Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
Automated generation of influence functions for planar crack problems
NASA Technical Reports Server (NTRS)
Sire, Robert A.; Harris, David O.; Eason, Ernest D.
1989-01-01
A numerical procedure for the generation of influence functions for Mode I planar problems is described. The resulting influence functions are in a form for convenient evaluation of stress-intensity factors for complex stress distributions. Crack surface displacements are obtained by a least-squares solution of the Williams eigenfunction expansion for displacements in a cracked body. Discrete values of the influence function, evaluated using the crack surface displacements, are curve fit using an assumed functional form. The assumed functional form includes appropriate limit-behavior terms for very deep and very shallow cracks. Continuous representation of the influence function provides a convenient means for evaluating stress-intensity factors for arbitrary stress distributions by numerical integration. The procedure is demonstrated for an edge-cracked strip and a radially cracked disk. Comparisons with available published results demonstrate the accuracy of the procedure.
NASA Astrophysics Data System (ADS)
Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.
2018-06-01
The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.
Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers
NASA Astrophysics Data System (ADS)
Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.
2018-05-01
We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.
Local scattering stress distribution on surface of a spherical cell in optical stretcher
NASA Astrophysics Data System (ADS)
Bareil, Paul B.; Sheng, Yunlong; Chiou, Arthur
2006-12-01
We calculate stress distribution on the surface of a spherical cell trapped by two counter propagating beams in the optical stretcher in the ray optics regime. We demonstrate that the local scattering stress is perpendicular to the spherical refractive surface regardless of incident angle, polarization and the reflectance and transmittance at the surface. We explain the apparition of peaks in the stress distribution, which were not revealed in the existing theory. We consider the divergence of the incident beams from the fibers, and express the stress distribution as a function of fiber-to-cell distance. The new theory can predict the cell’s deformation more precisely.
Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J
2012-02-01
The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.
1995-01-01
Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
NASA Astrophysics Data System (ADS)
Čuma, Matúš; Török, Jozef; Telišková, Monika
2016-12-01
Surface integrity is a broad term which includes various quality factors affecting the functional properties of parts. Residual stress is one of these factors. Machining generates residual stresses in the surface and subsurface layers of the structural elements. X-ray diffractometry is a non-destructive method applicable for the measurement of residual stresses in surface and subsurface layers of components. The article is focused on the non-destructive progressive method of triaxial measurement of residual stress after machining the surface of sample by high feed milling technology. Significance of triaxial measuring is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components acting in the spot of measuring, using a Cartesian coordinate system.
NASA Astrophysics Data System (ADS)
Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard
2017-10-01
Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.
Grain size effect on Lcr elastic wave for surface stress measurement of carbon steel
NASA Astrophysics Data System (ADS)
Liu, Bin; Miao, Wenbing; Dong, Shiyun; He, Peng
2018-04-01
Based on critical refraction longitudinal wave (Lcr wave) acoustoelastic theory, correction method for grain size effect on surface stress measurement was discussed in this paper. Two fixed distance Lcr wave transducers were used to collect Lcr wave, and difference in time of flight between Lcr waves was calculated with cross-correlation coefficient function, at last relationship of Lcr wave acoustoelastic coefficient and grain size was obtained. Results show that as grain size increases, propagation velocity of Lcr wave decreases, one cycle is optimal step length for calculating difference in time of flight between Lcr wave. When stress value is within stress turning point, relationship of difference in time of flight between Lcr wave and stress is basically consistent with Lcr wave acoustoelastic theory, while there is a deviation and it is higher gradually as stress increasing. Inhomogeneous elastic plastic deformation because of inhomogeneous microstructure and average value of surface stress in a fixed distance measured with Lcr wave were considered as the two main reasons for above results. As grain size increasing, Lcr wave acoustoelastic coefficient decreases in the form of power function, then correction method for grain size effect on surface stress measurement was proposed. Finally, theoretical discussion was verified by fracture morphology observation.
Smoothing and roughening of slip surfaces in direct shear experiments
NASA Astrophysics Data System (ADS)
Sagy, Amir; Badt, Nir; Hatzor, Yossef H.
2015-04-01
Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.
Stress intensity factors for surface and corner cracks emanating from a wedge-loaded hole
NASA Technical Reports Server (NTRS)
Zhao, W.; Sutton, M. A.; Shivakumar, K. N.; Newman, J. C., Jr.
1994-01-01
To assist analysis of riveted lap joints, stress intensity factors are determined for surface and corner cracks emanating from a wedge-loaded hole by using a 3-D weight function method in conjunction with a 3-D finite element method. A stress intensity factor equation for surface cracks is also developed to provide a closed-form solution. The equation covers commonly-encountered geometrical ranges and retains high accuracy over the entire range.
EFFECT OF IMPACT STRESS ON MICROBIAL RECOVERY ON AN AGAR SURFACE
Microbial stress due to the impaction of microorganisms onto an agar collection surface was studied experimentally. he relative recovery rates of aerosolized Pseudomonas fluorescens and Micrococcus luteus were determined as a function of the impaction velocity by using a moving a...
Universal binding energy relation for cleaved and structurally relaxed surfaces.
Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V
2014-02-05
The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.
Boaro, Letícia Cristina Cidreira; Brandt, William Cunha; Meira, Josete Barbosa Cruz; Rodrigues, Flávia Pires; Palin, William M; Braga, Roberto Ruggiero
2014-02-01
To determine the free surface displacement of resin-composite restorations as a function of the C-Factor, volume and substrate stiffness, and to compare the results with interfacial stress values evaluated by finite element analysis (FEA). Surface displacement was determined by an extensometer using restorations with 4 or 6mm diameter and 1 or 2mm depth, prepared in either bovine teeth or glass. The maximum displacement of the free surface was monitored for 5 min from the start of photoactivation, at an acquisition rate of 1s(-1). Axisymmetric cavity models were performed by FEA. Structural stiffness and maximum stresses were investigated. For glass, displacement showed a stronger correlation with volume (r=0.771) than with C-Factor (r=0.395, p<0.001 for both). For teeth, a stronger correlation was found with C-Factor (r=0.709; p<0.001) than with volume (r=0.546, p<0.001). For similar dimensions, stress and displacement were defined by stiffness. Simultaneous increases in volume and C-Factor led to increases in stress and surface displacement. Maximum stresses were located at the cavosurface angle, internal angle (glass) and at the dentine-enamel junction (teeth). The displacement of the restoration's free surface was related to interfacial stress development. Structural stiffness seems to affect the shrinkage stress at the tooth/resin-composite interface in bonded restorations. Deep restorations are always problematic because they showed high shear stress, regardless of their width. FEA is the only tool capable of detecting shear stress due to polymerization as there is still no reliable experimental alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parlange, M. B.; Katul, G. G.
