been the choice of Indian traditional medicine. Objective of the present study was to analyze the efficacy of M. pruriens on male sexual behavior and sperm parameters in long-term hyperglycemic male rats. Male albino rats were divided as group I control, group II diabetes induced (streptozotocin [STZ] 60 mg/kg of body weight (b.w.) in 0.1 M citrate buffer), group III diabetic rats administered with 200 mg/kg b.w. of ethanolic extract of M. pruriens seed, group IV diabetic rats administered with 5 mg/kg b.w. of sildenafil citrate (SC), group V administered with 200 mg/kg b.w. of extract, and group VI administered with 5 mg/kg b.w. of SC. M. pruriens and SC were administered in single oral dosage per day for a period of 60 days. The animals were subjected to mating behavior analyses, libido, test of potency, and epididymal sperms were analyzed. The mating behavior, libido, test of potency, along with epididymal sperms were studied. The study showed significant reduction in sexual behavior and sperm parameters in group II. Daily sperm production (DSP) and levels of follicular stimulating hormone, luteinizing hormone, and testosterone were significantly reduced in group II, whereas the animals with diabetes administered with seed extract of M. pruriens (group III) showed significant improvement in sexual behavior, libido and potency, sperm parameters, DSP, and hormonal levels when compared to group II. The present work reveals the potential efficacy of ethanolic seed extract of M. pruriens to improve male sexual behavior with androgenic and antidiabetic effects in the STZ-induced diabetic male rats. This study supports the usage of M. pruriens in the Indian system of medicine as sexual invigorator in diabetic condition and encourages performing similar study in men.

  15. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells.

    PubMed

    Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao

    2016-04-12

    Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents

  16. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats.

    PubMed

    Ahmed, Osama M; Hassan, Mohamed A; Abdel-Twab, Sanaa M; Abdel Azeem, Manal N

    2017-10-01

    The therapy of Type 2 Diabetes Mellitus (T2DM) stays a challenging issue. During the last decade, there has been an interest in the expansion of anti-diabetic drugs especially those of natural sources. Thus, the aim of this study was to assess the anti-hyperglycemic and the anti-hyperlipidemic effects as well as the anti-oxidant activities of navel orange hydroethanolic extract and its constituting flavonoids naringin and naringenin on nicotineamide (NA)/streptozotocin (STZ)-induced type 2 diabetic rats. To induce T2DM, 16h-fasted rats were intraperitoneally injected with STZ at dose of 50mg/kg body weight (b. w.), 15min after the intraperitoneal administration of NA (120mg/kg b. w.). The NA/STZ-induced type 2 diabetic rats were orally treated with navel orange peel hydroethanolic extract, naringin and narengenin at dose level of 100mg/kg b. w./day for 4 weeks. The treatments with navel orange peel hydroethanolic extract, naringin and narengenin potentially alleviated the lowered serum insulin and C-peptide levels, the depleted liver glycogen content, the elevated liver glucose-6-phosphatase and glycogen phosphorylase activities, the deteriorated serum lipid profile, and the suppressed liver antioxidant defense system of NA/STZ-induced type 2 diabetic rats. The treatments also enhanced the mRNA expression of insulin receptor β-subunit, GLUT4 and adiponectin in adipose tissue of STZ/NA-induced type 2 diabetic rats. In conclusion, the navel orange peel hydroethanolic extract, naringin and naringenin have potent anti-diabetic effects in NA/STZ-induced type 2 diabetic rats via their insulinotropic effects and insulin improving action which in turn may be mediated through enhancing insulin receptor, GLUT4 and adiponectin expression in adipose tissue. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation.

    PubMed

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-08-05

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.

  18. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation

    PubMed Central

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-01-01

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing. PMID:28413186

  19. Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats.

    PubMed

    Tabatabaei, Seyed Reza Fatemi; Ghaderi, Shahab; Bahrami-Tapehebur, Mohammad; Farbood, Yaghoob; Rashno, Masome

    2017-12-01

    Oxidative stress has a major role in progression of diabetes-related behavioral deficits. It has been suggested that Aloe vera has anti-diabetic, antioxidative, and neuroprotective effects. The present study was designed to determine the effects of Aloe vera gel on behavioral functions, oxidative status, and neuronal viability in the hippocampus of streptozotocin (STZ)-induced diabetic rats. Fifty five adult male Wistar rats were randomly divided into five groups, including: control (normal saline 8ml/kg/day; P.O.), diabetic (normal saline 8ml/kg/day; P.O.), Aloe vera gel (100mg/kg/day; P.O.), diabetic+Aloe vera gel (100mg/kg/day; P.O.) and diabetic+NPH insulin (10 IU/kg/day; S.C.). All treatments were started immediately following confirmation of diabetes in diabetic groups and were continued for eight weeks. Behavioral functions were evaluated by employing standard behavioral paradigms. Additionally, oxidative status and neuronal viability were assessed in the hippocampus. The results of behavioral tests showed that diabetes enhanced anxiety/depression-like behaviors, reduced exploratory and locomotor activities, decreased memory performance, and increased stress related behaviors. These changes in diabetic rats were accompanied by increasing oxidative stress and neuronal loss in the hippocampus. Interestingly, eight weeks of treatment with Aloe vera gel not only alleviated all the mentioned deficits related to diabetes, but in some aspects, it was even more effective than insulin. In conclusion, the results suggest that both interrelated hypoglycemic and antioxidative properties of Aloe vera gel are possible mechanisms that improve behavioral deficits and protect hippocampal neurons in diabetic animals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    PubMed

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  1. Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats.

    PubMed

    Aziz, Muhammad Shakir Abdul; Giribabu, Nelli; Rao, Pasupuleti Visweswara; Salleh, Naguib

    2017-05-01

    Stingless bee honey (SLBH) has been claimed to possess multiple health benefits. Its anti-diabetic properties are however unknown. In this study, ability of SLBH from Geniotrigona thoracica stingless bee species in ameliorating pancreatic damage and in maintaining metabolic profiles were investigated in diabetic condition. SLBH at 1 and 2g/kg/b.w. was given orally to streptozotocin (STZ)-nicotinamide-induced male diabetic rats for 28days. Metabolic parameters (fasting blood glucose-FBG and lipid profiles-LP and serum insulin) were measured by biochemical assays. Distribution and expression level of insulin, oxidative stress marker i.e. catalase, inflammatory markers i.e. IKK-β, TNF-α, IL-1β and apoptosis marker i.e. caspase-9 in the pancreatic islets were identified and quantified respectively by immunohistochemistry. Levels of NF-κβ in pancreas were determined by enzyme-linked immunoassay (ELISA). SLBH administration to diabetic male rats prevented increase in FBG, total cholesterols (TC), triglyceride (TG) and low density lipoprotein (LDL) levels. However, high density lipoprotein (HDL) and serum insulin levels in diabetic rats receiving SLBH increased. Additionally, histopathological changes and expression level of oxidative stress, inflammation and apoptosis markers in pancreatic islets of diabetic rats decreased with increased expression level of insulin in the islets. LC-MS analysis revealed the presence of several compounds in SLBH that might be responsible for these effects. SLBH has great potential to be used as agent to protect the pancreas against damage and dysfunction where these could account for its anti-diabetic properties. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    PubMed

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  3. Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan

    2006-01-01

    We have investigated Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India, for its possible antihyperlipidemic effect in rats with streptozotocin-induced experimental diabetes. Oral administration of an aqueous extract of S. dulcis plant (200 mg/kg of body weight) to streptozotocin diabetic rats for 6 weeks resulted in a significant reduction in blood glucose, serum and tissue cholesterol, triglycerides, free fatty acids, phospholipids, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and very low-density lipoprotein and low-density lipoprotein cholesterol levels. The decreased serum high-density lipoprotein cholesterol, anti-atherogenic index, and HMG-CoA reductase activity in diabetic rats were also reversed towards normalization after the treatment. Similarly, the administration of S. dulcis plant extract (SPEt) to normal animals resulted in a hypolipidemic effect. The effect was compared with glibenclamide (600 microg/kg of body weight). The results showed that SPEt had antihyperlipidemic action in normal and experimental diabetic rats in addition to its antidiabetic effect.

  4. Decrease of hyperglycemia by syringaldehyde in diabetic rats.

    PubMed

    Kuo, S C; Chung, H H; Huang, C H; Cheng, J T

    2014-01-01

    Syringaldehyde is one of the active principles from the stems of Hibiscus taiwanensis (Malvaceae) that has been mentioned to lower hyperglycemia. However, the potential mechanisms for this action of syringaldehyde remain obscure. In the present study, we used streptozotocin to induce diabetic rats (STZ-diabetic rats) as type 1-like diabetic rats and fed fructose-rich chow to rats as type 2-like diabetic rats. Then, we performed the postprandial glucose test and applied the hyperinsulinemic euglycemic clamp to investigate the actions of syringaldehyde. Also, the changes of gene expressions of enzyme relating to glucose homeostasis in muscle and liver were characterized. Syringaldehyde significantly decreased the postprandial plasma glucose in rats, while the plasma insulin was not modified by syringaldehyde. The glucose infusion rate (GIR) in fructose chow-fed rats using hyperinsulinemic euglycemic clamp was markedly improved by syringaldehyde. Additionally, repeated administration of syringaldehyde for 3 days in STZ-diabetic rats resulted in a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Our results suggest that syringaldehyde may increase glucose utilization to lower hyperglycemia in diabetic rats. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Cavernous antioxidant effect of green tea, epigallocatechin-3-gallate with/without sildenafil citrate intake in aged diabetic rats.

    PubMed

    Mostafa, T; Sabry, D; Abdelaal, A M; Mostafa, I; Taymour, M

    2013-08-01

    This study aimed to assess the cavernous antioxidant effect of green tea (GT), epigallocatechin-3-gallate (EGCG) with/without sildenafil citrate intake in aged diabetic rats. One hundred and four aged male white albino rat were divided into controls that received ordinary chow, streptozotocin (STZ)-induced aged diabetic rats, STZ-induced diabetic rats on infused green tea, induced diabetic rats on epigallocatechin-3-gallate and STZ-induced diabetic rats on sildenafil citrate added to EGCG. After 8 weeks, dissected cavernous tissues were assessed for gene expression of eNOS, cavernous malondialdehyde (MDA), glutathione peroxidase (GPx), cyclic guanosine monophosphate (cGMP), and serum testosterone (T). STZ-induced diabetic rats on GT demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats. Diabetic rats on EGCG demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats or diabetic rats on GT. Diabetic rats on EGCG added to sildenafil showed significant increase in cavernous eNOS, cGMP and significant decrease in cavernous MDA compared with other groups. Serum T demonstrated nonsignificant difference between the investigated groups. It is concluded that GT and EGCG have significant cavernous antioxidant effects that are increased if sildenafil is added. © 2012 Blackwell Verlag GmbH.

  6. Stress-strain analysis of contractility in the ileum in response to flow and ramp distension in streptozotocin-induced diabetic rats--association with advanced glycation end product formation.

    PubMed

    Zhao, Jingbo; Chen, Pengmin; Gregersen, Hans

    2015-04-13

    This study compared the ileal contractility and analyzed the association between contractility with advanced glycation end product (AGE) formation in normal and streptozotocin (STZ)-induced diabetic rats. Nine STZ-induced diabetic rats (Diabetes group) and 9 normal rats (Normal group) were used. The motility experiments were carried out on ileums in organ baths containing physiological Krebs solution. Ileal pressure and diameter changes were obtained from basic, flow-induced and ramp distension-induced contractions. The frequency and amplitude of contractions were analyzed from pressure-diameter curves. Distension-induced contraction thresholds and maximum contraction amplitude of basic and flow-induced contractions were calculated in terms of stress and strain. AGE and its receptor (RAGE) in the layers were detected by immunohistochemistry staining. The maximum stress of flow-induced contractions was lowest in the Diabetes Group (P<0.05). During ramp distension, the pressure and stress thresholds and Young's modulus to induce phasic contraction were lowest in the Diabetes Group (P<0.05 and P<0.01). AGE and RAGE expressions in the different ileum layers were highest in the Diabetes group. The contraction pressure and stress thresholds were significantly associated with AGE expression in the muscle layer and RAGE expression in mucosa epithelium and neurons. The diabetic intestine was hypersensitive to distension for contraction induction. However, the contraction force produced by smooth muscle was lowest in diabetic rats. Increased AGE/RAGE expression was associated with the contractility changes in diabetic rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein

    PubMed Central

    2013-01-01

    Background Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. Results The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of β-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-α, IL-1β and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. Conclusions WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats. PMID:23883360

  8. Effect of Daisaikoto on Expressions of SIRT1 and NF-kappaB of Diabetic Fatty Liver Rats Induced by High-Fat Diet and Streptozotocin

    PubMed Central

    Qian, Weibin; Cai, Xinrui; Zhang, Xinying; Wang, Yingying; Qian, Qiuhai; Hasegawa, Junichi

    2016-01-01

    Background Daisaikoto (DSKT), a classical traditional Chinese herbal formula, has been used for treating digestive diseases for 1800 years in China. Therefore, in this study, we are going to investigate the effect of DSKT on diabetic fatty liver rats induced by a high-fat diet and streptozotocin (STZ), and the effects of DSKT on silent mating type information regulation 2 homolog 1 (SIRT1) and nuclear factor kappa B (NF-kappaB). Methods Diabetic fatty liver rat model was selected to establish a high-fat diet and STZ. Sixty Wistar rats were divided into six groups (n = 10): control group, high-fat diet + STZ group, simvastatin treatment group, DSKT low dose, medial dose and high dose treatment groups. After 8 weeks of drug intervention, body and liver weights, blood chemistry, blood glucose and insulin were examined. The expressions of sirtuin 1 and NF-kappaB in the liver were observed by RT-PCR and immunohistochemistry, respectively. Results A high-fat diet increased body, liver weights, and serum cholesterol concentrations. Intraperitoneal injection of STZ increased blood glucose and decreased body weights. DSKT improved them. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) indices were increased in the high-fat diet groups. DSKT improved them too. In histological examinations of the liver, we observed a significant improvement after treatment. Immunostaining expression of NF-kappaB in the liver was improved by DSKT and simvastatin. The mRNA expressions of SIRT1 in the liver were increased by DSKT and simvastatin. Conclusion We have demonstrated that DSKT is capable of reversing dyslipidemia and insulin resistance induced by a high-fat diet and STZ. High dose DSKT reveals a stronger effect than simvastatin on the expressions of SIRT1 and NF-kappaB. Furthermore, DSKT has shown a strong dose-depended protective effect on diabetic fatty liver. PMID:27493486

  9. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats.

    PubMed

    Liang, Bin; Guo, Zhengdong; Xie, Fang; Zhao, Ainong

    2013-10-03

    Hericium erinaceus, as a commonly used medicine or food, has attracted much attention due to its health effects when used as a home remedy for some diseases. The aim of this work was to investigate the hypoglycemic and hypolipidemic effects of aqueous extract of Hericium erinaceus (AEHE) in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats by the administration of STZ (55 mg/kg BW.) intraperitoneally. AEHE (100 and 200 mg/kg BW.) was administered for a period of 28 days. The effects of AEHE on glucose, insulin, and lipid files in blood, and oxidative stress parameters in the liver were evaluated. The body weights of rats were recorded at day 0, 14 and 28th days. The administration of AEHE for 28 days in STZ diabetic rats resulted in a significant decrease in serum glucose level and a significant rise in serum insulin level. AEHE treatment attenuated lipid disorders. In addition, AEHE administration increased the activities of CAT, SOD, and GSH-Px, and GSH level, and reduced MDA level in the liver tissue significantly. Our results suggest that AEHE possesses hypoglycemic, hypolipidemic, and antioxidant properties in STZ-induced diabetes rats.

  10. Anti-depressant effect of hesperidin in diabetic rats.

    PubMed

    El-Marasy, Salma A; Abdallah, Heba M I; El-Shenawy, Siham M; El-Khatib, Aiman S; El-Shabrawy, Osama A; Kenawy, Sanaa A

    2014-11-01

    This study aimed to investigate the anti-depressant effect of hesperidin (Hsp) in streptozotocin (STZ)-induced diabetic rats. Additionally, the effect of Hsp on hyperglycaemia, oxidative stress, inflammation, brain-derived neurotrophic factor (BDNF), and brain monoamines in diabetic rats was also assessed. The Wistar rats in the experimental groups were rendered hyperglycaemic with a single dose of STZ (52.5 mg·(kg body mass)(-1), by intraperitoneal injection). The normal group received the vehicle only. Hyperglycaemic rats were treated with Hsp (25.0, 50.0, or 100.0 mg·(kg body mass)(-1)·day(-1), per oral) and fluoxetine (Flu) (5.0 mg·(kg body mass)(-1)·day(-1), per oral) 48 h after the STZ injection, for 21 consecutive days. The normal and STZ control groups received the vehicle (distilled water). Behavioral and biochemical parameters were then assessed. When Hsp was administered to the STZ-treated rats, this reversed the STZ-induced increase in immobility duration in the forced swimming test (FST) and attenuated hyperglycaemia, decreased malondialdehyde (MDA), increased reduced glutathione (GSH) decreased interleukin-6 (IL-6), and increased BDNF levels in the brain. Treatment with Hsp attenuated STZ-induced neurochemical alterations, as indicated by increased levels of monoamines in the brain, namely, norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine; 5-HT). All of these effects of Hsp were similar to those observed with the established anti-depressant Flu. This study shows that Hsp exerted anti-depressant effect in diabetic rats, which may have been partly mediated by its amelioration of hyperglycaemia as well as its anti-oxidant and anti-inflammatory activities, the enhancement of neurogenesis, and changes in the levels of monoamines in the brain.

  11. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings weremore » normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.« less

  12. Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes.

    PubMed

    Tsai, Pei-Hsuan; Liu, Jun-Jen; Yeh, Chui-Li; Chiu, Wan-Chun; Yeh, Sung-Ling

    2012-04-01

    There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25% of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.

  13. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  14. Transplantation of Bone Marrow–Derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats

    PubMed Central

    Shibata, Taiga; Naruse, Keiko; Kamiya, Hideki; Kozakae, Mika; Kondo, Masaki; Yasuda, Yutaka; Nakamura, Nobuhisa; Ota, Kimiko; Tosaki, Takahiro; Matsuki, Takashi; Nakashima, Eitaro; Hamada, Yoji; Oiso, Yutaka; Nakamura, Jiro

    2008-01-01

    OBJECTIVE—Mesenchymal stem cells (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neurosupportive effects. This study was conducted to investigate the effects of MSC transplantation on diabetic polyneuropathy (DPN) in rats. RESEARCH DESIGN AND METHODS—MSCs were isolated from bone marrow of adult rats and transplanted into hind limb skeletal muscles of rats with an 8-week duration of streptozotocin (STZ)-induced diabetes or age-matched normal rats by unilateral intramuscular injection. Four weeks after transplantation, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) productions in transplanted sites, current perception threshold, nerve conduction velocity (NCV), sciatic nerve blood flow (SNBF), capillary number–to–muscle fiber ratio in soleus muscles, and sural nerve morphometry were evaluated. RESULTS—VEGF and bFGF mRNA expression were significantly increased in MSC-injected thigh muscles of STZ-induced diabetic rats. Furthermore, colocalization of MSCs with VEGF and bFGF in the transplanted sites was confirmed. STZ-induced diabetic rats showed hypoalgesia, delayed NCV, decreased SNBF, and decreased capillary number–to–muscle fiber ratio in soleus muscles, which were all ameliorated by MSC transplantation. Sural nerve morphometry showed decreased axonal circularity in STZ-induced diabetic rats, which was normalized by MSC transplantation. CONCLUSIONS—These results suggest that MSC transplantation could have therapeutic effects on DPN through paracrine actions of growth factors secreted by MSCs. PMID:18728233

  15. Cardioprotection by 6-gingerol in diabetic rats.

    PubMed

    El-Bassossy, Hany M; Elberry, Ahmed A; Ghareib, Salah A; Azhar, Ahmad; Banjar, Zainy Mohammed; Watson, Malcolm L

    2016-09-02

    The current study was conducted to evaluate the effect of 6-gingerol (6G) on cardiac complications in streptozotocin (STZ)-induced diabetic (DM) rats. STZ-induced DM rats (single 50 mg/kg i.p. injection, 15 days prior to drug treatment) or time-matched controls were treated with 6G (75 mg/day route orally). After a further 8 weeks, blood was collected for biochemical analysis and 8-isoprostenol was measured in urine. Cardiac hemodynamics and ECG was assessed. 6G significantly attenuated the increased level of blood glucose in diabetic rats and improved cardiac hemodynamics in including RR interval, max dP/dt, min dP/dt and Tau. In addition, 6G alleviated the elevated ST segment, T amplitude and R amplitude with no significant effect on disturbed levels of adiponectin, TGF-β or 8-isoprostenol induced by diabetes. The results showed that treatment with 6G has an ameliorative effect on cardiac dysfunction induced by diabetes. Which may be not related to its potential antioxidant effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Tracing Fasting Glucose Fluxes with Unstressed Catheter Approach in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Wu, Hui; Xu, Xiao; Meng, Ying; Xia, Fangzhen; Zhai, Hualing; Lu, Yingli

    2014-01-01

    Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1) was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo. PMID:24772449

  17. Protection against the diabetogenic effect of feeding tert-butylhydroquinone to rats prior to the administration of streptozotocin.

    PubMed

    Nishizono, S; Hayami, T; Ikeda, I; Imaizumi, K

    2000-06-01

    We determined whether an oral administration of the synthetic antioxidant, tert-butylhydroquinone (TBHQ), or the naturally occurring lipoxygenase inhibitor, curcumin, to rats would provide protection against the diabetogenic effect of streptozotocin (STZ). Male Sprague-Dawley rats were fed on an AIN-76-based purified diet containing 0.0028% TBHQ or on the purified diet with a daily intragastric administration of curcumin (200 mg/kg of body weight) for one week while receiving intravenously administered STZ. The rats fed on the TBHQ-containing diet were resistant to diabetes development when compared with the rats fed on the TBHQ-free diet and had a higher body weight gain and lower serum glucose concentration. Glucose-stimulated insulin secretion from the pancreatic islet in the rats that had received TBHQ was higher than that in the control rats. The rats receiving curcumin showed no beneficial effect on these diabetic symptoms. These findings provide direct evidence for the suggestion that dietary supplementation of an antioxidant may exert a preventive effect on the diabetogenic action of free-radical producers.

  18. Characterization of the Effects of the Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), on Severe Gestational Diabetes Mellitus in Rats.

    PubMed

    Maschio, Bianca Hessel; Gentil, Bianca Carvalho; Caetano, Erika Leão Ajala; Rodrigues, Lucas Silva; Laurino, Leticia Favara; Spim, Sara Rosicler Vieira; Jozala, Angela Faustino; Dos Santos, Carolina Alves; Grotto, Denise; Gerenutti, Marli

    2017-01-01

    This study evaluated the protective effect of Lentinus edodes in rats with streptozotocin-induced gestational diabetes mellitus (STZ-GDM) when administered orally. The rats received from the 1st to the 19th day of gestation daily doses of 100 or 200 mg/kg of lyophilized and reconstituted L. edodes; the animals in the saline control group and diabetic control group received a saline solution (DS). Gestational diabetes mellitus was induced by streptozotocin (80 mg/kg, administered intraperitoneally) on the fourth day of pregnancy; blood glucose > 180 mg/dL was considered to indicate STZ-GDM. L. edodes reduced catalase in plasma. We also observed reduced glucose in plasma, urea, triglycerides, and aspartate aminotransferase. There was a decrease in preimplantation loss when compared with the DS group. The doses of L. edodes used here had a protective effect on the preimplantation parameters in STZGDM. However, the mushroom was not able to reverse the deleterious effects caused by streptozotocin throughout the evolution of pregnancy.

  19. Effect of cocoyam (Colocasia esculenta), unripe plantain (Musa paradisiaca) or their combination on glycated hemoglobin, lipogenic enzymes, and lipid metabolism of streptozotocin-induced diabetic rats.

    PubMed

    Eleazu, Chinedum Ogbonnaya; Eleazu, Kate Chinedum; Iroaganachi, Mercy Amarachi

    2016-01-01

    The possibility of combining unripe plantain [Musa paradisiacae Linn (Plantaginaceae)] and cocoyam [Colocassia esculenta Linn (Araceae)] in the management of diabetes has not been investigated. The objective of this study is to evaluate the antihyperglycemic and antihyperlipidemic actions of unripe plantain and cocoyam. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (65 mg/kg body weight). Twelve days after STZ induction, respective groups of diabetic rats were fed cocoyam (810 g/kg), unripe plantain (810 g/kg), and unripe plantain + cocoyam (405:405 g/kg) for 28 d. Body weights, feed intake, biochemical parameters, namely serum glucose, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), atherogenic index, coronary risk index, triacylglycerol, glycated hemoglobin (HbA1C), hepatic isocitrate dehydrogenase, malic enzyme, and glucose-6-phosphate dehydrogenase of the rats and phytochemical composition of the test and standard rat feeds were measured. Cocoyam or unripe plantain alone significantly (p < 0.05) ameliorated the body weights (18.89 and 19.95% decreases, respectively) and biochemical parameters as compared with those of STZ controls (31.21% decrease). While combination of cocoyam and unripe plantain significantly (p < 0.05) ameliorated the biochemical parameters of the rats (except HbA1C), it did not ameliorate their body weights (28.53% decrease). The feed intake of the experimental rats did not differ from each other (p > 0.05) at the end of experimentation and the feed samples contained considerable amounts of saponins, alkaloids, flavonoids, and tannins. Cocoyam or unripe plantain alone showed better antihyperglycemic and anihyperlipidemic action than their combination.

  20. Branched-chain amino acids attenuate early kidney injury in diabetic rats.

    PubMed

    Mi, Na; Zhang, Xiu Juan; Ding, Yan; Li, Guo Hua; Wang, Wei Dong; Xian, Hui Xia; Xu, Jin

    2015-10-16

    Diabetic nephropathy (DN) is the most severe diabetic microvascular complication. The pathogenesis of diabetic nephropathy is complex, and oxidative stress plays an important role in the development of diabetic nephropathy. Elevated reactive oxygen species (ROS) levels activate various signaling pathways and influence the activities of transforming growth factor-β (TGF-β) and matrix metalloproteinase-9 (MMP-9), which contributes to glomerular hypertrophy. Branched-chain amino acids (BCAAs) are widely used in clinical treatment, and BCAAs can reduce the oxidative stress associated with the diabetic pancreas and some liver diseases. Thus, the aim of the present study was to determine whether BCAAs could attenuate oxidative stress in the kidneys of streptozotocin (STZ)-induced diabetic rats to prevent early diabetic kidney injury. Male Wistar rats were fed for two weeks with a normal chow diet or a high-fat diet in which 40% of calories were derived from fat. After this two-week period, the mice fed normal chow were injected with vehicle, while the high-fat diet group was injected intraperitoneally (i.p.) with 40 mg/kg STZ. The STZ-treated group was randomly divided into four subgroups that were treated with different doses of BCAAs or vehicle for two months by oral gavage. Plasma glucose, plasma creatinine, urinary protein and JNK, TGF-β, and MMP-9 mRNA and protein expression levels were measured in the rats. The ROS levels and proteinuria in the STZ-induced diabetic rats were significantly higher than those in the control groups. Moreover, early kidney injury occurred in the STZ-induced diabetic rats. However, BCAAs treatment decreased ROS levels, proteinuria and kidney injury. Moreover, JNK, TGF-β and MMP-9 mRNA and protein levels were significantly increased in the diabetic rats when compared with the control rats, and BCAAs treatment reversed these changes. Our results suggest that BCAAs counter oxidative stress in the kidneys of diabetic rats and alleviate

  1. Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats

    PubMed Central

    2014-01-01

    Background Rhodiola rosea (Rhodiola) is a plant in the Crassulaceae family that grows in cold regions of the world. It is mainly used in clinics as an adaptogen. Recently, it has been mentioned that Rhodiola increases plasma β-endorphin to lower blood pressure. Thus, the present study aims to investigate the antidiabetic action of Rhodiola in relation to opioids in streptozotocin-induced diabetic rats (STZ-diabetic rats). Methods In the present study, the plasma glucose was analyzed with glucose oxidase method, and the determination of plasma β-endorphin was carried out using a commercially available enzyme-linked immunosorbent assay. The adrenalectomy of STZ-diabetic rats was used to evaluate the role of β-endorphin. In addition, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting analysis were performed to investigate mRNA and protein expressions. Results Rhodiola-water extract dose-dependently lowered the plasma glucose in STZ-diabetic rats and this action was reversed by blockade of opioid μ-receptors using cyprodime. An increase of plasma β-endorphin by rhodiola-water extract was also observed in same manner. The plasma glucose lowering action of rhodiola-water extract was attenuated in bilateral adrenalectomized rats. In addition, continuous administration of rhodiola-water extract for 3 days in STZ-diabetic rats resulted in an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle and a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. These effects were also reversed by blockade of opioid μ-receptors. Conclusions Taken together, rhodiola-water extract improves hyperglycemia via an increase of β-endorphin secretion from adrenal gland to activate opioid μ-receptors in STZ-diabetic rats. PMID:24417880

  2. Protective role of Urtica dioica L. (Urticaceae) extract on hepatocytes morphometric changes in STZ diabetic Wistar rats.

    PubMed

    Golalipour, Mohammad Jafar; Ghafari, Soraya; Afshar, Mohammad

    2010-09-01

    The present investigation was carried out to evaluate the protective effect of the hydroalcoholic extract of Urtica dioica leaves on the quantitative morphometric changes in the liver of streptozotocin-induced diabetic rats. Thirty male Wistar rats were divided into control (G1), diabetic (G2), diabetic + Urtica dioica (G3) groups. The control group received only sham injections of intraperitoneal saline; the diabetic group received intraperitoneal saline for 5 days followed by streptozotocin (80 mg/kg) on the 6th day; and the diabetic + Urtica dioica group received 100 mg/kg Urtica dioica intraperitoneal (7) injections for 5 days and streptozotocin injection on the 6th day. After five weeks, the animals were sacrificed and whole livers removed. Liver specimens were used for quantitative morphometric analysis after hematoxylin and eosin staining. All data were statistically analyzed by one-way ANOVA and expressed as the mean with standard error of means. In the G3 (diabetic + Urtica diocia) group, the mean surface area of hepatocytes in the periportal zone (Z1) was greater than in G2 (diabetic) and G1 (control) groups, but this difference was not significant. No alteration was observed in the surface area of hepatocytes in the perivenous zone (Z3) in the diabetic + Urtica dioica (G3) group compared to the diabetic (G2) group. The mean nuclear area of hepatocytes of the rats in the diabetic + Urtica dioica (G3) group was higher in Z1 and lower in Z3 than that of rats in the diabetic (G2) group. The mean diameter of hepatocyte nuclei in the diabetic + Urtica dioica (G3) group was lower than that of diabetic (G2) and control (G1) groups in both Z1 and Z3. This study revealed that the administration of extract of Urtica dioica leaves before induction of diabetic with streptozotocin has a protective effect on the morphometric alterations of hepatocytes in the periportal and perivenous zones of the liver lobule in rats.

  3. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.

    PubMed

    Malik, Salma; Suchal, Kapil; Khan, Sana Irfan; Bhatia, Jagriti; Kishore, Kamal; Dinda, Amit Kumar; Arya, Dharamvir Singh

    2017-08-01

    Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway. Copyright © 2017 the American Physiological Society.

  4. Previous Exercise Training Reduces Markers of Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Female Rats.

    PubMed

    Amaral, Liliany Souza de Brito; Souza, Cláudia Silva; Volpini, Rildo Aparecido; Shimizu, Maria Heloisa Massola; de Bragança, Ana Carolina; Canale, Daniele; Seguro, Antonio Carlos; Coimbra, Terezila Machado; de Magalhães, Amélia Cristina Mendes; Soares, Telma de Jesus

    2018-01-01

    The aim of this study is to evaluate the effects of regular moderate exercise training initiated previously or after induction of diabetes mellitus on renal oxidative stress and inflammation in STZ-induced diabetic female rats. For this purpose, Wistar rats were divided into five groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD), and previously trained diabetic (PTD). Only the PTD group was submitted to treadmill running for 4 weeks previously to DM induction with streptozotocin (40 mg/kg, i.v). After confirming diabetes, the PTD, TD, and TC groups were submitted to eight weeks of exercise training. At the end of the training protocol, we evaluated the following: glycosuria, body weight gain, plasma, renal and urinary levels of nitric oxide and thiobarbituric acid reactive substances, renal glutathione, and immunolocalization of lymphocytes, macrophages, and nuclear factor-kappa B (NF- κ B/p65) in the renal cortex. The results showed that exercise training reduced glycosuria, renal TBARS levels, and the number of immune cells in the renal tissue of the TD and PTD groups. Of note, only previous exercise increased weight gain and urinary/renal NO levels and reduced NF- κ B (p65) immunostaining in the renal cortex of the PTD group. In conclusion, our study shows that exercise training, especially when initiated previously to diabetes induction, promotes protective effects in diabetic kidney by reduction of renal oxidative stress and inflammation markers in female Wistar rats.

  5. Previous Exercise Training Reduces Markers of Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Female Rats

    PubMed Central

    Souza, Cláudia Silva; Volpini, Rildo Aparecido; Shimizu, Maria Heloisa Massola; de Bragança, Ana Carolina; Canale, Daniele; Seguro, Antonio Carlos; Coimbra, Terezila Machado; de Magalhães, Amélia Cristina Mendes

    2018-01-01

    The aim of this study is to evaluate the effects of regular moderate exercise training initiated previously or after induction of diabetes mellitus on renal oxidative stress and inflammation in STZ-induced diabetic female rats. For this purpose, Wistar rats were divided into five groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD), and previously trained diabetic (PTD). Only the PTD group was submitted to treadmill running for 4 weeks previously to DM induction with streptozotocin (40 mg/kg, i.v). After confirming diabetes, the PTD, TD, and TC groups were submitted to eight weeks of exercise training. At the end of the training protocol, we evaluated the following: glycosuria, body weight gain, plasma, renal and urinary levels of nitric oxide and thiobarbituric acid reactive substances, renal glutathione, and immunolocalization of lymphocytes, macrophages, and nuclear factor-kappa B (NF-κB/p65) in the renal cortex. The results showed that exercise training reduced glycosuria, renal TBARS levels, and the number of immune cells in the renal tissue of the TD and PTD groups. Of note, only previous exercise increased weight gain and urinary/renal NO levels and reduced NF-κB (p65) immunostaining in the renal cortex of the PTD group. In conclusion, our study shows that exercise training, especially when initiated previously to diabetes induction, promotes protective effects in diabetic kidney by reduction of renal oxidative stress and inflammation markers in female Wistar rats. PMID:29785400

  6. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.

    PubMed

    El-Akabawy, Gehan; El-Kholy, Wael

    2014-05-01

    Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine.

    PubMed

    Sagara, M; Satoh, J; Wada, R; Yagihashi, S; Takahashi, K; Fukuzawa, M; Muto, G; Muto, Y; Toyota, T

    1996-03-01

    N-acetylcysteine (NAC) is a precursor of glutathione (GSH) synthesis, a free radical scavenger and an inhibitor of tumour necrosis factor alpha (TNF). Because these functions might be beneficial in diabetic complications, in this study we examined whether NAC inhibits peripheral neuropathy. Motor nerve conduction velocity (MNCV) was significantly decreased in streptozotocin-induced-diabetic Wistar rats compared to control rats. Oral administration of NAC reduced the decline of MNCV in diabetic rats. Structural analysis of the sural nerve disclosed significant reduction of fibres undergoing myelin wrinkling and inhibition of myelinated fibre atrophy in NAC-treated diabetic rats. NAC treatment had no effect on blood glucose levels or on the nerve glucose, sorbitol and cAMP contents, whereas it corrected the decreased GSH levels in erythrocytes, the increased lipid peroxide levels in plasma and the increased lipopolysaccharide-induced TNF activity in sera of diabetic rats. Thus, NAC inhibited the development of functional and structural abnormalities of the peripheral nerve in streptozotocin-induced diabetic rats.

  8. Silymarin and milk thistle extract may prevent the progression of diabetic nephropathy in streptozotocin-induced diabetic rats.

    PubMed

    Vessal, Ghazal; Akmali, Masoumeh; Najafi, Parisa; Moein, Mahmood Reza; Sagheb, Mohammad Mahdi

    2010-07-01

    To investigate the effect of silymarin and milk thistle extract on the progression of diabetic nephropathy (DN) in rats. Diabetes was induced with a single intraperitoneal (IP) injection of streptozotocin (STZ) (60 mg/kg). Silymarin (100 mg/kg/d) or the extract (1.2 g/kg/d) was gavaged for 4 weeks. Blood glucose (BS), serum urea (S(u)), serum creatinine (S(cr)), and 24-h urine protein (Up) were measured and glomerular filtration rate (GFR) was calculated. Concentration of thiobarbituric acid reactive species (TBARS) and activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the renal tissue. Data were expressed as mean +/- SEM. Silymarin or the extract had no significant effect on BS, S(cr), and GFR. Both milk thistle extract and silymarin, respectively, decreased S(u) (mg/dL) (87.1 +/- 7.78, p < 0.001; 84.5 +/- 7.15, p < 0.001), Up (mg) (5.22 +/- 1.56, p = 0.014; 5.67 +/- 0.86, p = 0.034), and tissue TBARS (nmol/mg protein) (0.67 +/- 0.04, p < 0.001; 0.63 +/- 0.07, p < 0.001) in diabetic rats, compared to diabetic control (DC) (S(u): 131.0 +/- 4.55, Up: 8.3 +/- 0.84, TBARS: 0.94 +/- 0.06). Both the extract and silymarin could increase the activity of CAT (IU/mg protein) (25.5 +/- 4.0, p = 0.005; 20 +/- 1.8, p = 0.16) and GPx (IU/mg protein) (0.86 +/- 0.05, p = 0.005; 0.74 +/- 0.04, p = 0.10), respectively, in diabetic rats compared to DC (CAT = 14.4 +/- 2.0, GPx = 0.57 +/- 0.02). Milk thistle extract, to a lesser extent silymarin, can attenuate DN in rats possibly by increasing kidney CAT and GPx activity and decreasing lipid peroxidation in renal tissue.

  9. Exercise and Beta-Glucan Consumption (Saccharomyces cerevisiae) Improve the Metabolic Profile and Reduce the Atherogenic Index in Type 2 Diabetic Rats (HFD/STZ)

    PubMed Central

    Andrade, Eric Francelino; Lima, Andressa Ribeiro Veiga; Nunes, Ingrid Edwiges; Orlando, Débora Ribeiro; Gondim, Paula Novato; Zangeronimo, Márcio Gilberto; Alves, Fernando Henrique Ferrari; Pereira, Luciano José

    2016-01-01

    Physical activity and the ingestion of dietary fiber are non-drug alternatives commonly used as adjuvants to glycemic control in diabetic individuals. Among these fibers, we can highlight beta-glucans. However, few studies have compared isolated and synergic effects of physical exercise and beta-glucan ingestion, especially in type 2 diabetic rats. Therefore, we evaluated the effects beta-glucan (Saccharomyces cerevisiae) consumption, associated or not to exercise, on metabolic parameters of diabetic Wistar rats. The diabetes mellitus (DM) was induced by high-fat diet (HFD) associated with a low dose of streptozotocin (STZ—35 mg/kg). Trained groups were submitted to eight weeks of exercise in aquatic environment. In the last 28 days of experiment, animals received 30 mg/kg/day of beta-glucan by gavage. Isolated use of beta-glucan decreased glucose levels in fasting, Glycated hemoglobin (HbA1c), triglycerides (TAG), total cholesterol (TC), low-density lipoprotein (LDL-C), the atherogenic index of plasma. Exercise alone also decreased blood glucose levels, HbA1c, and renal lesions. An additive effect for reducing the atherogenic index of plasma and renal lesions was observed when both treatments were combined. It was concluded that both beta-glucan and exercise improved metabolic parameters in type 2 (HFD/STZ) diabetic rats. PMID:27999319

  10. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood

  11. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats.

    PubMed

    Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes

    2015-06-01

    This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4) M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 μM). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in Wistar rats in relation to their metabolite fingerprint.

