Sample records for stress ectopic expression

  1. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging

    PubMed Central

    2012-01-01

    Background Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. Results We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. Conclusion We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species. PMID:22780875

  2. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.

    PubMed

    Kumar, Gautam; Kushwaha, Hemant Ritturaj; Panjabi-Sabharwal, Vaishali; Kumari, Sumita; Joshi, Rohit; Karan, Ratna; Mittal, Shweta; Pareek, Sneh L Singla; Pareek, Ashwani

    2012-07-10

    Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srisuttee, Ratakorn; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stablymore » expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.« less

  4. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron

    PubMed Central

    Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Lee, Keunsook K.; Bebes, Attila; Quinn, Janet

    2017-01-01

    Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host. PMID:28542620

  5. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.

    PubMed

    Pradhan, Arnab; Herrero-de-Dios, Carmen; Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Kolmogorova, Aljona; Lee, Keunsook K; Martin, Brennan D; Ribeiro, Antonio; Bebes, Attila; Yuecel, Raif; Gow, Neil A R; Munro, Carol A; MacCallum, Donna M; Quinn, Janet; Brown, Alistair J P

    2017-05-01

    Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host.

  6. Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Abiotic stresses are a major factor limiting crop growth and productivity. Our previous studies revealed that Arabidopsis thaliana glutaredoxin S17 (AtGRXS17) has conserved functions in plant tolerance to heat and chilling stress in tomato. Here, we report that ectopic expression of AtGRXS17 in toma...

  7. Ectopic expression of a fruit phytoene synthase from Citrus paradisi Macf. promotes abiotic stress tolerance in transgenic tobacco.

    PubMed

    Cidade, Luciana C; de Oliveira, Tahise M; Mendes, Amanda F S; Macedo, Amanda F; Floh, Eny I S; Gesteira, Abelmon S; Soares-Filho, Walter S; Costa, Marcio G C

    2012-12-01

    Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.

  8. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  9. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression

    PubMed Central

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra

    2013-01-01

    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms. PMID:23669573

  10. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Cao, Haishun; Wang, Li; Nawaz, Muhammad A.; Niu, Mengliang; Sun, Jingyu; Xie, Junjun; Kong, Qiusheng; Huang, Yuan; Cheng, Fei; Bie, Zhilong

    2017-01-01

    Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops. PMID:29234347

  11. Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice

    NASA Astrophysics Data System (ADS)

    Bakshi, Achala; Moin, Mazahar; Kumar, M. Udaya; Reddy, Aramati Bindu Madhava; Ren, Maozhi; Datla, Raju; Siddiq, E. A.; Kirti, P. B.

    2017-02-01

    The target of Rapamycin (TOR) present in all eukaryotes is a multifunctional protein, regulating growth, development, protein translation, ribosome biogenesis, nutrient, and energy signaling. In the present study, ectopic expression of TOR gene of Arabidopsis thaliana in a widely cultivated indica rice resulted in enhanced plant growth under water-limiting conditions conferring agronomically important water-use efficiency (WUE) trait. The AtTOR high expression lines of rice exhibited profuse tillering, increased panicle length, increased plant height, high photosynthetic efficiency, chlorophyll content and low Δ13C. Δ13C, which is inversely related to high WUE, was as low as 17‰ in two AtTOR high expression lines. These lines were also insensitive to the ABA-mediated inhibition of seed germination. The significant upregulation of 15 stress-specific genes in high expression lines indicates their contribution to abiotic stress tolerance. The constitutive expression of AtTOR is also associated with significant transcriptional upregulation of putative TOR complex-1 components, OsRaptor and OsLST8. Glucose-mediated transcriptional activation of AtTOR gene enhanced lateral root formation. Taken together, our findings indicate that TOR, in addition to its multiple cellular functions, also plays an important role in response to abiotic stress and potentially enhances WUE and yield related attributes.

  12. Ectopic Expression of GsPPCK3 and SCMRP in Medicago sativa Enhances Plant Alkaline Stress Tolerance and Methionine Content

    PubMed Central

    Zhao, Yang; Zhao, Chaoyue; DuanMu, Huizi; Yu, Yang; Ji, Wei; Zhu, Yanming

    2014-01-01

    So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops. PMID:24586886

  13. Ectopic expression of Arabidopsis glutaredoxin gene AtGRXS17 in tomato (Solanum lycopersicum) confers tolerance to chilling stress

    USDA-ARS?s Scientific Manuscript database

    The monothiol glutaredoxin AtGRXS17 from "Arabidopsis" confers thermotolerance in yeast, "Arabidopsis", and tomato plants. Here, we report that AtGRXS17 also enhances tolerance to chilling stress in tomato and is associated with elevation of antioxidant enzyme activities, which are known to be invol...

  14. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.

    PubMed

    Rodrigues, Simone M; Andrade, Maxuel O; Gomes, Ana Paula Soares; Damatta, Fabio M; Baracat-Pereira, Maria C; Fontes, Elizabeth P B

    2006-01-01

    Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H(2)O(2)- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H(2)O(2), whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants.

  15. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.

    PubMed

    Kim, Jihye; Lee, Won Je; Vu, Tien Thanh; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2017-08-01

    The ectopic expression of AtDFR results in increased accumulation of anthocyanins leading to enhanced salinity and drought stress tolerance in B. napus plants. Flavonoids with antioxidant effects confer many additional benefits to plants. Evidence indicates that flavonoids, including anthocyanins, protect tissues against oxidative stress from various abiotic stressors. We determined whether increases in anthocyanins increased abiotic stress tolerance in Brassica napus, because the values of B. napus L. and its cultivation area are increasing worldwide. We overexpressed Arabidopsis dihydroflavonol-4-reductase (DFR) in B. napus. Increased DFR transcript levels for AtDFR-OX B. shoots correlated with higher anthocyanin accumulation. AtDFR-OX Brassica shoots exhibited lower reactive oxygen species (ROS) accumulation than wild-type (WT) shoots under high NaCl and mannitol concentrations. This was corroborated by 3,3-diaminobenzidine staining for ROS scavenging activity in 1,1-diphenyl-2-picryl-hydrazyl assays. Shoots of the AtDFR-OX B. napus lines grown in a high salt medium exhibited enhanced salt tolerance and higher chlorophyll content than similarly grown WT plants. Our observations suggested that the AtDFR gene can be effectively manipulated to modulate salinity and drought stress tolerance by directing to high accumulation of anthocyanins in oilseed plants.

  16. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    PubMed

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.

  17. Ectopic Overexpression of SlHsfA3, a Heat Stress Transcription Factor from Tomato, Confers Increased Thermotolerance and Salt Hypersensitivity in Germination in Transgenic Arabidopsis

    PubMed Central

    Li, Zhenjun; Zhang, Lili; Wang, Aoxue; Xu, Xiangyang; Li, Jingfu

    2013-01-01

    Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23349984

  18. Tendon Mineralization Is Progressive and Associated with Deterioration of Tendon Biomechanical Properties, and Requires BMP-Smad Signaling in the Mouse Achilles Tendon Injury Model

    PubMed Central

    Zhang, Kairui; Asai, Shuji; Hast, Michael W.; Liu, Min; Usami, Yu; Iwamoto, Masahiro; Soslowsky, Louis J.; Enomoto-Iwamoto, Motomi

    2016-01-01

    Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8–10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 were highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4 weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties. PMID:26825318

  19. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta

    DTIC Science & Technology

    2005-06-01

    36, 2001. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. TGFbeta enhances epithelial cell survival via Akt - dependent regulation of FKHRLI. Mol Biol... Akt mediates cell-cycle progression by phosphorylation of p27Kip’ at threonine 157 and modulation of its cellular localization. Nat Med 8:1145-1152...stress fibers. Ectopic- expression and siRNA experiments show that Smad3 and Smad4 mediate up-regulation of tropomyosins and stress fiber formation

  20. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses.

    PubMed

    Du, William W; Yang, Weining; Chen, Yu; Wu, Zhong-Kai; Foster, Francis Stuart; Yang, Zhenguo; Li, Xiangmin; Yang, Burton B

    2017-05-07

    Circular RNAs are a subclass of non-coding RNAs detected within mammalian cells. This study was designed to test the roles of a circular RNA circ-Foxo3 in senescence using in vitro and in vivo approaches. Using the approaches of molecular and cellular biology, we show that a circular RNA generated from a member of the forkhead family of transcription factors, Foxo3, namely circ-Foxo3, was highly expressed in heart samples of aged patients and mice, which was correlated with markers of cellular senescence. Doxorubicin-induced cardiomyopathy was aggravated by ectopic expression of circ-Foxo3 but was relieved by silencing endogenous circ-Foxo3. We also found that silencing circ-Foxo3 inhibited senescence of mouse embryonic fibroblasts and that ectopic expression of circ-Foxo3 induced senescence. We found that circ-Foxo3 was mainly distributed in the cytoplasm, where it interacted with the anti-senescent protein ID-1 and the transcription factor E2F1, as well as the anti-stress proteins FAK and HIF1α. We conclude that ID-1, E2F1, FAK, and HIF1α interact with circ-Foxo3 and are retained in the cytoplasm and could no longer exert their anti-senescent and anti-stress roles, resulting in increased cellular senescence. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  1. PRL-3 Is Involved in Estrogen- and IL-6-Induced Migration of Endometrial Stromal Cells From Ectopic Endometrium.

    PubMed

    Ren, Shifan; Zhou, Yefang; Fang, Xiaoling; She, Xiaoling; Wu, Yilin; Wu, Xianqing

    2016-05-24

    To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway. © The Author(s) 2016.

  2. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression. © 2015. Published by The Company of Biologists Ltd.

  3. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    PubMed

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  5. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    PubMed

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  6. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment.

    PubMed

    Ma, Zhan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Wang, Yingzhi; Yang, Cuixia; Wang, Wenjuan; Du, Yan; Zhou, Muqing; Gao, Feng

    2010-08-01

    F1Fo-ATP synthase was originally thought to exclusively locate in the inner membrane of the mitochondria. However, recent studies prove the existence of ectopic F1Fo-ATP synthase on the outside of the cell membrane. Ectopic ATP synthase was proposed as a marker for tumor target therapy. Nevertheless, the protein transport mechanism of the ectopic ATP synthase is still unclear. The specificity of the ectopic ATP synthase, with regard to tumors, is questioned because of its widespread expression. In the current study, we constructed green fluorescent protein-ATP5B fusion protein and introduced it into HepG2 cells to study the localization of the ATP synthase. The expression of ATP5B was analyzed in six cell lines with different 'malignancies'. These cells were cultured in both normal and tumor-like acidic and hypoxic conditions. The results suggested that the ectopic expression of ATP synthase is a consequence of translocation from the mitochondria. The expression and catalytic activity of ectopic ATP synthase were similar on the surface of malignant cells as on the surface of less malignant cells. Interestingly, the expression of ectopic ATP synthase was not up-regulated in tumor-like acidic and hypoxic microenvironments. However, the catalytic activity of ectopic ATP synthase was up-regulated in tumor-like microenvironments. Therefore, the specificity of ectopic ATP synthase for tumor target therapy relies on the high level of catalytic activity that is observed in acidic and hypoxic microenvironments in tumor tissues.

  7. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress.

    PubMed

    Wang, Lin; Feng, Chao; Zheng, Xiaodong; Guo, Yan; Zhou, Fangfang; Shan, Dongqian; Liu, Xuan; Kong, Jin

    2017-10-01

    Synthesis of melatonin in mitochondria was reported in animals. However, there is no report on whether plant mitochondria also produce melatonin. Herein, we show that plant mitochondria are a major site for melatonin synthesis. In an in vitro study, isolated apple mitochondria had the capacity to generate melatonin. Subcellular localization analysis documented that an apple SNAT isoform, MzSNAT5, was localized in the mitochondria of both Arabidopsis protoplasts and apple callus cells. The kinetic analysis revealed that the recombinant MzSNAT5 protein exhibited high enzymatic activity to catalyze serotonin to N-acetylserotonin with the K m and V max of 55 μmol/L and 0.909 pmol/min/mg protein at 35°C, respectively; this pathway functioned over a wide range of temperatures from 5 to 75°C. In an in vivo study, MzSNAT5 was drought inducible. The transgenic Arabidopsis ectopically expressing MzSNAT5 elevated the melatonin level and, hence, enhanced drought tolerance. The mechanistic study indicated that the ectopically expressing MzSNAT5 allows plant mitochondria to increase melatonin synthesis. As a potent free radical scavenger, melatonin reduces the oxidative stress caused by the elevated reactive oxygen species which are generated under drought stress in plants. Our findings provide evidence that engineered melatonin-enriched plants exhibit enhanced oxidative tolerance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Epinephrine-Induced and Antiapoptotic Signaling in Prostate Cancer

    DTIC Science & Technology

    2009-05-01

    Phosphorylation of ectopically expressed HA-BAD mirrors endogenous BAD phosphorylation, thus analysis of HA-BAD allows adequately interpret modifications...subjected to emotional stress (Fig.2 A). However, more extensive analysis of CREB phosphorylation in C42Luc xenografts showed that in some cases...data indicate that assignment of tumor samples for analysis of signaling pathways should be done based on blood epinephrine measurements. Given

  9. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    PubMed Central

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  10. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    PubMed

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

    PubMed Central

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  12. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis.

    PubMed

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-05-06

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.

  13. Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy

    PubMed Central

    Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole; Georges, Michel; Takeda, Haruko

    2015-01-01

    The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous + Mat /CLPG Pat animals receiving the CLPG mutation from their father express the phenotype. + Mat /CLPG Pat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. PMID:26474044

  14. The Lin28/Let-7 System in Early Human Embryonic Tissue and Ectopic Pregnancy

    PubMed Central

    Steffani, Liliana; Martínez, Sebastián; Monterde, Mercedes; Ferri, Blanca; Núñez, Maria Jose; AinhoaRomero-Espinós; Zamora, Omar; Gurrea, Marta; Sangiao-Alvarellos, Susana; Vega, Olivia; Simón, Carlos; Pellicer, Antonio; Tena-Sempere, Manuel

    2014-01-01

    Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7–9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans. PMID:24498170

  15. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants.

    PubMed

    Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli

    2015-01-01

    Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.

  16. Tethered Hsp90 Inhibitors Carrying Optical or Radioiodinated Probes Reveal Selective Internalization of Ectopic Hsp90 in Malignant Breast Tumor Cells

    PubMed Central

    Barrott, Jared J.; Hughes, Philip F.; Osada, Takuya; Yang, Xiao-Yi; Hartman, Zachary C.; Loiselle, David R.; Spector, Neil L.; Neckers, Len; Rajaram, Narasimhan; Hu, Fangyao; Ramanujam, Nimmi; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Lyerly, H. Kim; Haystead, Timothy A.

    2013-01-01

    Summary Hsp90 inhibitors have demonstrated unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained but could be influenced by ectopically expressed Hsp90 in tumors. We have synthesized novel Hsp90 inhibitors that can carry optical or radioiodinated probes via a PEG tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein is occurring at the plasma membrane. In mice, we show exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors targeting ectopic Hsp90 can be used to detect breast cancer malignancies through non-invasive imaging. PMID:24035283

  17. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Zhai, Yu-Fei; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-11-01

    Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    PubMed

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.

  19. MicroRNA-125b is a novel negative regulator of p53.

    PubMed

    Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing

    2009-04-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.

  20. MicroRNA-125b is a novel negative regulator of p53

    PubMed Central

    Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing

    2009-01-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287

  1. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir.more » Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.« less

  2. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  3. E2F1-mediated human POMC expression in ectopic Cushing's syndrome.

    PubMed

    Araki, Takako; Liu, Ning-Ai; Tone, Yukiko; Cuevas-Ramos, Daniel; Heltsley, Roy; Tone, Masahide; Melmed, Shlomo

    2016-11-01

    Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome. © 2016 Society for Endocrinology.

  4. Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop

    PubMed Central

    Cheng, Jinbo; Liao, Yajin; Zhou, Lujun; Peng, Shengyi; Chen, Hong; Yuan, Zengqiang

    2016-01-01

    Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-β levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-β levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-β levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling. PMID:26892273

  5. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice1[C][W][OA

    PubMed Central

    Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo

    2008-01-01

    Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825

  6. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    PubMed

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  7. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    PubMed

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  8. A small amount of dietary carbohydrate can promote the HFD-induced insulin resistance to a maximal level.

    PubMed

    Mei, Shuang; Yang, Xuefeng; Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1-25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level.

  9. A Small Amount of Dietary Carbohydrate Can Promote the HFD-Induced Insulin Resistance to a Maximal Level

    PubMed Central

    Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J.; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1–25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level. PMID:25055153

  10. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    PubMed

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  11. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  12. Endometrial cysteine-rich secretory protein 3 is inhibited by human chorionic gonadotrophin, and is increased in the decidua of tubal ectopic pregnancy.

    PubMed

    Horne, A W; Duncan, W C; King, A E; Burgess, S; Lourenco, P C; Cornes, P; Ghazal, P; Williams, A R; Udby, L; Critchley, H O D

    2009-05-01

    Ectopic pregnancy (EP) remains a considerable cause of morbidity and occasional mortality. Currently, there is no reliable test to differentiate ectopic from intrauterine gestation. We have previously used array technology to demonstrate that differences in gene expression in decidualized endometrium from women with ectopic and intrauterine gestations could be used to identify candidate diagnostic biomarkers for EP. The aim of this study was to further investigate the decidual gene with the highest fold increase in EP, cysteine-rich secretory protein-3 (CRISP-3). Decidualized endometrium from gestation-matched women undergoing surgical termination of pregnancy (n = 8), evacuation of uterus for miscarriage (n = 6) and surgery for EP (n = 11) was subjected to quantitative RT-PCR, morphological assessment, immunohistochemistry and western blot analysis. Sera were analysed for progesterone and human chorionic gonadotrophin (hCG) levels. Immortalized endometrial epithelial cells were cultured with physiological concentrations of hCG. CRISP-3 mRNA and protein expression were greater in endometrium from ectopic when compared with intrauterine pregnancies (P < 0.05). CRISP-3 protein was localized to epithelium and granulocytes of endometrium. CRISP-3 serum concentrations were not different in women with ectopic compared with intrauterine pregnancies. CRISP-3 expression in endometrium was not related to the degree of decidualization or to serum progesterone levels. Endometrial CRISP-3 expression was inversely proportional to serum hCG concentrations (P < 0.001). Stimulation of endometrial epithelial cells with hCG in vitro caused a reduction in CRISP-3 expression (P < 0.01). The measurement of CRISP-3 in endometrium could provide an additional tool in the diagnosis of failing early pregnancy of unknown location. The absence of a local reduction in expression of CRISP-3 in decidualized endometrium of women with EP may be due to reduced exposure to hCG due to the ectopic location of the trophoblast.

  13. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  14. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    PubMed

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  15. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  16. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  17. Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems.

    PubMed

    Uberti-Manassero, Nora G; Coscueta, Ezequiel R; Gonzalez, Daniel H

    2016-11-01

    Plants that express a fusion of the Arabidopsis thaliana class I TCP transcription factor TCP16 to the EAR repressor domain develop several phenotypic alterations, including rounder leaves, short petioles and pedicels, and delayed elongation of sepals, petals and anthers. In addition, these plants develop lobed cotyledons and ectopic meristems. Ectopic meristems are formed on the adaxial side of cotyledon petioles and arise from a cleft that is formed at this site. Analysis of the expression of reporter genes indicated that meristem genes are reactivated at the site of emergence of ectopic meristems, located near the bifurcation of cotyledon veins. The plants also show increased transcript levels of the boundary-specific CUP-SHAPED COTYLEDON (CUC) genes. The results suggest that TCP16 is able to modulate the induction of meristematic programs and the differentiation state of plant cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco

    PubMed Central

    Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan

    2012-01-01

    A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265

  19. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  20. [Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in human and nude mouse ectopic endometrium and the effect of estrogen and progestin on their expression].

    PubMed

    Lou, Yan-hui; Guo, Xin-hua; Jiang, Hua; Xia, Yu-fang

    2010-04-01

    To explore the roles of matrix metalloproteinase-1(MMP-1) and tissue inhibitor of metalloproteinase-1(TIMP-1) in the pathogenesis of endometriosis and the effects of estrogen and progestin on their expression. Immunohistochemistry and RT-PCR were employed to detect the expression of MMP-1 and TIMP-1 in the ectopic tissues of 35 patients with endometriosis, 22 eutopic endometrium tissues from women with endometriosis and 28 normal controls. Fifty-nine nude mice were injected with human late secretory endometrial chippings and randomized into estrogen group, progestin group, estrogen-progestin group and control group with corresponding treatments. The implantation rates and graft morphology were observed and MMP-1 and TIMP-1 expressions in the grafts detected by immunohistochemistry. Typical endometrial glands and stroma were observed in all the groups with comparable implantation rates. The administration of progestin was associated with multiple peritoneal implantation sites and significantly larger implants. The transplanted endometria showed proliferative or secretory changes with estrogen or progestin administration. MMP-1 expression significantly increased and TIMP-1 expression decreased with increased MMP-1/TIMP-1 ratio in human and nude mouse ectopic endometria in comparison with those in normal endometria (P<0.05, P<0.01). MMP-1 expression was higher in estrogen and estrogen-progestin groups than in the control group, and was lower in the 3 sexual hormone-treated groups than in the control group. MMP-1 mRNA expression in the eutopic endometrium was significantly higher than that in the normal endometria. Progestrin can not inhibit MMP-1 expression or the effect of estrogen on ectopic endometrium known as progestin resistance. The high expression of MMP-1 and low expression of TIMP-1 in endometriotic tissues confer strong invasiveness of ectopic endometrial tissue, especially in eutopic endometrial tissue, and may play an important role in the pathogenesis of endometriosis.

  1. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latonen, Leena; Jaervinen, Paeivi M.; Haartman Institute, University of Helsinki, FIN-00014 Helsinki

    2008-02-15

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1more » correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions.« less

  2. Brief Reports: Nfix Promotes Survival of Immature Hematopoietic Cells via Regulation of c-Mpl.

    PubMed

    Hall, Trent; Walker, Megan; Ganuza, Miguel; Holmfeldt, Per; Bordas, Marie; Kang, Guolian; Bi, Wenjian; Palmer, Lance E; Finkelstein, David; McKinney-Freeman, Shannon

    2018-02-12

    Hematopoietic stem and progenitor cells (HSPCs) are necessary for life-long blood production and replenishment of the hematopoietic system during stress. We recently reported that nuclear factor I/X (Nfix) promotes HSPC survival post-transplant. Here, we report that ectopic expression of Nfix in primary mouse HSPCs extends their ex vivo culture from about 20 to 40 days. HSPCs overexpressing Nfix display hypersensitivity to supportive cytokines and reduced apoptosis when subjected to cytokine deprivation relative to controls. Ectopic Nfix resulted in elevated levels of c-Mpl transcripts and cell surface protein on primary murine HSPCs as well as increased phosphorylation of STAT5, which is known to be activated down-stream of c-MPL. Blocking c-MPL signaling by removal of thrombopoietin or addition of a c-MPL neutralizing antibody negated the antiapoptotic effect of Nfix overexpression on cultured HSPCs. Furthermore, NFIX was capable of binding to and transcriptionally activating a proximal c-Mpl promoter fragment. In sum, these data suggest that NFIX-mediated upregulation of c-Mpl transcription can protect primitive hematopoietic cells from stress ex vivo. Stem Cells 2018. © AlphaMed Press 2018.

  3. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    PubMed Central

    Saini, Kumud; AbdElgawad, Hamada; Markakis, Marios N.; Schoenaers, Sébastjen; Asard, Han; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris

    2017-01-01

    Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology. PMID:28824662

  4. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROSmore » in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.« less

  5. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Eun Joo; Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we establishedmore » TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.« less

  6. The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation.

    PubMed

    Shi, Jun-Wen; Liu, Wei; Zhang, Ting-Ting; Wang, Sheng-Chun; Lin, Xiao-Lin; Li, Jing; Jia, Jun-Shuang; Sheng, Hong-Fen; Yao, Zhi-Fang; Zhao, Wen-Tao; Zhao, Zun-Lan; Xie, Rao-Ying; Yang, Sheng; Gao, Fei; Fan, Quan-Rong; Zhang, Meng-Ya; Yue, Min; Yuan, Jin; Gu, Wei-Wang; Yao, Kai-Tai; Xiao, Dong

    2013-04-01

    In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.

  7. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress.

    PubMed

    Tripathy, Manas Kumar; Tiwari, Budhi Sagar; Reddy, Malireddy K; Deswal, Renu; Sopory, Sudhir K

    2017-01-01

    In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na + ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89-96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33-53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.

  8. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus × H. tuberosus

    PubMed Central

    Chiappetta, A.; Fambrini, M.; Petrarulo, M.; Rapparini, F.; Michelotti, V.; Bruno, L.; Greco, M.; Baraldi, R.; Salvini, M.; Pugliesi, C.; Bitonti, M. B.

    2009-01-01

    Background and Aims The clone EMB-2 of the interspecific hybrid Helianthus annuus × H. tuberosus provides an interesting system to study molecular and physiological aspects of somatic embryogenesis. Namely, in addition to non-epiphyllous (NEP) leaves that expand normally, EMB-2 produces epiphyllous (EP) leaves bearing embryos on the adaxial surface. This clone was used to investigate if the ectopic expression of H. annuus LEAFY COTYLEDON1-LIKE (Ha-L1L) gene and auxin activity are correlated with the establishment of embryogenic competence. Methods Ha-L1L expression was evaluated by semi-quantitative RT-PCR and in situ hybridization. The endogenous level and spatial distribution of free indole-3-acetic acid (IAA) were estimated by a capillary gas chromatography–mass spectrometry–selected ion monitoring method and an immuno-cytochemical approach. Key Results Ectopic expression of Ha-L1L was detected in specific cell domains of the adaxial epidermis of EP leaves prior to the development of ectopic embryos. Ha-L1L was expressed rapidly when NEP leaves were induced to regenerate somatic embryos by in vitro culture. Differences in auxin distribution pattern rather than in absolute level were observed between EP and A-2 leaves. More precisely, a strong IAA immuno-signal was detected in single cells or in small groups of cells along the epidermis of EP leaves and accompanied the early stages of embryo development. Changes in auxin level and distribution were observed in NEP leaves induced to regenerate by in vitro culture. Exogenous auxin treatments lightly influenced Ha-L1L transcript levels in spite of an enhancement of the regeneration frequency. Conclusions In EP leaves, Ha-L1L activity marks the putative founder cells of ectopic embryos. Although the ectopic expression of Ha-L1L seems to be not directly mediated by auxin levels per se, it was demonstrated that localized Ha-L1L expression and IAA accumulation in leaf epidermis domains represent early events of somatic embryogenesis displayed by the epiphyllous EMB-2 clone. PMID:19151043

  9. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway.

    PubMed

    Reis, Pedro A A; Rosado, Gustavo L; Silva, Lucas A C; Oliveira, Luciana C; Oliveira, Lucas B; Costa, Maximiller D L; Alvim, Fátima C; Fontes, Elizabeth P B

    2011-12-01

    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.

  10. The Binding Protein BiP Attenuates Stress-Induced Cell Death in Soybean via Modulation of the N-Rich Protein-Mediated Signaling Pathway1[C][W][OA

    PubMed Central

    Reis, Pedro A.A.; Rosado, Gustavo L.; Silva, Lucas A.C.; Oliveira, Luciana C.; Oliveira, Lucas B.; Costa, Maximiller D.L.; Alvim, Fátima C.; Fontes, Elizabeth P.B.

    2011-01-01

    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response. PMID:22007022

  11. Adalimumab Treatment in Biologically Naïve Crohn's Disease: Relationship with Ectopic MUC5AC Expression and Endoscopic Improvement

    PubMed Central

    Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Katano, Takahito; Nishiwaki, Hirotaka; Ebi, Masahide; Mori, Yoshinori; Kubota, Eiji; Kataoka, Hiromi; Kamiya, Takeshi; Joh, Takashi

    2014-01-01

    Background. Adalimumab (ADA) is effective for patients with Crohn's disease (CD). However, there have been few reports on ADA therapy with respect to its relationship with pathologic findings and drug efficacy in biologically naïve CD cases. Methods. Fifteen patients with active biologically naïve CD were treated with ADA. We examined them clinically and pathologically with ectopic MUC5AC expression in the lesions before and after 12 and 52 weeks of ADA therapy, retrospectively. Results. Both mean CD activity index scores and serum C-reactive protein values were significantly lower after ADA therapy (P < 0.001). In the MUC5AC negative group, all cases exhibited clinical remission (CR) and endoscopic improvement at 52 weeks. In MUC5AC positive groups, loss of MUC5AC expression was detected in cases having CR and endoscopic improvement at 52 weeks, while remnant ectopic MUC5AC expression was observed in those exhibiting no endoscopic improvement and flare up after 52 weeks. Conclusions. ADA leads to CR and endoscopic improvement in biologically naïve CD cases. In addition, ectopic MUC5AC expression may be a predictive marker of flare up and endoscopic improvement in the intestines of CD patients. PMID:24829572

  12. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response.

    PubMed

    Hwang, In Sun; Choi, Du Seok; Kim, Nak Hyun; Kim, Dae Sung; Hwang, Byung Kook

    2014-01-01

    Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates plant defense during microbial infection, based on gene silencing and transient expression in pepper, as well as ectopic expression in Arabidopsis. Induction of CaDC1 by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection was pronounced at both transcriptional and translational levels in pepper leaves. Purified CaDC1 protein bound to both DNA and RNA in vitro, especially in the presence of Zn(2+). CaDC1 was localized to both the nucleus and the cytoplasm, which was required for plant cell death signaling. The nuclear localization of CaDC1 was dependent on the divergent C1 (DC1) domain. CaDC1 silencing in pepper conferred increased susceptibility to Xcv infection, which was accompanied by reduced salicylic acid accumulation and defense-related gene expression. Ectopic expression of CaDC1 in Arabidopsis enhanced resistance to Hyaloperonospora arabidopsidis. CaDC1 binds both RNA and DNA and functions as a positive regulator of plant cell death and SA-dependent defense responses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Myeloid leukemia factor 1 interfered with Bcl-XL to promote apoptosis and its function was regulated by 14-3-3.

    PubMed

    Sun, Yi; Fu, Amina; Xu, Wu; Chao, Jyh-Rong; Moshiach, Simon; Morris, Stephan W

    2015-12-01

    Myeloid leukemia factor 1 (MLF1) was involved in t(3;5) chromosomal rearrangement and aberrantly expressed in myelodysplastic syndromes/acute myeloid leukemia patients. Ex vivo experiments showed that the lymphocytes from the Mlf1-deficient mice were more resistant to apoptotic stimulations than the wild-type cells. Furthermore, the ectopically expressed MLF1 induced apoptosis in the cell models. These findings revealed that MLF1 was required for the cells to respond to the apoptotic stimulations. Ex vivo experiments also demonstrated that cytokine withdrawal significantly up-regulated Mlf1's expression and promoted its association with B cell lymphoma-extra large (Bcl-XL) in the lymphocytes, at the same time reduced the association of Bax with Bcl-XL The same effects were also observed in the cells that over-expressed MLF1. However, these effects were observed in Mlf1 null lymphocytes as well as the cells over-expressing Bcl-XL. In addition, MLF1's proapoptosis could be completely prevented by co-expression of Bcl-XL and significantly attenuated in Bax/Bak double null cells. These data, taken together, strongly suggested that in response to the stresses, up-regulated Mlf1 promoted its association with Bcl-XL and reduced the available Bcl-XL for associating with Bax, which resulted in releasing Bax from the Bcl-XL and apoptosis in turn. Lastly, we showed that MLF1 was negatively regulated by 14-3-3 and revealed that 14-3-3 bound to MLF1 and physically blocked MLF1's Bcl-2 homology domain 3 (BH3) as well as Bcl-XL from associating with MLF1. Our findings suggested that ectopically expressed MLF1 could be responsible for the pathological apoptosis in early myelodysplastic syndrome (MDS) patients.

  14. Gene array analysis reveals a common Runx transcriptional program controlling cell adhesion and survival

    PubMed Central

    Wotton, Sandy; Terry, Anne; Kilbey, Anna; Jenkins, Alma; Herzyk, Pawel; Cameron, Ewan; Neil, James C.

    2008-01-01

    The Runx genes play divergent roles in development and cancer, where they can act either as oncogenes or tumour suppressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias towards genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins, reflecting the marked effects of Runx on cell adhesion. Furthermore, in silico prediction of resistance to glucocorticoid growth inhibition was confirmed in fibroblasts and lymphoid cells expressing ectopic Runx. The effects of fibroblast expression of common RUNX1 fusion oncoproteins (RUNX1-ETO, TEL-RUNX1, CBFB-MYH11) were also tested. While two direct Runx activation target genes were repressed (Ncam1, Rgc32), the fusion proteins appeared to disrupt regulation of down-regulated targets (Cebpd, Id2, Rgs2) rather than impose constitutive repression. These results elucidate the oncogenic potential of the Runx family and reveal novel targets for therapeutic inhibition. PMID:18560354

  15. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation.

    PubMed

    Yilmaz, Atilgan; Engeler, Rachel; Constantinescu, Simona; Kokkaliaris, Konstantinos D; Dimitrakopoulos, Christos; Schroeder, Timm; Beerenwinkel, Niko; Paro, Renato

    2015-11-01

    In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA), bone morphogenetic protein 4 (BMP4) and fibroblast growth factor 1 (FGF1). Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Ectopic Expression of a Horseradish Peroxidase Enhances Growth Rate and Increases Oxidative Stress Resistance in Hybrid Aspen

    PubMed Central

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-01-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii × Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance. PMID:12857800

  17. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen.

    PubMed

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-07-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.

  18. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.« less

  19. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling.

    PubMed

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K; Joshi, Priyanka S; Agarwal, Pradeep K

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H 2 O 2 and [Formula: see text]) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K + /Na + ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes ( CAT and SOD ) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants.

  20. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.

    PubMed

    Rothblum, Lawrence I; Rothblum, Katrina; Chang, Eugenie

    2017-05-15

    When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the absence of ectopic gene expression, the gene products of both endogenous genes were expressed, irrespective of whether they were partially mutant proteins or not. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Alteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis.

    PubMed

    Marcellin, L; Santulli, P; Chouzenoux, S; Cerles, O; Nicco, C; Dousset, B; Pallardy, M; Kerdine-Römer, S; Just, P A; Chapron, C; Batteux, F

    2017-09-01

    The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2) controls endogenous antioxidant enzymes' transcription and protects against oxidative damage which is triggered by inflammation and known to favor progression of endometriosis. Glutamate Cysteine Ligase (GCL), a target gene of NRF2, is the first enzyme in the synthesis cascade of glutathione, an important endogenous antioxidant. Sixty-one patients, with thorough surgical examination of the abdominopelvic cavity, were recruited for the study: 31 with histologically-proven endometriosis and 30 disease-free women taken as controls. Expressions of NRF2 and GCL were investigated by quantitative RT-PCR and immunohistochemistry in eutopic and ectopic endometria from endometriosis-affected women and in endometrium of disease-free women. Ex vivo stromal and epithelial cells were extracted and purified from endometrial and endometriotic biopsies to explore expression of NRF2 and GCL in both stromal and epithelial compartments by western blot. Finally, in order to strengthen the role of NRF2 in endometriosis pathogenesis, we evaluated the drop of NRF2 expression in a mouse model of endometriosis using NRF2 knockout (NRF2 -/- ) mice. The mRNA levels of NRF2 and GCL were significantly lower in ectopic endometria of endometriosis-affected women compared to eutopic endometria of disease-free women. The immunohistochemical analysis confirmed the decreased expression of both NRF2 and GCL in ectopic endometriotic tissues compared to eutopic endometria of endometriosis-affected and disease-free women. Immunoblotting revealed a significant decreased of NRF2 and GCL expression in epithelial and stroma cells from ectopic lesions of endometriosis-affected women compared to eutopic endometria from controls. Using a murine model of endometriosis, NRF2 -/- implants were more fibrotic compared to wild-type with an increased weight and volume. These findings indicate that expression of the transcription factor NRF2 and its effector GCL are both profoundly deregulated in endometriotic lesions towards increased growth and fibrogenetic processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Compartmentalization of the somite and myogenesis in chick embryos are influenced by wnt expression.

    PubMed

    Wagner, J; Schmidt, C; Nikowits, W; Christ, B

    2000-12-01

    Muscles of the body and bones of the axial skeleton derive from specialized regions of somites. Somite development is influenced by adjacent structures. In particular, the dorsal neural tube and the overlying ectoderm have been shown to be necessary for the induction of myogenic precursor cells in the dermomyotome. Members of the Wnt family of signaling molecules, which are expressed in the dorsal neural tube and the ectoderm, are postulated to be responsible for this process. It is shown here that ectopically implanted Wnt-1-, -3a-, and -4-expressing cells alter the process of somite compartmentalization in vivo. An enlarged dorsal compartment results from the implantation of Wnt-expressing cells ventrally between the neural tube/notochord and epithelial somites, at the expense of the ventral compartment, the sclerotome. Thus, ectopic Wnt expression is able to override the influence of ventralizing signals arising from notochord and floor plate. This shift of the border between the two compartments was identified by an increase in the domain of Pax-3 expression and a complete loss of Pax-1 expression in somites close to the ectopic Wnt signal. The expanded expression of MyoD and desmin provides evidence that it is the myotome which increases as a result of Wnt signaling. Paraxis expression is also drastically amplified after implantation of Wnt-expressing cells indicating that Wnts are involved in the formation and maintenance of somite epithelium and suggesting that Paraxis is activated through Wnt signaling pathways. Taken together these results suggest that ectopic Wnts disturb the normal balance of signaling molecules within the somite, resulting in an enhanced recruitment of somitic cells into the myogenic lineage. Copyright 2000 Academic Press.

  3. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    PubMed

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  4. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.).

    PubMed

    Zhang, Hongbo; Li, Ang; Zhang, Zhijin; Huang, Zejun; Lu, Pingli; Zhang, Dingyu; Liu, Xinmin; Zhang, Zhong-Feng; Huang, Rongfeng

    2016-07-20

    The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance. Here, we report our findings regarding the roles of TERF1 in ROS scavenging. In this study, we revealed that the transcription of TERF1 is regulated by upstream EIN3-like (EIN3, ethylene-insensitive 3) regulators LeEIL3 and LeEIL4 in tomato (Solanum lycopersicum), and is also inducible by exogenous applied ROS-generating reagents. Ectopic expression of TERF1 in tobacco promoted the expression of genes involved in oxidative stress responses, including carbonic anhydrase functioning in hypersensitive defense, catalase and glutathione peroxidase catalyzing oxidative reactions, and GDP-D-mannose pyrophosphorylase functioning in ascorbic acid biosynthesis, reduced the ROS content induced by ethylene treatment, and enhanced stress tolerance of tobacco seedlings to hydrogen peroxide (H2O2). Cumulatively, these findings suggest that TERF1 is an ethylene inducible factor regulating ROS scavenging during stress responses.

  5. Transplantation of autoimmune regulator-encoding bone marrow cells delays the onset of experimental autoimmune encephalomyelitis.

    PubMed

    Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank

    2010-12-01

    The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hormonal therapy deregulates prostaglandin-endoperoxidase synthase 2 (PTGS2) expression in endometriotic tissues.

    PubMed

    Santulli, Pietro; Borghese, Bruno; Noël, Jean-Christophe; Fayt, Isabelle; Anaf, Vincent; de Ziegler, Dominique; Batteux, Frederic; Vaiman, Daniel; Chapron, Charles

    2014-03-01

    Endometriosis is a common gynecologic condition characterized by an important inflammatory process mediated by the prostaglandin pathway. Oral contraceptives are the treatment of choice for symptomatic endometriotic women. However the effects of oral contraceptives use and prostaglandin pathway in endometriotic women are actually still unknown. To investigate the expression of prostaglandin pathway key genes in endometriotic tissue, affected or not by hormonal therapy, as compared with healthy endometrial tissue. This was a comparative laboratory study. This study was conducted in a tertiary-care university hospital. Seventy-six women, with (n = 46) and without (n = 30) histologically proven endometriosis. Prostaglandin-endoperoxidase synthase (PTGS)1, PTGS2, prostaglandin E receptor (PTGER)1, PTGER2, PTGER3, and PTGER4 mRNA levels in endometrium of disease-free women and in eutopic and ectopic endometrium of endometriosis-affected women. PTGS2 expression was further investigated by immunohistochemistry, using specific monoclonal antibodies. PTGS2 expression was analyzed at mRNA and protein levels and correlated with taking hormonal treatment. PTGS2 expression was significantly increased in eutopic and ectopic endometrium as compared with healthy tissue (induction of 9.6- and 6.3-fold, respectively; P = .001). PTGS2 immunoreactivity increased gradually from normal endometrium to eutopic and ectopic endometrium (h-score of 96.7 ± 55.0, 128.3 ± 66.1, and 226.7 ± 62.6, respectively, P < .001). PTGER2, PTGER3, and PTGER4 expression increased significantly and gradually from normal to eutopic and ectopic endometrium, whereas PTGER1 remained unchanged. Patients under hormonal treatment had a higher PTGS2 expression at transcriptional and protein levels as compared with those without treatment (P = .002 and P = .025, respectively). Prostaglandin pathway is strongly deregulated in eutopic and ectopic endometrium of women suffering from endometriosis for the benefit of an increased PTGS2 expression. We show for the first time that hormonal treatment appears to enhance even more PTGS2 expression. These results contribute to explain why medical treatment could fail to control endometriosis progression.