1995-04-01
Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.
Brownian thermal noise in functional optical surfaces
NASA Astrophysics Data System (ADS)
Kroker, S.; Dickmann, J.; Rojas Hurtado, C. B.; Heinert, D.; Nawrodt, R.; Levin, Y.; Vyatchanin, S. P.
2017-07-01
We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor. This paper shows how to relate this form factor to Maxwell's stress tensor computed on all interfaces of the moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013), 10.1103/PhysRevD.88.042001] utilizing a simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those of the exact analysis in the present paper. The relation between the form factor and Maxwell's stress tensor implies a close correlation between the optical properties of functional optical surfaces and thermal noise.
Analysis of Contraction Joint Width Influence on Load Stress of Pavement Panels
NASA Astrophysics Data System (ADS)
Gao, Wei; Cui, Wei; Sun, Wei
2018-05-01
The width of transverse contraction joint of the cement road varies with temperatures, which leads to changes in load transmission among plates of the road surface and affects load stress of the road plates. Three-dimensional element analysis software EverFE is used to address the relation between the contraction joint width and road surface load stress, revealing the impact of reducing contraction joint width. The results could be of critical value in maintaining road functions and extending the service life of cement road surfaces.
Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.
Renault, Lionel; McWilliams, James C; Masson, Sebastien
2017-12-18
Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.
Lee, Lik Chuan; Zhihong, Zhang; Hinson, Andrew; Guccione, Julius M.
2013-01-01
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship. PMID:23608998
Fatigue life prediction in bending from axial fatigue information
NASA Technical Reports Server (NTRS)
Manson, S. S.; Muralidharan, U.
1982-01-01
Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.
NASA Astrophysics Data System (ADS)
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-12-01
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-08-19
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu 2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less
Stress-intensity factor equations for cracks in three-dimensional finite bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Liu, Bin; Dong, Shiyun; Xu, Binshi; He, Peng
2012-09-01
A surface ultrasonic wave approach was presented for measuring surface stress of brush electro-plating nickel coating specimen, and the influence of coating thickness on surface stress measurement was discussed. In this research, two Rayleigh wave transducers with 5MHz frequency were employed to collect Rayleigh wave signals of coating specimen with different static tensile stresses and different coating thickness. The difference in time of flight between two Rayleigh wave signals was determined based on normalized cross correlation function. The influence of stress on propagation velocity of Rayleigh wave and the relationship between the difference in time of flight and tensile stress that corresponded to different coating thickness were discussed. Results indicate that inhomogeneous deformation of coating affects the relationship between the difference in time of flight and tensile stress, velocity of Rayleigh wave propagating in coating specimen increases with coating thickness increasing, and the variation rate reduces of difference in time of flight with tensile stress increasing as coating thickness increases. Copyright © 2012 Elsevier B.V. All rights reserved.
Nordhorn, Christian; Mücke, Robert; Unocic, Kinga A.; ...
2014-08-20
In this paper, furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subjectmore » to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. Finally, the theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features.« less
NASA Astrophysics Data System (ADS)
Zaušková, Lucia; Czán, Andrej; Šajgalík, Michal; Pobijak, Jozef; Mikloš, Matej
2017-10-01
High-feed milling is a milling method characteristic with shallow depth of cut and high feed rate to maximize the amount of removed metal from a part, generating residual stresses in the surface and subsurface layers of the machined parts. The residual stress has a large influence on the functional properties of the components. The article is focused on the application of triaxial x-ray diffraction method to monitor residual stresses after high feed milling. Significance of triaxial measuring method is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components.
Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.
1995-01-01
A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.
NASA Astrophysics Data System (ADS)
Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.
2018-05-01
Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.
NASA Astrophysics Data System (ADS)
Bukchin, B. G.
1995-08-01
A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.
NASA Astrophysics Data System (ADS)
Lambropoulos, John C.; Fang, Tong; Xu, Su; Gracewski, Sheryl M.
1995-09-01
We discuss a constitutive model describing the permanent densification of fused silica under large applied pressures and shear stresses. The constitutive law is assumed to be rate- independent, and uses a yield function coupling hydrostatic pressure and shear stress, a flow rule describing the evolution of permanent strains after initial densification, and a hardening rule describing the dependence of the incremental densification on the levels of applied stresses. The constitutive law accounts for multiaxial states of stress, since during polishing and grinding operations complex stress states occur in a thin surface layer due to the action of abrasive particles. Due to frictional and other abrasive forces, large shear stresses are present near the surface during manufacturing. We apply the constitutive law in estimating the extent of the densified layer during the mechanical interaction of an abrasive grain and a flat surface.
Quantum electronic stress: density-functional-theory formulation and physical manifestation.
Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng
2012-08-03
The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.
Stress Related Fracturing in Dimension Stone Quarries
NASA Astrophysics Data System (ADS)
Hamdi Deliormanli, Ahmet; Maerz, Norbert H.
2016-10-01
In Missouri, the horizontal stresses (pressures) in the near surface rock are uncommonly high. While the vertical stresses in rock are simply a function of the weight of the overlying rock, near surface stresses can be many times higher. The near surface horizontal stresses can be in excess of 5 times greater than the vertical stresses. In this research, Flatjack method was used to measure horizontal stress in Red Granite Quarry in Missouri. The flat jack method is an approved method of measuring ground stresses. A saw cut is used to “relax” the stress in the ground by allowing the rock to deform inwards the cut. A hydraulic flat jack is used to inflate the slot; to push the rock back to its stressed position, as measured by a strain gauge on either side of the slot. The pressure in the jack, when the rock is exactly back to its original position, is equal to the ground stress before the saw cut was made. According to the results, present production direction for each pit is not good because the maximum stress direction is perpendicular with production direction. This case causes unintentional breakage results in the loss rock. The results show that production direction should be changed.