    PubMed

    Abouzed, Tarek Kamal; Contreras, María Del Mar; Sadek, Kadry Mohamed; Shukry, Moustafa; H Abdelhady, Doaa; Gouda, Wael Mohamed; Abdo, Walied; Nasr, Nasr Elsayed; Mekky, Reham Hassan; Segura-Carretero, Antonio; Kahilo, Khaled Abdel-Aleim; Abdel-Sattar, Essam

    2018-06-01

    The present study was designed to investigate the effect of red onion scales extract (ROS) against diabetic nephropathy, in relation to its metabolic profiling. Four groups of male Wistar rats were assigned as follows; 1st untreated group, 2nd group (animals with diabetes) treated with streptozotocin (STZ, 50 mg/kg) IP, 3rd group co-treated with ROS (150 mg/kg + STZ, 50 mg/kg) and 4th group co-treated with ROS by a dose (300 mg/kg + STZ, 50 mg/kg) daily. After four weeks, random and fasting blood glucose (FBG) levels, serum insulin, advanced glycation end products (AGEs), urea, uric acid and inflammatory and fibrotic gene expression were evaluated. Moreover, histopathological examination of the renal tissues was performed. In addition, the metabolic profiling of ROS was performed via RP-HPLC-DAD-QTOF-MS and -MS/MS. The metabolic profiling of ROS revealed that protocatechuic acid and cyanidin-3-O-glucoside were the predominant compounds among 32 metabolites identified in the extract. ROS treated groups showed improvement of FBG and AGEs levels, whereas serum insulin level showed significant elevation. In addition, down-regulation of inflammatory mRNA expression associated with the hyperglycemic condition and amelioration in histopathological alterations in kidney tissues were observed. This study displayed the presence of 32 phenolic compounds in the ethanolic extract of ROS, a common by-product of the industrial production of onion in Egypt. This study proved the therapeutic potential of ROS as antidiabetic agent and its preventive effect against diabetic nephropathy. Therefore, this study represents a perspective of the utilization of food waste products. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats

    PubMed Central

    2013-01-01

    Background Hericium erinaceus, as a commonly used medicine or food, has attracted much attention due to its health effects when used as a home remedy for some diseases. The aim of this work was to investigate the hypoglycemic and hypolipidemic effects of aqueous extract of Hericium erinaceus (AEHE) in streptozotocin (STZ)-induced diabetic rats. Methods Diabetes was induced in Wistar rats by the administration of STZ (55 mg/kg BW.) intraperitoneally. AEHE (100 and 200 mg/kg BW.) was administered for a period of 28 days. The effects of AEHE on glucose, insulin, and lipid files in blood, and oxidative stress parameters in the liver were evaluated. The body weights of rats were recorded at day 0, 14 and 28th days. Results The administration of AEHE for 28 days in STZ diabetic rats resulted in a significant decrease in serum glucose level and a significant rise in serum insulin level. AEHE treatment attenuated lipid disorders. In addition, AEHE administration increased the activities of CAT, SOD, and GSH-Px, and GSH level, and reduced MDA level in the liver tissue significantly. Conclusion Our results suggest that AEHE possesses hypoglycemic, hypolipidemic, and antioxidant properties in STZ-induced diabetes rats. PMID:24090482

  14. Effects of combined neutral endopeptidase 24-11 and angiotensin-converting enzyme inhibition on femoral vascular conductance in streptozotocin-induced diabetic rats

    PubMed Central

    Arbin, V; Claperon, N; Fournié-Zaluski, M -C; Roques, B P; Peyroux, J

    2000-01-01

    The successive effects of the angiotensin-converting enzyme inhibitor captopril (CAP, 2 mg kg−1+1 mg kg−1 30 min−1 infusion) and the neutral endopeptidase 24-11 inhibitor retrothiorphan (RT, 25 mg kg−1+12.5 mg kg−1 30 min−1 infusion) were studied on femoral vascular conductance (FVC) in streptozotocin-induced diabetic (STZ-SD) and control Sprague-Dawley (C-SD) rats. The role of the kinin-nitric oxide (NO) pathway was assessed by (1) using pre-treatments: a bradykinin (BK) B2 receptor antagonist (Hoe-140, 300 μg kg−1), a NO-synthase inhibitor (Nω-nitro-L-arginine methyl ester, L-NAME, 10 mg kg−1), a kininase I inhibitor (DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, MGTA, 10 mg kg−1+20 mg kg−1 20 min−1 infusion) and (2) comparing the effects in STZ-induced diabetic (STZ-BN) and control Brown-Norway kininogen-deficient (C-BN) rats.In C-SDs, CAP and CAP+RT increased FVC similarly. In STZ-SDs, FVC and FBF were decreased compared to C-SDs. CAP+RT increased them more effectively than CAP alone.In both C-SDs and STZ-SDs, the femoral bed vasodilatation elicited by CAP was inhibited by Hoe-140 and L-NAME. The FVC increase elicited by CAP+RT was not significantly reduced by Hoe-140 but was inhibited by L-NAME and Hoe-140+MGTA.In C-BNs, the vasodilatator responses to CAP and CAP+RT were abolished and highly reduced, respectively. In STZ-BNs, these responses were abolished.These results show that in STZ-SDs, CAP+RT improve FBF and FVC more effectively than CAP alone. These effects are linked to an increased activation of the kinin-NO pathway. BK could lead to NO production by BK B2 receptor activation and another pathway in which kininase I may be involved. PMID:10903969

  15. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes

    PubMed Central

    Garbowska, Marta; Mikłosz, Agnieszka; Wróblewski, Igor; Kurek, Krzysztof; Ostrowska, Lucyna; Chabowski, Adrian; Żendzian‐Piotrowska, Małgorzata; Zalewska, Anna

    2017-01-01

    Diabetes is considered a major public health problem affecting millions of individuals worldwide. Remarkably, scientific reports regarding salivary glands sphingolipid metabolism in diabetes are virtually non‐existent. This is odd given the well‐established link between the both in other tissues (e.g., skeletal muscles, liver) and the key role of these glands in oral health preservation. The aim of this paper is to examine sphingolipids metabolism in the salivary glands in (pre)diabetes (evoked by high fat diet feeding or streptozotocin). Wistar rats were allocated into three groups: control, HFD‐, or STZ‐diabetes. The content of major sphingolipid classes in the parotid (PSG) and submandibular (SMSG) glands was assessed via chromatography. Additionally, Western blot analyses were employed for the evaluation of key sphingolipid signaling pathway enzyme levels. No changes in ceramide content in the PSG were found, whereas an increase in ceramide concentration for SMSG of the STZ group was observed. This was accompanied by an elevation in SPT1 level. Probably also sphingomyelin hydrolysis was increased in the SMSG of the STZ‐diabetic rats, since we observed a significant drop in the amount of SM. PSG and SMSG respond differently to (pre)diabetes, with clearer pattern presented by the later gland. An activation of sphingomyelin signaling pathway was observed in the course of STZ‐diabetes, that is, metabolic condition with rapid onset/progression. Whereas, chronic HFD lead to an inhibition of sphingomyelin signaling pathway in the salivary glands (manifested in an inhibition of ceramide de novo synthesis and accumulation of S1P). PMID:28369933

  16. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. © The Author(s) 2015.

  17. Protective effect of the daming capsule on impaired baroreflexes in STZ-induced diabetic rats with hyperlipoidemia.

    PubMed

    Ai, Jing; Wang, Li-Hong; Zhang, Rong; Qiao, Guo-Fen; Wang, Ning; Sun, Li-Hua; Lu, Guan-Yi; Sun, Chao; Yang, Bao-Feng

    2010-12-22

    The Daming capsule (DMC) is a traditional Chinese medicine used to treat hyperlipoidemia. Both clinic trials and studies on animal models have demonstrated that DMC is beneficial against diabetic symptoms. Impairment of the baroreflex can cause life-threatening arrhythmias and sudden cardiac death in patients with diabetes mellitus (DM). This study was designed to elucidate the effects of DMC on baroreflexes in streptozocin (STZ)-induced diabetic rats with hyperlipoidemia. Wistar rats were randomly divided into three groups: untreated controls, rats pretreated STZ and high lipids (a diabetes model or DM rats), and DM rats treated with DMC. The baroreflex sensitivity was examined during intravenous injection of phenylephrine (PE) or sodium nitroprusside (SNP) and quantified by the change in heart rate over the change in mean arterial blood pressure (ΔHR/ΔMABP). Morphological remodeling of baroreceptors was analyzed by transmission electron microscopy (TEM). The mRNA levels and expression of GluR2 and a GABAA receptor subunit were measured by quantitative RT-PCR and Western blotting. Compared to untreated DM rats, DMC significantly elevated the ratio of ΔHR/ΔMABP by enhancing the compensatory reduction in HR (-ΔHR) in response to PE-induced hypertension (+ΔMABP) (P < 0.05). In the presence of SNP, DMC increased the ΔMABP (P < 0.05). In addition, DMC markedly shortened the duration of blood pressure changes elicited by PE or SNP in DM rats compared to the untreated DM group (P < 0.05). Electron microscopy revealed disrupted myelin sheaths, swollen ER, and lysed mitochondria in the nucleus ambiguous (NAm) DM rats. These signs of neuropathology were largely prevented by treatment with DMC for 30 days. Treatment with DMC elevated both mRNA and protein level of GluR2 in the NAm of DM rats, but had no effect on GABAA receptor expression. The Daming capsule partially reversed the parasympathetic baroreflex impairment observed in STZ-induced diabetic rats with

  18. Therapeutic potential of octyl gallate isolated from fruits of Terminalia bellerica in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2013-06-01

    Medicinal plants are a potential source of antidiabetic drugs. Terminalia bellerica Roxb. (Combretaceae) is used in Indian traditional systems of medicine to treat diabetes mellitus. The aim of this study was to isolate and identify antihyperglycemic principle(s) from the fruits of T. bellerica and assess the bioactivity in streptozotocin (STZ)-induced diabetic rats. Bioassay-guided fractionation was followed to isolate the active compound(s), structure was elucidated using (1)H and (13)C NMR, IR and mass spectrometry and administered intragastrically to diabetic Wistar rats at different doses (5, 10 and 20 mg/kg, body weight) for 28 d. Plasma glucose, insulin, C-peptide and other biochemical parameters were studied. Octyl gallate (OG) isolated first time from the fruit rind of T. bellerica significantly (p < 0.05) reduced plasma glucose to near normal values (108.47 ± 6.9 mg/dl) after 14 d at the dose of 20 mg/kg. In addition, OG significantly increased plasma insulin, C-peptide, total protein, albumin, tissue glycogen, body weight and markedly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid and creatinine in diabetic rats. Also OG restored the altered regulatory enzymes of carbohydrate metabolism. OG might have augmented the secretion of insulin by the modulation of cAMP and intracellular calcium levels in the β cells of the pancreas. Our findings indicate that OG isolated first time from the fruit rind of T. bellerica has potential antidiabetic effect as it augments insulin secretion and normalizes the altered biochemical parameters in experimental diabetic rat models.

  19. Renoprotective effect of aged garlic extract in streptozotocin-induced diabetic rats

    PubMed Central

    Shiju, T. M.; Rajesh, N. G.; Viswanathan, Pragasam

    2013-01-01

    Objective: Aged garlic extract (AGE) has been proven to exhibit antioxidant, hypolipidemic, hypoglycemic and antidiabetic properties. However, its effect on diabetic nephropathy was unexplored. Therefore, the present study was designed to investigate the renoprotective effect of AGE in streptozotocin-induced diabetic rats. Materials and Methods: Albino Wistar rats were induced with diabetes by a single intraperitoneal injection of 45 mg/kg b.w. of streptozotocin. Commercially available AGE was supplemented orally at a dose of 500 mg/kg body weight/day. Aminoguanidine, which has been proven to be an anti-glycation agent was used as positive control and was supplemented at a dose of 1 g/L in drinking water. The serum and urinary biochemical parameters were analyzed in all the groups and at the end of 12 weeks follow up, the renal histological examination were performed using H & E and PAS staining. Results: The diabetic rats showed a significant change in the urine (P < 0.001) and serum (P < 0.01) constituents such as albumin, creatinine, urea nitrogen and glycated hemoglobin. In addition, the serum lipid profile of the diabetic rats were altered significantly (P < 0.05) compared to that of the control rats. However, the diabetic rats supplemented with aged garlic extract restored all these biochemical changes. The efficacy of the extract was substantiated by the histopathological changes in the kidney. Conclusion: From our results, we conclude that aged garlic extract has the ability to ameliorate kidney damage in diabetic rats and the renoprotective effect of AGE may be attributed to its anti-glycation and hypolipidemic activities. PMID:23543654

  20. Involvement of ciliary neurotrophic factor in early diabetic retinal neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Ma, Mingming; Xu, Yupeng; Xiong, Shuyu; Zhang, Jian; Gu, Qing; Ke, Bilian; Xu, Xun

    2018-05-23

    Ciliary neurotrophic factor (CNTF) has been evaluated as a candidate therapeutic agent for diabetes and its neural complications. However, its role in diabetic retinopathy has not been fully elucidated. This is a randomized unblinded animal experiment. Wistar rats with streptozocin (STZ)-induced diabetes were regularly injected with CNTF or vehicle control in their vitreous bodies beginning at 2 weeks after STZ injection. A total of five injections were used. In diabetic rats, the levels of CNTF and neurotrophin-3 (NT-3) were evaluated by enzyme-linked immunosorbent assays (ELISA) and real-time PCR. The abundance of tyrosine hydroxylase (TH) and β-III tubulin was detected by western blot. Transferase-mediated dUTP nick-end labeling staining (TUNEL) was used to detect cell apoptosis in the retinal tissue. The activation of caspase-3 was also measured. The protein and mRNA levels of CNTF in diabetic rat retinas were reduced compared to control rats. In addition, retinal ganglion cells (RGCs) and dopaminergic amacrine cells appeared to undergo degeneration in diabetic rat retinas, as revealed by transferase-mediated dUTP nick-end labeling staining (TUNEL). Tyrosine hydroxylase (TH) and β-III tubulin protein levels also decreased significantly. Intraocular administration of CNTF rescued RGCs and dopaminergic amacrine cells from neurodegeneration and counteracted the downregulation of β-III tubulin and TH expression, thus demonstrating its therapeutic potential. Our study suggests that early diabetic retinal neuropathy involves the reduced expression of CNTF and can be ameliorated by an exogenous supply of this neurotrophin.

  1. Antidiabetic effect of Euterpe oleracea Mart. (açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction

    PubMed Central

    de Bem, Graziele Freitas; Costa, Cristiane Aguiar; Santos, Izabelle Barcellos; Cristino Cordeiro, Viviane da Silva; de Carvalho, Lenize Costa Reis Marins; de Souza, Marcelo Augusto Vieira; Soares, Ricardo de Andrade; Sousa, Pergentino José da Cunha; Ognibene, Dayane Teixeira; de Moura, Roberto Soares

    2018-01-01

    A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression. PMID:29920546

  2. Antihyperglycemic Activity of Houttuynia cordata Thunb. in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kumar, Manish; Prasad, Satyendra K.; Krishnamurthy, Sairam; Hemalatha, Siva

    2014-01-01

    Present study is an attempt to investigate plausible mechanism involved behind antidiabetic activity of standardized Houttuynia cordata Thunb. extract in streptozotocin-induced diabetic rats. The plant is used as a medicinal salad for lowering blood sugar level in North-Eastern parts of India. Oral administration of extract at 200 and 400 mg/kg dose level daily for 21 days showed a significant (P < 0.05) decrease in fasting plasma glucose and also elevated insulin level in streptozotocin-induced diabetic rats. It also significantly reversed all the alterations in biochemical parameters, that is, total lipid profile, blood urea, creatinine, protein, and antioxidant enzymes in liver, pancreas, and adipose tissue of diabetic rats. Furthermore, we have demonstrated that the extract significantly reversed the expression patterns of various glucose homeostatic enzyme genes like GLUT-2, GLUT-4, and caspase-3 levels but did not show any significant effect on PPAR-γ protein expressions. Additionally, the extract positively regulated mitochondrial membrane potential and succinate dehydrogenase (SDH) activity in diabetic rats. The findings justified the antidiabetic effect of H. cordata which is attributed to an upregulation of GLUT-4 and potential antioxidant activity, which may play beneficial role in resolving complication associated with diabetes. PMID:24707284

  3. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  4. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats.

    PubMed

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-07-25

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What's more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity.

  5. Role of thirst and visual barriers in the differential behavior displayed by streptozotocin-treated rats in the elevated plus-maze and the open field test.

    PubMed

    Rebolledo-Solleiro, Daniela; Crespo-Ramírez, Minerva; Roldán-Roldán, Gabriel; Hiriart, Marcia; Pérez de la Mora, Miguel

    2013-08-15

    Conflicting results have been obtained by several groups when studying the effects of streptozotocin (STZ)-treated rats in the elevated plus-maze (EPM). Since thirst is a prominent feature in STZ-induced diabetic-like condition, we studied whether the walls of the closed arms of the EPM, by limiting the search for water in the environment, may contribute to the observed differential behavioral outcomes. The aim of this study was to ascertain whether visual barriers within the EPM have an influence on the behavior of STZ-treated rats in this test of anxiety. A striking similarity between STZ-treated (50 mg/kg, i.p., in two consecutive days) and water deprived rats (72 h) was found in exploratory behavior in the EPM, showing an anxiolytic-like profile. However the anxiolytic response of STZ-treated rats exposed to the EPM shifts into an anxiogenic profile when they are subsequently tested in the open-field test, which unlike the EPM is devoid of visual barriers. Likewise, water deprived rats (72 h) also showed an anxiogenic profile when they were exposed to the open-field test. Our results indicate that experimental outcomes based on EPM observations can be misleading when studying physiological or pathological conditions, e.g. diabetes, in which thirst may increase exploratory behavior. © 2013.

  6. Growth hormone (GH) hypersecretion and GH receptor resistance in streptozotocin diabetic mice in response to a GH secretagogue.

    PubMed

    Johansen, Peter B; Segev, Yael; Landau, Daniel; Phillip, Moshe; Flyvbjerg, Allan

    2003-01-01

    The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 +/- 35 microg/L and 62 +/- 11 microg/L in the diabetic compared to the nondiabetic mice (P <.05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.

  7. Effect of N-benzoyl-D-phenylalanine and metformin on insulin receptors in neonatal streptozotocin-induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Ashokkumar, N; Pari, L; Rao, Ch Appa

    2006-07-01

    In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  8. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy.

    PubMed

    Rasoulian, Bahram; Hajializadeh, Zahra; Esmaeili-Mahani, Saeed; Rashidipour, Marzieh; Fatemi, Iman; Kaeidi, Ayat

    2018-05-12

    Diabetes mellitus is associated with the development of neuronal tissue damage in different central and peripheral nervous system regions. A common complication of diabetes is painful diabetic peripheral neuropathy. We have explored the antihyperalgesic and neuroprotective properties of Rosmarinus officinalis L. extract (RE) in a rat model of streptozotocin (STZ)-induced diabetes. The nociceptive threshold and motor coordination of these diabetic rats was assessed using the tail-flick and rotarod treadmill tests, respectively. Activated caspase-3 and the Bax:Bcl-2 ratio, both biochemical indicators of apoptosis, were assessed in the dorsal half of the lumbar spinal cord tissue by western blotting. Treatment of the diabetic rats with RE improved hyperglycemia, hyperalgesia and motor deficit, suppressed caspase-3 activation and reduced the Bax:Bcl-2 ratio, suggesting that the RE has antihyperalgesic and neuroprotective effects in this rat model of STZ-induced diabetes. Cellular mechanisms underlying the observed effects may, at least partially, be related to the inhibition of neuronal apoptosis.

  9. Mineralization of different bones in streptozotocin-diabetic rats: study on the concentration of eight minerals.

    PubMed

    Rosholt, M N; Hegarty, P V

    1981-09-01

    Streptozotocin-induced diabetes was studied in male and female rats weighing 188 and 145 g, respectively, at the start of the experiment. After 79 days in the diabetic condition the weights and lengths of different bones were less in the diabetic rats than in two nondiabetic control groups, i.e., ad libitum fed and a group restricted in food intake to achieve the same body weight as the diabetic rats. The concentrations of calcium, phosphorus, and sodium were similar in the diabetic and nondiabetic groups, whereas the concentrations of iron and zinc were higher in the diabetic rats. Results for the concentration of potassium, magnesium, and chromium showed a less uniform pattern between groups and between males and females. It is concluded that the length and weight of bones in diabetic rats are less than nondiabetic rats of the same body weight. This results in a lower total amount of calcium, phosphorus, sodium, potassium, magnesium, and chromium. This observation was similar in all three bones studied. Therefore, prolonged streptozotocin-induced diabetes does interfere with the normal pattern of bone mineralization.

  10. Coffee Ingestion Suppresses Hyperglycemia in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Kobayashi, Misato; Kurata, Takao; Hamana, Yoshiki; Hiramitsu, Masanori; Inoue, Takashi; Murai, Atsushi; Horio, Fumihiko

    2017-01-01

    Coffee consumption reduces the risk of type 2 diabetes in humans, but the mechanism remains unclear. In this study, we investigated the effect of coffee on pancreatic β-cells in the induction of diabetes by streptozotocin (STZ) treatment in mice. We examined the effect of coffee, caffeine, or decaffeinated coffee ingestion on STZ-induced hyperglycemia. After STZ injection in Exp. 1 and 2, serum glucose concentration and water intake in coffee ingestion (Coffee group) tended to be lowered or was significantly lowered compared to those in water ingestion (Water group) instead of coffee. In Exp. 1, the values for water intake and serum glucose concentration in caffeine ingestion (Caffeine group) were similar to those in the Water group. In Exp. 2, serum glucose concentrations in the decaffeinated coffee ingestion (Decaf group) tended to be lower than those in the Water group. Pancreatic insulin contents tended to be higher in the Coffee and Decaf groups than in the Water group (Exp. 1 and 2). In Exp. 3, subsequently, we showed that coffee ingestion also suppressed the deterioration of hyperglycemia in diabetic mice which had been already injected with STZ. This study showed that coffee ingestion prevented the development of STZ-induced diabetes and suppressed hyperglycemia in STZ-diabetic mice. Caffeine or decaffeinated coffee ingestion did not significantly suppress STZ-induced hyperglycemia. These results suggest that the combination of caffeine and other components of decaffeinated coffee are needed for the preventive effect on pancreatic β-cell destruction. Coffee ingestion may contribute to the maintenance of pancreatic insulin contents.

  11. Effect of the combination of gelam honey and ginger on oxidative stress and metabolic profile in streptozotocin-induced diabetic Sprague-Dawley rats.

    PubMed

    Sani, Nur Fathiah Abdul; Belani, Levin Kesu; Sin, Chong Pui; Rahman, Siti Nor Amilah Abdul; Das, Srijit; Chi, Thent Zar; Makpol, Suzana; Yusof, Yasmin Anum Mohd

    2014-01-01

    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats.

  12. Effect of the Combination of Gelam Honey and Ginger on Oxidative Stress and Metabolic Profile in Streptozotocin-Induced Diabetic Sprague-Dawley Rats

    PubMed Central

    Abdul Sani, Nur Fathiah; Belani, Levin Kesu; Pui Sin, Chong; Abdul Rahman, Siti Nor Amilah; Zar Chi, Thent; Makpol, Suzana; Yusof, Yasmin Anum Mohd

    2014-01-01

    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats. PMID:24822178

  13. Induction, management, and complications of streptozotocin-induced diabetes mellitus in rhesus monkeys.

    PubMed

    Kim, Jong-Min; Shin, Jun-Seop; Min, Byoung-Hoon; Kim, Hyun-Je; Kim, Jung-Sik; Yoon, Il-Hee; Jeong, Won-Young; Lee, Ga-Eul; Kim, Min-Sun; Kim, Ju-Eun; Jin, Sang-Man; Park, Chung-Gyu

    2016-11-01

    Diabetes mellitus (DM) model using streptozotocin (STZ) which induces chemical ablation of β cell in the pancreas has been widely used for various research purposes in non-human primates. However, STZ has been known to have a variety of adverse effects such as nephrotoxicity, hepatotoxicity, and even mortality. The purpose of this study is to report DM induction by STZ, toxicity associated with STZ and procedure and complication of exogenous insulin treatment for DM management in rhesus monkeys (Macaca mulatta) that are expected to be transplanted with porcine islets within 2 months. Streptozotocin (immediately dissolved in normal saline, 110 mg/kg) was slowly infused via central catheter for 10 minutes in 22 rhesus monkeys. Clinical signs, complete blood count and blood chemistry were monitored to evaluate toxicity for 1 week after STZ injection. Monkey basal C-peptides were measured and intravenous glucose tolerance test was performed to confirm complete induction of DM. Exogenous insulin was subcutaneously injected to maintain blood glucose in diabetic rhesus monkeys and the complications were recorded while in insulin treatment. Severe salivation and vomiting were observed within 1 hour after STZ injection in 22 rhesus monkeys. One monkey died at 6 hours after STZ injection and the reason for the death was unknown. Pancreatitis was noticed in one monkey after STZ injection, but the monkey recovered after 5 days by medical treatment. Serum total protein and albumin decreased whereas the parameters for the liver function such as aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly increased (P<.05) after STZ injection, but they were resolved within 1 week. Azotemia was not observed. Monkey fasting C-peptide levels after STZ injection were <0.1 ng/mL in 18 rhesus monkeys, but 0.34, 0.22, 0.16 ng/mL in three monkeys, respectively. The value of daily insulin requirement was 0.92±0.26IU/kg/d (range=0.45-1.29) in

  14. Longitudinal studies of time-dependent changes in both bladder and erectile function after streptozotocin-induced diabetes in Fischer 344 male rats.

    PubMed

    Melman, Arnold; Zotova, Elena; Kim, Mimi; Arezzo, Joseph; Davies, Kelvin; DiSanto, Michael; Tar, Moses

    2009-11-01

    To provide sensitive physiological endpoints for the onset and long-term progression of deficits induced by diabetes mellitus (DM) in bladder and erectile function in male rats, and to evaluate parallel changes in urogenital and nerve function induced by hyperglycaemia over a protracted period as a model for chronic deficits in patients with diabetes. The study comprised in 877 male, 3-month-old, Fischer 344 rats; 666 were injected intraperitoneally with 35 mg/kg streptozotocin (STZ) and divided into insulin-treated and untreated diabetic groups. The rats were studied over 8 months and measurements made of both erectile and bladder function, as well as nerve conduction studies over the duration of the study. There was an early (first month) abnormality of both erectile and bladder function that persisted through the 8 months of the study. The erectile dysfunction was manifest as reduced intracavernous pressure/blood pressure ratio, and the bladder dysfunction as a persistent increase in detrusor overactivity with no detrusor decompensation. Insulin treatment prevented or modified the abnormality in each organ. Hyperglycaemia caused a progressive decrease in caudal nerve conduction velocity. The mean digital sensory and tibial motor nerve conduction velocity did not deteriorate over time. Correlation measurements of nerve and organ function were not consistent. The results of this extensive long-term study show early and profound effects of hyperglycaemia on the smooth muscle of the penis and bladder, that were persistent and stable in surviving rats over the 8 months. The physiological changes did not correlate well with neurological measurements of those organs. Significantly, diverse smooth-muscle cellular and subcellular events antedated the measured neurological manifestations of the hyperglycaemia by several months. Although autonomic diabetic neuropathy is a primary life-threatening complication of long-term diabetes in humans, this rat model of STZ

  15. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats.

    PubMed

    Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin

    2015-09-07

    Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.

  16. Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development

    PubMed Central

    2010-01-01

    Background Experimental models are necessary to elucidate diabetes pathophysiological mechanisms not yet understood in humans. Objective: To evaluate the repercussions of the mild diabetes, considering two methodologies, on the pregnancy of Wistar rats and on the development of their offspring. Methods In the 1st induction, female offspring were distributed into two experimental groups: Group streptozotocin (STZ, n = 67): received the β-cytotoxic agent (100 mg STZ/kg body weight - sc) on the 1st day of the life; and Non-diabetic Group (ND, n = 14): received the vehicle in a similar time period. In the adult life, the animals were mated. After a positive diagnosis of pregnancy (0), female rats from group STZ presenting with lower glycemia than 120 mg/dL received more 20 mg STZ/kg (ip) at day 7 of pregnancy (2nd induction). The female rats with glycemia higher than 120 mg/dL were discarded because they reproduced results already found in the literature. In the mornings of days 0, 7, 14 and 21 of the pregnancy glycemia was determined. At day 21 of pregnancy (at term), the female rats were anesthetized and killed for maternal reproductive performance and fetal development analysis. The data were analyzed using Student-Newman-Keuls, Chi-square and Zero-inflated Poisson (ZIP) Tests (p < 0.05). Results STZ rats presented increased rates of pre (STZ = 22.0%; ND = 5.1%) and post-implantation losses (STZ = 26.1%; ND = 5.7%), reduced rates of fetuses with appropriate weight for gestational age (STZ = 66%; ND = 93%) and reduced degree of development (ossification sites). Conclusion Mild diabetes led a negative impact on maternal reproductive performance and caused intrauterine growth restriction and impaired fetal development. PMID:20416073

  17. Proanthocyanidins from Vitis vinifera inhibit oxidative stress-induced vascular impairment in pulmonary arteries from diabetic rats.

    PubMed

    Pinna, Christian; Morazzoni, Paolo; Sala, Angelo

    2017-02-15

    Vitis vinifera L. (grape seed extract) is a natural source of proanthocyanidins with antioxidant and free radical-scavenging activities. Grape seed extract supplementation may prevent vascular endothelium impairment associated with diabetes mellitus in rat pulmonary artery. We evaluated endothelial function of rat pulmonary artery ex-vivo at the intermediate stage (4 weeks) of streptozotocin (STZ)-induced diabetes mellitus. We also evaluated the protective effect of grape seed extract administered daily, beginning the day after diabetes induction, or 15 days after diabetes induction, until the day of sacrifice. In addition, we compared the effect of grape seed extract supplementation with that of vitamin C. Rats were made diabetic with streptozotocin (STZ, 65mg/kg i.v.). Thirty days later rats were sacrificed and pulmonary vessels reactivity and endothelial function compared to that of age-matched healthy animals. Concentration-response curves to ACh, NE, sodium nitroprusside (NO donor), but not to histamine and iloprost (prostacyclin analog), were significantly altered 4 weeks after STZ-injection. Antioxidant supplementation (3mg/kg/day) with either vitamin C or grape seed extract, starting the day after diabetes induction, significantly improved vasodilation to ACh and SNP. Norepinephrine-induced contractions were preserved by grape seed extract, but not vitamin C supplementation. Conversely, vitamin C but not grape seed extract showed beneficial effects contrasting the loss of body weight in diabetic animals. Abnormal vascular function was not reversed when antioxidant supplementations were postponed 15 days after the induction of diabetes. This study provides scientific support for the therapeutic potential of an antioxidant therapy in endothelial impairment associated with diabetes. A daily supplementation of grape seed proanthocyanidins and/or vitamin C given at the earlier stage of disease may have a complementary role in the pharmacological therapy of

  18. Antidiabetic, antioxidant and antihyperlipidemic status of Heliotropium zeylanicum extract on streptozotocin-induced diabetes in rats.

    PubMed

    Murugesh, Kandasamy; Yeligar, Veerendra; Dash, Deepak Kumar; Sengupta, Pinaki; Maiti, Bhim Chandra; Maity, Tapan Kumar

    2006-11-01

    The potential role of the methanolic extract of Heliotropium zeylanicum (BURM.F) LAMK (MEHZ) in the treatment of diabetes along with its antioxidant and antihyperlipidemic effects was studied in streptozotocin-induced diabetic rats. Oral administration of (MEHZ) 150 and 300 mg/kg/d for 14 d significantly decreased the blood glucose level and considerably increased the body weight, food intake, and liquid intake of diabetic-induced rats. MEHZ significantly decreased thiobarbituric acid reactive substances and significantly increased reduced glutathione, superoxide dismutase and catalase in streptozotocin-induced diabetic rats at the end of 14 d of treatment. The study also investigated the antihyperlipidemic potential of MEHZ. The results show that the active fraction of MEHZ is promising for development of a standardized phytomedicine for the treatment of diabetes mellitus.

  19. Inhibition of CaMKIV relieves streptozotocin-induced diabetic neuropathic pain through regulation of HMGB1.

    PubMed

    Zhao, Xin; Shen, Le; Xu, Li; Wang, Zhiyao; Ma, Chao; Huang, Yuguang

    2016-05-23

    The pathogenesis of diabetic neuropathic pain is complicated and its underlying mechanisms remain unclear. Calmodulin-dependent protein kinases (CaMKs) IV (CaMKIV), one of CaMKs, regulates several transcription factors in pain mechanisms. High-mobility group box 1 (HMGB1) is a key mediator in diabetic neuropathic pain. This study aims to find the roles and mechanisms of CaMIV in diabetic neuropathic pain. Diabetic animal models were constructed by injecting with streptozotocin (STZ) intraperitoneally. They were randomly divided into seven groups (n = 6 per group): Naive, Normal Saline, STZ, STZ + Sham, STZ + DMSO and STZ + KN93 (an inhibitor of CaMKIV) (50 μg), STZ + KN93 (100 μg), which received KN93 (50 or 100 μg) intrathecally after the administration of STZ. Phospho-CaMKIV (pCaMKIV) and HMGB1 expression in rat dorsal root ganglion (DRG) and RAW264.7 cell line were measured by western blot. Distribution of pCaMKIV immune reactivity in different subpopulations of DRG neurons was measured by double-immunofluorescence staining. The pCaMKIV and HMGB1 in DRG significantly increased after STZ administration, and pCaMKIV can regulate the expression of HMGB1 based on both cellular and animal models. Pretreatment with CaMKIV inhibitor attenuated STZ-induced mechanical allodynia and thermal hyperalgesia, as well as reduced HMGB1 expression in the DRG. This study demonstrates that CaMKIV can relieve STZ-induced diabetic neuropathic pain. The mechanism of this function depended on the process: pCaMKIV localized in the nuclei of DRG neurons and regulated HMGB1 which was an important mediator of neuropathic pain. These findings reported CaMKIV may be a potential target or important node in relieving diabetic neuropathic pain.

  20. Effect of Unripe Plantain (Musa paradisiaca) and Ginger (Zingiber officinale) on Blood Glucose, Body Weight and Feed Intake of Streptozotocin-induced Diabetic Rats.

    PubMed

    M, Iroaganachi; C O, Eleazu; P N, Okafor; N, Nwaohu

    2014-01-01

    To determine the effect of unripe plantain (Musa paradisiaca) and ginger (Zingiber officinale) on blood glucose (BG), feed intake (FI) and weight of streptozotocin (STZ) induced diabetic rats. Twenty four male albino rats were used and were divided into 4 groups of 6 rats each. Group 1 (non-diabetic) and Group 2 (diabetic) received standard rat feed; Group 3 received unripe plantain incorporated feed (810 /kg body weight) and Group 4 received unripe plantain+ginger incorporated feed (710:100 g/kg body weight). The weights and FI of the rats were measured daily throughout the experimentation. Groups 3 and 4 rats had 159.52% and 71.83% decreases in BG but 24.91% and 35.32% decreases in weights compared with groups 1 and 2 rats that had 2.09% and 22.94% increases in BG with 13.42% increase and 45.36% decrease in weights respectively. The FI of the experimental rats did not differ significantly from each other (P>0.05) at the end of experimentation. The standard rat feed contained higher amounts of Ca but lower amounts of Mg and Fe compared with the unripe plantain and unripe plantain+ginger incorporated feeds. Combination of unripe plantain and ginger at the dose used in the management of diabetes was not very effective compared with unripe plantain alone.

  1. Effect of Unripe Plantain (Musa paradisiaca) and Ginger (Zingiber officinale) on Blood Glucose, Body Weight and Feed Intake of Streptozotocin-induced Diabetic Rats

    PubMed Central

    M, Iroaganachi; C.O, Eleazu; P.N, Okafor; N, Nwaohu

    2015-01-01

    Objective: To determine the effect of unripe plantain (Musa paradisiaca) and ginger (Zingiber officinale) on blood glucose (BG), feed intake (FI) and weight of streptozotocin (STZ) induced diabetic rats. Methods: Twenty four male albino rats were used and were divided into 4 groups of 6 rats each. Group 1 (non-diabetic) and Group 2 (diabetic) received standard rat feed; Group 3 received unripe plantain incorporated feed (810 /kg body weight) and Group 4 received unripe plantain+ginger incorporated feed (710:100 g/kg body weight). The weights and FI of the rats were measured daily throughout the experimentation. Results: Groups 3 and 4 rats had 159.52% and 71.83% decreases in BG but 24.91% and 35.32% decreases in weights compared with groups 1 and 2 rats that had 2.09% and 22.94% increases in BG with 13.42% increase and 45.36% decrease in weights respectively. The FI of the experimental rats did not differ significantly from each other (P>0.05) at the end of experimentation. The standard rat feed contained higher amounts of Ca but lower amounts of Mg and Fe compared with the unripe plantain and unripe plantain+ginger incorporated feeds. Conclusion: Combination of unripe plantain and ginger at the dose used in the management of diabetes was not very effective compared with unripe plantain alone. PMID:25674161

  2. Evaluation of toxicity after one-months treatment with Bauhinia forficata decoction in streptozotocin-induced diabetic rats

    PubMed Central

    Pepato, Maria Teresa; Baviera, Amanda Martins; Vendramini, Regina Célia; Brunetti, Iguatemy Lourenço

    2004-01-01

    Background Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. PMID:15186500

  3. Thymoquinone Defeats Diabetes-Induced Testicular Damage in Rats Targeting Antioxidant, Inflammatory and Aromatase Expression

    PubMed Central

    Atta, Mustafa S.; Almadaly, Essam A.; El-Far, Ali H.; Saleh, Rasha M.; Assar, Doaa H.; Al Jaouni, Soad K.; Mousa, Shaker A.

    2017-01-01

    Antioxidants have valuable effects on the process of spermatogenesis, particularly with diabetes mellitus (DM). Therefore, the present study investigated the impact and the intracellular mechanisms by which thymoquinone (TQ) works against diabetes-induced testicular deteriorations in rats. Wistar male rats (n = 60) were randomly allocated into four groups; Control, Diabetic (streptozotocin (STZ)-treated rats where diabetes was induced by intraperitoneal injection of STZ, 65 mg/kg), Diabetic + TQ (diabetic rats treated with TQ (50 mg/kg) orally once daily), and TQ (non-diabetic rats treated with TQ) for 12 weeks. Results revealed that TQ significantly improved the sperm parameters with a reduction in nitric oxide (NO) and malondialdehyde (MDA) levels in testicular tissue. Also, it increased testicular reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity. Interestingly, TQ induced downregulation of testicular inducible nitric oxide synthase (iNOS) and nuclear factor kappa-B (NF-κB) and significantly upregulated the aromatase protein expression levels in testicles in comparison with the diabetic rats. In conclusion, TQ treatment exerted a protective effect against reproductive dysfunction induced by diabetes not only through its powerful antioxidant and hypoglycemic effects but also through its downregulation of testicular iNOS and NF-κB along with upregulation of aromatase expression levels in diabetic rats. PMID:28448463

  4. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats

    PubMed Central

    2013-01-01

    Background The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied. Methods Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks. Results Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats. Conclusion Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters. PMID:24364912

  5. Growth Hormone (GH) Hypersecretion and GH Receptor Resistance in Streptozotocin Diabetic Mice in Response to a GH Secretagogue

    PubMed Central

    Segev, Yael; Landau, Daniel; Phillip, Moshe; Flyvbjerg, Allan

    2003-01-01

    The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35 μg/L and 62 ± 11 μg/L in the diabetic compared to the nondiabetic mice (P < .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats. PMID:14630569

  6. Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats.

    PubMed

    Naderi, R; Mohaddes, G; Mohammadi, M; Alihemmati, A; Badalzadeh, R; Ghaznavi, R; Ghyasi, R; Mohammadi, Sh

    2015-12-01

    Since some complications of diabetes mellitus may be caused or exacerbated by an oxidative stress, the protective effects of garlic (Allium sativum) were investigated in the blood and heart of streptozotocin-induced diabetic rats. Twenty-eight male Wistar rats were randomly divided into four groups: control, garlic, diabetic, and diabetic+garlic. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (50 mg/kg) in male rats. Rats were fed with raw fresh garlic homogenate (250 mg/kg) six days a week by gavage for a period of 6 weeks. At the end of the 6th week blood samples and heart tissues were collected and used for determination of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and histological evaluation. Induction of diabetes increased MDA levels in blood and homogenates of heart. In diabetic rats treated with garlic, MDA levels decreased in blood and heart homogenates. Treatment of diabetic rats with garlic increased SOD, GPX and CAT in blood and heart homogenates. Histopathological finding of the myocardial tissue confirmed a protective role for garlic in diabetic rats. Thus, the present study reveals that garlic may effectively modulate antioxidants status in the blood and heart of streptozotocin induced-diabetic rats.

  7. Enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation.

    PubMed

    Dorfman, Tatiana; Pollak, Yulia; Sohotnik, Rima; Coran, Arnold G; Bejar, Jacob; Sukhotnik, Igor

    2015-09-01

    The Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, and cell survival of the gastrointestinal epithelium. Recent evidence indicates that the Wnt/β-catenin pathway is activated under diabetic conditions. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during diabetes-induced enteropathy in a rat model. Male rats were divided into three groups: control rats received injections of vehicle; diabetic rats received injections of one dose of streptozotocin (STZ); and diabetic-insulin rats received injections of STZ and were treated with insulin given subcutaneously at a dose of 1 U/kg twice daily. Rats were killed on day 7. Wnt/β-catenin-related genes and expression of proteins was determined using real-time PCR, western blotting, and immunohistochemistry. Among 13 genes identified by real-time PCR, seven genes were upregulated in diabetic rats compared with control animals including the target genes c-Myc and Tcf4. Diabetic rats also showed a significant increase in β-catenin protein compared with control animals. Treatment of diabetic rats attenuated the stimulating effect of diabetes on intestinal cell proliferation and Wnt/β-catenin signaling. In conclusion, enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation. © 2015 Society for Endocrinology.