  7. Intranasal tooth: ectopic eruption 1 year after maxillofacial trauma

    PubMed Central

    Agrawal, Mamta; Khan, Tayyeb Sultan; Gupta, Tulika; Khanna, Shally

    2014-01-01

    Injury to the permanent central incisors due to trauma in the maxillofacial region, though common, may result in an uncommon sequel. We report a case of traumatic injury in a 5-year-old child with displacement of the tooth bud into the nasal floor. The identification of ectopic tooth buds poses little diagnostic challenge due to the available imaging facilities, however, in the present case the ectopic bud remained unnoticed and resulted in ectopic eruption of the tooth in the nasal cavity 1 year later. This report highlights a rare case of nasal eruption of a permanent tooth and places stress on the need for close attention to detail during maxillofacial trauma for early detection and proper management. PMID:25103317

  8. Intranasal tooth: ectopic eruption 1 year after maxillofacial trauma.

    PubMed

    Agrawal, Mamta; Khan, Tayyeb Sultan; Gupta, Tulika; Khanna, Shally

    2014-08-06

    Injury to the permanent central incisors due to trauma in the maxillofacial region, though common, may result in an uncommon sequel. We report a case of traumatic injury in a 5-year-old child with displacement of the tooth bud into the nasal floor. The identification of ectopic tooth buds poses little diagnostic challenge due to the available imaging facilities, however, in the present case the ectopic bud remained unnoticed and resulted in ectopic eruption of the tooth in the nasal cavity 1 year later. This report highlights a rare case of nasal eruption of a permanent tooth and places stress on the need for close attention to detail during maxillofacial trauma for early detection and proper management. 2014 BMJ Publishing Group Ltd.

  9. Ectopic expression of hoxb2 after retinoic acid treatment or mRNA injection: disruption of hindbrain and craniofacial morphogenesis in zebrafish embryos.

    PubMed

    Yan, Y L; Jowett, T; Postlethwait, J H

    1998-12-01

    To investigate pattern formation in the vertebrate hindbrain, we isolated a full length hoxb2 cDNA clone from zebrafish. In a gene phylogeny, zebrafish hoxb2 clusters with human HOXB2, and it maps on linkage group 3 along with several other loci whose orthologues are syntenic with human HOXB2. In the hindbrain, hoxb2 is expressed at high levels in rhombomere 3 (r3), lower levels in r4, still lower in r5, and at undetectable levels in r6. In r7, r8, and the rostral spinal cord, hoxb2 is expressed at a lower level than in r5. Lateral cells appearing to emanate from r4 express both hoxb2 and dlx2, suggesting that they are neural crest. Overexpression of hoxb2 by mRNA injections into early cleavage stage embryos resulted in abnormal morphogenesis of the midbrain and rostral hindbrain, abnormal patterning in r4, fusion of cartilage elements arising from pharyngeal arches 1 and 2, and ectopic expression of krx20 and valentino (but not pax2, rtk1, or hoxb1) in the rostral hindbrain, midbrain, and, surprisingly, the eye. Treatments with retinoic acid produced a phenotype similar to that of ectopic hoxb2 expression, including ectopic krx20 (but not valentino) expression in the eye, and fusion of cartilages from pharyngeal arches 1 and 2. The results suggest that hoxb2 plays an important role in the patterning of hindbrain and pharyngeal arches in the zebrafish.

  10. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosan; Li, Kongqing; Jin, Cong; Zhang, Shaoling

    2015-12-01

    ICE1 transcription factor plays an important role in plant cold stress via regulating the expression of stress-responsive genes. In this study, a PuICE1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. The expression levels of the PuICE1 were induced by cold, dehydration and salt, with the greatest induction under cold conditions. PuICE1 was localized in the nucleus and could bind specifically to the MYC element in the PuDREBa promoter. The PuICE1 fused to the GAL4 DNA-binding domain to have transcriptional activation activity. Ectopic expression of the PuICE1 in tomato conferred enhanced tolerance to cold stress at cold temperatures, less electrolyte leakage, less MDA content, higher chlorophyll content, higher survival rate, higher proline content, higher activities of enzymes. In additon, steady-state mRNA levels of six stress-responsive genes coding for either functional or regulatory genes were induced to higher levels in the transgenic lines by cold stress. Yeast two-hybrid, transient assay, split luciferase complementation and BiFC assays all revealed that PuHHP1 protein can physically interact with PuICE1. Taken together, these results demonstrated that PuICE1 plays a positive role in cold tolerance, which may be due to enhancement of PuDREBa transcriptional levels through interacting with the PuHHP1.

  11. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica).

    PubMed

    Liu, Kaige; Qi, Shuanghui; Li, Dong; Jin, Changyu; Gao, Chenhao; Duan, Shaowei; Feng, Baili; Chen, Mingxun

    2017-01-01

    TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-01-29

    Cytochrome P450s play an important role in plant growth and are involved in multiple stresses response. However, little is known about the functions of cytochrome P450s in apple. Here, a Malus × domestica cytochrome P450 monooxygenase 1 gene, MdCYPM1, was identified and subsequently cloned from apple 'Gala' (Malus × domestica). To verify the functions of MdCYPM1, we generated transgenic Arabidopsis plants expressing the apple MdCYPM1 gene under the control of the Cauliflower mosaic virus 35S promoter. Four transgenic lines (#3, #5, #7 and #8) were selected for further study. The transgenic plants exhibited a series of skotomorphogenesis phenotypes relative to wild-type controls, such as reduction of the chlorophyll, anthocyanins content and hypocotyls elongation. In addition, overexpression of MdCYPM1 influenced auxin transport and flowering time in transgenic Arabidopsis. Furthermore, MdCYPM1 expression was induced by salt and mannitol treatments, and the transgenic plants were negatively regulated by salinity and osmotic stresses during germination. These results suggest that MdCYPM1 plays a vital role in plant growth and development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2016-01-01

    MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2 -overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  14. The role of Sox6 in zebrafish muscle fiber type specification.

    PubMed

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog.

  15. Increased expression of resistin in ectopic endometrial tissue of women with endometriosis.

    PubMed

    Oh, Yoon Kyung; Ha, Young Ran; Yi, Kyong Wook; Park, Hyun Tae; Shin, Jung-Ho; Kim, Tak; Hur, Jun-Young

    2017-11-01

    Inflammation is a key process in the establishment and progression of endometriosis. Resistin, an adipocytokine, has biological properties linked to immunologic functions, but its role in endometriosis is unclear. Resistin gene expression was examined in eutopic and ectopic endometrial tissues from women with (n=25) or without (n=25) endometriosis. Resistin mRNA and protein levels were determined in endometrial tissue using quantitative real-time reverse transcription PCR and Western blotting, following adipokine profiling arrays. Resistin protein was detected in human endometrial tissues using an adipokine array test. Resistin mRNA and protein levels were significantly higher in ectopic endometrial tissue of patients with endometriosis than in normal eutopic endometrial tissue. Our results indicate that resistin is differentially expressed in endometrial tissues from women with endometriosis and imply a role for resistin in endometriosis-associated pelvic inflammation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Expression and regulation of estrogen-converting enzymes in ectopic human endometrial tissue.

    PubMed

    Fechner, Sabine; Husen, Bettina; Thole, Hubert; Schmidt, Markus; Gashaw, Isabella; Kimmig, Rainer; Winterhager, Elke; Grümmer, Ruth

    2007-10-01

    To investigate the regulation of estrogen-converting enzymes in human ectopic endometrial tissue. Animal study. Academic medical center. Sixty female nude mice with implanted human endometrial tissue. Twenty-two premenopausal women undergoing endometrial biopsy or hysterectomy. Human endometrial tissue was implanted into the peritoneal cavity of nude mice, and the effect of therapeutic drugs on transcription of steroid receptors and estrogen-converting enzymes was analyzed. Transcript levels of steroid hormone receptors, 17beta-hydroxysteroid dehydrogenase type 1 and 2, aromatase, and steroid sulfatase as well as proliferation rate were analyzed in the human ectopic endometrial tissue. Steroid receptors and estrogen-converting enzymes were expressed in the ectopic human endometrial fragments. Application of medroxyprogesterone acetate, dydrogesterone, danazol, and the aromatase inhibitor finrozole significantly inhibited aromatase transcription. In addition, danazol caused a significant decrease in transcription of steroid sulfatase, and finrozole, of 17beta-hydroxysteroid dehydrogenase type 1 in parallel to a decrease in proliferation rate in the ectopic human endometrial tissue. Pharmacological regulation of transcription of estrogen-converting enzymes in human endometrium cultured in nude mice may help to develop new therapeutic concepts based on local regulation of estrogen metabolism in endometriosis.

  17. High Expression of High-Mobility Group Box 1 in Menstrual Blood: Implications for Endometriosis.

    PubMed

    Shimizu, Keiko; Kamada, Yasuhiko; Sakamoto, Ai; Matsuda, Miwa; Nakatsuka, Mikiya; Hiramatsu, Yuji

    2017-11-01

    Endometriosis is a benign gynecologic disease characterized by the presence of ectopic endometrium and associated with inflammation and immune abnormalities. However, the molecular basis for endometriosis is not well understood. To address this issue, the present study examined the expression of high-mobility group box (HMGB) 1 in menstrual blood to investigate its role in the ectopic growth of human endometriotic stromal cells (ESCs). A total of 139 patients were enrolled in this study; 84 had endometriosis and 55 were nonendometriotic gynecological patients (control). The HMGB1 levels in various fluids were measured by enzyme-linked immunosorbent assay. Expression of receptor for advanced glycation end products (RAGE) in eutopic and ectopic endometrium was assessed by immunohistochemistry, and RAGE and vascular endothelial growth factor ( VEGF) messenger RNA expression in HMGB1- and lipopolysaccharide (LPS)-treated ESCs was evaluated by real-time polymerase chain reaction. The HMGB1 concentration was higher in menstrual blood than in serum or peritoneal fluid ( P < .001 for both). RAGE was expressed in both normal and ectopic endometrium. Administration of 1000 ng/mL HMGB1 or coadministration of 100 ng/mL HMGB1 and 100 ng/mL LPS induced VEGF production in ESCs relative to the control ( P < .05). These results suggest that menstrual fluid has naturally high levels of HMGB1 and may promote endometriosis following retrograde menstruation when complexed with other factors such as LPS by inducing inflammation and angiogenesis.

  18. Obesity and exercise-induced ectopic ventricular arrhythmias in apparently healthy middle aged adults.

    PubMed

    Sabbag, Avi; Sidi, Yechezkel; Kivity, Shaye; Beinart, Roy; Glikson, Michael; Segev, Shlomo; Goldenberg, Ilan; Maor, Elad

    2016-03-01

    Obesity and overweight are strongly associated with cardiovascular morbidity and mortality. However, there are limited data on the association between excess weight and the risk of ectopic ventricular activity. We investigated the association between body mass index (BMI) and the risk for ectopic ventricular activity (defined as multiple ventricular premature beats (≥3), ventricular bigeminy, nonsustained ventricular tachycardia or sustained ventricular tachycardia) during exercise stress testing among 22,516 apparently healthy men and women who attended periodic health screening examinations between the years 2000 and 2014. All subjects had completed maximal exercise stress testing annually according to the Bruce protocol. Subjects were divided at baseline into three groups: normal weight (BMI ≥ 18.5 kg/m(2) and<25; N = 9,994), overweight (BMI ≥ 25 and < 30; N = 9,613) and obese (BMI ≥ 30; N = 2,906). The mean age of study subjects was 47 ± 10 years and 72% were men. Kaplan-Meier survival analysis showed that the cumulative probability for the development of exercise-induced ectopic ventricular activity arrhythmias was highest among obese subjects, intermediate among overweight subjects and lowest among subjects with normal weight (3.4%, 2.7% and 2.2% respectively; p < 0.001). Multivariate binary logistic regression with repeated measures of 92,619 ESTs, showed that obese subjects were 33% more likely to have ectopic ventricular arrhythmias during exercise compared with subjects with normal weight (p = 0.005), and that each 1 kg/m(2) increase in BMI was associated with a significant 4% (p = 0.002) increased adjusted risk for exercise-induced ventricular arrhythmias. Obesity is independently associated with increased likelihood of ectopic ventricular arrhythmia during exercise. © The European Society of Cardiology 2015.

  19. CIKS, a connection to Ikappa B kinase and stress-activated protein kinase.

    PubMed

    Leonardi, A; Chariot, A; Claudio, E; Cunningham, K; Siebenlist, U

    2000-09-12

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.

  20. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.

    PubMed

    Lopez-Gonzalez, Rodrigo; Lu, Yubing; Gendron, Tania F; Karydas, Anna; Tran, Helene; Yang, Dejun; Petrucelli, Leonard; Miller, Bruce L; Almeida, Sandra; Gao, Fen-Biao

    2016-10-19

    GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR) 80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR) 80 or (GR) 80 -induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR) 80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. © 2015 Institute of Botany, Chinese Academy of Sciences.

  2. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants.

    PubMed

    Zang, Xinshan; Geng, Xiaoli; Liu, Kelu; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Hu, Zhaorong; Yao, Yingyin; Ni, Zhongfu; Xin, Mingming; Sun, Qixin; Peng, Huiru

    2017-05-01

    Abiotic stresses, such as heat and drought, are major environmental factors restricting crop productivity and quality worldwide. A plastid outer envelope protein gene, TaOEP16-2, was identified from our previous transcriptome analysis [1,2]. In this study, the isolation and functional characterization of the TaOEP16-2 gene was reported. Three homoeologous sequences of TaOEP16-2 were isolated from hexaploid wheat, which were localized on the chromosomes 5A, 5B and 5D, respectively. These three homoeologues exhibited different expression patterns under heat stress conditions, TaOEP16-2-5B was the dominant one, and TaOEP16-2-5B was selected for further analysis. Compared with wild type (WT) plants, transgenic Arabidopsis plants overexpressing the TaOEP16-2-5B gene exhibited enhanced tolerance to heat stress, which was supported by improved survival rate, strengthened cell membrane stability and increased sucrose content. It was also found that TaOEP16-2 was induced by drought stress and involved in drought stress tolerance. TaOEP16-2-5B has the same function in ABA-controlled seed germination as AtOEP16-2. Our results suggest that TaOEP16-2-5B plays an important role in heat and drought stress tolerance, and could be utilized in transgenic breeding of wheat and other crop plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    PubMed

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology. Copyright © 2017 American Society for Microbiology.

  4. Induction of Pancreatic Differentiation by Signals from Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lammert, Eckhard; Cleaver, Ondine; Melton, Douglas

    2001-10-01

    Blood vessels supply developing organs with metabolic sustenance. Here, we demonstrate a role for blood vessels as a source of developmental signals during pancreatic organogenesis. In vitro experiments with embryonic mouse tissues demonstrate that blood vessel endothelium induces insulin expression in isolated endoderm. Removal of the dorsal aorta in Xenopus laevis embryos results in the failure of insulin expression in vivo. Furthermore, using transgenic mice, we show that ectopic vascularization in the posterior foregut leads to ectopic insulin expression and islet hyperplasia. These results indicate that vessels not only provide metabolic sustenance, but also provide inductive signals for organ development.

  5. Ataxin-1 Poly(Q)-induced Proteotoxic Stress and Apoptosis Are Attenuated in Neural Cells by Docosahexaenoic Acid-derived Neuroprotectin D1*

    PubMed Central

    Calandria, Jorgelina M.; Mukherjee, Pranab K.; de Rivero Vaccari, Juan Carlos; Zhu, Min; Petasis, Nicos A.; Bazan, Nicolas G.

    2012-01-01

    Neurodegenerative diseases share two common features: enhanced oxidative stress and cellular inability to scavenge structurally damaged abnormal proteins. Pathogenesis of polyglutamine (poly(Q)) diseases involves increased protein misfolding, along with ubiquitin and chaperon protein-containing nuclear aggregates. In spinocerebellar ataxia, the brain and retina undergo degeneration. Neuroprotectin D1 (NPD1) is made on-demand in the nervous system and retinal pigment epithelial (RPE) cells in response to oxidative stress, which activates prosurvival signaling via regulation of gene expression and other processes. We hypothesized that protein misfolding-induced proteotoxic stress triggers NPD1 synthesis. We used ARPE-19 cells as a cellular model to assess stress due to ataxin-1 82Q protein expression and determine whether NPD1 prevents apoptosis. Ectopic ataxin-1 expression induced RPE cell apoptosis, which was abrogated by 100 nm docosahexaenoic acid, 10 ng/ml pigment epithelium-derived factor, or NPD1. Similarly, NPD1 was protective in neurons and primary human RPE cells. Furthermore, when ataxin-1 82Q was expressed in 15-lipoxygenase-1-deficient cells, apoptosis was greatly enhanced, and only NPD1 (50 nm) rescued cells from death. NPD1 reduced misfolded ataxin-1-induced accumulation of proapoptotic Bax in the cytoplasm, suggesting that NPD1 acts by preventing proapoptotic signaling pathways from occurring. Finally, NPD1 signaling interfered with ataxin-1/capicua repression of gene expression and decreased phosphorylated ataxin-1 in an Akt-independent manner, suggesting that NPD1 signaling modulates formation or stabilization of ataxin-1 complexes. These data suggest that 1) NPD1 synthesis is an early response induced by proteotoxic stress due to abnormally folded ataxin-1, and 2) NPD1 promotes cell survival through modulating stabilization of ataxin-1 functional complexes and pro-/antiapoptotic and inflammatory pathways. PMID:22511762

  6. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis.

    PubMed

    Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich

    2015-07-22

    Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in endometriosis and may contribute to the formation of endometriotic lesions by inducing epithelial to mesenchymal transition, as CDH1 was reduced in ectopic lesions. We found exclusive expression of either TWIST1 or MYC in the same samples, indicating that EMT and proliferation contribute independently of each other to the formation of endometriotic lesions.

  7. Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis.

    PubMed

    Zhang, Le; Zhao, Yanfang; Ning, Yue; Wang, Hongbao; Zan, Linsen

    2017-01-08

    Fatty acid binding protein 4 (FABP4) plays a key role in Fatty acid catabolism in mammals. Findings from our previous studies have indicated that FABP4 neither affect the differentiation of bovine preadipocytes nor does it change the expression of upstream genes. To investigate whether ectopically expressed FABP4 can induces Muscle-Derived Stem Cells (MDSCs) lipid synthesis and understand the regulatory mechanism behind it. In this study, adenoviruses infection is achieved to ectopically expressed FABP4 in bovine MDSCs, RNA-seq analyses at the very early stages of induction were performed to reveal gene expression level changes during MDSCs transdifferentiation. Results showed FABP4 can induce bovine Muscle-Derived Stem Cells transdifferentiation into adipocyte-like cells, 23 genes' expression levels changed after 24 h inducing although there is no significant change in cell phenotypes. Along with induction time, more differently expressed genes (256 genes changes after 48 h induction) were screened out. These genes should be at the downstream of signal pathways and be regulated by the 23 genes identified before. Our findings may provide a unique new model for studying the molecular control of cattle cross-talk between adipose and skeletal muscle. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress.

    PubMed

    Pan, Yanlin; Li, Jianrui; Jiao, Licong; Li, Cong; Zhu, Dengyun; Yu, Jingjuan

    2016-01-01

    Lipid transfer proteins (LTPs) are a class of cysteine-rich soluble proteins having small molecular weights. LTPs participate in flower and seed development, cuticular wax deposition, also play important roles in pathogen and abiotic stress responses. A non-specific LTP gene ( SiLTP ) was isolated from a foxtail millet ( Setaria italica ) suppression subtractive hybridization library enriched for differentially expressed genes after abiotic stress treatments. A semi-quantitative reverse transcriptase PCR analysis showed that SiLTP was expressed in all foxtail millet tissues. Additionally, the SiLTP promoter drove GUS expression in root tips, stems, leaves, flowers, and siliques of transgenic Arabidopsis . Quantitative real-time PCR indicated that the SiLTP expression was induced by NaCl, polyethylene glycol, and abscisic acid (ABA). SiLTP was localized in the cytoplasm of tobacco leaf epidermal cells and maize protoplasts. The ectopic expression of SiLTP in tobacco resulted in higher levels of salt and drought tolerance than in the wild type (WT). To further assess the function of SiLTP, SiLTP overexpression (OE) and RNA interference (RNAi)-based transgenic foxtail millet were obtained. SiLTP -OE lines performed better under salt and drought stresses compared with WT plants. In contrast, the RNAi lines were much more sensitive to salt and drought compared than WT. Electrophoretic mobility shift assays and yeast one-hybrids indicated that the transcription factor ABA-responsive DRE-binding protein (SiARDP) could bind to the dehydration-responsive element of SiLTP promoter in vitro and in vivo , respectively. Moreover, the SiLTP expression levels were higher in SiARDP -OE plants compared than the WT. These results confirmed that SiLTP plays important roles in improving salt and drought stress tolerance of foxtail millet, and may partly be upregulated by SiARDP. SiLTP may provide an effective genetic resource for molecular breeding in crops to enhance salt and drought tolerance levels.

  9. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model.

    PubMed

    Mazzuco, Tania L; Chabre, Olivier; Sturm, Nathalie; Feige, Jean-Jacques; Thomas, Michaël

    2006-02-01

    Aberrant expression of ectopic G protein-coupled receptors (GPCRs) in adrenal cortex tissue has been observed in several cases of ACTH-independent macronodular adrenal hyperplasias and adenomas associated with Cushing's syndrome. Although there is clear clinical evidence for the implication of these ectopic receptors in abnormal regulation of cortisol production, whether this aberrant GPCR expression is the cause or the consequence of the development of an adrenal hyperplasia is still an open question. To answer it, we genetically engineered primary bovine adrenocortical cells to have them express the gastric inhibitory polypeptide receptor. After transplantation of these modified cells under the renal capsule of adrenalectomized immunodeficient mice, tissues formed had their functional and histological characteristics analyzed. We observed the formation of an enlarged and hyperproliferative adenomatous adrenocortical tissue that secreted cortisol in a gastric inhibitory polypeptide-dependent manner and induced a mild Cushing's syndrome with hyperglycemia. Moreover, we show that tumor development was ACTH independent. Thus, a single genetic event, inappropriate expression of a nonmutated GPCR gene, is sufficient to initiate the complete phenotypic alterations that ultimately lead to the formation of a benign adrenocortical tumor.

  10. Lrp5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin.

    PubMed

    Huang, Ying; Zhang, Qiong; Song, Ning-Ning; Zhang, Lei; Sun, Yu-Ling; Hu, Ling; Chen, Jia-Ying; Zhu, Weidong; Li, Jue; Ding, Yu-Qiang

    2016-01-15

    The cerebellum is responsible for coordinating motor functions and has a unique laminated architecture. Purkinje cells are inhibitory neurons and represent the only output from the cerebellar cortex. Tyrosine hydroxylase (TH) is the key enzyme for the synthesis of catecholamines, including dopamine and noradrenaline, and it is normally not expressed in cerebellar neurons. We report here that the low-density lipoprotein receptors (Lrp) 5 and 6, Wnt co-receptors, are required for the development of the cerebellum and for suppressing ectopic TH expression in Purkinje cells. Simultaneous inactivation of Lrp 5 and 6 by Nestin-Cre results in defective lamination and foliation of the cerebellum during postnatal development. Surprisingly, TH is ectopically expressed by Purkinje cells, although they still keep its other neurochemical characteristics. These phenotypes are also observed in the cerebellum of GFAP-Cre;β-catenin(flox/flox) mice, and AAV2-Cre-mediated gene deletion leads to ectopic TH expression in Purkinje cells of β-catenin(flox/flox) mice as well. Our results revealed a new role of the canonical Lrp5/6-β-catenin pathway in regulating the morphogenesis of the cerebellum during postnatal development.

  11. Restrictions in Cell Cycle Progression of Adult Vestibular Supporting Cells in Response to Ectopic Cyclin D1 Expression

    PubMed Central

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H.; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27Kip1 and p21Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells. PMID:22073316

  12. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    PubMed

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  13. Distal-less induces elemental color patterns in Junonia butterfly wings.

    PubMed

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M

    2016-01-01

    The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.

  14. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila

    NASA Technical Reports Server (NTRS)

    Nolo, R.; Abbott, L. A.; Bellen, H. J.

    2000-01-01

    The senseless (sens) gene is required for proper development of most cell types of the embryonic and adult peripheral nervous system (PNS) of Drosophila. Sens is a nuclear protein with four Zn fingers that is expressed and required in the sensory organ precursors (SOP) for proper proneural gene expression. Ectopic expression of Sens in many ectodermal cells causes induction of PNS external sensory organ formation and is able to recreate an ectopic proneural field. Hence, sens is both necessary and sufficient for PNS development. Our data indicate that proneural genes activate sens expression. Sens is then in turn required to further activate and maintain proneural gene expression. This feedback mechanism is essential for selective enhancement and maintenance of proneural gene expression in the SOPs.

  15. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma

    PubMed Central

    Stringer, Brett W.; Bunt, Jens; Day, Bryan W.; Barry, Guy; Jamieson, Paul R.; Ensbey, Kathleen S.; Bruce, Zara C.; Goasdoué, Kate; Vidal, Hélène; Charmsaz, Sara; Smith, Fiona M.; Cooper, Leanne T.; Piper, Michael

    2016-01-01

    Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects. PMID:27083054

  16. Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling

    PubMed Central

    Bechtold, Till E.; Saunders, Cheri; Decker, Rebekah S.; Um, Hyo-Bin; Cottingham, Naiga; Salhab, Imad; Kurio, Naito; Billings, Paul C.; Pacifici, Maurizio; Nah, Hyun-Duck; Koyama, Eiki

    2016-01-01

    The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa’s articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis. PMID:26945615

  17. Ectopic expression of homeobox gene NKX2-1 in diffuse large B-cell lymphoma is mediated by aberrant chromatin modifications.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies.

  18. The bHLH Repressor Deadpan Regulates the Self-renewal and Specification of Drosophila Larval Neural Stem Cells Independently of Notch

    PubMed Central

    Younger, Susan; Huang, Yaling; Lee, Tzumin

    2012-01-01

    Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification. PMID:23056424

  19. Interleukin-4 induces expression of eotaxin in endometriotic stromal cells.

    PubMed

    Ouyang, Zhuo; Osuga, Yutaka; Hirota, Yasushi; Hirata, Tetsuya; Yoshino, Osamu; Koga, Kaori; Yano, Tetsu; Taketani, Yuji

    2010-06-01

    To study the relationship between eotaxin and interleukin-4 (IL-4) in the pathophysiology of endometriosis. Comparative and laboratory study. University teaching hospital reproductive endocrinology and infertility practice. Ectopic endometrial tissues were collected from women with endometriosis. Ectopic endometrial stromal cells (ESCs) were isolated and cultured with IL-4. Ectopic endometriotic tissues were immunostained for eotaxin and IL-4. Gene expression of eotaxin was determined by standard and real-time reverse-transcriptase polymerase chain reaction. Secretion of eotaxin from ESC was measured using specific ELISA. The immunostained sections were examined. Interleukin-4 (IL-4) increased mRNA expression and protein secretion of eotaxin from ESC in a dose-dependent manner. Immunohistochemical analysis showed that eotaxin-positive cells colocalized with IL-4-positive cells and accumulated around the blood vessels in the stroma of endometriotic tissue. IL-4 induces eotaxin in ESCs, which might promote angiogenesis and the subsequent development of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone.

    PubMed

    Martínez, R; Estrada, M P; Berlanga, J; Guillén, I; Hernández, O; Cabrera, E; Pimentel, R; Morales, R; Herrera, F; Morales, A; Piña, J C; Abad, Z; Sánchez, V; Melamed, P; Lleonart, R; de la Fuente, J

    1996-03-01

    The generation of transgenic fish with the transfer of growth hormone (GH) genes has opened new possibilities for the manipulation of growth in economically important fish species. The tilapia growth hormone (tiGH) cDNA was linked to the human cytomegalovirus (CMV) enhancer-promoter and used to generate transgenic tilapia by microinjection into one-cell embryos. Five transgenic tilapia were obtained from 40 injected embryos. A transgenic animal containing one copy of the transgene per cell was selected to establish a transgenic line. The transgene was stably transmitted to F1 and F2 generations in a Mendelian fashion. Ectopic, low-level expression of tiGH was detected in gonad and muscle cells of F1 transgenic tilapia by immunohystochemical analysis of tissue sections. Nine-month-old transgenic F1 progeny were 82% larger than nontransgenic fish at p = .001. These results showed that low-level ectopic expression of tiGH resulted in a growth acceleration in transgenic tilapia. Tilapia GH gene transfer is an alternative for growth acceleration in tilapia.

  1. The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.

    PubMed

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  2. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity.

    PubMed

    Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A

    2017-11-01

    The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.

  3. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.

    PubMed

    Wang, Xiuyun; Huang, Wanlu; Liu, Jun; Yang, Zhimin; Huang, Bingru

    2017-02-01

    Heat stress transcription factors (HSFs) compose a large gene family, and different members play differential roles in regulating plant responses to abiotic stress. The objectives of this study were to identify and characterize an A2-type HSF, FaHsfA2c, in a cool-season perennial grass tall fescue (Festuca arundinacea Schreb.) for its association with heat tolerance and to determine the underlying physiological functions and regulatory mechanisms of FaHsfA2c imparting plant tolerance to heat stress. FaHsfA2c was localized in nucleus and exhibited a rapid transcriptional increase in leaves and roots during early phase of heat stress. Ectopic expression of FaHsfA2c improved basal and acquired thermotolerance in wild-type Arabidopsis and also restored heat-sensitive deficiency of hsfa2 mutant. Overexpression of FaHsfA2c in tall fescue enhanced plant tolerance to heat by triggering transcriptional regulation of heat-protective gene expression, improving photosynthetic capacity and maintaining plant growth under heat stress. Our results indicated that FaHsfA2c acted as a positive regulator conferring thermotolerance improvement in Arabidopsis and tall fescue, and it could be potentially used as a candidate gene for genetic modification and molecular breeding to develop heat-tolerant cool-season grass species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. The cleft lip and palate defects in Dancer mutant mice result from gain of function of the Tbx10 gene

    PubMed Central

    Bush, Jeffrey O.; Lan, Yu; Jiang, Rulang

    2004-01-01

    Cleft lip and palate (CL/P) is a common disfiguring birth defect with complex, poorly understood etiology. Mice carrying a spontaneous mutation, Dancer (Dc), exhibit CL/P in homozygotes and show significantly increased susceptibility to CL/P in heterozygotes [Deol, M. S. & Lane, P. W. (1966) J. Embryol. Exp. Morphol. 16, 543–558 and Trasler, D. G., Kemp, D. & Trasler, T. A. (1984) Teratology 29, 101–104], providing an animal model for understanding the molecular pathogenesis of CL/P. We genetically mapped Dc to within a 1-cM region near the centromere of chromosome 19. In situ hybridization analysis showed that one positional candidate gene, Tbx10, is ectopically expressed in Dc mutant embryos. Positional cloning of the Dc locus revealed an insertion of a 3.3-kb sequence containing the 5′ region of the p23 gene into the first intron of Tbx10, which causes ectopic expression of a p23-Tbx10 chimeric transcript encoding a protein product identical to a normal variant of the Tbx10 protein. Furthermore, we show that ectopic expression of Tbx10 in transgenic mice recapitulates the Dc mutant phenotype, indicating that CL/Pin Dc mutant mice results from the p23 insertion-induced ectopic Tbx10 expression. These results identify gain of function of a T-box transcription factor gene as a mechanism underlying CL/P pathogenesis. PMID:15118109

  5. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2.

    PubMed

    Xie, Suqing; Wu, Huiyun; Wang, Qi; Kunicki, Jan; Thomas, Raymond O; Hollingsworth, Robert E; Cogswell, John; Dai, Wei

    2002-01-01

    Polo-like kinase 3 (Plk3, alternatively termed Prk) is involved in the regulation of DNA damage checkpoint as well as in M-phase function. Plk3 physically interacts with p53 and phosphorylates this tumor suppressor protein on serine-20, suggesting that the role of Plk3 in cell cycle progression is mediated, at least in part, through direct regulation of p53. Here we show that Plk3 is rapidly activated by reactive oxygen species in normal diploid fibroblast cells (WI-38), correlating with a subsequent increase in p53 protein level. Plk3 physically interacts with Chk2 and the interaction is enhanced upon DNA damage. In addition, Chk2 immunoprecipitated from cell lysates of Daudi (which expressed little Plk3) is capable of stimulating the kinase activity of purified recombinant Plk3 in vitro, and this stimulation is more pronounced when Plk3 is supplemented with Chk2 immunoprecipitated from Daudi after DNA damage. Furthermore, ectopic expression Chk2 activates cellular Plk3. Together, our studies suggest Chk2 may mediate direct activation of Plk3 in response to genotoxic stresses.

  6. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways.

    PubMed

    Wathugala, Deepthi L; Hemsley, Piers A; Moffat, Caroline S; Cremelie, Pieter; Knight, Marc R; Knight, Heather

    2012-07-01

    • Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    PubMed

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.

  8. Experimental reconstitution of chronic ER stress in the liver reveals feedback suppression of BiP mRNA expression

    PubMed Central

    Gomez, Javier A; Rutkowski, D Thomas

    2016-01-01

    Endoplasmic reticulum (ER) stress is implicated in many chronic diseases, but very little is known about how the unfolded protein response (UPR) responds to persistent ER stress in vivo. Here, we experimentally reconstituted chronic ER stress in the mouse liver, using repeated injection of a low dose of the ER stressor tunicamycin. Paradoxically, this treatment led to feedback-mediated suppression of a select group of mRNAs, including those encoding the ER chaperones BiP and GRP94. This suppression was due to both silencing of the ATF6α pathway of UPR-dependent transcription and enhancement of mRNA degradation, possibly via regulated IRE1-dependent decay (RIDD). The suppression of mRNA encoding BiP was phenocopied by ectopic overexpression of BiP protein, and was also observed in obese mice. Our findings suggest that persistent cycles of UPR activation and deactivation create an altered, quasi-stable setpoint for UPR-dependent transcriptional regulation—an outcome that could be relevant to conditions such as metabolic syndrome. DOI: http://dx.doi.org/10.7554/eLife.20390.001 PMID:27938665

  9. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats.

    PubMed

    Aloui, Faten; Charradi, Kamel; Hichami, Aziz; Subramaniam, Selvakumar; Khan, Naim Akhtar; Limam, Ferid; Aouani, Ezzedine

    2016-12-01

    Obesity is related to an elevated risk of diabetes and the mechanisms whereby fat adversely affects the pancreas are poorly understood. We studied the effect of a high fat diet (HFD) on pancreas steatosis, oxidative stress and inflammation as well as the putative protection afforded by grape seed and skin extract (GSSE). HFD induced body weight gain, without affecting insulinemia, nor glycemia and dropped adiponectemia. HFD also provoked the ectopic deposition of cholesterol and triglyceride, and an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of antioxidant enzyme activities such as CAT, GPx and SOD, depletion of zinc and a concomitant increase in calcium and H 2 O 2 . HFD induced pro-inflammatory chemokines mRNA as RANTES and MCP1 as well as cytokines expression as TNFα, IL6 and IL1β. Importantly GSSE counteracted all the deleterious effects of HFD on pancreas in vivo i-e lipotoxicity, oxidative stress and inflammation. In conclusion, GSSE could find potential applications in fat-induced pancreas lipotoxicity and dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop.

    PubMed

    Wei, Zhao; Guo, Haiyang; Liu, Zhaojian; Zhang, Xiyu; Liu, Qiao; Qian, Yanyan; Gong, Yaoqin; Shao, Changshun

    2015-02-01

    Tumor suppressor p53 is known to regulate the level of intracellular reactive oxygen species (ROS). It can either alleviate oxidative stress under physiological and mildly stressed conditions or exacerbate oxidative stress under highly stressed conditions. We here report that a p53-ROS positive feedback loop drives a senescence program in normal human fibroblasts (NHFs) and this senescence-driving loop is negatively regulated by CUL4B. CUL4B, which can assemble various ubiquitin E3 ligases, was found to be downregulated in stress-induced senescent cells, but not in replicative senescent cells. We observed that p53-dependent ROS production was significantly augmented and stress-induced senescence was greatly enhanced when CUL4B was absent or depleted. Ectopic expression of CUL4B, on the other hand, blunted p53 activation, reduced ROS production, and attenuated cellular senescence in cells treated with H2O2. CUL4B was shown to promote p53 ubiquitination and proteosomal degradation in NHFs exposed to oxidative stress, thus dampening the p53-dependent cellular senescence. Together, our results established a critical role of CUL4B in negatively regulating the p53-ROS positive feedback loop that drives cellular senescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Social psychogenic stress promotes the development of endometriosis in mouse.

    PubMed

    Guo, Sun-Wei; Zhang, Qi; Liu, Xishi

    2017-03-01

    Exposure to chronic stress before and well after the induction of endometriosis is reported to increase lesion sizes in rats, but it is unclear whether stress, exposed shortly after the induction of endometriosis, would also promote the development of endometriosis, nor is it clear what the underlying possible molecular mechanism is. This study was undertaken to test the hypothesis that chronic stress can promote the development of endometriosis. A prospective randomized mouse experiment was conducted that subjected mice with induced endometriosis to predator stress. In addition, a cross-sectional immunohistochemistry study was performed in ectopic and eutopic endometrial tissue samples from age- and roughly menstrual phase-matched women with ovarian endometriomas. It was found that the chronic psychogenic stress induced epigenetic changes in the hippocampus in mouse independent of endometriosis. It was also found that chronic psychogenic stress induced epigenetic changes in the hippocampus of mice with endometriosis, and seemingly activated the adrenergic signalling in ectopic endometrium, resulting in increased angiogenesis and accelerated growth of endometriotic lesions. Thus, chronic psychogenic stress promotes endometriosis development, raising the possibility that the use of anti-depressants in cases of prolonged and intense stress might forestall the negative impact of stress on the development of endometriosis. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  12. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed Central

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-01-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of pharmacological investigations and even manipulations of this peculiar ACTH hypersecretory syndrome. PMID:8636444

  13. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-03-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of pharmacological investigations and even manipulations of this peculiar ACTH hypersecretory syndrome.

  14. Ectopic Expression of Homeobox Gene NKX2-1 in Diffuse Large B-Cell Lymphoma Is Mediated by Aberrant Chromatin Modifications

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies. PMID:23637834

  15. In vivo gene expression and the adaptive response: from pathogenesis to vaccines and antimicrobials.

    PubMed Central

    Heithoff, D M; Sinsheimer, R L; Low, D A; Mahan, M J

    2000-01-01

    Microbial pathogens possess a repertoire of virulence determinants that each make unique contributions to fitness during infection. Analysis of these in vivo-expressed functions reveals the biology of the infection process, encompassing the bacterial infection strategies and the host ecological and environmental retaliatory strategies designed to combat them (e.g. thermal, osmotic, oxygen, nutrient and acid stress). Many of the bacterial virulence functions that contribute to a successful infection are normally only expressed during infection. A genetic approach was used to isolate mutants that ectopically expressed many of these functions in a laboratory setting. Lack of DNA adenine methylase (Dam) in Salmonella typhimurium abolishes the preferential expression of many bacterial virulence genes in host tissues. Dam- Salmonella were proficient in colonization of mucosal sites but were defective in colonization of deeper tissue sites. Additionally, Dam- mutants were totally avirulent and effective as live vaccines against murine typhoid fever. Since dam is highly conserved in many pathogenic bacteria that cause significant morbidity and mortality worldwide, Dams are potentially excellent targets for both vaccines and antimicrobials. PMID:10874736

  16. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    PubMed

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  17. CIKS, a connection to IκB kinase and stress-activated protein kinase

    PubMed Central

    Leonardi, Antonio; Chariot, Alain; Claudio, Estefania; Cunningham, Kirk; Siebenlist, Ulrich

    2000-01-01

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. PMID:10962033

  18. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+ /K+ and antioxidant competence.

    PubMed

    Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei

    2017-02-01

    High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na + but higher K + accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na + /K + homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance. © 2016 Scandinavian Plant Physiology Society.

  19. Immortalization of pig fibroblast cells by transposon-mediated ectopic expression of porcine telomerase reverse transcriptase.

    PubMed

    He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2016-08-01

    Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.

  20. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.« less

  1. Aquaporin 5 Plays a Role in Estrogen-Induced Ectopic Implantation of Endometrial Stromal Cells in Endometriosis

    PubMed Central

    Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun

    2015-01-01

    Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium. PMID:26679484

  2. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.