NASA Astrophysics Data System (ADS)
Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.
2015-10-01
This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.
Bioinspired design of dental multilayers.
Huang, M; Wang, R; Thompson, V; Rekow, D; Soboyejo, W O
2007-01-01
This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.
Static and kinetic friction of granite at high normal stress
Byerlee, J.D.
1970-01-01
Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.
Surface temperatures and glassy state investigations in tribology, part 2
NASA Technical Reports Server (NTRS)
Bair, S. S.; Winer, W. O.
1979-01-01
Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.
The effect of stress on hydrogen uptake and desorption by A-286
NASA Technical Reports Server (NTRS)
Danford, Merlin D.
1991-01-01
The uptake and desorption of hydrogen by A-286 as a function of stress was studied using electrochemical methods. It was found that the apparent surface hydrogen concentration, the mean hydrogen concentration, and the hydrogen distribution uniformity all increased up to a stress level 50 percent of yield and decreased thereafter. The value of the hydrogen diffusion coefficient was relatively unaffected by stress while the percent of trapped hydrogen appeared to decrease with increasing stress.
Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718
NASA Technical Reports Server (NTRS)
Lambert, D. M.
2016-01-01
The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown might be lower than the knockdown observed above about one million cycles, where it tended to stabilize. This was not universal for all temperatures tested. The higher temperature tests are thought to be influenced by the test temperature, which perhaps continued the aging process. Further evaluation of the method is suggested.
NASA Astrophysics Data System (ADS)
Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk
1994-05-01
The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS) (at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.
NASA Technical Reports Server (NTRS)
Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk
1994-01-01
The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.
Axial residual stresses in boron fibers
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1978-01-01
The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.
NASA Technical Reports Server (NTRS)
Johnson, Thomas J.; Stewart, Robert H.; Shum, C. K.; Tapley, Byron D.
1992-01-01
Satellite altimeter data collected by the Geosat Exact Repeat Mission were used to investigate turbulent stress resulting from the variability of surface geostrophic currents in the Antarctic Circumpolar Current. The altimeter measured sea level along the subsatellite track. The variability of the along-track slope of sea level is directly proportional to the variability of surface geostrophic currents in the cross-track direction. Because the grid of crossover points is dense at high latitudes, the satellite data could be used for mapping the temporal and spatial variability of the current. Two and a half years of data were used to compute the statistical structure of the variability. The statistics included the probability distribution functions for each component of the current, the time-lagged autocorrelation functions of the variability, and the Reynolds stress produced by the variability. The results demonstrate that stress is correlated with bathymetry. In some areas the distribution of negative stress indicate that eddies contribute to an acceleration of the mean flow, strengthening the hypothesis that baroclinic instability makes important contributions to strong oceanic currents.
Martian aeolian features and deposits - Comparisons with general circulation model results
NASA Astrophysics Data System (ADS)
Greeley, R.; Skypeck, A.; Pollack, J. B.
1993-02-01
The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.
Contact mechanics for layered materials with randomly rough surfaces.
Persson, B N J
2012-03-07
The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.
Three dimensional stress vector sensor array and method therefor
Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery
2005-07-05
A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.
Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact
NASA Technical Reports Server (NTRS)
Yamamoto, T.; Eguchi, M.; Murayama, K.
1981-01-01
Two dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. The effect of tangential traction on the stress concentration was also determined. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. The area involved in a process of rolling contact fatigue is confined to a shallow region at both sides of the hole. It was found that the effect of tangential traction is comparatively small on the stress concentration around the hole.
Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact
NASA Technical Reports Server (NTRS)
Yamamoto, T.; Eguchi, M.; Murayama, K.
1981-01-01
Two-dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. These were hole diameter, its vertical distance from the contact surface, and the horizontal distance from the Hertzian contact area. Also determined was the effect of tangential traction (generated by a friction coefficient of 0.1) on the stress concentration. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller the distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. Taking into account the stress amplitude, the area which can be involved in a process of rolling contact fatigue seems to be confined to a shallow region at both sides of the hole. The effect of tangential traction is comparatively small on the stress concentration around the hole.
Experiment and numerical simulation for laser ultrasonic measurement of residual stress.
Zhan, Yu; Liu, Changsheng; Kong, Xiangwei; Lin, Zhongya
2017-01-01
Laser ultrasonic is a most promising method for non-destructive evaluation of residual stress. The residual stress of thin steel plate is measured by laser ultrasonic technique. The pre-stress loading device is designed which can easily realize the condition of the specimen being laser ultrasonic tested at the same time in the known stress state. By the method of pre-stress loading, the acoustoelastic constants are obtained and the effect of different test directions on the results of surface wave velocity measurement is discussed. On the basis of known acoustoelastic constants, the longitudinal and transverse welding residual stresses are measured by the laser ultrasonic technique. The finite element method is used to simulate the process of surface wave detection of welding residual stress. The pulsed laser is equivalent to the surface load and the relationship between the physical parameters of the laser and the load is established by the correction coefficient. The welding residual stress of the specimen is realized by the ABAQUS function module of predefined field. The results of finite element analysis are in good agreement with the experimental method. The simple and effective numerical and experimental methods for laser ultrasonic measurement of residual stress are demonstrated. Copyright © 2016. Published by Elsevier B.V.
Maria, Zahra; Yin, Wei; Rubenstein, David Alan
2014-07-01
Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to be determined. Our goal was to evaluate these effects on EC responses. ECs were incubated with AGEs for 5 days. ECs were then subjected to physiological or pathological shear stress. Cell metabolic activity, surface expression of intercellular adhesion molecule-1, thrombomodulin, connexin-43 and caveolin-1, and cytoskeleton organization were quantified. The results show that irreversibly glycated albumin and pathological shear stress increased EC metabolic activity, and upregulated and downregulated the EC surface expression of intercellular adhesion molecule-1 and thrombomodulin, respectively. Expression of connexin-43, caveolin-1 and cytoskeletal organization was independent of shear stress; however, the presence of irreversibly glycated AGEs markedly increased connexin-43, and decreased caveolin-1 expression and actin cytoskeletal connectivity. Our data suggest that irreversibly glycated albumin and disturbed shear stress could promote CVD pathogenesis by enhancing EC inflammatory and thrombotic responses, and through the deterioration of the cytoskeletal organization.