  8. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes

    PubMed Central

    Pieper, Andrew A.; Brat, Daniel J.; Krug, David K.; Watkins, Crystal C.; Gupta, Alok; Blackshaw, Seth; Verma, Ajay; Wang, Zhao-Qi; Snyder, Solomon H.

    1999-01-01

    Streptozotocin (STZ) selectively destroys insulin-producing beta islet cells of the pancreas providing a model of type I diabetes. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme whose overactivation by DNA strand breaks depletes its substrate NAD+ and then ATP, leading to cellular death from energy depletion. We demonstrate DNA damage and a major activation of PARP in pancreatic islets of STZ-treated mice. These mice display a 500% increase in blood glucose and major pancreatic islet damage. In mice with homozygous targeted deletion of PARP (PARP −/−), blood glucose and pancreatic islet structure are normal, indicating virtually total protection from STZ diabetes. Partial protection occurs in PARP +/− animals. Thus, PARP activation may participate in the pathophysiology of type I diabetes, for which PARP inhibitors might afford therapeutic benefit. PMID:10077636

  9. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats.

    PubMed

    Fernandes, Sheila Marques; Cordeiro, Priscilla Mendes; Watanabe, Mirian; Fonseca, Cassiane Dezoti da; Vattimo, Maria de Fatima Fernandes

    2016-10-01

    The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.

  10. Protective Effects of the Mushroom Lactarius deterrimus Extract on Systemic Oxidative Stress and Pancreatic Islets in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Mihailović, Mirjana; Arambašić Јovanović, Jelena; Uskoković, Aleksandra; Grdović, Nevena; Dinić, Svetlana; Vidović, Senka; Poznanović, Goran; Mujić, Ibrahim; Vidaković, Melita

    2015-01-01

    The aim of this study was to assess the in vivo effects of the extract of the medicinal mushroom, Lactarius deterrimus, when administered (60 mg/kg, i.p.) daily for four weeks to streptozotocin- (STZ-) induced diabetic rats. Diabetic rats treated with the L. deterrimus extract displayed several improved biochemical parameters in the circulation: reduced hyperglycemia, lower triglyceride concentration and reduced glycated hemoglobin, glycated serum protein, and advanced glycation end product (AGE) levels. This treatment also adjusted the diabetes-induced redox imbalance. Thus, higher activities of the antioxidative enzymes, superoxide dismutase, and catalase in the circulation were accompanied by increased levels of free intracellular thiols and glutathionylated proteins after treatment with the L. deterrimus extract. In addition to a systemic antioxidant effect, the administration of the extract to diabetic rats also had a positive localized effect on pancreatic islets where it decreased AGE formation, and increased the expression of chemokine CXCL12 protein that mediates the restoration of β-cell population through the activation of the serine/threonine-specific Akt protein kinase prosurvival pathway. As a result, the numbers of proliferating cell nuclear antigen- (PCNA-) and insulin-positive β-cells were increased. These results show that the ability of the L. deterrimus extract to alleviate oxidative stress and increase β-cell mass represents a therapeutic potential for diabetes management. PMID:26221612

  11. Modulation of Adipocytokines Production and Serum NEFA Level by Metformin, Glimepiride, and Sitagliptin in HFD/STZ Diabetic Rats

    PubMed Central

    Saad, Mohamed I.; Kamel, Maher A.; Hanafi, Mervat Y.

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a group of metabolic disorders characterized by hyperglycemia owing to insulin resistance and/or insulin deficiency. Current theories of T2DM pathophysiology include a decline in β-cells function, a defect in insulin signaling pathways, and a dysregulation of secretory function of adipocytes. This study aimed to investigate the effect of different antidiabetic drugs on serum levels of certain adipocytokines and nonesterified fatty acids (NEFA) in high-fat diet (HFD)/streptozotocin- (STZ-) induced diabetic rats. All treatments significantly decreased serum NEFA level. Metformin and sitagliptin increased serum adiponectin level, whereas they decreased serum leptin level. Glimepiride showed significant decline in serum levels of both adiponectin and leptin. All treatments remarkably ameliorated insulin resistance, suggested by an improvement of glycemic control, a significant reduction in homeostasis model assessment of insulin resistance (HOMA-IR), and a correction in lipid profile. Modulation of adipocytokines production (i.e., increased serum adiponectin and decreased serum leptin) may also underlie the improvement of insulin resistance and could be a possible mechanism for the beneficial cardiovascular effects of metformin and sitagliptin. PMID:25838947

  12. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. The Research on the Relationship of RAGE, LRP-1, and Aβ Accumulation in the Hippocampus, Prefrontal Lobe, and Amygdala of STZ-Induced Diabetic Rats.

    PubMed

    Ma, Lou-Yan; Fei, Yu-Lang; Wang, Xiao-Ye; Wu, Song-Di; Du, Jun-Hui; Zhu, Mei; Jin, Long; Li, Ming; Li, Hai-Long; Zhai, Jia-Jia; Ji, Lu-Peng; Ma, Ran-Ran; Liu, Song-Fang; Li, Mo; Ma, Li; Ma, Xiao-Rui; Qu, Qiu-Min; Lv, Ya-Li

    2017-05-01

    Diabetes mellitus (DM) has been regarded as an important risk factor for Alzheimer's disease (AD), and diabetic patients and animals have shown cognitive dysfunction. More research has shown that the amyloid-β (Aβ), which is a hallmark of AD, was found deposited in the hippocampus of diabetic rats. This Aβ accumulation is regulated by the receptor for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein (LRP-1). However, the expression of RAGE and LRP-1 in diabetic rats is not very clear. In the present study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether the expression of RAGE and LRP-1 is related to Aβ 1-42 deposition at the hippocampus, prefrontal lobe, and amygdala in DM. We found that diabetic rats had longer escape latency and less frequency of entrance into the target zone than that of the control group (P < 0.05) in the Morris water maze (MWM) test. The Aβ 1-42 expression in the hippocampus and prefrontal lobe significantly increased in the DM group compared to the control group (P < 0.05). RAGE increased (P < 0.05), while LRP-1 decreased (P < 0.05) in the hippocampus tissue and prefrontal lobe tissue of DM rats. The Aβ 1-42 deposition was correlated with RAGE positively (P < 0.05), but with LRP-1 negatively (P < 0.05). Further, the expression levels of Aβ 1-42 , RAGE, and LRP-1 were not changed in the amygdala between the diabetic rats and the control group. These findings indicated that upregulating RAGE and/or downregulating LRP-1 at the hippocampus and the prefrontal lobe contributed to the Aβ 1-42 accumulation and then further promoted the cognitive impairment of diabetic rats.

  14. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  15. Influence of low power density on wound healing in streptozotocin-induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Lau, Pik Suan; Bidin, Noriah; Islam, Shumaila; Musa, Nurfatin; Zakaria, Nurlaily; Krishnan, Ganesan

    2017-05-01

    Photobiomodulation therapy (PBMT) is used for wound healing at two different power densities, i.e. 0.2 W cm-2 and 0.4 W cm-2, while maintaining the same fluence of 5 J cm-2. Forty-five streptozotocin (STZ)-induced diabetic rats were allocated into three groups: the untreated laser group (G0), 0.2 W cm-2 laser treated group (GL1), and 0.4 W cm-2 laser treated group (GL2). Six mm full thickness cutaneous wounds are created on the dorsal side of rats. A 808 nm diode laser irradiates the wound in GL1 and GL2 daily for 9 consecutive days. Groups GL1 and GL2 have the same total fluence but different power densities, 0.2 W cm-2 and 0.4 W cm-2, which results in stimulatory and inhibitory effects in wound healing, respectively. In group GL1, enhanced wound contraction and inflammation has been triggered at an earlier stage compared to the untreated laser group G0. Meanwhile, the laser treated group GL2 exhibits an escalated volume of inflammatory cells, and collagen synthesis is inhibited. Therefore, it can be concluded that PBMT has potential in promoting wound healing under the low power density (0.2 W cm-2) condition.

  16. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model

    PubMed Central

    2014-01-01

    Background Diabetes mellitus is a heterogeneous metabolic disorders characterized by abnormally high levels of blood glucose The main objective of the present work is to study the effect of Alpinia calcarata on glucose uptake in streptozotocin (STZ) induced diabetic rats. Methods The diabetes was induced by single dose of STZ (45 mg/kg) in citrate buffer, while the normal control group was given the vehicle (citrate buffer) only. After induction of diabetes, the diabetic animals were treated with ethanolic extract of Alpinia calcarata (200 mg/kg) and glibenclamide (2 mg/kg) for 30 days. Blood glucose estimation was performed every week of the study. At the end of study period, animals were sacrificed for biochemical studies. Results Streptozotocin induced diabetic rats shows the altered levels of various biochemical profiles. Those levels were brought back to near normal upon treatment with ethanolic extract of Alpinia calcarata and standard drug glibanclamide. No significant changes were observed on treatment with plant extract alone group indicated that there are no toxic substances present in Alpinia calcarata. The antidiabetic activity of plant extract was also further confirmed by histopathological studies. The ethanolic extract of Alpinia calcarata shows significant inhibition of alpha glucosidase activity and also enhancing the glucose uptake in rat hemidiaphragm. Conclusions In conclusion, the ethanolic extract of Alpinia calcarata ameliorates the condition associated with diabetes. PMID:24502532

  17. Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: a gender difference

    PubMed Central

    2014-01-01

    Background Although multivitamin products are widely used as dietary supplements to maintain health or as special medical food in certain diseases, the effects of these products were not investigated in diabetes mellitus, a major cardiovascular risk factor. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) for human use affects the severity of experimental diabetes. Methods Two days old neonatal Wistar rats from both genders were injected with 100 mg/kg of streptozotocin or its vehicle to induce diabetes. At week 4, rats were fed with an MVT preparation or vehicle for 8 weeks. Well established diagnostic parameters of diabetes, i.e. fasting blood glucose and oral glucose tolerance test were performed at week 4, 8 and 12. Moreover, serum insulin and blood HbA1c were measured at week 12. Results An impaired glucose tolerance has been found in streptozotocin-treated rats in both genders at week 4. In males, fasting blood glucose and HbA1c were significantly increased and glucose tolerance and serum insulin was decreased at week 12 in the vehicle-treated diabetic group as compared to the vehicle-treated non-diabetic group. All of the diagnostic parameters of diabetes were significantly improved by MVT treatment in male rats. In females, streptozotocin treatment resulted in a less severe prediabetic-like phenotype as only glucose tolerance and HbA1c were altered by the end of the study in the vehicle-treated diabetic group as compared to the vehicle-treated non-diabetic group. MVT treatment failed to improve the diagnostic parameters of diabetes in female streptozotocin-treated rats. Conclusion This is the first demonstration that MVT significantly attenuates the progression of diabetes in male rats with chronic experimental diabetes. Moreover, we have confirmed that females are less sensitive to STZ-induced diabetes and MVT preparation did not show protection against prediabetic state. This may suggest a gender

  18. Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation.

    PubMed

    Nishiyama, Y; Kataoka, T; Teraoka, J; Sakoda, A; Tanaka, H; Ishimori, Y; Mitsunobu, F; Taguchi, T; Yamaoka, K

    2013-01-01

    We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.

  19. Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotocin-induced diabetic rats.

    PubMed

    Liang, Zhongshu; Leo, Sunnar; Wen, Helin; Ouyang, Mao; Jiang, Weihong; Yang, Kan

    2015-05-13

    Triptolide treatment leads to an improvement in Diabetic Cardiomyopathy (DCM) in streptozotocin-induced diabetic rat model. DCM is characterized by abnormal cardiac energy metabolism. We hypothesized that triptolide ameliorated cardiac metabolic abnormalities in DCM. We proposed (31)P nuclear magnetic resonance ((31)P NMR) spectrometry method for assessing cardiac energy metabolism in vivo and evaluating the effect of triptolide treatment in DCM rats. Six weeks triptolide treatment was conducted on streptozotocin-induced diabetic rats with dose of 100, 200 or 400 μg/kg/day respectively. Sex- and age-matched non-diabetic rats were used as control group. Cardiac chamber dimension and function were determined with echocardiography. Whole heart preparations were perfused with Krebs-Henseleit buffer and (31)P NMR spectroscopy was performed. Cardiac p38 Mitogen Activating Protein Kinase (MAPK) was measured using real time PCR and western blot analysis. In diabetic rats, cardiac mass index was significantly higher, where as cardiac EF was lower than control group. (31)P NMR spectroscopy showed that ATP and pCr concentrations in diabetic groups were also remarkably lower than control group. Compared to non-treated diabetic rats, triptolide-treated diabetic groups showed remarkable lower cardiac mass index and higher EF, ATP, pCr concentrations, and P38 MAPK expressions. Best improvement was seen in group treated with Triptolide with dose 200 μg/kg/day. (31)P NMR spectroscopy enables assessment of cardiac energy metabolism in whole heart preparations. It detects energy metabolic abnormalities in DCM hearts. Triptolide therapy improves cardiac function and increases cardiac energy metabolism at least partly through upregulation of MAPK signaling transduction.

  20. Opioid and noradrenergic contributions of tapentadol to the inhibition of locus coeruleus neurons in the streptozotocin rat model of polyneuropathic pain.

    PubMed

    Torres-Sanchez, Sonia; Borges, Gisela Da Silva; Mico, Juan A; Berrocoso, Esther

    2018-06-01

    Tapentadol is an analgesic that acts as an agonist of µ opioid receptors (MOR) and that inhibits noradrenaline reuptake. Data from healthy rats show that tapentadol inhibits neuronal activity in the locus coeruleus (LC), a nucleus regulated by both the noradrenergic and opioid systems. Thus, we set out to investigate the effect of tapentadol on LC activity in streptozotocin (STZ)-induced diabetic rats, a model of diabetic polyneuropathy, by analyzing single-unit extracellular recordings of LC neurons. Four weeks after inducing diabetes, tapentadol dose-response curves were obtained from animals pre-treated with RX821002 or naloxone (alpha2-adrenoceptors and opioid receptors antagonists, respectively). In STZ rats, the spontaneous activity of LC neurons (0.9 ± 0.1 Hz) was lower than in naïve animals (1.5 ± 0.1 Hz), and tapentadol's inhibitory effect was also weaker. Alpha2-adrenoceptors blockade by RX821002 (100 μg/kg i.v.) in STZ animals significantly increased the spontaneous activity (from 0.8 ± 0.1 to 1.4 ± 0.2 Hz) and it dampened the inhibition of LC neurons produced by tapentadol. However, opioid receptors blockade following naloxone pre-treatment (5 mg/kg i.v.) did not alter the spontaneous firing rate (0.9 ± 0.2 vs 0.9 ± 0.2 Hz) or the inhibitory effect of tapentadol on LC neurons in STZ animals. Thus, diabetic polyneuropathy appears to exert neuroplastic changes in LC neurotransmission, enhancing the sensitivity of alpha2-adrenoceptors and dampening opioid receptors expression. Tapentadol's activity seems to be predominantly mediated through its noradrenergic effects rather than its influence on opioid receptors in the STZ model of diabetic polyneuropathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of an aqueous extract of Scoparia dulcis on plasma and tissue glycoproteins in streptozotocin induced diabetic rats.

    PubMed

    Latha, M; Pari, L

    2005-02-01

    The influence of Scoparia dulcis, a traditionally used plant for the treatment of diabetes mellitus, was examined in streptozotocin diabetic rats on dearrangement in glycoprotein levels. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin. An aqueous extract of Scoparia dulcis plant was administered orally for 6 weeks. The effect of the Scoparia dulcis extract on blood glucose, plasma insulin, plasma and tissue glycoproteins studied was in comparison to glibenclamide. The levels of blood glucose and plasma glycoproteins were increased significantly whereas the level of plasma insulin was significantly decreased in diabetic rats. There was a significant decrease in the level of sialic acid and elevated levels of hexose, hexosamine and fucose in the liver and kidney of streptozotocin diabetic rats. Oral administration of Scoparia dulcis plant extract (SPEt) to diabetic rats led to decreased levels of blood glucose and plasma glycoproteins. The levels of plasma insulin and tissue sialic acid were increased whereas the levels of tissue hexose, hexosamine and fucose were near normal. The present study indicates that Scoparia dulcis possesses a significant beneficial effect on glycoproteins in addition to its antidiabetic effect.

  2. Protective Effect of Ischemic Preconditioning on Myocardium Against Remote Tissue Injury Following Transient Focal Cerebral Ischemia in Diabetic Rats

    PubMed Central

    Kumas, Meltem; Altintas, Ozge; Karatas, Ersin; Kocyigit, Abdurrahim

    2017-01-01

    Background Remote ischemic preconditioning (IPreC) could provide tissue-protective effect at a remote site by anti-inflammatory, neuronal, and humoral signaling pathways. Objectives The aim of the study was to investigate the possible protective effects of remote IPreC on myocardium after transient middle cerebral artery occlusion (MCAo) in streptozotocin- induced diabetic (STZ) and non-diabetic rats. Methods 48 male Spraque Dawley rats were divided into eight groups: Sham, STZ, IPreC, MCAo, IPreC+MCAo, STZ+IPreC, STZ+MCAo and STZ+IPreC+MCAo groups. We induced transient MCAo seven days after STZ-induced diabetes, and performed IPreC 72 hours before transient MCAo. Remote myocardial injury was investigated histopathologically. Bax, Bcl2 and caspase-3 protein levels were measured by Western blot analysis. Total antioxidant status (TAS), total oxidant status (TOS) of myocardial tissue were measured by colorimetric assay. Oxidative stress index(OSI) was calculated as TOS-to-TAS ratio. For all statistical analysis, p values < 0.05 were considered significant. Results We observed serious damage including necrosis, congestion and mononuclear cell infiltration in myocardial tissue of the diabetic and ischemic groups. In these groups TOS and OSI levels were significantly higher; TAS levels were lower than those of IPreC related groups (p < 0.05). IPreC had markedly improved histopathological alterations and increased TAS levels in IPreC+MCAo and STZ+IPreC+MCAo compared to MCAo and STZ+MCAo groups (p < 0.05). In non-diabetic rats, MCAo activated apoptotic cell death via increasing Bax/Bcl2 ratio and caspase-3 levels. IPreC reduced apoptotic cell death by suppressing pro-apoptotic proteins. Diabetes markedly increased apoptotic protein levels and the effect did not reversed by IPreC. Conclusions We could suggest that IPreC attenuates myocardial injury via ameliorating histological findings, activating antioxidant mechanisms, and inducing antiapoptotic activity in diabetic

  3. Effects of short-term streptozotocin-induced diabetes and vitamin C on platelet non-enzymatic glycation.

    PubMed

    Batırel, Saime; Yarat, Ayşen; Emekli, Nesrin

    2010-01-01

    Diabetes mellitus is one of the most prevalent metabolic syndromes worldwide. Glycation, a chemical modification of proteins with reducing sugars, indicates a possible explanation for the association between hyperglycemia and the wide variety of tissue pathologies. Non-enzymatic glycation (NEG) of platelet proteins is one of the key mechanisms in the pathogenesis of diabetic complications and may be significant in diabetic atherothrombosis. The aim of this study was to investigate the effects of streptozotocin (STZ)-induced short-term experimental diabetes on the glycation of platelets and to find out if vitamin C affected this glycation. A total of 40 male Wistar albino rats, 200-250 g, were randomly divided into 4 groups (2 diabetic and 2 control groups). The diabetic groups were made diabetic by intraperitoneal injection of STZ (65 mg/kg, citrate buffer pH 4.5). By daily intraperitoneal injection, 80 mg/kg vitamin C (Roche, Turkey) was administered until the end of the experiment. Blood glucose levels of the diabetic groups were significantly higher than those at day 0 and also higher than those of the non-diabetic control groups. The changes in total protein, NEG and vitamin C levels were not statistically significant. Although the differences among the groups were not statistically significant, vitamin C administration increased NEG levels in the diabetic group. The results of this study demonstrate that 8 days of STZ-induced short-term diabetes did not cause a significant increase in NEG of platelets. However, the effect of vitamin C on platelet NEG needs to be further investigated. Copyright © 2011 S. Karger AG, Basel.

  4. Scoparia dulcis, a traditional antidiabetic plant, protects against streptozotocin induced oxidative stress and apoptosis in vitro and in vivo.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Sitasawad, Sandhya; Bhonde, Ramesh

    2004-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications. The experiments were performed on normal and experimental male Wistar rats treated with Scoparia dulcis plant extract (SPEt). The effect of SPEt was tested on streptozotocin (STZ) treated Rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. Administration of an aqueous extract of Scoparia dulcis by intragastric intubation (po) at a dose of 200 mg/kg body weight significantly decreased the blood glucose and lipid peroxidative marker thiobarbituric acid reactive substances (TBARS) with significant increase in the activities of plasma insulin, pancreatic superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in streptozotocin diabetic rats at the end of 15 days treatment. Streptozotocin at a dose of 10 mug/mL evoked 6-fold stimulation of insulin secretion from isolated islets indicating its insulin secretagogue activity. The extract markedly reduced the STZ-induced lipidperoxidation in RINm5F cells. Further, SPEt protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. Treatment of RINm5F cells with 5 mM STZ and 10 mug of SPEt completely abrogated apoptosis induced by STZ, suggesting the involvement of oxidative stress. Flow cytometric assessment on the level of intracellular peroxides using fluorescent probe 2'7'-dichlorofluorescein diacetate (DCF-DA) confirmed that STZ (46%) induced an intracellular oxidative stress in RINm5F cells, which was suppressed by SPEt (21%). In addition, SPEt also reduced (33%) the STZ-induced apoptosis (72%) in RINm5F cells indicating the mode of protection of SPEt on RIN m5Fcells, islets, and pancreatic beta-cell mass (histopathological observations). Present study thus confirms antihyperglycemic effect of SPEt and also demonstrated the consistently strong antioxidant properties of Scoparia dulcis used in the traditional medicine. (c) 2004 Wiley Periodicals, Inc.

  5. Quantification of Quercetin Obtained from Allium cepa Lam. Leaves and its Effects on Streptozotocin-induced Diabetic Neuropathy.

    PubMed

    Dureshahwar, Khan; Mubashir, Mohammed; Une, Hemant Devidas

    2017-01-01

    Antioxidant potential has protective effects in diabetic neuropathy (DN); hence, the present study was designed with an objective to quantify quercetin from shade-dried leaves of Allium cepa Lam. and to study its effects on streptozotocin (STZ)-induced chronic DN. The shade-dried leaves of A. cepa Lam. were extracted with methanol and then fractionated using ethyl acetate (ACEA). The quantification of quercetin in ACEA was evaluated by high-performance thin layer chromatography (HPTLC). The STZ (40 mg/kg) was administered to Sprague-Dawley rats (180-250 g) maintained at normal housing conditions. The STZ was administered once a day for 3 consecutive days. The elevation in blood glucose was monitored for 3 weeks periodically using flavin adenine dinucleotide-glucose dehydrogenase method by Contour TS glucometer. Rats showing blood glucose above 250 mg/dl were selected for the study. Animals were divided into eight groups. ACEA (25, 50, and 100 mg/kg), quercetin (40 mg/kg), metformin (120 mg/kg), and gabapentin (100 mg/kg) were given orally once a day for 2 weeks. The blood glucose level was again measured at the end of treatment to assess DN. Thermal hyperalgesia, cold allodynia, motor incoordination, and neurotoxicity were studied initially and at the end of 2-week treatment. Biochemical parameters were also evaluated after 2-week drug treatment. The quercetin present in ACEA was 4.82% by HPTLC. All the ACEA treatment reduces blood glucose level at the end of the 2-week study and shows a significant neuroprotective effect in STZ-induced DN in the above experimental models. The quercetin present in ACEA proved protective effect in STZ-induced DN. High-performance thin layer chromatography reveals the presence of 4.82% quercetin in Allium cepa ethyl acetate. (ACEA). Its investigation against various diabetic neuropathy biomarkers has proved that ACEA has significant blood glucose reducing action shown neuroprotective action in thermal hyperalgesia, motor

  6. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2011-01-15

    Diabetes mellitus causes derangement of carbohydrate, protein and lipid metabolism which eventually leads to a number of secondary complications. Terminalia bellerica is widely used in Indian medicine to treat various diseases including diabetes. The present study was carried out to isolate and identify the putative antidiabetic compound from the fruit rind of T. bellerica and assess its chemico-biological interaction in experimental diabetic rat models. Bioassay guided fractionation was followed to isolate the active compound, structure was elucidated using (1)H and (13)C NMR, IR, UV and mass spectrometry and the compound was identified as gallic acid (GA). GA isolated from T. bellerica and synthetic GA was administered to streptozotocin (STZ)-induced diabetic male Wistar rats at different doses for 28 days. Plasma glucose level was significantly (p<0.05) reduced in a dose-dependent manner when compared to the control.Histopathological examination of the pancreatic sections showed regeneration of β-cells of islets of GA-treated rats when compared to untreated diabetic rats. In addition, oral administration of GA (20mg/kg bw) significantly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid, creatinine and at the same time markedly increased plasma insulin, C-peptide and glucose tolerance level. Also GA restored the total protein, albumin and body weight of diabetic rats to near normal. Thus our findings indicate that gallic acid present in fruit rind of T. bellerica is the active principle responsible for the regeneration of β-cells and normalizing all the biochemical parameters related to the patho-biochemistry of diabetes mellitus and hence it could be used as a potent antidiabetic agent. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. In Vivo Evaluation of Anti Diabetic, Hypolipidemic, Antioxidative Activities of Saudi Date Seed Extract on Streptozotocin Induced Diabetic Rats.

    PubMed

    Hasan, Marghoob; Mohieldein, Abdelmarouf

    2016-03-01

    Phoenix dactylifera (date palm) is major fruit of gulf region. In folk medicine; dates have been traditionally use. The date seed is used as hypoglycaemic, expectorant, tonic, aphrodisiac, antidiarrheic and mouth hygiene. This study intended to evaluate the anti-diabetic, hypolipidaemic and antioxidative activities of date seed extract in diabetes-induced rats. Total of seven groups of rats, consisting of control rats and streptozotocin induced diabetic rats treated with aqueous seed extract in concentration of 100g/L in dosage of 10ml/day/rat. To evaluate the anti-diabetic property, glucose and weight was analysed weekly and at the end of eight week all rats were sacrificed. To evaluate the hypolipidaemic and antioxidative activities, serum cholesterol, triglyceride, malondialdehyde, superoxide dismutase, 8-hydroxy-2'-deoxyguanosine were estimated. Liver enzymes and kidney function tests were performed. Moreover to verify the glycaemic effect; glycated haemoglobin and serum insulin was performed. Aqueous seed extract in concentration of 100 gm/L in dosage of 10ml/day/rat brings a significant reduction of blood glucose levels in diabetic rats in comparison of control rats. There were significant differences in the investigated clinical chemistry and oxidative stress parameters between control and diabetic rats with both seed extract of Ajwa and Sukkari dates. Present study verifies the antidiabetic property, of aqueous seed extracts of two different varieties of dates namely Ajwa and Sukkari of Kingdom of Saudi on streptozotocin induced Diabetic rats. Prolong treatments with the extract restores the function of liver and kidney and balance the oxidative stress condition in diabetic treated rats.

  8. Antioxidant activity of Artocarpus heterophyllus Lam. (Jack Fruit) leaf extracts: remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats.

    PubMed

    Omar, Haidy S; El-Beshbishy, Hesham A; Moussa, Ziad; Taha, Kamilia F; Singab, Abdel Nasser B

    2011-04-05

    The present study examines the antioxidative, hypoglycemic, and hypolipidemic activities of Artocarpus heterophyllus (jack fruit) leaf extracts (JFEs). The 70% ethanol (JFEE), n-butanol (JFBE), water (JFWE), chloroform (JFCE), and ethyl acetate (JFEAE) extracts were obtained. Both JFEE and JFBE markedly scavenge diphenylpicrylhydrazyl radical and chelate Fe+2 in vitro. A compound was isolated from JFBE and identified using 1D and 2D 1H- and 13C-NMR. The administration of JFEE or JFBE to streptozotocin (STZ)-diabetic rats significantly reduced fasting blood glucose (FBG) from 200 to 56 and 79 mg%, respectively; elevated insulin from 10.8 to 19.5 and 15.1 µU/ml, respectively; decreased lipid peroxides from 7.3 to 5.4 and 5.9 nmol/ml, respectively; decreased %glycosylated hemoglobin A1C (%HbA1C) from 6.8 to 4.5 and 5.0%, respectively; and increased total protein content from 2.5 to 6.3 and 5.7 mg%, respectively. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), VLDL-C, and LDL/HDL ratio significantly declined by -37, -19, -23, -37, and -39%, respectively, in the case of JFEE; and by -31, -14, -17, -31, and -25%, respectively, in the case of JFBE; as compared to diabetic rats. HDL-C increased by +37% (JFEE) and by +11% (JFBE). Both JFEE and JFBE have shown appreciable results in decreasing FBG, lipid peroxides, %HbA1C, TC, LDL-C, and TG levels, and increasing insulin, HDL-C, and protein content. The spectrometric analysis confirmed that the flavonoid isolated from JFBE was isoquercitrin. We can conclude from this study that JFEE and JFBE exert hypoglycemic and hypolipidemic effects in STZ-diabetic rats through an antioxidative pathway that might be referred to their flavonoid contents.

  9. Antioxidant Activity of Artocarpus heterophyllus Lam. (Jack Fruit) Leaf Extracts: Remarkable Attenuations of Hyperglycemia and Hyperlipidemia in Streptozotocin-Diabetic Rats

    PubMed Central

    Omar, Haidy S.; El-Beshbishy, Hesham A.; Moussa, Ziad; Taha, Kamilia F.; Singab, Abdel Nasser B.

    2011-01-01

    The present study examines the antioxidative, hypoglycemic, and hypolipidemic activities of Artocarpus heterophyllus (jack fruit) leaf extracts (JFEs). The 70% ethanol (JFEE), n-butanol (JFBE), water (JFWE), chloroform (JFCE), and ethyl acetate (JFEAE) extracts were obtained. Both JFEE and JFBE markedly scavenge diphenylpicrylhydrazyl radical and chelate Fe+2in vitro. A compound was isolated from JFBE and identified using 1D and 2D 1H- and 13C-NMR. The administration of JFEE or JFBE to streptozotocin (STZ)-diabetic rats significantly reduced fasting blood glucose (FBG) from 200 to 56 and 79 mg%, respectively; elevated insulin from 10.8 to 19.5 and 15.1 μU/ml, respectively; decreased lipid peroxides from 7.3 to 5.4 and 5.91 nmol/ml, respectively; decreased %glycosylated hemoglobin A1C (%HbA1C) from 6.8 to 4.5 and 5.0%, respectively; and increased total protein content from 2.5 to 6.3 and 5.7 mg%, respectively. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), VLDL-C, and LDL/HDL ratio significantly declined by -37, -19, -23, -37, and -39%, respectively, in the case of JFEE; and by -31, -14, -17, -31, and -25%, respectively, in the case of JFBE; as compared to diabetic rats. HDL-C increased by +37% (JFEE) and by +11% (JFBE). Both JFEE and JFBE have shown appreciable results in decreasing FBG, lipid peroxides, %HbA1C, TC, LDL-C, and TG levels, and increasing insulin, HDL-C, and protein content. The spectrometric analysis confirmed that the flavonoid isolated from JFBE was isoquercitrin. We can conclude from this study that JFEE and JFBE exert hypoglycemic and hypolipidemic effects in STZ-diabetic rats through an antioxidative pathway that might be referred to their flavonoid contents. PMID:21479350

  10. Effect of pioglitazone on vasopressor responses to adrenergic agonists and angiotensin II in diabetic and non-diabetic spontaneously hypertensive rats.

    PubMed

    Afzal, Sheryar; Sattar, Munavvar Abdul; Akhtar, Safia; Binti Abdullah, Nor Azizan; Eseyin, Olorunfemi A; Abdulla, Mohammed H; Johns, Edward James

    2018-05-01

    Pioglitazone, peroxisome proliferator-activated receptor (PPAR-γ) agonist, is a therapeutic drug for diabetes. Present study investigated the interaction between PPAR-γ and alpha adrenoceptors in modulating vasopressor responses to Angiotensin II (Ang II) and adrenergic agonists, in diabetic & non-diabetic Spontaneously Hypertensive Rats (SHRs). Diabetes was induced with an i.p injection of streptozotocin (40 mg/kg) in two groups (STZ-CON, STZ-PIO), whereas two groups remained non diabetic (ND-CO, ND-PIO). One diabetic and non-diabetic group received Pioglitazone (10mg/kg) orally for 21 days. On day 28, the animals were anaesthetized with sodium pentobarbitone (60mg/kg) and prepared for measurement of systemic haemodynamics. Basal mean arterial pressure of STZ-CON was higher than ND-CON, whereas following pioglitazone treatment, MAP was lower compared to respective controls. MAP responses to i.v administration of NA, PE, ME and ANG II were significantly lower in diabetic SHRs: STZ-CON vs ND-CON (35%). Pioglitazone significantly decreased responses to NA, PE, ME and ANG II in ND-PIO versus ND-CON by 63%. Responses to NA and ANG II were significantly attenuated in STZ-PIO vs. ND-PIO (40%). PPAR-γ regulates systemic hemodynamic in diabetic model and cross-talk relationship exists between PPAR-γ and α1-adrenoceptors, ANG II in systemic vasculature of SHRs.

  11. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats.

    PubMed

    Yoshizawa, Tsuyoshi; Hayashi, Yukio; Yoshida, Akira; Yoshida, Shohei; Ito, Yoshihiko; Yamaguchi, Kenya; Yamada, Shizuo; Takahashi, Satoru

    2018-03-01

    To investigate time course of bladder dysfunction and concurrent changes in number and affinity of the muscarinic and P 2 X receptor in the early stage of streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by the intraperitoneal injection of 50 mg/kg of STZ to 7-week-old female Wistar rats. We performed recording of 24-h voiding behavior and cystometry at 1, 4, 8, and 12 weeks after the induction of diabetes. A muscle strip experiments with electrical field stimulation (EFS), carbachol, and α,β-methylene adenosine 5'-triphosphate (α,β-MeATP) were also performed at the same time-points. Additionally, concurrent changes in number and affinity of bladder muscarinic and P 2 X receptor were measured by a radioreceptor assay using [N-methyl- 3 H] scopolamine methyl chloride ([ 3 H]NMS) and α,β-methylene-ATP (2,8- 3 H) tetrasodium salt ([ 3 H]α,β-MeATP). In STZ-induced diabetic rats, polydipsic polyuric pollakiuria were noted on recording of 24-h voiding behavior from early stage. Also, the residual urine volume markedly increased in diabetic rats on cystometry. In the muscle strip experiment, the detrusor contractions induced by EFS, carbachol, and α,β-MeATP were enhanced in STZ-induced diabetic rats. Based on the radioreceptor assay, the maximum number of sites (Bmax) for the specific binding of [ 3 H]NMS and [ 3 H]α,β-MeATP was concurrently increased in the bladder from diabetic rats. Increased bladder contractility is found in early stage of diabetic rats. Then, bladder dysfunction is associated with increased number of muscarinic and P 2 X receptors in STZ-induced diabetic rats.

  12. Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat's model via suppression of augmented TGF-β1/Smad3 signaling pathway.

    PubMed

    Al-Rasheed, Nouf Mohamed; Al-Rasheed, Nawal Mohamed; Al-Amin, Maha Abdelrahman; Hasan, Iman Huesein; Al-Ajmi, Hanaa Najeeb; Mohammad, Raeesa Ahmed; Attia, Hala Aboulfotooh

    2016-10-01

    Fibrates, the ligands of peroxisome profileferator-activated receptor-α have been shown to have a renal protective action in diabetic nephropathy (DN). This study aimed to elucidate the effect of fenofibrate on renal transforming growth factor-β1 (TGF-β1) and Smad3 in Streptozotocin (STZ)-induced DN. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (55 mg/kg). Diabetic rats were given fenofibrate (100 mg/kg, p.o.). After 12 weeks, diabetic nephropathy biomarkers were assessed. The mRNA expression of collage I and III, TGF-β1 and Smad3 and were detected by RT-PCR. Fenofibrate reduced significantly serum creatinine, kidney/body weight ratio, serum albumin excretion Collage I & III, TGF-β1 and Smad3 mRNA expression. Our results give further insights into the mechanisms underlying the protective role of fenofibrate in DN, suggesting that interference with TGF-β1/Smad3 signaling pathway may be a useful therapeutic approach to prevent DN.

  13. In vivo Investigation of Anti-diabetic Properties of Ripe Onion Juice in Normal and Streptozotocin-induced Diabetic Rats

    PubMed Central

    Lee, Chul-Won; Lee, Hyung-Seok; Cha, Yong-Jun; Joo, Woo-Hong; Kang, Dae-Ook; Moon, Ja-Young

    2013-01-01

    The acute and subacute hypoglycemic and antihyperglycemic effects of drinkable ripe onion juice (Commercial product name is “Black Onion Extract”) were investigated in normal and streptozotocin-induced diabetic rats. For tests of acute and subacute hypoglycemic effects, ripe onion juice (5 and 15 mL/kg b.w.) was administered by oral gavage to normal Sprague Dawley rats and measurements of fasting glucose levels and oral glucose tolerance tests were performed. Tolbutamide was used as a reference drug at a single oral dose of 250 mg/kg b.w. To test anti-hyper-glycemic activity, the ripe onion juice was administered to streptozotocin-induced diabetic rats by oral gavage at single dose of 15 mL/kg b.w. per day for 7 consecutive days. Oral administration of the ripe onion juice at either dosed level of 5 or 15 mL/kg b.w. showed no remarkable acute hypoglycemic effect in normal rats. The two dosed levels caused a relatively small reduction, only 18% and 12% (5 and 15 mL/kg b.w., respectively) decrease in glucose levels at 2 h after glucose loading in normal rats. However, at 3 h after glucose loading, blood glucose levels in the ripe onion juice-dosed rats were decreased to the corresponding blood glucose level in tolbutamide-dosed rats. Although showing weak hypoglycemic potential compared to that of tolbutamide, oral administration of ripe onion juice (15 mL/kg b.w.) for a short period (8 days) resulted in a slight reduction in the blood glucose levels that had elevated in Streptozotocin-induced diabetic rats. In conclusion, these results suggest that the commercial product “Black Onion Extract” may possess anti-hyperglycemic potential in diabetes. PMID:24471128

  14. Perinatal polyunstaurated fatty acids supplementation causes alterations in fuel homeostasis in adult male rats but does not offer resistance against STZ-induced diabetes.

    PubMed

    van Dijk, G; Kacsándi, A; Kóbor-Nyakas, D E; Hogyes, E; Nyakas, C

    2011-12-01

    Maternal factors can have major imprinting effects on homeostatic mechanisms in the developing fetus and newborn. Here we studied whether supplemented perinatal polyunsaturated fatty acids (PUFAs) influence energy balance and fuel homeostasis later in life. Between day 10 after conception and day 10 after delivery, female rats were subjected to chow enriched with 10% fish-oil (FO-rich). Fish oil contains high concentrations of n-3 biosynthesis endpoint products, which may have caused the increased membrane phospholipid incorporation (particularly derived from the long-chain 20 +:n-3 PUFAs) in 10-day old pup brains. Adult male offspring of FO-rich fed rats had reduced body weight (- 20%) at 3 months, and had lower levels of plasma leptin (- 54%), insulin (- 41%), triglycerides (- 65%), and lactate (- 46%) than controls. All differences between groups were lost 48 h after streptozotocin (STZ) treatment. At 4.5 months of age, body weights of FO-rich were still lower (- 6%) than controls, but were associated with increased food intake, and increased insulin sensitivity (following intraperitoneal injection) to lower blood glucose levels relative to controls. We concluded that perinatal FO supplementation has lasting effects on body weight homeostasis and fuel metabolism in male offspring, but does not offer resistance against STZ-induced diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Effect of trimetazidine treatment on the transient outward potassium current of the left ventricular myocytes of rats with streptozotocin-induced type 1 diabetes mellitus.

    PubMed

    Xiang, Yu-luan; He, Li; Xiao, Jun; Xia, Shuang; Deng, Song-bai; Xiu, Yun; She, Qiang

    2012-03-01

    Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (Ito) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM + TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg-1·day-1). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of Ito was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated Ito reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced Ito of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.

  16. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats.

    PubMed

    Zhao, Yuxing; Shen, Zhaoxing; Zhang, Dongling; Luo, Huiqiong; Chen, Jinliang; Sun, Yue; Xiao, Qian

    2017-06-01

    Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.

  17. Chronic treatment of (R)-α-lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats.

    PubMed

    Ghelani, Hardik; Razmovski-Naumovski, Valentina; Nammi, Srinivas

    2017-06-01

    (R)- α -lipoic acid ( ALA ), an essential cofactor in mitochondrial respiration and a potential antioxidant, possesses a wide array of metabolic benefits including anti-obesity, glucose lowering, insulin-sensitizing, and lipid-lowering effects. In this study, the curative effects of ALA (100 mg/kg) on a spectrum of conditions related to metabolic syndrome and type 2 diabetes ( T2D ) were investigated in a high-fat diet (HFD)-fed and low-dose streptozotocin (STZ)-induced rat model of metabolic syndrome and T2D . The marked rise in the levels of glucose, triglycerides, total-cholesterol, LDL-cholesterol, and VLDL-cholesterol in the blood of HFD-fed and low-dose STZ-injected rats were significantly reduced by ALA treatment. Furthermore, ALA treatment significantly increased the serum HDL-cholesterol levels and tended to inhibit diabetes-induced weight reduction. Mathematical computational analysis revealed that ALA also significantly improved insulin sensitivity and reduced the risk of atherosclerotic lesions and coronary atherogenesis. This study provides scientific evidence to substantiate the use of ALA to mitigate the glucose and lipid abnormality in metabolic syndrome and T2D .