    PubMed

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra

    2016-05-01

    PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.

  3. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway

    PubMed Central

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Lawrence M.

    2017-01-01

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway. PMID:29348882

  4. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    PubMed

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  5. Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis

    PubMed Central

    Aurrekoetxea, Maitane; Irastorza, Igor; García-Gallastegui, Patricia; Jiménez-Rojo, Lucia; Nakamura, Takashi; Yamada, Yoshihiko; Ibarretxe, Gaskon; Unda, Fernando J.

    2016-01-01

    Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. Results: Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts. PMID:27066482

  6. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    PubMed Central

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  7. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.

    PubMed

    Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki

    2002-11-01

    Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.

  8. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish.

    PubMed

    Komoike, Yuta; Matsuoka, Masato

    2013-10-15

    Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Combined use of leptin and mechanical stress has osteogenic effects on ossification of the posterior longitudinal ligament.

    PubMed

    Chen, Shuai; Zhu, Haifeng; Wang, Gangliang; Xie, Ziang; Wang, Jiying; Chen, Jian

    2018-06-16

    To evaluate the effects of leptin/leptin receptor (LepR) combined with mechanical stress on the development of ossification of the posterior longitudinal ligament (OPLL), which is a disease characterized by ectopic bone formation of the posterior longitudinal ligament (PLL) and can lead to radiculopathy and myelopathy. Six human samples of the PLL were analyzed for the expression of leptin and LepR by RT-PCR and western blotting. PLL cells were stimulated with leptin and mechanical stress delivered via a Flexcell tension system, and osteogenic differentiation was evaluated by RT-PCR and western blotting analysis of osteogenic marker expression as well as by alkaline phosphatase (ALP) staining and alizarin red S staining. Activation of mitogen-activated protein kinase (MAPK), Janus kinase (JAK) 2-signal transducer, activator of transcription (STAT) 3 and phosphatidylinositol 3-kinase (PI3K)-Akt was evaluated by western blotting. Samples from the OPLL group had higher LepR mRNA and protein levels and lower leptin levels than those from healthy controls. Exposure to leptin and Flexcell increased the number of ALP-positive cells and calcium nodules in a dose-dependent manner; this effect was accompanied by upregulation of the osteogenic markers osteocalcin, runt-related transcription factor 2 (RUNX2) and osteopontin. Extracellular signal-regulated kinase, P38 MAPK, JAK2, STAT3, PI3K and Akt signaling, was also activated by the combined effects of leptin and mechanical stress. Leptin and LepR are differentially expressed in OPLL tissues, and the combined use of leptin/LepR and mechanical stress promotes osteogenic differentiation of PLL cells via MAPK, JAK2-STAT3 and PI3K/Akt signaling. These slides can be retrieved under Electronic Supplementary Material.

  10. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  11. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    PubMed

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  12. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy

    PubMed Central

    Vidal, Rene L.; Figueroa, Alicia; Court, Felipe A.; Thielen, Peter; Molina, Claudia; Wirth, Craig; Caballero, Benjamin; Kiffin, Roberta; Segura-Aguilar, Juan; Cuervo, Ana Maria; Glimcher, Laurie H.; Hetz, Claudio

    2012-01-01

    Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels. PMID:22337954

  13. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    PubMed Central

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  14. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    PubMed Central

    2011-01-01

    Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions. PMID:21880152

  15. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence.

    PubMed

    Goldová, Jana; Ulrych, Aleš; Hercík, Kamil; Branny, Pavel

    2011-08-31

    The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.

  16. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    PubMed

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    PubMed

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.

  18. The Bladder Tumor Suppressor Protein TERE1 (UBIAD1)Modulates Cell Cholesterol: Implications for Tumor Progression

    PubMed Central

    McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce

    2011-01-01

    Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188

  19. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediatedmore » toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.« less

  20. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less

  1. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Chun; Jin, Zhao; Chen, Nian-zhao

    2016-01-29

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showedmore » lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.« less

  2. Ectopic Overexpression of SsCBF1, a CRT/DRE-Binding Factor from the Nightshade Plant Solanum lycopersicoides, Confers Freezing and Salt Tolerance in Transgenic Arabidopsis

    PubMed Central

    Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue

    2013-01-01

    The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095

  3. Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Li, Cong; Han, Zhanpin; Yuan, Jiye; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance. PMID:28642765

  4. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity.

    PubMed

    Du, William W; Fang, Ling; Yang, Weining; Wu, Nan; Awan, Faryal Mehwish; Yang, Zhenguo; Yang, Burton B

    2017-02-01

    Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA.

  5. Roles of lignin biosynthesis and regulatory genes in plant development

    PubMed Central

    Yoon, Jinmi; Choi, Heebak

    2015-01-01

    Abstract Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non‐lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385

  6. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    PubMed Central

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  7. The Circular RNA Interacts with STAT3, Increasing Its Nuclear Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function.

    PubMed

    Yang, Zhen-Guo; Awan, Faryal Mehwish; Du, William W; Zeng, Yan; Lyu, Juanjuan; Wu, De; Gupta, Shaan; Yang, Weining; Yang, Burton B

    2017-09-06

    Delayed or impaired wound healing is a major health issue worldwide, especially in patients with diabetes and atherosclerosis. Here we show that expression of the circular RNA circ-Amotl1 accelerated healing process in a mouse excisional wound model. Further studies showed that ectopic circ-Amotl1 increased protein levels of Stat3 and Dnmt3a. The increased Dnmt3a then methylated the promoter of microRNA miR-17, decreasing miR-17-5p levels but increasing fibronectin expression. We found that Stat3, similar to Dnmt3a and fibronectin, was a target of miR-17-5p. Decreased miR-17-5p levels would increase expression of fibronectin, Dnmt3a, and Stat3. All of these led to increased cell adhesion, migration, proliferation, survival, and wound repair. Furthermore, we found that circ-Amotl1 not only increased Stat3 expression but also facilitated Stat3 nuclear translocation. Thus, the ectopic expressed circ-Amotl1 and Stat3 were mainly translocated to nucleus. In the presence of circ-Amotl1, Stat3 interacted with Dnmt3a promoter with increased affinity, facilitating Dnmt3a transcription. Ectopic application of circ-Amotl1 accelerating wound repair may shed light on skin wound healing clinically. Copyright © 2017. Published by Elsevier Inc.

  8. A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues

    PubMed Central

    Anderson, Matthew Z.; Porman, Allison M.; Wang, Na; Mancera, Eugenio; Bennett, Richard J.

    2016-01-01

    Heritable epigenetic changes underlie the ability of cells to differentiate into distinct cell types. Here, we demonstrate that the fungal pathogen Candida tropicalis exhibits multipotency, undergoing stochastic and reversible switching between three cellular states. The three cell states exhibit unique cellular morphologies, growth rates, and global gene expression profiles. Genetic analysis identified six transcription factors that play key roles in regulating cell differentiation. In particular, we show that forced expression of Wor1 or Efg1 transcription factors can be used to manipulate transitions between all three cell states. A model for tristability is proposed in which Wor1 and Efg1 are self-activating but mutually antagonistic transcription factors, thereby forming a symmetrical self-activating toggle switch. We explicitly test this model and show that ectopic expression of WOR1 can induce white-to-hybrid-to-opaque switching, whereas ectopic expression of EFG1 drives switching in the opposite direction, from opaque-to-hybrid-to-white cell states. We also address the stability of induced cell states and demonstrate that stable differentiation events require ectopic gene expression in combination with chromatin-based cues. These studies therefore experimentally test a model of multistate stability and demonstrate that transcriptional circuits act synergistically with chromatin-based changes to drive cell state transitions. We also establish close mechanistic parallels between phenotypic switching in unicellular fungi and cell fate decisions during stem cell reprogramming. PMID:27711197

  9. Spatial distribution of osteoblast-specific transcription factor Cbfa1 and bone formation in atherosclerotic arteries.

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald S A

    2008-08-01

    The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.

  10. The co-expression of GPER and Gankyrin in ovarian endometriosis and its correlation with the rASRM stages.

    PubMed

    Zhang, Chun; Yuan, Xiying; Zhang, Yi

    2016-01-01

    The aim of this study was to examine the expression of G protein-coupled estrogen receptor (GPER) and Gankyrin in ovarian endometriosis, analyze their clinicopathological significance, and investigate their correlation. Quantitative real-time polymerase chain reaction and Western blot were performed to testify mRNA and protein expression of GPER and Gankyrin in ovarian endometriosis. Immunohistochemical staining (streptavidin-peroxidase method) was conducted to determine the expression and distribution of GPER and Gankyrin protein in matched ectopic and eutopic endometrium of endometriosis and normal endometrium. We also investigated their associations with rASRM stages and the correlation between the two proteins. GPER and Gankyrin were found overexpressed in ectopic endometrium of endometriosis compared with either its eutopic counterpart or endometrium from normal patients. The immunohistochemical analysis also revealed that higher expression was observed in eutopic endometrium with or without endometriosis during proliferative phase in comparison to secretory phase. These two proteins were positively correlated with the stages of endometriosis. Moreover, a significant positive correlation was found between GPER and Gankyrin both in ectopic and eutopic endometrium of the ovarian endometriosis. GPER and Gankyrin might be implicated in the hormonal regulation of endometriosis and be associated with the severity of endometriosis. In addition, GPER and Gankyrin were found to be positively correlated, which could possibly serve as novel therapeutic targets for this disease.

  11. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Jianghong, E-mail: jianghonghou@163.com; Xue, Xiaolin; Li, Junnong

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosismore » patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.« less

  12. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L).

    PubMed

    Srinivasan, C; Liu, Zongrang; Scorza, Ralph

    2011-04-01

    Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.

  13. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma.

    PubMed

    Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun

    2017-04-01

    Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p < 0.05). Ectopic E2-EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p < 0.01). The 5-year survival rate of glioma patients with high E2-EPF levels was shorter than in patients with low expression (p < 0.05). Furthermore, the 5-year survival rate of patients with ectopic E2-EPF was significantly shorter than patients with only nuclear E2-EPF (p < 0.01). These results suggest that higher E2-EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.

  14. Alteration of flower color in Iris germanica L. 'Fire Bride' through ectopic expression of phytoene synthase gene (crtB) from Pantoea agglomerans.

    PubMed

    Jeknić, Zoran; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H H

    2014-08-01

    Genetic modulation of the carotenogenesis in I. germanica 'Fire Bride' by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors. Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, 'Fire Bride', with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin-capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica 'Fire Bride' and produce new flower traits.

  15. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo.

    PubMed

    De Bari, Cosimo; Dell'Accio, Francesco; Luyten, Frank P

    2004-01-01

    We previously reported the identification in a nude mouse assay of molecular markers predictive of the capacity of articular cartilage-derived cells (ACDCs) to form ectopic stable cartilage that is resistant to vascular invasion and endochondral ossification. In the present study, we investigated whether in vitro-differentiated mesenchymal stem cells (MSCs) from the synovial membrane (SM) express the stable-chondrocyte markers and form ectopic stable cartilage in vivo. Chondrogenesis was induced in micromass culture with the addition of transforming growth factor beta1 (TGFbeta1). After acquisition of the cartilage phenotype, micromasses were implanted subcutaneously into nude mice. Alternatively, cells were released enzymatically and either replated in monolayer or injected intramuscularly into nude mice. Marker analysis was performed by quantitative reverse transcription-polymerase chain reaction. Cell death was detected with TUNEL assay. Cartilage-like micromasses and released cells expressed the stable-chondrocyte markers at levels comparable with those expressed by stable ACDCs. The released cells lost chondrocyte marker expression by 24 hours in monolayer and failed to form cartilage when injected intramuscularly into nude mice. Instead, myogenic differentiation was detected. When intact TGFbeta1-treated micromasses were implanted subcutaneously, they partially lost their cartilage phenotype and underwent cell death and neoangiogenesis within 1 week. At later time points (15-40 days), we retrieved neither cartilage nor bone, and human cells were not detectable. The chondrocyte-like phenotype of human SM MSCs, induced in vitro under specific conditions, appears to be unstable and is not sufficient to obtain ectopic formation of stable cartilage in vivo. Studies in animal models of joint surface defect repair are necessary to evaluate the stability of the SM MSC chondrocyte-like phenotype within the joint environment.

  16. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    PubMed

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.

  17. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  18. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    PubMed

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera).

    PubMed

    Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang

    2018-02-01

    Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H 2 O 2 . In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Translocation of TRPV2 channel induced by focal administration of mechanical stress

    PubMed Central

    Nagasawa, Masahiro; Kojima, Itaru

    2015-01-01

    The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca2+ concentration ([Ca2+]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca2+]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca2+]s was not observed by removal of extracellular Ca2+, by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca2+]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca2+]s. PMID:25677550

  1. The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through notch activation.

    PubMed

    Jordan, K C; Clegg, N J; Blasi, J A; Morimoto, A M; Sen, J; Stein, D; McNeill, H; Deng, W M; Tworoger, M; Ruohola-Baker, H

    2000-04-01

    Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch pathway along the fng expression border. Here we show that this may be a general mechanism for patterning epithelial cell layers. At three stages in Drosophila oogenesis, mirror (mirr) and fng have complementary expression patterns in the follicle-cell epithelial layer, and at all three stages loss of mirr enlarges, and ectopic expression of mirr restricts, fng expression, with consequences for follicle-cell patterning. These morphological changes are similar to those caused by Notch mutations. Ectopic expression of mirr in the posterior follicle cells induces a stripe of rhomboid (rho) expression and represses pipe (pip), a gene with a role in the establishment of the dorsal-ventral axis, at a distance. Ectopic Notch activation has a similar long-range effect on pip. Our results suggest that Mirror and Notch induce secretion of diffusible morphogens and we have identified TGF-beta (encoded by dpp) as such a molecule in germarium. We also found that mirr expression in dorsal follicle cells is induced by the EGF-receptor (EGFR) pathway and that mirr then represses pip expression in all but the ventral follicle cells, connecting EGFR activation in the dorsal follicle cells to repression of pip in the dorsal and lateral follicle cells. Our results suggest that the differentiation of ventral follicle cells is not a direct consequence of germline signalling, but depends on long-range signals from dorsal follicle cells, and provide a link between early and late events in Drosophila embryonic dorsal-ventral axis formation.

  2. Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies.

    PubMed

    Monteiro, Antónia; Chen, Bin; Ramos, Diane M; Oliver, Jeffrey C; Tong, Xiaoling; Guo, Min; Wang, Wen-Kai; Fazzino, Lisa; Kamal, Firdous

    2013-07-01

    Butterfly eyespots represent novel complex traits that display substantial diversity in number and size within and across species. Correlative gene expression studies have implicated a large suite of transcription factors, including Distal-less (Dll), Engrailed (En), and Spalt (Sal), in eyespot development in butterflies, but direct evidence testing the function of any of these proteins is still missing. Here we show that the characteristic two-eyespot pattern of wildtype Bicyclus anynana forewings is correlated with dynamic progression of Dll, En, and Sal expression in larval wings from four spots to two spots, whereas no such decline in gene expression ensues in a four-eyespot mutant. We then conduct transgenic experiments testing whether over-expression of any of these genes in a wild-type genetic background is sufficient to induce eyespot differentiation in these pre-patterned wing compartments. We also produce a Dll-RNAi transgenic line to test how Dll down-regulation affects eyespot development. Finally we test how ectopic expression of these genes during the pupal stages of development alters adults color patters. We show that over-expressing Dll in larvae is sufficient to induce the differentiation of additional eyespots and increase the size of eyespots, whereas down-regulating Dll leads to a decrease in eyespot size. Furthermore, ectopic expression of Dll in the early pupal wing led to the appearance of ectopic patches of black scales. We conclude that Dll is a positive regulator of focal differentiation and eyespot signaling and that this gene is also a possible selector gene for scale melanization in butterflies. Copyright © 2013 Wiley Periodicals, Inc.

  3. Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation.

    PubMed

    Wang, Xiuli; Cui, Fuai; Madhu, Vedavathi; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2011-02-01

    A novel strategy to enhance bone repair is to combine angiogenic factors and osteogenic factors. We combined vascular endothelial growth factor (VEGF) and LIM mineralization protein-1 (LMP-1) by using an internal ribosome entry site to link the genes within a single plasmid. We then evaluated the effects on osteoblastic differentiation in vitro and ectopic bone formation in vivo with a subcutaneously placed PLAGA scaffold loaded with a cloned mouse osteoprogenitor cell line, D1, transfected with plasmids containing VEGF and LMP-1 genes. The cells expressing both genes elevated mRNA expression of RunX2 and β-catenin and alkaline phosphatase activity compared to cells from other groups. In vivo, X-ray and micro-CT analysis of the retrieved implants revealed more ectopic bone formation at 2 and 3 weeks but not at 4 weeks compared to other groups. The results indicate that the combination of the therapeutic growth factors potentiates cell differentiation and may promote osteogenesis.

  4. Planar cell polarity controls directional Notch signaling in the Drosophila leg

    PubMed Central

    Capilla, Amalia; Johnson, Ruth; Daniels, Maki; Benavente, María; Bray, Sarah J.; Galindo, Máximo Ibo

    2012-01-01

    The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor. PMID:22736244

  5. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression.

    PubMed

    Jeong, Ho-Chang; Gil, Na-Yeon; Lee, Ho-Soo; Cho, Seung-Ju; Kim, Kyungtae; Chun, Kwang-Hoon; Cho, Hyeseong; Cha, Hyuk-Jin

    2015-08-01

    Wip1 belongs to the protein phosphatase C (PP2C) family, of which expression is up-regulated by a number of external stresses, and serves as a stress modulator in normal physiological conditions. When overexpressed, premature dephosphorylation of stress-mediators by Wip1 results in abrogation of tumor surveillance, thus Wip1 acts as an oncogene. Previously, the functional regulation of Wip1 in cell-cycle progression by counteracting cellular G1 and G2/M checkpoint activity in response to DNA damage was reported. However, other than in stress conditions, the function and regulatory mechanism of Wip1 has not been fully determined. Herein, we demonstrated that protein regulation of Wip1 occurs in a cell cycle-dependent manner, which is directly governed by APC/C(Cdh1) at the end of mitosis. In particular, we also showed evidence that Wip1 phosphatase activity is closely associated with its own protein stability, suggesting that reduced phosphatase activity of Wip1 during mitosis could trigger its degradation. Furthermore, to verify the physiological role of its phosphatase activity during mitosis, we established doxycycline-inducible cell models, including a Wip1 wild type (WT) and phosphatase dead mutant (Wip1 DA). When ectopically expressing Wip1 WT, we observed a delay in the transition from metaphase to anaphase. In conclusion, these studies show that mitotic degradation of Wip1 by APC/C(Cdh1) is important for normal mitotic progression. © 2015 Wiley Periodicals, Inc.

  6. Dehydrins from wheat x Thinopyrum ponticum amphiploid increase salinity and drought tolerance under their own inducible promoters without growth retardation.

    PubMed

    Qin, Yu-Xiang; Qin, Fangyuan

    2016-02-01

    Dehydrins confer abiotic stress tolerance in seedlings, but few dehydrins have been studied by transgenic analysis under their own promoters in relation to abiotic stress tolerance. Also the inducible promoters for transgenic engineering are limited. In this study, we isolated from wheat three salt-induced YSK2 dehydrin genes and their promoters. The cDNA sequences were 711, 785, and 932 bp in length, encoding proteins containing 133, 166 and 231 amino acids, respectively, and were named TaDHN1, TaDHN2, and TaDHN3. TaDHN2 doesn't contain introns, while the other two genes each contain one. Semi-quantitative reverse transcription PCR analysis revealed all three dehydrin genes are substantially induced by ABA and NaCl, but only TaDHN2 is induced in seedlings by PEG and by cold (4 °C). Regulatory sequences upstream of the first translation codon (775, 1615 and 889 bp) of the three dehydrin genes were also cloned. Cis-element prediction indicated the presence of ABRE and other abiotic-stress-related elements. Histochemical analysis using GUS expression demonstrated that all three promoters were induced by ABA, cold or NaCl. Ectopic over-expression of TaDHN1 or TaDHN3 in Arabidopsis under their own inducible promoters enhanced NaCl- and drought-stress tolerance without growth retardation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    PubMed

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-02

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.

  8. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness

    PubMed Central

    Siemens, Helge; Jackstadt, Rene; Kaller, Markus; Hermeking, Heiko

    2013-01-01

    The c-Kit receptor tyrosine kinase is commonly over-expressed in different types of cancer. p53 activation is known to result in the down-regulation of c-Kit. However, the underlying mechanism has remained unknown. Here, we show that the p53-induced miR-34 microRNA family mediates repression of c-Kit by p53 via a conserved seed-matching sequence in the c-Kit 3'-UTR. Ectopic miR-34a resulted in a decrease in Erk signaling and transformation, which was dependent on the down-regulation of c-Kit expression. Furthermore, ectopic expression of c-Kit conferred resistance of colorectal cancer (CRC) cells to treatment with 5-fluorouracil (5-FU), whereas ectopic miR-34a sensitized the cells to 5-FU. After stimulation with c-Kit ligand/stem cell factor (SCF) Colo320 CRC cells displayed increased migration/invasion, whereas ectopic miR-34a inhibited SCF-induced migration/invasion. Activation of a conditional c-Kit allele induced several stemness markers in DLD-1 CRC cells. In primary CRC samples elevated c-Kit expression also showed a positive correlation with markers of stemness, such as Lgr5, CD44, OLFM4, BMI-1 and β-catenin. On the contrary, activation of a conditional miR-34a allele in DLD-1 cells diminished the expression of c-Kit and several stemness markers (CD44, Lgr5 and BMI-1) and suppressed sphere formation. MiR-34a also suppressed enhanced sphere-formation after exposure to SCF. Taken together, our data establish c-Kit as a new direct target of miR-34 and demonstrate that this regulation interferes with several c-Kit-mediated effects on cancer cells. Therefore, this regulation may be potentially relevant for future diagnostic and therapeutic approaches. PMID:24009080

  9. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis

    PubMed Central

    Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio

    2015-01-01

    The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. PMID:26393505

  10. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity

    PubMed Central

    Daigle, J Gavin; Krishnamurthy, Karthik; Ramesh, Nandini; Casci, Ian; Monaghan, John; McAvoy, Kevin; Godfrey, Earl W; Daniel, Dianne C.; Johnson, Edward M.; Monahan, Zach; Shewmaker, Frank; Pasinelli, Piera; Pandey, Udai Bhan

    2016-01-01

    Amyotrophic lateral Sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA binding proteins, have been linked to ALS pathology. Recently, Pur-alpha a DNA/RNA binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics. PMID:26728149

  11. The Vibrio parahaemolyticus ToxRS Regulator Is Required for Stress Tolerance and Colonization in a Novel Orogastric Streptomycin-Induced Adult Murine Model

    PubMed Central

    Whitaker, W. Brian; Parent, Michelle A.; Boyd, Aoife; Richards, Gary P.

    2012-01-01

    Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a nonpolar mutation in toxRS to determine the role of these genes in V. parahaemolyticus RIMD2210633, an O3:K6 isolate, and showed that compared to the wild type, ΔtoxRS was significantly more sensitive to acid, bile salts, and sodium dodecyl sulfate stresses. We demonstrated that ToxRS is a positive regulator of ompU expression, and that the complementation of ΔtoxRS with ompU restores stress tolerance. Furthermore, we showed that ToxRS also regulates type III secretion system genes in chromosome I via the regulation of the leuO homologue VP0350. We examined the effect of ΔtoxRS in vivo using a new orogastric adult murine model of colonization. We demonstrated that streptomycin-treated adult C57BL/6 mice experienced prolonged intestinal colonization along the entire intestinal tract by the streptomycin-resistant V. parahaemolyticus. In contrast, no colonization occurred in non-streptomycin-treated mice. A competition assay between the ΔtoxRS and wild-type V. parahaemolyticus strains marked with the β-galactosidase gene lacZ demonstrated that the ΔtoxRS strain was defective in colonization compared to the wild-type strain. This defect was rescued by ectopically expressing ompU. Thus, the defect in stress tolerance and colonization in ΔtoxRS is solely due to OmpU. To our knowledge, the orogastric adult murine model reported here is the first showing sustained intestinal colonization by V. parahaemolyticus. PMID:22392925

  12. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance

    PubMed Central

    Pandey, Sonika; Patel, Manish Kumar; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas. PMID:27411057

  13. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    PubMed

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.

  14. Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells.

    PubMed

    Schweitzer, Brock L; Huang, Kelly J; Kamath, Meghana B; Emelyanov, Alexander V; Birshtein, Barbara K; DeKoter, Rodney P

    2006-08-15

    The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.

  15. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

    PubMed Central

    Zheng, Xiaodong; Tan, Dun X.; Allan, Andrew C.; Zuo, Bixiao; Zhao, Yu; Reiter, Russel J.; Wang, Lin; Wang, Zhi; Guo, Yan; Zhou, Jingzhe; Shan, Dongqian; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2017-01-01

    Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N-acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the Km and Vmax of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions. PMID:28145449

  16. Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis.

    PubMed

    Wang, Jing; Deng, Xiaohui; Yang, Yang; Yang, Xingsheng; Kong, Beihua; Chao, Lan

    2016-04-01

    To study the expression of the gene associated with retinoid-interferon (IFN)-induced mortality 19 (GRIM-19) in the endometrial tissue of patients with adenomyosis and to describe the possible pathogenic mechanisms of this phenomenon. Experimental study using human samples and cell lines. University-affiliated hospital. Ectopic and eutopic endometrial tissues were obtained from 30 patients with adenomyosis, whereas normal endometrial specimens were obtained from 10 control patients without adenomyosis. Patients with rapid pathology report-confirmed adenomyosis were recruited, and eutopic and ectopic endometrial tissue samples were collected from patients who had undergone hysterectomies by either the transabdominal or laparoscopic method at Qilu Hospital. Normal endometrial tissue was collected from a group of control patients without adenomyosis. Immunohistochemistry (IHC) was performed to evaluate the expression of GRIM-19, phospho-signal transducer and activator of transcription 3 (Y705) (Y705) (pSTAT3(Y705)), and vascular endothelial growth factor (VEGF) in endometrial tissue samples. The protein levels of GRIM-19, pSTAT3(Y705), STAT3, and VEGF were detected by Western blot. Apoptosis in endometrial specimens was assayed by TUNEL. Immunohistochemistry with an antibody directed against CD34 was performed to detect new blood vessels in the endometrial tissue. GRIM-19 small interfering RNA and a recombinant plasmid carrying GRIM-19 were constructed to evaluate the effects of GRIM-19 on the downstream factors pSTAT3(Y705), STAT3, and VEGF in Ishikawa cells. The expression of GRIM-19 was down-regulated in the eutopic endometria of patients with adenomyosis compared with the endometria of patients in the control group, and it was further reduced in the endometrial glandular epithelial cells of adenomyotic lesions. Apoptosis was reduced in the eutopic endometrium compared with the control group, and it was significantly reduced in ectopic endometrial tissues. In addition, the ectopic and eutopic endometria of patients with adenomyosis displayed a much higher microvessel density. In the eutopic and ectopic endometria of patients with adenomyosis, the expression levels of pSTAT3(Y705) and VEGF were significantly higher than in the controls. Furthermore, down-regulation of GRIM-19 in Ishikawa cells significantly promoted the activation of both pSTAT3(Y705) and its dependent gene VEGF. Aberrant expression of GRIM-19 may be associated with adenomyosis through the regulation of apoptosis and angiogenesis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis.

    PubMed

    Kugler, Jamie E; Passamaneck, Yale J; Feldman, Taya G; Beh, Jeni; Regnier, Todd W; Di Gregorio, Anna

    2008-11-01

    To reconstruct a minimum complement of notochord genes evolutionarily conserved across chordates, we scanned the Ciona intestinalis genome using the sequences of 182 genes reported to be expressed in the notochord of different vertebrates and identified 139 candidate notochord genes. For 66 of these Ciona genes expression data were already available, hence we analyzed the expression of the remaining 73 genes and found notochord expression for 20. The predicted products of the newly identified notochord genes range from the transcription factors Ci-XBPa and Ci-miER1 to extracellular matrix proteins. We examined the expression of the newly identified notochord genes in embryos ectopically expressing Ciona Brachyury (Ci-Bra) and in embryos expressing a repressor form of this transcription factor in the notochord, and we found that while a subset of the genes examined are clearly responsive to Ci-Bra, other genes are not affected by alterations in its levels. We provide a first description of notochord genes that are not evidently influenced by the ectopic expression of Ci-Bra and we propose alternative regulatory mechanisms that might control their transcription. Copyright 2008 Wiley-Liss, Inc.

  18. Treatment of collagenase-induced osteoarthritis with a viral vector encoding TSG-6 results in ectopic bone formation.

    PubMed

    Broeren, Mathijs G A; Di Ceglie, Irene; Bennink, Miranda B; van Lent, Peter L E M; van den Berg, Wim B; Koenders, Marije I; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; van de Loo, Fons A J

    2018-01-01

    Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.

  19. Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse

    PubMed Central

    Garrett, Andrew M.; Jucius, Thomas J.; Sigaud, Liam P. R.; Tang, Fu-Lei; Xiong, Wen-Cheng; Ackerman, Susan L.; Burgess, Robert W.

    2016-01-01

    Boundary cap cells (BCC) are a transient, neural-crest-derived population found at the motor exit point (MEP) and dorsal root entry zone (DREZ) of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system (CNS/PNS) boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in BCC. We generated Ntn5 knockout mice and examined neurodevelopmental and BCC-related phenotypes. No abnormalities in cranial nerve guidance, dorsal root organization, or sensory projections were found. However, Ntn5 mutant embryos did have ectopic motor neurons (MNs) that migrated out of the ventral horn and into the motor roots. Previous studies have implicated semaphorin6A (Sema6A) in BCC signaling to plexinA2 (PlxnA2)/neuropilin2 (Nrp2) in MNs in restricting MN cell bodies to the ventral horn, particularly in the caudal spinal cord. In Ntn5 mutants, ectopic MNs are likely to be a different population, as more ectopias were found rostrally. Furthermore, ectopic MNs in Ntn5 mutants were not immunoreactive for NRP2. The netrin receptor deleted in colorectal cancer (DCC) is a potential receptor for NTN5 in MNs, as similar ectopic neurons were found in Dcc mutant mice, but not in mice deficient for other netrin receptors. Thus, Ntn5 is a novel netrin family member that is expressed in BCC, functioning to prevent MN migration out of the CNS. PMID:26858598

  20. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.

    PubMed

    Qiu, Guo-Hua; Tan, Luke K S; Loh, Kwok Seng; Lim, Chai Yen; Srivastava, Gopesh; Tsai, Sen-Tien; Tsao, Sai Wah; Tao, Qian

    2004-06-10

    Loss of heterozygosity at 3p21 is common in various cancers including nasopharyngeal carcinoma (NPC). BLU is one of the candidate tumor suppressor genes (TSGs) in this region. Ectopic expression of BLU results in the inhibition of colony formation of cancer cells, suggesting that BLU is a tumor suppressor. We have identified a functional BLU promoter and found that it can be activated by environmental stresses such as heat shock, and is regulated by E2F. The promoter and first exon are located within a CpG island. BLU is highly expressed in testis and normal upper respiratory tract tissues including nasopharynx. However, in all seven NPC cell lines examined, BLU expression was downregulated and inversely correlated with promoter hypermethylation. Biallelic epigenetic inactivation of BLU was also observed in three cell lines. Hypermethylation was further detected in 19/29 (66%) of primary NPC tumors, but not in normal nasopharyngeal tissues. Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated BLU expression along with promoter demethylation. Although hypermethylation of RASSF1A, another TSG located immediately downstream of BLU, was detected in 20/27 (74%) of NPC tumors, no correlation between the hypermethylation of these two TSGs was observed (P=0.6334). In addition to methylation, homozygous deletion of BLU was found in 7/29 (24%) of tumors. Therefore, BLU is a stress-responsive gene, being disrupted in 83% (24/29) of NPC tumors by either epigenetic or genetic mechanisms. Our data are consistent with the interpretation that BLU is a TSG for NPC.

  1. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  2. WEREWOLF and ENHANCER of GLABRA3 are interdependent regulators of the spatial expression pattern of GLABRA2 in Arabidopsis.

    PubMed

    Song, Sang-Kee; Kwak, Su-Hwan; Chang, Soo Chul; Schiefelbein, John; Lee, Myeong Min

    2015-11-06

    In multicellular organisms, cell fates are specified through differential regulation of transcription. Epidermal cell fates in the Arabidopsis thaliana root are precisely specified by several transcription factors, with the GLABRA2 (GL2) homeodomain protein acting at the farthest downstream in this process. To better understand the regulation of GL2 expression, we ectopically expressed WEREWOLF (WER) and ENHANCER OF GLABRA3 (EGL3) in various tissues and examined GL2 expression. Here we show that WER expressed ubiquitously in the root induced GL2 expression only in the root epidermis, whereas co-expression of WER and EGL3 induced GL2 expression in the corresponding tissues. We also found that GL3 accumulated in the nucleus at the early meristematic region and EGL3 accumulated later in the nucleus of epidermal cells. We further found that ectopic expression of WER and EGL3 in ground tissues inhibited GL2 expression in the epidermis. Our results suggest that the co-expression of WER and EGL3 is sufficient for driving GL2 and CPC expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Molecular analysis of the mouse agouti gene and the role of dominant agouti-locus mutations in obesity and insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.

    1994-09-01

    The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, thatmore » is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.« less

  4. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor.

    PubMed

    Vilela, Belmiro; Moreno-Cortés, Alicia; Rabissi, Agnese; Leung, Jeffrey; Pagès, Montserrat; Lumbreras, Victoria

    2013-01-01

    The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize.

  5. The Maize OST1 Kinase Homolog Phosphorylates and Regulates the Maize SNAC1-Type Transcription Factor

    PubMed Central

    Rabissi, Agnese; Leung, Jeffrey; Pagès, Montserrat; Lumbreras, Victoria

    2013-01-01

    The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize. PMID:23469147

  6. Variation Analysis of Physiological Traits in Betula platyphylla Overexpressing TaLEA-ThbZIP Gene under Salt Stress

    PubMed Central

    Xiao, Zhenhai; Wang, Fuwei; Li, Shuchun; Zang, Lina; Zheng, Mi; Li, Ying; Qu, Guan-Zheng

    2016-01-01

    The aim of this study was to determine whether transgenic birch (Betula platyphylla) ectopic overexpressing a late embryogenesis abundant (LEA) gene and a basic leucine zipper (bZIP) gene from the salt-tolerant genus Tamarix (salt cedar) show increased tolerance to salt (NaCl) stress. Co-transfer of TaLEA and ThbZIP in birch under the control of two independent CaMV 35S promoters significantly enhanced salt stress. PCR and northern blot analyses indicated that the two genes were ectopically overexpressed in several dual-gene transgenic birch lines. We compared the effects of salt stress among three transgenic birch lines (L-4, L-5, and L-8) and wild type (WT). In all lines, the net photosynthesis values were higher before salt stress treatment than afterwards. After the salt stress treatment, the transgenic lines L-4 and L-8 showed higher values for photosynthetic traits, chlorophyll fluorescence, peroxidase and superoxide dismutase activities, and lower malondialdehyde and Na+ contents, compared with those in WT and L-5. These different responses to salt stress suggested that the transcriptional level of the TaLEA and ThbZIP genes differed among the transgenic lines, resulting in a variety of genetic and phenotypic effects. The results of this research can provide a theoretical basis for the genetic engineering of salt-tolerant trees. PMID:27802286

  7. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis1[W

    PubMed Central

    Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley

    2014-01-01

    The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191

  8. PRDM1 expression on the epithelial component but not on ectopic lymphoid tissues of Warthin tumour.

    PubMed

    Wang, Y; Zhou, J; Zhang, Y; Wang, L; Liu, Y; Fan, L; Zhu, J; Xu, X; Huang, G; Li, X; Xun, W

    2015-05-01

    To determine the role of PRDM1, a key molecule for modulating the immune cells, in Warthin tumour (WT) pathogenesis. Forty paraffin-embedded parotid tissues of patients (mean age: 62.08 ± 11.90) with WT were retrieved from the pathology archives of Qindu Hospital from January 2012 to December 2012. The PRDM1 expression was investigated in a cohort of WT by immunohistochemistry. PRDM1 was expressed only on the epithelial component but not on ectopic lymphoid tissue of the tumour. Statistically, PRDM1 expression rates between WT glandular epithelial cells (40/40 cases) and the tumour-adjacent tissues (0/9 cases), and WT germinal centres (0/34 cases) and tonsil tissues (10/10 cases) were significantly different (P < 0.001), respectively. The PRDM1 expression appeared to play an essential role in WT pathogenesis. A better understanding of it might give options for revealing possible novel management strategies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.

    PubMed

    Tapia, Olga; Gerace, Larry

    2016-01-01

    We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.

  10. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    PubMed

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p < 0.05). Bone formation decreased with the increasing length of the implantation period. Osteocalcin expression verified the osteoblastic character of the cell-seeded constructs after implantation time. No bone formation and no osteocalcin expression were found in the control groups. Cell-seeded constructs either with PHB embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  11. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    PubMed

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  12. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    PubMed

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress

    PubMed Central

    Zhu, Dan; Li, Rongtian; Liu, Xin; Sun, Mingzhe; Wu, Jing; Zhang, Ning; Zhu, Yanming

    2014-01-01

    The TIFY family is a novel plant-specific protein family, and is characterized by a conserved TIFY motif (TIFF/YXG). Our previous studies indicated the potential roles of TIFY10/11 proteins in plant responses to alkaline stress. In the current study, we focused on the regulatory roles and possible physiological and molecular basis of the TIFY10 proteins in plant responses to alkaline stress. We demonstrated the positive function of TIFY10s in alkaline responses by using the AtTIFY10a and AtTIFY10b knockout Arabidopsis, as evidenced by the relatively lower germination rates of attify10a and attify10b mutant seeds under alkaline stress. We also revealed that ectopic expression of GsTIFY10a in Medicago sativa promoted plant growth, and increased the NADP-ME activity, citric acid content and free proline content but decreased the MDA content of transgenic plants under alkaline stress. Furthermore, expression levels of the stress responsive genes including NADP-ME, CS, H+-ppase and P5CS were also up-regulated in GsTIFY10a transgenic plants under alkaline stress. Interestingly, GsTIFY10a overexpression increased the jasmonate content of the transgenic alfalfa. In addition, we showed that neither GsTIFY10a nor GsTIFY10e exhibited transcriptional activity in yeast cells. However, through Y2H and BiFc assays, we demonstrated that GsTIFY10a, not GsTIFY10e, could form homodimers in yeast cells and in living plant cells. As expected, we also demonstrated that GsTIFY10a and GsTIFY10e could heterodimerize with each other in both yeast and plant cells. Taken together, our results provided direct evidence supporting the positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PMID:25375909

  14. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis).

    PubMed

    Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li

    2011-11-23

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  15. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    PubMed Central

    2011-01-01

    Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144

  16. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    PubMed

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis.

  17. mRNA-Binding Protein TIA-1 Reduces Cytokine Expression in Human Endometrial Stromal Cells and Is Down-Regulated in Ectopic Endometrium

    PubMed Central

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Kristiansson, Helena; Duke, Cindy M. P.; Choe, Gina; Flannery, Clare; Kallen, Caleb B.

    2014-01-01

    Background: Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3′-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. Objective: The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Methods: Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. Results: We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Conclusions: Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis. PMID:25140393

  18. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium.

    PubMed

    Humby, Frances; Bombardieri, Michele; Manzo, Antonio; Kelly, Stephen; Blades, Mark C; Kirkham, Bruce; Spencer, Jo; Pitzalis, Costantino

    2009-01-13

    Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium. Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis. Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell-depleting therapies.