Rough-to-smooth transition of an equilibrium neutral constant stress layer
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress.
Compact friction and wear machine
NASA Astrophysics Data System (ADS)
Hannigan, James W.; Schwarz, Ricardo B.
1988-08-01
We have developed a compact ring-on-ring wear machine that measures the friction coefficient between large area surfaces as a function of time, normal stress, and sliding velocity. The machine measures the temperature of the sliding surfaces and collects the wear debris.
The influence of alloy composition on residual stresses in heat treated aluminium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, J.S., E-mail: jeremy.robinson@ul.ie; Redington, W.
The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A,more » 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.« less
Lopez; Hirsa
2000-09-15
A canonical flow geometry was utilized for a fundamental study of the coupling between bulk flow and a Newtonian gas-liquid interface in the presence of an insoluble surfactant. We develop a Navier-Stokes numerical model of the flow in the deep-channel surface viscometer geometry, which consists of stationary inner and outer cylinders, a floor rotating at a constant angular velocity, and an interface covered initially by a uniformly distributed surfactant. Here, the floor of the annular channel is rotated fast enough so the flow is nonlinear and drives the film toward the inner cylinder. The boundary conditions at the interface are functions of the surface tension, surface shear viscosity, and surface dilatational viscosity, as described by the Boussinesq-Scriven surface model. A physical surfactant system, namely hemicyanine, an insoluble monolayer on an air-water interface, with measured values of surface tension and surface shear viscosity versus concentration, was used in this study. We find that a surfactant front can form, depending on the Reynolds number and the initial surfactant concentration. The stress balance in the radial direction was found to be dominated by the Marangoni stress, but the azimuthal stress was only due to the surface shear viscosity. Numerical studies are presented comparing results of surfactant-influenced interface cases implementing the derived viscoelastic interfacial stress balance with those using a number of idealized stress balances, as well as a rigid no-slip surface, providing added insight into the altered dynamics that result from the presence of a surfactant monolayer. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
Charged Vaidya solution satisfies weak energy condition
NASA Astrophysics Data System (ADS)
Chatterjee, Soumyabrata; Ganguli, Suman; Virmani, Amitabh
2016-07-01
The external matter stress-tensor supporting charged Vaidya solution appears to violate weak energy condition in certain region of the spacetime. Motivated by this, a new interpretation of charged Vaidya solution was proposed by Ori (Class Quant Grav 8:1559, 1991) in which the energy condition continues to be satisfied. In this construction, one glues an outgoing Vaidya solution to the original ingoing Vaidya solution provided the surface where the external stress-tensor vanishes is spacelike. We revisit this study and extend it to higher-dimensions, to AdS settings, and to higher-derivative f( R) theories. In asymptotically flat space context, we explore in detail the case when the mass function m( v) is proportional to the charge function q( v). When the proportionality constant ν = q(v)/m(v) lies in between zero and one, we show that the surface where the external stress-tensor vanishes is spacelike and lies in between the inner and outer apparent horizons.
Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718
NASA Technical Reports Server (NTRS)
Lambert, Dennis M.
2016-01-01
A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.
The Influence of Mechanical Stress on the Growth of Crystals
2001-01-01
crystal surface. In Fig. 7 we present interferograms taken at various points during the straining of a paracetamol crystal28. In Fig. 7 we show the overall...dependence of growth rate on stress. The curvature observed fits well with the nature of the material. Paracetamol shows a well-defined plastic...0 6.6 -0.3 S13.5 4-0.7 21 *1 Fig. 6. Interferograms of the growth of a (001) surface of paracetamol as a function of applied tensile strain. 2.0
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
NASA Astrophysics Data System (ADS)
Salvucci, G.; Rigden, A. J.
2015-12-01
Daily time series of evapotranspiration and surface conductance to water vapor were estimated using the ETRHEQ method (Evapotranspiration from Relative Humidity at Equilibrium). ETRHEQ has been previously compared with ameriflux site-level measurements of ET at daily and seasonal time scales, with watershed water balance estimates, and with various benchmark ET data sets. The ETRHEQ method uses meteorological data collected at common weather stations and estimates the surface conductance by minimizing the vertical variance of the calculated relative humidity profile averaged over the day. The key advantage of the ETRHEQ method is that it does not require knowledge of the surface state (soil moisture, stomatal conductance, leaf are index, etc.) or site-specific calibration. The daily estimates of conductance from 229 weather stations for 53 years were analyzed for dependence on environmental variables known to impact stomatal conductance and soil diffusivity: surface temperature, surface vapor pressure deficit, solar radiation, antecedent precipitation (as a surrogate for soil moisture), and a seasonal vegetation greenness index. At each site the summertime (JJAS) conductance values estimated from ETRHEQ were fitted to a multiplicate Jarvis-type stress model. Functional dependence was not proscribed, but instead fitted using flexible piecewise-linear splines. The resulting stress functions reproduce the time series of conductance across a wide range of ecosystems and climates. The VPD stress term resembles that proposed by Oren (i.e., 1-m*log(VPD) ), with VPD measured in kilopascals. The equivalent value of m derived from our spline-fits at each station varied over a remarkably small range of 0.58 to 0.62, in agreement with Oren's original analysis based on leaf and tree-level measurements.
Quantum Stress: Density Functional Theory Formulation and Physical Manifestation
NASA Astrophysics Data System (ADS)
Hu, Hao; Liu, Feng
2012-02-01
The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.
Mechanic stress generated by a time-varying electromagnetic field on bone surface.