  18. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats

    PubMed Central

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-01-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli (Brassica oleracea) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics (P<0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values (P<0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes. PMID:29333379

  19. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    PubMed

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  20. Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin-induced diabetic rats.

    PubMed

    Arul, B; Kothai, R; Christina, A J M

    2004-12-01

    The effect of ethanolic extract of dried nuts of Semecarpus anacardium on blood glucose was investigated in both normal (hypoglycemic) and streptozotocin-induced diabetic (antihyperglycemic) rats. The blood glucose levels were measured at 0, 1, 2 and 3 h after the treatment. The ethanolic extract of S. anacardium (100 mg/kg) reduced the blood glucose of normal rats from 85.83 +/- 1.55 to 65.83 +/- 2.20 mg/dl, 3 h after oral administration of the extract (p < 0.05). It also significantly lowered blood glucose levels in streptozotocin-induced diabetic rats from 335.33 +/- 4.90 to 132.17 +/- 4.49 mg/dl, 3 h after oral administration of the extract (p < 0.05). The antihyperglycemic activity of S. anacardium was compared with tolbutamide, a sulfonyl urea derivative used in diabetes mellitus. 2004 Prous Science

  1. Isolation and structural characterization of 2R, 3R taxifolin 3-O-rhamnoside from ethyl acetate extract of Hydnocarpus alpina and its hypoglycemic effect by attenuating hepatic key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Balamurugan, Rangachari; Vendan, Subramanian Ezhil; Aravinthan, Adithan; Kim, Jong-Hoon

    2015-04-01

    Hydnocarpus alpina Wt. (Flacourtiaceae) (H. alpina) is a large tree traditionally used to treat leprosy; it also posses antidiabetic property. The present study was undertaken to isolate, characterize and to evaluate the antidiabetic effect of 2R, 3R taxifolin 3-O-rhamnoside. (rhamnoside) and its impact on carbohydrate metabolic key enzymes in control and streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (40 mg/kg). Oral administration of rhamnoside for 21 days significantly reduced food intake, calorie intake, blood glucose and glycosylated hemoglobin levels, and improved plasma insulin levels. Administration of rhamnoside showed significant increase in the body weight, body composition (Lean body weight (LBW) and retro body fat), glycolytic hexokinase, glucose-6-phophate dehydrogenase and pyruvate kinase levels where as significant decrease was observed in the levels of glucose-6-phosphatase fructose-1, 6-bisphosphatase and lactate dehydrogenase in diabetic treated rats. Further, administration of rhamnoside significantly improved the glycogen content, glycogen synthase and glycogen phosphorylase, suggesting the antihyperglycemic potential of rhamnoside in diabetic rats. The results obtained were compared with glibenclamide a standard hypoglycaemic drug. Immunohistopathological study of pancreas revealed increased number of β-cells and insulin granules in diabetes-induced rats after treatment with rhamnoside for 21 days. Furthermore, Co-administration of rhamnoside (50 mg/kg) with nifedipine (13.6 mg/kg), a Ca(2+)ion channel blocker, or nicorandil (6.8 mg/kg), an ATP-sensitive K(+) ion channel opener, reveals the insulin secretion property of rhamnoside via a K(+)-ATP channels dependent pathway in diabetic rats. In conclusion, rhamnoside normalized blood glucose, glycosylated hemoglobin, key hepatic enzymes and glycogen content by increasing insulin secretion via K

  2. Diabetes Diminishes the Portal-Systemic Collateral Vascular Response to Vasopressin via Vasopressin Receptor and Gα Proteins Regulations in Cirrhotic Rats

    PubMed Central

    Lee, Jing-Yi; Huo, Teh-Ia; Wang, Sun-Sang; Lin, Han-Chieh; Chuang, Chiao-Lin; Lee, Shou-Dong

    2013-01-01

    Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation. PMID:23874439

  3. Diabetes diminishes the portal-systemic collateral vascular response to vasopressin via vasopressin receptor and Gα proteins regulations in cirrhotic rats.

    PubMed

    Lee, Jing-Yi; Huo, Teh-Ia; Wang, Sun-Sang; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Chuang, Chiao-Lin; Lee, Shou-Dong

    2013-01-01

    Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation.

  4. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishizaka, Masanori; Gohda, Tomohito, E-mail: goda@juntendo.ac.jp; Takagi, Miyuki

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, althoughmore » ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.« less

  5. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    PubMed

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats.

    PubMed

    Meena, Sunita; Rajput, Yudhishthir S; Pandey, Amit K; Sharma, Rajan; Singh, Raghvendar

    2016-08-01

    This study was designed to assess anti-diabetic potential of goat, camel, cow and buffalo milk in streptozotocin (STZ) induced type 1 diabetic albino wistar rats. A total of 48 rats were taken for the study where one group was kept as non-diabetic control group (8 rats) while others (40 rats) were made diabetic by STZ (50 mg/kg of body weight) injection. Among diabetic rats, a control group (8 rats) was kept and referred as diabetic control whereas other four groups (8 rats each) of diabetic rats were fed on 50 ml of goat or camel or cow or buffalo milk for 4 weeks. All the rats (non-diabetic and diabetic) were maintained on standard diet for four weeks. STZ administration resulted in enhancement of glucose, total cholesterol, triglyceride, low density lipoprotein, HbA1c and reduction in high density lipoprotein in plasma and lowering of antioxidative enzymes (catalase, glutathione peroxidase and superoxide dismutase) activities in pancreas, kidney, liver and RBCs, coupled with enhanced levels of TBARS and protein carbonyls in pancreas, kidney, liver and plasma. OGTT carried out at the end of 4 week milk feeding indicated that all milks helped in early maintenance of glucose level. All milks reduced atherogenic index. In camel milk fed diabetic group, insulin concentration enhanced to level noted for non-diabetic control while goat, cow and buffalo milk failed to restore insulin level. HbA1c level was also restored only in camel milk fed diabetic group. The level of antioxidative enzymes (catalase, GPx and SOD) in pancreas enhanced in all milk fed groups. Camel milk and to a reasonable extent goat milk reduced formation of TBARS and PCs in tissues and blood. It can be concluded that camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats. Further, only camel milk completely ameliorated oxidative damage in pancreas and normalised insulin level.

  7. Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats.

    PubMed

    Fouad, Amr A; Alwadani, Fahad

    2015-11-01

    The possible protective effect of thymoquinone against eye lens changes in diabetic rats was investigated. Following diabetes induction by a single injection of streptozotocin (45 mg/kg, i.p.), thymoquinone was administered in three different doses (20, 40, and 80 mg/kg/day, p.o.) for 12 weeks. Thymoquinone significantly and dose-dependently attenuated the hypoinsulinemia and hyperglycemia in diabetic rats. Also, thymoquinone (particularly 40 and 80 mg/kg) significantly decreased the elevations of malondialdehyde, nitric oxide, tumor necrosis factor-α, glycated proteins, aldose reductase activity, sorbitol level, and caspase-3 activity in the lens tissues of diabetic rats. In addition, thymoquinone (particularly 40 and 80 mg/kg) significantly ameliorated the diabetes-induced reductions of glutathione peroxidase, superoxide dismutase, and catalase activities, and total and soluble protein contents in the lens tissues. It was concluded that thymoquinone significantly protected the lens tissue against changes induced by diabetes in rats through its antioxidant, anti-inflammatory, and antidiabetic effects. Copyright © 2015. Published by Elsevier B.V.

  8. Levosimendan reduces myocardial damage and improves cardiodynamics in streptozotocin induced diabetic cardiomyopathy via SERCA2a/NCX1 pathway.

    PubMed

    Akhtar, Md Sayeed; Pillai, Krishna Kolappa; Hassan, Md Quamrul; Dhyani, Neha; Ismail, Md Vasim; Najmi, Abul Kalam

    2016-05-15

    Diabetic cardiomyopathy (DCM) is one of the most common causes of mortality. Its pathophysiology is not fully understood and involve number of factors including, cardiovascular and metabolic disorders. The present study was designed to study the pathogenesis of DCM and to explore the effects of levosimendan along with either ramipril or insulin in the long term management of DCM. Streptozotocin (STZ) was used to develop DCM in Wistar rats at the dose of 25mg/kg body weight for three consecutive days. Rats were randomly divided into 9 groups and treatments were started after 2weeks of STZ administration. Persistent hyperglycemia was observed in STZ treated rats, leading to significant contractile dysfunction as evidenced by decreased left ventricular pressure (LVP), +LV (dp/dt), -LV (dp/dt) as well as elevated Tau and LVEDP. Marked myocardial damage such as fibrosis, increased wall tension, depletion of contractile proteins were observed as evidenced by increased levels of TGF-β, BNP, cTroponin-I, as well as decreased expression of SERCA2a and NCX1 proteins in diabetic rats. The levosimendan alone and also in combination with either ramipril or insulin significantly normalized the myocardial dysfunctions developed during the course of persistent hyperglycemia. The study suggests that levosimendan treatment improves cardiac dysfunction significantly. Its combined use with ramipril proves better than with insulin in correcting myocardial performance as well as reduction in myocardial damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Modulating efficacy of Rebaudioside A, a diterpenoid on antioxidant and circulatory lipids in experimental diabetic rats.

    PubMed

    Saravanan, Ramalingam; Ramachandran, Vinayagam

    2013-09-01

    The present study was to evaluate the protective effects of Rebaudioside A (Reb A) on antioxidant status and lipid profile in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats by a single intraperitoneal administration of STZ (40mg/kg b.w). Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, hydroperoxides and decreased levels of insulin. The activity of enzymatic antioxidants (superoxide dismutase, catalase and glutathione peroxidase) and the levels of non enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione) were decreased in diabetic rats. The levels of total cholesterol (TC), triglycerides (TGs), free fatty acids (FFAs), phospholipids (PLs), low density lipoproteins (LDL-cholesterol) and very low-density lipoproteins (VLDL-cholesterol) in the plasma significantly increased, while plasma high-density lipoproteins (HDL-cholesterol) were significantly decreased in diabetic rats. Oral administration of Reb A (200mg/kg b.w) brought back plasma glucose, insulin, lipid peroxidation products, enzymatic, non-enzymatic antioxidants and lipid profile levels to near normal. The results of the present investigation suggests that Reb A, a natural sweetener exhibits antilipid peroxidative, antihyperlipidemic and antioxidant properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Efficiency of noopept in streptozotocin-induced diabetes in rats.

    PubMed

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2013-01-01

    We studied the effects of new nootropic and neuroprotective drug Noopept (N-phenylacetyl-L-prolylglycine ethyl ester) in various dosage regimens on the dynamics of glycemia, body weight, and pain sensitivity in rats receiving diabetogenic toxin streptozotocin. In experimental diabetic rats, Noopept alleviated glycemia and weight loss and normalized enhanced pain sensitivity. The normalizing effect of Noopept was most pronounced when it was administered as a preventive agent prior to injection of the toxin. Both preventive and therapeutic administration of Noopept (delayed injections included) significantly weakened the examined metabolic effects of diabetogenic toxin. Possible mechanisms of the antidiabetic action of Noopept are analyzed.

  11. Effects of fidarestat, an aldose reductase inhibitor, on nerve conduction velocity and bladder function in streptozotocin-treated female rats.

    PubMed

    Zotova, Elena G; Christ, George J; Zhao, Weixin; Tar, Moses; Kuppam, Srini D; Arezzo, Joseph C

    2007-01-01

    The effects of fidarestat, an aldose reductase inhibitor (ARI), were assessed on nerve conduction velocity (NCV) in somatic nerves and on multiple measures of bladder function in rats made hyperglycemic with streptozotocin (STZ) and in age-matched controls. Nerve conduction velocity was recorded at baseline and at 10, 20, 30, and 50 days after confirmation of the STZ-induced hyperglycemia in all rats (N=47); bladder function was assessed in a representative subset of rats (N=20) at Day 50. Caudal NCV was markedly slowed by STZ, and this effect was significantly reversed by fidarestat. The initial deficit and treatment-related improvement were especially evident for responses driven by high-frequency repetitive stimulation. Of the 11 parameters of bladder activity assessed, four measures-bladder capacity, micturition volume, micturition frequency, and bladder weight-were significantly different in the control and STZ-treated groups. These deficits were not affected by fidarestat. At Day 50, the induced deficits in bladder function were highly correlated with caudal NCV (r values ranging from 0.70 to 0.96; P values ranging from .02 to <.0001). These results suggested that fidarestat improved the slowing of somatic nerve NCV in hyperglycemic rats, but it was not effective in reversing associated bladder dysfunction, in spite of the highly significant correlation between these two diabetes-induced deficits. Possible explanations for this dissociation are discussed.

  12. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng

    2014-01-01

    Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes. PMID:25517034

  13. Stable Rat Model of Mechanical Allodynia in Diabetic Peripheral Neuropathy: The Role of Nerve Compression.

    PubMed

    Liao, Chenlong; Yang, Min; Liu, Pengfei; Zhong, Wenxiang; Zhang, Wenchuan

    2018-05-01

     Preclinical studies involving animal models are essential for understanding the underlying mechanisms of diabetic neuropathic pain.  Rats were divided into four groups: two controls and two experimental. Diabetes mellitus was induced by streptozotocin (STZ) injection in two experimental groups. The first group involved one sham operation. The second group involved one latex tube encircling the sciatic nerve. The vehicle-injection rats were used as two corresponding control groups: sham operation and encircled nerves. By the third week, STZ-injected rats with encircled nerves were further divided into three subgroups: one involving continuing observation and the other two involving decompression (removal of the latex tube) at different time points (third week and fifth week). Weight and blood glucose were monitored, and behavioral analysis, including paw withdrawal threshold (PWT) and latency, was performed every week during the experimental period (7 weeks).  Hyperglycemia was induced in all STZ-injected rats. A significant increase in weight was observed in the control groups when compared with the experimental groups. By the third week, more STZ-injected rats with encircled nerves developed mechanical allodynia than those without ( P  < 0.05), while no significant difference was noted ( P  > 0.05) on the incidence of thermal hyperalgesia. Mechanical allodynia, but not thermal hyperalgesia, could be ameliorated by the removal of the latex tube at an early stage (third week).  With the combined use of a latex tube and STZ injection, a stable rat model of painful diabetic peripheral neuropathy (DPN) manifesting both thermal hyperalgesia and mechanical allodynia has been established. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Antihyperlipidemic Effect of a Polyherbal Mixture in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Shafiee-Nick, Reza; Rakhshandeh, Hassan; Borji, Abasalt

    2013-01-01

    The effects of a polyherbal mixture containing Allium sativum, Cinnamomum zeylanicum, Citrullus colocynthis, Juglans regia, Nigella sativa, Olea europaea, Punica granatum, Salvia officinalis, Teucrium polium, Trigonella foenum, Urtica dioica, and Vaccinium arctostaphylos were tested on biochemical parameters in diabetic rats. The animals were randomized into three groups: (1) normal control, (2) diabetic control, and (3) diabetic rats which received diet containing 15% (w/w) of this mixture for 4 weeks. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg). At the end of experiment, the mixture had no significant effect on serum hepatic enzymes, aspartate aminotransferase, and alanine aminotransferase activities. However, the level of fasting blood glucose, water intake, and urine output in treated group was lower than that in diabetic control rats (P < 0.01). Also, the levels of triglyceride and total cholesterol in polyherbal mixture treated rats were significantly lower than those in diabetic control group (P < 0.05). Our results demonstrated that this polyherbal mixture has beneficial effects on blood glucose and lipid profile and it has the potential to be used as a dietary supplement for the management of diabetes. PMID:24383002

  15. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats.

    PubMed

    Iwata, Kinuyo; Kinoshita, Mika; Yamada, Shunji; Imamura, Takuya; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro

    2011-03-01

    Uncontrolled type 1 diabetes leads to hyperphagia and severe ketosis. This study was conducted to test the hypothesis that ketone bodies act on the hindbrain as a starvation signal to induce diabetic hyperphagia. Injection of an inhibitor of monocarboxylate transporter 1, a ketone body transporter, into the fourth ventricle normalized the increase in food intake in streptozotocin (STZ)-induced diabetic rats. Blockade of catecholamine synthesis in the hypothalamic paraventricular nucleus (PVN) also restored food intake to normal levels in diabetic animals. On the other hand, hindbrain injection of the ketone body induced feeding, hyperglycemia, and fatty acid mobilization via increased sympathetic activity and also norepinephrine release in the PVN. This result provides evidence that hyperphagia in STZ-induced type 1 diabetes is signaled by a ketone body sensed in the hindbrain, and mediated by noradrenergic inputs to the PVN.

  16. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats

    PubMed Central

    Barik, Rakesh; Jain, Sanjay; Qwatra, Deep; Joshi, Amit; Tripathi, Girraj Sharan; Goyal, Ravi

    2008-01-01

    Objective: To evaluate the antidiabetic activity of aqueous extract of roots of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Materials and Methods: Streptozotocin-nicotinamide induced type-II diabetic rats (n = 6) were administered aqueous root extract (250 and 500 mg/kg, p.o.) of Ichnocarpus frutescens or vehicle (gum acacia solution) or standard drug glibenclamide (0.25 mg/kg) for 15 days. Blood samples were collected by retro-orbital puncture and were analyzed for serum glucose on days 0, 5, 10, and 15 by using glucose oxidase-peroxidase reactive strips and a glucometer. For oral glucose tolerance test, glucose (2 g/kg, p.o.) was administered to nondiabetic control rats and the rats treated with glibenclamide (10 mg/kg, p.o.) and aqueous root extract of Ichnocarpus frutescens. The serum glucose levels were analyzed at 0, 30, 60, and 120 min after drug administration. The effect of the extract on the body weight of the diabetic rats was also observed. Results: The aqueous root extract of Ichnocarpus frutescens (250 and 500 mg/kg, p.o.) induced significant reduction (P < 0.05) of fasting blood glucose levels in streptozotocin-nicotinamide induced type-II diabetic rats on the 10th and 15th days. In the oral glucose tolerance test, the extract increased the glucose tolerance. It also brought about an increase in the body weight of diabetic rats. Conclusion: It is concluded that Ichnocarpus frutescens has significant antidiabetic activity as it lowers the fasting blood sugar level in diabetic rats and increases the glucose tolerance. PMID:21264156

  17. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats.

    PubMed

    Barik, Rakesh; Jain, Sanjay; Qwatra, Deep; Joshi, Amit; Tripathi, Girraj Sharan; Goyal, Ravi

    2008-01-01

    To evaluate the antidiabetic activity of aqueous extract of roots of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Streptozotocin-nicotinamide induced type-II diabetic rats (n = 6) were administered aqueous root extract (250 and 500 mg/kg, p.o.) of Ichnocarpus frutescens or vehicle (gum acacia solution) or standard drug glibenclamide (0.25 mg/kg) for 15 days. Blood samples were collected by retro-orbital puncture and were analyzed for serum glucose on days 0, 5, 10, and 15 by using glucose oxidase-peroxidase reactive strips and a glucometer. For oral glucose tolerance test, glucose (2 g/kg, p.o.) was administered to nondiabetic control rats and the rats treated with glibenclamide (10 mg/kg, p.o.) and aqueous root extract of Ichnocarpus frutescens. The serum glucose levels were analyzed at 0, 30, 60, and 120 min after drug administration. The effect of the extract on the body weight of the diabetic rats was also observed. The aqueous root extract of Ichnocarpus frutescens (250 and 500 mg/kg, p.o.) induced significant reduction (P < 0.05) of fasting blood glucose levels in streptozotocin-nicotinamide induced type-II diabetic rats on the 10(th) and 15(th) days. In the oral glucose tolerance test, the extract increased the glucose tolerance. It also brought about an increase in the body weight of diabetic rats. It is concluded that Ichnocarpus frutescens has significant antidiabetic activity as it lowers the fasting blood sugar level in diabetic rats and increases the glucose tolerance.

  18. Receptors for atrial natriuretic peptide are decreased in the kidney of rats with streptozotocin-induced diabetes mellitus.

    PubMed Central

    Sechi, L A; Valentin, J P; Griffin, C A; Lee, E; Bartoli, E; Humphreys, M H; Schambelan, M

    1995-01-01

    To determine whether decreased renal responsiveness to atrial natriuretic peptide (ANP) in diabetes is mediated by alterations in the renal ANP receptor, ANP receptor density and affinity were measured 17-20 d after streptozotocin injection and compared with values in vehicle-treated controls and streptozotocin-treated rats made euglycemic with insulin. Plasma ANP concentration was significantly greater in hyperglycemic diabetic rats than in control or euglycemic diabetic rats. Both in glomeruli and inner medulla, ANP receptor dissociation constant did not differ among the three study groups, whereas the maximum binding capacity was decreased significantly in hyperglycemic diabetics in comparison with controls and euglycemic diabetics. Glomerular clearance receptors were also decreased significantly in hyperglycemic diabetic rats in comparison with control and euglycemic diabetic rats. To determine whether the decreased number of renal ANP receptors in diabetic rats was associated with a decreased biological response, we measured ANP-dependent cyclic GMP (cGMP) accumulation by isolated glomeruli and inner medullary collecting duct cells in vitro. cGMP accumulation was significantly less in hyperglycemic diabetic rats than in controls or euglycemic diabetic rats both in the presence or absence of the phosphodiesterase inhibitor zaprinast. cGMP phosphodiesterase activity in inner medullary collecting duct cells obtained from control and hyperglycemic diabetic rats did not differ. Thus, the decreased number of biologically active ANP receptors in the kidneys of diabetic rats is accompanied by decreased biological responsiveness in vitro and provides a potential explanation for the reduction in renal sensitivity to ANP in this condition. Images PMID:7769090

  19. Delayed progression of diabetic cataractogenesis and retinopathy by Litchi chinensis in STZ-induced diabetic rats.

    PubMed

    Kilari, Eswar Kumar; Putta, Swathi

    2017-03-01

    The study was carried out to evaluate the effect of the aqueous fruit pericarp extract of Litchi chinensis (APLC) on parameters which leads to diabetic cataractogenesis and retinopathy in the streptozotocin-induced diabetic rats. The objective of the study is to evaluate the APLC for in vivo antioxidant activity and its role in inhibiting the polyol pathway and formation of advanced glycation end products (AGEs). The diabetic animals were treated with L. chinensis for a period of 12 weeks. At the end of 12 weeks, the animals were killed and the biochemical pathways involved in the pathogenesis of cataract such as oxidative stress by protein content, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and polyolpathway by aldose reductase (AR) in lens homogenates, alterations in protein carbonyl content (PCO) and AGEs in both serum and lens the APLC-treated diabetic rats were compared against diabetic control rats. Cataract progression due to hyperglycemia was monitored by slit lamp bio microscope and classified into four stages. Fundoscope test and retinal histopathology were done for assessing retinopathy. Statistically significant reduction in glucose, and elevation of protein content, SOD, CAT, and GSH levels and decreased levels of AR and PCO in lens homogenate and significant reduction in AGEs serum and lens homogenate were observed. Slit lamp examination, fundoscope, and histopathology showed improvement in retinal changes in APLC-treated rats compared to diabetic control animals. The treatment with APLC found to delay the progression of diabetic cataractogenesis and retinopathy, which might be due to its antioxidant activity, because of the presence of active phytochemicals in APLC.

  20. Metabolic effects of Crocus sativus and protective action against non-alcoholic fatty liver disease in diabetic rats

    PubMed Central

    Konstantopoulos, Panagiotis; Doulamis, Ilias P.; Tzani, Aspasia; Korou, Maria-Laskarina; Agapitos, Emmanouil; Vlachos, Ioannis S.; Pergialiotis, Vasilios; Verikokos, Christos; Mastorakos, George; Katsilambros, Nicholas L.; Perrea, Despina N.

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the result of the accumulation of adipose tissue deposits in the liver and it is associated with type 2 diabetes. Crocus sativus (saffron) is known for its antioxidant and its potential hypoglycemic effects. We investigated the role of saffron on NAFLD in diabetic rats. Thirty adult male rats were allocated into three groups; control (n=10), which received normal diet; streptozotocin (STZ) group (n=10), which received normal chow diet, 10% fructose in their drinking water and STZ (40 mg/kg body weight; STZ-saffron group (n=10), which followed the same dietary and pharmacological pattern as STZ group and were additionally supplemented with saffron (100 mg/kg/day). Metabolic profile was measured and histopathological examination of the liver was evaluated. STZ group exhibited the highest glucose levels at the end of the experiment (P<0.05), while there was no difference between control and STZ-saffron group (584 vs. 213 mg/dl vs. 209 mg/dl, respectively). STZ group revealed higher percentage of steatosis (5–33%) when compared to the other two groups (P<0.005). Saffron exhibits both hypoglycemic and hepatoprotective actions. Yet, further studies enlightening the exact mechanisms of saffron's mode of actions are required. PMID:28529733

  1. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats

    PubMed Central

    Pari, Leelavinothan; Latha, Muniappan

    2004-01-01

    Background The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Methods Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight) and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substances (TBARS), hydroperoxides, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) were estimated in streptozotocin (STZ) induced diabetic rats. Glibenclamide was used as standard reference drug. Results A significant increase in the activities of plasma insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was observed in brain on treatment with 200 mg/kg body weight of Scoparia dulcis plant extract (SPEt) and glibenclamide for 6 weeks. Both the treated groups showed significant decrease in TBARS and hydroperoxides formation in brain, suggesting its role in protection against lipidperoxidation induced membrane damage. Conclusions Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of the medicinal plant, these findings suggest a possible antiperoxidative role for Scoparia dulcis plant extract. Hence, in addition to antidiabetic effect, Scoparia dulcis possess antioxidant potential that may be used for therapeutic purposes. PMID:15522116

  2. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan

    2004-11-02

    The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight) and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substances (TBARS), hydroperoxides, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) were estimated in streptozotocin (STZ) induced diabetic rats. Glibenclamide was used as standard reference drug. A significant increase in the activities of plasma insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was observed in brain on treatment with 200 mg/kg body weight of Scoparia dulcis plant extract (SPEt) and glibenclamide for 6 weeks. Both the treated groups showed significant decrease in TBARS and hydroperoxides formation in brain, suggesting its role in protection against lipidperoxidation induced membrane damage. Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of the medicinal plant, these findings suggest a possible antiperoxidative role for Scoparia dulcis plant extract. Hence, in addition to antidiabetic effect, Scoparia dulcis possess antioxidant potential that may be used for therapeutic purposes.

  3. Streptozotocin (STZ) and schistosomiasis mansoni change the biodistribution of radiopharmaceutical sodium (99m)Tc-pertechnetate in mice.

    PubMed

    Góes, Vanessa Coelho; Neves, Renata Heisler; Arnóbio, Adriano; Bernardo-Filho, Mario; Machado-Silva, José Roberto

    2016-09-01

    Technetium-99m ((99m)Tc) is a radionuclide commonly used in nuclear medicine to obtain (99m)Tc-radiopharmaceuticals, which can be used to evaluate either physiological processes or changes related to diseases. It is also used in some experimental studies. Streptozotocin (STZ) administration to rodents causes lesions in very early stages and induces severe and permanent diabetes. Most morbidity of schistosomiasis mansoni is attributed to a granulomatous inflammatory response and associated liver fibrosis. This study was designed to investigate whether STZ administration and schistosomiasis modify the biodistribution of the radiopharmaceutical sodium (99m)Tc-pertechnetate. Adult female mice were infected by exposure to 100Schistosoma mansoni cercariae (BH strain, Belo Horizonte, Brazil) and euthanized after nine weeks. STZ was administered by a single intraperitoneal injection of 100mg/kg body weight, 3 or 15days before euthanasia. Each animal received 100μl of sodium (Na) (99m)Tc-pertechnetate ((99m)TcO4(-)) (740kBq). The animals were divided into four groups: A, uninfected; B, infected; C, uninfected + STZ; and D, infected + STZ. Blood, brain, thyroid, heart, lungs, liver, spleen, pancreas and kidneys were removed. The radioactivity was counted and the percentage of the injected dose of Na(99m)TcO4 per gram of the organ (% ID/g) was determined. Three days after the STZ injection, there was a decrease of Na(99m)TcO4 uptake by the liver, lungs, pancreas and kidneys (p<0.05) in group D when compared with group A. After 15days, the decrease of Na(99m)TcO4 uptake occurred also in the brain, thyroid, heart, spleen and blood (p<0.05) in group D. We demonstrated modifications on the biodistribution of Na(99m)TcO4 due to STZ administration and schistosomiasis, possibly due to physiological alterations in some organs. The biodistribution of radiopharmaceutical Na(99m)TcO4 should be carefully evaluated in subjects with diabetes and/or schistosomiasis infection. Copyright

  4. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats.

    PubMed

    Mahmoud, Mona F; El Ashry, Fatma El Zahraa Z; El Maraghy, Nabila N; Fahmy, Ahmed

    2017-12-01

    Momordica charantia Linn (Cucurbitaceae) (MC) is used in folk medicine to treat various diseases including diabetes mellitus. This study investigates the antidiabetic activities of Momordica charantia (bitter gourd) on streptozotocin-induced type 2 diabetes mellitus in rats. Male Wister rats were randomly assigned to 4 groups. Group I, Normal control; Group II, STZ diabetic; Group III and IV, Momordica charantia fruit juice was orally administered to diabetic rats (10 mL/kg/day either as prophylaxis for 14 days before induction of diabetes then 21 days treatment, or as treatment given for 21 days after induction of diabetes). The effects of MC juice were studied both in vivo and in vitro by studying the glucose uptake of isolated rat diaphragm muscles in the presence and absence of insulin. Histopathological examination of pancreas was also performed. This study showed that MC caused a significant reduction of serum glucose (135.99 ± 6.27 and 149.79 ± 1.90 vs. 253.40* ± 8.18) for prophylaxis and treatment respectively, fructosamine (0.99 ± 0.01 and 1.01 ± 0.04 vs. 3.04 ± 0.07), total cholesterol, triglycerides levels, insulin resistance index (1.13 ± 0.08 and 1.19 ± 0.05 vs. 1.48 ± 1.47) and pancreatic malondialdehyde content (p < 0.05). While it induced a significant increase of serum insulin (3.41 ± 0.08 and 3.28 ± 0.08 vs. 2.39 ± 0.27), HDL-cholesterol, total antioxidant capacity levels, β cell function percent, and pancreatic reduced glutathione (GSH) content (p < 0.05) and improved histopathological changes of the pancreas. It also increased glucose uptake by diaphragms of normal (12.17 ± 0.60 vs. 9.07 ± 0.66) and diabetic rats (8.37 ± 0.28 vs. 4.29 ± 0.51) in the absence and presence of insulin (p < 0.05). Momordica charantia presents excellent antidiabetic and antioxidant activities and thus has great potential as a new source for diabetes treatment whether it is

  5. Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice.

    PubMed

    Zhao, Tianxue; Luo, Deng; Sun, Yun; Niu, Xin; Wang, Yang; Wang, Chen; Jia, Weiping

    2018-04-19

    Human urine-derived stem cells (hUSCs) are a potential stem cell source for cell therapy. However, the effect of hUSCs on glucose metabolism regulation in type 1 diabetes was not clear. Therefore, the aim of the study was to evaluate whether hUSCs have protective effect on streptozotocin (STZ)-induced diabetes. hUSCs were extracted and cultivated with a special culture medium. Flow cytometry analysis was applied to detect cell surface markers. BALB/c male nude mice were either injected with high-dose STZ (HD-STZ) or multiple low-dose STZ (MLD-STZ). Serum and pancreatic insulin were measured, islet morphology and its vascularization were investigated. hUSCs highly expressed CD29, CD73, CD90 and CD146, and could differentiate into, at least, bone and fat in vitro. Transplantation of hUSCs into HD-STZ treated mice prolonged the median survival time and improved their blood glucose, and into those with MLD-STZ improved the glucose tolerance, islet morphology and increased the serum and pancreas insulin content. Furthermore, CD31 expression increased significantly in islets of BALB/c nude mice treated with hUSCs compared to those of un-transplanted MLD-STZ mice. hUSCs could improve the median survival time and glucose homeostasis in STZ-treated mice through promoting islet vascular regeneration and pancreatic beta-cell survival.

  6. Effect of streptozotocin-induced diabetes on performance on a progressive ratio schedule.

    PubMed

    Valencia-Torres, Lourdes; Bradshaw, C M; Bouzas, Arturo; Hong, Enrique; Orduña, Vladimir

    2014-06-01

    It has been suggested that streptozotocin (STZ)-induced diabetes causes a motivational deficit in rodents. However, some of the evidence adduced in support of this suggestion may be interpreted in terms of a motor impairment rather than a motivational deficit. This experiment examined the effect of STZ-induced diabetes on performance on a progressive ratio schedule. The data were analysed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement model which enables the effects of interventions on motivation or incentive value to be separated from effects on motor function. Animals were trained under a progressive ratio schedule using food-pellet reinforcement. Then they received a single intraperitoneal injection of 50 mg/kg of STZ or the vehicle. Training continued for 30 sessions after treatment. Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between groups. The parameter expressing incentive value was reduced in the group treated with STZ, whereas the parameters expressing motor capacity and post-reinforcement pausing were not affected by the treatment. Blood glucose concentration was significantly elevated in the STZ-treated group compared to the vehicle-treated group. The results are consistent with the suggestion that STZ-induced diabetes is associated with a reduction of the incentive value of food.

  7. Severe Hypoglycemia in a Juvenile Diabetic Rat Model: Presence and Severity of Seizures Are Associated with Mortality

    PubMed Central

    Maheandiran, Margaret; Mylvaganam, Shanthini; Wu, Chiping; El-Hayek, Youssef; Sugumar, Sonia; Hazrati, Lili; del Campo, Martin; Giacca, Adria; Zhang, Liang; Carlen, Peter L.

    2013-01-01

    It is well accepted that insulin-induced hypoglycemia can result in seizures. However, the effects of the seizures, as well as possible treatment strategies, have yet to be elucidated, particularly in juvenile or insulin-dependent diabetes mellitus (IDDM). Here we establish a model of diabetes in young rats, to examine the consequences of severe hypoglycemia in this age group; particularly seizures and mortality. Diabetes was induced in post-weaned 22-day-old Sprague-Dawley rats by streptozotocin (STZ) administered intraperitoneally (IP). Insulin IP (15 U/kg), in rats fasted (14–16 hours), induced hypoglycemia, defined as <3.5 mM blood glucose (BG), in 68% of diabetic (STZ) and 86% of control rats (CON). Seizures occurred in 86% of STZ and all CON rats that reached hypoglycemic levels with mortality only occurring post-seizure. The fasting BG levels were significantly higher in STZ (12.4±1.3 mM) than in CON rodents (6.3±0.3 mM), resulting in earlier onset of hypoglycemia and seizures in the CON group. However, the BG at seizure onset was statistically similar between STZ (1.8±0.2 mM) and CON animals (1.6±0.1 mM) as well as between those that survived (S+S) and those that died (S+M) post-seizure. Despite this, the S+M group underwent a significantly greater number of seizure events than the S+S group. 25% glucose administered at seizure onset and repeated with recurrent seizures was not sufficient to mitigate these continued convulsions. Combining glucose with diazepam and phenytoin significantly decreased post-treatment seizures, but not mortality. Intracranial electroencephalograms (EEGs) were recorded in 10 CON and 9 STZ animals. Predictive EEG changes were not observed in these animals that underwent seizures. Fluorojade staining revealed damaged cells in non-seizing STZ animals and in STZ and CON animals post-seizure. In summary, this model of hypoglycemia and seizures in juvenile diabetic rats provides a paradigm for further study of underlying

  8. Improvement of hyperphagia by activation of cerebral I(1)-imidazoline receptors in streptozotocin-induced diabetic mice.

    PubMed

    Chung, H H; Yang, T T; Chen, M F; Chou, M T; Cheng, J T

    2012-09-01

    Imidazoline I1-receptors (I1R) are known to regulate blood pressure and rilmenidine, an agonist, is widely used as antihypertensive agent in clinic. However, the role of I1R in feeding behavior is still unclear. In the present study, we used the agonist of I1R to investigate the effect on hyperphagia in streptozotocin (STZ)-induced diabetic mice. Rilmenidine decreased the food intake of STZ-diabetic mice in a dose-dependent manner. The reduction of food intake was abolished by pretreatment with efaroxan at the dose sufficient to block I1R. Intracerebroventricular (icv) administration of rilmenidine into STZ-diabetic mice also significantly reduced hyperphagia, which was reversed by icv administration of efaroxan. In addition, similar results were observed in STZ-diabetic mice, which received chronic treatment with rilmenidine 3 times daily (t.i.d.) for 7 days. Moreover, the hypothalamic neuropeptide Y (NPY) level was reduced by rilmenidine that was also reversed by pretreatment with efaroxan. In conclusion, the obtained results suggest that rilmenidine can decrease food intake in STZ-diabetic mice through an activation of I1R to lower hypothalamic NPY level. © Georg Thieme Verlag KG Stuttgart · New York.

  9. An extract of Pueraria tuberosa tubers attenuates diabetic nephropathy by upregulating matrix metalloproteinase-9 expression in the kidney of diabetic rats.

    PubMed

    Tripathi, Yamini B; Shukla, Rashmi; Pandey, Nidhi; Pandey, Vivek; Kumar, Mohan

    2017-02-01

    Currently, no drug is available to directly target the signaling molecules involved in the pathogenesis of diabetic nephropathy (DN); only antihypertensive and antidiabetic drugs are in clinical use. In the present study, the therapeutic effects of a active fraction of tubers from Pueraria tuberosa (hereafter referred to as PTY-2) were investigated in streptozotocin (STZ)-diabetic rats with DN, with particular emphasis on its effects on extracellular matrix (ECM) accumulation and matrix metalloproteinase (Mmp)-9 expression in kidney tissue. Rats were injected with 55 mg/kg, i.p., STZ. After 40 days, rats were divided into groups as follows (n = 6 per group): Group 1, age-matched rats not injected with STZ (non-diabetic control); Group 2, STZ-diabetic DN rats; and Group 3, PTY-2 (30 mg/100 g, p.o.)-treated DN rats. After 20 days treatment, the effects of PTY-2 on serum urea and creatinine concentrations, urinary levels of glucose, creatinine, protein, and ketone bodies, and urine pH were determined. Kidney tissue was evaluated for Mmp-9 expression and histological changes. Blood glucose, serum urea, creatinine, and urine protein levels were significantly higher, and creatinine clearance was significantly lower, in Group 2 versus Group 1 rats. There was a higher degree of glomerulosclerosis, expansion of the mesangial matrix, and excess ECM deposition and eosinophilic casts in kidneys from Group 2 versus Group 1 rats. Furthermore, Mmp-9 activity and expression were significantly reduced in kidney homogenate of Group 2 versus Group 1 rats. Interestingly, PTY-2 treatment significantly reversed all these changes in DN rats. Treatment of DN rats with PTY-2 significantly attenuated the severity of DN by increasing the expression and activity of Mmp-9, consequently degrading the ECM accumulated in kidney tissue. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  10. Low molecular weight fucoidan ameliorates streptozotocin-induced hyper-responsiveness of aortic smooth muscles in type 1 diabetes rats.

    PubMed

    Liang, Zhengyang; Zheng, Yuanyuan; Wang, Jing; Zhang, Quanbin; Ren, Shuang; Liu, Tiantian; Wang, Zhiqiang; Luo, Dali

    2016-09-15

    Low molecular weight fucoidan (LMWF) was prepared from Laminaria japonica Areschoug, a popular seafood and medicinal plant consumed in Asia. Chinese have long been using it as a traditional medicine for curing hypertension and edema. This study was intent to investigate the possible beneficial effect of LMWF on hyper-responsiveness of aortic smooth muscles instreptozotocin (STZ)-induced type 1 diabetic rats. Sprague-Dawley rats were made diabetic by injection of STZ, followed by the administration of LMWF (50 or 100mg/kg/day) or probucol (100mg/kg/day) for 12 weeks. Body weight, blood glucose level, basal blood pressure, serum lipid profiles, oxidative stress, prostanoids production, and vasoconstriction response of endothelium-denuded aorta rings to phenylephrine were measured by Real time-PCR, Western blots, ELISA assay, and force myograph, respectively. LMWF (100mg/kg/day)-treated group showed robust improvements on STZ-induced body weight-loss, hypertension, and hyperlipidaemia as indicated by decreased serum level of total cholesterol, triglyceride, and low density lipoprotein cholesterol; while probucol, a lipid-modifying drug with antioxidant properties, displayed mild effects. In addition, LMWF appreciably ameliorated STZ-elicited hyper-responsiveness and oxidative stress in aortic smooth muscles as indicated by decreased superoxide level, increased glutathione content and higher superoxide dismutase activity. Furthermore, administration with LMWF dramatically prevented cyclooxygenase-2 stimulation and restored the up-regulation of thromboxane synthase and down-regulation of 6-keto-PGF1α (a stable metabolic product of prostaglandin I2) in the STZ-administered rats. This study demonstrates for the first time that LMWF can protect against hyperlipidaemia, hypertension, and hyper-responsiveness of aortic smooth muscles in type 1 diabetic rat via, at least in part, amelioration of oxidative stress and restoration of prostanoids levels in aortic smooth muscles

  11. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  12. Antidiabetic, antihyperlipidemic, and antioxidant activities of Musa balbisiana Colla. in Type 1 diabetic rats.