  19. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  20. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension

    PubMed Central

    Eash, John; Olsen, Aaron; Breur, Gert; Gerrard, Dave; Hannon, Kevin

    2007-01-01

    Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight. PMID:17425786

  1. Spontaneous endometriosis in a mandrill (Mandrillus sphinx).

    PubMed

    Nakamura, S; Ochiai, K; Ochi, A; Ito, M; Kamiya, T; Yamamoto, H

    2012-01-01

    A 25-year-old female mandrill (Mandrillus sphinx) died after exhibiting weakness and recumbency with serosanguineous ascites. Gross findings included haemoperitoneum and multifocal to diffuse serosal thickening with petechiae and ecchymoses throughout the peritoneum. The uterus was covered entirely with large blood clots and was adherent to the ovaries and pelvic wall. Microscopical and immunohistochemical examination revealed extra- and intra-uterine growth of ectopic endometrial tissue with marked fibrosis. The ectopic endometrial tissues predominantly consisted of stromal cells expressing CD10 and progesterone receptor and variably-sized glands lined by the epithelium with occasional slight expression of oestrogen receptor α. A diagnosis of endometriosis was made. This is the first report of naturally occurring endometriosis in a mandrill. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana

    PubMed Central

    Gu, Jinbao; Xia, Zhiqiang; Luo, Yuehua; Jiang, Xingyu; Qian, Bilian; Xie, He; Zhu, Jian-Kang; Xiong, Liming; Zhu, Jianhua; Wang, Zhen-Yu

    2018-01-01

    Abstract Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants. PMID:29228330

  3. Molecular cloning and functional characterization of the apple sucrose transporter gene MdSUT2.

    PubMed

    Ma, Qi-Jun; Sun, Mei-Hong; Liu, Ya-Jing; Lu, Jing; Hu, Da-Gang; Hao, Yu-Jin

    2016-12-01

    Sucrose is not only the primary photosynthetic product but also the major component translocated in the phloem of economically important plant species. Sucrose transporters or carriers (SUTs or SUCs), function as sucrose/H + symporters and play a crucial role in determining the cell-to-cell distribution of sucrose throughout the entire plant. However, whether such genes are involved in responses to abiotic stress and other biological processes is largely unknown. Here, we report that MdSUT2 in apple is a homolog of the Arabidopsis vacuolar sucrose transporter AtSUT2. Ectopic expression of MdSUT2 in Arabidopsis decreased sucrose sensitivity in germination and seeding stage and increased sucrose transport activity. In addition, our results showed that MdSUT2 impacted on plant growth by accelerating vegetative growth and promoting early flowering in Arabidopsis. Overexpression of MdSUT2 significantly improved abiotic stress tolerance including NaCl, ABA, and mannitol in apple calli and Arabidopsis. Together, these findings provide evidence that the apple sucrose transporter MdSUT2 is involved in abiotic stress resistance and the regulation of plant growth and development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.

    PubMed Central

    Tsuchimoto, S; van der Krol, A R; Chua, N H

    1993-01-01

    We cloned a MADS-box gene, pMADS3, from Petunia hybrida, which shows high sequence homology to the Arabidopsis AGAMOUS and Antirrhinum PLENA. pMADS3 is expressed exclusively in stamens and carpels of wild-type petunia plants. In the petunia mutant blind, which shows homeotic conversions of corolla limbs into antheroid structures with pollen grains and small parts of sepals into carpelloid tissue, pMADS3 is expressed in all floral organs as well as in leaves. Ectopic expression of pMADS3 in transgenic petunia leads to phenocopies of the blind mutant, i.e., the formation of antheroid structures on limbs and carpelloid tissue on sepals. Transgenic tobacco plants that overexpress pMADS3 exhibit an even more severe phenotype, with the sepals forming a carpel-like structure encasing the interior floral organs. Our results identify BLIND as a negative regulator of pMADS3, which specifies stamens and carpels during petunia flower development. PMID:8104573

  5. Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.

    PubMed

    Fryer, J P; Oetting, W S; Brott, M J; King, R A

    2001-11-01

    We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.

  6. Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells.

    PubMed

    Wang, Chun-Hua; Shyu, Rong-Yaun; Wu, Chang-Chieh; Chen, Mao-Liang; Lee, Ming-Cheng; Lin, Yi-Yin; Wang, Lu-Kai; Jiang, Shun-Yuan; Tsai, Fu-Ming

    2018-06-14

    The tazarotene-induced gene 1 (TIG1) protein is a retinoidinducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.

  7. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as corticalmore » actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.« less

  8. Probing the Effects of Stress Mediators on the Human Hair Follicle

    PubMed Central

    Peters, Eva M.J.; Liotiri, Sofia; Bodó, Enikő; Hagen, Evelin; Bíró, Tamás; Arck, Petra C.; Paus, Ralf

    2007-01-01

    Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and β2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata. PMID:18055548

  9. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1.

    PubMed

    Maconochie, M K; Nonchev, S; Studer, M; Chan, S K; Pöpperl, H; Sham, M H; Mann, R S; Krumlauf, R

    1997-07-15

    Correct regulation of the segment-restricted patterns of Hox gene expression is essential for proper patterning of the vertebrate hindbrain. We have examined the molecular basis of restricted expression of Hoxb2 in rhombomere 4 (r4), by using deletion analysis in transgenic mice to identify an r4 enhancer from the mouse gene. A bipartite Hox/Pbx binding motif is located within this enhancer, and in vitro DNA binding experiments showed that the vertebrate labial-related protein Hoxb1 will cooperatively bind to this site in a Pbx/Exd-dependent manner. The Hoxb2 r4 enhancer can be transactivated in vivo by the ectopic expression of Hoxb1, Hoxa1, and Drosophila labial in transgenic mice. In contrast, ectopic Hoxb2 and Hoxb4 are unable to induce expression, indicating that in vivo this enhancer preferentially responds to labial family members. Mutational analysis demonstrated that the bipartite Hox/Pbx motif is required for r4 enhancer activity and the responses to retinoids and ectopic Hox expression. Furthermore, three copies of the Hoxb2 motif are sufficient to mediate r4 expression in transgenic mouse embryos and a labial pattern in Drosophila embryos. This reporter expression in Drosophila embryos is dependent upon endogenous labial and exd, suggesting that the ability of this Hox/Pbx site to interact with labial-related proteins has been evolutionarily conserved. The endogenous Hoxb2 gene is no longer upregulated in r4 in Hoxb1 homozygous mutant embryos. On the basis of these experiments we conclude that the r4-restricted domain of Hoxb2 in the hindbrain is the result of a direct cross-regulatory interaction by Hoxb1 involving vertebrate Pbx proteins as cofactors. This suggests that part of the functional role of Hoxb1 in maintaining r4 identity may be mediated by the Hoxb2 gene.

  10. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  11. Meta-analysis of expression of l(3)mbt tumor-associated germline genes supports the model that a soma-to-germline transition is a hallmark of human cancers.

    PubMed

    Feichtinger, Julia; Larcombe, Lee; McFarlane, Ramsay J

    2014-05-15

    Evidence is starting to emerge indicating that tumorigenesis in metazoans involves a soma-to-germline transition, which may contribute to the acquisition of neoplastic characteristics. Here, we have meta-analyzed gene expression profiles of the human orthologs of Drosophila melanogaster germline genes that are ectopically expressed in l(3)mbt brain tumors using gene expression datasets derived from a large cohort of human tumors. We find these germline genes, some of which drive oncogenesis in D. melanogaster, are similarly ectopically activated in a wide range of human cancers. Some of these genes normally have expression restricted to the germline, making them of particular clinical interest. Importantly, these analyses provide additional support to the emerging model that proposes a soma-to-germline transition is a general hallmark of a wide range of human tumors. This has implications for our understanding of human oncogenesis and the development of new therapeutic and biomarker targets with clinical potential. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  12. Regulatory role of AINTEGUMENTA in organ initiation and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krizek, Beth Allyn; Lebioda, Lukasz

    2005-03-01

    Although several members of the plant-specific AP2/ERF family of transcription factors are important developmental regulators, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7more » mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.« less

  13. Endometrial Expression of Steroidogenic Factor 1 Promotes Cystic Glandular Morphogenesis

    PubMed Central

    Vasquez, Yasmin M.; Wu, San-Pin; Anderson, Matthew L.; Hawkins, Shannon M.; Creighton, Chad J.; Ray, Madhumita; Tsai, Sophia Y.; Tsai, Ming-Jer; Lydon, John P.

    2016-01-01

    Epigenetic silencing of steroidogenic factor 1 (SF1) is lost in endometriosis, potentially contributing to de novo local steroidogenesis favoring inflammation and growth of ectopic endometrial tissue. In this study, we examine the impact of SF1 expression in the eutopic uterus by a novel mouse model that conditionally expresses SF1 in endometrium. In vivo SF1 expression promoted the development of enlarged endometrial glands and attenuated estrogen and progesterone responsiveness. Endometriosis induction by autotransplantation of uterine tissue to the mesenteric membrane resulted in the increase in size of ectopic lesions from SF1-expressing mice. By integrating the SF1-dependent transcriptome with the whole genome binding profile of SF1, we identified uterine-specific SF1-regulated genes involved in Wingless and Progesterone receptor-Hedgehog-Chicken ovalbumin upstream promoter transcription factor II signaling for gland development and epithelium-stroma interaction, respectively. The present results indicate that SF1 directly contributes to the abnormal uterine gland morphogenesis, an inhibition of steroid hormone signaling and activation of an immune response, in addition to previously postulated estrogen production. PMID:27018534

  14. Cucumber (Cucumis sativus L.) Nitric Oxide Synthase Associated Gene1 (CsNOA1) Plays a Role in Chilling Stress

    PubMed Central

    Liu, Xingwang; Liu, Bin; Xue, Shudan; Cai, Yanlinq; Qi, Wenzhu; Jian, Chen; Xu, Shuo; Wang, Ting; Ren, Huazhong

    2016-01-01

    Nitric oxide (NO) is a gaseous signaling molecule in plants, transducing information as a result of exposure to low temperatures. However, the underlying molecular mechanism linking NO with chilling stress is not well understood. Here, we functionally characterized the cucumber (Cucumis sativus L.) nitric oxide synthase-associated gene, NITRIC OXIDE ASSOCIATED 1 (CsNOA1). Expression analysis of CsNOA1, using quantitative real-time PCR, in situ hybridization, and a promoter::β-glucuronidase (GUS) reporter assay, revealed that it is expressed mainly in the root and shoot apical meristem (SAM), and that expression is up-regulated by low temperatures. A CsNOA1-GFP fusion protein was found to be localized in the mitochondria, and ectopic expression of CsNOA1 in the A. thaliana noa1 mutant partially rescued the normal phenotype. When overexpressing CsNOA1 in the Atnoa1 mutant under normal condition, no obvious phenotypic differences was observed between its wild type and transgenic plants. However, the leaves from mutant plant grown under chilling conditions showed hydrophanous spots and wilting. Physiology tolerance markers, chlorophyll fluorescence parameter (Fv/Fm), and electrolyte leakage, were observed to dramatically change, compared mutant to overexpressing lines. Transgenic cucumber plants revealed that the gene is required by seedlings to tolerate chilling stress: constitutive over-expression of CsNOA1 led to a greater accumulation of soluble sugars, starch, and an up-regulation of Cold-regulatory C-repeat binding factor3 (CBF3) expression as well as a lower chilling damage index (CI). Conversely, suppression of CsNOA1 expression resulted in the opposite phenotype and a reduced NO content compared to wild type plants. Those results suggest that CsNOA1 regulates cucumber seedlings chilling tolerance. Additionally, under normal condition, we took several classic inhibitors to perform, and detect endogenous NO levels in wild type cucumber seedling. The results suggest that generation of endogenous NO in cucumber leaves occurs largely independently in the (CsNOA1) and nitrate reductase (NR) pathway. PMID:27891134

  15. Long non-coding RNA CASC15 promotes tongue squamous carcinoma progression through targeting miR-33a-5p.

    PubMed

    Zuo, Zhibin; Ma, Long; Gong, Zuode; Xue, Lande; Wang, Qibao

    2018-05-26

    Long non-coding RNAs (lncRNAs) have gained a lot of attention because they participate in several human disorders, including tumors. This study determined the role of LncRNA CASC15 (cancer susceptibility candidate 15) in the development of tongue squamous cell carcinoma (TSCC). Here, we identified that CASC15 expression was upregulated in TSCC samples and cell lines. We showed that overexpression of CASC15 promoted cell proliferation, cycle, and migration in TSCC. In addition, we revealed that miR-33a-5p expression was downregulated in TSCC tissues and cell lines. Moreover, we showed that the expression of CASC15 was negatively related with miR-33a-5p expression in TSCC tissues. Ectopic expression of miR-33a-5p suppressed cell proliferation, cycle, and migration in TSCC. Elevated expression of CASC15 suppressed miR-33a-5p expression and promoted ZEB1 expression in SCC4 cell. Ectopic expression of CASC15 promoted TSCC cell proliferation, cycle, and migration through targeting miR-33a-5p. These results suggested that lncRNA CASC15 and miR-33a-5p might be exploited as new markers of TSCC and were potential treatment targets for TSCC patients.

  16. Jab1/Csn5-thioredoxin signaling in relapsed acute monocytic leukemia under oxidative stress

    PubMed Central

    Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X.

    2018-01-01

    Purpose High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design We studied ROS levels and conducted JAB1/COPS5 and TRX gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1’s regulation of Trx in leukemia cell lines. Results Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of thioredoxin (TRX) and c-Jun activation domain-binding protein-1 (JAB1/COPS5) were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo. Conclusions We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. PMID:28270496

  17. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    PubMed Central

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  18. Ki-1/57 and CGI-55 ectopic expression impact cellular pathways involved in proliferation and stress response regulation.

    PubMed

    Costa, Fernanda C; Saito, Angela; Gonçalves, Kaliandra A; Vidigal, Pedro M; Meirelles, Gabriela V; Bressan, Gustavo C; Kobarg, Jörg

    2014-12-01

    Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease.

    PubMed

    Akie, Thomas E; Liu, Lijun; Nam, Minwoo; Lei, Shi; Cooper, Marcus P

    2015-01-01

    OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance--ROS and PKCε activity--were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.

  20. Elevated ATF4 Expression, in the Absence of Other Signals, Is Sufficient for Transcriptional Induction via CCAAT Enhancer-binding Protein-activating Transcription Factor Response Elements*

    PubMed Central

    Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.

    2009-01-01

    Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279

  1. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  2. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development.

    PubMed

    González-Morales, Nicanor; Mendoza-Ortíz, Miguel Ángel; Blowes, Liisa M; Missirlis, Fanis; Riesgo-Escovar, Juan R

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother's iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development.

  3. Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition.

    PubMed

    Henssen, Anton; Althoff, Kristina; Odersky, Andrea; Beckers, Anneleen; Koche, Richard; Speleman, Frank; Schäfers, Simon; Bell, Emma; Nortmeyer, Maike; Westermann, Frank; De Preter, Katleen; Florin, Alexandra; Heukamp, Lukas; Spruessel, Annika; Astrahanseff, Kathy; Lindner, Sven; Sadowski, Natalie; Schramm, Alexander; Astorgues-Xerri, Lucile; Riveiro, Maria E; Eggert, Angelika; Cvitkovic, Esteban; Schulte, Johannes H

    2016-05-15

    Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR. ©2015 American Association for Cancer Research.

  4. Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.

    PubMed

    Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai

    2017-12-01

    Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.

  5. The antagonistic basic helix-loop-helix partners BEE and IBH1 contribute to control plant tolerance to abiotic stress.

    PubMed

    Moreno, Javier E; Moreno-Piovano, Guillermo; Chan, Raquel L

    2018-06-01

    The bHLH family is composed by canonical and non-canonical transcription factors (TFs) that differ in the presence or absence of their DNA-binding domain, respectively. Since both types of bHLH proteins are able to dimerize, their relative abundance impacts their biological activity. Among this TF family BEE and IBH are canonical and non-canonical bHLHs, respectively and previous reports indicated that BEE2 and IBH1 dimerize. Wondering whether BEE TFs participate in the abiotic stress response and how the dimerization with IBH1 could regulate their role in Arabidopsis, double bee1/bee2 and triple bee1/bee2/bee3 mutants were tested under salinity and drought stresses. The bee1/bee2/bee3 mutant showed an enhanced tolerance whereas the double mutant behaved similar to wild type plants. These results indicated that BEE genes play a role in the stress response and also put in evidence the redundancy within the BEE family. Moreover, ectopic expression of IBH1 on different mutant backgrounds improved plant tolerance to abiotic stress, independently of the background. However, the yield of these transgenic plants was penalized with abortive seeds. Our results suggest that BEE genes are negative regulators of physiological responses to abiotic stress whereas IBH1 is a positive modulator via different pathways, one of them involving BEE TFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary.

    PubMed

    Dobens, L L; Peterson, J S; Treisman, J; Raftery, L A

    2000-02-01

    The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.

  7. Translocation of TRPV2 channel induced by focal administration of mechanical stress.

    PubMed

    Nagasawa, Masahiro; Kojima, Itaru

    2015-02-01

    The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca(2+) concentration ([Ca(2+)]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca(2+)]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca(2+)]s was not observed by removal of extracellular Ca(2+), by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca(2+)]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca(2+)]s. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Endometrial seedlings. A survival instinct? Immunomodulation and its role in the pathophysiology of endometriosis.

    PubMed

    Portelli, M; Pollacco, J; Sacco, K; Schembri-Wismayer, P; Calleja-Agius, J

    2011-12-01

    Endometriosis occurs when ectopic cells from the endometrium implant within the peritoneum. It is considered as a disease of multifactorial aetiology and affects 7-10% of women of reproductive age worldwide. In endometriosis, the immune system is thought to be dysfunctional and various studies have shown cytokine imbalance. Commonly upregulated cytokines include Tumour necrosis factor-alpha, interferon gamma and interleukin-10. Through analysis of the molecular makeup of the peritoneal fluid, a change is shown to occur, conferring resistance from macrophages and lymphocytes to endometrial cells. This is possibly due to a reduced Inter-cellular adhesion molecule-1 synthesis. Survival of ectopic endometrial cells also arises through the expression of human leukocyte antigens. Apart from the survival of ectopic/eutopic cells in endometriosis, there is marked cellular proliferation, which has also been attributed to a change in the expression of proteins such as Bcl-2-Associated X protein, B-cell lymphoma-2 protein, transforming growth factor-beta and the enzyme aromatase. Danazol and aromatase inhibitors modulate the immune system, thus allowing partial restoration of cytokine levels. Pharmacogenomics may be the way forward in developing novel treatment modalities for endometriosis.

  9. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    PubMed

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  10. The tripartite leader sequence is required for ectopic expression of HAdV-B and HAdV-E E3 CR1 genes.

    PubMed

    Bair, Camden R; Kotha Lakshmi Narayan, Poornima; Kajon, Adriana E

    2017-05-01

    The unique repertoire of genes that characterizes the early region 3 (E3) of the different species of human adenovirus (HAdV) likely contributes to their distinct pathogenic traits. The function of many E3 CR1 proteins remains unknown possibly due to unidentified intrinsic properties that make them difficult to express ectopically. This study shows that the species HAdV-B- and HAdV-E-specific E3 CR1 genes can be expressed from vectors carrying the HAdV tripartite leader (TPL) sequence but not from traditional mammalian expression vectors. Insertion of the TPL sequence upstream of the HAdV-B and HAdV-E E3 CR1 open reading frames was sufficient to rescue protein expression from pCI-neo constructs in transfected 293T cells. The detection of higher levels of HAdV-B and HAdV-E E3 CR1 transcripts suggests that the TPL sequence may enhance gene expression at both the transcriptional and translational levels. Our findings will facilitate the characterization of additional AdV E3 proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm

    PubMed Central

    Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.

    2015-01-01

    Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510

  12. Ectopic expression of aquaporin-5 in noncancerous epithelial MDCK cells changes cellular morphology and actin fiber formation without inducing epithelial-to-mesenchymal transition.

    PubMed

    Jensen, Helene H; Holst, Mikkel R; Login, Frédéric H; Morgen, Jeanette J; Nejsum, Lene N

    2018-06-01

    Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.

  13. Decoy receptor 3 promotes cell adhesion and enhances endometriosis development.

    PubMed

    Tsai, Hsiao-Wen; Huang, Ming-Ting; Wang, Peng-Hui; Huang, Ben-Shian; Chen, Yi-Jen; Hsieh, Shie-Liang

    2018-02-01

    Endometriosis is a multifactorial inflammatory disease with persistent activation of the nuclear factor-κB (NF-κB) signalling pathway. Aberrant adhesion of endometrium is the essential step in the progression of endometriosis, but the molecular mechanism of ectopic growth of endometrium is still unclear. Decoy receptor 3 (DcR3)/TNFRSF6B, a pleiotropic immunomodulator regulated by oestrogen, is able to activate focal adhesion kinase to promote cell adhesion. We found that DcR3 is upregulated in human ectopic endometrial cells via activation of the Akt-NF-κB signalling pathway, and its expression level correlates positively with that of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and homing cell adhesion molecule (HCAM; CD44). In a multivariate regression model, DcR3 expression level was the most significant parameter associated with endometriosis severity. Knockdown of DcR3 not only downregulated the expression of ICAM-1 and HCAM, but also reduced cell adhesion and migration. In vivo investigation further showed that DcR3 promoted the growth and spread of endometrium, whereas knockdown of DcR3 by lentivirus-delivered short hairpin RNA inhibited ectopic adhesion of endometrium and abrogated endometriosis progression. These observations are in support of DcR3 playing a critical role in the pathogenesis of endometriosis, and the inhibition of DcR3 expression being a promising approach for the treatment of endometriosis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.

    PubMed

    Bakkenist, Christopher J; Drissi, Rachid; Wu, Jing; Kastan, Michael B; Dome, Jeffrey S

    2004-06-01

    Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-gamma focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-gamma foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.

  15. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks.

    PubMed

    Radchuk, Ruslana; Radchuk, Volodymyr; Götz, Klaus-Peter; Weichert, Heiko; Richter, Andreas; Emery, R J Neil; Weschke, Winfriede; Weber, Hans

    2007-09-01

    Seed maturation responds to endogenous and exogenous signals like nutrient status, energy and hormones. We recently showed that phosphoenolpyruvate carboxylase (PEPC) overexpression in Vicia narbonensis seeds alters seed metabolism and channels carbon into organic acids, resulting in greater seed storage capacity and increased protein content. Thus, these lines represent models with altered sink strength and improved nutrient status. Here we analyse seed developmental and metabolic parameters, and C/N partitioning in these seeds. Transgenic embryos take up more carbon and nitrogen. Changes in dry to FW ratio, seed fill duration and major seed components indicate altered seed development. Array-based gene expression analysis of embryos reveals upregulation of seed metabolism, especially during the transition phase and at late maturation, in terms of protein storage and processing, amino acid metabolism, primary metabolism and transport, energy and mitochondrial activity, transcriptional and translational activity, stress tolerance, photosynthesis, cell proliferation and elongation, signalling and hormone action and regulated protein degradation. Stimulated cell elongation is in accordance with upregulated signalling pathways related to gibberellic acid/brassinosteroids. We discuss that activated organic and amino acid production leads to a wide-range activation of nitrogen metabolism, including the machinery of storage protein synthesis, amino acid synthesis, protein processing and deposition, translational activity and the methylation cycle. We suggest that alpha-ketoglutarate (alpha-KG) and/or oxalacetate provide signals for coordinate upregulation of amino acid biosynthesis. Activation of stress tolerance genes indicates partial overlap between nutrient, stress and abscisic acid (ABA) signals, indicating a common interacting or regulatory mechanism between nutrients, stress and ABA. In conclusion, analysis of PEPC overexpressing seeds identified pathways responsive to metabolic and nutrient control on the transcriptional level and its underlying signalling mechanisms.

  16. Foot-and-Mouth Disease Virus Counteracts on Internal Ribosome Entry Site Suppression by G3BP1 and Inhibits G3BP1-Mediated Stress Granule Assembly via Post-Translational Mechanisms

    PubMed Central

    Ye, Xu; Pan, Ting; Wang, Dang; Fang, Liurong; Ma, Jun; Zhu, Xinyu; Shi, Yanling; Zhang, Keshan; Zheng, Haixue; Chen, Huanchun; Li, Kui; Xiao, Shaobo

    2018-01-01

    Foot-and-mouth disease (FMD) is a highly contagious, severe viral illness notifiable to the World Organization for Animal Health. The causative agent, FMD virus (FMDV), replicates rapidly and efficiently inhibits host translation and the innate immune response for it has developed multiple tactics to evade host defenses and takes over gene expression machinery in the host cell. Here, we report a systemic analysis of the proteome and phosphoproteome of FMDV-infected cells. Bioinformatics analysis suggested that FMDV infection shuts off host cap-dependent translation, but leaves intact internal ribosome entry site (IRES)-mediated translation for viral proteins. Interestingly, several FMDV IRES-transacting factors, including G3BP stress granule assembly factor 1 (G3BP1), were dephosphorylated during FMDV infection. Ectopic expression of G3BP1 inhibited FMDV IRES activity, promoted assembly of stress granules, and activated innate immune responses, collectively suppressing FMDV replication. To counteract these host protective responses, FMDV-induced dephosphorylation of G3BP1, compromising its inhibitory effect on viral IRES. In addition, FMDV also proteolytically cleaved G3BP1 by its 3C protease (3Cpro). G3BP1 was cleaved at glutamic acid-284 (E284) by FMDV 3Cpro, and this cleavage completely lost the abilities of G3BP1 to activate innate immunity and to inhibit FMDV replication. Together, these data provide new insights into the post-translational mechanisms by which FMDV limits host stress and antiviral responses and indicate that G3BP1 dephosphorylation and its proteolysis by viral protease are important factors in the failure of host defense against FMDV infection.

  17. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB.

    PubMed

    Jain, Ashish; Rusten, Tor Erik; Katheder, Nadja; Elvenes, Julianne; Bruun, Jack-Ansgar; Sjøttem, Eva; Lamark, Trond; Johansen, Terje

    2015-06-12

    The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The Location of the Bacterial Origin of Replication is Critical for Initial Ciproflaxcin Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Bos, Julia; Nehring, Ralph; Cruz, Diane; Austin, Doug; Rosenberg, Susan; Austin, Robert

    By using E. coli cells in which the unique origin of replication has been moved to a ectopic chromosome location distant from the native one, we probe how perturbation of gene order near the origin of replication impacts genome stability and survival under genomic attack. We find that when challenged with sub-inhibitory doses of ciprofloxacin, an antibiotic that generates replication fork stalling, cells with the ectopic origin show significant fitness loss. We show that genes functionally relevant to the cipro-induced stress response are largely located near the native origin, even in distantly related species. We show that while cipro induces increased copy number of genes proximal to the origin of replication as a direct consequence of replication fork stalling, gene copy number variation was reduced near the ectopic origin. Altered gene dosage in cells with an ectopic origin resulted in impaired replication fork repair and chromosome instability. We propose that gene distribution in the origin region acts as a fundamental first line of defense when the integrity of the genome is threatened and that genes proximal to the origin of replication serve as a mechanism of genetic innovation and a driving force of genome evolution in the presence of genotoxic antibiotics. Lewis Sigler Institute for Integrative Genomics and the Physics Department at Princeton University.

  19. Proteomics Identification of Annexin A2 as a Key Mediator in the Metastasis and Proangiogenesis of Endometrial Cells in Human Adenomyosis*

    PubMed Central

    Zhou, Shengtao; Yi, Tao; Liu, Rui; Bian, Ce; Qi, Xiaorong; He, Xiang; Wang, Kui; Li, Jingyi; Zhao, Xia; Huang, Canhua; Wei, Yuquan

    2012-01-01

    Adenomyosis is a common estrogen-dependent disorder of females characterized by a downward extension of the endometrium into the uterine myometrium and neovascularization in ectopic lesions. It accounts for chronic pelvic pain, dysmenorrhea, menorrhagia, and infertility in 8.8–61.5% women worldwide. However, the molecular mechanisms for adenomyosis development remain poorly elucidated. Here, we utilized a two-dimensional polyacrylamide gel electrophoresis/MS-based proteomics analysis to compare and identify differentially expressed proteins in matched ectopic and eutopic endometrium of adenomyosis patients. A total of 93 significantly altered proteins were identified by tandem MS analysis. Further cluster analysis revealed a group of estrogen-responsive proteins as dysregulated in adenomyosis, among which annexin A2, a member of annexin family proteins, was found up-regulated most significantly in the ectopic endometrium of adenomyosis compared with its eutopic counterpart. Overexpression of ANXA2 was validated in ectopic lesions of human adenomyosis and was found to be tightly correlated with markers of epithelial to mesenchymal transition and dysmenorrhea severity of adenomyosis patients. Functional analysis demonstrated that estrogen could remarkably up-regulate ANXA2 and induce epithelial to mesenchymal transition in an in vitro adenomyosis model. Enforced expression of ANXA2 could mediate phenotypic mesenchymal-like cellular changes, with structural and functional alterations in a β-catenin/T-cell factor (Tcf) signaling-associated manner, which could be reversed by inhibition of ANXA2 expression. We also proved that enforced expression of ANXA2 enhanced the proangiogenic capacity of adenomyotic endometrial cells through HIF-1α/VEGF-A pathway. In vivo, we demonstrated that ANXA2 inhibition abrogated endometrial tissue growth, metastasis, and angiogenesis in an adenomyosis nude mice model and significantly alleviated hyperalgesia. Taken together, our data unraveled a dual role for ANXA2 in the pathogenesis of human adenomyosis through conferring endometrial cells both metastatic potential and proangiogenic capacity, which could serve as a potential therapeutic target for the treatment of adenomyosis patients. PMID:22493182

  20. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    PubMed Central

    2010-01-01

    Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer. PMID:20409325

  1. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma.

    PubMed

    Mucaj, V; Lee, S S; Skuli, N; Giannoukos, D N; Qiu, B; Eisinger-Mathason, T S K; Nakazawa, M S; Shay, J E S; Gopal, P P; Venneti, S; Lal, P; Minn, A J; Simon, M C; Mathew, L K

    2015-04-23

    Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. As miR-124 expression is repressed in various cancer types (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared with regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 reintroduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients. Collectively, among the many pro-tumorigeneic properties of miR-124 repression in glioblastoma, we delineated a novel role in promoting tumor cell survival under stressful microenvironments, thereby supporting tumor progression.

  2. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma

    PubMed Central

    Mucaj, Vera; Lee, Samuel S.; Skuli, Nicolas; Giannoukos, Dionysios N.; Qiu, Bo; Eisinger-Mathason, T.S. Karin; Nakazawa, Michael S.; Shay, Jessica E.S.; Gopal, Pallavi P.; Venneti, Sriram; Lal, Priti; Minn, Andy J.; Simon, M. Celeste; Mathew, Lijoy K.

    2014-01-01

    Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression, and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. Since miR-124 expression is repressed in various cancers (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival, during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared to regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo, and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 re-introduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients. Collectively, among the many pro-tumorigeneic properties of miR-124 repression in glioblastoma, we delineated a novel role in promoting tumor cell survival under stressful microenvironments, thereby supporting tumor progression. PMID:24954504

  3. The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans.

    PubMed

    Fukushige, Tetsunari; Goszczynski, Barbara; Tian, Helen; McGhee, James D

    2003-10-01

    We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located approximately 5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25-55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.

  4. Integrated Phloem Sap mRNA and Protein Expression Analysis Reveals Phytoplasma-infection Responses in Mulberry.

    PubMed

    Gai, Yingping; Yuan, Shuo-Shuo; Liu, Zhao-Yang; Zhao, Huai-Ning; Liu, Qi; Qin, Yong-Li; Fang, Li-Jing; Ji, Xian-Ling

    2018-05-30

    To gain insight into the response of mulberry to phytoplasma-infection, the expression profiles of mRNAs and proteins in mulberry phloem sap were examined. A total of 955 unigenes and 136 proteins were found to be differentially expressed between the healthy and infected phloem sap. These differentially expressed mRNAs and proteins are involved in signalling, hormone metabolism, stress responses, etc. Interestingly, we found that both the mRNA and protein levels of the major latex protein-like 329 ( MuMLPL329 ) gene were increased in the infected phloem saps. Expression of the MuMLPL329 gene was induced by pathogen inoculation and was responsive to jasmonic acid. Ectopic expression of MuMLPL329 in Arabidopsis enhances transgenic plant resistance to Botrytis cinerea, Pseudomonas syringae pv tomato DC3000 ( Pst. DC3000 ) and phytoplasma. Further analysis revealed that MuMLPL329 can enhance the expression of some defense genes and might be involved in altering flavonoid content resulting in increased resistance of plants to pathogen infection. Finally, the roles of the differentially expressed mRNAs and proteins and the potential molecular mechanisms of their changes were discussed. It was likely that the phytoplasma-responsive mRNAs and proteins in the phloem saps were involved in multiple pathways of mulberry responses to phytoplasma-infection, and their changes may be partially responsible for some symptoms in the phytoplasma infected plants. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Silencing of secretory clusterin sensitizes NSCLC cells to V-ATPase inhibitors by downregulating survivin.

    PubMed

    Kim, Young-Sun; Jin, Hyeon-Ok; Hong, Sung-Eun; Song, Jie-Young; Hwang, Chang-Sun; Park, In-Chul

    2018-01-08

    Secretory clusterin (sCLU) is a stress-associated protein that confers resistance to therapy when overexpressed. In this study, we observed that the V-ATPase inhibitors bafilomycin A1 and concanamycin A significantly stimulated sCLU protein expression. Knockdown of sCLU with siRNA sensitized non-small cell lung cancer (NSCLC) cells to bafilomycin A1, suggesting that sCLU expression renders cells resistant to V-ATPase inhibitors. The dual PI3K/AKT and mTOR inhibitor BEZ235 suppressed sCLU expression and enhanced cell sensitivity induced by bafilomycin A1. Notably, sCLU knockdown further decreased the expression of the survivin protein by bafilomycin A1, and the ectopic expression of survivin alleviated the cell sensitivity by bafilomycin A1 and sCLU depletion, suggesting that increased sensitivity to sCLU depletion in the cells with V-ATPase inhibitors is due, at least in part, to the down-regulation of survivin. Taken together, we demonstrated that the depletion of sCLU expression enhances the sensitivity of NSCLC cells to V-ATPase inhibitors by decreasing survivin expression. Inhibition of the PI3K/AKT/mTOR pathway enhances the sensitivity of NSCLC cells to V-ATPase inhibitors, leading to decreased sCLU and survivin expression. Thus, we suggest that a combination of PI3K/AKT/mTOR inhibitors with V-ATPase inhibitors might be an effective approach for NSCLC treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  7. Dietary effects of cotton tissue expressing germin like protein on beet armyworm (Lepidoptera: Noctuidae) growth, survival and pupation

    USDA-ARS?s Scientific Manuscript database

    Transgenic cotton lines that ectopically express a cotton germin-like protein (ABP) were screened for resistance/tolerance factors to the beet armyworm (BAW) Spodoptera exigua (Hubner) via feeding assays. The number of BAW eggs that successfully hatched was not statistically different at 72 h observ...

  8. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice.

    PubMed

    Wolff, G L; Kodell, R L; Moore, S R; Cooney, C A

    1998-08-01

    'Viable yellow' (Avy/a) mice are larger, obese, hyperinsulinemic, more susceptible to cancer, and, on average, shorter lived than their non-yellow siblings. They are epigenetic mosaics ranging from a yellow phenotype with maximum ectopic agouti overexpression, through a continuum of mottled agouti/yellow phenotypes with partial agouti overexpression, to a pseudoagouti phenotype with minimal ectopic expression. Pseudoagouti Avy/a mice are lean, healthy, and longer lived than their yellow siblings. Here we report that feeding pregnant black a/a dams methyl-supplemented diets alters epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/black mottling in the direction of the pseudoagouti phenotype. We also present confirmatory evidence that epigenetic phenotypes are maternally heritable. Thus Avy expression, already known to be modulated by imprinting, strain-specific modification, and maternal epigenetic inheritance, is also modulated by maternal diet. These observations suggest, at least in this special case, that maternal dietary supplementation may positively affect health and longevity of the offspring. Therefore, this experimental system should be useful for identifying maternal factors that modulate epigenetic mechanisms, especially DNA methylation, in developing embryos.

  9. Expression of motility-related molecule Cdc42 in endometrial tissue in women with adenomyosis and ovarian endometriomata.

    PubMed

    Goteri, Gaia; Ciavattini, Andrea; Lucarini, Guendalina; Montik, Nina; Filosa, Alessandra; Stramazzotti, Daniela; Biagini, Graziella; Tranquilli, Andrea Luigi

    2006-09-01

    To evaluate Cdc42 expression in eutopic and ectopic endometrial tissue in patients with adenomyosis and ovarian endometriotic cysts compared with patients without endometriosis. Experimental retrospective study. University hospital. Twenty-four patients with adenomyosis, 19 with ovarian endometriomata, and 9 with fibroids or benign ovarian cysts. Hysterectomy and bilateral oophorectomy. Immunostaining for Cdc42 of eutopic and ectopic endometrial tissues. In eutopic endometrium of patients with adenomyosis and with fibroids or benign ovarian cysts, the intensity of Cdc42 immunostaining was weaker, especially in the specialized stromal cells, compared with cases with ovarian endometriosis (chi(2) test, P=.003). Expression of Cdc42 in eutopic endometrium showed a trend to be higher in the secretory than in the proliferative phase and in patients with ovarian endometriotic cysts compared with patients with adenomyosis (unpaired t test, P=.005), especially in the proliferative phase. An abnormally high expression of Cdc42 in eutopic endometrium in the secretory phase may contribute to the development of ovarian endometriosis, but it does not seem to be involved in the pathogenesis of adenomyosis.

  10. The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.

    PubMed

    Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu

    2017-01-01

    In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.

  11. Comparative analysis of laparoscopic and ultrasound-guided biopsy methods for gene expression analysis in transgenic goats.

    PubMed

    Melo, C H; Sousa, F C; Batista, R I P T; Sanchez, D J D; Souza-Fabjan, J M G; Freitas, V J F; Melo, L M; Teixeira, D I A

    2015-07-31

    The present study aimed to compare laparoscopic (LP) and ultrasound-guided (US) biopsy methods to obtain either liver or splenic tissue samples for ectopic gene expression analysis in transgenic goats. Tissue samples were collected from human granulocyte colony stimulating factor (hG-CSF)-transgenic bucks and submitted to real-time PCR for the endogenous genes (Sp1, Baff, and Gapdh) and the transgene (hG-CSF). Both LP and US biopsy methods were successful in obtaining liver and splenic samples that could be analyzed by PCR (i.e., sufficient sample sizes and RNA yield were obtained). Although the number of attempts made to obtain the tissue samples was similar (P > 0.05), LP procedures took considerably longer than the US method (P = 0.03). Finally, transgene transcripts were not detected in spleen or liver samples. Thus, for the phenotypic characterization of a transgenic goat line, investigation of ectopic gene expression can be made successfully by LP or US biopsy, avoiding the traditional approach of euthanasia.

  12. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis.

    PubMed

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-04-11

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning.

  13. Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off.

    PubMed Central

    Goligorsky, M S; DiBona, G F

    1993-01-01

    Reorientation of the alpha 3 subunit of integrins from predominantly basal to the apical cell surface of cultured renal tubular epithelial cells subjected to oxidant stress has previously been demonstrated. The present study was designed to assess functional competence of ectopically expressed apical integrins. Cell-cell adhesion assay revealed enhanced cytoatractant properties of stressed cells. Stressed epithelial cells exhibited specific recognition and binding of laminin-coated latex beads. These processes were inhibited with the peptide Gly-Arg-Gly-Asp-Asn-Pro (GRGDNP) suggesting a role of RGD-recognizing integrins in augmented adhesion to stressed cells. Given that such enhanced adhesion in in vivo acute renal failure may govern tubular obstruction by desquamated epithelium, a physiological marker of patency of tubular lumen, proximal tubular pressure, was monitored in rats subjected to 60 min of renal ischemia followed by reperfusion. Proximal tubular pressure increased 2-fold after 2 hr of reperfusion in animals that had undergone 60 min of ischemia. Infusion of GRGDNP into the renal artery during reperfusion period virtually abolished an increase in proximal tubular pressure observed in ischemic acute renal failure. These in vitro and in vivo findings are consistent with the hypothesis that RGD-recognizing integrins play an important role in the pathogenesis of tubular obstruction in ischemic acute renal failure. Images Fig. 2 Fig. 3 PMID:8516318

  14. Expression of natural killer cell activity with CD107a on ectopic endometrium in woman with endometriosis compared with non-endometriosis

    NASA Astrophysics Data System (ADS)

    Lubis, H. P.; Aldiansyah, D.; Siregar, H. S.; Rivany, R.; Hariadi, T. S.

    2018-03-01

    Some factors have an important role in endometriosis pathogenesis; there is an immune cell that plays an important role in endometrial cells that have reflux. Woman with endometriosis experienced the cellular immune disorder. It is suspected that decrease of NK cell in the peritoneal fluid caused by its qualitative defect with CD107a expression as the best marker. The aim of this study was to compare expression of NK Cell activity with CD107a between awoman with endometriosis and non-endometriosis. A case-control study from March until July 2015 in Haji Adam Malik General Hospital. The case group was ectopic endometrial tissue block paraffin and control group was normal endometrial tissue block paraffin. This study included 23 patients in endometriosis group and control group respectively. A majority proportion of CD107a expression in endometriosis group was +1 (16 patients (69.6%)), while the control group was +3 (9 patients (39.1%)). Expression of NK cell activity with CD107a in patients with endometriosis was lower than the control group (p<0.05). It suggested that cellular immune factors may play a role in the pathogenesis of endometriosis.

  15. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis

    PubMed Central

    Bombardieri, Michele; Greenhill, Claire J.; McLeod, Louise; Nerviani, Alessandra; Rocher-Ros, Vidalba; Cardus, Anna; Williams, Anwen S.; Pitzalis, Costantino; Jenkins, Brendan J.