Ye, Hui
2018-03-19
Bone cells sense mechanical load, which is essential for bone growth and remodeling. In a fracture, this mechanism is compromised. Electromagnetic stimulation has been widely used to assist in bone healing, but the underlying mechanisms are largely unknown. A recent hypothesis suggests that electromagnetic stimulation could influence tissue biomechanics; however, a detailed quantitative understanding of EM-induced biomechanical changes in the bone is unavailable. This paper used a muscle/bone model to study the biomechanics of the bone under EM exposure. Due to the dielectric properties of the muscle/bone interface, a time-varying magnetic field can generate both compressing and shear stresses on the bone surface, where many mechanical sensing cells are available for cellular mechanotransduction. I calculated these stresses and found that the shear stress is significantly greater than the compressing stress. Detailed parametric analysis suggests that both the compressing and shear stresses are dependent on the geometrical and electrical properties of the muscle and the bone. These stresses are also functions of the orientation of the coil and the frequency of the magnetic field. It is speculated that the EM field could apply biomechanical influence to fractured bone, through the fine-tuning of the controllable field parameters. Graphical abstract Mechanic stress on bone surface in a time-varying magnetic field.
Chen, Ying; Xu, Pengcheng; Li, Xinxin
2010-07-02
This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.
NASA Astrophysics Data System (ADS)
Aghaei Jouybari, Mostafa; Yuan, Junlin
2017-11-01
Direct numerical simulations of turbulent channel flows are carried out over two surfaces: a synthesized sand-grain surface and a realistic turbine roughness that is characterized by more prominent large-scale surface features. To separate the effects of wall-normal variation of the roughness area fraction from the (true) variation of flow statistics, the governing equations are area-averaged using intrinsic averaging, contrary to the usually practice based on the total area (i.e., superficial averaging). Additional terms appear in the mean-momentum equation resulted from the wall-normal variation of the solid fraction and play a role in the near-wall balance. Results from surfaces with a step solidity function (e.g., cubes) will also be discussed. Compared to the sand grains, the turbine surface generates stronger form-induced fluctuations, despite weaker dispersive shear stress. This is associated with more significant form-induced productions (comparable to shear production) in Reynolds stress budgets, weaker pressure work, and, consequently, more anisotropic redistribution of turbulent kinetic energy in the roughness sublayer, which potentially leads to different turbulent responses between the two surfaces in non-equilibrium flows.
NASA Astrophysics Data System (ADS)
2018-04-01
In what follows, because of the loading symmetry, we can specify the boundary conditions in terms of the patch edges at x1andx2 , leaving as understood the fact that the opposed patch is similarly loaded. Also, we leave as understood that the normal tractions are zero elsewhere than on the loaded patches, and that the shear tractions are zero everywhere on the crack surfaces. Because the stress functions are written as functions of σ, we use Eq. (3) to define the angles θ1 =cos-1(x1 / c) and θ2 =cos-1(x2 / c) . Then the patch edges on the unit circle, σ1 =eiθ1 and σ2 =eiθ2 , are used to calculate the stress intensities and crack surface displacements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Vijay K.; Jackson, John; Teysseyre, Sebastien
The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping ofmore » surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms« less
NASA Astrophysics Data System (ADS)
Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.
2018-05-01
The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.
Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 C
NASA Technical Reports Server (NTRS)
Colaiuta, Jason F.; Lerch, Bradley (Technical Monitor)
2001-01-01
Three materials, Inconel 718, Haynes 188, and 316 stainless steel, were tested under an axial-torsional stress state at 650 C. The objective of this study was to quantify the evolution of the material while in the viscoplastic domain. Initial and subsequent yield surfaces were experimentally determined to quantify hardening. Subsequent yield surfaces (yield surfaces taken after a preload) had a well-defined front side, in the prestrain direction, but a poorly defined back side, opposite the prestrain direction. Subsequent yield surfaces exhibited isotropic hardening by expansion of the yield surface, kinematic hardening by translation of the yield surface, and distortional hardening by flattening of the yield surface in the direction opposite to the last prestrain. An existing yield function capable of representing isotropic, kinematic, and distortional hardening was used to fit each yield surface. Four variables are used to describe each surface. These variables evolve as the material state changes and have been regressed to the yield surface data.
Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye
Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, Shinwu
2015-01-01
Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye. PMID:26402857
Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.
Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu
2015-01-01
Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.
Wang, Yuhong; Zankov, Dimitar P.; Jiang, Min; Zhang, Mei; Henderson, Scott C.; Tseng, Gea-Ny
2013-01-01
Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca2+]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes. PMID:24142691
NASA Astrophysics Data System (ADS)
Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini
2015-03-01
In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.
A differential CDM model for fatigue of unidirectional metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1992-01-01
A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.
General Series Solutions for Stresses and Displacements in an Inner-fixed Ring
NASA Astrophysics Data System (ADS)
Jiao, Yongshu; Liu, Shuo; Qi, Dexuan
2018-03-01
The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.
Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition
NASA Astrophysics Data System (ADS)
Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.
2006-03-01
As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.
Analysis of surface cracks in finite plates under tension or bending loads
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1979-01-01
Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.
Lopez; Hirsa
1998-10-01
Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed to determine the appropriate conditions to achieve the requisite secondary flow. Copyright 1998 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enos, David; Bryan, Charles R.
Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function ofmore » temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.« less
Canetta, Elisabetta; Montiel, Kimberley; Adya, Ashok K
2009-10-30
The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.
Scaling and Thermal Evolution of Internally Heated Planets: Yield Stress and Thermal History.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; Moore, W. B.