    PubMed

    Borah, Mukundam; Das, Swarnamoni

    2017-01-01

    To evaluate the antidiabetic, antihyperlipidemic, and antioxidant activities of the ethanolic extracts of the flowers and inflorescence stalk of Musa balbisiana Colla. in streptozotocin (STZ)-induced Type 1 diabetic rats. Diabetes was induced in male Wistar albino rats (150-200 g) by single intraperitoneal injection of STZ (60 mg/kg b.w. i.p.). Albino rats ( n = 25) were divided into five groups, of which five animals each. Group A (normal control) and Group B (diabetic control) received normal saline (10 ml/kg/day p.o.), whereas Group C and Group D received 250 mg/kg/day p.o. of flower and inflorescence stalk ethanolic extracts, respectively, for 2 weeks. Group E (diabetic standard) received 6 U/kg/day s.c of Neutral Protamine Hagedorn insulin. Fasting blood sugar, serum insulin, catalase (CAT), malondialdehyde (MDA), and serum lipid profile were estimated at specific intervals of time. Effect of the extracts on intestinal glucose absorption was also evaluated to know the probable mechanism of action. Diabetic control exhibited significant increase in blood glucose, serum cholesterol, triglycerides, low-density lipoprotein, serum MDA levels and decreased serum CAT, and high-density lipoprotein levels which were significantly reverted by flower and inflorescence stalk ethanolic extracts after 2 weeks. Serum insulin levels were in increased ( P < 0.05), and intestinal glucose absorption decreased significantly ( P < 0.01) in extract-treated groups. Flower and inflorescence stalk of M. balbisiana Colla. possess significant antidiabetic, antihyperlipidemic, and antioxidant activities in STZ-induced Type 1 diabetic rats.

  13. Antidiabetic, antihyperlipidemic, and antioxidant activities of Musa balbisiana Colla. in Type 1 diabetic rats

    PubMed Central

    Borah, Mukundam; Das, Swarnamoni

    2017-01-01

    Objectives: To evaluate the antidiabetic, antihyperlipidemic, and antioxidant activities of the ethanolic extracts of the flowers and inflorescence stalk of Musa balbisiana Colla. in streptozotocin (STZ)-induced Type 1 diabetic rats. Materials and Methods: Diabetes was induced in male Wistar albino rats (150–200 g) by single intraperitoneal injection of STZ (60 mg/kg b.w. i.p.). Albino rats (n = 25) were divided into five groups, of which five animals each. Group A (normal control) and Group B (diabetic control) received normal saline (10 ml/kg/day p.o.), whereas Group C and Group D received 250 mg/kg/day p.o. of flower and inflorescence stalk ethanolic extracts, respectively, for 2 weeks. Group E (diabetic standard) received 6 U/kg/day s.c of Neutral Protamine Hagedorn insulin. Fasting blood sugar, serum insulin, catalase (CAT), malondialdehyde (MDA), and serum lipid profile were estimated at specific intervals of time. Effect of the extracts on intestinal glucose absorption was also evaluated to know the probable mechanism of action. Results: Diabetic control exhibited significant increase in blood glucose, serum cholesterol, triglycerides, low-density lipoprotein, serum MDA levels and decreased serum CAT, and high-density lipoprotein levels which were significantly reverted by flower and inflorescence stalk ethanolic extracts after 2 weeks. Serum insulin levels were in increased (P < 0.05), and intestinal glucose absorption decreased significantly (P < 0.01) in extract-treated groups. Conclusion: Flower and inflorescence stalk of M. balbisiana Colla. possess significant antidiabetic, antihyperlipidemic, and antioxidant activities in STZ-induced Type 1 diabetic rats. PMID:28458426

  14. Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats.

    PubMed

    Unsal, Cuneyt; Oran, Mustafa; Albayrak, Yakup; Aktas, Cevat; Erboga, Mustafa; Topcu, Birol; Uygur, Ramazan; Tulubas, Feti; Yanartas, Omer; Ates, Ozkan; Ozen, Oguz Aslan

    2016-04-01

    The goal of this study was to examine the neuroprotective effect of ebselen against intracerebroventricular streptozotocin (ICV-STZ)-induced oxidative stress and neuronal apoptosis in rat brain. A total of 30 adult male Sprague-Dawley rats were randomly divided into 3 groups of 10 animals each: control, ICV-STZ, and ICV-STZ treated with ebselen. The ICV-STZ group rats were injected bilaterally with ICV-STZ (3 mg/kg) on days 1 and 3, and ebselen (10 mg/kg/day) was administered for 14 days starting from 1st day of ICV-STZ injection to day 14. Rats were killed at the end of the study and brain tissues were removed for biochemical and histopathological investigation. Our results demonstrated, for the first time, the neuroprotective effect of ebselen on Alzheimer's disease (AD) model in rats. Our present study, in ICV-STZ group, showed significant increase in tissue malondialdehyde levels and significant decrease in enzymatic antioxidants superoxide dismutase and glutathione peroxidase in the frontal cortex tissue. The histopathological studies in the brain of rats also supported that ebselen markedly reduced the ICV-STZ-induced histopathological changes and well preserved the normal histological architecture of the frontal cortex tissue. The number of apoptotic neurons was increased in frontal cortex tissue after ICV-STZ administration. Treatment of ebselen markedly reduced the number of degenerating apoptotic neurons. The study demonstrates the effectiveness of ebselen, as a powerful antioxidant, in preventing the oxidative damage and morphological changes caused by ICV-STZ in rats. Thus, ebselen may have a therapeutic value for the treatment of AD. © The Author(s) 2013.

  15. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats.

    PubMed

    Wang, Heyang; Li, Hongxia; Jiang, Xin; Shi, Wencai; Shen, Zhilei; Li, Min

    2014-05-01

    Iron overload is frequently observed in type 2 diabetes mellitus (DM2), but the underlying mechanisms remain unclear. We hypothesize that hepcidin may be directly regulated by insulin and play an important role in iron overload in DM2. We therefore examined the hepatic iron content, serum iron parameters, intestinal iron absorption, and liver hepcidin expression in rats treated with streptozotocin (STZ), which was given alone or after insulin resistance induced by a high-fat diet. The direct effect of insulin on hepcidin and its molecular mechanisms were furthermore determined in vitro in HepG2 cells. STZ administration caused a significant reduction in liver hepcidin level and a marked increase in intestinal iron absorption and serum and hepatic iron content. Insulin obviously upregulated hepcidin expression in HepG2 cells and enhanced signal transducer and activator of transcription 3 protein synthesis and DNA binding activity. The effect of insulin on hepcidin disappeared when the signal transducer and activator of transcription 3 pathway was blocked and could be partially inhibited by U0126. In conclusion, the current study suggests that hepcidin can be directly regulated by insulin, and the suppressed liver hepcidin synthesis may be an important reason for the iron overload in DM2.

  16. Glycoprotein changes in non-insulin dependent diabetic rats: effect of N-benzoyl-D-phenylalanine and metformin.

    PubMed

    Pari, Leelavinothan; Ashokkumar, Natarajan

    2006-01-01

    The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin on neonatal streptozotocin (nSTZ) induced diabetes has been studied on plasma and tissue glycoproteins. In some pathological conditions, such as cancer, rheumatoid arthritis and diabetes, there is an abnormal glycosylation of acute phase serum proteins. As most serum proteins are produced in the liver, we have examined glycoprotein metabolism in diabetic condition. To induce non-insulin-dependent diabetes mellitus (NIDDM) a single dose of streptozotocin (100 mg/kg body weight) was injected into two day old rats. After 10-12 weeks, rats weighing above 150 g were selected for NIDDM model. In these rat, blood glucose and plasma glycoproteins were significantly increased whereas plasma insulin was significantly decreased. There was a significant decrease in the level of sialic acid and elevated levels of hexose, hexosamine and fucose in tissues. Oral administration of NBDP and metformin to diabetic rats decreased blood glucose and plasma glycoproteins. Plasma insulin and tissue sialic acid were increased whereas tissue concentrations of hexose, hexosamine and fucose were near normal. Our study suggests that NBDP and metformin possess a significant beneficial effect on glycoproteins in addition to their antidiabetic effect.

  17. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice.

    PubMed

    Zhang, Cong; Chen, Hongman; Bai, Weiqi

    2018-04-10

    A polysaccharide with a molecular weight of 13,029Da was isolated from Momordica charantia (MCP) fruit and purified by ion-exchange and size-exclusion chromatography. The isolated polysaccharide MCPIIa contained L-Rha, D-GalA, D-Gal, D-Xyl, L-Ara in a molar ratio of 12:3.05:19.89:5.95:56. IR spectrum and NMR studies indicated that the MCPIIa sugar units were linked, via β-glycosidic bonds, to a large number of arabinofuranose, glucuronic acid, and xylopyranosyl residues. In addition, the hypoglycemic effect of MCPIIa was investigated in streptozotocin (STZ)-induced diabetic mice. After STZ-induction, MCPIIa (100, 200, or 300mg/kg body weight) was administered orally, once daily, for 28days. Glycemia in STZ-diabetogenic mice was significantly reduced, and compared with diabetes mellitus (DM) mice, serum insulin concentration increased significantly, following MCPIIa administration. Transmission electron microscopy showed an alleviation of STZ-lesions in pancreatic tissue from mice treated with MCPIIa. These results indicate that MCPIIa may be useful as an anti-diabetic agent. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Antihyperglycemic Potential of Grewia asiatica Fruit Extract against Streptozotocin-Induced Hyperglycemia in Rats: Anti-Inflammatory and Antioxidant Mechanisms

    PubMed Central

    Khattab, Hala A. H.; El-Shitany, Nagla A.; Abdallah, Inas Z. A.; Yousef, Fatimah M.; Alkreathy, Huda M.

    2015-01-01

    Diabetes mellitus is regarded as a serious chronic disease that carries a high risk for considerable complications. In folk medicine, the edible Grewia asiatica fruit is used in a number of pathological conditions. This study aimed to investigate the possible curative effect of G. asiatica fruit ethanolic extract against streptozotocin- (STZ-) induced hyperglycemia in rats. Furthermore, mechanism of antihyperglycemic action is investigated. Hyperglycemic rats are either treated with 100 or 200 mg/kg/day G. asiatica fruits extract. Serum glucose, liver glycogen, malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin- (IL-) 1β, and tumor necrosis factor- (TNF-) α are measured. G. asiatica fruits extract reduces blood glucose and pancreatic MDA levels. It increases liver glycogen and pancreatic GSH contents and SOD enzyme activity. Furthermore, Grewia asiatica fruits extract decreases serum IL-1β and TNF-α. The treatment also protects against STZ-induced pathological changes in the pancreas. The results of this study indicated that G. asiatica fruit extract exerts antihyperglycemic activity against STZ-induced hyperglycemia. The improvement in the pancreatic β-cells and antioxidant and anti-inflammatory effects of G. asiatica fruit extract may explain the antihyperglycemic effect. PMID:26347423

  19. Effect of Royal Jelly on spatial learning and memory in rat model of streptozotocin-induced sporadic Alzheimer's disease

    PubMed Central

    Zamani, Zohre; Reisi, Parham; Alaei, Hojjatallah; Pilehvarian, Ali Asghar

    2012-01-01

    Background: It has been recently demonstrated that Royal jelly (RJ) has a beneficial role on neural functions. Alzheimer's disease (AD) is associated with impairments of learning and memory. Therefore, the present study was designed to examine the effect of RJ on spatial learning and memory in rats after intracerebroventricular injection of streptozotocin (icv-STZ). Materials and Methods: Rats were infused bilaterally with an icv injection of STZ, while sham rats received vehicle only. The rats were feed with RJ-contained food (3% w/w) (lyophilized RJ mixed with powdered regular food) or regular food for 10 days. Then spatial learning and memory was tested in the rats by Morris water maze test. Results: Results showed that in icv-STZ group latency and path length were increased as compared to sham group, also icv-STZ rats less remembered the target quadrant that previously the platform was located; however, these were protected significantly in STZ group that received RJ-containing food. Conclusions: Our findings support the potential neuroprotective role of RJ and its helpful effects in AD. PMID:23210085

  20. Thalidomide attenuates learning and memory deficits induced by intracerebroventricular administration of streptozotocin in rats.

    PubMed

    Elçioğlu, Hk; Kabasakal, L; Alan, S; Salva, E; Tufan, F; Karan, Ma

    2013-05-01

    Neuroinflammatory responses caused by amyloid β (Aβ) peptide deposits are involved in the pathogenesis of Alzheimer's disease (AD). Thalidomide has a significant anti-inflammatory effect by inhibiting TNF-α, which plays role in Aβ neurotoxicity. We investigated the effect of thalidomide on AD-like cognitive deficits caused by intracerebroventricular injection of streptozotocin (STZ). Intraperitoneal thalidomide was administered 1 h before the first dose of STZ and continued for 21 days. Learning and memory behavior was evaluated on days 17, 18 and 19, and the rats were sacrificed on day 21 to examine histopathological changes. STZ injection caused a significant decrease in the mean escape latency in passive avoidance and decreased improvement of performance in Morris water maze tests. Histopathological changes were examined using hematoxylin-eosin and Bielschowsky staining. Brain sections of STZ treated rats showed increased neurodegeneration and disturbed linear arrangement of cells in the cortical area compared to controls. Thalidomide treatment attenuated significantly STZ induced cognitive impairment and histopathological changes. Thalidomide appears to provide neuroprotection from the memory deficits and neuronal damage induced by STZ.

  1. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    PubMed Central

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUCglucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes. PMID:22224046

  2. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes.

    PubMed

    Komorowski, James R; Tuzcu, Mehmet; Sahin, Nurhan; Juturu, Vijaya; Orhan, Cemal; Ulas, Mustafa; Sahin, Kazim

    2012-10-01

    Chromium picolinate (CrPic) has shown both antidepressant and antidiabetic properties. In this study, the effects of CrPic on serotonergic properties and carbohydrate metabolism in diabetic rats were evaluated. Sixty male Sprague-Dawley rats were divided into four groups. (1) The control group received only standard diet (8 % fat). (2) The CrPic group was fed standard diet and CrPic (80 μg CrPic per kilogram body mass (b.m.)/day), for 10 weeks (microgram/kilogram b.m./day). (3) The HFD/STZ group fed a high-fat diet (HFD, 40 % fat) for 2 weeks and then received streptozotocin (STZ, 40 mg/kg, i.p.) (i.v.) HFD-STZ-CrPic group treated as the previous group and then were administered CrPic. CrPic administration to HFD/STZ-treated rats increased brain chromium levels and improved all measurements of carbohydrate metabolism and serotonergic properties (P<0.001). CrPic also significantly increased levels of insulin, tryptophan, and serotonin (P<0.001) in the serum and brain, and decreased cortisol levels in the serum (P<0.01). Except chromium levels, no significant effect of CrPic supplementation was detected on the overall measured parameters in the control group. CrPic administration was well tolerated without any adverse events. The results support the use of CrPic supplementation which improves serotonergic properties of brain in diabetes.

  3. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Xin; Li, Xinghui; Ma, Fenfen

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover,more » SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.« less

  4. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats.

    PubMed

    Abdelaziz, Dalia H A; Ali, Sahar A; Mostafa, Mahmoud M A

    2015-06-01

    In Arabic folk medicine, the seeds of Phoenix dactylifera L. (Arecaceae) have been used to manage diabetes for many years. Few studies have reported the antidiabetic effect of P. dactylifera seeds; however, their effect on diabetic complications is still unexplored. The present study investigates the protective effect of P. dactylifera seeds against diabetic complications in rats. The aqueous suspension of P. dactylifera seeds (aqPDS) (1 g/kg/d) was orally administered to streptozotocin-induced diabetic rats for 4 weeks. The serum biochemical parameters were assessed spectrophotometrically. Furthermore, oxidative stress was examined in both liver and kidney tissues by assessment of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), reduced glutathione, superoxide dismutase (SOD), glutathione S-transferase, and catalase. Oral administration of aqPDS significantly ameliorated the elevated levels of glucose (248 ± 42 versus 508 ± 60 mg/dl), urea (32 ± 3.3 versus 48.3 ± 5.6 mg/dl), creatinine (2.2 ± 0.35 versus 3.8 ± 0.37 mg/dl), ALT (29.6 ± 3.9 versus 46.4 ± 5.9 IU/l), and AST (73.3 ± 13 versus 127.8 ± 18.7 IU/l) compared with the untreated diabetic rats. In addition to significant augmentation in the activities of antioxidant enzymes, there was reduction in TBARS and NO levels and improvement of histopathological architecture of the liver and kidney of diabetic rats. The aqPDS showed potential protective effects against early diabetic complications of both liver and kidney. This effect may be explained by the antioxidant and free radical scavenging capabilities of P. dactylifera seeds.

  5. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  6. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    PubMed Central

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  7. The acute effects of different spironolactone doses on cardiac function in streptozotocin-induced diabetic rats.

    PubMed

    Vranic, Aleksandra; Simovic, Stefan; Ristic, Petar; Nikolic, Tamara; Stojic, Isidora; Srejovic, Ivan; Zivkovic, Vladimir; Jakovljevic, Vladimir; Djuric, Dusan

    2017-11-01

    Currently, cardiovascular diseases are the leading cause of global mortality, while diabetes mellitus remains an important cause of cardiovascular morbidity. A recent study showed that patients with diabetes mellitus treated with mineralocorticoid receptor antagonists have improved coronary microvascular function, leading to improved diastolic dysfunction. In this study, we evaluated the influence of acute administration of spironolactone on myocardial function in rats with streptozotocin-induced diabetes mellitus, with special emphasis on cardiodynamic parameters in diabetic rat hearts. The present study was carried out on 40 adult male Wistar albino rats (8 weeks old). Rats were randomly divided into 4 groups (10 animals per group): healthy rats treated with 0.1 μmol/L of spironolactone, diabetic rats treated with 0.1 μmol/L of spironolactone, healthy rats treated with 3 μmol/L of spironolactone, and diabetic rats treated with 3 μmol/L of spironolactone. Different, dose-dependent, acute responses of spironolactone treatment on isolated, working diabetic and healthy rat heart were observed in our study. In healthy rats, better systolic function was achieved with higher spironolactone dose, while in diabetic rats, similar effects of low and high spironolactone dose were observed.

  8. Antidiabetic and hypolipidemic effects of Dorema aucheri hydroalcoholic leave extract in streptozotocin-nicotinamide induced type 2 diabetes in male rats

    PubMed Central

    Ahangarpour, Akram; Zamaneh, Hossein Teymuri; Jabari, Ayob; Nia, Hamid Malekshahi; Heidari, Hamid

    2014-01-01

    Objective(s): The present study investigated the antidiabetic and hypolipidemic properties of Dorema aucheri leave hydroalcoholic extract in nicotinamide-streptozotocin induced type 2 diabetic rats. Materials and Methods: nicotinamide/streptozotocin-induced diabetic rats were supplemented orally with three different doses of D. aucheri (100, 200 and 400 mg/kg BW) or glibenclamide (0.25 mg/kg) for 4 weeks. Ultimately, blood of animals has taken and glucose, insulin, lipid profiles, SGPT, alkaline phosphatase, SGOT, leptin levels were assayed. Results: D. aucheri has highly significant blood glucose lowering effect. Administration of the extract to diabetic rats resulted in a remarkable change in serum lipid profiles, insulin and leptin levels relative to diabetic group. Also the extract reversed back the serum levels of SGPT, alkaline phosphatase and SGOT to near normal in treated diabetic rats. Conclusion: D. aucheri could be useful in treatment of diabetes. Moderate dose of D. aucheri (200 mg/kg) was more effective than the others. PMID:25729552

  9. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats.

    PubMed

    Ghorbanzadeh, V; Mohammadi, M; Dariushnejad, H; Chodari, L; Mohaddes, G

    2016-10-01

    Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. Crocin combined with voluntary exercise significantly decreased blood glucose levels (p < 0.001) and insulin resistance (HOMA-IR) (p < 0.001) compared to diabetic group. VEGF-A level was significantly (p < 0.01) lower in Dia group compared to control group. The combination of crocin and voluntary exercise significantly enhanced VEGF-A protein levels in Dia-Cro-Exe and Cro-Exe group compared to diabetic and control groups, respectively; p < 0.001 and p < 0.05. Crocin combined with voluntary exercise improved insulin resistance (HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.

  10. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  11. Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Anbar, Hanan S; Shehatou, George S G; Suddek, Ghada M; Gameil, Nariman M

    2016-06-05

    This work was designed to investigate the effects of levocetirizine, a histamine H1 receptor antagonist, on diabetes-induced nephropathy and vascular disorder, in comparison to an angiotensin II receptor antagonist, losartan. Diabetes was induced in male Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (50mg/kg). Diabetic rats were divided into three groups; diabetic, diabetic-levocetirizine (0.5mg/kg/day) and diabetic-losartan (25mg/kg/day). Treatments were started two weeks following diabetes induction and continued for additional eight weeks. At the end of the experiment, urine was collected and serum was separated for biochemical measurements. Tissue homogenates of kidney and aorta were prepared for measuring oxidative stress, nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Moreover, histological analyses were conducted and aortic vascular reactivity was investigated. Levocetirizine improved renal function in diabetic rats (evidenced by mitigation of diabetes-induced changes in kidney to body weight ratio, serum albumin, urinary proteins and creatinine clearance). Moreover, levocetirizine attenuated the elevated renal levels of TNF-α and TGF-β1, ameliorated renal oxidative stress and restored NO bioavailability in diabetic kidney. These effects were comparable to or surpassed those produced by losartan. Moreover, levocetirizine, similar to losartan, reduced the enhanced responsiveness of diabetic aorta to phenylephrine. Histological evaluation of renal and aortic tissues further confirmed the beneficial effects of levocetirizine on diabetic nephropathy and revealed a greater attenuation of diabetes-induced vascular hypertrophy by levocetirizine than by losartan. In conclusion, levocetirizine may offer comparable renoprotective effect to, and possibly superior vasculoprotective effects than, losartan in streptozotocin-diabetic rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  13. Antihyperglycaemic effect of laser acupuncture treatment at BL20 in diabetic rats.

    PubMed

    Cornejo-Garrido, Jorge; Becerril-Chávez, Flavia; Carlín-Vargas, Gabriel; Ordoñez-Rodríguez, Juan Manuel; Abrajan-González, María Del Carmen; de la Cruz-Ramírez, Rosario; Ordaz-Pichardo, Cynthia

    2014-12-01

    To investigate the antihyperglycaemic activity of laser acupuncture stimulation at 650 and 980 nm at BL20 in streptozotocin (STZ)-induced diabetic rats. Seventy healthy adult male albino Wistar rats weighing 250±50 g were divided into seven groups of 10 animals each. Groups I-III comprised healthy control rats which were untreated (I) or stimulated with laser acupuncture at 650 nm (II) and 980 nm (III), respectively. Groups IV-VII underwent induction of diabetes with a single intraperitoneal administration of STZ at 50 mg/kg. Animals with blood glucose levels of ≥200 mg/dL on the fifth day were used for the experiments and were left untreated (group IV), treated with glibenclamide (group V) or stimulated with laser acupuncture at 650 nm (group VI) and 980 nm (group VII), respectively. Laser acupuncture was applied at BL20 on alternate days for a total of 12 sessions over a 28-day period. After 28 days of treatment, STZ-induced diabetic rats stimulated with laser acupuncture at 650 and 980 nm had significantly lower glucose levels compared with untreated diabetic rats (242.0±65.0 and 129.8±33.2 vs 376.5±10.0 mg/dL, both p≤0.05). Treatment at 980 nm also attenuated the increase in glucose between day 1 and day 28 compared with the glibenclamide-treated diabetic group (41.5±19.6 mg/dL vs 164.1±13.7 g/dL, p<0.05). Laser acupuncture treatment did not affect the blood count or biochemical profile and was not associated with any morphological changes in the pancreas, liver, kidney or spleen. Stimulation with laser acupuncture at 650 and 980 nm at BL20 in STZ-induced diabetic rats has antihyperglycaemic activity. The results support further evaluation of laser acupuncture as an alternative or complementary treatment for the control of hyperglycaemia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Immunosuppressive Effects of Streptozotocin-Induced Diabetes Result in Absolute Lymphopenia and a Relative Increase of T Regulatory Cells

    PubMed Central

    Muller, Yannick D.; Golshayan, Déla; Ehirchiou, Driss; Wyss, Jean Christophe; Giovannoni, Laurianne; Meier, Raphael; Serre-Beinier, Véronique; Puga Yung, Gisella; Morel, Philippe; Bühler, Leo H.; Seebach, Jörg D.

    2011-01-01

    OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8+ cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic. PMID:21752956

  15. Renal mitochondrial impairment is attenuated by AT1 blockade in experimental Type I diabetes.

    PubMed

    de Cavanagh, Elena M V; Ferder, León; Toblli, Jorge E; Piotrkowski, Bárbara; Stella, Inés; Fraga, Cesar G; Inserra, Felipe

    2008-01-01

    To investigate whether ANG II type 1 (AT(1)) receptor blockade could protect kidney mitochondria in streptozotocin-induced Type 1 diabetes, we treated 8-wk-old male Sprague-Dawley rats with a single streptozotocin injection (65 mg/kg ip; STZ group), streptozotocin and drinking water containing either losartan (30 mg.kg(-1).day(-1); STZ+Los group) or amlodipine (3 mg.kg(-1).day(-1); STZ+Amlo group), or saline (intraperitoneally) and pure water (control group). Four-month-long losartan or amlodipine treatments started 30 days before streptozotocin injection to improve the antioxidant defenses. The number of renal lesions, plasma glucose and lipid levels, and proteinuria were higher and creatinine clearance was lower in STZ and STZ+Amlo compared with STZ+Los and control groups. Glycemia was higher in STZ+Los compared with control. Blood pressure, basal mitochondrial membrane potential and mitochondrial pyruvate content, and renal oxidized glutathione levels were higher and NADH/cytochrome c oxidoreductase activity was lower in STZ compared with the other groups. In STZ and STZ+Amlo groups, mitochondrial H(2)O(2) production rate was higher and uncoupling protein-2 content, cytochrome c oxidase activity, and renal glutathione level were lower than in STZ+Los and control groups. Mitochondrial nitric oxide synthase activity was higher in STZ+Amlo compared with the other groups. Mitochondrial pyruvate content and H(2)O(2) production rate negatively contributed to electron transfer capacity and positively contributed to renal lesions. Uncoupling protein-2 content negatively contributed to mitochondrial H(2)O(2) production rate and renal lesions. Renal glutathione reduction potential positively contributed to mitochondria electron transfer capacity. In conclusion, AT(1) blockade protects kidney mitochondria and kidney structure in streptozotocin-induced diabetes independently of blood pressure and glycemia.

  16. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy.

    PubMed

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B; Abelson, Klas Sp; Søndergaard, Henrik

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice without this supplement reached this humane endpoint ( p = 0.0027). Excretion of corticosterone metabolites in faeces was reduced in diabetic mice on softened chow ( p = 0.0007), suggesting lower levels of general stress. Finally, it was demonstrated that the water-softened chow supplement did not significantly affect the induction of key disease parameters, i.e. %HbA1C and albuminuria nor result in abnormal teeth wear. In conclusion, supplementation of softened food is refining the STZ-induced diabetic mouse model significantly by reducing stress, weight loss and the number of animals sacrificed due to humane endpoints, while maintaining the key phenotypes of diabetes and nephropathy.

  17. The histopathological and morphometric investigation of the effects of systemically administered boric acid on alveolar bone loss in ligature-induced periodontitis in diabetic rats.

    PubMed

    Balci Yuce, Hatice; Toker, Hulya; Goze, Fahrettin

    2014-11-01

    The purpose of this study was to evaluate the effects of systemically administered boric acid on alveolar bone loss, histopathological changes and oxidant/antioxidant status in ligature-induced periodontitis in diabetic rats. Forty-four Wistar rats were divided into six experimental groups: (1) non-ligated (NL, n = 6) group, (2) ligature only (LO, n = 6) group, (3) Streptozotocin only (STZ, n = 8) group, (4) STZ and ligature (STZ+LO, n = 8) group, (5) STZ, ligature and systemic administration of 15 mg/kg/day boric acid for 15 days (BA15, n = 8) group and (6) STZ, ligature and systemic administration of 30 mg/kg/day boric acid for 15 days (BA30, n = 8) group. Diabetes mellitus was induced by 60 mg/kg streptozotocin. Silk ligatures were placed at the gingival margin of lower first molars of the mandibular quadrant. The study duration was 15 days after diabetes induction and the animals were sacrificed at the end of this period. Changes in alveolar bone levels were clinically measured and tissues were histopathologically examined. Serum total antioxidant status (TAS), total oxidant status (TOS), calcium (Ca) and magnesium (Mg) levels and oxidative stress index (OSI) were evaluated. Primary outcome was alveolar bone loss. Seconder outcome (osteoblast number) was also measured. At the end of 15 days, the alveolar bone loss was significantly higher in the STZ+LO group compared to the other groups (p < 0.05). There was no significant difference in alveolar bone loss between the STZ+LO 15 mg/kg boric acid and STZ+LO 30 mg/kg boric acid groups (p > 0.05). Systemically administered boric acid significantly decreased alveolar bone loss compared to the STZ+LO group (p < 0.05). The osteoblast number in the BA30 group was significantly higher than those of the NL, STZ and STZ+LO groups (p < 0.05). Inflammatory cell infiltration was significantly higher in the STZ+LO group the other groups (p < 0.05). Serum TAS levels were significantly higher in the NL and LO groups than the

  18. Branched-chain amino acids supplementation protects streptozotocin-induced insulin secretion and the correlated mechanism.

    PubMed

    Lu, Ming; Zhang, Xiujuan; Zheng, Dongmei; Jiang, Xiuyun; Chen, Qing

    2015-01-01

    Significant evidence demonstrates that oxidative stress can impair insulin secretion and contribute to the development of type 2 diabetes. Branched-chain amino acids (BCAAs) are reported to be positively related to insulin secretion. This study aimed to determine how oxidative stress affects the function of islets and whether BCAAs can ameliorate the oxidative stress, and accompanying c-jun N-terminal kinase (JNK), protein kinase D1 (PKD1), and pancreatic/duodenal homeobox-1 (PDX-1) changes induced by streptozotocin (STZ). Plasma glucose, plasma insulin, and JNK, PKD1 and PDX-1 mRNA and protein expression were measured in rats treated with STZ and BCAAs. The glucose level in STZ-induced diabetic rats was much higher than that in control animals, and the elevated plasma glucose level in diabetic rats could be significantly inhibited by BCAAs treatment. Consistent with the change in glucose levels, the levels of insulin were also affected by BCAAs treatment. The mRNA and protein expression of JNK, PDX-1, and PKD1 were significantly altered in diabetic rats compared with the control group (P<0.01) and treatment with a low dose of BCAA reversed these changes in those above markers significantly (P<0.01). The present study demonstrated that STZ-induced oxidative stress could reduce serum insulin levels and alter the JNK, PDX-1, and PKD1 expression. BCAAs restored the levels of serum insulin reversed changes in JNK, PDX-1, and PKD1 expression. © 2014 International Union of Biochemistry and Molecular Biology.

  19. Cold Exposure Exacerbates the Development of Diabetic Polyneuropathy in the Rat

    PubMed Central

    Kasselman, Lora J.; Veves, Aristidis; Gibbons, Christopher H.; Rutkove, Seward B.

    2009-01-01

    Diabetic polyneuropathy (DPN) and cold-induced nerve injury share several pathogenic mechanisms. This study explores whether cold exposure contributes to the development of DPN. Streptozotocin-induced diabetic rats and controls were exposed to a room temperature (23°C) or cold environment (10°C). H-reflex, tail and sciatic motor, and sensory nerve conduction studies were performed. Analyses of sural nerve, intraepidermal nerve fibers, and skin and nerve nitrotyrosine ELISAs were performed. Diabetic animals exposed to a cold environment had an increased H-reflex four weeks earlier than diabetic room temperature animals (P = .03). Cold-exposed diabetic animals also had greater reduction in motor conduction velocities at 20 weeks (P = .017), decreased skin nerve fiber density (P = .037), and increased skin nitrotyrosine levels (P = .047). Cold exposure appears to hasten the development of DPN in the rat STZ model of diabetes. These findings support that further study into the relationship between ambient temperature and DPN is warranted. PMID:20130819

  20. Urinary excretion of water-soluble vitamins increases in streptozotocin-induced diabetic rats without decreases in liver or blood vitamin content.

    PubMed

    Imai, Eri; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2012-01-01

    It is thought that the contents of water-soluble vitamins in the body are generally low in diabetic patients because large amounts of vitamins are excreted into urine. However, this hypothesis has not been confirmed. To investigate this hypothesis, diabetes was induced in male Wistar rats (6 wk old) by streptozotocin treatment, and they were then given diets containing low, medium or sufficient vitamins for 70 d. The contents of 6 kinds of B-group vitamins, namely vitamin B₁, vitamin B₂, vitamin B₆, vitamin B₁₂, folate and biotin, were determined in the urine, blood and liver. No basic differences among the dietary vitamin contents were observed. The urinary excretion of vitamins was higher in diabetic rats than in control rats. The blood concentrations of vitamin B₁₂ and folate were lowered by diabetes, while, those of vitamin B₁, vitamin B₂, vitamin B₆, and biotin were not. All liver concentrations of vitamins were increased in diabetic rats above those in control rats. These results showed that streptozotocin-induced diabetes increased urinary excretion of water-soluble vitamins, though their blood and liver concentrations were essentially maintained in the rats.

  1. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16more » weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.« less

  2. Acacia nilotica leave extract and glyburide: comparison of fasting blood glucose, serum insulin, beta-thromboglubulin levels and platelet aggregation in streptozotocin induced diabetic rats.

    PubMed

    Asad, Munnaza; Munir, Tahir Ahmad; Afzal, Nasir

    2011-03-01

    To evaluate the hypoglycaemic and anti-platelet aggregation effect of aqueous methanol extract of Acacia Nilotica (AN) leaves compared with glyburide on streptozotocin induced diabetic rats. Diabetes mellitus was induced in 90 out of 120 albino rats by administering 50 mg/kg body weight (b.w) streptozotocin and was confirmed by measuring fasting blood glucose level >200 mg/dL on 4th post-induction day. The rats were equally divided into 4 groups, A (normal control), B (diabetic control), C (diabetic rats treated with AN extract) and group D (diabetic rats treated with glyburide). The rats of group C and D were given 300 mg/kg b.w AN extract and 900 microgm/kg b.w glyburide respectively for 3 weeks. Blood glucose was measured by glucometer, platelet aggregation by Dia-Med method and insulin and beta-thromboglobulin by ELISA technique. A significant increase (p<0.05) in fasting blood glucose, beta-thromboglobulin and platelet aggregation and a significant decrease (p<0.05) in insulin levels was observed in streptozotocin induced diabetic rats than the normal controls. The rats treated with AN extract and glyburide showed a significant decrease (p<0.05) in fasting blood glucose and increase (p<0.05) in insulin levels than the diabetic control rats. However, the levels in both the treatment groups remained significantly different than the normal controls. A significant decrease (p<0.05) in beta-thromboglobulin levels was seen in diabetic rats treated with glyburide than the diabetic control rats and diabetic rats treated with AN extract. AN leaves extract result into hypoglycaemic and anti-platelet aggregation activity in diabetic rats as that of glyburide.

  3. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats.

    PubMed

    Daisy, Pitchai; Eliza, James; Mohamed Farook, Khanzan Abdul Majeed

    2009-11-12

    Gymnema sylvestre (Asclepiadaceae) is emerging as a potential treatment for the management of diabetes. The leaves are used in herbal medicine preparations. The present study was carried out to isolate and identify the putative antidiabetic compound based on bioassay-guided fractionation. An active compound dihydroxy gymnemic triacetate has been isolated from Gymnema sylvestre acetone extract and its optimum dose has been determined and patented. An optimum dose of dihydroxy gymnemic triacetate (20mg/kg body weight) was orally administered for 45 days to streptozotocin diabetic rats for the assessment of plasma glucose, insulin, glycated hemoglobin (HbA1c), tissue glycogen, lipid parameters such as triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol and activities of hepatic marker enzymes, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and acid phosphatase (ACP) in normal and streptozotocin diabetic rats. Dihydroxy gymnemic triacetate at 20mg dose produced significant effects on all biochemical parameters studied compared to diabetic control group. These results indicate that dihydroxy gymnemic triacetate, the compound from Gymnema sylvestre, possessed hypoglycemic and hypolipidemic activity in long-term treatment and hence it could be used as a drug for treating diabetes.

  4. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease by exendin-4.

    PubMed

    Chen, Song; Liu, Ai-ran; An, Feng-mao; Yao, Wen-bing; Gao, Xiang-dong

    2012-10-01

    Growing evidence suggests that type 2 diabetes mellitus (DM) is associated with age-dependent Alzheimer's disease (AD), the latter of which has even been considered as type 3 diabetes. Several physiopathological features including hyperglycemia, oxidative stress, and dysfunctional insulin signaling relate DM to AD. In this study, high glucose-, oxidative stress-induced neuronal injury and intracerebroventricular-streptozotocin (ICV-STZ) animals as the possible models for diabetes-related AD were employed to investigate the effects of exendin-4 (Ex-4), a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist, on diabetes-associated Alzheimer-like changes as well as the molecular mechanisms involved. Our study demonstrated that GLP-1/Ex-4 could exert a protective effect against reduced viability of PC12 cells caused by high glucose and that this protective effect was mediated via the PI3-kinase pathway. In addition, GLP-1/Ex-4 ameliorated oxidative stress-induced injury in PC12 cells. In rat models, bilateral ICV-STZ administration was used to produce impaired insulin signaling in the brain. Fourteen days following ICV-STZ injection, rats treated with twice-daily Ex-4 had better learning and memory performance in the Morris water maze test compared with rats treated with saline. Additionally, histopathological evaluation confirmed the protective effects of Ex-4 treatment on hippocampal neurons against degeneration. Furthermore, we demonstrated that Ex-4 reversed ICV-STZ-induced tau hyperphosphorylation through downregulation of GSK-3β activity, a key kinase in both DM and AD. Our findings suggests that Ex-4 can protect neurons from diabetes-associated glucose metabolic dysregulation insults in vitro and from ICV-STZ insult in vivo, and that Ex-4 may prove of therapeutic value in the treatment of AD especially DM-related AD.

  5. Effect of natural honey from Ilam and metformin for improving glycemic control in streptozotocin-induced diabetic rats

    PubMed Central

    Nasrolahi, Ozra; Heidari, Reza; Rahmani, Fatima; Farokhi, Farah

    2012-01-01

    Objective(s): Diabetes mellitus is a public health problem and one of the five leading causes of death globally. In the present study, the effect of Metformin with natural honey was investigated on glycemia in the Streptozotocin-induced diabetic rats. Materials and Methods: Thirty Wistar male rats were randomly divided into six groups including C: non diabetic rats received distilled water, CH: non diabetic rats received honey, CD: diabetic rats administered with distilled water, DM: Metformin treated diabetic rats, DH: honey treated diabetic rats, and DMH: diabetic rats treated with a combination of Metformin and natural honey. Diabetes was induced by a single dose of Streptozotocin (65 mg/kg; i.p.). The animals were treated by oral gavage once daily for four weeks. At the end of the treatment period, the animals were sacrificed and their blood samples collected. Amount of glucose, triglyceride (TG), total cholesterol (TC), HDL cholesterol, LDL cholesterol, VLDL cholesterol, total bilirubin, and albumin were determined in serum. Results: Group CD: showed hyperglycemia (252.2±4.1 mg/dl), while level of blood glucose was significantly (p<0.01) reduced in groups DH (124.2±2.7 mg/dl), DM (108.0±3.4 mg/dl), and DMH (115.4±2.1 mg/dl). Honey in combination with Metformin significantly (p<0.01) reduced level of bilirubin but Metformin alone did not reduce bilirubin. Honey alone and in combination with Metformin also significantly reduced triglycerides, total cholesterol, LDL, VLDL and increased HDL, but Metformin did not reduced triglycerides and increased HDL. Conclusion: The results of the present study demonstrated that consuming natural honey with Metformin improves glycemic control and is more useful than consuming Metformin alone. The higher therapeutic effect of Ilam honey on lipid abnormalities than Tualang honey was also evident. PMID:25050251

  6. Experimental diabetes induced by streptozotocin in the desert gerbil, Gerbillus gerbillus, and the effects of short-term 20-hydroxyecdysone administration.