    2015-01-01

    Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment. PMID:26417004

  16. Argonaute2 and LaminB modulate gene expression by controlling chromatin topology

    PubMed Central

    Nazer, Ezequiel; Dale, Ryan K.; Chinen, Madoka; Radmanesh, Behram

    2018-01-01

    Drosophila Argonaute2 (AGO2) has been shown to regulate expression of certain loci in an RNA interference (RNAi)-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs). Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht), which is immersed in a LAD located within a repressive topologically-associated domain (TAD). Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression. PMID:29529026

  17. Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor.

    PubMed

    Millane, R Cathriona; Kanska, Justyna; Duffy, David J; Seoighe, Cathal; Cunningham, Stephen; Plickert, Günter; Frank, Uri

    2011-06-01

    The evolutionary origin of stem cell pluripotency is an unresolved question. In mammals, pluripotency is limited to early embryos and is induced and maintained by a small number of key transcription factors, of which the POU domain protein Oct4 is considered central. Clonal invertebrates, by contrast, possess pluripotent stem cells throughout their life, but the molecular mechanisms that control their pluripotency are poorly defined. To address this problem, we analyzed the expression pattern and function of Polynem (Pln), a POU domain gene from the marine cnidarian Hydractinia echinata. We show that Pln is expressed in the embryo and adult stem cells of the animal and that ectopic expression in epithelial cells induces stem cell neoplasms and loss of epithelial tissue. Neoplasm cells downregulated the transgene but expressed the endogenous Pln gene and also Nanos, Vasa, Piwi and Myc, which are all known cnidarian stem cell markers. Retinoic acid treatment caused downregulation of Pln and the differentiation of neoplasm cells to neurosensory and epithelial cells. Pln downregulation by RNAi led to differentiation. Collectively, our results suggest an ancient role of POU proteins as key regulators of animal stem cells.

  18. Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit[W

    PubMed Central

    Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.

    2011-01-01

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236

  19. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi.

    PubMed

    Romaniuk, Maria Albertina; Frasch, Alberto Carlos; Cassola, Alejandro

    2018-06-01

    Trypanosomes, protozoan parasites of medical importance, essentially rely on post-transcriptional mechanisms to regulate gene expression in insect vectors and vertebrate hosts. RNA binding proteins (RBPs) that associate to the 3'-UTR of mature mRNAs are thought to orchestrate master developmental programs for these processes to happen. Yet, the molecular mechanisms by which differentiation occurs remain largely unexplored in these human pathogens. Here, we show that ectopic inducible expression of the RBP TcUBP1 promotes the beginning of the differentiation process from non-infective epimastigotes to infective metacyclic trypomastigotes in Trypanosoma cruzi. In early-log epimastigotes TcUBP1 promoted a drop-like phenotype, which is characterized by the presence of metacyclogenesis hallmarks, namely repositioning of the kinetoplast, the expression of an infective-stage virulence factor such as trans-sialidase, increased resistance to lysis by human complement and growth arrest. Furthermore, TcUBP1-ectopic expression in non-infective late-log epimastigotes promoted full development into metacyclic trypomastigotes. TcUBP1-derived metacyclic trypomastigotes were infective in cultured cells, and developed normally into amastigotes in the cytoplasm. By artificial in vivo tethering of TcUBP1 to the 3' untranslated region of a reporter mRNA we were able to determine that translation of the reporter was reduced by 8-fold, while its mRNA abundance was not significantly compromised. Inducible ectopic expression of TcUBP1 confirmed its role as a translational repressor, revealing significant reduction in the translation rate of multiple proteins, a reduction of polysomes, and promoting the formation of mRNA granules. Expression of TcUBP1 truncated forms revealed the requirement of both N and C-terminal glutamine-rich low complexity sequences for the development of the drop-like phenotype in early-log epimastigotes. We propose that a rise in TcUBP1 levels, in synchrony with nutritional deficiency, can promote the differentiation of T. cruzi epimastigotes into infective metacyclic trypomastigotes.

  20. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA).

    PubMed

    Torlakovic, Emina Emilia; Gomez, Jose D; Driman, David K; Parfitt, Jeremy R; Wang, Chang; Benerjee, Tama; Snover, Dale C

    2008-01-01

    The morphologic distinction between various serrated polyps of the colorectum may be challenging. The distinction between sessile serrated adenoma (SSA) and traditional serrated adenoma (TSA) may be difficult using currently available criteria mostly based on cytologic characteristics. We have evaluated 66 serrated polyps including 29 SSA, 18 TSA, and 19 hyperplastic polyps for overall shape of the polyps, architectural features of individual crypts, the presence of eosinophilic cytoplasm, size and distribution of the proliferation and maturation zones, as well as Ki-67 and CK20 expression. The extent of the expression of CK20 and Ki-67 could not distinguish between the 3 types of serrated polyps, but the distribution of their expression was very helpful and differences were statistically significant. The distribution of Ki-67+ cells was the single most helpful distinguishing feature of the serrated polyp type (P<0.0001, chi test). Hyperplastic polyps had regular, symmetric, and increased Ki-67 expression. SSA had irregular, asymmetric, and highly variable expression of Ki-67. TSA had low Ki-67 expression, which was limited to "ectopic crypts" and admixed tubular adenomalike areas. In serrated polyps, ectopic crypt formation (ECF) defined by the presence of ectopic crypts with their bases not seated adjacent to the muscularis mucosae was nearly exclusive to TSA and was found in all cases, while the presence of cytologic atypia and eosinophilia of the cytoplasm were characteristic, but not limited to TSA. No evidence of ECF, but nevertheless abnormal distribution of proliferation zone was characteristic of SSA, whereas HP had neither. The presence of the ECF defines TSA in a more rigorous fashion than previous diagnostic criteria and also explains the biologic basis of exuberant protuberant growth associated with TSA and the lack of such growth in SSA. Recognition of this phenomenon may also help in exploring the genetic and molecular basis for differences between SSA and TSA, because these architectural abnormalities may well be a reflection of abnormalities in genetically programmed mucosal development.

  1. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis1[OPEN

    PubMed Central

    Weemen, Mieke

    2017-01-01

    Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency. PMID:28830937

  2. The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera[W

    PubMed Central

    Höll, Janine; Vannozzi, Alessandro; Czemmel, Stefan; D'Onofrio, Claudio; Walker, Amanda R.; Rausch, Thomas; Lucchin, Margherita; Boss, Paul K.; Dry, Ian B.; Bogs, Jochen

    2013-01-01

    Plant stilbenes are phytoalexins that accumulate in a small number of plant species, including grapevine (Vitis vinifera), in response to biotic and abiotic stresses and have been implicated in many beneficial effects on human health. In particular, resveratrol, the basic unit of all other complex stilbenes, has received widespread attention because of its cardio-protective, anticarcinogenic, and antioxidant properties. Although stilbene synthases (STSs), the key enzymes responsible for resveratrol biosynthesis, have been isolated and characterized from several plant species, the transcriptional regulation underlying stilbene biosynthesis is unknown. Here, we report the identification and functional characterization of two R2R3-MYB–type transcription factors (TFs) from grapevine, which regulate the stilbene biosynthetic pathway. These TFs, designated MYB14 and MYB15, strongly coexpress with STS genes, both in leaf tissues under biotic and abiotic stress and in the skin and seed of healthy developing berries during maturation. In transient gene reporter assays, MYB14 and MYB15 were demonstrated to specifically activate the promoters of STS genes, and the ectopic expression of MYB15 in grapevine hairy roots resulted in increased STS expression and in the accumulation of glycosylated stilbenes in planta. These results demonstrate the involvement of MYB14 and MYB15 in the transcriptional regulation of stilbene biosynthesis in grapevine. PMID:24151295

  3. Treatment-related neuroendocrine prostate cancer resulting in Cushing's syndrome.

    PubMed

    Ramalingam, Sundhar; Eisenberg, Adva; Foo, Wen Chi; Freedman, Jennifer; Armstrong, Andrew J; Moss, Larry G; Harrison, Michael R

    2016-12-01

    Here we present, to the best of our knowledge, the first case of a paraneoplastic Cushing's syndrome (hypercortisolism) resulting from treatment-related neuroendocrine prostate cancer - a highly aggressive and difficult disease to treat. A 51-year-old man was started on androgen deprivation therapy after presenting with metastatic prostate cancer, characterized by diffuse osseous metastasis. Shortly thereafter, he developed progressive disease with biopsy proven neuroendocrine prostate cancer as well as symptoms of increased skin pigmentation, hypokalemia, hypertension, hyperglycemia and profound weakness, consistent with ectopic Cushing's syndrome. Molecular analysis of the patient's tumor through RNA sequencing showed high expression of several genes including CHGA, ASCL1, CALCA, HES6, PCSK1, CALCB and INSM1 confirming his neuroendocrine phenotype; elevated POMC expression was found, supporting the diagnosis of ectopic Cushing's syndrome. © 2016 The Japanese Urological Association.

  4. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    PubMed

    Kang, Jongkyun; Yeom, Eunbyul; Lim, Janghoo; Choi, Kwang-Wook

    2014-01-01

    The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  5. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  6. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana.

    PubMed

    Seo, Eunyoung; Yeom, Seon-In; Jo, Sunghwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-04-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

  7. p38 phosphorylation in medullary microglia mediates ectopic orofacial inflammatory pain in rats.

    PubMed

    Kiyomoto, Masaaki; Shinoda, Masamichi; Honda, Kuniya; Nakaya, Yuka; Dezawa, Ko; Katagiri, Ayano; Kamakura, Satoshi; Inoue, Tomio; Iwata, Koichi

    2015-08-12

    Orofacial inflammatory pain is likely to accompany referred pain in uninflamed orofacial structures. The ectopic pain precludes precise diagnosis and makes treatment problematic, because the underlying mechanism is not well understood. Using the established ectopic orofacial pain model induced by complete Freund's adjuvant (CFA) injection into trapezius muscle, we analyzed the possible role of p38 phosphorylation in activated microglia in ectopic orofacial pain. Mechanical allodynia in the lateral facial skin was induced following trapezius muscle inflammation, which accompanied microglial activation with p38 phosphorylation and hyperexcitability of wide dynamic range (WDR) neurons in the trigeminal spinal subnucleus caudalis (Vc). Intra-cisterna successive administration of a p38 mitogen-activated protein kinase selective inhibitor, SB203580, suppressed microglial activation and its phosphorylation of p38. Moreover, SB203580 administration completely suppressed mechanical allodynia in the lateral facial skin and enhanced WDR neuronal excitability in Vc. Microglial interleukin-1β over-expression in Vc was induced by trapezius muscle inflammation, which was significantly suppressed by SB203580 administration. These findings indicate that microglia, activated via p38 phosphorylation, play a pivotal role in WDR neuronal hyperexcitability, which accounts for the mechanical hypersensitivity in the lateral facial skin associated with trapezius muscle inflammation.

  8. The remedial effect of soluble interleukin-1 receptor type II on endometriosis in the nude mouse model.

    PubMed

    Gao, Liying; Sun, Liang; Cui, Yugui; Hou, Zhen; Gao, Li; Zhou, Jing; Mao, Yundong; Han, Suping; Liu, Jiayin

    2010-01-01

    Recent studies have shown that the local expression of soluble interleukin (IL) -1 receptor type II (sIL-1 RII) in endometrial tissue of women with endometriosis is decreased, and the depression of IL-1 RII was more significant in infertile women than that in fertile women with endometriosis. In this research, we investigated the remedial effect of sIL-1-RII administration on endometriosis in the nude mouse model. NINETEEN NUDE MODEL MICE WITH ENDOMETRIOSIS WERE RANDOMLY DIVIDED INTO THREE GROUPS: group A was treated by intraperitoneal administration with only sIL-1 RII for two weeks, group B was similarly treated with only IL-1, and group C (control) was administered saline . After 2 weeks, the size of the ectopic endometrial lesions was calculated, and the expression of vascular endothelial growth factor (VEGF) and B-cell lymphoma leukemia-2 (Bcl-2) were detected by immunohistochemistry. The IL-8 and VEGF levels in the peritoneal fluid (PF) and serum were also measured by enzyme-linked immunosorbent assay (ELISA). The mean size of ectopic endometrial lesion did not differ between the three groups (P > 0.05). Compared with the control, the expression of VEGF and Bcl-2 was significantly lower in group A, and higher in group B. In the three groups, the levels of IL-8 in the PF and serum were highest in group A, and lowest in group B. sIL-1 RII may suppresse hyperplasia of ectopic endometriosis, perhaps by reducing the expression of certain cytokines, such as VEGF, IL-8, and Bcl-2, which could provide a new clinical strategy for the treatment of endometriosis.

  9. Activation of the Hedgehog Signaling Pathway in the Developing Lens Stimulates Ectopic FoxE3 Expression and Disruption in Fiber Cell Differentiation

    PubMed Central

    Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.

    2012-01-01

    Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411

  10. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  11. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer.

    PubMed

    Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna

    2007-06-08

    LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.

  12. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells.

    PubMed

    Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew

    2011-12-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.

  13. Junction region of EWS-FLI1 fusion protein has a dominant negative effect in Ewing's sarcoma in vitro.

    PubMed

    Jully, Babu; Vijayalakshmi, Ramshankar; Gopal, Gopisetty; Sabitha, Kesavan; Rajkumar, Thangarajan

    2012-11-12

    Ewing's sarcoma is a malignancy characterized by a specific 11:22 chromosomal translocation which generates a novel EWS-FLI1 fusion protein functioning as an aberrant transcription factor. In the present study, we have further characterized the junction region of the EWS-FLI1 fusion protein. In-silico model of EWS-FLI1 fusion protein was analysed for ligand binding sites, and a putative region (amino acid (aa) 251-343 of the type 1 fusion protein) in the vicinity of the fusion junction was cloned and expressed using bacterial expression. The recombinant protein was characterized by Circular Dichroism (CD). We then expressed aa 251-280 ectopically in Ewing's sarcoma cell-line and its effect on cell proliferation, tumorigenicity and expression of EWS-FLI1 target genes were analysed. Our modelling analysis indicated that Junction region (aa 251-343) encompasses potential ligand biding sites in the EWS-FLI1 protein and when expressed in bacteria was present as soluble form. Ectopically expressing this region in Ewing's sarcoma cells inhibited tumorigenicity, and EWS-FLI1 target genes indicating a dominant negative biological effect. Junction region can be exploited further as target for drug development in future to specifically target EWS-FLI1 in Ewing's Sarcoma.

  14. Ectopic expression of SUPERMAN suppresses development of petals and stamens.

    PubMed

    Yun, Jae-Young; Weigel, Detlef; Lee, Ilha

    2002-01-01

    The floral regulatory gene SUPERMAN (SUP) encodes a C2H2 type zinc finger protein that is required for maintaining boundaries between floral organs in Arabidopsis. It has been proposed that the main function of SUP is to balance cell proliferation in the third and fourth whorl of developing flowers, thereby maintaining the boundaries between the two whorls. To gain further insight into the function of SUP, we have ectopically expressed SUP using the promoter of APETALA1 (AP1), a gene that is initially expressed throughout floral meristems and later becomes restricted to the first and second whorls. Flowers of AP1::SUP plants have fewer floral organs, consistent with an effect of SUP on cell proliferation. In addition, the AP1::SUP transgene caused the conversion of petals to sepals and suppressed the development of stamens. The expression of the B function homeotic gene APETALA3 (AP3) and its regulator UNUSUAL FLORAL ORGANS (UFO) were delayed and reduced in AP1::SUP flowers. However, SUP does not act merely through UFO, as constitutive expression of UFO did not rescue the defects in petal and stamen development in AP1::SUP flowers. Together, these results suggest that SUP has both indirect and direct effects on the expression of B function homeotic genes.

  15. Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates.

    PubMed

    Shikhagaie, Medya Mara; Björklund, Åsa K; Mjösberg, Jenny; Erjefält, Jonas S; Cornelissen, Anne S; Ros, Xavier Romero; Bal, Suzanne M; Koning, Jasper J; Mebius, Reina E; Mori, Michiko; Bruchard, Melanie; Blom, Bianca; Spits, Hergen

    2017-02-14

    Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1 + group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1 + ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1 + ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1 - cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1 + ILC3s. NRP1 + ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. High-Fat Diet-Induced Adiposity, Adipose Inflammation, Hepatic Steatosis and Hyperinsulinemia in Outbred CD-1 Mice

    PubMed Central

    Gao, Mingming; Ma, Yongjie; Liu, Dexi

    2015-01-01

    High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population. PMID:25768847

  17. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice.

    PubMed

    Gao, Mingming; Ma, Yongjie; Liu, Dexi

    2015-01-01

    High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.

  18. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. © 2016 John Wiley & Sons Ltd.

  19. The value of multidisciplinary team meetings within an early pregnancy assessment unit.

    PubMed

    Bharathan, Rasiah; Farag, Mena; Hayes, Kevin

    2016-08-01

    This is the first study to ascertain the value of multidisciplinary team (MDT) meetings within an early pregnancy assessment unit (EPAU). Our national telephone survey identified that in the United Kingdom, overall 37% of EPAU utilise regular MDT meetings. Secondary and tertiary hospitals are just as likely to hold regular MDT meetings. The participants in our interview study expressed the principal benefits of regular MDT meetings as communication, education and effective stress management. The perceived additional benefits included improved care quality, better patient experience and enhanced team cohesion. During the meetings, at least, one representative from every tier of staffing was present. The caseload of the MDT meeting comprised ectopic pregnancies and pregnancies of unknown location. We propose a number of research studies, which would build on this study. Such efforts will help enhance the effectiveness of the MDT-based EPAU service.

  20. Coordinate regulation of the Suf and Isc Fe-S cluster biogenesis pathways by IscR is essential for viability of Escherichia coli.

    PubMed

    Mettert, Erin L; Kiley, Patricia J

    2014-12-01

    Fe-S cluster biogenesis is essential for the viability of most organisms. In Escherichia coli, this process requires either the housekeeping Isc or the stress-induced Suf pathway. The global regulator IscR coordinates cluster synthesis by repressing transcription of the isc operon by [2Fe-2S]-IscR and activating expression of the suf operon. We show that either [2Fe-2S]-IscR or apo-IscR can activate suf, making expression sensitive to mainly IscR levels and not the cluster state, unlike isc expression. We also demonstrate that in the absence of isc, IscR-dependent suf activation is essential since strains lacking both the Isc pathway and IscR were not viable unless Suf was expressed ectopically. Similarly, removal of the IscR binding site in the sufA promoter also led to a requirement for isc. Furthermore, suf expression was increased in a Δisc mutant, presumably due to increased IscR levels in this mutant. This was surprising because the iron-dependent repressor Fur, whose higher-affinity binding at the sufA promoter should occlude IscR binding, showed only partial repression. In addition, Fur derepression was not sufficient for viability in the absence of IscR and the Isc pathway, highlighting the importance of direct IscR activation. Finally, a mutant lacking Fur and the Isc pathway increased suf expression to the highest observed levels and nearly restored [2Fe-2S]-IscR activity, providing a mechanism for regulating IscR activity under stress conditions. Together, these findings have enhanced our understanding of the homeostatic mechanism by which cells use one regulator, IscR, to differentially control Fe-S cluster biogenesis pathways to ensure viability. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    PubMed

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  2. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition.

    PubMed

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-11-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. © 2014 American Society of Plant Biologists. All rights reserved.

  3. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    PubMed Central

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  4. PreImplantation Factor in endometriosis: A potential role in inducing immune privilege for ectopic endometrium

    PubMed Central

    Scarpellini, Fabio; Marconi, Daniela; Rossi, Gabriele; Simmilion, Cedric; Mueller, Michael D.; Barnea, Eytan R.

    2017-01-01

    Endometriosis is a chronic inflammatory condition characterised by the growth of endometrial epithelial and stromal cells outside the uterine cavity. In addition to Sampson’s theory of retrograde menstruation, endometriosis pathogenesis is facilitated by a privileged inflammatory microenvironment, with T regulatory FoxP3+ expressing T cells (Tregs) being a significant factor. PreImplantation Factor (PIF) is a peptide essential for pregnancy recognition and development. An immune modulatory function of the synthetic PIF analog (sPIF) has been successfully confirmed in multiple animal models. We report that PIF is expressed in the epithelial ectopic cells in close proximity to FoxP3+ stromal cells. We provide evidence that PIF interacts with FoxP3+ cells and modulates cell viability, dependent on cell source and presence of inflammatory mediators. Our finding represent a novel PIF-based mechanism in endometriosis that has potential for novel therapeutics. PMID:28902871

  5. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  6. Signaling by ectopically expressed Drosophila Src64 requires the protein-tyrosine phosphatase corkscrew and the adapter downstream of receptor kinases.

    PubMed

    Cooper, J A; Simon, M A; Kussick, S J

    1996-11-01

    Vertebrate Src can be activated by specific mutations to become oncogenic. Analogous mutations in Drosophila Src64 (DSrc) induce abnormal differentiation of photoreceptor cells when expressed ectopically in the developing Drosophila adult eye. We have investigated the roles that the adapter protein, Downstream of receptor kinases (Drk), and the SH2 domain-containing tyrosine phosphatase, Corkscrew (Csw), play in this process. We find that dominant-negative mutations in either the drk or csw genes ameliorate the developmental abnormalities induced by activated DSrc. This suggests that Drk and Csw are required downstream of, or parallel to, DSrc. Csw does not act solely as an upstream activator of DSrc. The results are discussed in relation to potential roles for the vertebrate homologues of Drk and Csw (Grb2 and SHP2, respectively) in the transformation of fibroblasts by vertebrate Src.

  7. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm.

    PubMed

    Elwell, Jennifer A; Lovato, TyAnna L; Adams, Melanie M; Baca, Erica M; Lee, Thai; Cripps, Richard M

    2015-04-15

    Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Autophagy mediates cell cycle response by regulating nucleocytoplasmic transport of PAX6 in limbal stem cells under ultraviolet-A stress

    PubMed Central

    Laggner, Maria; Pollreisz, Andreas; Schmidinger, Gerald; Schmidt-Erfurth, Ursula; Chen, Ying-Ting

    2017-01-01

    Limbal stem cells (LSC) account for homeostasis and regeneration of corneal epithelium. Solar ultraviolet A (UVA) is the major source causing oxidative damage in the ocular surface. Autophagy, a lysosomal degradation mechanism, is essential for physiologic function and stress defense of stem cells. PAX6, a master transcription factor governing corneal homeostasis by regulating cell cycle and cell fate of LSC, responds to oxidative stress by nucleocytoplasmic shuttling. Impaired autophagy and deregulated PAX6 have been reported in oxidative stress-related ocular surface disorders. We hypothesize a functional role for autophagy and PAX6 in LSC’s stress response to UVA. Therefore, human LSC colonies were irradiated with a sub-lethal dose of UVA and autophagic activity and intracellular reactive oxygen species (ROS) were measured by CYTO-ID assay and CM-H2DCFDA live staining, respectively. Following UVA irradiation, the percentage of autophagic cells significantly increased in LSC colonies while intracellular ROS levels remained unaffected. siRNA-mediated knockdown (KD) of ATG7 abolished UVA-induced autophagy and led to an excessive accumulation of ROS. Upon UVA exposure, LSCs displayed nuclear-to-cytoplasmic translocation of PAX6, while ATG7KD or antioxidant pretreatment largely attenuated the intracellular trafficking event. Immunofluorescence showing downregulation of proliferative marker PCNA and induction of cell cycle regulator p21 indicates cell cycle arrest in UVA-irradiated LSC. Abolishing autophagy, adenoviral-assisted restoration of nuclear PAX6 or antioxidant pretreatment abrogated the UVA-induced cell cycle arrest. Adenoviral expression of an ectopic PAX gene, PAX7, did not affect UVA cell cycle response. Furthermore, knocking down PAX6 attenuated the cell cycle progression of irradiated ATG7KD LSC by de-repressing p21 expression. Collectively, our data suggest a crosstalk between autophagy and PAX6 in regulating cell cycle response of ocular progenitors under UVA stress. Autophagy deficiency leads to impaired intracellular trafficking of PAX6, perturbed redox balance and uncurbed cell cycle progression in UVA-stressed LSCs. The coupling of autophagic machinery and PAX6 in cell cycle regulation represents an attractive therapeutic target for hyperproliferative ocular surface disorders associated with solar radiation. PMID:28700649

  9. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia.

    PubMed

    Barlow, A J; Francis-West, P H

    1997-01-01

    The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.

  10. Expression of the poplar Flowering Locus T1 (FT1) gene reduces the generation time in plum (Prunus domestica L.)

    USDA-ARS?s Scientific Manuscript database

    Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...

  11. Maternal epigenetics and methyl supplements affect agouti gene expression in A{sup vy}/a mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, G.L.; Kodell, R.L.; Cooney, C.A.

    Viable yellow (A{sup vy}/a) mice are larger, obese, hyperinsulinemic, more susceptible to cancer, and, on average, shorter lived than their non-yellow siblings. They are epigenetic mosaics ranging from a yellow phenotype with maximum ectopic agouti overexpression, through a continuum of mottled agouti/yellow phenotypes with partial agouti overexpression, to a pseudoagouti phenotype with minimal ectopic expression. Pseudoagouti A{sup vy}/a mice are lean, healthy, and longer lived than their yellow siblings. Here the authors report that feeding pregnant black a/a dams methyl-supplemented diets alters epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/black mottling in the direction ofmore » the pseudoagouti phenotype. They also present confirmatory evidence that epigenetic phenotypes are maternally heritable. Thus A{sup vy} expression, already known to be modulated by imprinting, strain-specific modification, and maternal epigenetic inheritance, is also modulated by maternal diet. These observations suggest, at least in this special case, that maternal dietary supplementation may positively affect health and longevity of the offspring. Therefore, this experimental system should be useful for identifying maternal factors that modulate epigenetic mechanisms, especially DNA methylation, in developing embryos.« less

  12. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway.

    PubMed

    Zhang, Ming-Xue; Zhang, Jie; Zhang, Hong; Tang, Hua

    2016-01-01

    MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3'UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.

  13. The Effect of Recombinant Tyrosine Hydroxylase Expression on the Neurogenic Differentiation Potency of Mesenchymal Stem Cells

    PubMed Central

    Duruksu, Gokhan; Karaoz, Erdal

    2018-01-01

    Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs. Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH. Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation. Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines. PMID:29656620

  14. Differentiation of EL4 lymphoma cells by tumoral environment is associated with inappropriate expression of the large chondroitin sulfate proteoglycan PG-M and the tumor-associated antigen HTgp-175.

    PubMed

    Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J

    1998-11-09

    Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.

  15. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development.

    PubMed

    Kiefer, Susan M; Robbins, Lynn; Stumpff, Kelly M; Lin, Congxing; Ma, Liang; Rauchman, Michael

    2010-09-01

    Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.

  16. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells

    PubMed Central

    Wakabayashi, Shunichi; Soma, Atsumi; Sato, Saeko; Nakatake, Yuhki; Oda, Mayumi; Murakami, Miyako; Sakota, Miki; Chikazawa-Nohtomi, Nana

    2016-01-01

    Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings. PMID:27802135

  17. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant.

    PubMed

    Jing, Danlong; Xia, Yan; Chen, Faju; Wang, Zhi; Zhang, Shougong; Wang, Junhui

    2015-02-01

    PISTILLATA (PI) plays crucial roles in Arabidopsis flower development by specifying petal and stamen identities. To investigate the molecular mechanisms underlying organ development of woody angiosperm in Catalpa, we isolated and identified a PI homologue, referred to as CabuPI (C. bungei PISTILLATA), from two genetically cognate C. bungei (Bignoniaceae) bearing single and double flowers. Sequence and phylogenetic analyses revealed that the gene is closest related to the eudicot PI homologues. Moreover, a highly conserved PI-motif is found in the C-terminal regions of CabuPI. Semi-quantitative and quantitative real time PCR analyses showed that the expression of CabuPI was restricted to petals and stamens. However, CabuPI expression in the petals and stamens persisted throughout all floral development stages, but the expression levels were different. In 35S::CabuPI transgenic homozygous pi-1 mutant Arabidopsis, the second and the third whorl floral organs produced normal petals and a different number of stamens, respectively. Furthermore, ectopic expression of the CabuPI in transgenic wild-type or heterozygote pi-1 mutant Arabidopsis caused the first whorl sepal partially converted into a petal-like structure. These results clearly reveal the functional conservation of PI homologues between C. bungei and Arabidopsis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing's syndrome.

    PubMed

    Lecoq, Anne-Lise; Stratakis, Constantine A; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Deméocq, Vianney; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; de Herder, Wouter; Louiset, Estelle; Lacroix, André; Chanson, Philippe; Bouligand, Jérôme; Kamenický, Peter

    2017-09-21

    GIP-dependent Cushing's syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing's syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing's syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations.

  19. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3.

    PubMed

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-05-04

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.

  20. Human Chorionic Gonadotropin and Breast Cancer

    PubMed Central

    Schüler-Toprak, Susanne; Treeck, Oliver; Ortmann, Olaf

    2017-01-01

    Breast cancer is well known as a malignancy being strongly influenced by female steroids. Pregnancy is a protective factor against breast cancer. Human chorionic gonadotropin (HCG) is a candidate hormone which could mediate this antitumoral effect of pregnancy. For this review article, all original research articles on the role of HCG in breast cancer were considered, which are listed in PubMed database and were written in English. The role of HCG in breast cancer seems to be a paradox. Placental heterodimeric HCG acts as a protective agent by imprinting a permanent genomic signature of the mammary gland determining a refractory condition to malignant transformation which is characterized by cellular differentiation, apoptosis and growth inhibition. On the other hand, ectopic expression of β-HCG in various cancer entities is associated with poor prognosis due to its tumor-promoting function. Placental HCG and ectopically expressed β-HCG exert opposite effects on breast tumorigenesis. Therefore, mimicking pregnancy by treatment with HCG is suggested as a strategy for breast cancer prevention, whereas targeting β-HCG expressing tumor cells seems to be an option for breast cancer therapy. PMID:28754015

  1. Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator

    PubMed Central

    Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas

    2014-01-01

    Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525

  2. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis

    PubMed Central

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-01-01

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning. DOI: http://dx.doi.org/10.7554/eLife.12845.001 PMID:27063937

  3. Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes

    PubMed Central

    Min, Jaewon; Wright, Woodring E.

    2017-01-01

    ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773

  4. The inhibitor of kappa B kinase-epsilon regulates MMP-3 expression levels and can promote lung metastasis.

    PubMed

    Seccareccia, E; Pinard, M; Wang, N; Li, S; Burnier, J; Dankort, D; Brodt, P

    2014-08-18

    The factors that determine the ability of metastatic tumor cells to expand and grow in specific secondary site(s) are not yet fully understood. Matrix metalloproteinases (MMP) were identified as potential regulators of the site-specificity of metastasis. We found that lung carcinoma cells ectopically expressing high levels of the receptor for the type I insulin like growth factor receptor (M27(R) cells) had a significant reduction in MMP-3 expression levels and this coincided with reduced metastasis to the lung. We used these cells to further investigate signaling pathways regulating MMP-3 expression and the role that MMP-3 plays in lung metastasis. We show that ectopic IκB kinase ɛ (IKKɛ) expression in these cells partly restored MMP-3 expression levels and also sensitized MMP-3 transcription to induction by phorbol 12-myristate 13-acetate (PMA). This increase in MMP-3 production was due to increased activation of several signal transduction mediators, including protein kinase C alpha, ERK2, Akt and the transcription factor p65. Furthermore, reconstitution of MMP-3 expression in M27(R) cells restored their ability to colonize the lung whereas silencing of MMP-3 in M27 cells reduced metastases. Collectively, our results implicate IKKɛ as a central regulator of PMA-induced cell signaling and MMP-3 expression and identify MMP-3 as an enabler of tumor cell expansion in the lung.Oncogenesis (2014) 3, e116; doi:10.1038/oncsis.2014.28; published online 18 August 2014.

  5. Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Zhengliang; Deblis, Ryan; Glenn, Honor

    2007-11-15

    Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less

  6. The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development

    PubMed Central

    Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.

    2016-01-01

    ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379

  7. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    PubMed

    Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  8. Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress.

    PubMed

    Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X

    2017-08-01

    Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 ( JAB1/COPS5 ) and thioredoxin ( TRX ) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines. Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo Conclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin.

    PubMed

    Scott, Timothy L; Wicker, Christina A; Suganya, Rangaswamy; Dhar, Bithika; Pittman, Thomas; Horbinski, Craig; Izumi, Tadahide

    2017-02-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein crucial for repair of oxidized DNA damage not only in genomic DNA but also in mitochondrial DNA. Parkin, a tumor suppressor and Parkinson's disease (PD) associated gene, is an E3 ubiquitin ligase crucial for mitophagy. Although DNA damage is known to induce mitochondrial stress, Parkin's role in regulating DNA repair proteins has not been elucidated. In this study, we examined the possibility of Parkin-dependent ubiquitination of APE1. Ectopically expressed APE1 was degraded by Parkin and PINK1 via polyubiquitination in mouse embryonic fibroblast cells. PD-causing mutations in Parkin and PINK1 abrogated APE1 ubiquitination. Interaction of APE1 with Parkin was observed by co-immunoprecipitation, proximity ligation assay, and co-localization in the cytoplasm. N-terminal deletion of 41 amino acid residues in APE1 significantly reduced the Parkin-dependent APE1 degradation. These results suggested that Parkin directly ubiquitinated N-terminal Lys residues in APE1 in the cytoplasm. Modulation of Parkin and PINK1 activities under mitochondrial or oxidative stress caused moderate but statistically significant decrease of endogenous APE1 in human cell lines including SH-SY5Y, HEK293, and A549 cells. Analyses of glioblastoma tissues showed an inverse relation between the expression levels of APE1 and Parkin. These results suggest that degradation of endogenous APE1 by Parkin occur when cells are stressed to activate Parkin, and imply a role of Parkin in maintaining the quality of APE1, and loss of Parkin may contribute to elevated APE1 levels in glioblastoma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Overexpression or ectopic expression of MUC2 is the common property of mucinous carcinomas of the colon, pancreas, breast, and ovary.

    PubMed

    Hanski, C; Hofmeier, M; Schmitt-Gräff, A; Riede, E; Hanski, M L; Borchard, F; Sieber, E; Niedobitek, F; Foss, H D; Stein, H; Riecken, E O

    1997-08-01

    Mucinous carcinomas of the colorectum have been reported to overexpress the intestinal mucin MUC2. The purpose of this study was to determine whether this alteration is shared by mucinous tumours of the ovary, breast, and pancreas. A total of 40 breast carcinomas (22 of mucinous and 18 of ductal invasive type), 39 ovarian adenocarcinomas (16 mucinous, 23 serous), 47 colorectal carcinomas (25 mucinous and 22 non-mucinous), and 41 pancreatic adenocarcinomas (14 mucinous, 27 non-mucinous) were investigated by immunohistochemistry with the anti-MUC2 monoclonal antibody 4F1 and the expression pattern was ranked. MUC2 mucin is expressed in the normal colonic epithelium; in the normal epithelium of the breast, ovary, and pancreas, it was not detectable by immunohistochemistry or by reverse transcriptase-polymerase chain reaction (RT-PCR). In agreement with previous reports, the colonic mucinous carcinomas differed significantly from the non-mucinous carcinomas by strong MUC2 expression. In all mucinous carcinomas of the ovary, breast, and pancreas, de novo expression of the MUC2 gene was observed, which differentiated mucinous and non-mucinous carcinomas of these tissues (P < 0.001). The overexpression or ectopic expression of the MUC2 gene exhibited by mucinous carcinomas of four organs indicates a common genetic lesion associated with the mucinous tumour phenotype.

  12. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.

    PubMed

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep

    2016-09-09

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells

    PubMed Central

    Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M

    2009-01-01

    Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267

  14. Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model.

    PubMed

    Rapti, Kleopatra; Diokmetzidou, Antigoni; Kloukina, Ismini; Milner, Derek J; Varela, Aimilia; Davos, Constantinos H; Capetanaki, Yassemi

    2017-09-01

    Oxidative stress has been linked strongly to cell death and cardiac remodeling processes, all hallmarks of heart failure. Mice deficient for desmin (des-/-), the major muscle specific intermediate filament protein, develop dilated cardiomyopathy and heart failure characterized by mitochondrial defects and cardiomyocyte death. The cellular and biochemical alterations in the hearts of these mice strongly suggest that oxidative stress is one of the mechanisms contributing to the pathogenesis of the phenotype. Recently, we showed that indeed the desmin deficient cardiomyocytes are under increased oxidative stress. In order to verify these findings in vivo, we generated transgenic animals overexpressing SOD2 (MnSOD) and/or catalase in the heart and crossed them with des-/- mice, thus allowing us to evaluate the contribution of oxidative injury in inherited cardiomyopathies, as well as the therapeutic potential of antioxidant strategies. Moderate MnSOD and/or catalase overexpression in des-/- hearts leads to a marked decrease in intracellular reactive oxygen species (ROS), ameliorates mitochondrial and other ultrastructural defects, minimizes myocardial degeneration and leads to a significant improvement of cardiac function. Importantly, catalase overexpression increased the 50% survival rate of des-/- mice in an obligatory exercise to 100%. In contrast, MnSOD overexpression enhanced the lethality of des-/- mice, underscoring the importance of a fine balanced cellular redox status. Overall, the present study supports the contribution of oxidative stress in the development of des-/- cardiomyopathy and points to a well-considered antioxidant treatment as therapeutic for cardiomyopathies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    PubMed

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Pichia pastoris (syn. Komagataella phaffii ) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae , where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (<10%) harboring ectopically integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs). IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast Saccharomyces cerevisiae , expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii ). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains. Copyright © 2018 American Society for Microbiology.

  16. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition.

    PubMed

    Mi, Yashi; Zhang, Wentong; Tian, Haoyu; Li, Runnan; Huang, Shuxian; Li, Xingyu; Qi, Guoyuan; Liu, Xuebo

    2018-03-01

    As a major nutraceutical component of green tea (-)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists due to its well-documented antioxidant and antiobesity bioactivities. In the current study, we aimed to investigate the protective effect of EGCG on metabolic misalignment and in balancing the redox status in mice liver and HepG2 cells under insulin resistance condition. Our results indicated that EGCG accelerates the glucose uptake and evokes IRS-1/Akt/GLUT2 signaling pathway via dampening the expression of protein tyrosine phosphatase 1B (PTP1B). Consistently, ectopic expression of PTP1B by Ad-PTP1B substantially impaired EGCG-elicited IRS-1/Akt/GLUT2 signaling pathway. Moreover, EGCG co-treatment stimulated nuclear translocation of Nrf2 by provoking P13K/AKT signaling pathway and thus modulated the downstream expressions of antioxidant enzymes such as HO-1 and NQO-1 in HepG2 cells. Furthermore, knockdown Nrf2 by small interfering RNA (siRNA) notably enhanced the expression of PTP1B and blunt EGCG-stimulated glucose uptake. Consistent with these results, in vivo study revealed that EGCG supplement significantly ameliorated high-fat and high-fructose diet (HFFD)-triggered insulin resistance and oxidative stress by up-regulating the IRS-1/AKT and Keap1/Nrf2 transcriptional pathways. Administration of an appropriate chemopreventive agent, such as EGCG, could potentially serve as an additional therapeutic intervention in the arsenal against obesity.

  17. Mitochondrial targeting of HIF-1α inhibits hypoxia-induced apoptosis independently of its transcriptional activity.

    PubMed

    Li, Hong-Sheng; Zhou, Yan-Ni; Li, Lu; Li, Sheng-Fu; Long, Dan; Chen, Xue-Lu; Zhang, Jia-Bi; Li, You-Ping; Feng, Li

    2018-04-25

    The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates adaptive responses to hypoxia by nuclear translocation and regulation of gene expression. Mitochondrial changes are critical for the adaptive response to hypoxia. However, the transcriptional and non-transcriptional mechanisms by which HIF-1α regulates mitochondria under hypoxia are poorly understood. Here, we examined the subcellular localization of HIF-1α in human cells and identified a small fraction of HIF-1α that translocated to the mitochondria after exposure to hypoxia or hypoxia-mimicking pharmacological agents. To probe the function of this HIF-1α population, we ectopically expressed a mitochondrial-targeted form of HIF-1α (mito-HIF-1α). Expression of mito-HIF-1α was sufficient to attenuate apoptosis induced by exposure to hypoxia or H 2 O 2 -induced oxidative stress. Moreover, mito-HIF-1α expression reduced the production of reactive oxygen species, the collapse of mitochondrial membrane potential, and the expression of mitochondrial DNA-encoded mRNA in response to hypoxia. However, these functions of mito-HIF-1α were independent of its conventional transcriptional activity. Finally, the livers of mice with CCl 4 -induced fibrosis showed a progressive increase in HIF-1α association with the mitochondria, indicating the clinical relevance of this finding. These data suggested that mitochondrial HIF-1α protects against apoptosis independently of its well-known role as a transcription factor. Copyright © 2018. Published by Elsevier Inc.