2014-12-01
Using coupled 3D mantle convection and planetary tectonics models of bi-stable systems, we show how system behaviors for mobile-lid and stagnant-lid states scale as functions of internal heating rates (Q) and basal Ra (Rab). With parameter ranges for temperature- and depth-dependant viscosities: 1e4 - 3e4, Rab: 1e5- 3e5, Q: 0 - 100, and yield stress: 1e4 - 2e5, it can be shown the internal temperatures, velocities, heat fluxes, and system behaviors for mobile-lid and stagnant-lid states diverge, for equivalent parameter values, as a function of increasing Q. For the mobile-lid regime, yielding behavior in the upper boundary layer strongly influences the dynamics of the system. Internal temperatures, and consequently temperature-dependant viscosities, vary strongly as a function of yield stress for a given Q. The temperature distribution across the upper and lower mantles are sub-adiabatic for low to moderate yield stress, and adiabatic to super-adiabatic for high yield stresses. Across the parameter range considered, and for fixed yield stress, the Nu across the basal boundary (Nub) is positive and only weakly dependant on Q (varies by ~ 9%). Nub varies strongly as a function of yield stress (maximum variation of ~84%). Both mobile-lid velocities and lid-thicknesses are yield stress dependant for a given Q and Ra. In contrast to mobile-lids, the stagnant-lid regime is governed by the relative inefficiency of heat transport through the surface boundary layer. Internal temperatures are yield stress independent, and are on average 30% greater. Nub has a strong dependence on heating rates and surface boundary layer thicknesses. Within the parameter space considered, the maximum stagnant-lid Nub corresponds to the minimum mobile-lid Nub (for high yield stress), and decreases with increasing Q. For high Q, super-heated stagnant-lids may develop, with Nub< 0, and changes in trends for system behaviors. Planets with high levels of internal heating and/or high yield stresses (e.g. Super-Earths), may favor super-heated stagnant-lids early in their evolution. These regimes indicate reduced heat transport efficiencies (from the nominal stagnant-lid), and as a result, increasing heat flux into the core with increasing Q. Implications for terrestrial and Super-Earth planetary evolution will be discussed.
Brittle failure of rock: A review and general linear criterion
NASA Astrophysics Data System (ADS)
Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan
2018-07-01
A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.
A new technique for the measurement of surface shear stress vectors using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Muratore, J. J., Jr.
1994-01-01
Research has recently shown that liquid crystal coating (LCC) color-change response to shear depends on both shear stress magnitude and direction. Additional research was thus conducted to extend the LCC method from a flow-visualization tool to a surface shear stress vector measurement technique. A shear-sensitive LCC was applied to a planar test surface and illuminated by white light from the normal direction. A fiber optic probe was used to capture light scattered by the LCC from a point on the centerline of a turbulent, tangential-jet flow. Both the relative shear stress magnitude and the relative in-plane view angle between the sensor and the centerline shear vector were systematically varied. A spectrophotometer was used to obtain scattered-light spectra which were used to quantify the LCC color (dominant wavelength) as a function of shear stress magnitude and direction. At any fixed shear stress magnitude, the minimum dominant wavelength was measured when the shear vector was aligned with and directed away from the observer; changes in the relative in-plane view angle to either side of this vector/observer aligned position resulted in symmetric Gaussian increases in measured dominant wavelength. Based on these results, a vector measurement methodology, involving multiple oblique-view observations of the test surface, was formulated. Under present test conditions, the measurement resolution of this technique was found to be +/- 1 deg for vector orientations and +/- 5% for vector magnitudes. An approach t o extend the present methodology to full-surface applications is proposed.
Wetting and phase separation in soft adhesion
Jensen, Katharine E.; Sarfati, Raphael; Style, Robert W.; Boltyanskiy, Rostislav; Chakrabarti, Aditi; Chaudhury, Manoj K.; Dufresne, Eric R.
2015-01-01
In the classic theory of solid adhesion, surface energy drives deformation to increase contact area whereas bulk elasticity opposes it. Recently, solid surface stress has been shown also to play an important role in opposing deformation of soft materials. This suggests that the contact line in soft adhesion should mimic that of a liquid droplet, with a contact angle determined by surface tensions. Consistent with this hypothesis, we observe a contact angle of a soft silicone substrate on rigid silica spheres that depends on the surface functionalization but not the sphere size. However, to satisfy this wetting condition without a divergent elastic stress, the gel phase separates from its solvent near the contact line. This creates a four-phase contact zone with two additional contact lines hidden below the surface of the substrate. Whereas the geometries of these contact lines are independent of the size of the sphere, the volume of the phase-separated region is not, but rather depends on the indentation volume. These results indicate that theories of adhesion of soft gels need to account for both the compressibility of the gel network and a nonzero surface stress between the gel and its solvent. PMID:26553989
Computer simulation of ledge formation and ledge interaction for the silicon (111) free surface
NASA Technical Reports Server (NTRS)
Balamane, H.; Halicioglu, T.; Tiller, W. A.
1987-01-01
Both strip and triangular clusters, composed of 2 -1 -1 line ledges, have been simulated on the Si (111) surface. The long-range ledge-ledge interaction and the surface stress tensor distribution have been evaluated for these two pill-box geometries using a semiempirical potential-energy function that incorporates both two-body and three-body contributions. The consequences of the ledge-ledge interaction on two-dimensional nucleation for Si (111) has been evaluated as a function of Si adatom supersaturation and shown to differ significantly from conventional theory, where such interaction is neglected.
Insulin protects against hepatic damage postburn.
Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren
2011-01-01
Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.
Insulin Protects against Hepatic Damage Postburn
Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren
2011-01-01
Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509
A high throughput mutagenic analysis of yeast sumo structure and function
Newman, Heather A.; Lu, Jian; Carson, Caryn; Boeke, Jef D.
2017-01-01
Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways. PMID:28166236
Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer
NASA Technical Reports Server (NTRS)
Gillies, John A.; Nickling, William G.; King, James
2007-01-01
Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.
Biocompatilibity-related surface characteristics of oxidized NiTi.
Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo
2007-09-15
In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible. Copyright 2007 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Controlling morphology in swelling-induced wrinkled surfaces
NASA Astrophysics Data System (ADS)
Breid, Derek Ronald
Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more complex geometric and kinetic settings. In order to carefully control and measure the applied stresses on a wrinkling film, a swelling-based system was developed using poly(dimethylsiloxane) (PDMS), surface-oxidized with a UV-ozone treatment. The swelling of the oxidized surface upon exposure to an ethanol vapor atmosphere was characterized using beam-bending experiments, allowing quantitative measurements of the applied stress. The wrinkle morphologies were characterized as a function of the overstress, defined as the ratio of the applied swelling stress to the critical buckling stress of the material. A transition in the dominant morphology of the wrinkled surfaces from dimple patterns to ridge patterns was observed at an overstress value of ˜2. The pattern dependence of wrinkles on the ratio of the principal stresses was examined by fabricating samples with a gradient prestress. When swollen, these samples exhibited a smooth morphological transition from non-equibiaxial to equibiaxial patterns, with prestrains as low as 2.5% exhibiting non-equibiaxial characteristics. This transition was seen both in samples with low and high overstresses. To explore the impact of these stress states in more complex geometries, wrinkling hemispherical surfaces with radii of curvature ranging from 50--1000 μm were fabricated using the same material system. Upon wrinkling, the hemispheres formed complex hierarchical assemblies reminiscent of naturally occurring structures. The curvature of a surface exhibited a correlation with its critical buckling stress, independent of other factors. This enables the surface curvature to be used as an independent control over the dimple-to-ridge transition which occurs as a function of overstress. As in the flat buckling surfaces, this transition was shown to occur at an overstress value of ˜2. Surface curvature was also shown to improve the observed hexagonal ordering of the dimple arrays, resulting in the formation of regular "golf ball" structures. Geometric effects in finite flat plates were also examined. Using circular masks during the oxidation process, plates with radii ranging from 0.4--8.6 mm were created. Upon wrinkling, a dimple-to-ridge transition was observed with increasing plate size, with the morphological switch occurring at a radius of ˜2 mm. This observed transition was not found to be due to the inherent mechanics of plates of different sizes, but instead to a reduction in the oxide conversion due to shadowing or stagnation caused by the masking process, which lowered the applied overstress. The shape of the finite plate was found to have little impact on the resulting wrinkle morphologies. Kinetic aspects of wrinkling were qualitatively characterized by observing the wrinkling process over the course of swelling. Wrinkling was observed to frontally propagate across the surface, and the ordering of the patterns which developed showed a qualitative correlation with the degree of uniformity in the advancing wrinkle front. Swelling with different solvents was found to lead to the formation of different patterns, based on the swelling kinetics of the UVO-treated PDMS upon exposure to each solvent.
Influence of material ductility and crack surface roughness on fracture instability
NASA Astrophysics Data System (ADS)
Khezrzadeh, Hamed; Wnuk, Michael P.; Yavari, Arash
2011-10-01
This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.
Chen, Mingjun; Liu, Henan; Cheng, Jian; Yu, Bo; Fang, Zhen
2017-07-01
In order to achieve the deterministic finishing of optical components with concave surfaces of a curvature radius less than 10 mm, a novel magnetorheological finishing (MRF) process using a small ball-end permanent-magnet polishing head with a diameter of 4 mm is introduced. The characteristics of material removal in the proposed MRF process are studied. The model of the material removal function for the proposed MRF process is established based on the three-dimensional hydrodynamics analysis and Preston's equation. The shear stress on the workpiece surface is calculated by means of resolving the presented mathematical model using a numerical solution method. The analysis result reveals that the material removal in the proposed MRF process shows a positive dependence on shear stress. Experimental research is conducted to investigate the effect of processing parameters on the material removal rate and improve the surface accuracy of a typical rotational symmetrical optical component. The experimental results show that the surface accuracy of the finished component of K9 glass material has been improved to 0.14 μm (PV) from the initial 0.8 μm (PV), and the finished surface roughness Ra is 0.0024 μm. It indicates that the proposed MRF process can be used to achieve the deterministic removal of surface material and perform the nanofinishing of small curvature radius concave surfaces.
Functional ecology of an Antarctic Dry Valley
Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.
2013-01-01
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121
Functional ecology of an Antarctic Dry Valley.
Chan, Yuki; Van Nostrand, Joy D; Zhou, Jizhong; Pointing, Stephen B; Farrell, Roberta L
2013-05-28
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution.
Tool life and surface integrity aspects when drilling nickel alloy
NASA Astrophysics Data System (ADS)
Kannan, S.; Pervaiz, S.; Vincent, S.; Karthikeyan, R.
2018-04-01
Nickel based super alloys manufactured through powder metallurgy (PM) route are required to increase the operational efficiency of gas turbine engines. They are material of choice for high pressure components due to their superior high temperature strength, excellent corrosion, oxidation and creep resistance. This unique combination of mechanical and thermal properties makes them even more difficult-to-machine. In this paper, the hole making process using coated carbide inserts by drilling and plunge milling for a nickel-based powder metallurgy super alloy has been investigated. Tool life and process capability studies were conducted using optimized process parameters using high pressure coolants. The experimental trials were directed towards an assessment of the tendency for surface malformations and detrimental residual stress profiles. Residual stresses in both the radial and circumferential directions have been evaluated as a function of depth from the machined surface using the target strain gauge / center hole drilling method. Circumferential stresses near workpiece surface and at depth of 512 µm in the starting material was primarily circumferential compression which was measured to be average of –404 MPa. However, the radial stresses near workpiece surface was tensile and transformed to be compressive in nature at depth of 512 µm in the starting material (average: -87 Mpa). The magnitude and the depth below the machined surface in both radial and circumferential directions were primarily tensile in nature which increased with hole number due to a rise of temperature at the tool–workpiece interface with increasing tool wear. These profiles are of critical importance for the selection of cutting strategies to ensure avoidance/minimization of tensile residual stresses that can be detrimental to the fatigue performance of the components. These results clearly show a tendency for the circumferential stresses to be more tensile than the radial stresses. Overall the results indicate that the effect of drilling and milling parameters is most marked in terms of surface quality in the circumferential direction. Material removal rates and tool flank wear must be maintained within the control limits to maintain hole integrity.
Interfacial mechanisms for stability of surfactant-laden films
Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.
2017-01-01
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734
A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors
NASA Astrophysics Data System (ADS)
Mathew, Ribu; Ravi Sankar, A.
2018-06-01
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1979-01-01
A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.
Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J
2017-11-07
The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.