    PubMed

    Mallek, Aicha; Movassat, Jamileh; Ameddah, Souad; Liu, Junjun; Semiane, Nesrine; Khalkhal, Ali; Dahmani, Yasmina

    2018-06-01

    The present work was aimed at studying the effects of streptozotocin (STZ; 130 mg/kg) in the desert gerbil, Gerbillus gerbillus, and at evaluating the impact of the short-term administration of 20-hydroxyecdysone (20E; 5 mg/kg). We observed that administration of streptozotocin caused a significant increase in plasmatic glucose and a decrease in insulin levels. The plasma lipid profile and liver glycogen content were also altered. The activities of antioxidant enzymes and malondialdehyde (MDA) levels were increased in the pancreatic tissue of STZ-treated gerbils. Moreover, histopathological and immunohistochemical analysis showed degenerative damage in the pancreas with a decline in the percentage area of β-cells. Treatment of STZ-treated gerbils with 20E counteracted metabolic disorders and reduced lipid peroxidation. Histological and immunohistochemical studies showed moderate amelioration in the pancreatic structure. These findings indicate that streptozotocin administration induced experimental diabetes in gerbils and that short-term administration of 20E has beneficial effects in glucose homeostasis in STZ-treated gerbils suggesting that 20E may stimulate surviving β-cells to release more insulin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Promotion of immune and glycaemic functions in streptozotocin-induced diabetic rats treated with un-denatured camel milk whey proteins.

    PubMed

    Ebaid, Hossam

    2014-01-01

    T cell mediated autoimmune diabetes is characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing β-cells. This study was designed to assess the effect of whey proteins (WP) on the responsiveness of lymphocytes in rats after four months of Streptozotocin (STZ)-induced Type 1 diabetes (T1D). A diabetic group was supplemented with WP daily for five weeks at a dose of 100 mg/kg. Ribonucleic acid (RNA) was extracted from stimulated lymphocytes in order to analyse gene expressions using real time PCR and RT-PCR. PCR results were confirmed with ELISA. The proliferation capacity of lymphocytes and their homing to the spleen were studied. Antigen-activated lymphocytes showed that diabetes impaired the mRNA expression of the protein kinase B (Akt1), Cdc42, and the co-stimulatory molecule, CD28, which are important for cell survival, actin polymerization and T cell activation, respectively. Accordingly, proliferation of lymphocytes was found to be suppressed in diabetic rats, both in vivo and in vitro. WP was found to restore Akt1, Cdc42 and CD28 mRNA expression during diabetes to normal levels. WP, therefore, served to activate the proliferation of B lymphocytes in diabetic rats both in vivo and in vitro. Although WP was found to up-regulate mRNA expression of both interleukin (IL)-2 and interferon gamma (IFN-γ), it suppressed the proliferation activity of almost all T cell subsets. This was confirmed by WP normalizing the structure and function of ß cells. Meanwhile, WP was found to down regulate the mRNA expression of Tumor necrosis factor-alpha (TNF-α) and its programmed cell death-receptor (Fas). Taken together, the results of this study provide evidence for the potential impact of WP in the treatment of immune impairment in T1D, suggesting that it serves to reverse autoimmunity by suppressing autoreactive T cells and down regulating TNF-α and Fas, resulting in improved pancreatic ß cell structure and function.

  8. Antihyperalgesic Activity of Rhodiola rosea in a Diabetic Rat Model.

    PubMed

    Déciga-Campos, Myrna; González-Trujano, Maria Eva; Ventura-Martínez, Rosa; Montiel-Ruiz, Rosa Mariana; Ángeles-López, Guadalupe Esther; Brindis, Fernando

    2016-02-01

    Preclinical Research Rhodiola rosea L. (Crassulaceae) is used for enhancing physical and mental performance. Recent studies demonstrated that R. rosea had anti-inflammatory activity in animal models, for example, carrageenan- and nystatin-induced edema in rats, possibly by inhibiting phospholipase A2 and cyclooxygenases-1 and -2. In addition, R. rosea had antinociceptive activity in thermal and chemical pain tests as well as mechanical hyperalgesia. The purpose of the present study was to assess the antihyperalgesic effect of an ethanol extract of Rhodiola rosea (R. rosea) in a diabetic rat model. Rats were administered a single dose of streptozotocin (STZ; 50 mg/kg, i.p.) and hyperalgesia was evaluated four weeks later. Formalin-evoked (0.5%) flinching was increased in diabetic rats compared with nondiabetic controls Systemic (1-100 mg/kg, i.p.) and local (0.1-10 mg/paw into the dorsal surface of the right hind paw) administration of R. rosea ethanol extract dose-dependently reduced formalin-induced hyperalgesia in diabetic rats. The antihyperalgesic effect of R. rosea was compared with gabapentin. These results suggest that R. rosea ethanol extract may have potential as a treatment for diabetic hyperalgesia. © 2016 Wiley Periodicals, Inc.

  9. Effect of houttuynia cordata aetherolea on adiponectin and connective tissue growth factor in a rat model of diabetes mellitus.

    PubMed

    Wang, Hai-Ying; Bao, Jun-Lu

    2012-03-01

    To determine the effect of Houttuynia cordata Aetherolea on connective tissue growth factor and adiponectin in a rat model of diabetes mellitus (DM). DM was induced in rats using streptozotocin (STZ) and high glucose-lipid animal feed. Animals were then treated with Houttuynia cordata Aetherolea for 8 weeks. Changes in connective tissue growth factor and adiponectin levels in rats were observed. Connective tissue growth factor and adiponectin levels in rats with DM improved after Houttuynia cordata Aetherolea treatment. Houttuynia cordata Aetherolea had a positive effect on rats with DM by reducing levels of connective tissue growth factor and increasing adiponectin levels.

  10. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    PubMed

    Lambertucci, Adriana C; Lambertucci, Rafael H; Hirabara, Sandro M; Curi, Rui; Moriscot, Anselmo S; Alba-Loureiro, Tatiana C; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C; Vasconcelos, Diogo A A; Sellitti, Donald F; Pithon-Curi, Tania C

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  11. Glutamine Supplementation Stimulates Protein-Synthetic and Inhibits Protein-Degradative Signaling Pathways in Skeletal Muscle of Diabetic Rats

    PubMed Central

    Lambertucci, Adriana C.; Lambertucci, Rafael H.; Hirabara, Sandro M.; Curi, Rui; Moriscot, Anselmo S.; Alba-Loureiro, Tatiana C.; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C.; Vasconcelos, Diogo A. A.; Sellitti, Donald F.; Pithon-Curi, Tania C.

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes. PMID:23239980

  12. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats.

    PubMed

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Jaiswal, Dolly; Watal, Geeta

    2007-11-01

    This study was undertaken to investigate the hypoglycemic and antidiabetic effect of single and repeated oral administration of the aqueous extract of Cynodon dactylon (Family: Poaceae) in normal and streptozotocin induced diabetic rats, respectively. The effect of repeated oral administration of aqueous extract on serum lipid profile in diabetic rats was also examined. A range of doses, viz. 250, 500 and 1000mg/kg bw of aqueous extract of Cynodon dactylon were evaluated and the dose of 500mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4h of administration in normal rats. The same dose of 500mg/kg produced a fall of 23% in blood glucose level within 1h during glucose tolerance test (GTT) of mild diabetic rats. This dose has almost similar effect as that of standard drug tolbutamide (250mg/kg bw). Severely diabetic rats were also treated daily with 500mg/kg bw for 14 days and a significant reduction of 59% was observed in fasting blood glucose level. A reduction in the urine sugar level and increase in body weight of severe diabetic rats were additional corroborating factors for its antidiabetic potential. Total cholesterol (TC), low density lipoprotein (LDL) and triglyceride (TG) levels were decreased by 35, 77 and 29%, respectively, in severely diabetic rats whereas, cardioprotective, high density lipoprotein (HDL) was increased by 18%. These results clearly indicate that aqueous extract of Cynodon dactylon has high antidiabetic potential along with significant hypoglycemic and hypolipidemic effects.

  13. AL-1576, an aldose reductase inhibitor (ARI), did not prevent the decrease of norepinephrine turnover in diabetic rats.

    PubMed

    Yen, T T; Fuller, R W; Broderick, C L; Hemrick-Luecke, S K; Perry, K W

    1988-08-01

    ONO-2235 [(E)-3-carboxymethyl-5-[(2E)-2-methyl-3-phenyl-propenylidene]rhodanine], an ARI, was reported to prevent significantly the decrease of norepinephrine (NE) turnover in three tissues of streptozotocin (STZ)-diabetic rats (1). To examine whether the partial restoration of NE turnover by ONO-2235 is related to its ARI activity, the effect of another ARI, AL-1576 [spiro(2,7-difluoro-9H-fluoren-9, 4'-imidazoline)-2'5'-dione], on NE turnover in STZ rats was investigated. STZ caused an accumulation of sorbitol in the lens and decreased NE turnover in interscapular brown adipose tissue (IBAT), heart and pancreas. AL-1576 totally prevented the accumulation of sorbitol in the lens but had no effect on the decreased NE turnover in all three tissues. These results suggest that the partial prevention of NE turnover decrease by ONO-2235 may not have been mediated by its ARI activity.

  14. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    PubMed

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  15. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  16. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats.

    PubMed

    Petchi, Ramesh R; Parasuraman, S; Vijaya, C

    2013-09-01

    To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats.

  17. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats

    PubMed Central

    Petchi, Ramesh R.; Parasuraman, S.; Vijaya, C.

    2013-01-01

    Objective: To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. Materials and Methods: The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. Results: The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. Conclusion: The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats. PMID:24808679

  18. Effect of the hydroalcoholic extract and juice of Prunus divaricata fruit on blood glucose and serum lipids of normal and streptozotocin-induced diabetic rats

    PubMed Central

    Minaiyan, M.; Ghannadi, A.; Movahedian, A.; Ramezanlou, P.; Osooli, F.S.

    2014-01-01

    Prunus divaricata (Alloocheh) is a small tree cultivating in Iran, Middle East and central Asia. Prunus genus has many species with anti-oxidant, anti-hyperlipidemia and anti-hyperglycemia effects. In the present study the anti-diabetic and anti-hyperlipidemic effects of P. divaricata fruits were examined in normal and streptozotocin (STZ)-induced diabetic rats. Both groups, control and reference rats received normal saline and glibenclamide respectively. Test groups were treated with Prunus freeze dried juice (PFDJ, 200, 400, 800 mg/kg) and Prunus freeze dried extract (PFDE, 100, 200, 400 mg/kg) started at the 3rd day of the experiment and continued for 27 days thereafter. Weight changes of animals were checked periodically. Fasting blood glucose (FBG) level as well as serum triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol were determined. Different treatments had no significant effect on body weight increments of normal rats, while in diabetic rats, PFDJ (800 mg/kg) and PFDE (400 mg/kg) opposed with weight loss. In acute phase of experiment (0-8 h of 3rd day), none of tested fractions were effective in reducing FBG and serum lipids of normal rats. During the sub-acute phase (13th and 30th days) however, the greatest test doses of PFDJ (800 mg/kg) and PFDE (400 mg/kg) induced hypoglycema. In diabetic groups, PFDJ and PFDE, at all test doses, could diminish FBG during sub-acute phase of the experiment. In addition, PFDJ and PFDE at most examined doses could diminish TG significantly and they were also effective on cholesterol derivatives in different magnitude. PMID:26339257

  19. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice.

    PubMed

    Zhang, Yan; Wu, Liying; Ma, Zhongsu; Cheng, Jia; Liu, Jingbo

    2015-12-23

    Corn silk is a well-known ingredient frequently used in traditional Chinese herbal medicines. This study was designed to evaluate the anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of crude flavonoids extracted from corn silk (CSFs) on streptozotocin (STZ)-induced diabetic mice. The results revealed that treatment with 300 mg/kg or 500 mg/kg of CSFs significantly reduced the body weight loss, water consumption, and especially the blood glucose (BG) concentration of diabetic mice, which indicated their potential anti-diabetic activities. Serum total superoxide dismutase (SOD) and malondialdehyde (MDA) assays were also performed to evaluate the anti-oxidant effects. Besides, several serum lipid values including total cholesterol (TC), triacylglycerol (TG), low density lipoprotein cholesterol (LDL-C) were reduced and the high density lipoprotein cholesterol level (HDL-C) was increased. The anti-diabetic, anti-oxidant and anti-hyperlipidemic effect of the CSFs suggest a potential therapeutic treatment for diabetic conditions.

  20. Naringin ameliorates diabetic nephropathy by inhibiting NADPH oxidase 4.

    PubMed

    Zhang, Junwei; Yang, Suxia; Li, Huicong; Chen, Fang; Shi, Jun

    2017-06-05

    Naringin, a naturally flavanone glycoside, has been previously demonstrated to alleviate diabetic kidney disease by inhibiting oxidative stress and inflammatory reaction. However, the underlying mechanism of naringin in diabetic nephropathy (DN) has not been fully elucidated. Here, the beneficial effect of naringin on DN in streptozotocin (STZ)-induced DN rats and high glucose (HG)-induced podocytes and its underlying mechanism were elaborated. The result revealed that naringin alleviated STZ-induced renal dysfunction and injury in DN rats, relieved STZ-induced oxidative stress in vivo and inhibited HG-induced apoptosis and reactive oxygen species level i20n vitro. More importantly, naringin inhibited NOX4 expression at mRNA and protein levels in STZ-induced DN rats and HG-induced podocytes. Loss of function indicated that NADPH oxidases 4 (NOX4) down-regulation suppressed apoptosis and reactive oxygen species level in HG-treated podocytes. Take together, this study demonstrated that naringin ameliorates diabetic nephropathy by inhibiting NOX4, contributing to a better understanding of the progression of DN. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark in diabetic rats

    PubMed Central

    Ramachandran, Subramaniam; Rajasekaran, Aiyalu; Manisenthilkumar, KT

    2012-01-01

    Objective To investigate the hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark (AETPB) in streptozotocin (STZ)-induced diabetic rats. Methods Acute toxicity was studied in rats after the oral administration of AETPB to determine the dose to assess hypoglycemic activity. In rats, diabetes was induced by injection of STZ (60 mg/kg, i.p.) and diabetes was confirmed 72 h after induction, and then allowed for 14 days to stabilize blood glucose level. In diabetic rats, AETPB was orally given for 28 days and its effect on blood glucose and body weight was determined on a weekly basis. At the end of the experimental day, fasting blood sample was collected to estimate the haemoglobin (Hb), glycosylated haemoglobin (HbA1c), serum creatinine, urea, serum glutamate-pyruvate transaminase (SGPT), serum glutamate-oxaloacetate transaminase (SGOT) and insulin levels. The liver and kidney were collected to determine antioxidants levels in diabetic rats. Results Oral administration of AETPB did not exhibit toxicity and death at a dose of 2 000 mg/kg. AETPB treated diabetic rats significantly (P<0.001, P<0.01 and P<0.05) reduced elevated blood glucose, HbA1c, creatinine, urea, SGPT and SGOT levels when compared with diabetic control rats. The body weight, Hb, insulin and total protein levels were significantly (P<0.001, P<0.01 and P<0.05) increased in diabetic rats treated with AETPB compared to diabetic control rats. In diabetic rats, AETPB treatment significantly reversed abnormal status of antioxidants and lipid profile levels towards near normal levels compared to diabetic control rats. Conclusions Present study results confirm that AETPB possesses significant hypoglycemic, hypolipidemic and antioxidant activities in diabetic condition. PMID:23569911

  2. Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin.

    PubMed

    Manaer, Tabusi; Yu, Lan; Zhang, Yi; Xiao, Xue-Jun; Nabi, Xin-Hua

    2015-07-01

    Shubat, probiotic fermented camel milk, has been used both as a drink with ethnic flavor and a medicine among Kazakh population for diabetic patients. Kazakh people have lower diabetic prevalence and impaired fasting glucose (IFG) than do other ethnic groups living in Xinjiang China, which might be related to the beneficial properties of shubat. We therefore prepared shubat in laboratory and tested anti-diabetic activity and evaluated its possible hypolipidemic and renoprotective effects in type 2 diabetic rats. Type 2 diabetic rats were induced by an administration of high-glucose-fat diet for 6 weeks and an intraperitoneal injection of streptozotocin (STZ, 30mg/kg). Diabetic rats were divided randomly into four groups and treated for 28 days with sitagliptin (30mg/kg) or shubat (6.97×10(6) lactic acid bacteria+2.20×10(4) yeasts) CFU/mL, (6.97×10(7) lactic acid bacteria+2.20×10(5) yeasts) CFU/mL and (6.97×10(8) lactic acid bacteria+2.20×10(6) yeasts) CFU/mL. In addition, a normal control group and a diabetic control group were used for comparison. All drugs were given orally once daily 10mL/kg for 4 weeks. Fasting blood glucose (FBG) and body weight (BW) were measured before treatment and every week thereafter. Total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), serum creatinine (SCr), blood urea nitrogen (BUN), C-peptide, glycated hemoglobin (HbAlc), glucagon-like peptide-1 (GLP-1) levels and pancreas tissue sections were tested after 4 weeks. Shubat demonstrated positive hypoglycemic activity on FBG, HbAlc, C-peptide and GLP-1 levels, high dose shubat decreased FBG (P<0.01) and HbAlc (P<0.05), increased C-peptide (P<0.05) and GLP-1 (P<0.01), decreased serum TC, TG, LDL-c (P<0.05), increased HDL-c (P<0.01), and improved the reduction of body weight as well as decreased SCr and BUN levels (P<0.01) compared to diabetic controls. Histological analysis showed shubat protected the

  3. The Hypoglycemic and Antioxidant Activity of Cress Seed and Cinnamon on Streptozotocin Induced Diabetes in Male Rats.

    PubMed

    Qusti, Safaa; El Rabey, Haddad A; Balashram, Sarah A

    2016-01-01

    The present study aimed to estimate the stimulation of pancreas of rats with streptozotocin induced diabetes using 20% (w/w) garden cress seed (Lepidium sativum) and cinnamon methanol extracts. The positive control diabetic group showed a significant increase in fasting blood sugar, lipid peroxide, interleukin-6, carboxymethyl lysine, serum uric acid, urea, creatinine, immunoglobulins, and urine albumin and a significant decrease in antioxidant enzymes, sodium ions, potassium ions, and urine creatinine. Severe histopathological changes in the kidney and pancreas tissues in hyperglycemic rats were also shown in the positive control diabetic group. Meanwhile, the groups that were treated with 20% garden cress seed and cinnamon methanol extracts showed a significant decrease in fasting blood sugar and all elevated abovementioned biochemical parameters and an increase in the lowered ones restoring them nearly to the normal levels of G1. Kidney and pancreas tissues were also ameliorated and restored nearly to the normal status. Both garden cress seed and cinnamon methanol extracts succeeded in controlling hyperglycemia in rats with streptozotocin induced diabetes and ameliorated the biochemical and histopathological changes because of their antioxidant activity acquired by their possession of phenolic phytochemicals.

  4. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.

  5. The Protective Effects of Insulin and Natural Honey against Hippocampal Cell Death in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, “H & E” staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples. PMID:24745031

  6. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats.

    PubMed

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, "H & E" staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples.

  7. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats.

    PubMed

    Reeta, K H; Singh, Devendra; Gupta, Yogendra K

    2017-04-01

    Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1β) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via1H NMR-based metabolomics approach.

    PubMed

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Mohd Dom, Nur Sumirah; Machap, Chandradevan; Hamid, Muhajir; Ismail, Amin; Khatib, Alfi; Abas, Faridah

    2017-12-01

    Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. By using a combination of 1 H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Vinpocetine mitigates proteinuria and podocytes injury in a rat model of diabetic nephropathy.

    PubMed

    Wadie, Walaa; El-Tanbouly, Dalia M

    2017-11-05

    Podocyte injury and glomerular basement membrane thickening have been considered as essential pathophysiological events in diabetic nephropathy. The aim of this study was to investigate the possible beneficial effects of vinpocetine on diabetes-associated renal damage. Male Wistar rats were made diabetic by injection of streptozotocin (STZ). Diabetic rats were treated with vinpocetine in a dose of 20mg/kg/day for 6 weeks. Treatment with vinpocetine resulted in a marked decrease in the levels of blood glucose, glycosylated haemoglobin, creatinine, blood urea nitrogen, urinary albumin and albumin/creatinine ratio along with an elevation in creatinine clearance rate. The renal contents of advanced glycation end-products, interleukin-10, tissue growth factor-β, nuclear factor (NF)-κB and Ras-related C3 botulinum toxin substrate 1 (Rac 1) were decreased. Renal nephrin and podocin contents were increased and their mRNA expressions were replenished in vinpocetine-treated rats. Moreover, administration of vinpocetine showed improvements in oxidative status as well as renal glomerular and tubular structures. The current investigation revealed that vinpocetine ameliorated the STZ-induced renal damage. This beneficial effect could be attributed to its antioxidant and antihyperglycemic effects parallel to its ability to inhibit NF-κB which eventually modulated cytokines production as well as nephrin and podocin proteins expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Tanshinone IIA exerts neuroprotective effects on hippocampus-dependent cognitive impairments in diabetic rats by attenuating ER stress-induced apoptosis.

    PubMed

    Chen, Jian; Bi, Yanli; Chen, Lei; Zhang, Qi; Xu, Linhao

    2018-08-01

    This study aimed to investigate the mechanism by which tanshinone IIA (Tan IIA) suppresses neuronal apoptosis in the hippocampus of diabetic rats. Sprague-Dawley (SD) rats were randomly divided into the following four groups: a control group, a diabetes group and diabetes groups treated with different doses (2 or 4 mg/kg/day) of Tan IIA. Streptozotocin (STZ) was injected into the rats to induce diabetes. Two days after STZ treatment, Tan IIA was intraperitoneally administered to rats in the Tan IIA groups, whereas an equal volume of saline was administered to rats in the control and diabetes groups. After 6 weeks, a one-trial object recognition task and the Morris water maze were applied. The diabetes group displayed notably decreased learning and memory abilities compared with the control group (P < 0.05). Tan IIA rescued hippocampus-dependent memory. Superoxide dismutase (SOD) activity was reduced, and reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and 78-kDa glucose-regulated protein (Grp78), growth arrest and DNA damage-inducible gene 153 (CHOP/GAD153) and cleaved caspase-3 levels were increased in the hippocampus of diabetic rats compared with that of control rats, changes that were accompanied by an increase in neuronal apoptosis in diabetic rats compared with control rats (P < 0.01). However, Tan IIA reduced the MDA content and GRP78 and CHOP expression by inducing SOD activity. Tan IIA attenuated neuronal apoptosis and improved learning and memory by suppressing endoplasmic reticulum (ER) stress activation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    PubMed

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  12. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism.

    PubMed

    Jensen-Waern, M; Andersson, M; Kruse, R; Nilsson, B; Larsson, R; Korsgren, O; Essén-Gustavsson, B

    2009-07-01

    Streptozotocin (STZ) given intravenously destroys pancreatic beta cells and is widely used in animal models to mimic type 1 diabetes. The effects of STZ on the clinical state of health and metabolism were studied in six high health certified domestic pigs weighing 19+/-1.3 kg at the start of the experiment. A single STZ dose of 150 mg/kg of body weight successfully induced hyperglycaemia and alterations in amino acid metabolism. Within 9 h after STZ administration, the blood glucose values fell from 5.4-7.5 mmol/L to 0.8-2.2 mmol/L. Hypoglycaemia was treated with 0.5 g glucose/kg body weight. In all pigs, hyperglycaemia was produced 24 h after STZ treatment, and 3 days after STZ injection, the glucose concentration was >25 mmol/L. Mean C-peptide concentration was 0.25+/-0.16 microg/L since 2 days after STZ injection until the end of the study. The serum concentration of the branched-chain amino acids (BCAA) increased four-fold, and alanine and taurine decreased by approximately 70% and 50%, respectively, after STZ treatment. All but one pig remained brisk and the physical examination was normal except for a retarded growth rate and a reduction of the skeletal muscle. At the end of the study, the pigs were moderately emaciated. Postmortem examination confirmed muscle wasting and a reduction of abdominal and subcutaneous fat. In conclusion, STZ-induced diabetes in pigs fulfils the requirements for a good animal model for type 1 diabetes with respect to clinical signs of the disease and alterations in the carbohydrate and amino acid metabolism.

  13. The anti-oxidant effects of ginger and cinnamon on spermatogenesis dys-function of diabetes rats.

    PubMed

    Khaki, Arash; Khaki, Amir Afshin; Hajhosseini, Laleh; Golzar, Farhad Sadeghpour; Ainehchi, Nava

    2014-01-01

    Diabetes rats have been linked to reproductive dysfunction and plant medicine has been shown to be effective in its treatment. Antioxidants have distinctive effects on spermatogenesis, sperm biology and oxidative stress, and changes in anti-oxidant capacity are considered to be involved in the pathogenesis of chronic diabetes mellitus. Ginger and cinnamon are strong anti-oxidants and have been shown to reduce oxidative stress in the long-term treatment of streptozotocin (STZ)-induced diabetes in animal models. The present study examined the influence of combined ginger and cinnamon on spermatogenesis in STZ-induced diabetes in male Wistar rats. Animals (n = 80) were allocated randomly into eight groups, 10 each: Group 1: Control rats given only 5cc Normal saline (0.9% NaCl) daily;Group2: rats received ginger (100mg/kg/rat) daily; Group 3: rats received cinnamon (75mg/kg) daily; Group 4: rats received ginger and cinnamon, (100mg/kg/rat ginger and 75mg/kg cinnamon) daily; Group 5: Diabetic control rats received only normal saline. Group 6: Diabetic rats received 100mg/kg/day ginger; Group 7: Diabetic rats received 75mg /kg/ day cinnamon; Group 8: Diabetic rats received ginger and cinnamon (100mg/kg/day and 75mg/kg /day). Diabetes was induced with 55 mg/kg, single intra-peritoneal injection of STZ in all groups. At the end of the experiment (56th day), blood samples were taken for determination of testosterone, LH,FSH, total anti-oxidant capacity, and levels of malondialdehyde, SOD, Catalase and GPX. All rats were euthanized, testes were dissected out and spermatozoa were collected from the epididymis for analysis. Sperm numbers, percentages of sperm viability and motility, and total serum testosterone increased in ginger and cinnamon and combined ginger and cinnamon treated diabetic rats compared with control groups. Serum testosterone, LH and FSH were higher compared to control group and also serum anti-oxidants (TAC, SOD, GPX and catalase) all were increased at the

  14. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress.

    PubMed

    Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian

    2016-08-01

    Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  15. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats

    PubMed Central

    Ibrahim, Doaa S; Abd El-Maksoud, Marwa A E

    2015-01-01

    Diabetic nephropathy is a clinical syndrome characterized by albuminuria, hypertension and progressive renal insufficiency. The aim of this study was to investigate the effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Streptozotocin (STZ) diabetic rats were orally treated with three doses (50, 100 and 200 mg/kg) of strawberry leaf extract for 30 days. Nephropathy biomarkers in plasma and kidney were examined at the end of the experiment. The three doses of strawberry leaf extract significantly decreased the levels of blood glucose, urea nitrogen, plasma creatinine, kidney injury molecule (Kim)-1, renal malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), interleukin (IL)- 6 and caspase-3 in diabetic rats. Meanwhile, the levels of plasma insulin, albumin, uric acid, renal catalase (CAT), superoxide dismutase (SOD) and vascular endothelial growth factor A (VEGF-A) were significantly elevated in diabetic rats treated with strawberry leaf extract. These results indicate the role of strawberry leaves extract as anti-diabetic, antioxidant, anti-inflammatory and anti-apoptosis in diabetic nephropathy. PMID:25645466

  16. Agmatine Improves Cognitive Dysfunction and Prevents Cell Death in a Streptozotocin-Induced Alzheimer Rat Model

    PubMed Central

    Song, Juhyun; Hur, Bo Eun; Bokara, Kiran Kumar; Yang, Wonsuk; Cho, Hyun Jin; Park, Kyung Ah; Lee, Won Taek; Lee, Kyoung Min

    2014-01-01

    Purpose Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. Materials and Methods We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 µL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. Results Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. Conclusion Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD. PMID:24719136

  17. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.

    PubMed

    Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan

    2010-07-01

    This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.

  18. Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rat.

    PubMed

    Toba, Hiroe; Sawai, Naoki; Morishita, Masayuki; Murata, Shoko; Yoshida, Mamiko; Nakashima, Kohei; Morita, Yosuke; Kobara, Miyuki; Nakata, Tetsuo

    2009-06-10

    Recombinant human erythropoietin (rHuEPO), which has been used clinically for the management of renal anemia, is reported to exert pleiotropic beneficial properties against acute ischemic/reperfusion injury in various tissues. To investigate the hypothesis that chronic treatment with rHuEPO might ameliorate diabetic nephropathy beyond hematopoiesis, rHuEPO (150 U/kg, subcutaneously) was administered three times per week to the streptozotocin-induced diabetic rats for 4 weeks. Streptozotocin (65 mg/kg, intravenously) significantly increased urinary protein excretion and collagen deposition in glomerular and tubulointerstitial areas in the kidney, which were attenuated by rHuEPO. rHuEPO normalized the levels of creatinine clearance, serum creatinine, and blood urea nitrogen of diabetic rats. RT-PCR analysis revealed that the expressions of mRNA for transforming growth factor-beta, osteopontin and adhesion molecules were enhanced in the diabetic rat kidney and that the overexpression of these molecules was suppressed by rHuEPO. rHuEPO exerted antioxidant properties by inhibiting renal activation and overexpression of NADPH oxidase. We found the activation of the Akt signaling pathway by the increased expression of phosphorylated Akt and GSK-3beta and a reduction of TUNEL-positive apoptotic cell death in renal tissue from rHuEPO-treated diabetic group. We also demonstrated that rHuEPO restored the endothelial nitric oxide synthase (eNOS) content in the diabetic rat kidney. On the other hand, treatment with rHuEPO did not affect blood glucose level, blood pressure, or hematocrit in diabetic rats. These results suggest that chronic treatment with rHuEPO attenuated renal injury beyond hematopoiesis and regulated apoptosis and eNOS expression, which might be due to the activation of Akt pathway.

  19. Effect of vitamin D3 on behavioural and biochemical parameters in diabetes type 1-induced rats.

    PubMed

    Calgaroto, Nicéia Spanholi; Thomé, Gustavo Roberto; da Costa, Pauline; Baldissareli, Jucimara; Hussein, Fátima Abdala; Schmatz, Roberta; Rubin, Maribel A; Signor, Cristiane; Ribeiro, Daniela Aymone; Carvalho, Fabiano Barbosa; de Oliveira, Lizielle Souza; Pereira, Luciane Belmonte; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2014-08-01

    Diabetes is associated with long-term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3 ) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)-induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na(+) K(+) -adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ-ALA-D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ-induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3 , control/Metf + VD3 , diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3 . Thirty days after treatment, animals were submitted to contextual fear-conditioning and open-field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ-ALA-D and Na(+) K(+) -ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na(+) K(+) -ATPase was reverted when compared with non-treated rats, but the increase in δ-ALA-D activity was not. VD3 prevented diabetes-induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na(+) K(+) -ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Tai L., E-mail: tlguo1@uga.edu; Wang, Yunbiao; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiationmore » of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by

  1. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats.

    PubMed

    Srikanta, Akshatha Hosahalli; Kumar, Anbarasu; Sukhdeo, Shinde Vijay; Peddha, Muthukumar Serva; Govindaswamy, Vijayalakshmi

    2016-10-12

    Polyphenols act by scavenging reactive oxygen species during oxidative stress and hence are useful in the treatment of metabolic disorders including diabetes. This study describes the effect of polyphenol rich mulberry and jamun wines fed to streptozotocin-induced diabetic rats. To male adult Wistar rats, divided into groups (n = 10 per group) intraperitoneal injection was administered with streptozotocin at 38 mg per kg body weight for inducing diabetes. After confirmation of diabetes, rats divided into groups were fed each day with 5.7 milliliter per kg body weight of mulberry, jamun, white and red grape wines for 6 weeks. One group of animals received resveratrol at 20 mg per kg body weight. After six weeks of treatment, blood glucose, urinary profile, lipid profile, plasma, liver, kidney, brain and eye antioxidant enzyme activities, lipid peroxidation, non-esterified fatty acids (NEFA) and hepatic glutathione (GSH) content were determined. Though wine and resveratrol feeding did not improve the glycemic status of diabetic rats, increases in antioxidant enzymes and GSH content accompanied by reduced NEFA and lipid peroxidation were observed. The kidneys and brains of resveratrol fed rats showed significant reduction in malondialdehyde equivalents, exhibited an improved antioxidant status of tissues and an increased glutathione content. The findings suggested that the wines can ameliorate the consequences of diabetes due to their antioxidants.

  2. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    PubMed

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  3. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Yao-Wu; Zhu, Xia; Zhang, Liang; Lu, Qian; Wang, Jian-Yun; Zhang, Fan; Guo, Hao; Yin, Jia-Le; Yin, Xiao-Xing

    2013-12-05

    Advanced glycation endproducts (AGEs) and its precursor methylglyoxal are associated with diabetic nephropathy (DN). Mangiferin has many beneficial biological activities, including anti-inflammatory, anti-oxidative and anti-diabetic effects. We investigated the effect of mangiferin on DN and its potential mechanism associated with glyoxalase 1 (Glo-1), a detoxifying enzyme of methylglyoxal, in streptozotocin-induced rat model of DN. Diabetic rats were treated orally with mangiferin (15, 30, and 60 mg/kg) or distilled water for 9 weeks. Kidney tissues were collected for morphologic observation and the determination of associated biochemical parameters. The cultured mesangial cells were used to measure the activity of Glo-1 in vitro. Chronic treatment with mangiferin significantly ameliorated renal dysfunction in diabetic rats, as evidenced by decreases in albuminuria, blood urea nitrogen, kidney weight index, periodic acid-schiff stain positive mesangial matrix area, glomerular extracellular matrix expansion and accumulation, and glomerular basement membrane thickness. Meanwhile, mangiferin treatment caused substantial increases in the enzymatic activity of Glo-1 in vivo and in vitro, and protein and mRNA expression of Glo-1, reduced levels of AGEs and the protein and mRNA expression of their receptor (RAGE) in the renal cortex of diabetic rats. Moreover, mangiferin significantly attenuated oxidative stress damage as reflected by the lowered malondialdehyde and the increased glutathione levels in the kidney of diabetic rats. However, mangiferin did not affect the blood glucose and body weight of diabetic rats. Therefore, mangiferin can remarkably ameliorate DN in rats through inhibiting the AGEs/RAGE aix and oxidative stress damage, and Glo-1 may be a target for mangiferin action. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Potent effects of the total saponins from Dioscorea nipponica Makino against streptozotocin-induced type 2 diabetes mellitus in rats.

    PubMed

    Yu, Hao; Zheng, Lingli; Xu, Lina; Yin, Lianhong; Lin, Yuan; Li, Hua; Liu, Kexin; Peng, Jinyong

    2015-02-01

    The aim of the present paper was to investigate the effects and possible mechanisms of the total saponins from Dioscorea nipponica Makino (TSDN) against type 2 diabetes mellitus. Streptozotocin (STZ) with high-fat diet induced type 2 diabetes mellitus (T2DM) rats were treated with TSDN. Some biochemical parameters, target proteins and genes were investigated. The results showed that TSDN decreased the levels of food/water intake, fasting blood glucose and serum lipid parameters, ameliorated oral glucose and insulin tolerance test levels, markedly increased body weight and serum insulin, reduced excess free radicals and affected ossification and renal protection. Histopathological examination indicated that TSDN increased liver glycogen, decreased the production of lipid vacuoles and lightened liver damage. Further investigation showed that TSDN down-regulated the protein expressions of NF-κB, GRP78, ATF6, eIF2 and the levels of MAPK phosphorylation and up-regulated the protein expressions of IRS-1, GLUT-4, p-Akt and p-AMPK. In addition, TSDN obviously decreased the gene expressions of TNF-a, IL-6, PEPCK, G6Pase, GSK-3β and GSK-3β activity, and increased the gene expressions of PFK, PK and GK activity. These findings show the anti-diabetic activity of total saponins from D. nipponica Makino, which should be developed as a new potent drug for treatment of diabetes mellitus in future. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Inhibition of Stat3 by a Small Molecule Inhibitor Slows Vision Loss in a Rat Model of Diabetic Retinopathy

    PubMed Central

    Vanlandingham, Phillip A.; Nuno, Didier J.; Quiambao, Alexander B.; Phelps, Eric; Wassel, Ronald A.; Ma, Jian-Xing; Farjo, Krysten M.; Farjo, Rafal A.

    2017-01-01

    Purpose Diabetic retinopathy is a leading cause of vision loss. Previous studies have shown signaling pathways mediated by Stat3 (signal transducer and activator of transcription 3) play a primary role in diabetic retinopathy progression. This study tested CLT-005, a small molecule inhibitor of Stat3, for its dose-dependent therapeutic effects on vision loss in a rat model of diabetic retinopathy. Methods Brown Norway rats were administered streptozotocin (STZ) to induce diabetes. CLT-005 was administered daily by oral gavage for 16 weeks at concentrations of 125, 250, or 500 mg/kg, respectively, beginning 4 days post streptozotocin administration. Systemic and ocular drug concentration was quantified with mass spectrometry. Visual function was monitored at 2-week intervals from 6 to 16 weeks using optokinetic tracking to measure visual acuity and contrast sensitivity. The presence and severity of cataracts was visually monitored and correlated to visual acuity. The transcription and translation of multiple angiogenic factors and inflammatory cytokines were measured by real-time polymerase chain reaction and Multiplex immunoassay. Results Streptozotocin-diabetic rats sustain progressive vision loss over 16 weeks, and this loss in visual function is rescued in a dose-dependent manner by CLT-005. This positive therapeutic effect correlates to the positive effects of CLT-005 on vascular leakage and the presence of inflammatory cytokines in the retina. Conclusions The present study indicates that Stat3 inhibition has strong therapeutic potential for the treatment of vision loss in diabetic retinopathy. PMID:28395025

  6. Hypoglycemic and hypolipidemic effects of triterpenoid-enriched Jamun (Eugenia jambolana Lam.) fruit extract in streptozotocin-induced type 1 diabetic mice.

    PubMed

    Xu, Jialin; Liu, Tingting; Li, Yuanyuan; Yuan, Chunhui; Ma, Hang; Seeram, Navindra P; Liu, Feifei; Mu, Yu; Huang, Xueshi; Li, Liya

    2018-06-20

    The edible berries of Eugenia jambolana Lam. (known as Jamun) are consumed in various parts of the world. Our previous studies revealed that a triterpenoid-enriched Jamun fruit extract (TJFE) showed beneficial effects on glucose homeostasis in non-diabetic mice. Herein, the anti-diabetic effects of TJFE (100 mg kg-1 by oral gavage for ten days) were evaluated in streptozotocin (STZ)-induced type 1 diabetic mice. TJFE significantly attenuated STZ-induced hyperglycemia and glucose intolerance, suppressed the abnormal elevation of hepatic gluconeogenesis, and improved dyslipidemia in the mice. Histopathology and mechanism-based studies revealed that TJFE preserved the architecture and function of pancreatic islets, attenuated insulin secretion deficiency, enhanced insulin/Akt signaling transduction, reduced lipogenic gene expression, and prevented the abnormal activation of Erk MAPK in the liver tissues of the STZ-induced diabetic mice. The current study adds to previously published data supporting the potential beneficial effects of this edible fruit on diabetes management.