  18. Role of Rbp1 in the acquired chill-light tolerance of cyanobacteria.

    PubMed

    Tan, Xiaoming; Zhu, Tao; Shen, Si; Yin, Chuntao; Gao, Hong; Xu, Xudong

    2011-06-01

    Synechocystis sp. strain PCC 6803 cultured at 30°C losses viability quickly under chill (5°C)-light stress but becomes highly tolerant to the stress after conditioning at 15°C (Y. Yang, C. Yin, W. Li, and X. Xu, J. Bacteriol. 190:1554-1560, 2008). Hypothetically, certain factors induced during preconditioning are involved in acquisition of chill-light tolerance. In this study, Rbp1 (RNA-binding protein 1) rather than Rbp2 was found to be accumulated during preconditioning, and the accumulation of Rbp1 was correlated with the increase of chill-light tolerance. Inactivation of its encoding gene rbp1 led to a great reduction in the acquired chill-light tolerance, while ectopic expression of rbp1 enabled the cyanobacterium to survive the chill-light stress without preconditioning. Microarray analyses suggested that the Rbp1-dependent chill-light tolerance may not be based on its influence on mRNA abundance of certain genes. Similarly to that in Synechocystis, the Rbp1 homologue(s) can be accumulated in Microcystis cells collected from a subtropic lake in low-temperature seasons. Rbp1 is the first factor shown to be both accumulated early during preconditioning and directly involved in development of chill-light tolerance in Synechocystis. Its accumulation may greatly enhance the overwintering capability in certain groups of cyanobacteria.

  19. Regulation of Cardiac Stress Signaling by Protein Kinase D1

    PubMed Central

    Harrison, Brooke C.; Kim, Mi-Sung; van Rooij, Eva; Plato, Craig F.; Papst, Philip J.; Vega, Rick B.; McAnally, John A.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.; McKinsey, Timothy A.

    2006-01-01

    In response to pathological stresses such as hypertension or myocardial infarction, the heart undergoes a remodeling process that is associated with myocyte hypertrophy, myocyte death, and fibrosis. Histone deacetylase 5 (HDAC5) is a transcriptional repressor of cardiac remodeling that is subject to phosphorylation-dependent neutralization in response to stress signaling. Recent studies have suggested a role for protein kinase C (PKC) and its downstream effector, protein kinase D1 (PKD1), in the control of HDAC5 phosphorylation. While PKCs are well-documented regulators of cardiac signaling, the function of PKD1 in heart muscle remains unclear. Here, we demonstrate that PKD1 catalytic activity is stimulated in cardiac myocytes by diverse hypertrophic agonists that signal through G protein-coupled receptors (GPCRs) and Rho GTPases. PKD1 activation in cardiomyocytes occurs through PKC-dependent and -independent mechanisms. In vivo, cardiac PKD1 is activated in multiple rodent models of pathological cardiac remodeling. PKD1 activation correlates with phosphorylation-dependent nuclear export of HDAC5, and reduction of endogenous PKD1 expression with small interfering RNA suppresses HDAC5 shuttling and associated cardiomyocyte growth. Conversely, ectopic overexpression of constitutively active PKD1 in mouse heart leads to dilated cardiomyopathy. These findings support a role for PKD1 in the control of pathological remodeling of the heart via its ability to phosphorylate and neutralize HDAC5. PMID:16648482

  20. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    PubMed

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Long non-coding RNA LSINCT5 predicts negative prognosis and exhibits oncogenic activity in gastric cancer.

    PubMed

    Xu, Mi-Die; Qi, Peng; Weng, Wei-Wei; Shen, Xiao-Han; Ni, Shu-Juan; Dong, Lei; Huang, Dan; Tan, Cong; Sheng, Wei-Qi; Zhou, Xiao-Yan; Du, Xiang

    2014-12-01

    Long non-coding RNAs (lncRNAs) are recently discovered RNA transcripts that are aberrantly expressed in many tumor types. Numerous studies have suggested that lncRNAs can be utilized for cancer diagnosis and prognosis. LSINCT5 (long stress-induced non-coding transcript 5) is dramatically upregulated in breast and ovarian cancer and affects cellular proliferation. However, the expression pattern of LSINCT5 in gastrointestinal cancer and the association between aberrant expression of LSINCT5 in gastrointestinal cancer and malignancy, metastasis, or prognosis remain unknown. LSINCT5 expression was detected in gastrointestinal cancer and paired adjacent normal tissue samples or cell lines using reverse transcription quantitative PCR (RT-qPCR). We also investigated the potential relationship between tumor LSINCT5 levels and clinicopathological features of gastrointestinal cancer. Finally, we assessed whether LSINCT5 influences in vitro cell proliferation. The expression of LSINCT5 is significantly upregulated in gastrointestinal cancer tissues and cell lines relative to their normal counterparts. In addition, increased LSINCT5 expression was correlated with a larger tumor size, deeper tumor depth, and advanced clinical stage. Kaplan-Meier analysis indicated that gastric cancer (GC) and colorectal cancer (CRC) patients with higher LSINCT5 expression levels have worse disease-free survival (DFS) and disease-specific survival (DSS) rates. Moreover, multivariate analysis revealed that increased expression of LSINCT5 is an independent predictor of DFS and DSS rates in GC patients. The ectopic expression of LSINCT5 in gastrointestinal cancer cell lines resulted in an increase in cellular proliferation; conversely, knock down of LSINCT5 significantly inhibited proliferation. These results suggest that LSINCT5 may represent a novel prognostic indicator and a target for gene therapy in gastrointestinal cancer.

  2. BAG3 Expression in Glioblastoma Cells Promotes Accumulation of Ubiquitinated Clients in an Hsp70-dependent Manner*

    PubMed Central

    Gentilella, Antonio; Khalili, Kamel

    2011-01-01

    Disposal of damaged proteins and protein aggregates is a prerequisite for the maintenance of cellular homeostasis and impairment of this disposal can lead to a broad range of pathological conditions, most notably in brain-associated disorders including Parkinson and Alzheimer diseases, and cancer. In this respect, the Protein Quality Control (PQC) pathway plays a central role in the clearance of damaged proteins. The Hsc/Hsp70-co-chaperone BAG3 has been described as a new and critical component of the PQC in several cellular contexts. For example, the expression of BAG3 in the rodent brain correlates with the engagement of protein degradation machineries in response to proteotoxic stress. Nevertheless, little is known about the molecular events assisted by BAG3. Here we show that ectopic expression of BAG3 in glioblastoma cells leads to the activation of an HSF1-driven stress response, as attested by transcriptional activation of BAG3 and Hsp70. BAG3 overexpression determines an accumulation of ubiquitinated proteins and this event requires the N-terminal region, WW domain of BAG3 and the association of BAG3 with Hsp70. The ubiquitination mainly occurs on BAG3-client proteins and the inhibition of proteasomal activity results in a further accumulation of ubiquitinated clients. At the cellular level, overexpression of BAG3 in glioblastoma cell lines, but not in non-glial cells, results in a remarkable decrease in colony formation capacity and this effect is reverted when the binding of BAG3 to Hsp70 is impaired. These observations provide the first evidence for an involvement of BAG3 in the ubiquitination and turnover of its partners. PMID:21233200

  3. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  4. SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma.

    PubMed

    Lee, S H; Oh, S-Y; Do, S I; Lee, H J; Kang, H J; Rho, Y S; Bae, W J; Lim, Y C

    2014-11-25

    Head and neck squamous cell carcinomas (HNSCCs) display cellular heterogeneity and contain cancer stem cells (CSCs). Sex-determining region Y [SRY]-box (SOX)2 is an important regulator of embryonic stem cell fate and is aberrantly expressed in several types of human tumours. Nonetheless, the role of SOX2 in HNSCC remains unclear. We created cells ectopically expressing SOX2 from previously established HNSCC cells and examined the cell proliferation, self-renewal capacity, and chemoresistance of these cells compared with control cells. In addition, we knocked down SOX2 in primary spheres obtained from HNSCC tumour tissue and assessed the attenuation of stemness-associated traits in these cells in vitro and in vivo. Furthermore, we examined the clinical relevance of SOX2 expression in HNSCC patients. SOX2 is aberrantly expressed in primary tissue of HNSCC patients but not in healthy tissue. SOX2 expression correlated with tumour recurrence and poor prognosis of HNSCC patients. Ectopic expression of SOX2 induced cell proliferation via cyclin B1 expression and stemness-associated features, such as self-renewal and chemoresistance. In addition, a knockdown of SOX2 in HNSCC CSCs attenuated their self-renewal capacity, chemoresistance (through ABCG2 suppression), invasion capacity (via snail downregulation), and in vivo tumorigenicity. These results suggest that SOX2 may have important roles in the 'stemness' and progression of HNSCC. Targeting SOX2-positive tumour cells (CSCs) could be a new therapeutic strategy in HNSCCs.

  5. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells.

    PubMed

    Leung, Travis; Rajendran, Ramkumar; Singh, Subir; Garva, Richa; Krstic-Demonacos, Marija; Demonacos, Constantinos

    2013-11-08

    The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2',7'-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism and breast cancer and suggest that progression, and metastasis, of advanced stages of breast cancer can be modulated by induction of CYP2E1 activity.

  6. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells

    PubMed Central

    2013-01-01

    Introduction The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Methods Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2′,7′-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Results Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. Conclusions These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism and breast cancer and suggest that progression, and metastasis, of advanced stages of breast cancer can be modulated by induction of CYP2E1 activity. PMID:24207099

  7. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients

    PubMed Central

    Bagdonaite, Ieva; Wandall, Hans H.; Litvinov, Ivan V.; Nastasi, Claudia; Becker, Jürgen C.; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M.; Zhang, Qian; Wasik, Mariusz A.; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders

    2015-01-01

    CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22ΔN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22ΔN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22ΔN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22ΔN and CD22wt in these cells. In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients. PMID:25957418

  8. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients.

    PubMed

    Bagdonaite, Ieva; Wandall, Hans H; Litvinov, Ivan V; Nastasi, Claudia; Becker, Jürgen C; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M; Zhang, Qian; Wasik, Mariusz A; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders

    2015-06-10

    CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22∆N), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22∆N mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22∆N (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22∆N and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.

  9. Elicitors and defense gene induction in plants with altered lignin compositions.

    PubMed

    Gallego-Giraldo, Lina; Posé, Sara; Pattathil, Sivakumar; Peralta, Angelo Gabriel; Hahn, Michael G; Ayre, Brian G; Sunuwar, Janak; Hernandez, Jonathan; Patel, Monika; Shah, Jyoti; Rao, Xiaolan; Knox, J Paul; Dixon, Richard A

    2018-06-27

    A reduction in the lignin content in transgenic plants induces the ectopic expression of defense genes, but the importance of altered lignin composition in such phenomena remains unclear. Two Arabidopsis lines with similar lignin contents, but strikingly different lignin compositions, exhibited different quantitative and qualitative transcriptional responses. Plants with lignin composed primarily of guaiacyl units overexpressed genes responsive to oomycete and bacterial pathogen attack, whereas plants with lignin composed primarily of syringyl units expressed a far greater number of defense genes, including some associated with cis-jasmone-mediated responses to aphids; these plants exhibited altered responsiveness to bacterial and aphid inoculation. Several of the defense genes were differentially induced by water-soluble extracts from cell walls of plants of the two lines. Glycome profiling, fractionation and enzymatic digestion studies indicated that the different lignin compositions led to differential extractability of a range of heterogeneous oligosaccharide epitopes, with elicitor activity originating from different cell wall polymers. Alteration of lignin composition affects interactions with plant cell wall matrix polysaccharides to alter the sequestration of multiple latent defense signal molecules with an impact on biotic stress responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703.

    PubMed

    Liu, Kun; Liu, Feng; Zhang, Nannan; Liu, Shiying; Jiang, Yuyang

    2012-01-01

    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.

  11. Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703

    PubMed Central

    Liu, Kun; Liu, Feng; Zhang, Nannan; Liu, Shiying; Jiang, Yuyang

    2012-01-01

    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer. PMID:22754333

  12. Ectopic Expression of Capsicum-Specific Cell Wall Protein Capsicum annuum Senescence-Delaying 1 (CaSD1) Delays Senescence and Induces Trichome Formation in Nicotiana benthamiana

    PubMed Central

    Seo, Eunyoung; Yeom, Seon-In; Jo, SungHwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-01-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation. PMID:22441673

  13. A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination.

    PubMed

    Sherif, Sherif; El-Sharkawy, Islam; Mathur, Jaideep; Ravindran, Pratibha; Kumar, Prakash; Paliyath, Gopinadhan; Jayasankar, Subramanian

    2015-02-13

    Variations in floral display represent one of the core features associated with the transition from allogamy to autogamy in angiosperms. The promotion of autogamy under stress conditions suggests the potential involvement of a signaling pathway with a dual role in both flower development and stress response. The jasmonic acid (JA) pathway is a plausible candidate to play such a role because of its involvement in many plant responses to environmental and developmental cues. In the present study, we used peach (Prunus persica L.) varieties with showy and non-showy flowers to investigate the role of JA (and JA signaling suppressors) in floral display. Our results show that PpJAZ1, a component of the JA signaling pathway in peach, regulates petal expansion during anthesis and promotes self-pollination. PpJAZ1 transcript levels were higher in petals of the non-showy flowers than those of showy flowers at anthesis. Moreover, the ectopic expression of PpJAZ1 in tobacco (Nicotiana tabacum L.) converted the showy, chasmogamous tobacco flowers into non-showy, cleistogamous flowers. Stability of PpJAZ1 was confirmed in vivo using PpJAZ1-GFP chimeric protein. PpJAZ1 inhibited JA-dependent processes in roots and leaves of transgenic plants, including induction of JA-response genes to mechanical wounding. However, the inhibitory effect of PpJAZ1 on JA-dependent fertility functions was weaker, indicating that PpJAZ1 regulates the spatial localization of JA signaling in different plant organs. Indeed, JA-related genes showed differential expression patterns in leaves and flowers of transgenic plants. Our results reveal that under stress conditions – for example, herbivore attacks – stable JAZ proteins such as PpJAZ1 may alter JA signaling in different plant organs, resulting in autogamy as a reproductive assurance mechanism. This represents an additional mechanism by which plant hormone signaling can modulate a vital developmental process in response to stress.

  14. The mRNA-stabilizing factor HuR protein is targeted by β-TrCP protein for degradation in response to glycolysis inhibition.

    PubMed

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K; Chen, Ching-Shih

    2012-12-21

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, (296)EEAMAIAS(304), in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy.

  15. The mRNA-stabilizing Factor HuR Protein Is Targeted by β-TrCP Protein for Degradation in Response to Glycolysis Inhibition*

    PubMed Central

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K.; Chen, Ching-Shih

    2012-01-01

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, 296EEAMAIAS304, in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy. PMID:23115237

  16. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa.

    PubMed

    Phillips, M Joseph; Otteson, Deborah C; Sherry, David M

    2010-06-01

    The Pde6b(rd10) (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6b(rd10) (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well-known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. (c) 2010 Wiley-Liss, Inc.

  17. Progression of Neuronal and Synaptic Remodeling in the rd10 Mouse Model of Retinitis Pigmentosa

    PubMed Central

    Phillips, M. Joseph; Otteson, Deborah C.; Sherry, David M.

    2010-01-01

    The Pde6brd10 (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6brd10 (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. PMID:20394059

  18. The growth hormone-releasing hormone (GHRH) antagonist JV-1-36 inhibits proliferation and survival of human ectopic endometriotic stromal cells (ESCs) and the T HESC cell line.

    PubMed

    Annunziata, Marta; Grande, Cristina; Scarlatti, Francesca; Deltetto, Francesco; Delpiano, Elena; Camanni, Marco; Ghigo, Ezio; Granata, Riccarda

    2010-08-01

    To determine the effect of the GHRH antagonist JV-1-36 on proliferation and survival of primary ectopic human endometriotic stromal cells (ESCs) and the T HESC cell line. Prospective laboratory study. University hospital. 22 women with endometriosis (aged 34.8+/-5.7 years) undergoing therapeutic laparoscopy. Eutopic (n=10) and ectopic (n=22) endometrial tissues were collected from women who underwent therapeutic laparoscopic surgery for endometriosis (stage III/IV). Expression of GHRH, GHRH receptor (GHRH-R) and GHRH-R splice variant (SV) 1 mRNA was determined by reverse-transcription polymerase chain reaction (RT-PCR). The ESC proliferation was assessed by 5-bromo-2-deoxyuridine incorporation, cell survival by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Trypan blue assay. The T HESC survival was evaluated by MTT, cyclic adenosine monophosphate (cAMP) levels by ELISA, extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation by Western blot, and insulin-like growth factor (IGF)-2 mRNA by real-time PCR. The ESCs and T HESCs, but not normal endometrial tissues, expressed GHRH-R mRNA; SV1 mRNA was determined in normal endometrial tissues, ESCs, and T HESCs; GHRH mRNAwas found in T HESCs; JV-1-36 inhibited ESC proliferation and ESC and T HESC survival. In T HESCs, JV-1-36 reduced cAMP production and ERK1/2 phosphorylation but had no effect on IGF-2 mRNA expression. The GHRH antagonist JV-1-36 inhibits endometriotic cell proliferation and survival, suggesting that GHRH antagonist may represent promising tools for treatment of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    PubMed

    Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P

    2018-02-21

    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.

  20. Ectopic bone formation and chondrodysplasia in transgenic mice carrying the rat C3(1)/T{sub AG} fusion gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, J.E.; Maroulakou, I.G.; Anver, M.

    Transgenic mice expressing the SV40 large T-antigen (T{sup AG}) under the regultory control of the hormone-responsive rat C3(1) prostatein promoter develop unusual bone and cartilage lesions, as well as ectopic bone and cartilage formation. Two lines of transgenic animals have been propagated in which the expression of the transgene in chondrocytes results in a mild to moderate generalized disorganization of cartilage growth which appears to affect multiple tissues, including the trachea, ear pinna and articular cartilage. The epiphyseal plates are also affected with normal architecture of the zones of proliferation and maturation, but marked elongation of the zone of hypertrophy.more » Immunocytochemistry demonstrates that expression of T{sup AG} is limited to the zone of hypertropny in the epiphyseal plates, suggesting that the chondrocytes become hormone-responsive at this particular stage of differentiation. Normal mineralization and trabecular formation in long bone appears to occur. Ectopic bone and cartilage formation occurs in the foot pads of the fore- and hind- feet over the course of several months. This is preceded by proliferation of sweat gland epithelial cells followed by the appearance of nodules of cartilage and bone. The nodules are closely associated with proliferating epithelium but are not contiguous with bony structures normally found in the feet. The roles of BMP`s, growth factors, oncogenes and hormones in the development of these lesions will be presented. These transgenic animals may provide new insights into hormone-responsiveness of chondrocytes, as well as factors involved in the processes of bone and cartilage differentiation and growth. These transgenic animals may serve as a useful model for human heterotopic bone formation.« less

  1. Thiazolidinedione treatment and constitutive-PPARγ activation induces ectopic adipogenesis and promotes age-related thymic involution

    PubMed Central

    Youm, Yun-Hee; Yang, Hyunwon; Amin, Raj; Smith, Steven R.; Leff, Todd; Dixit, Vishwa Deep

    2010-01-01

    Age-related thymic involution is characterized by reduction in T cell production together with ectopic adipocyte development within the hematopoietic and thymic niches. PPARγ is required for adipocyte development, glucose homeostasis and is a target for several insulin-sensitizing drugs. Our prior studies showed that age-related elevation of PPARγ expression in thymic stromal cells is associated with thymic involution. Here, using clinically relevant pharmacological and genetic manipulations in mouse models, we provide evidence that activation of PPARγ leads to reduction in thymopoiesis. Treatment of aged mice with anti-hyperglycemic PPARγ-ligand class of Thiazolidinedione drug, Rosiglitazone caused robust thymic expression of classical pro-adipogenic transcripts. Rosiglitazone reduced thymic cellularity, lowered the naïve T cell number and T cell receptor excision circles (TRECs) indicative of compromised thymopoiesis. To directly investigate whether PPARγ activation induces thymic involution, we created transgenic mice with constitutive-active PPARγ (CA-PPARg) fusion protein in cells of adipogenic lineage. Importantly, CA-PPARγ transgene was expressed in thymus and in Fibroblast Specific Protein-1/S100A4 (FSP1+) cells, a marker of secondary mesenchymal cells. The CAPPARγ fusion protein mimicked the liganded PPARγ receptor and the transgenic mice displayed increased ectopic thymic adipogenesis and reduced thymopoiesis. Furthermore, the reduction in thymopoiesis in CA-PPARγ mice was associated with higher bone marrow adiposity and lower hematopoietic stem cell progenitor pool. Consistent with lower thymic output, CAPPARγ transgenic mice had restricted T cell receptor (TCR) repertoire diversity. Collectively, our data suggest that activation of PPARγ accelerates thymic aging and thymus-specific PPARγ antagonist may forestall age-related decline in T cell diversity. PMID:20374200

  2. Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis1[C][W][OA

    PubMed Central

    Vercruyssen, Liesbeth; Gonzalez, Nathalie; Werner, Tomáš; Schmülling, Thomas; Inzé, Dirk

    2011-01-01

    Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level. PMID:21205622

  3. Post-traumatic stress, anxiety and depression following miscarriage or ectopic pregnancy: a prospective cohort study.

    PubMed

    Farren, Jessica; Jalmbrant, Maria; Ameye, Lieveke; Joash, Karen; Mitchell-Jones, Nicola; Tapp, Sophie; Timmerman, Dirk; Bourne, Tom

    2016-11-02

    This is a pilot study to investigate the type and severity of emotional distress in women after early pregnancy loss (EPL), compared with a control group with ongoing pregnancies. The secondary aim was to assess whether miscarriage or ectopic pregnancy impacted differently on the type and severity of psychological morbidity. This was a prospective survey study. Consecutive women were recruited between January 2012 and July 2013. We emailed women a link to a survey 1, 3 and 9 months after a diagnosis of EPL, and 1 month after the diagnosis of a viable ongoing pregnancy. The Early Pregnancy Assessment Unit (EPAU) of a central London teaching hospital. We recruited 186 women. 128 had a diagnosis of EPL, and 58 of ongoing pregnancies. 11 withdrew consent, and 11 provided an illegible or invalid email address. Post-traumatic stress disorder (PTSD) was measured using the Post-traumatic Diagnostic Scale (PDS), and anxiety and depression using the Hospital Anxiety and Depression Scale (HADS). Response rates were 69/114 at 1 month and 44/68 at 3 months in the EPL group, and 20/50 in controls. Psychological morbidity was higher in the EPL group with 28% meeting the criteria for probable PTSD, 32% for anxiety and 16% for depression at 1 month and 38%, 20% and 5%, respectively, at 3 months. In the control group, no women met criteria for PTSD and 10% met criteria for anxiety and depression. There was little difference in type or severity of distress following ectopic pregnancy or miscarriage. We have shown a large number of women having experienced a miscarriage or ectopic pregnancy fulfil the diagnostic criteria for probable PTSD. Many suffer from moderate-to-severe anxiety, and a lesser number depression. Psychological morbidity, and in particular PTSD symptoms, persists at least 3 months following pregnancy loss. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Ectopic Kidney

    MedlinePlus

    ... Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Ectopic Kidney What is an ectopic kidney? An ectopic kidney is a birth defect in ... has an ectopic kidney. 1 What are the kidneys and what do they do? The kidneys are ...

  5. The Targeted Delivery of Interleukin 4 Inhibits Development of Endometriotic Lesions in a Mouse Model.

    PubMed

    Quattrone, Federica; Sanchez, Ana Maria; Pannese, Maria; Hemmerle, Teresa; Viganò, Paola; Candiani, Massimo; Petraglia, Felice; Neri, Dario; Panina-Bordignon, Paola

    2015-09-01

    Endometriosis is caused by the displacement of endometrium outside the uterus contributing heavily to infertility and debilitating pelvic pain. Ectopic adhesion and growth are believed to occur under the influence of a favorable hormonal environment and immunological factors. The objective of this study is to analyze the effect of a targeted therapy with an antibody-based pharmacodelivery of interleukin 4 (F8-IL4) in a mouse model of experimentally induced endometriosis. Endometriosis-like lesions were induced in Balb/c mice. The animals were treated intravenously with F8-IL4 or with untargeted IL4 (KSF-IL4). Twelve days after disease induction, the lesions were isolated. A significant reduction in the number of total lesions/mouse and in the total volume of lesions/mouse was observed in mice treated with F8-IL4 compared to controls (P = .029 and P = .006, respectively), while no difference was found between KSF-IL4-treated mice and their controls. Gene expression was evaluated by quantitative real-time polymerase chain reaction. Expression of genes involved in cell adhesion, extracellular matrix invasion, and neovascularization was significantly downregulated in F8-IL4-treated mice compared to their controls (integrin β1: P = .02; metalloproteinase [MMP] 3: P = .02; MMP9: P = .04; vascular endothelial growth factor: P = .04). Gene expression of inflammatory cytokines (tumor necrosis factor α, IL1β, IL1α, and IL6) did not vary in the ectopic lesions isolated from F8-IL4-treated mice compared to their controls. Immunohistochemistry demonstrated a significantly reduced expression of E-cadherin and β-catenin in the lesions of mice treated with F8-IL4. Our results show that the antibody-mediated targeted delivery of IL4 inhibits the development of endometriosis in a syngeneic mouse model by likely impairing adhesion, invasion, and vascularization of the ectopic endometrium. © The Author(s) 2015.

  6. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC

    PubMed Central

    Khammanivong, Ali; Sorenson, Brent S.; Ross, Karen F.; Dickerson, Erin B.; Hasina, Rifat; Lingen, Mark W.; Herzberg, Mark C.

    2016-01-01

    Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC. PMID:26883112

  7. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC.

    PubMed

    Khammanivong, Ali; Sorenson, Brent S; Ross, Karen F; Dickerson, Erin B; Hasina, Rifat; Lingen, Mark W; Herzberg, Mark C

    2016-03-22

    Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC.

  8. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.

    PubMed

    Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana

    2006-06-02

    The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.

  9. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.

    PubMed

    Moon, Hyuk; Ju, Hye-Lim; Chung, Sook In; Cho, Kyung Joo; Eun, Jung Woo; Nam, Suk Woo; Han, Kwang-Hyub; Calvisi, Diego F; Ro, Simon Weonsang

    2017-11-01

    Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRAS G12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRAS G12V and MYC, or those encoding HRAS G12V and TAZ S89A , to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRAS G12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. In analyses of transgenic mice, we found TGF-β signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-β target that is required for hepatic tumorigenesis in these models. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Ectopic Six3 expression in the dragon eye goldfish.

    PubMed

    Ma, Dong-Mei; Zhu, Hua-Ping; Gui, Jian-Fang

    2008-02-01

    For goldfish (Carassius auratus), there are many varieties with different eye phenotypes due to artificial selection and adaptive evolution. Dragon eye is a variant eye characterized by a large-size eyeball protruding out of the socket similar to the eye of dragon in Chinese legends. In this study, anatomical structure of the goldfish dragon eye was compared with that of the common eye, and a stretching of the retina was observed in the enlarged dragon eye. Moreover, the homeobox-containing transcription factor Six3 cDNAs were cloned from the two types of goldfish, and the expression patterns were analyzed in both normal eye and dragon eye goldfish. No amino acid sequence differences were observed between the two deduced peptides, and the expression pattern of Six3 protein in dragon eye is quite similar to common eye during embryogenesis, but from 2 days after hatching, ectopic Six3 expression began to occur in the dragon eye, especially in the outer nuclear layer cells. With eye development, more predominant Six3 distribution was detected in the outer nuclear layer cells of dragon eye than that of normal eye, and fewer cell-layers in outer nuclear layer were observed in dragon eye retina than in normal eye retina. The highlight of this study is that higher Six3 expression occurs in dragon eye goldfish than in normal eye goldfish during retinal development of larvae.

  11. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform.

    PubMed

    Koushika, S P; Lisbin, M J; White, K

    1996-12-01

    Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a candidate for such a role. The ELAV protein is expressed exclusively in neurons, and is important for the formation and maintenance of the nervous system. In this study, photoreceptor neurons genetically depleted of ELAV, and elav-null central nervous system neurons, were analyzed immunocytochemically for the expression of neural proteins. In both situations, the lack of ELAV corresponded with a decrease in the immunohistochemical signal of the neural-specific isoform of Neuroglian, which is generated by alternative splicing. Furthermore, when ELAV was expressed ectopically in cells that normally express only the non-neural isoform of Neuroglian, we observed the generation of the neural isoform of Neuroglian. Drosophila ELAV promotes the generation of the neuron-specific isoform of Neuroglian by the regulation of pre-mRNA splicing. The findings reported in this paper demonstrate that ELAV is necessary, and the ectopic expression of ELAV in imaginal disc cells is sufficient, to mediate neuron-specific alternative splicing.

  12. Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum.

    PubMed

    Guo, Danli; Li, Chao; Dong, Rui; Li, Xiaobo; Xiao, Xiangwen; Huang, Xianzhong

    2015-06-01

    FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcellular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partially rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding. © 2014 Institute of Botany, Chinese Academy of Sciences.

  13. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome

    PubMed Central

    Lecoq, Anne-Lise; Stratakis, Constantine A.; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R.; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; Louiset, Estelle; Lacroix, André; Bouligand, Jérôme; Kamenický, Peter

    2017-01-01

    GIP-dependent Cushing’s syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing’s syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing’s syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations. PMID:28931750

  14. Regulation of early Xenopus development by ErbB signaling

    PubMed Central

    Nie, Shuyi; Chang, Chenbei

    2008-01-01

    ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939

  15. FGF2 cooperates with IL-17 to promote autoimmune inflammation.

    PubMed

    Shao, Xinrui; Chen, Siyuan; Yang, Daping; Cao, Mengtao; Yao, Yikun; Wu, Zhengxi; Li, Ningli; Shen, Nan; Li, Xiaoxia; Song, Xinyang; Qian, Youcun

    2017-08-01

    IL-17 is a pro-inflammatory cytokine implicated a variety of autoimmune diseases. We have recently reported that FGF2 cooperates with IL-17 to protect intestinal epithelium during dextran sodium sulfate (DSS)-induced colitis. Here, we report a pathogenic role of the FGF2-IL-17 cooperation in the pathogenesis of autoimmune arthritis. Combined treatment with FGF2 and IL-17 synergistically induced ERK activation as well as the production of cytokines and chemokines in human synovial intimal resident fibroblast-like synoviocytes (FLS). Furthermore, ectopic expression of FGF2 in mouse joints potentiated IL-17-induced inflammatory cytokine and chemokine production in the tissue. In the collagen-induced arthritis (CIA) model, while ectopic expression of FGF2 in vivo exacerbated tissue inflammation and disease symptom in the wild-type controls, the effect was largely blunted in Il17a -/- mice. Taken together, our study suggests that FGF2 cooperates with IL-17 to promote the pathogenesis of autoimmune arthritis by cooperating with IL-17 to induce inflammatory response.

  16. p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Mori, Chie; Osakada, Hiroko; Kobayashi, Shouhei; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-03-01

    Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time-lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62-knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation-mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.

  17. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    PubMed

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Residual Expression of the Reprogramming Factors Prevents Differentiation of iPSC Generated from Human Fibroblasts and Cord Blood CD34+ Progenitors

    PubMed Central

    Ramos-Mejía, Verónica; Montes, Rosa; Bueno, Clara; Ayllón, Verónica; Real, Pedro J.; Rodríguez, René; Menendez, Pablo

    2012-01-01

    Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation. PMID:22545141

  19. A novel fluorescent sensor for measurement of CFTR function by flow cytometry.

    PubMed

    Vijftigschild, Lodewijk A W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2013-06-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis. CFTR-dependent iodide transport measured by fluorescent quenching of ectopically expressed halide-sensitive yellow fluorescent protein (YFP) is widely being used to study CFTR function by microscopy or plate readers. Since YFP fluorescence in these systems is dependent on YFP expression levels and iodide concentration, differences in sensor expression level between experimental units are normalized at the start of each experiment. To allow accurate measurement of CFTR function by flow cytometry, we reasoned that co-expression of an iodide insensitive fluorescent protein would allow for normalization of sensor expression levels and more accurate quantification of CFTR function. Our data indicated that dsRed and mKate fluorescence are iodide insensitive, and we determined an optimal format for co-expression of these fluorescent proteins with halide-sensitive YFP. We showed using microscopy that ratiometric measurement (YFP/mKate) corrects for differences in sensor expression levels. Ratiometric measurements were essential to accurately measure CFTR function by flow cytometry that we here describe for the first time. Mixing of wild type or mutant CFTR expressing cells indicated that addition of approximately 10% of wild type CFTR expressing cells could be distinguished by ratiometric YFP quenching. Flow cytometric ratiometric YFP quenching also allowed us to study CFTR mutants associated with differential residual function upon ectopic expression. Compared with conventional plate-bound CFTR function assays, the flow cytometric approach described here can be used to study CFTR function in suspension cells. It may be further adapted to study CFTR function in heterologous cell populations using cell surface markers and selection of cells that display high CFTR function by cell sorting. Copyright © 2013 International Society for Advancement of Cytometry.

  20. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia.

    PubMed

    Segara, Davendra; Biankin, Andrew V; Kench, James G; Langusch, Catherine C; Dawson, Amanda C; Skalicky, David A; Gotley, David C; Coleman, Maxwell J; Sutherland, Robert L; Henshall, Susan M

    2005-05-01

    Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARalpha, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and PanIN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early PanIN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.

  1. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, wemore » examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.« less

  2. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    PubMed

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  3. Hepatitis C virus Core overcomes all-trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation

    PubMed Central

    Kwak, Juri; Choi, Jung-Hye; Jang, Kyung Lib

    2017-01-01

    All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells. PMID:29156743

  4. Hyperthyroidism caused by an ectopic thyrotropin-secreting tumor of the nasopharynx: a case report and review of the literature.

    PubMed

    Tong, Anli; Xia, Weibo; Qi, Fang; Jin, Zimeng; Yang, Di; Zhang, Zhuhua; Li, Fang; Xing, Xiaoping; Lian, Xiaolan

    2013-09-01

    Ectopic thyrotropin (TSH)-secreting tumors are extremely rare. To our knowledge, only three cases have previously been reported so far, but the tumors were not studied ultrastructurally and in vitro. We present a case that was extensively examined to gain deeper insights in terms of the histopathological features and hormonal secretion profile of the tumor. A 49-year-old female complained of nasal obstruction for 15 years and thyrotoxicosis for one and a half years. Except for a high basal TSH with concomitantly elevated free tri-iodothyronine (FT3) and free thyroxine (FT4) levels, her pituitary hormone profile yielded normal results. Magnetic resonance imaging revealed a 2 cm × 2 cm mass in the nasopharynx, which showed an increased tracer uptake on octreotide scintigraphy. Preoperative treatment with octreotide effectively reduced serum TSH, FT3, and FT4 to normal levels. The mass was endoscopically removed via an endonasal approach. Immunophenotyping and hormone determination of cultured cells confirmed that the mass was a plurihormonal TSH-/growth hormone (GH)-/prolactin (PRL)-producing adenoma. Co-expression of TSH and GH was found in most cells. Electron microscopy showed that the adenoma was formed by a single cell type, with secretory granules of small size. In vitro studies demonstrated that octreotide reduced both TSH and GH secretion. We report an ectopic TSH-secreting tumor, which had plurihormonal secretion in vitro, including TSH, GH, and PRL. Histologically, it mimicked a TSH-secreting pituitary adenoma. Octreotide was useful in the diagnosis and treatment of this ectopic TSH-secreting tumor. Ectopic TSH-secreting tumors are extremely rare. In terms of hormone secretion profile, histological characteristics, and response to octreotide, they are similar to pituitary TSH-secreting adenomas, suggesting that they are of identical cell origin.

  5. Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum.

    PubMed

    Gorgels, Theo G M F; Waarsing, Jan H; Herfs, Marjolein; Versteeg, Daniëlle; Schoensiegel, Frank; Sato, Toshiro; Schlingemann, Reinier O; Ivandic, Boris; Vermeer, Cees; Schurgers, Leon J; Bergen, Arthur A B

    2011-11-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.

  6. Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle

    PubMed Central

    Jones, G.; Meier, T.; Lichtsteiner, M.; Witzemann, V.; Sakmann, B.; Brenner, H. R.

    1997-01-01

    Two factors secreted from the nerve terminal, agrin and neuregulin, have been postulated to induce localization of the acetylcholine receptors (AChRs) to the subsynaptic membrane in skeletal muscle fibers. The principal function ascribed to neuregulin is induction of AChR subunit gene expression and to agrin is the aggregation of AChRs. Here we report that when myoblasts engineered to secrete an agrin fragment were placed into the nerve-free region of denervated rodent muscle, the host muscle fibers expressed AChR ɛ-subunit gene transcripts, characteristic of the neuromuscular synapse in adult muscle. Transcripts were colocalized with agrin deposits and AChR clusters that were resistant to electrical muscle activity. More directly, single innervated muscle fibers injected intracellularly with agrin expression plasmids in their extrasynaptic region developed a functional ectopic postsynaptic membrane with clusters of adult-type AChR channels and acetylcholinesterase and accumulation of myonuclei. The results demonstrate that agrin is the principal neural signal that induces the formation of the subsynaptic apparatus in the muscle fiber and controls locally, either indirectly or directly, the transcription of AChR subunit genes and the aggregation of AChRs. PMID:9122251

  7. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE).

    PubMed

    Apschner, Alexander; Huitema, Leonie F A; Ponsioen, Bas; Peterson-Maduro, Josi; Schulte-Merker, Stefan

    2014-07-01

    In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression. © 2014. Published by The Company of Biologists Ltd.

  8. Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion.

    PubMed

    Nakano, Tomonori; Kurimoto, Shigeru; Kato, Shuichi; Asano, Kenichi; Hirata, Takuma; Kiyama, Hiroshi; Hirata, Hitoshi

    2018-06-01

    Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 μm 2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.

    PubMed

    Li, Huili; Bai, Baoling; Zhang, Qin; Bao, Yihua; Guo, Jin; Chen, Shuyuan; Miao, Chunyue; Liu, Xiaozhen; Zhang, Ting

    2015-12-01

    Previous studies have highlighted the connections between neural tube defects (NTDs) and both thyroid hormones (TH) and vitamin A. However, whether the two hormonal signaling pathways interact in NTDs has remained unclear. We measured the expression levels of TH signaling genes in human fetuses with spinal NTDs associated with maternal hyperthyroidism as well as levels of retinoic acid (RA) signaling genes in mouse fetuses exposed to an overdose of RA using NanoString or real-time PCR on spinal cord tissues. Interactions between the two signaling pathways were detected by ChIP assays. The data revealed attenuated DIO2/DIO3 switching in fetuses with NTDs born to hyperthyroid mothers. The promoters of the RA signaling genes CRABP1 and RARB were ectopically occupied by increased RXRG and RXRB but displayed decreased levels of inhibitory histone modifications, suggesting that elevated TH signaling abnormally stimulates RA signaling genes. Conversely, in the mouse model, the observed decrease in Dio3 expression could be explained by increased levels of inhibitory histone modifications in the Dio3 promoter region, suggesting that overactive RA signaling may ectopically derepress TH signaling. This study thus raises in vivo a possible abnormal cross-promotion between two different hormonal signals through their common RXRs and the subsequent recruitment of histone modifications, prompting further investigation into their involvement in the etiology of spinal NTDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma.

    PubMed

    Chai, Zong-Tao; Zhu, Xiao-Dong; Ao, Jian-Yang; Wang, Wen-Quan; Gao, Dong-Mei; Kong, Jian; Zhang, Ning; Zhang, Yuan-Yuan; Ye, Bo-Gen; Ma, De-Ning; Cai, Hao; Sun, Hui-Chuan

    2015-05-29

    microRNAs (miRNAs) have been reported to modulate macrophage colony-stimulating factor (M-CSF) and macrophages. The aim of this study was to find whether miR-26a can suppress M-CSF expression and the recruitment of macrophages. Hepatocellular carcinoma (HCC) cell lines with decreased or increased expression of miR-26a were established in a previous study. M-CSF expression by tumor cells was measured by enzyme-linked immunosorbent assay, and cell migration assays were used to explore the effect of HCC cell lines on macrophage recruitment in vitro. Real-time PCR measured a panel of mRNAs expressed by macrophages. Xenograft models were used to observe tumor growth. Immunohistochemistry was conducted to study the relation between miR-26a expression and M-CSF expression and macrophage recruitment in patients with HCC. Ectopic expression of miR-26a reduced expression of M-CSF. The conditioned medium (CM) from HepG2 cells that overexpressed miR-26a reduced the migration ability of THP-1 cells stimulated by phorbol myristate acetate (PMA) increased expression of interleukin (IL)-12b or IL-23 mRNA and decreased expression of chemokine (C-C motif) ligand (CCL)22, CCL17, and IL-10 mRNA, in comparison to the medium from the parental HepG2 cells. These effects could be interrupted by the PI3K/Akt pathway inhibitor LY294002. Ectopic expression of miR-26a in HCC cells suppressed tumor growth, M-CSF expression, and infiltration of macrophages in tumors. Similar results were also found when using HCCLM3 cells. Furthermore, the expression of miR-26a was inversely correlated with M-CSF expression and macrophage infiltration in tumor tissues from patients with HCC. miR-26a expression reduced M-CSF expression and recruitment of macrophages in HCC.

  11. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    PubMed

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  12. Chicken ovalbumin upstream promoter-transcription factor II regulates nuclear receptor, myogenic, and metabolic gene expression in skeletal muscle cells.

    PubMed

    Crowther, Lisa M; Wang, Shu-Ching Mary; Eriksson, Natalie A; Myers, Stephen A; Murray, Lauren A; Muscat, George E O

    2011-02-24

    We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.

  13. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. LAMP-2C inhibits MHC class II presentation of cytoplasmic antigens by disrupting chaperone-mediated autophagy

    PubMed Central

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J.; Deffit, Sarah N.; Zhou, Delu; Blum, Janice S.

    2016-01-01

    Cells utilize multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein (LAMP)-2 regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA) which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy (MA) and phagocytosis. Yet, far less is known about LAMP-2C function. While LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, ectopic gene expression was used. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact MA. The gene expression of other LAMP2 isoforms as well as the proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins which are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA which can selectively skew MHCII presentation of cytoplasmic Ags. PMID:26856698

  15. Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability[C][W

    PubMed Central

    Robson, Frances; Okamoto, Haruko; Patrick, Elaine; Harris, Sue-Ré; Wasternack, Claus; Brearley, Charles; Turner, John G.

    2010-01-01

    Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses in far-red (FR) light. These mutants display exaggerated shade responses to low, but not high, R/FR ratio light, suggesting a role for JA in phytochrome A (phyA) signaling. Additionally, we demonstrate that the FR light–induced expression of transcription factor genes is dependent on CORONATINE INSENSITIVE1 (COI1), a central component of JA signaling, and is suppressed by JA. phyA mutants had reduced JA-regulated growth inhibition and VSP expression and increased content of cis-(+)-12-oxophytodienoic acid, an intermediate in JA biosynthesis. Significantly, COI1-mediated degradation of JASMONATE ZIM DOMAIN1-β-glucuronidase (JAZ1-GUS) in response to mechanical wounding and JA treatment required phyA, and ectopic expression of JAZ1-GUS resulted in exaggerated shade responses. Together, these results indicate that JA and phyA signaling are integrated through degradation of the JAZ1 protein, and both are required for plant responses to light and stress. PMID:20435902

  16. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3

    PubMed Central

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3–COP1 pathway. PMID:15861129

  17. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    PubMed

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  18. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36 /C38 acyl precursors for leaf trichome and pavement surface wax.

    PubMed

    Hegebarth, Daniela; Buschhaus, Christopher; Joubès, Jérôme; Thoraval, Didier; Bird, David; Jetter, Reinhard

    2017-09-01

    The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β-ketoacyl-CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C 35 and C 37 alkanes derived from C 36 and C 38 acyl-CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss-of-function mutants were depleted of C 35 and C 37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C 36 and C 38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C 34 to C 38 acyl-CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra-long compounds in adjacent pavement cells. © 2017 John Wiley & Sons Ltd.

  19. High expression of AFAP1-AS1 is associated with poor survival and short-term recurrence in pancreatic ductal adenocarcinoma.

    PubMed

    Ye, Yibiao; Chen, Jie; Zhou, Yu; Fu, Zhiqiang; Zhou, Quanbo; Wang, YingXue; Gao, Wenchao; Zheng, ShangYou; Zhao, Xiaohui; Chen, Tao; Chen, Rufu

    2015-04-30

    Pancreatic ductal adenocarcinoma (PDAC) is still a lethal malignancy. Long noncoding RNAs (lncRNAs) have been shown to play a critical role in cancer development and progression. Here we identified overexpression of the lncRNA AFAP1-AS1 in PDAC patients and evaluated its prognostic and functional relevance. The global lncRNA expression profile in PDAC was measured by lncRNA microarray. Expression of AFAP1-AS1 was evaluated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) in 90 PDAC tissue samples and adjacent normal tissues. The impact of AFAP1-AS1 expression on cell proliferation, migration, and invasion were evaluated in vitro using knockdown and ectopic expression strategies. Microarray analysis revealed that up-regulation of AFAP1-AS1 expression in PDAC tissues compared with normal adjacent tissues, which was confirmed by RT-qPCR in 69/90 cases (76.7%). Its overexpression was associated with lymph node metastasis, perineural invasion, and poor survival. When using AFAP1-AS1 as a prognostic marker, the areas under ROC curves were 0.8669 and 0.9370 for predicting tumor progression within 6 months and 1 year, respectively. In vitro functional experiments involving knockdown of AFAP1-AS1 resulted in attenuated PDAC cell proliferation, migration, and invasion. Ectopic expression of AFAP1-AS1 promoted cell proliferation, migration, and invasion. AFAP1-AS1 is a potential novel prognostic marker to predict the clinical outcome of PDAC patients after surgery and may be a rational target for therapy.

  20. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells.

    PubMed

    Hu, Jianguo; Meng, Ying; Zhang, Zhanqin; Yan, Qiuting; Jiang, Xingwei; Lv, Zilan; Hu, Lina

    2017-02-01

    MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.

  1. Differential gene expression in Ndph-knockout mice in retinal development.

    PubMed

    Schäfer, Nikolaus F; Luhmann, Ulrich F O; Feil, Silke; Berger, Wolfgang

    2009-02-01

    Mutations in the NDP gene impair angiogenesis in the eyes of patients diagnosed with a type of blindness belonging to the group of exudative vitreoretinopathies. This study was conducted to investigate the differential gene expression caused by the absence of Norrin (the NDP protein) in the developing mouse retina and to elucidate early pathogenic events. A comparative gene expression analysis was performed on postnatal day (p)7 retinas from a knockout mouse model for Norrie disease using gene microarrays. Subsequently, results were verified by quantitative real-time PCR analyses. Immunohistochemistry was performed for the vascular permeability marker plasmalemma vesicle associated protein (Plvap). Our study identified expression differences in Ndph(y/-) versus wild-type mice retinas at p7. Gene transcription of the neutral amino acid transporter Slc38a5, apolipoprotein D (ApoD), and angiotensin II receptor-like 1 (Agtrl1) was decreased in the knockout mouse, whereas transcript levels of adrenomedullin (Adm) and of the plasmalemma vesicle associated protein (Plvap) were increased in comparison to the wild-type. In addition, ectopic expression of Plvap was found in the developing retinal vasculature of Norrin-knockout mice on the protein level. These data provide molecular evidence for a role of Norrin in the development of the retinal vasculature. Expression of two genes, Plvap and Slc38a5, is considerably altered in retinal development of Norrin-knockout mice and may reflect or contribute to the pathogenesis of the disease. In particular, ectopic expression of Plvap is consistent with hallmark disease symptoms in mice and humans.

  2. “Real time” genetic manipulation: a new tool for ecological field studies

    PubMed Central

    Schäfer, Martin; Brütting, Christoph; Gase, Klaus; Reichelt, Michael; Baldwin, Ian; Meldau, Stefan

    2014-01-01

    Summary Field experiments with transgenic plants often reveal the functional significance of genetic traits important for plant performance in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression to study ecological interactions in real-time, genetic traits playing essential roles in development, or dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNAi mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CK’s in both the glasshouse and field to understand resistance to the native herbivore Tupiocoris notatus, which attack plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, T. notatus damage increased, demonstrating CK’s role in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature. PMID:23906159

  3. Ectopic Pregnancy

    MedlinePlus

    ... Safe Videos for Educators Search English Español Ectopic Pregnancy KidsHealth / For Parents / Ectopic Pregnancy What's in this ... loss) lower back pain What Causes an Ectopic Pregnancy? An ectopic pregnancy usually happens because a fertilized ...

  4. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    USDA-ARS?s Scientific Manuscript database

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  5. Metallothionein expression is suppressed in primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/enhancer binding protein alpha by phosphatidylinositol 3-kinase signaling cascade.

    PubMed

    Datta, Jharna; Majumder, Sarmila; Kutay, Huban; Motiwala, Tasneem; Frankel, Wendy; Costa, Robert; Cha, Hyuk C; MacDougald, Ormond A; Jacob, Samson T; Ghoshal, Kalpana

    2007-03-15

    Reactive oxygen species (ROS) resulting from chronic inflammation cause liver injury leading to transformation of regenerating hepatocytes. Metallothioneins (MT), induced at high levels by oxidative stress, are potent scavengers of ROS. Here, we report that the levels of MT-1 and MT-2A are drastically reduced in primary human hepatocellular carcinomas (HCCs) and in diethylnitrosamine-induced liver tumors in mice, which is primarily due to transcriptional repression. Expression of the transcription factor, MTF-1, essential for MT expression, and its target gene Zn-T1 that encodes the zinc transporter-1 was not significantly altered in HCCs. Inhibitors of both phosphatidylinositol 3-kinase (PI3K) and its downstream target AKT increased expression of MT genes in HCC cells but not in liver epithelial cells. Suppression of MT-1 and MT-2A by ectopic expression of the constitutively active PI3K or AKT and their up-regulation by dominant-negative PI3K or AKT mutant confirmed negative regulation of MT expression by PI3K/AKT signaling pathway. Further, treatment of cells with a specific inhibitor of glycogen synthase kinase-3 (GSK-3), a downstream effector of PI3K/AKT, inhibited MT expression specifically in HCC cells. Short interfering RNA-mediated depletion of CCAAT/enhancer binding protein alpha (C/EBPalpha), a target of GSK-3, impeded MT expression, which could not be reversed by PI3K inhibitors. DNA binding activity of C/EBPalpha and its phosphorylation at T222 and T226 by GSK-3 are required for MT expression. MTF-1 and C/EBPalpha act in concert to increase MT-2A expression, which probably explains the high level of MT expression in the liver. This study shows the role of PI3K/AKT signaling pathway and C/EBPalpha in regulation of MT expression in hepatocarcinogenesis.

  6. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms

    PubMed Central

    de Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved. PMID:23731015

  7. Characterization of an AGAMOUS gene expressed throughout development of the fleshy fruit-like structure produced by Ginkgo biloba around its seeds.

    PubMed

    Lovisetto, Alessandro; Baldan, Barbara; Pavanello, Anna; Casadoro, Giorgio

    2015-07-16

    The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato. In tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved. The ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might be involved, together with other gens, also in the development of the Ginkgo fruit-like structures. It seems thus strengthened the hypothesis that AGAMOUS MADS-box genes were recruited already in Gymnosperms for the development of the fleshy fruit habit which is evolutionarily so important for the dispersal of seeds.

  8. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu; Kim, Patrick Y.; Ng, Hwee L.

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To testmore » this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.« less

  9. Ectopic transgene expression in the retina of four transgenic mouse lines

    PubMed Central

    Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh

    2017-01-01

    Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404

  10. The cell cycle in Alzheimer disease: a unique target for neuropharmacology.

    PubMed

    Webber, Kate M; Raina, Arun K; Marlatt, Michael W; Zhu, Xiongwei; Prat, María I; Morelli, Laura; Casadesus, Gemma; Perry, George; Smith, Mark A

    2005-10-01

    Several hypotheses have been proposed attempting to explain the pathogenesis of Alzheimer disease including, among others, theories involving amyloid deposition, tau phosphorylation, oxidative stress, metal ion dysregulation and inflammation. While there is strong evidence suggesting that each one of these proposed mechanisms contributes to disease pathogenesis, none of these mechanisms are able to account for all the physiological changes that occur during the course of the disease. For this reason, we and others have begun the search for a causative factor that predates known features found in Alzheimer disease, and that might therefore be a fundamental initiator of the pathophysiological cascade. We propose that the dysregulation of the cell cycle that occurs in neurons susceptible to degeneration in the hippocampus during Alzheimer disease is a potential causative factor that, together with oxidative stress, would initiate all known pathological events. Neuronal changes supporting alterations in cell cycle control in the etiology of Alzheimer disease include the ectopic expression of markers of the cell cycle, organelle kinesis and cytoskeletal alterations including tau phosphorylation. Such mitotic alterations are not only one of the earliest neuronal abnormalities in the disease, but as discussed herein, are also intimately linked to all of the other pathological hallmarks of Alzheimer disease including tau protein, amyloid beta protein precursor and oxidative stress, and even risk factors such as mutations in the presenilin genes. Therefore, therapeutic interventions targeted toward ameliorating mitotic changes would be predicted to have a profound and positive impact on Alzheimer disease progression.

  11. Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124.

    PubMed

    Kai, Ding; Yannian, Liao; Yitian, Chen; Dinghao, Gong; Xin, Zhao; Wu, Ji

    2018-06-18

    Recent studies have implied that circHIPK3, an abundant circular RNA (circRNA), participates in tumorigenesis and cancer progression. Its expression and potential functions in human gallbladder cancer were examined in this study. We show that circHIPK3 is upregulated in human gallbladder cancer cells. But its level is low in gallbladder epithelial cells. circHIPK3 silencing by targeted siRNA potently inhibited survival and proliferation of established and primary human gallbladder cancer cells, while inducing cell apoptosis. Conversely, ectopic over-expression of circHIPK3 can further promote cancer cell proliferation. In gallbladder cancer cells, circHIPK3 sponged the tumor-suppressive microRNA-124 (miR-124) to sequester and inhibit its activity, thereby leading to increased expression of miR-124 targets, including ROCK1 (rho-associated protein kinase 1) and CDK6 (rho-associated protein kinase). Ectopic over-expression of miR-124 b y a lentiviral vector mimicked and abolished actions by circHIPK3 siRNA in gallbladder cancer cells. At last, we show that circHIPK3 is upregulated in human gallbladder cancer tissues, which is correlated with miR-124 downregulation and ROCK1-CDK6 upregulation. Together, we conclude that circHIPK3 promotes gallbladder cancer cell growth possibly by sponging miR-124. The over-expressed circHIPK3 could be a novel therapeutic target and diagnosis marker of human gallbladder cancer. Copyright © 2018. Published by Elsevier Inc.

  12. Transcription of fgf8 is regulated by activating and repressive cis-elements at the midbrain-hindbrain boundary in zebrafish embryos.

    PubMed

    Inoue, Fumitaka; Parvin, Mst Shahnaj; Yamasu, Kyo

    2008-04-15

    Fgf8 is expressed in the isthmic region of the developing brain, serving an organizing function in vertebrate embryos. We previously identified S4.2 downstream to the zebrafish fgf8 gene as a regulatory region that drives transcription in the anterior hindbrain. Here, we investigated the mechanism of fgf8 regulation by the S4.2 region during development. Reporter analyses in embryos revealed that S4.2 closely recapitulates fgf8 expression in the anteriormost hindbrain during somitogenesis. This region contains a sequence highly conserved in fgf8 of diverse vertebrates. Further analyses of S4.2 revealed a 342-bp core region composed of three subregions (#2, #3, and #4). Regions #3 and #4 drove expression broadly in the brain from the midbrain to r5 of the hindbrain, whereas a 28-bp sequence in #2 repressed ectopic expression in the midbrain and in r2 to r5. The enhancer function of S4.2 was absent in pax2a mutant embryos, while it was activated ectopically by pax2a misexpression in the hindbrain. We identified two sites in the core region that are bound by Pax2a in vitro and in vivo, the disruption of which abrogated the S4.2 activity. Thus, fgf8 expression in the anteriormost hindbrain involves activation and repression, with Pax2a as a pivotal regulator.

  13. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1–regulated pathways in mice

    PubMed Central

    Meenhuis, Annemarie; van Veelen, Peter A.; de Looper, Hans; van Boxtel, Nicole; van den Berge, Iris J.; Sun, Su M.; Taskesen, Erdogan; Stern, Patrick; de Ru, Arnoud H.; van Adrichem, Arjan J.; Demmers, Jeroen; Jongen-Lavrencic, Mojca; Löwenberg, Bob; Touw, Ivo P.; Sharp, Phillip A.

    2011-01-01

    MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways. PMID:21628417

  14. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens.

    PubMed

    Eklund, D Magnus; Thelander, Mattias; Landberg, Katarina; Ståldal, Veronika; Nilsson, Anders; Johansson, Monika; Valsecchi, Isabel; Pederson, Eric R A; Kowalczyk, Mariusz; Ljung, Karin; Ronne, Hans; Sundberg, Eva

    2010-04-01

    The plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes. Constitutive expression of PpSHI1 resulted in elevated auxin levels, increased and ectopic expression of the auxin response reporter GmGH3pro:GUS, and in an increased caulonema/chloronema ratio, an effect also induced by exogenous auxin application. In addition, we observed premature ageing and necrosis in cells ectopically expressing PpSHI1. Knockout of either of the two PpSHI genes resulted in reduced auxin levels and auxin biosynthesis rates in leafy shoots, reduced internode elongation, delayed ageing, a decreased caulonema/chloronema ratio and an increased number of axillary hairs, which constitute potential auxin biosynthesis sites. Some of the identified auxin functions appear to be analogous in vascular and non-vascular plants. Furthermore, the spatiotemporal expression of the PpSHI genes and GmGH3pro:GUS strongly overlap, suggesting that local auxin biosynthesis is important for the regulation of auxin peak formation in non-vascular plants.

  15. Releasing Ski-Smad4 mediated suppression is essential to license Th17 differentiation

    PubMed Central

    Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y.; Serody, Jonathan S.; Chen, Xian; Xu, Xiaojiang; Wade, Paul A.; Cook, Donald N.; Ting, Jenny P.; Wan, Yisong Y.

    2017-01-01

    Th17 cells are critically involved in host defense, inflammation, and autoimmunity1–5. TGF-β is instrumental in Th17 differentiation by cooperating with IL-66,7. Yet, the mechanism of how TGF-β enables Th17 differentiation remains elusive. Here we reveal that TGF-β licenses Th17 differentiation by releasing Ski-Smad4-complex suppressed RORγt expression. We found serendipitously that, unlike wild-type T cells, Smad4-deficient T cells differentiated into Th17 cells in the absence of TGF-β signaling in a RORγt-dependent manner. Ectopic Smad4 expression suppressed the RORγt expression and Th17 differentiation of Smad4-deficient T cells. Unexpectedly however, TGF-β neutralized Smad4 mediated suppression without affecting Smad4 binding to Rorc locus. Proteomic analysis revealed that Smad4 interacted with Ski, a transcriptional repressor degraded upon TGF-β stimulation. Ski controlled the histone acetylation/de-acetylation of Rorc locus and Th17 differentiation via Smad4 because ectopic Ski expression inhibited H3K9Ac of Rorc locus, Rorc expression and Th17 differentiation in a Smad4-dependent manner. Therefore, TGF-β-induced disruption of Ski releases Ski-Smad4 complex imposed suppression of RORγt to license Th17 differentiation. This study reveals a critical mechanism by which TGF-β controls Th17 differentiation and uncovers Ski-Smad4 axis as a potential therapeutic target for treating Th17 related diseases. PMID:29072299

  16. Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats

    PubMed Central

    Torres-Reveron, Annelyn; Gray, Jason D.; Melton, Jay T.; Punsoni, Michael; Tabori, Nora E.; Ward, Mary J.; Frys, Kelly; Iadecola, Costantino; Milner, Teresa A.

    2009-01-01

    To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, I.P.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7 to 35. Thirty-nine days after the last MPH administration (PND76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7–11/group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6 ± 1.2 to 126 ± 1.8 mmHg; p<0.05), assessed on PND130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6/group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood. PMID:19100815

  17. MYC-induced cancer cell energy metabolism and therapeutic opportunities.

    PubMed

    Dang, Chi V; Le, Anne; Gao, Ping

    2009-11-01

    Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which links altered cellular metabolism to tumorigenesis. c-Myc regulates genes involved in the biogenesis of ribosomes and mitochondria, and regulation of glucose and glutamine metabolism. With E2F1, c-Myc induces genes involved in nucleotide metabolism and DNA replication, and microRNAs that homeostatically attenuate E2F1 expression. With the hypoxia inducible transcription factor HIF-1, ectopic c-Myc cooperatively induces a transcriptional program for hypoxic adaptation. Myc regulates gene expression either directly, such as glycolytic genes including lactate dehydrogenase A (LDHA), or indirectly, such as repression of microRNAs miR-23a/b to increase glutaminase (GLS) protein expression and glutamine metabolism. Ectopic MYC expression in cancers, therefore, could concurrently drive aerobic glycolysis and/or oxidative phosphorylation to provide sufficient energy and anabolic substrates for cell growth and proliferation in the context of the tumor microenvironment. Collectively, these studies indicate that Myc-mediated altered cancer cell energy metabolism could be translated for the development of new anticancer therapies.

  18. Transcriptional deregulation of oncogenic myocyte enhancer factor 2C in T-cell acute lymphoblastic leukemia.

    PubMed

    Nagel, Stefan; Venturini, Letizia; Meyer, Corinna; Kaufmann, Maren; Scherr, Michaela; Drexler, Hans G; Macleod, Roderick A F

    2011-02-01

    Myocyte enhancer factor 2C (MEF2C) encodes a transcription factor which is ectopically expressed in T-cell acute lymphoblastic leukemia (T-ALL) cell lines, deregulated directly by ectopically expressed homeodomain protein NKX2-5 or by loss of promoter regions via del(5)(q14). Here, we analyzed the MEF2C 5'-region, thus identifying potential regulatory binding sites for GFI1B, basic helix-loop-helix proteins, STAT5, and HOXA9/HOXA10. Chromatin immunoprecipitation and overexpression analyses demonstrated direct activation by GFI1B and LYL1 and inhibition by STAT5. HOXA9/HOXA10 activated expression of NMYC which in turn mediated MEF2C repression, indicating an indirect mode of regulation via NMYC interactor (NMI) and STAT5. Lacking comma: Chromosomal deletion of the STAT5 binding site in LOUCY cells reduced protein levels of STAT5 in some MEF2C-positve T-ALL cell lines, and the presence of inhibitory IL7-JAK-STAT5 signaling highlighted the repressive impact of this factor in MEF2C regulation. Taken together, our results indicate that the expression of MEF2C in T-ALL cells is principally deregulated via activating leukemic transcription factors GFI1B or NKX2-5 and by escaping inhibitory developmental STAT5 signaling.

  19. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.

    PubMed

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-12-15

    Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.

  20. Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma.

    PubMed

    Fu, Christine T; Sretavan, David W

    2012-11-07

    Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.

  1. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage

    PubMed Central

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Gonzaléz-García, María Cecilia; Pedraza-Chaverri, José; Medina-Campos, Omar Noel; Valverde, Mahara; Rojas, Emilio; Rodríguez-Sastre, María Alexandra; García-Cuellar, Claudia María; Lizano, Marcela

    2018-01-01

    Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage. PMID:29483822

  2. Cereal cystatins delay sprouting and nutrient loss in tubers of potato, Solanum tuberosum.

    PubMed

    Munger, Aurélie; Simon, Marie-Aube; Khalf, Moustafa; Goulet, Marie-Claire; Michaud, Dominique

    2015-12-21

    Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.

  3. Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging

    PubMed Central

    Odnokoz, Olena; Nakatsuka, Kyle; Klichko, Vladimir I.; Nguyen, Jacqueline; Solis, Liz Calderon; Ostling, Kaitlin; Badinloo, Marziyeh; Orr, William C.; Radyuk, Svetlana N.

    2016-01-01

    Previously, we have shown that flies under-expressing the two mitochondrial peroxiredoxins (Prxs), dPrx3 and dPrx5, display increases in tissue-specific apoptosis and dramatically shortened life span, associated with a redox crisis, manifested as changes in GSH:GSSG and accumulation of protein mixed disulfides. To identify specific pathways responsible for the observed biological effects, we performed a transcriptome analysis. Functional clustering revealed a prominent group enriched for immunity-related genes, including a considerable number of NF-kB-dependent antimicrobial peptides (AMP) that are up-regulated in the Prx double mutant. Using qRT-PCR analysis we determined that the age-dependent changes in AMP levels in mutant flies were similar to those observed in controls when scaled to percentage of life span. To further clarify the role of Prx-dependent mitochondrial signaling, we expressed different forms of dPrx5, which unlike the uniquely mitochondrial dPrx3 is found in multiple subcellular compartments, including mitochondrion, nucleus and cytosol. Ectopic expression of dPrx5 in mitochondria but not nucleus or cytosol partially extended longevity under normal or oxidative stress conditions while complete restoration of life span occurred when all three forms of dPrx5 were expressed from the wild type dPrx5 transgene. When dPrx5 was expressed in mitochondria or in all three compartments, it substantially delayed the development of hyperactive immunity while expression of cytosolic or nuclear forms had no effect on the immune phenotype. The data suggest a critical role of mitochondria in development of chronic activation of the immune response triggered by impaired redox control. PMID:27770625

  4. Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity

    PubMed Central

    Kaller, Markus; Götz, Ursula; Hermeking, Heiko

    2017-01-01

    We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress. PMID:29262524

  5. The Metastasis Efficiency Modifier Ribosomal RNA Processing 1 Homolog B (RRP1B) Is a Chromatin-associated Factor*

    PubMed Central

    Crawford, Nigel P. S.; Yang, Hailiu; Mattaini, Katherine R.; Hunter, Kent W.

    2009-01-01

    There is accumulating evidence for a role of germ line variation in breast cancer metastasis. We have recently identified a novel metastasis susceptibility gene, Rrp1b (ribosomal RNA processing 1 homolog B). Overexpression of Rrp1b in a mouse mammary tumor cell line induces a gene expression signature that predicts survival in breast cancer. Here we extend the analysis of RRP1B function by demonstrating that the Rrp1b activation gene expression signature accurately predicted the outcome in three of four publicly available breast carcinoma gene expression data sets. In addition, we provide insights into the mechanism of RRP1B. Tandem affinity purification demonstrated that RRP1B physically interacts with many nucleosome binding factors, including histone H1X, poly(ADP-ribose) polymerase 1, TRIM28 (tripartite motif-containing 28), and CSDA (cold shock domain protein A). Co-immunofluorescence and co-immunoprecipitation confirmed these interactions and also interactions with heterochromatin protein-1α and acetyl-histone H4 lysine 5. Finally, we investigated the effects of ectopic expression of an RRP1B allelic variant previously associated with improved survival in breast cancer. Gene expression analyses demonstrate that, compared with ectopic expression of wild type RRP1B in HeLa cells, the variant RRP1B differentially modulates various transcription factors controlled by TRIM28 and CSDA. These data suggest that RRP1B, a tumor progression and metastasis susceptibility candidate gene, is potentially a dynamic modulator of transcription and chromatin structure. PMID:19710015

  6. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans.

    PubMed

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.

  7. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans

    PubMed Central

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939

  8. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype.

    PubMed

    Miglionico, Rocchina; Ostuni, Angela; Armentano, Maria Francesca; Milella, Luigi; Crescenzi, Elvira; Carmosino, Monica; Bisaccia, Faustino

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21 Cip p53 independent; and 4) downregulation of lamin A/C. These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.

  9. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity.

    PubMed

    Zhang, Bing; Zhou, Wen-Jie; Gu, Chun-Jie; Wu, Ke; Yang, Hui-Li; Mei, Jie; Yu, Jia-Jun; Hou, Xiao-Fan; Sun, Jian-Song; Xu, Feng-Yuan; Li, Da-Jin; Jin, Li-Ping; Li, Ming-Qing

    2018-05-14

    Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.

  10. Transgenic mice with ectopic expression of constitutively active TLR4 in adipose tissues do not show impaired insulin sensitivity

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is associated with obesity and diabetes. However, what causes and mediates chronic inflammation in metabolic disorders is not well understood. Tolllike receptor 4 (TLR4) mediates both infection-induced and sterile inflammation by recognizing pathogen-associated molecul...

  11. Steroid signaling in mature follicles is important for Drosophila ovulation

    PubMed Central

    Knapp, Elizabeth

    2017-01-01

    Although ecdysteroid signaling regulates multiple steps in oogenesis, it is not known whether it regulates Drosophila ovulation, a process involving a matrix metalloproteinase-dependent follicle rupture. In this study, we demonstrated that ecdysteroid signaling is operating in mature follicle cells to control ovulation. Moreover, knocking down shade (shd), encoding the monooxygenase that converts ecdysone (E) to the more active 20-hydroxyecdysone (20E), specifically in mature follicle cells, blocked follicle rupture, which was rescued by ectopic expression of shd or exogenous 20E. In addition, disruption of the Ecdysone receptor (EcR) in mature follicle cells mimicked shd-knockdown defects, which were reversed by ectopic expression of EcR.B2 but not by EcR.A or EcR.B1 isoforms. Furthermore, we showed that ecdysteroid signaling is essential for the proper activation of matrix metalloproteinase 2 (Mmp2) for follicle rupture. Our data strongly suggest that 20E produced in follicle cells before ovulation activates EcR.B2 to prime mature follicles to be responsive to neuronal ovulatory stimuli, thus providing mechanistic insights into steroid signaling in Drosophila ovulation. PMID:28069934

  12. Sulforaphane protects against cytokine- and streptozotocin-induced {beta}-cell damage by suppressing the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung

    2009-02-15

    Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced {beta}-cell damage. Treatment of RIN cells with IL-1{beta} and IFN-{gamma} induced {beta}-cell damage through a NF-{kappa}B-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokinemore » toxicity. The mechanism by which Nrf2 activation inhibited NF-{kappa}B-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H{sub 2}O{sub 2} production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.« less

  13. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD

    PubMed Central

    Wu, Rui; Liang, Yingjian; Lin, Meihua; Liu, Jia; Chan, Chang S.; Hu, Wenwei; Feng, Zhaohui

    2014-01-01

    Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression. PMID:25114038

  14. Down-Regulation of TM29, a Tomato SEPALLATA Homolog, Causes Parthenocarpic Fruit Development and Floral Reversion1

    PubMed Central

    Ampomah-Dwamena, Charles; Morris, Bret A.; Sutherland, Paul; Veit, Bruce; Yao, Jia-Long

    2002-01-01

    We have characterized the tomato (Lycopersicon esculentum Mill.) MADS box gene TM29 that shared a high amino acid sequence homology to the Arabidopsis SEP1, 2, and 3 (SEPALLATA1, 2, and 3) genes. TM29 showed similar expression profiles to SEP1, with accumulation of mRNA in the primordia of all four whorls of floral organs. In addition, TM29 mRNA was detected in inflorescence and vegetative meristems. To understand TM29 function, we produced transgenic tomato plants in which TM29 expression was down-regulated by either cosuppression or antisense techniques. These transgenic plants produced aberrant flowers with morphogenetic alterations in the organs of the inner three whorls. Petals and stamens were green rather than yellow, suggesting a partial conversion to a sepalloid identity. Stamens and ovaries were infertile, with the later developing into parthenocarpic fruit. Ectopic shoots with partially developed leaves and secondary flowers emerged from the fruit. These shoots resembled the primary transgenic flowers and continued to produce parthenocarpic fruit and additional ectopic shoots. Based on the temporal and spatial expression pattern and transgenic phenotypes, we propose that TM29 functions in floral organ development, fruit development, and maintenance of floral meristem identity in tomato. PMID:12376628

  15. Activation of the CXCL16/CXCR6 Axis by TNF-α Contributes to Ectopic Endometrial Stromal Cells Migration and Invasion.

    PubMed

    Peng, Yaoming; Ma, Junyan; Lin, Jun

    2018-01-01

    The activation of systemic and local inflammatory mechanisms, including elevated levels of chemokines and proinflammatory cytokines in endometriosis progression, is becoming more evident in the recent years. Here, we report the involvement of CXC chemokine 16 (CXCL16) and its sole receptor, CXC chemokine receptor 6 (CXCR6), in pathophysiology of endometriosis. Expression of CXCL16, but not CXCR6, was significantly upregulated in endometriotic lesions when compared to control endometrium. Additionally, serum CXCL16 was significantly elevated in women with endometriosis when compared to control group. Moreover, blockade of the CXCL16/CXCR6 axis by CXCR6 small-interfering RNA reduced the migration and invasion of ectopic endometrial stromal cells (EESCs) followed by decreased phosphorylation of ERK1/2. Furthermore, TNF-α treatment induced the expression of CXCL16 in EESCs. In conclusion, these results suggest that CXCL16/CXCR6 axis, whose expression was enhanced by TNF-α, may be associated with the increased motility of EESCs, through regulation of ERK1/2 signaling, thus contributing to the development of endometriosis. These findings indicate that the CXCL16/CXCR6 axis may contribute to the progression of endometriosis and could be served as a potential target for diagnosis and treatment.

  16. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis.

    PubMed

    Singh, Akanksha; Khurana, Paramjit

    2017-09-28

    Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.

  17. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy.

    PubMed

    Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T

    2017-12-01

    The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.

  18. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy

    PubMed Central

    Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.

    2017-01-01

    Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313

  19. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2014-01-01

    The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. PMID:25446529

  20. Disruption of biomineralization pathways in spinal tissues of a mouse model of diffuse idiopathic skeletal hyperostosis.

    PubMed

    Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A

    2016-09-01

    Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A Novel Mechanism of Estrogen Action in Breast Cancer Cells Mediated Through ER-FE65 Complex Formation

    DTIC Science & Technology

    2013-03-01

    Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2. Ectopic Fe65 increased the transcriptional activity of the...ERα in a PTB2 dependent manner in reporter assays. Fe65 knockdown decreased and its stable expression increased the activity of endogenous ERα in...Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen, suggesting a potential role for Fe65 in tamoxifen resistance. While a role of

  2. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    DTIC Science & Technology

    2012-10-01

    support with our hypothesis, expressions of AR co-repressors (48-50), HDAC1, HDAC3 or SirT1 inhibit the ligand-induced AR activation at different...signaling and androgen-dependent growth. We hypothesis that DACH1/Six1/Eya pathway is an endogenous regulator of AR trans- activation and contributes to...mechanism. Inhibitory function of Eya1 on AR transactivation required a phosphates activity and could be enhanced by ectopic expression of co-repressors

  3. OsGA2ox5, a Gibberellin Metabolism Enzyme, Is Involved in Plant Growth, the Root Gravity Response and Salt Stress

    NASA Astrophysics Data System (ADS)

    Cai, Weiming; Shan, Chi

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2b-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GAdeficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 mM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  4. OsGA2ox5, a Gibberellin Metabolism Enzyme, Is Involved in Plant Growth, the Root Gravity Response and Salt Stress

    PubMed Central

    Shan, Chi; Mei, Zhiling; Duan, Jianli; Chen, Haiying; Feng, Huafeng; Cai, Weiming

    2014-01-01

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice. PMID:24475234

  5. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress.

    PubMed

    Shan, Chi; Mei, Zhiling; Duan, Jianli; Chen, Haiying; Feng, Huafeng; Cai, Weiming

    2014-01-01

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C₁₉-GA2oxs and a smaller class of C₂₀-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C₂₀-GA2oxs subfamily, a subfamily of GA2oxs acting on C₂₀-GAs (GA₁₂, GA₅₃). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  6. Rh Incompatibility

    MedlinePlus

    ... An ectopic pregnancy, a miscarriage, or an induced abortion. (An ectopic pregnancy is a pregnancy that starts ... An ectopic pregnancy, a miscarriage, or an induced abortion. (An ectopic pregnancy is a pregnancy that starts ...

  7. Clinicopathological Features and Treatment of Ectopic Varices with Portal Hypertension

    PubMed Central

    Sato, Takahiro; Akaike, Jun; Toyota, Jouji; Karino, Yoshiyasu; Ohmura, Takumi

    2011-01-01

    Bleeding from ectopic varices, which is rare in patients with portal hypertension, is generally massive and life-threatening. Forty-three patients were hospitalized in our ward for gastrointestinal bleeding from ectopic varices. The frequency of ectopic varices was 43/1218 (3.5%) among portal hypertensive patients in our ward. The locations of the ectopic varices were rectal in thirty-two, duodenal in three, intestinal in two, vesical in three, stomal in one, and colonic in two patients. Endoscopic or interventional radiologic treatment was performed successfully for ectopic varices. Hemorrhage from ectopic varices should be kept in mind in patients with portal hypertension presenting with lower gastrointestinal bleeding. PMID:21994879

  8. Wnt Signaling Specifies Anteroposterior Progenitor Zone Identity in the Drosophila Visual Center.

    PubMed

    Suzuki, Takumi; Trush, Olena; Yasugi, Tetsuo; Takayama, Rie; Sato, Makoto

    2016-06-15

    During brain development, various types of neuronal populations are produced from different progenitor pools to produce neuronal diversity that is sufficient to establish functional neuronal circuits. However, the molecular mechanisms that specify the identity of each progenitor pool remain obscure. Here, we show that Wnt signaling is essential for the specification of the identity of posterior progenitor pools in the Drosophila visual center. In the medulla, the largest component of the visual center, different types of neurons are produced from two progenitor pools: the outer proliferation center (OPC) and glial precursor cells (GPCs; also known as tips of the OPC). We found that OPC-type neurons are produced from the GPCs at the expense of GPC-type neurons when Wnt signaling is suppressed in the GPCs. In contrast, GPC-type neurons are ectopically induced when Wnt signaling is ectopically activated in the OPC. These results suggest that Wnt signaling is necessary and sufficient for the specification of the progenitor pool identity. We also found that Homothorax (Hth), which is temporally expressed in the OPC, is ectopically induced in the GPCs by suppression of Wnt signaling and that ectopic induction of Hth phenocopies the suppression of Wnt signaling in the GPCs. Thus, Wnt signaling is involved in regionalization of the fly visual center through the specification of the progenitor pool located posterior to the medulla by suppressing Hth expression. Brain consists of considerably diverse neurons of different origins. In mammalian brain, excitatory and inhibitory neurons derive from the dorsal and ventral telencephalon, respectively. Multiple progenitor pools also contribute to the neuronal diversity in fly brain. However, it has been unclear how differences between these progenitor pools are established. Here, we show that Wnt signaling, an evolutionarily conserved signaling, is involved in the process that establishes the differences between these progenitor pools. Because β-catenin signaling, which is under the control of Wnt ligands, specifies progenitor pool identity in the developing mammalian thalamus, Wnt signaling-mediated specification of progenitor pool identity may be conserved in insect and mammalian brains. Copyright © 2016 the authors 0270-6474/16/366503-11$15.00/0.

  9. Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression.

    PubMed

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-04-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33(ING1b) splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33(ING1b) protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33(ING1b) increased levels of the p21(Waf1) cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21(Waf1) by p33(ING1b), consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33(ING1b) by directing its subcellular localization.

  10. Differences between dentitions with palatally and labially located maxillary canines observed in incisor width, dental morphology and space conditions.

    PubMed

    Artmann, L; Larsen, H J; Sørensen, H B; Christensen, I J; Kjaer, I

    2010-06-01

    To analyze the interrelationship between incisor width, deviations in the dentition and available space in the dental arch in palatally and labially located maxillary ectopic canine cases. Size: On dental casts from 69 patients (mean age 13 years 6 months) the mesiodistal widths of each premolar, canine and incisor were measured and compared with normal standards. Dental deviations: Based on panoramic radiographs from the same patients the dentitions were grouped accordingly: Group I: normal morphology; Group IIa: deviations in the dentition within the maxillary incisors only; Group IIb: deviations in the dentition in general. Descriptive statistics for the tooth sizes and dental deviations were presented by the mean and 95% confidence limits for the mean and the p-value for the T-statistic. Space: Space was expresses by subtracting the total tooth sizes of incisors, canines and premolars from the length of the arch segments. Size of lateral maxillary incisor: The widths of the lateral incisors were significantly different in groups I, IIa and IIb (p=0.016) and in cases with labially located ectopic canines on average 0.65 (95% CI:0.25-1.05, p=0.0019) broader than lateral incisors in cases with palatally located ectopic canines. Space: Least available space was observed in cases with labially located canines. The linear model did show a difference between palatally and labially located ectopic canines (p=0.03). Space related to deviations in the dentition: When space in the dental arch was related to dental deviations (groups I, IIa and IIb), the cases in group IIb with palatally located canines had significantly more space compared with I and IIa. Two subgroups of palatally located ectopic maxillary canine cases based on registration of space, incisor width and deviations in the morphology of the dentition were identified.

  11. High Temperature Requirement A1, Transforming Growth Factor Beta 1, phosphoSmad2 and Ki67 in Eutopic and Ectopic Endometrium of Women With Endometriosis

    PubMed Central

    Goteri, G.; Altobelli, E.; Tossetta, G.; Zizzi, A.; Avellini, C.; Licini, C.; Lorenzi, T.; Castellucci, M.; Ciavattini, A.