  7. Aqueous calyxes extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced diabetic rats.

    PubMed

    Nazratun Nafizah, Akhtar Husin; Budin, Siti Balkis; Zaryantey, Abd Hamid; Mariati, Abd Rahman; Santhana, Raj Louis; Osman, Mohamad; Muhd Hanis, Md Idris; Jamaludin, Mohamed

    2017-03-01

    The complex series of deleterious events among diabetes patients leads to multiple organ failure. Therefore, a holistic approach of treatment is urgently required to prevent worsening of complications. The present investigation was carried out to study the possible protective effects of Roselle or Hibiscus sabdariffa Linn (HSL) calyxes aqueous extract, as an antidiabetic and antioxidant agent against oxidative liver injury in streptozotocin-induced diabetic rats. A single dose of streptozotocin (45mg/kg body weight, iv) was used to induced diabetes in male Sprague Dawley rats which were then divided into two groups: Diabetic control (DC) and HSL-treated diabetic (DR) group. Normal rats were divided into normal control (NC), HSL-treated control (NR). Aqueous calyxes extract of HSL (100mg/kg/day, orally) was given for 28 consecutive days in the treated group. Weight, biochemical and histopathological (light and electron microscopic) parameters were compared in all groups. Supplementation of HSL significantly lowered the level of fasting blood glucose and increased plasma insulin level in DR group compared to DC group (p<0.05). Alanine aminotransaminases and aspartate aminotransferase enzymes level were found to be significantly reduced in DR compared to DC. Microscopic examination demonstrated destruction of the liver architecture, cytoplasmic vacuolation of the hepatocytes and signs of necrosis in diabetic rats. Moreover, dilatation and congestion of blood vessels with leucocytes adherence were detected. Ultrastructural study using electron microscope showed homogeneous substance accumulation in nuclear chromatin, a decrease of organelles and mitochondrial degeneration in the diabetic rats. Administration of HSL in diabetic rats causes significant decrease in hepatocyte destruction and prevented the changes associated with the diabetic condition. Thus, our findings provide a scientific rationale for the use of HSL as promising agent in preventing liver injury in

  8. Duodenum Exclusion Alone Is Sufficient to Improve Glucose Metabolism in STZ-Induced Diabetes Rats.

    PubMed

    Wu, Weihang; Lin, Li; Lin, Zhixiong; Yang, Weijin; Cai, Zhicong; Hong, Jie; Qiu, Jiandong; Lin, Chen; Lin, Nan; Wang, Yu

    2018-05-22

    Several studies have found that metabolic surgery can significantly improve glucose homeostasis; however, the intrinsic mechanisms remain unclear. Accumulating evidence suggests that duodenal bypass plays a crucial role in the treatment of type 2 diabetes mellitus (T2DM). Here, we aimed to evaluate the effect of duodenal reflux on glucose metabolism in T2DM. A high-fat diet and low-dose streptozotocin (STZ) administration were used to induce T2DM in male rats, which were assigned to three experimental groups: sham operation (SO; n = 10), new duodenal-jejunal bypass (NDJB; n = 10), and new duodenal-jejunal bypass with a tube (NDJBT; n = 10). Weight, food intake, oral glucose tolerance test (OGTT) results, glucagon-like peptide 1 (GLP-1) levels, and histopathology were assessed before or after surgery. Plain abdominal radiography was performed 1 week after the operation. Plain abdominal radiography indicated the occurrence of contrast agent reflux into the duodenum. The body weight and food intake in all three groups did not significantly differ before and after surgery. The NDJB and particularly the NDJBT groups exhibited better glucose tolerance, lower fasting blood glucose (FBG) levels, lower area under the curves for OGTT (AUC OGTT ) values, and higher GLP-1 levels, as compared with the sham group postoperatively. The villus height and crypt depth were both shorter in the biliopancreatic limb after NDJBT, as compared with those after SO and NDJB. Thus, exclusion of the duodenum alone and tube placement can effectively prevent duodenal reflux and improve glucose homeostasis, which further suggests that the duodenum plays an important role in T2DM.

  9. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    PubMed

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Yoon, Sang Pil; Maeng, Young Hee; Hong, Ran; Lee, Byung Rai; Kim, Chong Gue; Kim, Hyun Lee; Chung, Jong Hoon; Shin, Byung Chul

    2014-10-01

    There is increasing evidence suggesting that antioxidants in green tea extracts may protect kidneys on the progression of end-stage renal disease. We investigated the protective impacts of (-)-epigallocatechin 3-O-gallate (EGCG) against streptozotocin (STZ)-induced diabetic nephropathy in mice. The mice were divided into 5 groups (n=10 per group): control (saline, i.p.), STZ (200mg/kg, i.p.), EGCG50 (50mg/kg, S.Q.), EGCG100 (100mg/kg, S.Q.), and EGCG200 (200mg/kg, S.Q.). Animals were sacrificed at scheduled times after EGCG administration and then quantitative and qualitative analysis were performed. Compared with the control group, the STZ group showed an increase in levels of blood glucose, blood urea nitrogen, creatinine and urine protein amounts with a decrease in body weight. All the above parameters were significantly reversed with EGCG treatment, especially in the EGCG100 group. After STZ injection, there was a mesangial proliferation with increased renal osteopontin accumulation and its protein expression in the glomeruli and the proximal tubules. Mice kidneys after EGCG-treatment showed a reduced expression of above parameters and relatively improved histopathological findings. These results indicated that EGCG 100mg/kg might provide an effective protection against STZ-induced diabetic nephropathy in mice by osteopontin suppression. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Gaseous signalling molecule SO2 via Hippo-MST pathway to improve myocardial fibrosis of diabetic rats

    PubMed Central

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-01-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)-generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo-MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague-Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L-Aspartic acid β-hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra-peritoneal injection of STZ (40 mg/kg) Following model establishment, intra-peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo-MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis-associated protein B-cell lymphoma associated protein X, caspase-3 and caspase-9 were upregulated, and Bcl-2 expression was downregulated. The expression of ERS and Hippo-MST pathway-associated proteins

  12. Gaseous signalling molecule SO2 via Hippo‑MST pathway to improve myocardial fibrosis of diabetic rats.

    PubMed

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-12-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)‑generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo‑MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague‑Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L‑Aspartic acid β‑hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra‑peritoneal injection of STZ (40 mg/kg) Following model establishment, intra‑peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo‑MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis‑associated protein B‑cell lymphoma associated protein X, caspase‑3 and caspase‑9 were upregulated, and Bcl‑2 expression was downregulated. The expression of ERS and Hippo

  13. Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences.

    PubMed

    Khan, M Badruzzaman; Ahmad, Muzamil; Ahmad, Saif; Ishrat, Tauheed; Vaibhav, Kumar; Khuwaja, Gulrana; Islam, Fakhrul

    2015-02-01

    The standardized extract of Bacopa monniera (BM) is a complex mixture of ingredients with a uniquely wide spectrum of neuropharmacological influences upon the central nervous system including enhanced learning and memory with known antioxidant potential and protection of the brain from oxidative damage. The present study demonstrates the therapeutic efficacy of BM on cognitive impairment and oxidative damage, induced by intracerebroventricular injection of streptozotocin (ICV-STZ) in rat models. Male Wistar rats were pre-treated with BM at a selected dose (30 mg/Kg) given orally for 2 weeks and then were injected bilaterally with ICV-STZ (3 mg/Kg), while sham operated rats were received the same volume of vehicle. Behavioral parameters were subsequently monitored 2 weeks after the surgery using the Morris water maze (MWM) navigation task then were sacrificed for biochemical, immunohistochemical (Cu/Zn-SOD) and histopathological assays. ICV-STZ-infused rats showed significant loss in learning and memory ability, which were significantly improved by BM supplementation. A significant increase in thiobarbituric acid reactive species and a significant decrease in reduced glutathione, antioxidant enzymes in the hippocampus were observed in ICV-STZ rats. Moreover, decrease in Cu/Zn-SOD expression positive cells were observed in the hippocampus of ICV-STZ rats. BM supplementation significantly ameliorated all alterations induced by ICV-STZ in rats. The data suggest that ICV-STZ might cause its neurotoxic effects via the production of free radicals. Our study demonstrates that BM is a powerful antioxidant which prevents cognitive impairment, oxidative damage, and morphological changes in the ICV-STZ-infused rats. Thus, BM may have therapeutic value for the treatment of cognitive impairment.

  14. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    PubMed

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  15. Phellinus rimosus improves mitochondrial energy status and attenuates nephrotoxicity in diabetic rats.

    PubMed

    Rony, K A; Ajith, T A; Kuttikadan, Tony A; Blaze, R; Janardhanan, K K

    2017-09-26

    Mitochondrial dysfunction and increase in reactive oxygen species during diabetes can lead to pathological consequences in kidneys. The present study was aimed to investigate the effect of Phellinus rimosus in the streptozotocin (STZ)-induced diabetic rat renal mitochondria and the possible mechanism of protection. Phellinus rimosus (50 and 250 mg/kg, p.o) was treated after inducing diabetes by STZ (45 mg/kg, i.p) in rats. The serum samples were subjected to creatinine and urea estimation. Mitochondrial antioxidant status such as mitochondrial superoxide dismutase, glutathione peroxidase, and reduced glutathione; adenosine triphosphate level; and lipid peroxidation were measured. The activities of Krebs cycle enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, III, and IV in kidney mitochondria were also determined. Administration of P. rimosus (250 mg/kg b.wt) once daily for 30 days, significantly (p<0.05) enhanced the activities of Krebs cycle dehydrogenases, mitochondrial electron transport chain complexes, and ATP level. Further, P. rimosus had significantly protected the renal mitochondrial antioxidant status and lipid peroxidation. The results of the study concluded that by limiting the extent of renal mitochondrial damage in the hyperglycemic state, P. rimosus alleviated nephrotoxicity.

  16. [Effect of the novel nootropic and neuroprotective dipeptide noopept on the streptozotocin-induced model of sporadic Alzheimer disease in rats].

    PubMed

    Ostrovskaia, R U; Tsaplina, A P; Vakhitova, Iu V; Salimgareeva, M Kh; Iamidanov, R S

    2010-01-01

    Streptozotocin-intracerebroventricularly treated rats are proposed as an experimental model of sporadic Alzheimer disease (AD). Diabetogenic toxin streptozotocin (STZ) administered in both cerebral ventricles in a dose of 3 mg/kg decreases the expression of NGF and BDNF mainly in the hippocampus and increases the content of malonic dialdehyde (MDA)--a product of lipid peroxidation--in the brain tissues. These metabolic changes are accompanied by a pronounced cognitive deficiency, which is manifested by long-term memory deterioration in the passive avoidance test. These manifestations of pathology are not accompanied by hyperglycemia in the case of intraventricular STZ administration, in contrast to the systemic (in particular, intraperitoneal) route of introduction that causes a pronounced increase in the blood glucose level. These results are consistent with the existing notions that (i) STZ administered intraventricularly provokes a complex of changes imitating the sporadic AD and (ii) this disease can be considered as a manifestation of type-III diabetes. The new original cognition enhancing and neuroprotective dipeptide noopept decreases the aforementioned metabolic changes and the accompanying long-term deterioration of the memory. Previously, this systemically active dipeptide was shown to be capable of increasing expression of NGF and BDNF in the hippocampus, stimulating the antibody production to beta-amyloid, inhibiting the lipid peroxidation, activating the endogenous antioxidant systems, and decreasing the rate of glutamate release (cholinopositive effect). Taken together, these data indicate that noopept can be considered as a multipotent substance acting upon several important pathogenic chainsof the sporadic AD.

  17. Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats.

    PubMed

    Zhou, Shanshan; Yu, Guichun; Chi, Lijun; Zhu, Jiwei; Zhang, Wei; Zhang, Yan; Zhang, Liming

    2013-09-01

    Oxidative stress is implicated as an important factor in the development of Alzheimer's disease (AD). In the present study, we have investigated the effects of edaravone (9mg/kg, 3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, in a streptozotocin (STZ-3mg/kg) induced rat model of sporadic AD (sAD). Treatment with edaravone significantly improved STZ-induced cognitive damage as evaluated in Morris water maze and step-down tests and markedly restored changes in malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) adducts, hydroxyl radical (OH), hydrogen peroxide (H2O2), total superoxide dismutase (T-SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and protein carbonyl (PC) levels. In addition, histomorphological observations confirmed the protective effect of edaravone on neuronal degeneration. Moreover, hyperphosphorylation of tau resulting from intracerebroventricular streptozotocin (ICV-STZ) injection was decreased by the administration of edaravone. These results provide experimental evidence demonstrating preventive effects of edaravone on cognitive dysfunction, oxidative stress and hyperphosphorylation of tau in ICV-STZ rats. Since edaravone has been used for treatment of patients with stroke, it represents a safe and established therapeutic intervention that has the potential for a novel application in the treatment of age-related neurodegenerative disorders associated with cognitive decline, such as AD. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Effect of Bauhinia forficata aqueous extract on the maternal-fetal outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats.

    PubMed

    Volpato, G T; Damasceno, D C; Rudge, M V C; Padovani, C R; Calderon, I M P

    2008-02-28

    Bauhinia forficata Link, commonly known as "paw-of-cow", is widely used in Brazilian folk medicine for the treatment of diabetes. To evaluate the effect of Bauhinia forficata treatment on maternal-fetal outcome and antioxidant systems of streptozotocin-induced diabetic rats. Virgin female Wistar rats were injected with 40 mg/kg streptozotocin before mating. Oral administration of an aqueous extract of Bauhinia forficata leaves was given to non-diabetic and diabetic pregnant rats at increasing doses: 500 mg/kg from 0 to 4th day of pregnancy, 600 mg/kg from 5th to 14th day and 1000 mg/kg from 15th to 20th day. At day 21 of pregnancy the rats were anaesthetized with ether and a maternal blood sample was collected for the determination superoxide dismutase (SOD) and reduced glutathione (GSH). The gravid uterus was weighed with its contents and fetuses were analyzed. The data showed that the diabetic dams presented an increased glycemic level, resorption, placental weight, placental index, and fetal anomalies, and reduced GSH and SOD determinations, live fetuses, maternal weight gain, gravid uterine weight, and fetal weight. It was also verified that Bauhinia forficata treatment had no hypoglycemic effect, did not improve maternal outcomes in diabetic rats, but it contributed to maintain GSH concentration similarly to non-diabetic groups, suggesting relation with the decreased incidence of visceral anomalies.

  19. The effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague-Dawley rats.

    PubMed

    Taheri Rouhi, Seyedeh Zeinab; Sarker, Md Moklesur Rahman; Rahmat, Asmah; Alkahtani, Saad Ahmed; Othman, Fauziah

    2017-03-14

    Type 2 diabetes mellitus (T2DM) is associated with hyperglycemia, inflammatory disorders and abnormal lipid profiles. Several functional foods have therapeutic potential to treat chronic diseases including diabetes. The therapeutic potential of pomegranate has been stated by multitudinous scientists. The present study aimed to evaluate the effects of pomegranate juice and seed powder on the levels of plasma glucose and insulin, inflammatory biomarkers, lipid profiles, and health of the pancreatic islets of Langerhans in streptozotocin (STZ)-nicotinamide (NAD) induced T2DM Sprague Dawley (SD) rats. Forty healthy male SD rats were induced to diabetes with a single dose intra-peritoneal administration of STZ (60 mg/kg b.w.) - NAD (120 mg/kg b.w.). Diabetic rats were orally administered with 1 mL of pomegranate fresh juice (PJ) or 100 mg pomegranate seed powder in 1 mL distilled water (PS), or 5 mg/kg b.w. of glibenclamide every day for 21 days. Rats in all groups were sacrificed on day 22. The obtained data was analyzed by SPSS software (v: 22) using One-way analysis of variance (ANOVA). The results showed that PJ and PS treatment had slight but non-significant reduction of plasma glucose concentration, and no impact on plasma insulin compared to diabetic control (DC) group. PJ lowered the plasma total cholesterol (TC) and triglyceride (TG) significantly, and low-density lipoproteins (LDL) non-significantly compared to DC group. In contrast, PS treatment significantly raised plasma TC, LDL, and high-density lipoproteins (HDL) levels compared to the DC rats. Moreover, the administration of PJ and PS significantly reduced the levels of plasma inflammatory biomarkers, which were actively raised in diabetic rats. Only PJ treated group showed significant repairment and restoration signs in islets of Langerhans. Besides, PJ possessed preventative impact against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals almost 2.5 folds more than PS. Our findings suggest that

  20. Activation of spinal cannabinoid CB2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice.

    PubMed

    Ikeda, H; Ikegami, M; Kai, M; Ohsawa, M; Kamei, J

    2013-10-10

    The role of spinal cannabinoid systems in neuropathic pain of streptozotocin (STZ)-induced diabetic mice was studied. In normal mice, injection of the cannabinoid receptor agonist WIN-55,212-2 (1 and 3μg, i.t.) dose-dependently prolonged the tail-flick latency, whereas there were no changes with the injection of either cannabinoid CB1 (AM 251, 1 μg, i.t.) or CB2 (AM 630, 4 μg, i.t.) receptor antagonists. AM 251 (1 μg, i.t.), but not AM 630 (4 μg, i.t.), significantly inhibited the prolongation of the tail-flick latency induced by WIN-55,212-2 (3 μg, i.t.). In STZ-induced diabetic mice, the tail-flick latency was significantly shorter than that in normal mice. A low dose of WIN-55,212-2 (1 μg, i.t.) significantly recovered the tail-flick latency in STZ-induced diabetic mice. The effect of WIN-55,212-2 (1 μg, i.t.) in STZ-induced diabetic mice was significantly inhibited by AM 630 (4 μg, i.t.), but not AM 251 (1 μg). The selective cannabinoid CB2 receptor agonist L-759,656 (19 and 38 μg, i.t.) also dose-dependently recovered the tail-flick latency in STZ-induced diabetic mice, and this recovery was inhibited by AM 630 (4 μg, i.t.). The protein levels of cannabinoid CB1 receptors, CB2 receptors and diacylglycerol lipase α (DGL-α), the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the spinal cord were examined using Western blotting. The protein levels of both cannabinoid CB1 and CB2 receptors were increased in STZ-induced diabetic mice, whereas the protein level of DGL-α was significantly decreased. These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis

    PubMed Central

    Rato, L.; Alves, M. G.; Dias, T. R.; Cavaco, J. E.; Oliveira, Pedro F.

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993

  2. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis.

    PubMed

    Rato, L; Alves, M G; Dias, T R; Cavaco, J E; Oliveira, Pedro F

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters.

  3. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice

    PubMed Central

    Hemmati, Ali Asghar; Ahangarpour, Akram

    2018-01-01

    The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30–35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice. PMID:29719448

  4. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice.

    PubMed

    Hemmati, Ali Asghar; Alboghobeish, Soheila; Ahangarpour, Akram

    2018-05-01

    The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30-35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.

  5. Effect of aluminum chloride on blood glucose level and lipid profile in normal, diabetic and treated diabetic rats.

    PubMed

    Konda, Venugopala Rao; Eerike, Madhavi; Chary, R Prasanth; Arunachalam, Ruckmani; Yeddula, Venkata Ramana; Meti, Vinayak; Devi, T Sobita

    2017-01-01

    The objectives of the study were to assess evaluate the effects of aluminum chloride (AlCl 3 ) on blood glucose and lipid levels in normal, diabetic, and glibenclamide-treated diabetic rats. Forty-two male Wistar rats were divided into seven groups of six each. Group I was normal control, Groups II and III were given AlCl 3 50 and 100 mg/kg, and Group IV to VII were administered with streptozotocin (STZ) (60 mg/kg) intraperitoneally. Group IV was diabetic control, Group V in addition was given AlCl 3 50 mg/kg, Group VI glibenclamide (10 mg/kg), and Group VII glibenclamide and AlCl 3 (50 mg/kg) per-oral daily for 28 days. Blood glucose and lipid levels were estimated at base line, after diabetes was set in and on the last day of study. Histopathological changes in pancreas, liver, and kidney were studied. No significant change was observed in blood glucose and lipid levels in Group I. Group II and III showed a dose-dependent significant increase in blood glucose was observed. Group V had a reduction in blood glucose but not to the nondiabetic level. Group VI had significant reduction in blood sugar. In Group VII, treated with glibenclamide and AlCl 3 , there was no significant change in blood glucose reduction compared to Group VI. Lipid levels were reduced in groups treated with AlCl 3 and glibenclamide and not in other groups. Gross tissue damage was seen in pancreas in STZ group and in liver and kidney in AlCl 3 groups. AlCl 3 administration in Wistar rats caused in significant hyperglycemia in normal rats, hypoglycemia in diabetic rats, and did not influenced hypoglycemic effect of glibenclamide and in addition, resulted in reduction in lipid levels.

  6. Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats.

    PubMed

    Kumar, Peeyush T; George, Naijil; Antony, Sherin; Paulose, Cheramadathikudiyil Skaria

    2013-02-28

    Diabetes mellitus, when poorly controlled, leads to debilitating central nervous system (CNS) complications including cognitive deficits, somatosensory and motor dysfunction. The present study investigated curcumin's potential in modulating diabetes induced neurochemical changes in brainstem. Expression analysis of cholinergic, insulin receptor and GLUT-3 in the brainstem of streptozotocin (STZ) induced diabetic rats were studied. Radioreceptor binding assays, gene expression studies and immunohistochemical analysis were done in the brainstem of male Wistar rats. Our result showed that Bmax of total muscarinic and muscarinic M3 receptors were increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. mRNA level of muscarinic M3, α7-nicotinic acetylcholine, insulin receptors, acetylcholine esterase, choline acetyltransferase and GLUT-3 significantly increased and M1 receptor decreased in the brainstem of diabetic rats. Curcumin and insulin treatment restored the alterations and maintained all parameters to near control. The results show that diabetes is associated with significant reduction in brainstem function coupled with altered cholinergic, insulin receptor and GLUT-3 gene expression. The present study indicates beneficial effect of curcumin in diabetic rats by regulating the cholinergic, insulin receptor and GLUT-3 in the brainstem similar to the responses obtained with insulin therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Tetracycline impregnation affects degradation of porcine collagen matrix in healthy and diabetic rats.

    PubMed

    Tal, Haim; Weinreb, Miron; Shely, Asaf; Nemcovsky, Carlos E; Moses, Ofer

    2016-07-01

    The present study evaluated the degradation of collagen matrix (CM) immersed in tetracycline (TTC) or phosphate-buffered saline (PBS) in diabetic and normoglycemic rats. Diabetes was induced in 15 rats by systemic streptozotocin (STZ) (experimental); 15 healthy rats served as controls. One day before implantation 60 CM disks, 5 mm in diameter, were labeled with biotin: 30 were immersed in tetracycline (TTC) and 30 in PBS. One disk of each type was implanted subdermally in each rat. Animals were euthanized after 3 weeks, and tissue specimens containing the disks were prepared for histologic analysis. Horseradish peroxidase (HRP)-conjugated streptavidin was used to detect the remaining biotinylated collagen. Residual collagen area within the CM disks was analyzed and compared to baseline. Diabetes significantly increased the CM degradation. Immersion of the CM disks in a 50-mg/mL TTC solution before implantation decreased its degradation both in diabetic and normoglycemic rats. Diabetes significantly increases collagen matrix degradation; immersion of collagen matrix in TTC before implantation decreases its degradation in both diabetic and normoglycemic conditions. Immersion of medical collagen devices in TTC may be an effective means to decrease their resorption rate and increase their effectiveness, especially in situations with increased degradation such as diabetes.

  8. Effect of Chromium Niacinate and Chromium Picolinate Supplementation on Lipid Peroxidation, TNF-α, IL-6, CRP, Glycated Hemoglobin, Triglycerides and Cholesterol Levels in blood of Streptozotocin-treated Diabetic Rats

    PubMed Central

    Jain, Sushil K.; Rains, Justin L.; Croad, Jennifer L.

    2013-01-01

    SUMMARY Chromium (Cr3+) supplementation facilitate normal protein, fat and carbohydrate metabolism, and is widely used by public in many countries. This study examined the effect of chromium niacinate (Cr-N) or chromium picolinate (Cr-P) supplementation on lipid peroxidation (LP), TNF-α, IL-6, CRP, glycosylated hemoglobin (HbA1), cholesterol and triglycerides (TG) in diabetic rats. Diabetes (D) was induced in Sprague Dawley rats by streptozotocin (STZ) (ip, 65 mg/kg BW). Control buffer, Cr-N or Cr-P (400 µg Cr/Kg BW) was administered by gavages daily for 7 wks. Blood was collected by heart puncture using light anesthesia. Diabetes caused a significant increase in blood levels of TNF-α, IL-6, glucose, HbA1, cholesterol, TG and LP. Compared with D, Cr-N supplementation lowered the blood levels of TNF-α (p=0.04), IL-6 (p=0.02), CRP (p=0.02) LP (p=0.01), HbA1 (p=0.02), TG (p=0.04) and cholesterol (p=0.04). Compared with D, Cr-P supplementation showed a decrease in TNF-α (p=0.02), IL-6 (p=0.02) and LP (p=0.01). Chromium niacinate lowers blood levels of pro-inflammatory cytokines (TNF-α, IL-6, CRP), oxidative stress and lipids levels in diabetic rats, and appears to be more effective form of Cr3+-supplementation. This study suggests that Cr3+-supplementation can lower risk of vascular inflammation in diabetes. PMID:17854708

  9. Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats.

    PubMed

    Jain, Sushil K; Rains, Justin L; Croad, Jennifer L

    2007-10-15

    Chromium (Cr(3+)) supplementation facilitates normal protein, fat, and carbohydrate metabolism, and is widely used by the public in many countries. This study examined the effect of chromium niacinate (Cr-N) or chromium picolinate (Cr-P) supplementation on lipid peroxidation (LP), TNF-alpha, IL-6, C-reactive protein (CRP), glycosylated hemoglobin (HbA(1)), cholesterol, and triglycerides (TG) in diabetic rats. Diabetes (D) was induced in Sprague-Dawley rats by streptozotocin (STZ) (ip, 65 mg/kg BW). Control buffer, Cr-N, or Cr-P (400 microg Cr/kg BW) was administered by gavages daily for 7 weeks. Blood was collected by heart puncture using light anesthesia. Diabetes caused a significant increase in blood levels of TNF-alpha, IL-6, glucose, HbA(1), cholesterol, TG, and LP. Compared with D, Cr-N supplementation lowered the blood levels of TNF-alpha (P=0.04), IL-6 (P=0.02), CRP (P=0.02), LP (P=0.01), HbA(1) (P=0.02), TG (P=0.04), and cholesterol (P=0.04). Compared with D, Cr-P supplementation showed a decrease in TNF-alpha (P=0.02), IL-6 (P=0.02), and LP (P=0.01). Chromium niacinate lowers blood levels of proinflammatory cytokines (TNF-alpha, IL-6, CRP), oxidative stress, and lipids levels in diabetic rats, and appears to be a more effective form of Cr(3+) supplementation. This study suggests that Cr(3+) supplementation can lower the risk of vascular inflammation in diabetes.

  10. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Bhuvaneshwari; Aggarwal, Aanchal; Sandhir, Rajat

    2013-04-01

    Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50mg/kg body weight) and chromium was administered orally as chromium picolinate (1mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    PubMed

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  12. Antioxidant and protective effects of Royal jelly on histopathological changes in testis of diabetic rats.

    PubMed

    Ghanbari, Elham; Nejati, Vahid; Khazaei, Mozafar

    2016-08-01

    Diabetes is the most common endocrine disease. It has adverse effects on male reproductive function. Royal Jelly (RJ) has antioxidant and anti-diabetic effects and show protective effects against diabetes. This study was conducted to evaluate the effect of RJ on histopathological alterations of the testicular tissue in streptozotocin (STZ)-induced diabetic rats. In this experimental study, 28 adult Wistar rats were randomly divided into control (C), royal jelly (R), diabetic (D) and RJ-treated diabetic (D+R) groups. Diabetes was induced by a single intraperitoneal injection of STZ at 50 mg/kg body weight (BW). The rats from the R and D+R groups received daily RJ (100 mg/kg BW) for 6 wks orally. Hematoxylin-Eosin staining was used to analyze histopathological changes including: tunica albuginea thickness (TAT), seminiferous tubules diameter (STsD), Johnsen's score, tubular differentiation index (TDI), spermiogenesis index (SPI), Sertoli cell index (SCI), meiotic index (MI), and mononuclear immune cells (MICs) in testes. The antioxidant status was examined by evaluating testicular levels of ferric reducing antioxidant power (FRAP) and catalase (CAT) activity. Histological results of the testis from diabetic rats showed significant decrease in STsD, Johnsen's score, TDI, SPI, SCI and MI, and significant increase in TAT and MICs, while administration of RJ significantly reverted these changes (p<0.05). RJ treatment markedly increased activity of CAT and FRAP. There were significant differences in FRAP levels among C (13.0±0.5), RJ (13.4±0.3), D (7.8±0.6) and D+R (12.4±0.7) groups (p<0.05). RJ improved diabetes-induced impairment in testis, probably through its antioxidant property.

  13. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    PubMed

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes.

  14. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats

    PubMed Central

    Embaby, Mohamed A.; Doleib, Nada M.; Taha, Mona M.

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes. PMID:27536197

  15. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats

    PubMed Central

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M

    2016-01-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345

  16. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats.

    PubMed

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J

    2016-02-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.

  17. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    PubMed

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  18. Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats.

    PubMed

    Pari, Leelavinothan; Chandramohan, Ramasamy

    2017-07-01

    We evaluated the modulatory effects of naringin on altered hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetic rats. Oral treatment of naringin at a doses of 20, 40 and 80 mg/kg body weight to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, blood glycosylated hemoglobin and increase in the levels of plasma insulin and blood hemoglobin. The altered activities of the hepatic key enzymes of carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase, glycogen phosphorylase and glycogen content of diabetic rats were significantly reverted to near normal levels by the treatment of naringin in a dose-dependent manner. Naringin at a dose of 80 mg/kg body weight showed the highest significant effect than the other two doses (20 and 40 mg/kg). Further, immunohistochemical observation of pancreas revealed that naringin-treated diabetic rats showed the increased number of insulin immunoreactive β-cells, which confirmed the biochemical findings. These findings revealed that naringin has potential antihyperglycemic activity in high-fat diet/low-dose streptozotocin-induced diabetic rats.

  19. Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats.

    PubMed

    Majkutewicz, Irena; Kurowska, Ewelina; Podlacha, Magdalena; Myślińska, Dorota; Grembecka, Beata; Ruciński, Jan; Plucińska, Karolina; Jerzemowska, Grażyna; Wrona, Danuta

    2016-07-15

    Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a widely-accepted animal model of sporadic Alzheimer's disease (sAD). The present study evaluated the ability of dimethyl fumarate (DMF), an agent with antioxidant and anti-inflammatory properties, to prevent spatial memory impairments and hippocampal neurodegeneration mediated by ICV injection of STZ in 4-month-old rats. Rodent chow containing DMF (0.4%) or standard rodent chow was made available on day 0. Rat body weight and food intake were measured daily for whole the experiment (21days). STZ or vehicle (SHAM) ICV injections were performed on days 2 and 4. Spatial reference and working memory were evaluated using the Morris water maze on days 14-21. Cells containing Fluoro-Jade B (neurodegeneration marker), IL-6, IL-10 were quantified in the hippocampus and choline acetyltransferase (ChAT) in the basal forebrain. The disruption of spatial memory and a high density of hippocampal CA1-3 cells labeled with Fluoro-Jade B or containing IL-6 or IL-10 were observed in the STZ group but not in the STZ+DMF group, as compared to the SHAM or SHAM+DMF groups. STZ vs. STZ+DMF differences were found: worse reference memory acquisition, fewer ChAT-positive neurons in the medial septum (Ch1), more Fluoro-Jade-positive CA1 hippocampal cells in STZ rats. DMF therapy in a rodent model of sAD prevented the disruption of spatial reference and working memory, loss of Ch1 cholinergic cells and hippocampal neurodegeneration as well as the induction of IL-6 and IL-10 in CA1. These beneficial cognitive and molecular effects validate the anti-inflammatory and neuroprotective properties of DMF in the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Beneficial Effect of Fesoterodine, a Competitive Muscarinic Receptor Antagonist on Erectile Dysfunction in Streptozotocin-induced Diabetic Rats.

    PubMed

    Yilmaz-Oral, Didem; Bayatli, Nur; Gur, Serap

    2017-09-01

    To investigate the possible role of fesoterodine (a competitive muscarinic receptor antagonist) on erectile dysfunction in streptozotocin-induced diabetic rats. A total of 16 adult male Sprague-Dawley rats were equally divided into control and diabetic groups. Diabetes was induced by a single intravenous injection of streptozotocin (25-35 mg/kg). In vivo erectile responses were evaluated by the stimulation of cavernosal nerves, and measurements were repeated after the intracavernosal injection of fesoterodine (1 µM) in rats. The relaxation responses to fesoterodine were examined via incubation with various inhibitors. The relaxant responses of corpus cavernosum (CC) strips were observed in the presence or the absence of fesoterodine (10 µM). Intracavernous administration of fesoterodine restored in vivo erectile response at 5.0- and 7.5-V levels, except for 2.5 V in diabetic rats. Basal intracavernosal pressure (5.4 ± 0.9 mm Hg) in diabetic rats was markedly increased after injection of fesoterodine (33.9 ± 7.9 mm Hg, P <.001). In bath studies, fesoterodine resulted in a relaxation of CC in a concentration-dependent manner, which was reduced in diabetic rats. Nifedipine (l-type Ca 2+ channel blocker) inhibited maximum fesoterodine-induced relaxation by 58%. The nonselective K + channel blocker tetraethylammonium and glibenclamide incubation did not change the relaxant response to fesoterodine. The relaxant responses to acetylcholine (10 µM), electrical field stimulation (10 Hz), and sodium nitroprusside (0.01 µM) in diabetic rats were increased after incubation with fesoterodine (10 µM). Fesoterodine improved erectile function and relaxation of isolated strips of rat CC. The underlying mechanism of fesoterodine is likely due to the blocking of l-type calcium channels independent of the nitric oxide-cyclic guanosine monophosphate pathway. Further investigations are warranted to fully elucidate the restorative effects of

  1. Comparison of the anti-diabetic effects of resveratrol, gliclazide and losartan in streptozotocin-induced experimental diabetes.

    PubMed

    Yazgan, Ümit Can; Taşdemir, Ezel; Bilgin, Hakkı Murat; Deniz Obay, Basra; Şermet, Abdurrahman; Elbey, Bilal

    2015-01-01

    The aim of this study was to compare the effect of the resveratrol with gliclazide and losartan in streptozotocin induced diabetic rats. Adult male Wistar albino rats were divided into five groups of seven rats each. Diabetes was induced with a single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Rats with blood glucose levels above 250 mg/dl after 48 h of streptozotocin injection were included in the diabetic group. Gliclazide and resveratrol were administered for 3 weeks at 5 mg/kg per day and losartan was administered for 3 weeks at 30 mg/kg per day in an oral aqueous suspension. At the end of the third week all rats were euthanized and fasting blood glucose, HbA1c and the metabolic activity of the hepatic enzymes hexokinase and glucose-6 phosphate dehydrogenase were measured in tail blood and liver specimens. All parameters were quantified using an ELISA plate reader. Resveratrol and gliclazide significantly reduced both blood glucose levels and HbA1c levels in diabetic rats (p < 0.001). However, losartan did not exhibit the same effects (p < 0.05). The enzymatic activity of the liver enzymes hexokinase, glucose-6 phosphate dehydrogenase, fructose 1,6-biphosphatase, pyruvate kinase and glucose-6 phosphatase were enhanced by resveratrol and gliclazide, while losartan treatment was not associated with significant changes in liver carbohydrate metabolism. Resveratrol was not effective in improving liver carbohydrate metabolism relative to gliclazide, a drug widely used to treat diabetes. Dose-response profile of resveratrol remains indeterminate and additional studies may be necessary to determine effective dosing in diabetes.

  2. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice.

    PubMed

    Kim, Jong-Jin; Choi, Jina; Lee, Mi-Kyung; Kang, Kyung-Yun; Paik, Man-Jeong; Jo, Sung-Kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2014-01-01

    Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200 mg/kg, i.p.). In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic β-cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4(+) T and CD8(+) T), which were reduced in diabetic mice, as well as IFN-γ production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic β-cells in STZ-induced diabetic mice.

  3. Apigenin alleviates STZ-induced diabetic cardiomyopathy.

    PubMed

    Liu, Huang-Jun; Fan, Yun-Lin; Liao, Hai-Han; Liu, Yuan; Chen, Si; Ma, Zhen-Guo; Zhang, Ning; Yang, Zheng; Deng, Wei; Tang, Qi-Zhu

    2017-04-01

    Apigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear. In this study, we intended to explore the roles of apigenin in cardiac remodeling of DCM. Male C57BL/6 J mice were treated with streptozotocin (STZ, 50 mg/kg) for 5 consecutive days to induce DCM. The echocardiography and catheter-based measurements of hemodynamic parameters were performed to evaluate the cardiac function. Paraffin slices of harvested hearts were prepared for histological pathological analysis and TUNEL assay. Oxidative assay kits were used to detect Glutathione Peroxidase (GPx), Lipid Peroxidation Malondialdehyde (MDA), and Superoxide Dismutase (SOD). Western blot and real-time PCR were used for accessing the expressions of protein and mRNA. Diabetes mellitus exacerbated the cardiac dysfunction, fibrosis, and overaccumulation of 4-hydroxynonenal accompanying with down-regulation of Bcl2, GPx, and SOD, up-regulation of MDA, cleaved caspase3, and pro-apoptotic protein Bax, and contribution to the translocation of NF-κB. All these pathological changes could be effectively blunted by treatment of apigenin in vivo. Finally, H9c2 treated with high glucose or apigenin was used for further investigation of these effects in vitro; what is more, we also compared the effects between apigenin and Resveratrol in in vitro experiments. Our experiments have demonstrated that apigenin may be a potential drug for diabetic patients suffering from DCM.

  4. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.

  5. Argirein alleviates stress-induced and diabetic hypogonadism in rats via normalizing testis endothelin receptor A and connexin 43.

    PubMed

    Xu, Ming; Hu, Chen; Khan, Hussein-hamed; Shi, Fang-hong; Cong, Xiao-dong; Li, Qing; Dai, Yin; Dai, De-zai

    2016-02-01

    Argirein (rhein-arginine) is a derivative of rhein isolated from Chinese rhubarb (Rheum Officinale Baill.) that exhibits antioxidant and anti-inflammatory activities. In the present study we investigated the effects of argirein on stress-induced (hypergonadotrophic) and diabetic (hypogonadotrophic) hypogonadism in male rats. Stress-induced and diabetic hypogonadism was induced in male rats via injection of isoproterenol (ISO) or streptozotocin (STZ). ISO-injected rats were treated with argirein (30 mg·kg(-1)·d(-1), po) or testosterone replacement (0.5 mg·kg(-1)·d(-1), sc) for 5 days, and STZ-injected rats were treated with argirein (40-120 mg·kg(-1)·d(-1), po) or aminoguanidine (100 mg·kg(-1)·d(-1), po) for 4 weeks. After the rats were euthanized, blood samples and testes were collected. Serum hormone levels were measured, and the expression of endothelin receptor A (ETA), connexin 43 (Cx43) and other proteins in testes was detected. For in vitro experiments, testis homogenate was prepared from normal male rats, and incubated with ISO (1 μmol/L) or high glucose (27 mmol/L). ISO injection induced hyper-gonadotrophic hypogonadism characterized by low testosterone and high FSH and LH levels in the serum, whereas STZ injection induced hypogonadotrophic hypogonadism as evidenced by low testosterone and low FSH and LH levels in the serum. In the testes of ISO- and STZ-injected rats, the expression of ETA, MMP-9, NADPH oxidase and pPKCε was significantly increased, and the expression of Cx43 was decreased. Administration of argirein attenuated both the abnormal serum hormone levels and the testis changes in ISO- and STZ-injected rats, and aminoguanidine produced similar actions in STZ-injected rats; testosterone replacement reversed the abnormal serum hormone levels, but did not affect the testis changes in ISO-injected rats. Argirein (0.3-3 μmol/L) exerted similar effects in testis homogenate incubated with ISO or high glucose in vitro. Two types of

  6. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress.

    PubMed

    Yang, Hongying; Fan, Shourui; Song, Dianping; Wang, Zhuo; Ma, Shungao; Li, Shuqing; Li, Xiaohong; Xu, Mian; Xu, Min; Wang, Xianmo

    2013-02-01

    The aim of this study was to investigate pathophysiological alterations and oxidative stress in various stages of streptozotocin (STZ)‑induced diabetes mellitus (DM) in rats. Male Sprague-Dawley rats (120) were randomized into DM and control groups. Body mass, plasma glucose, glycated hemoglobin (HbA1c), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels, as well as aldose reductase (AR) activities, in brain tissue and serum were determined. Electron microscopy was used to observe neuron and vessel changes in the brain. In STZ‑treated rats, blood glucose, low density lipoproteins, triglycerides and total cholesterol levels increased 1.43‑3.0‑fold and high density lipoprotein, HbA1c and insulin sensitivity index increased 1.1‑1.23‑fold compared with control. At week 16 following treatment, DM rat serum H2O2 concentration was increased, indicating oxidative stress and mRNA levels of GPx and SOD were 2‑fold higher than the control. Protein GPx and SOD levels were reduced (P<0.01). DM rats were identified to exhibit early irregular glomerular capillary basement membrane thickening and vacuolization in the mitochondria and epithelial cells. Neuron cells and blood vessels in the DM rat brains became increasingly abnormal over time with altered Golgi bodies, mitochondria and endoplasmic reticulum cisterns, concurrent with SOD inactivation and AR protein accumulation. Disease progression in rats with STZ‑induced DM included brain pathologies with vascular and neuron cell abnormalities, associated with the reduction of SOD, CAT and GPx activities and also AR accumulation.