    2015-01-01

    Increasing evidence supports the hypothesis that TGFβ1 signalling may be mediated by high temperature requirement A1 (HtrA1) serine protease, acting on important regulatory mechanisms such as cell proliferation and mobility. Evidence is now accumulating to suggest that HtrA1 is involved in the development and progression of several pathologies. The aim of this study was to evaluate: i) if HtrA1 and TGFβ1 expressions differ in eutopic and ectopic endometrium in women with endometriosis; ii) if HtrA1 correlates to TGFβ1, pSmad and Ki67. This study was carried out including 10 women with ovarian endometriosis (cases) and 10 women with non endometriotic diseases (controls). Endometrial tissue underwent immunohistochemical H-score analysis for HtrA1, TGFβ1, pSmad and Ki67 molecules. Data evaluation was performed by a nonparametric Kruskal-Wallis test and Spearman correlation was applied to evaluate the relationship among the molecules investigated in the epithelial and in the stromal compartment. The HtrA1 was significantly decreased in ectopic and eutopic endometrium of women with endometriosis when compared with control endometrium in epithelial compartment. TGFβ1was significantly increased in eutopic endometrium and decreased in ectopic endometrium in epithelial and stromal compartment. In addition, Ki67 was significantly increased and an increase, but not significant, was detected for pSMAd2 in eutopic and ectopic endometrium compared to control one. In summary, the significant direct correlation between TGFβ1 and pSmad2 as well as between HtrA1 and TGFβ1 and the very significant increase of Ki67 in stromal compartment of eutopic endometrium suggest a possible involvement of HtrA1 in the pathogenesis of endometriosis. PMID:26708185

  12. Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells.

    PubMed

    Sonoki, Hiroyuki; Tanimae, Asami; Furuta, Takumi; Endo, Satoshi; Matsunaga, Toshiyuki; Ichihara, Kenji; Ikari, Akira

    2018-06-01

    Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Suppression of Akt-mediated HDAC3 expression and CDK2 T39 phosphorylation by a bichalcone analog contributes to S phase retardation of cancer cells.

    PubMed

    Hung, Kuang-Chen; Lin, Meng-Liang; Hsu, Shih-Wei; Lee, Chuan-Chun; Huang, Ren-Yu; Wu, Tian-Shung; Chen, Shih-Shun

    2018-06-15

    Targeting cell cycle regulators has been a suggested mechanism for therapeutic cancer strategies. We report here that the bichalcone analog TSWU-CD4 induces S phase arrest of human cancer cells by inhibiting the formation of cyclin A-phospho (p)-cyclin-dependent kinase 2 (CDK2, threonine [Thr] 39) complexes, independent of mutant p53 expression. Ectopic expression of CDK2 (T39E), which mimics phosphorylation of the Thr 39 residue of CDK2, partially rescues the cells from TSWU-CD4-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TSWU-CD4-triggered S phase arrest. Decreased histone deacetylase 3 (HDAC3) expression after TSWU-CD4 treatment was demonstrated, and TSWU-CD4 induced S phase arrest and inhibitory effects on cyclin A expression and CDK2 Thr 39 phosphorylation, while cyclin A-p-CDK2 (Thr 39) complex formation was suppressed by ectopic wild-type HDAC3 expression. The co-transfection of CDK2 (T39E) along with HDAC3 completely restored cyclin A expression, Thr 39-phosphorylated CDK2, cyclin A-p-CDK2 (Thr 39) complex formation, and the S phase population to normal levels. Protein kinase B (Akt) inactivation was required for TSWU-CD4-induced S phase cell cycle arrest, because constitutively active Akt1 blocks the induction of S phase arrest and the suppression of cyclin A and HDAC3 expression, CDK2 Thr 39 phosphorylation, and cyclin A-p-CDK2 (Thr 39) complex formation by TSWU-CD4. Taken together, our results indicate that TSWU-CD4 induces S phase arrest by inhibiting Akt-mediated HDAC3 expression and CDK2 Thr 39 phosphorylation to suppress the formation of cyclin A-p-CDK2 (Thr 39) complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. MicroRNA-466 (miR-466) functions as a tumor suppressor and prognostic factor in colorectal cancer (CRC).

    PubMed

    Tong, Feng; Ying, Youhua; Pan, Haihua; Zhao, Wei; Li, Hongchen; Zhan, Xiaoli

    2018-01-17

    MicroRNAs (miRNAs) have an important role in the regulation of tumor development and metastasis. In this study, we investigated the clinical and prognostic value as well as biological function of miR-466 in colorectal cancer (CRC). Tumor and adjacent healthy tissues were obtained from 100 patients diagnosed with CRC. miR-466 expression was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). mRNA and protein levels of cyclin D1, apoptosis regulator BAX (BAX), and matrix metalloproteinase-2 (MMP-2) were analyzed by qRT-PCR and Western blot, respectively, in SW-620 CRC cells transfected with miR-466 mimics or negative control miRNA. Effects of miR-466 on SW-620 cell proliferation, cell cycle and apoptosis, and invasion were investigated using CCK-8 assay, flow cytometry and Transwell assay, respectively. miR-466 expression was significantly downregulated in tumor tissues compared to matched adjacent non-tumor tissues. Low expression of miR-466 was significantly correlated with the tumor size, Tumor Node Metastasis stage, lymph node metastasis, and distant metastasis. The overall survival of CRC patients with low miR-466 expression was significantly shorter compared to high-miR-466 expression group (log-rank test: p = 0.0103). Multivariate analysis revealed that low miR-466 expression was associated with poor prognosis in CRC patients. The ectopic expression of miR-466 suppressed cell proliferation and migration/invasion, as well as induced G0/G1 arrest and apoptosis in SW-620 cells. Moreover, the ectopic expression of miR-466 decreased the expression of cyclin D1 and MMP-2, but increased BAX expression in SW-620 cells. In conclusion, our findings demonstrated that miR-466 functions as a suppressor miRNA in CRC and may be used as a prognostic factor in these patients.

  15. Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Nakhawa, Vaishali H; Jagtap, Dhanashree D; Mahale, Smita D

    2010-09-01

    The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis.

  16. Ectopic Expression of GsSRK in Medicago sativa Reveals Its Involvement in Plant Architecture and Salt Stress Responses.

    PubMed

    Sun, Mingzhe; Qian, Xue; Chen, Chao; Cheng, Shufei; Jia, Bowei; Zhu, Yanming; Sun, Xiaoli

    2018-01-01

    Receptor-like kinases (RLK) play fundamental roles in plant growth and stress responses. Compared with other RLKs, little information is provided concerning the S-locus LecRLK subfamily, which is characterized by an extracellular G-type lectin domain and an S-locus-glycop domain. Until now, the function of the G-type lectin domain is still unknown. In a previous research, we identified a Glycine soja S-locus LecRLK gene GsSRK , which conferred increased salt stress tolerance in transgenic Arabidopsis . In this study, to investigate the role of the G-type lectin domain and to breed transgenic alfalfa with superior salt stress tolerance, we transformed the full-length GsSRK ( GsSRK-f ) and a truncated version of GsSRK ( GsSRK-t ) deleting the G-type lectin domain into alfalfa. Our results showed that overexpression of GsSRK-t , but not GsSRK-f , resulted in changes of plant architecture, as evidenced by more branches but shorter shoots of GsSRK-t transgenic alfalfa, indicating a potential role of the extracellular G-type lectin domain in regulating plant architecture. Furthermore, we also found that transgenic alfalfa overexpressing either GsSRK-f or GsSRK-t showed increased salt stress tolerance, and GsSRK-t transgenic alfalfa displayed better growth (more branches and higher fresh weight) than GsSRK-f lines under salt stress. In addition, our results suggested that both GsSRK-f and GsSRK-t were involved in ion homeostasis, ROS scavenging, and osmotic regulation. Under salt stress, the Na + content in the transgenic lines was significantly lower, while the K + content was slightly higher than that in WT. Moreover, the transgenic lines displayed reduced ion leakage and MDA content, but increased SOD activity and proline content than WT. Notably, no obvious difference in these physiological indices was observed between GsSRK-f and GsSRK-t transgenic lines, implying that deletion of the GsSRK G-type lectin domain does not affect its physiological function in salt stress responses. In conclusion, results in this research reveal the dual role of GsSRK in regulating both plant architecture and salt stress responses.

  17. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells

    PubMed Central

    Hoang, Michael; Kim, Jeffrey J.; Kim, Yiyoung; Tong, Elizabeth; Trammell, Benjamin; Liu, Yao; Shi, Songtao; Lee, Chang-Ryul; Hong, Christine; Wang, Cun-Yu; Kim, Yong

    2016-01-01

    Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs) to ethanol (EtOH). By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B) was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders. PMID:27286573

  18. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1

    PubMed Central

    Jayewickreme, Chenura D.; Shivdasani, Ramesh A.

    2015-01-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579

  19. Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana.

    PubMed

    Abraham-Juárez, María Jazmín; Martínez-Hernández, Aída; Leyva-González, Marco Antonio; Herrera-Estrella, Luis; Simpson, June

    2010-09-01

    Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.

  20. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.

    PubMed

    Jayewickreme, Chenura D; Shivdasani, Ramesh A

    2015-09-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    PubMed

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Effects of electromagnetic pulse on polydactyly of mouse fetuses.

    PubMed

    Yang, Ming-Juan; Liu, Jun-Ye; Wang, Ya-Feng; Lang, Hai-Yang; Miao, Xia; Zhang, Li-Yan; Zeng, Li-Hua; Guo, Guo-Zhen

    2013-07-01

    There is an increasing public concern regarding potential health impacts from electromagnetic radiation exposure. Embryonic development is sensitive to the external environment, and limb development is vital for life quality. To determine the effects of electromagnetic pulse (EMP) on polydactyly of mouse fetuses, pregnant mice were sham-exposed or exposed to EMP (400 kV/m with 400 pulses) from Days 7 to 10 of pregnancy (Day 0 = day of detection of vaginal plug). As a positive control, mice were treated with 5-bromodeoxyuridine on Days 9 and 10. On Days 11 or 18, the fetuses were isolated. Compared with the sham-exposed group, the group exposed to EMP had increased rates of polydactyly fetuses (5.1% vs. 0.6%, P < 0.05) and abnormal gene expression (22.2% vs. 2.8%, P < 0.05). Ectopic expression of Fgf4 was detected in the apical ectodermal ridge, whereas overexpression and ectopic expression of Shh were detected in the zone of polarizing activity of limbs in the EMP-exposed group and in the positive control group. However, expression of Gli3 decreased in mesenchyme cells in those two groups. The percentages of programmed cell death of limbs in EMP-exposed and positive control group were decreased (3.57% and 2.94%, respectively, P < 0.05, compared with 7.76% in sham-exposed group). In conclusion, polydactyly induced by EMP was accompanied by abnormal expression of the above-mentioned genes and decreased percentage of programmed cell death during limb development. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Genome-Edited, TH-expressing Neuroblastoma Cells as a Disease Model for Dopamine-Related Disorders: A Proof-of-Concept Study on DJ-1-deficient Parkinsonism

    PubMed Central

    Prasuhn, Jannik; Mårtensson, Christoph U.; Krajka, Victor; Klein, Christine; Rakovic, Aleksandar

    2018-01-01

    Impairment of the dopaminergic (DA) system is a common cause of several movement disorders including Parkinson’s disease (PD), however, little is known about the underlying disease mechanisms. The recent development of stem-cell-based protocols for the generation of DA neurons partially solved this issue, however, this technology is costly and time-consuming. Commonly used cell lines, i.e., neuroblastoma (SHSY5Y) and PC12 cells are still widely used to investigate PD and significantly contributed to our understanding of mechanisms involved in development of the disease. However, they either do not express DA at all or require additional, only partially efficient differentiations in order to produce DA. Here we generated and characterized transgenic SH-SY5Y cells, ectopically expressing tyrosine hydroxylase (SHTH+), that can be used as a homogenous, DA-producing model to study alterations in DA metabolism and oxidative stress. We demonstrated that SHTH+ produce high levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) making this model suitable to investigate not only alterations in DA synthesis but also its turnover. We also provide evidence for the presence of other enzymes involved in DA synthesis and its turnover in these cells. Finally, we showed that these cells can easily be genetically modified using CRISPR/Cas9 technology in order to study genetically defined forms of movement disorders using DJ1-linked PD as a model. PMID:29379417

  4. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.)

    PubMed Central

    Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen

    2017-01-01

    Alfalfa (Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1) gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands. PMID:29326737

  5. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.).

    PubMed

    Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen

    2017-01-01

    Alfalfa ( Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 ( AtEDT1 ) gene into alfalfa via Agrobacterium -mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  6. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development

    DOE PAGES

    Virdi, Kamaldeep S.; Wamboldt, Yashitola; Kundariya, Hardik; ...

    2015-11-14

    As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein–protein interactions data indicate that MSH1 also associates with the thylakoidmore » membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%–10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.« less

  7. Filaggrin 2 deficiency results in abnormal cell-cell adhesion in the cornified cell layers and causes peeling skin syndrome type A.

    PubMed

    Mohamad, Janan; Sarig, Ofer; Godsel, Lisa M; Peled, Alon; Malchin, Natalia; Bochner, Ron; Vodo, Dan; Rabinowitz, Tom; Pavlovsky, Mor; Taiber, Shahar; Fried, Maya; Eskin-Schwartz, Marina; Assi, Siwar; Shomron, Noam; Uitto, Jouni; Koetsier, Jennifer L; Bergman, Reuven; Green, Kathleen J; Sprecher, Eli

    2018-05-11

    Peeling skin syndromes form a large and heterogeneous group of inherited disorders characterized by superficial detachment of the epidermal cornified cell layers, often associated with inflammatory features. Here we report on a consanguineous family featuring non-inflammatory peeling of the skin exacerbated by exposure to heat and mechanical stress. Whole exome sequencing revealed a homozygous nonsense mutation in FLG2, encoding filaggrin 2, which co-segregated with the disease phenotype in the family. The mutation was found to result in decreased FLG2 RNA levels as well almost total absence of filaggrin 2 in the patient epidermis. Filaggrin 2 was found to be expressed throughout the cornified cell layers and to co-localize with corneodesmosin which plays a crucial role in maintaining cell-cell adhesion in this region of the epidermis. Absence of filaggrin 2 in the patient skin was associated with markedly decreased corneodesmosin expression, which may contribute to the peeling phenotype displayed by the patients. Accordingly, using the dispase dissociation assay, we showed that FLG2 down-regulation interferes with keratinocyte cell-cell adhesion. Of particular interest, this effect was aggravated by temperature elevation, consistent with the clinical phenotype. Restoration of CDSN levels by ectopic expression rescued cell-cell adhesion.Taken together, the present data suggest that filaggrin 2 is essential for normal cell-cell adhesion in the cornified cell layers. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ectopic eruption of first permanent molars: presenting features and associations.

    PubMed

    Mooney, G C; Morgan, A G; Rodd, H D; North, S

    2007-09-01

    To investigate presenting features of ectopically erupting first permanent molars and associations with other dental anomalies. Prospective convenience study. 28 panoral radiographs were collected, over a 24-month period, of 7-11 year-old children with radiographic evidence of ectopic eruption of first permanent molars who presented to a Dental Teaching Hospital in the North of England. A further 20 radiographs were collected of matched patients with no evidence of ectopic molar eruption. All radiographs were analysed under standard conditions to record the distribution and type of ectopic eruption (if present). In addition, the presence of the following dental anomalies was noted: cleft lip and/or palate; supernumerary teeth; hypodontia, and infraocclusion of primary molars. Chi-squared analysis was performed to determine any significant differences in the frequency of these dental anomalies between ectopic molar and control groups. For patients with ectopic molar eruption, the majority demonstrated ectopic eruption of either one or two first permanent molars (32% and 57% of subjects respectively). There were a similar proportion of 'jumps' and 'holds'. 92% of these were maxillary teeth and there was equal left and right distribution. Interestingly, a positive record of ectopic eruption was only documented in the dental records of 35.7% of these subjects. Children with ectopic eruption were significantly more likely to have at least one additional dental anomaly than was the case for the control group (60.7% versus 25%). Notably, primary molar infraocclusion and cleft lip/palate were significantly more frequent in the ectopic group. This study, the first in a British population, has identified a significant association between ectopic eruption of first permanent molars and other dental anomalies. A multifactorial aetiology is thus supported and clinicians should be alert to the co-existence of ectopic eruption and other dental anomalies.

  9. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  10. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    PubMed

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Overexpression of a GmGBP1 ortholog of soybean enhances the responses to flowering, stem elongation and heat tolerance in transgenic tobaccos.

    PubMed

    Zhao, Lin; Wang, Zhixin; Lu, Qingyao; Wang, Pengpeng; Li, Yongguang; Lv, Qingxue; Song, Xianping; Li, Dongmei; Gu, Yuejiao; Liu, Lixue; Li, Wenbin

    2013-06-01

    Soybean is a typical short-day crop, and its photoperiodic and gibberellin (GA) responses for the control of flowering are critical to seed yield. The GmGBP1 mRNA abundance in leaves was dramatically increased in short-days (SDs) compared to that in long-days in which it was consistently low at all time points from 0 to 6 days (days after transfer to SDs). GmGBP1 was highly expressed in leaves and exhibited a circadian rhythm in SDs. Ectopic overexpression of GmGBP1 in tobaccos caused photoperiod-insensitive early flowering by increasing NtCO mRNA levels. GmGBP1 mRNA abundance was also increased by GAs. Transgenic GmGBP1 overexpressing (-ox) tobacco plants exhibited increased GA signaling-related phenotypes including flowering and plant height promotion. Furthermore, the hypocotyl elongation, early-flowering and longer internode phenotypes were largely accelerated by GA3 application in the GmGBP1-ox tobacco seedlings. Being consistent, overexpression of GmGBP1 resulted in significantly enhanced GA signaling (evidenced suppressed expression of NtGA20ox) both with and without GA treatments. GmGBP1 was a positive regulator of both photoperiod and GA-mediated flowering responses. In addition, GmGBP1-ox tobaccos were hypersensitive to ABA, salt and osmotic stresses during seed germination. Heat-inducible GmGBP1 also enhanced thermotolerance in transgenic GmGBP1-ox tobaccos during seed germination and growth. GmGBP1 protein was localized in the nucleus. Analyses of a series of 5'-deletions of the GmGBP1 promoter suggested that several cis-acting elements, including P-BOX, TCA-motif and three HSE elements necessary to induce gene expression by GA, salicic acid and heat stress, were specifically localized in the GmGBP1 promoter region.

  12. Notch Signaling Augments BMP9-Induced Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells (MSCs).

    PubMed

    Liao, Junyi; Wei, Qiang; Zou, Yulong; Fan, Jiaming; Song, Dongzhe; Cui, Jing; Zhang, Wenwen; Zhu, Yunxiao; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Zhang, Zhicai; Wang, Claire; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Luu, Hue H; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Wolf, Jennifer Moriatis; He, Tong-Chuan; Huang, Wei

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into several lineages including bone. Successful bone formation requires osteogenesis and angiogenesis coupling of MSCs. Here, we investigate if simultaneous activation of BMP9 and Notch signaling yields effective osteogenesis-angiogenesis coupling in MSCs. Recently-characterized immortalized mouse adipose-derived progenitors (iMADs) were used as MSC source. Transgenes BMP9, NICD and dnNotch1 were expressed by adenoviral vectors. Gene expression was determined by qPCR and immunohistochem¡stry. Osteogenic activity was assessed by in vitro assays and in vivo ectopic bone formation model. BMP9 upregulated expression of Notch receptors and ligands in iMADs. Constitutively-active form of Notch1 NICD1 enhanced BMP9-induced osteogenic differentiation both in vitro and in vivo, which was effectively inhibited by dominant-negative form of Notch1 dnNotch1. BMP9- and NICD1-transduced MSCs implanted with a biocompatible scaffold yielded highly mature bone with extensive vascularization. NICD1 enhanced BMP9-induced expression of key angiogenic regulators in iMADs and Vegfa in ectopic bone, which was blunted by dnNotch1. Notch signaling may play an important role in BMP9-induced osteogenesis and angiogenesis. It's conceivable that simultaneous activation of the BMP9 and Notch pathways should efficiently couple osteogenesis and angiogenesis of MSCs for successful bone tissue engineering. © 2017 The Author(s)Published by S. Karger AG, Basel.

  13. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Yu; Zhan, Qian; Xu, Hongying

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect onmore » Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.« less

  14. STIM1 Overexpression Promotes Colorectal Cancer Progression, Cell Motility and COX-2 Expression

    PubMed Central

    Wang, Jaw-Yuan; Sun, Jianwei; Huang, Ming-Yii; Wang, Yu-Shiuan; Hou, Ming-Feng; Sun, Yan; He, Huifang; Krishna, Niveditha; Chiu, Siou-Jin; Lin, Shengchen; Yang, Shengyu; Chang, Wei-Chiao

    2014-01-01

    Tumor metastasis is the major cause of death among cancer patients, with more than 90% of cancer-related death attributable to the spreading of metastatic cells to secondary organs. Store-operated Ca2+ entry (SOCE) is the predominant Ca2+ entry mechanism in most cancer cells, and STIM1 is the endoplasmic reticulum (ER) Ca2+ sensor for store-operated channels (SOC). Here we reported that the STIM1 was overexpressed in colorectal cancer (CRC) patients. STIM1 overexpression in CRC was significantly associated with tumor size, depth of invasion, lymphnode metastasis status and serum levels of carcinoembryonic antigen. Furthermore, ectopic expression of STIM1 promoted CRC cell motility, while depletion of STIM1 with shRNA inhibited CRC cell migration. Our data further suggested that STIM1 promoted CRC cell migration through increasing the expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2). Importantly, ectopically expressed COX-2 or exogenous PGE2 were able to rescue migration defect in STIM1 knockdown CRC cells, and inhibition of COX-2 with ibuprofen and indomethacin abrogated STIM1-mediated CRC cell motility. In short, our data provided clinicopathological significance for STIM1 and store-operated Ca2+ entry in CRC progression, and implicated a role for COX-2 in STIM1-mediated CRC metastasis. Our studies also suggested a new approach to inhibit STIM1-mediated metastasis with COX-2 inhibitors. PMID:25381814

  15. Ectopic expression of different cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters plant growth and development.

    PubMed

    Köllmer, Ireen; Werner, Tomáš; Schmülling, Thomas

    2011-08-15

    The plant hormone cytokinin rapidly alters the steady state transcript levels of a number of transcription factor genes suggesting that these might have a function in mediating cytokinin effects. Here we report the analysis of Arabidopsis thaliana plants with an altered expression level of four different cytokinin-regulated transcription factor genes. These include GATA22 (also known as CGA1/GNL), two genes coding for members of the homeodomain zip (HD zip) class II transcription factor family (HAT4, HAT22), and bHLH64. Ectopic expression of the GATA22 gene induced the development of chloroplasts in root tissue where it is normally suppressed and led to the formation of shorter and less branched roots. Overexpression of HAT22 lowered the seedlings chlorophyll content and caused an earlier onset of leaf senescence. Enhanced expression of the HAT4 gene led to severe defects in inflorescence stem development and to a decrease in root growth and branching, while hat4 insertional mutants developed a larger root system. 35S:bHLH64 transgenic plants showed a pleiotropic phenotype, consisting of larger rosettes, reduced chlorophyll content and an elongated and thickened hypocotyl. Flower development was strongly disturbed leading to sterile plants. The results are consistent with specific functions of these transcription factor genes in regulating part of the cytokinin activities and suggest their action as convergence point with other signalling pathways, particularly those of gibberellin and light. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  17. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL.

    PubMed

    Schuelein, Ralf; Spencer, Hugh; Dagley, Laura F; Li, Peng Fei; Luo, Lin; Stow, Jennifer L; Abraham, Gilu; Naderer, Thomas; Gomez-Valero, Laura; Buchrieser, Carmen; Sugimoto, Chihiro; Yamagishi, Junya; Webb, Andrew I; Pasricha, Shivani; Hartland, Elizabeth L

    2018-04-24

    The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localizes to the nucleus where they subvert host cell transcriptional responses to infection. Here we identified Lpg2519 (Lpp2587/Lpw27461), as a new nuclear-localized effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localization by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, SUPT5H/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex (DSIF complex) that regulates RNA polymerase II (Pol II) dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central KOW motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression. This article is protected by copyright. All rights reserved.

  18. Requirements for FGF3 and FGF10 during inner ear formation.

    PubMed

    Alvarez, Yolanda; Alonso, Maria Teresa; Vendrell, Victor; Zelarayan, Laura Cecilia; Chamero, Pablo; Theil, Thomas; Bösl, Michael R; Kato, Shigeaki; Maconochie, Mark; Riethmacher, Dieter; Schimmang, Thomas

    2003-12-01

    Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.

  19. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells

    PubMed Central

    Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana

    2017-01-01

    We here describe a leukemogenic role of the homeobox gene UNCX, activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX-positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1, was revealed. Similar results were obtained in UNCX-transduced CD34+ cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1. We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX, associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. PMID:28411256

  20. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells.

    PubMed

    Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana

    2017-07-01

    We here describe a leukemogenic role of the homeobox gene UNCX , activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX -positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1 , was revealed. Similar results were obtained in UNCX -transduced CD34 + cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX , associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. Copyright© 2017 Ferrata Storti Foundation.

  1. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland

    PubMed Central

    McDonald, Laura; Ferrari, Nicola; Terry, Anne; Bell, Margaret; Mohammed, Zahra M.; Orange, Clare; Jenkins, Alma; Muller, William J.; Gusterson, Barry A.; Neil, James C.; Edwards, Joanne; Morris, Joanna S.; Cameron, Ewan R.; Blyth, Karen

    2014-01-01

    RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer. PMID:24626992

  2. Ectopic Pregnancy

    MedlinePlus

    ... if you have risk factors for an ectopic pregnancy Causes A tubal pregnancy — the most common type of ectopic pregnancy — happens ... smoke, the greater the risk. Complications An ectopic pregnancy can cause your fallopian tube to burst open. Without treatment, ...

  3. Role of FGF and noggin in neural crest induction.

    PubMed

    Mayor, R; Guerrero, N; Martínez, C

    1997-09-01

    A study of the molecules noggin and fibroblast growth factor (FGF) and its receptor in the induction of the prospective neural crest in Xenopus laevis embryos has been carried out, using the expression of the gene Xslu as a marker for the neural crest. We show that when a truncated FGF receptor (XFD) was expressed ectopically in order to block FGF signaling Xslu expression was inhibited. The effect of XFD on Xslu was specific and could be reversed by the coinjection of the wild-type FGF receptor (FGFR). Inhibition of Xslu expression by XFD is not a consequence of neural plate inhibition, as was shown by analyzing Xsox-2 expression. When ectoderm expressing XFD was transplanted into the prospective neural fold region of embryos Xslu induction was inhibited. The neural crest can also be induced by an interaction between neural plate and epidermis. As this induction is suppressed by the presence of XFD in the neural plate and not in the epidermis, it suggests that the neural crest is induced by FGF from the epidermis. However, treatment of neural plate with FGF was not able to induce Xslug expression, showing that in addition to FGF other non-FGF factors are also required. Previously we have suggested that the ectopic ventral expression of Xslu produced by overexpression of noggin mRNA resulted from an interaction of noggin with a ventral signal. Overexpression of XFD inhibits this effect, suggesting that FGF could be one component involved in this ventral signaling. Overexpression of FGFR produced a remarkable increase in the expression of Xslu in the posterior neural folds and around the blastopore. Injections in different blastomeres of the embryo suggest that the target cells of this effect are the ventral cells. Finally, we proposed a model in which the induction of the neural crests at the border of the neural plate requires functional FGF signaling, which possibly interacts with a neural inducer such as noggin.

  4. Analysis of the oncogene BRAF mutation and the correlation of the expression of wild-type BRAF and CREB1 in endometriosis

    PubMed Central

    Lv, Xiao; Ma, Yue; Long, Zaiqiu

    2018-01-01

    B-Raf proto-oncogene, serine/threonine kinase (BRAF) has previously been identified as a candidate target gene in endometriosis. Wild-type and mutated BRAF serve important roles in different diseases. The aim of the present study was to explore BRAF mutation, the mRNA and protein expression of wild-type BRAF (wtBRAF) in endometriosis, and the association between the expression levels of wtBRAF and the predicted transcription factor cAMP responsive element binding protein 1 (CREB1). In the present study, BRAF mutation was detected using Sanger sequencing among 30 ectopic and matched eutopic endometrium samples of patients with endometriosis as well as 25 normal endometrium samples, and no BRAF mutation was detected in exons 11 or 15. A region of ~2,000 bp upstream of the BRAF gene was then screened using NCBI and UCSC databases, and CREB1 was identified as a potential transcription factor of BRAF by analysis with the JASPAR and the TRANSFAC databases. Quantitative polymerase chain reaction was used to analysis the mRNA expression levels of wtBRAF and CREB1, and the corresponding protein expression levels were evaluated using immunohistochemistry and western blot analysis. The results revealed that the mRNA and protein expression levels of wtBRAF and CREB1 were significantly upregulated in the eutopic endometrial tissues of patients with endometriosis compared with normal endometrial tissues (P<0.05) and no significant difference in wtBRAF and CREB1 levels was detected between the ectopic and eutopic endometrium (P>0.05). In addition, correlation analysis revealed that the protein expression of CREB1 was positively correlated with the transcript level and protein expression of wtBRAF. It is reasonable to speculate that CREB1 may activate the transcription of wtBRAF through directly binding to its promoter, increasing BRAF expression and regulating the cell proliferation, migration and invasion of endometriosis. PMID:29286077

  5. Human Keratinocytes That Express hTERT and Also Bypass a p16INK4a-Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics

    PubMed Central

    Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.

    2000-01-01

    Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628

  6. MicroRNA profiling of novel African American and Caucasian Prostate Cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1

    PubMed Central

    Theodore, Shaniece C.; Davis, Melissa; Zhao, Fu; Wang, Honghe; Chen, Dongquan; Rhim, Johng; Dean-Colomb, Windy; Turner, Timothy; Ji, Weidong; Zeng, Guohua; Grizzle, William; Yates, Clayton

    2014-01-01

    miRNA expression in African American compared to Caucasian PCa patients has not been widely explored. Herein, we probed the miRNA expression profile of novel AA and CA derived prostate cancer cell lines. We found a unique miRNA signature associated with AA cell lines, independent of tumor status. Evaluation of the most differentially expressed miRNAs showed that miR-132, miR-367b, miR-410, and miR-152 were decreased in more aggressive cells, and this was reversed after treatment of the cells with 5-aza-2′-deoxycytidine. Sequencing of the miR-152 promoter confirmed that it was highly methylated. Ectopic expression of miR-152 resulted in decreased growth, migration, and invasion. Informatics analysis of a large patient cohort showed that decreased miR-152 expression correlated with increased metastasis and a decrease in biochemical recurrence free survival. Analysis of 39 prostate cancer tissues with matched controls (20 AA and 19 CA), showed that 50% of AA patients had statistically significant lower miR-152 expression compared to only 35% of CA patients. Ectopic expression of miR-152 in LNCaP, PC-3, and MDA-PCa-2b cells down-regulated DNA (cytosine-5)-methyltransferase 1 (DNMT1) through direct binding in the DNMT1 3'UTR. There appeared to be a reciprocal regulatory relationship of miR-152/DNMT1 expression, as cells treated with siRNA DNMT1 caused miR-152 to be re-expressed in all cell lines. In summary, these results demonstrate that epigenetic regulation of miR-152/DNMT1 may play an important role in multiple events that contribute to the aggressiveness of PCa tumors, with an emphasis on AA PCa patients. PMID:25004396

  7. Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1.

    PubMed

    Mangerich, Aswin; Herbach, Nadja; Hanf, Benjamin; Fischbach, Arthur; Popp, Oliver; Moreno-Villanueva, María; Bruns, Oliver T; Bürkle, Alexander

    2010-06-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a sensor for DNA strand breaks and some unusual DNA structures and catalyzes poly(ADP-ribosyl)ation of nuclear proteins with NAD(+) serving as substrate. PARP-1 is involved in the regulation of genomic integrity, transcription, inflammation, and cell death. Due to its versatile role, PARP-1 is discussed both as a longevity factor and as an aging-promoting factor. Recently, we generated a mouse model with ectopic integration of full-length hPARP-1 [Mangerich, A., Scherthan, H., Diefenbach, J., Kloz, U., van der Hoeven, F., Beneke, S. and Bürkle, A., 2009. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res. 18, 261-279]. Here, we show that hPARP-1 mice exhibit impaired survival rates accompanied by reduced hair growth and premature development of several inflammation and age-associated pathologies, such as adiposity, kyphosis, nephropathy, dermatitis, pneumonitis, cardiomyopathy, hepatitis, and anemia. Moreover, mutant male mice showed impaired glucose tolerance, yet without developing manifest diabetes. Overall tumor burden was comparable in wild-type and hPARP-1 mice, but tumor spectrum was shifted in mutant mice, showing lower incidence of sarcomas, but increased incidence of carcinomas. Furthermore, DNA repair was delayed in splenocytes of hPARP-1 mice, and gene expression of pro-inflammatory cytokines was dysregulated. Our results suggest that in hPARP-1 mice impaired DNA repair, accompanied by a continuous low-level increase in pro-inflammatory stimuli, causes development of chronic diseases leading to impaired survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. The critical role of myostatin in differentiation of sheep myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chenxi; Xinjiang Laboratory of Animal Biotechnology, Urumqi; Li, Wenrong

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation inmore » farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.« less

  9. Dominant Suppression of β1 Integrin by Ectopic CD98-ICD Inhibits Hepatocellular Carcinoma Progression

    PubMed Central

    Wu, Bo; Zhou, Yang; Wang, Yu; Yang, Xiang-Min; Liu, Zhen-Yu; Li, Jiang-Hua; Feng, Fei; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-01-01

    Hepatocellular carcinoma (HCC) is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD) seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3), and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin) and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment. PMID:27834933

  10. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  11. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species.

    PubMed

    Nagano, Taiki; Nakashima, Akio; Onishi, Kengo; Kawai, Kosuke; Awai, Yuto; Kinugasa, Mizuki; Iwasaki, Tetsushi; Kikkawa, Ushio; Kamada, Shinji

    2017-04-15

    Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53 ) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene ( PRODH ) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS. © 2017. Published by The Company of Biologists Ltd.

  12. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple.

    PubMed

    Zhang, Rui-Fen; Guo, Ying; Li, Yuan-Yuan; Zhou, Li-Jie; Hao, Yu-Jin; You, Chun-Xiang

    2016-07-01

    SUMOylation, the conjugation of target proteins with SUMO (small ubiquitin-related modifier), is a type of post-translational modification in eukaryotes and involves the sequential action of activation (E1), conjugation (E2) and ligation (E3) enzymes. In Arabidopsis, the AtSIZ1 protein is a SUMO E3 ligase that promotes the conjugation of SUMO proteins to target substrates. Here, we isolated and identified a SUMO E3 ligase, MdSIZ1, in apple, which was similar to AtSIZ1. SUMOylation analysis showed that MdSIZ1 had SUMO E3 ligase activity in vitro and in vivo. SUMO conjugation was increased by high temperatures, low temperatures, and abscisic acid (ABA). The ectopic expression of MdSIZ1 in Arabidopsis siz1-2 mutant plants partially complemented the morphological mutant phenotype and enhanced the levels of SUMO conjugation. Taken together, these results suggest that MdSIZ1-mediated SUMO conjugation of target proteins is an important process that regulates the adaptation of apple plants to various environmental stresses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qishan; Bag, Jnanankur

    2006-02-17

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including {alpha}-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of themore » MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis.« less

  14. Hematopoietic Stem Cell Regeneration Enhanced by Ectopic Expression of ROS-detoxifying Enzymes in Transplant Mice

    PubMed Central

    Miao, Weimin; XuFeng, Richard; Park, Moo-Rim; Gu, Haihui; Hu, Linping; Kang, Jin Wook; Ma, Shihui; Liang, Paulina H; Li, Yanxin; Cheng, Haizi; Yu, Hui; Epperly, Michael; Greenberger, Joel; Cheng, Tao

    2013-01-01

    High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo. PMID:23295952

  15. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  16. Interleukin-7-induced Stat-5 acts in synergy with Flt-3 signaling to stimulate expansion of hematopoietic progenitor cells.

    PubMed

    Åhsberg, Josefine; Tsapogas, Panagiotis; Qian, Hong; Zetterblad, Jenny; Zandi, Sasan; Månsson, Robert; Jönsson, Jan-Ingvar; Sigvardsson, Mikael

    2010-11-19

    The development of lymphoid cells from bone marrow progenitors is dictated by interplay between internal cues such as transcription factors and external signals like the cytokines Flt-3 ligand and Il-7. These proteins are both of large importance for normal lymphoid development; however, it is unclear if they act in direct synergy to expand a transient Il-7R(+)Flt-3(+) population or if the collaboration is created through sequential activities. We report here that Flt-3L and Il-7 synergistically stimulated the expansion of primary Il-7R(+)Flt-3(+) progenitor cells and a hematopoietic progenitor cell line ectopically expressing the receptors. The stimulation resulted in a reduced expression of pro-apoptotic genes and also mediated survival of primary progenitor cells in vitro. However, functional analysis of single cells suggested that the anti-apoptotic effect was additive indicating that the synergy observed mainly depends on stimulation of proliferation. Analysis of downstream signaling events suggested that although Il-7 induced Stat-5 phosphorylation, Flt-3L caused activation of the ERK and AKT signaling pathways. Flt-3L could also drive proliferation in synergy with ectopically expressed constitutively active Stat-5. This synergy could be inhibited with either receptor tyrosine kinase or MAPK inhibitors suggesting that Flt-3L and Il-7 act in synergy by activation of independent signaling pathways to expand early hematopoietic progenitors.

  17. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Park, Yong Hwan; Lee, Jea Hwang; Hong, Jeong-Ho; Kim, Ick Young

    2014-07-01

    Selenoprotein W (SelW) is expressed in various tissues, particularly in skeletal muscle. We have previously reported that SelW is up-regulated during C2C12 skeletal muscle differentiation and inhibits binding of 14-3-3 to its target proteins. 14-3-3 reduces myogenic differentiation by inhibiting nuclear translocation of transcriptional co-activator with PDZ-binding motif (TAZ). Phosphorylation of TAZ at Ser89 is required for binding to 14-3-3, leading to cytoplasmic retention of TAZ and a delay in myogenic differentiation. Here, we show that myogenic differentiation was delayed in SelW-knockdown C2C12 cells. Down-regulation of SelW also increased TAZ binding to 14-3-3, which eventually resulted in decreasing translocation of TAZ to the nucleus. However, phosphorylation of TAZ at Ser89 was not affected. Although phosphorylation of TAZ at Ser89 was sustained by the phosphatase inhibitor okadaic acid, nuclear translocation of TAZ was increased by ectopic expression of SelW. This result was due to decreased binding of TAZ to 14-3-3. We also found that the interaction between TAZ and MyoD was increased by ectopic expression of SelW. Taken together, these findings strongly demonstrate that SelW enhances C2C12 cell differentiation by inhibiting TAZ binding to 14-3-3. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    PubMed

    Cao, Wenluo; Li, Lingna; Mii, Sumiyuki; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  19. Abdominal ectopic pregnancy after in vitro fertilization and single embryo transfer: a case report and systematic review.

    PubMed

    Yoder, Nicole; Tal, Reshef; Martin, J Ryan

    2016-10-19

    Ectopic pregnancy is the leading cause of maternal morbidity and mortality during the first trimester and the incidence increases dramatically with assisted-reproductive technology (ART), occurring in approximately 1.5-2.1 % of patients undergoing in-vitro fertilization (IVF). Abdominal ectopic pregnancy is a rare yet clinically significant form of ectopic pregnancy due to potentially high maternal morbidity. While risk factors for ectopic pregnancy after IVF have been studied, very little is known about risk factors specific for abdominal ectopic pregnancy. We present a case of a 30 year-old woman who had an abdominal ectopic pregnancy following IVF and elective single embryo transfer, which was diagnosed and managed by laparoscopy. We performed a systematic literature search to identify case reports of abdominal or heterotopic abdominal ectopic pregnancies after IVF. A total of 28 cases were identified. Patients' ages ranged from 23 to 38 (Mean 33.2, S.D. = 3.2). Infertility causes included tubal factor (46 %), endometriosis (14 %), male factor (14 %), pelvic adhesive disease (7 %), structural/DES exposure (7 %), and unexplained infertility (14 %). A history of ectopic pregnancy was identified in 39 % of cases. A history of tubal surgery was identified in 50 % of cases, 32 % cases having had bilateral salpingectomy. Transfer of two embryos or more (79 %) and fresh embryo transfer (71 %) were reported in the majority of cases. Heterotopic abdominal pregnancy occurred in 46 % of cases while 54 % were abdominal ectopic pregnancies. Our systematic review has revealed several trends in reported cases of abdominal ectopic pregnancy after IVF including tubal factor infertility, history of tubal ectopic and tubal surgery, higher number of embryos transferred, and fresh embryo transfers. These are consistent with known risk factors for ectopic pregnancy following IVF. Further research focusing on more homogenous population may help in better characterizing this rare IVF complication and its risks.

  20. Targeting Breast Cancer Recurrence via Hedgehog-Mediated Sensitization of Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-07-01

    identification of Notch3 as a transcriptional target of ΔNp63α and a mediator of cellular quiescence in mammary stem cells. 2. Presentation of a poster...enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3ICD) was sufficient to...signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. these

Top