  7. Treatment with Aqueous Extract from Croton cajucara Benth Reduces Hepatic Oxidative Stress in Streptozotocin-Diabetic Rats

    PubMed Central

    Rodrigues, Graziella Ramos; Di Naso, Fábio Cangeri; Porawski, Marilene; Marcolin, Éder; Kretzmann, Nélson Alexandre; Ferraz, Alexandre de Barros Falcão; Richter, Marc Francois; Marroni, Cláudio Augusto; Marroni, Norma Possa

    2012-01-01

    Croton cajucara Benth is a plant found in Amazonia, Brazil and the bark and leaf infusion of this plant have been popularly used to treat diabetes and hepatic disorders. The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Croton cajucara Benth (1.5 mL of the C. cajucara extract i.g.) in rats with streptozotocin-induced diabetes. Croton cajucara Benth was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipid peroxidation and superoxide dismutase, catalase, and glutathione reductase activities were measured in the hepatic tissue, as well as the presence activation of p65 (NF-κB), through western blot. Phytochemical screening of Croton cajucara Benth detected the presence of flavonoids, coumarins and alkaloids. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hypoxanthine/xanthine oxidase assays. Liver lipid peroxidation increased in diabetic animals followed by a reduction in the Croton-cajucara-Benth-treated group. There was activation of p65 nuclear expression in the diabetic animals, which was attenuated in the animals receiving the Croton cajucara Benth aqueous extract. The liver tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. In conclusion the Croton cajucara Benth aqueus extract treatment effectively reduced the oxidative stress and contributed to tissue recovery. PMID:22811599

  8. Diabetes-induced changes in the alternative splicing of the slo gene in corporal tissue.

    PubMed

    Davies, Kelvin P; Zhao, Weixin; Tar, Moses; Figueroa, Johanna C; Desai, Pratik; Verselis, Vytas K; Kronengold, Jack; Wang, Hong-Zhan; Melman, Arnold; Christ, George J

    2007-10-01

    Erectile dysfunction is a common diabetic complication. Preclinical studies have documented that the Slo gene (encoding the BK or Maxi-K channel alpha-subunit) plays a critical role in erectile function. Therefore, we determined whether diabetes induces changes in the splicing of the Slo gene relevant to erectile function. Reverse transcriptase-polymerase chain reaction was used to compare Slo splice variant expression in corporal tissue excised from control and streptozotocin (STZ)-induced diabetic Fischer F-344 rats. Splice variants were sequenced, characterized by patch clamping, and fused to green fluorescent protein to determine cellular localization. The impact of altered Slo expression on erectile function was further evaluated in vivo. A novel Slo splice variant (SVcyt, with a cytoplasmic location) was predominantly expressed in corporal tissue from control rats. STZ-diabetes caused upregulation of a channel-forming transcript SV0. Preliminary results suggest that SV0 was also more prevalent in the corporal tissue of human diabetic compared with nondiabetic patients. The change in isoform expression in STZ-treated rats was partially reversed by insulin treatment. Intracorporal injection of a plasmid expressing the SV0 transcript, but not SVcyt, restored erectile function in STZ-diabetic rats. Alternative splicing of the Slo transcript may represent an important compensatory mechanism to increase the ease with which relaxation of corporal tissue may be triggered as a result of a diabetes-related decline in erectile capacity.

  9. Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats.

    PubMed

    Suman, Rajesh Kumar; Ray Mohanty, Ipseeta; Borde, Manjusha K; Maheshwari, Ujwala; Deshmukh, Y A

    2016-01-01

    Background. The incidence of metabolic syndrome co-existing with diabetes mellitus is on the rise globally. Objective. The present study was designed to develop a unique animal model that will mimic the pathological features seen in individuals with diabetes and metabolic syndrome, suitable for pharmacological screening of drugs. Materials and Methods. A combination of High-Fat Diet (HFD) and low dose of streptozotocin (STZ) at 30, 35, and 40 mg/kg was used to induce metabolic syndrome in the setting of diabetes mellitus in Wistar rats. Results. The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for the study to induce diabetes mellitus. Various components of metabolic syndrome such as dyslipidemia {(increased triglyceride, total cholesterol, LDL cholesterol, and decreased HDL cholesterol)}, diabetes mellitus (blood glucose, HbA1c, serum insulin, and C-peptide), and hypertension {systolic blood pressure} were mimicked in the developed model of metabolic syndrome co-existing with diabetes mellitus. In addition to significant cardiac injury, atherogenic index, inflammation (hs-CRP), decline in hepatic and renal function were observed in the HF-DC group when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis, and inflammation in heart, pancreas, liver, and kidney of HF-DC group as compared to NC. Conclusion. The present study has developed a unique rodent model of metabolic syndrome, with diabetes as an essential component.

  10. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats

    PubMed Central

    Rodríguez-Mañas, Leocadio; Angulo, Javier; Peiró, Concepción; Llergo, José L; Sánchez-Ferrer, Alberto; López-Dóriga, Pedro; Sánchez-Ferrer, Carlos F

    1998-01-01

    The aim of this work was to study the influence of the metabolic control, estimated by the levels of glycosylated haemoglobin in total blood samples (HbA1c), in developing vascular endothelial dysfunction in streptozotocin-induced diabetic rats. Four groups of animals with different levels of insulin treatment were established, by determining HbA1c values in 5.5 to 7.4%, 7.5 to 9.4%, 9.5 to 12% and >12%, respectively.The parameters analysed were: (1) the endothelium-dependent relaxations to acetylcholine (ACh) in isolated aorta and mesenteric microvessels; (2) the vasodilator responses to exogenous nitric oxide (NO) in aorta; and (3) the existence of oxidative stress by studying the influence of the free radical scavenger superoxide dismutase (SOD) on the vasodilator responses to both ACh and NO.In both isolated aortic segments and mesenteric microvessels, the endothelium-mediated concentration-dependent relaxant responses elicited by ACh were significantly decreased when the vessels were obtained from diabetic animals but only with HbA1c values higher than 7.5%. There was a high correlation between HbA1c levels and the impairment of ACh-induced relaxations, measured by pD2 values.The concentration-dependent vasorelaxant responses to NO in endothelium-denuded aortic segments were significantly reduced only in vessels from diabetic animals with HbA1c values higher than 7.5%. Again, a very high correlation was found between the HbA1c values and pD2 for NO-evoked responses.In the presence of SOD, the responses to ACh or NO were only increased in the segments from diabetic rats with HbA1c levels higher than 7.5%, but not in those from non-diabetic or diabetic rats with a good metabolic control (HbA1c levels <7.5%).These results suggest the existence of: (1) a close relation between the degree of endothelial dysfunction and the metabolic control of diabetes, estimated by the levels of HbA1c; and (2) an increased production of superoxide anions in the vascular wall of

  11. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats.

    PubMed

    Li, Chuan; Ding, Qiao; Nie, Shao-Ping; Zhang, Yan-Song; Xiong, Tao; Xie, Ming-Yong

    2014-12-10

    The effect of carrot juice fermented with Lactobacillus plantarum NCU116 on high-fat and low-dose streptozotocin (STZ)-induced type 2 diabetes in rats was studied. Rats were randomly divided into five groups: non-diabetes mellitus (NDM), untreated diabetes mellitus (DM), DM plus L. plantarum NCU116 (NCU), DM plus fermented carrot juice with L. plantarum NCU116 (FCJ), and DM plus non-fermented carrot juice (NFCJ). Treatments of NCU and FCJ for 5 weeks were found to favorably regulate blood glucose, hormones, and lipid metabolism in the diabetic rats, accompanied by an increase in short-chain fatty acid (SCFA) in the colon. In addition, NCU and FCJ had restored the antioxidant capacity and morphology of the pancreas and kidney and upregulated mRNA of low-density lipoprotein (LDL) receptor, cholesterol 7α-hydroxylase (CYP7A1), glucose transporter-4 (GLUT-4), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ). These results have for the first time demonstrated that L. plantarum NCU116 and the fermented carrot juice had the potential ability to ameliorate type 2 diabetes in rats.

  12. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Becker, Maria; Benromano, Tali; Shahar, Abraham; Nevo, Zvi; Pick, Chaim G

    2014-12-01

    Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.

  13. Exercise training improves the defective centrally mediated erectile responses in rats with type I diabetes.

    PubMed

    Zheng, Hong; Mayhan, William G; Patel, Kaushik P

    2011-11-01

    Erectile dysfunction is a serious and common complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for the penile erection. The goal of the present study was to determine the impact of exercise training (ExT) on the centrally mediated erectile dysfunction in streptozotocin (STZ)-induced type I diabetic (T1D) rats. Male Sprague-Dawley rats were injected with STZ to induce diabetes mellitus. Three weeks after STZ or vehicle injections, rats were assigned to either ExT (treadmill running for 3-4 weeks) or sedentary groups to produce four experimental groups: control + sedentary, T1D + sedentary, control + ExT, and T1D + ExT. After 3-4 weeks ExT, central N-methyl-D-aspartic acid (NMDA) or sodium nitroprusside (SNP)-induced penile erectile responses were measured. Neuronal nitric oxide synthase (nNOS) expression in the paraventricular nucleus (PVN) of the hypothalamus was measured by using histochemistry, real time polymerase chain reaction (PCR) and Western blot approaches. In rats with T1D, ExT significantly improved the blunted erectile response, and the intracavernous pressure changes to NMDA (50 ng) microinjection within the PVN (T1D + ExT: 3.0 ± 0.6 penile erection/rat; T1D + sedentary: 0.5 ± 0.3 penile erection/rat within 20 minutes, P < 0.05). ExT improved erectile dysfunction induced by central administration of exogenous nitric oxide (NO) donor, SNP in T1D rats. Other behavior responses including yawning and stretching, induced by central NMDA and SNP microinjection were also significantly increased in T1D rats after ExT. Furthermore, we found that ExT restored the nNOS mRNA and protein expression in the PVN in T1D rats. These results suggest that ExT may have beneficial effects on the erectile dysfunction in diabetes through improvement of NO bioavailability within the PVN. Thus, ExT may be used as therapeutic modality to up-regulate nNOS within the PVN and improve the central component of the erectile

  14. Glial activation and post-synaptic neurotoxicity: the key events in Streptozotocin (ICV) induced memory impairment in rats.

    PubMed

    Rai, Shivika; Kamat, Pradeep K; Nath, Chandishwar; Shukla, Rakesh

    2014-02-01

    In the present study the role of glial activation and post synaptic toxicity in ICV Streptozotocin (STZ) induced memory impaired rats was explored. In experiment set up 1: Memory deficit was found in Morris water maze test on 14-16 days after STZ (ICV; 3mg/Kg) administration. STZ causes increased expression of GFAP, CD11b and TNF-α indicating glial activation and neuroinflammation. STZ also significantly increased the level of ROS, nitrite, Ca(2+) and reduced the mitochondrial activity in synaptosomal preparation illustrating free radical generation and excitotoxicity. Increased expression and activity of Caspase-3 was also observed in STZ treated rat which specify apoptotic cell death in hippocampus and cortex. STZ treatment showed decrease expression of post synaptic markers CaMKIIα and PSD-95, while, expression of pre synaptic markers (synaptophysin and SNAP-25) remains unaltered indicating selective post synaptic neurotoxicity. Oral treatment with Memantine (10mg/kg) and Ibuprofen (50 mg/kg) daily for 13 days attenuated STZ induced glial activation, apoptotic cell death and post synaptic neurotoxicity in rat brain. Further, in experiment set up 2: where memory function was not affected i.e. 7-9 days after STZ treatment. The level of GFAP, CD11b, TNF-α, ROS and nitrite levels were increased. On the other hand, apoptotic marker, synaptic markers, mitochondrial activity and Ca(2+) levels remained unaffected. Collective data indicates that neuroinflammatory process and oxidative stress occurs earlier to apoptosis and does not affect memory function. Present study clearly suggests that glial activation and post synaptic neurotoxicity are the key factors in STZ induced memory impairment and neuronal cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Combined effects of chronic hyperglycaemia and oral aluminium intoxication on testicular tissue and some male reproductive parameters in Wistar rats.

    PubMed

    Akinola, O B; Biliaminu, S A; Adedeji, O G; Oluwaseun, B S; Olawoyin, O M; Adelabu, T A

    2016-09-01

    Exposure to either environmental toxicants or chronic hyperglycaemia could impair male reproductive function. However, the extent to which exposure to such toxicants, in the presence of pre-existing metabolic dysfunction, could affect male reproduction is unclear. Streptozotocin-induced diabetic Wistar rats (12 weeks old) were exposed to oral aluminium chloride at 250 ppm for 30 days; followed by evaluation of caudal epididymal sperm count and motility, assay for serum follicle stimulating hormone (FSH), testosterone (T) and oestradiol; and assessment of testicular histology. Moreover, blood glucose was evaluated by the glucose oxidase method. In rats treated with streptozotocin (STZ) or aluminium (Al) alone, erosion of testicular parenchyma and stroma was observed. This effect was most severe in diabetic rats simultaneously exposed to Al; coupled with reduced caudal epididymal sperm count that was least in this (STZ+Al) group (18.75 × 10(6)  ml(-1) ) compared with controls (61.25 × 10(6)  ml(-1) ; P < 0.05), STZ group or Al group. Moreover, these reproductive perturbations (in the STZ+Al group) were associated with reduced sperm motility and significantly reduced serum FSH (P < 0.05); but elevated serum T and oestradiol (P < 0.05), compared with control. These suggest that diabetes-induced testicular lesion is exacerbated by simultaneous oral Al toxicity in Wistar rats. © 2015 Blackwell Verlag GmbH.

  16. Ca2+ mobilization in the aortic endothelium in streptozotocin-induced diabetic and cholesterol-fed mice.

    PubMed

    Kamata, K; Nakajima, M

    1998-04-01

    1. Experiments were performed to compare Ca2+ mobilization in the aortic endothelium in streptozotocin (STZ)-induced diabetic and cholesterol-fed mice with that in age-matched controls. 2. The intracellular free Ca2+ ([Ca2+]i) in the fura PE-3 loaded endothelium of aortic rings was dose-dependently increased by cumulative administration of acetylcholine (ACh). ACh caused a transient rise in [Ca2+]i in Ca2+-free medium. The ACh-induced increase in [Ca2+]i in normal or Ca2+-free medium was significantly weaker in both STZ-induced diabetic and cholesterol-fed mice. 3. The weaker [Ca2+]i response in Ca2+-containing medium in STZ-induced diabetic and cholesterol-fed mice was normalized by chronic administration of cholestyramine. 4. The increased low density lipoprotein (LDL) levels seen in both STZ-induced diabetic and cholesterol-fed mice were normalized by the same chronic administration of cholestyramine (300 mg kg(-1), p.o. daily for 10 weeks). Chronic administration of cholestyramine had no effect on the plasma glucose level. 5. Lysophosphatidylcholine (LPC) decreased the [Ca2+]i responses to ACh in the aortic endothelium from normal mice. 6. These results suggest that ACh increases both Ca2+ influx and Ca2+ release from storage in the aortic endothelium. The weaker [Ca2+]i influx seen in the endothelium of aortae from both STZ-induced diabetic and cholesterol-fed mice was improved by the chronic administration of cholestyramine, and we suggest that this improvement is due, at least in part, to a lowering of the plasma LDL level. It is further suggested that LPC may have an important influence over Ca2+ mobilization in the endothelium.

  17. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic β cells.

    PubMed

    Joo, Hye-Eun; Lee, Hyo-Jung; Sohn, Eun Jung; Lee, Min-Ho; Ko, Hyun-Suk; Jeong, Soo-Jin; Lee, Hyo-Jeong; Kim, Sung-Hoon

    2013-01-01

    The metabolic syndrome creates risk factors for coronary heart disease, diabetes, fatty liver, obesity and several cancers. Our group has already reported that the essential oil from leaves of Pinus koraiensis SIEB (EOPK) exerted antihyperlipidemic effects by upregulating the low-density lipoprotein receptor and inhibiting acyl-coenzyme A, cholesterol acyltransferases. We evaluated in the current study the anti-diabetic effects of EOPK on mice with streptozotocin (STZ)-induced type I diabetes and on HIT-T15 pancreatic β cells. EOPK significantly protected HIT-T15 cells from STZ-induced cytotoxicity and reduced the blood glucose level in STZ-induced diabetic mice when compared with the untreated control. EOPK consistently and significantly suppressed the α-amylase activity in a dose-dependent manner and enhanced the expression of insulin at the mRNA level in STZ-treated HIT-T15 cells, while the expression of insulin was attenuated. EOPK also significantly abrogated the population of reactive oxygen species when compared to the untreated control in STZ-treated HIT-T15 cells. Furthermore, EOPK significantly reduce nitric oxide production, suppressed the phosphorylation of endothelial nitric oxide (NO) synthase and suppressed the production of vascular endothelial growth factor (VEGF) in STZ-treated HIT-T15 cells, implying its potential application to diabetic retinopathy. Overall, our findings suggest that EOPK had hypoglycemic potential by inhibiting reactive oxygene species (ROS), endothelial NO synthase (eNOS) and VEGF in STZ-treated mice and HIT-T15 pancreatic β cells as a potent anti-diabetic agent.

  18. Cardiac Energy Metabolism and Oxidative Stress Biomarkers in Diabetic Rat Treated with Resveratrol

    PubMed Central

    Carolo dos Santos, Klinsmann; Pereira Braga, Camila; Octavio Barbanera, Pedro; Rodrigues Ferreira Seiva, Fábio; Fernandes Junior, Ary; Fernandes, Ana Angélica Henrique

    2014-01-01

    Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg−1 body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS's ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers' level of oxidative stress under

  19. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin.

    PubMed

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Kucuk, Osman; Ozercan, Ibrahim H; Juturu, Vijaya; Komorowski, James R

    2013-07-28

    The objective of the present study was to evaluate anti-diabetic effects of chromium picolinate (CrPic) and biotin supplementations in type 2 diabetic rats. The type 2 diabetic rat model was induced by high-fat diet (HFD) and low-dose streptozotocin. The rats were divided into five groups as follows: (1) non-diabetic rats fed a regular diet; (2) diabetic rats fed a HFD; (3) diabetic rats fed a HFD and supplemented with CrPic (80 μg/kg body weight (BW) per d); (4) diabetic rats fed a HFD and supplemented with biotin (300 μg/kg BW per d); (5) diabetic rats fed a HFD and supplemented with both CrPic and biotin. Circulating glucose, cortisol, total cholesterol, TAG, NEFA and malondialdehyde concentrations decreased (P< 0·05), but serum insulin concentrations increased (P< 0·05) in diabetic rats treated with biotin and CrPic, particularly with a combination of the supplements. Feeding a HFD to diabetic rats decreased PPAR-γ expression in adipose tissue and phosphorylated insulin receptor substrate 1 (p-IRS-1) expression of liver, kidney and muscle tissues, while the supplements increased (P< 0·001) PPAR-γ and p-IRS-1 expressions in relevant tissues. Expression of NF-κB in the liver and kidney was greater in diabetic rats fed a HFD, as compared with rats fed a regular diet (P< 0·01). The supplements decreased the expression of NF-κB in diabetic rats (P< 0·05). Results of the present study revealed that supplementing CrPic and biotin alone or in a combination exerts anti-diabetic activities, probably through modulation of PPAR-γ, IRS-1 and NF-κB proteins.

  20. Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat

    PubMed Central

    Qu, Ze-qiang; Zhou, Yan; Zeng, Yuan-shan; Lin, Yu-kun; Li, Yan; Zhong, Zhi-qiang; Chan, Wood Yee

    2012-01-01

    Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS. PMID:22235318

  1. Pre-training Catechin gavage prevents memory impairment induced by intracerebroventricular streptozotocin in rats.

    PubMed

    Zamani, Marzieh; Rohampour, Kambiz; Zeraati, Maryam; Hosseinmardi, Narges; Kazemian, Mostafa M

    2015-07-01

    To evaluate the effects of Catechin (CAT) on memory acquisition and retrieval in the animal model of sporadic alzheimer`s disease (sAD) induced by intracerebroventricular (icv) injection of streptozotocin (STZ) in passive avoidance memory test. Thirty adult rats were divided into 5 experimental groups (n=6). Animals were treated by icv saline/STZ (3 mg/kg) injection at day one and 3 after cannulation. The STZ+CAT group received 40 mg/kg CAT by daily gavages for 10 days, after icv STZ treatment and before training. The step-through latency (STL) and time spent in the dark compartment (TDC) were evaluated to examine the memory acquisition and retrieval. All tests were performed in Qom University of Medical Sciences, Qom, Iran, from April to December 2013. The STZ treatment significantly decreased STL and increased the number of entries to the dark compartment on the training day. It also increased TDC, on day one and 7 after training. Pre-training gavage of CAT reversed the STL significantly (p=0.027). The CAT treatment also decreased the TDC in both early and late retrieval, in respect to STZ group. This data suggests that CAT as an antioxidant could improve both memory acquisition and retrieval in the animal model of sAD.

  2. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats

    PubMed Central

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W.; Fujiwara, Yukio

    2010-01-01

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes. PMID:20117096

  3. Antioxidant and protective effects of Royal jelly on histopathological changes in testis of diabetic rats

    PubMed Central

    Ghanbari, Elham; Nejati, Vahid; Khazaei, Mozafar

    2016-01-01

    Background: Diabetes is the most common endocrine disease. It has adverse effects on male reproductive function. Royal Jelly (RJ) has antioxidant and anti-diabetic effects and show protective effects against diabetes. Objective: This study was conducted to evaluate the effect of RJ on histopathological alterations of the testicular tissue in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: In this experimental study, 28 adult Wistar rats were randomly divided into control (C), royal jelly (R), diabetic (D) and RJ-treated diabetic (D+R) groups. Diabetes was induced by a single intraperitoneal injection of STZ at 50 mg/kg body weight (BW). The rats from the R and D+R groups received daily RJ (100 mg/kg BW) for 6 wks orally. Hematoxylin-Eosin staining was used to analyze histopathological changes including: tunica albuginea thickness (TAT), seminiferous tubules diameter (STsD), Johnsen’s score, tubular differentiation index (TDI), spermiogenesis index (SPI), Sertoli cell index (SCI), meiotic index (MI), and mononuclear immune cells (MICs) in testes. The antioxidant status was examined by evaluating testicular levels of ferric reducing antioxidant power (FRAP) and catalase (CAT) activity. Results: Histological results of the testis from diabetic rats showed significant decrease in STsD, Johnsen’s score, TDI, SPI, SCI and MI, and significant increase in TAT and MICs, while administration of RJ significantly reverted these changes (p<0.05). RJ treatment markedly increased activity of CAT and FRAP. There were significant differences in FRAP levels among C (13.0±0.5), RJ (13.4±0.3), D (7.8±0.6) and D+R (12.4±0.7) groups (p<0.05). Conclusion: RJ improved diabetes-induced impairment in testis, probably through its antioxidant property. PMID:27679827

  4. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride.

    PubMed

    Yang, Chen; Zhang, Mengmeng; Li, Yagang; Wang, Yan; Mao, Weixian; Gao, Yuan; Xu, Hui

    2015-12-01

    The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.

  5. Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.

    PubMed

    Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan

    2015-01-01

    Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.

  6. PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes.

    PubMed

    Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L

    2016-06-01

    The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.

  7. Flaxseed oil reduces oxidative stress and enhances brain monoamines release in streptozotocin-induced diabetic rats.

    PubMed

    Badawy, E A; Rasheed, W I; Elias, T R; Hussein, J; Harvi, M; Morsy, S; Mahmoud, Ya El-Latif

    2015-11-01

    This study was performed to investigate the biochemical effect of flaxseed oil on oxidative stress and brain monoamines release in streptozotocin-induced diabetic rats. Sixty male albino rats were divided into following four groups (15 for each group): control group, flaxseed oil group, diabetic group, and flaxseed oil-treated diabetic group. Serum glucose, insulin, pentosidine, plasma advanced oxidation protein products (AOPPs), and plasma total antioxidant capacity were estimated. Brain neurotransmitters, malondialdehyde (MDA), and nitric oxide (NO) were also determined. The mean values of serum pentosidine and plasma AOPP showed a significant decrease in treated diabetic group as compared to their values in the diabetic group. Also, brain neurotransmitters levels were improved after treatment with flaxseed. Brain MDA and NO were increased significantly in the diabetic group, while they were significantly decreased after treatment. Brain NO and brain MDA had a significant positive correlation with pentosidine, AOPP, and neurotransmitters. We concluded that flaxseed oil supplementation may be useful in the treatment of brain dysfunction in diabetes. © The Author(s) 2015.

  8. Regulation of oxidative stress and somatostatin, cholecystokinin, apelin gene expressions by ghrelin in stomach of newborn diabetic rats.

    PubMed

    Coskun, Zeynep Mine; Sacan, Ozlem; Karatug, Ayse; Turk, Neslihan; Yanardag, Refiye; Bolkent, Sehnaz; Bolkent, Sema

    2013-09-01

    The aim of the study was to determine whether ghrelin treatment has a protective effect on gene expression and biochemical changes in the stomach of newborn streptozotocin (STZ) induced diabetic rats. In this study, four groups of Wistar rats were used: control, ghrelin control, diabetic and diabetic+ghrelin. The rats were sacrificed after four weeks of treatment for diabetes. The gene expressions of: somatostatin, cholecystokinin, apelin and the altered active caspase-3, active caspase-8, proliferating cell nuclear antigen, were investigated in the pyloric region of the stomach and antioxidant parameters were measured in all the stomach. Although ghrelin treatment to diabetic rats lowered the stomach lipid peroxidation levels, the stomach glutathione levels were increased. Exogenous ghrelin caused an increased activities of stomach catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in diabetic rats. Numbers of somatostatin, cholecystokinin and proliferating cell nuclear antigen immunoreactive cells decreased in the diabetic+ghrelin group compared to the diabetic group. Apelin mRNA expressions were remarkably less in the diabetic+ghrelin rats than in diabetic rats. The results may indicate that ghrelin treatment has a protective effect to some extent on the diabetic rats. This protection is possibly accomplished through the antioxidant activity of ghrelin observed in type 2 diabetes. Consequently exogenous ghrelin may be a candidate for therapeutic treatment of diabetes. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Kim, Jong-Jin; Choi, Jina; Lee, Mi-Kyung; Kang, Kyung-Yun; Paik, Man-Jeong; Jo, Sung-Kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2014-01-01

    HemoHIM (a new herbal preparation of three edible herbs: Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200 mg/kg, i.p.). In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic β-cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4+ T and CD8+ T), which were reduced in diabetic mice, as well as IFN-γ production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic β-cells in STZ-induced diabetic mice. PMID:25045390

  10. Grapefruit Derived Flavonoid Naringin Improves Ketoacidosis and Lipid Peroxidation in Type 1 Diabetes Rat Model.

    PubMed

    Murunga, Alfred N; Miruka, David O; Driver, Christine; Nkomo, Fezile S; Cobongela, Snazo Z Z; Owira, Peter M O

    2016-01-01

    Hypoglycemic effects of grapefruit juice are well known but the effects of naringin, its main flavonoid on glucose intolerance and metabolic complications in type 1 diabetes are not known. To investigate the effects of naringin on glucose intolerance, oxidative stress and ketonemia in type 1 diabetic rats. Sprague-Dawley rats divided into 5 groups (n = 7) were orally treated daily with 3.0 ml/kg body weight (BW)/day of distilled water (group 1) or 50 mg/kg BW of naringin (groups 2 and 4, respectively). Groups 3, 4 and 5 were given a single intra-peritoneal injection of 60 mg/kg BW of streptozotocin to induce diabetes. Group 3 was further treated with subcutaneous insulin (4.0 IU/kg BW) twice daily, respectively. Stretozotocin (STZ) only-treated groups exhibited hyperglycemia, polydipsia, polyuria, weight loss, glucose intolerance, low fasting plasma insulin and reduced hepatic glycogen content compared to the control group. Furthermore they had significantly elevated Malondialdehyde (MDA), acetoacetate, β-hydroxybutyrate, anion gap and significantly reduced blood pH and plasma bicarbonate compared to the control group. Naringin treatment significantly improved Fasting Plasma Insulin (FPI), hepatic glycogen content, malondialdehyde, β-hydroxybutyrate, acetoacetate, bicarbonate, blood pH and anion gap but not Fasting Blood Glucose (FBG) compared to the STZ only-treated group. Naringin is not hypoglycemic but ameliorates ketoacidosis and oxidative stress. Naringin supplements could therefore mitigate complications of diabetic ketoacidosis.

  11. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats.

    PubMed

    Kondeti, Vinay Kumar; Badri, Kameswara Rao; Maddirala, Dilip Rajasekhar; Thur, Sampath Kumar Mekala; Fatima, Shaik Sameena; Kasetti, Ramesh Babu; Rao, Chippada Appa

    2010-05-01

    The present study was designed to investigate the effect of bark of Pterocarpus santalinus, an ethnomedicinal plant, on blood glucose, plasma insulin, serum lipids and the activities of hepatic glucose metabolizing enzymes in streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were treated (acute/short-term and long-term) with ethyl acetate:methanol fractions of ethanolic extract of the bark of P. santalinus. Fasting blood glucose, HbA(1C), plasma insulin and protein were estimated before and after the treatment, along with hepatic glycogen, and activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase. Further anti-hyperlipidemic activity was studied by measuring the levels of serum lipids and lipoproteins. Phytochemical analysis of active fraction showed the presence of flavonoids, glycosides and phenols. Biological testing of the active fraction demonstrated a significant antidiabetic activity by reducing the elevated blood glucose levels and glycosylated hemoglobin, improving hyperlipidemia and restoring the insulin levels in treated experimental induced diabetic rats. Further elucidation of mechanism of action showed improvement in the hepatic carbohydrate metabolizing enzymes after the treatment. Our present investigation suggests that active fraction of ethanolic extract of bark of P. santalinus decreases streptozotocin induced hyperglycemia by increasing glycolysis and decreasing gluconeogenesis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide.

    PubMed

    Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan

    2015-12-01

    Gelidium amansii (GA) is an edible red algae that is distributed mainly in northeastern Taiwan. This study was designed to investigate the effects of GA on plasma glucose, lipids, and adipocytokines in rats with streptozotocin-nicotinamide-induced diabetes. Rats were divided into four groups: (1) rats without diabetes fed a high-fat diet (control group); (2) rats with diabetes fed a high-fat diet; (3) rats with diabetes fed a high-fat diet with thiazolidinedione in the diet; and (4) rats with diabetes fed a high-fat diet and GA. The experimental diet and drinking water were available ad libitum for 11 weeks. After the 11-week feeding study, plasma glucose, triglyceride, and cholesterol concentrations were lower in rats with diabetes fed the GA diet than in animals with diabetes fed the control diet. In addition, cholesterol and triglyceride excretion were significantly higher in rats with diabetes fed the GA diet. Moreover, GA feeding induced lipolysis in both paraepididymal and perirenal adipose tissues. Adipose tissue (paraepididymal and perirenal) weight and triglyceride contents were lower after GA treatment. Plasma adipocytokines including tumor necrosis factor-alpha, interleukin-6, and plasminogen activator inhibitor-1 were reduced by GA feeding in rats with diabetes. The results of the current study suggest that GA feeding may regulate plasma glucose and lipid levels and prevent adipose tissue accumulation in rats with diabetes. Copyright © 2015. Published by Elsevier B.V.

  13. Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats

    PubMed Central

    Niwa, Atsuko; Tajiri, Takashi; Higashino, Hideaki

    2011-01-01

    Ipomoea batatas, Agaricus blazei and Smallanthus sonchifolius are known to favorably influence diabetes mellitus. To clarify their antidiabetic efficacy and hypoglycemic mechanisms, we treated streptozotocin-induced diabetic rats with daily oral feeding of powdered Ipomoea batatas (5 g kg−1 d−1), Agaricus blazei (1 g kg−1 d−1) or Smallanthus sonchifolius (4 g kg−1 d−1) for 2 months. Treatments with Ipomoea batatas or Agaricus blazei, but not Smallanthus sonchifolius, significantly suppressed the increases of fasting plasma glucose and hemoglobin A1c levels, and restored body weight loss during diabetes. Serum insulin levels after oral glucose administration tests increased along the treatments of Ipomoea batatas or Agaricus blazei. Moreover, Ipomoea batatas and Agaricus blazei reduced superoxide production from leukocytes and vascular homogenates, serum 8-oxo-2'-deoxyguanosine, and vascular nitrotyrosine formation of diabetic rats to comparable levels of normal control animals. Stress- and inflammation-related p38 mitogen-activated protein kinase activity and tumor necrosis factor-α production of diabetic rats were significantly depressed by Ipomoea batatas administration. Histological examination also exhibited improvement of pancreatic β-cells mass after treatments with Ipomoea batatas or Agaricus blazei. These results suggest that hypoglycemic effects of Ipomoea batatas or Agaricus blazei result from their suppression of oxidative stress and proinflammatory cytokine production followed by improvement of pancreatic β-cells mass. PMID:21562638

  14. N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats

    PubMed Central

    Wang, Tingting; Qiao, Shigang; Lei, Shaoqing; Liu, Yanan; Ng, Kwok F. J.; Xu, Aimin; Lam, Karen S. L.; Irwin, Michael G.; Xia, Zhengyuan

    2011-01-01

    Background Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated e

  15. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense.

    PubMed

    Wang, Ning; Yi, Wen Jing; Tan, Lu; Zhang, Jia Hui; Xu, Jiamin; Chen, Yi; Qin, Mengting; Yu, Shuang; Guan, Jing; Zhang, Rui

    2017-06-01

    Pancreatic beta cells are very sensitive to oxidative stress, which is one of the major causes of cell damages in diabetes. Growing interest has focused on the development of effective therapeutics to protect pancreatic cells from oxidative stress and searching for potentially protective antioxidants for treating diabetes. Apigenin, a plant-derived flavonoid, was investigated to determine whether it could protect rat insulinoma cell lines (RINm5F pancreatic beta cells) against streptozotocin (STZ)-induced oxidative damages and the mechanisms implicated. Our results showed that STZ treatment could induce oxidative stress and consequent cytotoxic effects in RINm5F cells. Pretreatment with apigenin effectively decreased the intracellular reactive oxygen species (ROS) production, attenuated cellular DNA damage, diminished lipid peroxidation, relieved protein carbonylation, and restored the cell apoptosis of pancreatic beta cells stressed by STZ. Our further experiments demonstrated that the beneficial effects of apigenin were related to ameliorate the loss of antioxidant enzymes of the STZ-treated cells in the level of gene transcription, protein expression, and enzyme activity. That suggested apigenin was not only a free radical scavenger but also a regulator to antioxidant defenses of pancreatic cells. Taken all together, our findings suggested that apigenin could attenuate the STZ-induced oxidative damages in pancreatic beta cells and might serve as a novel agent for the treatment of diabetes.

  16. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats.

    PubMed

    Islam, Md Shahidul

    2011-12-15

    White tea (WT) is very similar to green tea (GT) but it is exceptionally prepared only from the buds and young tea leaves of Camelia sinensis plant while GT is prepared from the matured tea leaves. The present study was investigated to examine the effects of a 0.5% aqueous extract of WT in a streptozotocin-induced diabetes model of rats. Six-week-old male Sprague-Dawley rats were divided into 3 groups of 6 animals in each group namely: normal control (NC), diabetic control (DBC) and diabetic white tea (DWT). Diabetes was induced by an intraperitoneal injection of streptozotocin (65 mg/kg BW) in DBC and DWT groups except the NC group. After 4 weeks feeding of 0.5% aqueous extracts of WT, the drink intake was significantly (P<0.05) increased in the DWT group compared to the DBC and NC groups. Blood glucose concentrations were significantly decreased and glucose tolerance ability was significantly improved in the DWT group compared to the DBC group. Liver weight and liver glycogen were significantly increased and serum total cholesterol and LDL-cholesterol were significantly decreased in the DWT group compared to the DBC group. The food intake, body weight gain, serum insulin and fructosamine concentrations were not influenced by the consumption of WT. Data of this study suggest that the 0.5% aqueous extract of WT is effective to reduce most of the diabetes associated abnormalities in a steptozotocin-induced diabetes model of rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Protective effect of betulinic acid against intracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats: Possible neurotransmitters and neuroinflammatory mechanism.

    PubMed

    Kaundal, Madhu; Deshmukh, Rahul; Akhtar, Mohd

    2018-06-01

    The purpose of the study was to explore the therapeutic potential of Betulinic acid (BA) in streptozotocin (STZ) induced memory damage in experimental rats. STZ (3mg/kg bilaterally) as intracerebroventrical (icv) route was administered on day 1 and 3 in rats. Donepezil (5mg/kg/day po), used as standard, and BA (5, 10 and 15mg/kg/day po) were administered after 1h of 1st STZ infusion up to 21days. Object recognition task (ORT) for non-spatial, Morris water maze (MWM) for spatial and locomotor activity were performed to evaluate behavioral changes in rats. On 22nd day, animals were decapitated and hippocampus was separated to perform biochemical (AChE, LPO, GSH, nitrite), neuroinflammatory (TNF-α, IL-1β, and IL-6), neurotransmitters (NTs) (dopamine, norepinephrine and serotonin) analysis. STZ infusion significantly impaired memory as observed in MWM and ORT, increased oxidative stress, pro-inflammatory cytokine's level and altered NTs level. Moreover, BA demonstrated a neuroprotective effect in a dose-dependent manner. BA dose dependently (5, 10 and 15mg/kg) significantly restore STZ induced memory changes and pathological abnormalities in rat brain. The findings of the current study suggests that BA protect rat brain from STZ induced neuronal damage via acting through multiple mechanisms and would be used to curb cognitive decline associated with neurodegenerative disorders especially AD. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. NO levels in diabetes mellitus: Effects of l-NAME and insulin on LCAT, Na(+)/K(+) ATPase activity and lipid profile.

    PubMed

    Tekin, Neslihan; Akyüz, Fahrettin; Temel, Halide Edip

    2011-01-01

    Diabetes mellitus (DM) is a chronic disease and one of the most important health problems. Several factors may be responsible for the complications of diabetes mellitus including alterations in the activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+) ATPase) and lecithin:cholesterol acyltransferase (LCAT) and also levels of nitric oxide (NO). We have investigated the effects of alterations in serum NO levels on activities of erythrocyte membran Na/K ATPase and serum LCAT enzymes. The experiments were performed on male rats divided into four groups: group 1, control (standart diet); group 2, diabetic control (single dose of 65mg/kg of streptozotocin (STZ), i.p); group 3, STZ+insulin (8IU/kg/day s.c.); group 4 (STZ+l-NAME 5mg/kg/day orally). Streptozotocin-induced diabetic rats, showed a significant increase in blood glucose and serum cholesterol (C) and triglyceride (TG). Compared to the control group with diabetic group plasma LCAT concentrations and erythrocyte membrane Na(+)/K(+) ATPase were found to be decreased. Activities of Na(+)/K(+) ATPase and serum NO level were decreased with the administration of l-NAME. We observed that insulin was ameliorated in all parameters. Serum NO levels is related to erythrocyte membrane Na(+)/K(+) ATPase activity. But serum NO levels did not affect the plasma LCAT activity and serum lipid profiles. Copyright © 2010 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  19. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: An in vivo approach.

    PubMed

    Li, Weizhen; Chen, Songwen; Zhou, Genqing; Li, Hongli; Zhong, Lan; Liu, Shaowen

    2018-03-01

    The present study aimed to evaluate the importance of cyanidin 3-glucoside (C3G) of diabetic cardiomyopathy in diabetic rats. The rats were induced with diabetic using streptozotocin and total triglyceride (TG) and total cholesterol (TC) were determined. The range of myocardial enzymes such as aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LD) were also estimated, further, the Immuno histochemical analysis and western blot investigation were determined for the actual activity of C3G. Results indicated that the marker enzymes such as CK, LD and AST were significantly ( P  < 0.05) increased in STZ administered rats (DM group), while the levels of these elevated marker enzymes of cardiac injury significantly ( P  < 0.05) declined in the DM + C3G group, as compared to the diabetic group of rats. Additionally, a decrease in the level of TNF-alpha and interleukin-6, was noticed in the C3G treated group as compared to diabetic group. Finally, blotting analysis clearly confirmed that theC3G treatment resulted to higher level response of Bcl-2 and lower level response of caspase-3 and BAX. In conclusion, C3G a natural antioxidant may prevent cardiovascular complications by ameliorating oxidative damage, inflammation, metabolic dysfunctions and apoptosis pathways in type 2 diabetes.

  20. Reduced epidermal thickness, nerve degeneration and increased pain-related behavior in rats with diabetes type 1 and 2.

    PubMed

    Boric, Matija; Skopljanac, Ivan; Ferhatovic, Lejla; Jelicic Kadic, Antonia; Banozic, Adriana; Puljak, Livia

    2013-11-01

    To examine the mechanisms contributing to pain genesis in diabetic neuropathy, we investigated epidermal thickness and number of intraepidermal nerve fibers in rat foot pad of the animal model of diabetes type 1 and type 2 in relation to pain-related behavior. Male Sprague-Dawley rats were used. Diabetes type 1 was induced with intraperitoneal injection of streptozotocin (STZ) and diabetes type 2 was induced with a combination of STZ and high-fat diet. Control group for diabetes type 1 was fed with regular laboratory chow, while control group for diabetes type 2 received high-fat diet. Body weights and blood glucose levels were monitored to confirm induction of diabetes. Pain-related behavior was analyzed using thermal (hot, cold) and mechanical stimuli (von Frey fibers, number of hyperalgesic responses). Two months after induction of diabetes, glabrous skin samples from plantar surface of the both hind paws were collected. Epidermal thickness was evaluated with hematoxylin and eosin staining. Intraepidermal nerve fibers quantification was performed after staining skin with polyclonal antiserum against protein gene product 9.5. We found that induction of diabetes type 1 and type 2 causes significant epidermal thinning and loss of intraepidermal nerve fibers in a rat model, and both changes were more pronounced in diabetes type 1 model. Significant increase of pain-related behavior two months after induction of diabetes was observed only in a model of diabetes type 1. In conclusion, animal models of diabetes type 1 and diabetes type 2 could be used in pharmacological studies, where cutaneous changes could be used as outcome measures for predegenerative markers of neuropathies. Copyright © 2013 Elsevier B.V. All rights reserved.