Hu, Hao; Sun, Yawen; Su, Shanshan; Wang, Yao; Qiu, Yongming; Yang, Xi; Zhou, Yan; Xiao, Zeping; Wang, Zhen
2018-01-01
Victims of motor vehicle accidents often develop post-traumatic stress disorder, which causes significant social function loss. For the difficulty in treating post-traumatic stress disorder, identification of subjects at high risk for post-traumatic stress disorder is essential for providing possible intervention. This paper aims to examine the cortical structural traits related to susceptibility to post-traumatic stress disorder. To address this issue, we performed structural magnetic resonance imaging study in motor vehicle accident victims within 48 hours from the accidents. A total of 70 victims, available for both clinical and magnetic resonance imaging data, enrolled in our study. Upon completion of 6-month follow-up, 29 of them developed post-traumatic stress disorder, while 41 of them didn't. At baseline, voxelwise comparisons of cortical thickness, cortical area and cortical volume were conducted between post-traumatic stress disorder group and trauma control group. As expected, several reduced cortical volume within frontal-temporal loop were observed in post-traumatic stress disorder. For cortical thickness, no between-group differences were observed. There were three clusters in left hemisphere and one cluster in right hemisphere showing decreased cortical area in post-traumatic stress disorder patients, compared with trauma controls. Peak voxels of the three clusters in left hemisphere were separately located in superior parietal cortex, insula and rostral anterior cingulate cortex. The finding of reduced surface area of left insula and left rostral anterior cingulate cortex suggests that shrinked surface area in motor vehicle accident victims could act as potential biomarker of subjects at high risk for post-traumatic stress disorder.
Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony
2015-09-03
The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.
Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance.
Beismann, H; Wilhelmi, H; Baillères, H; Spatz, H C; Bogenrieder, A; Speck, T
2000-03-01
The twig bases within the genus Salix were investigated. Brittleness of twig bases as defined in the literature neither correlates with Young's modulus nor with growth strains, which were measured for S. alba, S. fragilis and S. x rubens. For the species S. alba, S. appendiculata, S. eleagnos, S. fragilis, S. purpurea, S. triandra, S. viminalis, and S. x rubens, fracture surfaces of broken twigs were investigated and semiquantitatively described in terms of 'relative roughness' (ratio of rough area of fracture surface over whole area of fracture surface). The relative roughness clearly corresponds with the classification into brittle and nonbrittle species given in the literature. An attempt was made to quantify brittleness with mechanical tests. The absolute values of stress and strain do not correlate with the brittleness of the twig bases as defined by the relative roughness. However, the 'index stress' (ratio of stress at yield over stress at fracture) or the 'index strain' (ratio of strain at yield over strain at fracture), correlate well with the relative roughness. The graphic analysis of index stress against index strain reveals a straight line on which the eight species are ordered according to their brittleness. Depending on growth form and habitat, brittle twig bases of willows may function ecologically as mechanical safety mechanisms and, additionally, as a propagation mechanism.
The surface chemical reactivity of particles and its impact on human health
NASA Astrophysics Data System (ADS)
Setyan, A.; Sauvain, J. J.; Riediker, M.; Guillemin, M.; Rossi, M. J.
2017-12-01
The chemical composition of the particle-air interface is the gateway to chemical reactions of gases with condensed phase particles. It is of prime importance to understand the reactivity of particles and their interaction with surrounding gases, biological membranes, and solid supports. We used a Knudsen flow reactor to quantify functional groups on the surface of a few selected particle types. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the identification and quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for the detection of carbonyl functions (aldehydes and ketones) and/or oxidized sites owing to its strong reducing properties, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. We also studied the kinetics of the reactions between particles and probe gases (uptake coefficient γ0). We tested the surface chemical composition and oxidation states of laboratory-generated aerosols (3 amorphous carbons, 2 flame soots, 2 Diesel particles, 2 secondary organic aerosols [SOA], 4 multiwall carbon nanotubes [MWCNT], 3 TiO2, and 2 metal salts) and of aerosols sampled in several bus depots. The sampling of particles in the bus depots was accompanied by the collection of urine samples of mechanics working full-time in these bus depots, and the quantification of 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress. The increase in oxidative stress biomarker levels over a working day was correlated (p<0.05) with the number of olefinic and/or PAH sites on the surface of particles sampled at the bus depots, obtained from O3 uptakes, as well as with the initial uptake coefficient (γ0) of five probe gases used in the field. This correlation with γ0 suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Elastic layer under axisymmetric indentation and surface energy effects
NASA Astrophysics Data System (ADS)
Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon
2018-04-01
In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.
Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo
2015-01-01
Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.
Functions of ocular surface mucins in health and disease
Mantelli, Flavio; Argüeso, Pablo
2009-01-01
Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205
Takamizawa, Keiichi; Nakayama, Yasuhide
2013-11-01
It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.
Residual stress measurement in veneering ceramic by hole-drilling.
Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J
2011-05-01
Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Measuring stress variation with depth using Barkhausen signals
NASA Astrophysics Data System (ADS)
Kypris, O.; Nlebedim, I. C.; Jiles, D. C.
2016-06-01
Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; Remington, Bruce A.; Hahn, Eric N.; More, Karren L.; Meyers, Marc A.
2017-01-01
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition. PMID:28847926
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E; Remington, Bruce A; Hahn, Eric N; More, Karren L; Meyers, Marc A
2017-09-12
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.
Emergence of cracks by mass transport in elastic crystals stressed at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, B.; Suo, Z.; Evans, A.G.
1995-12-31
Single crystals are used under high temperature and high stresses in hostile environments (usually gases). A void produced in the fabrication process can change shape and volume, as atoms migrate under various thermodynamic forces. A small void under low stress remains rounded in shape, but a large void under high stress evolves to a crack. The material fractures catastrophically when the crack becomes sufficiently large. In this article three kinetic processes are analyzed: diffusion along the void surface, diffusion in a low melting point second phase inside the void, and surface reaction with the gases. An approximate evolution path ismore » simulated, with the void evolving as a sequence of spheroids, from a sphere to a penny-shaped crack. The free energy is calculated as a functional of void shape, from which the instability conditions are determined. The evolution rate is calculated by using variational principles derived from the valance of the reduction in the free energy and the dissipation is the kinetic processes. Crystalline anisotropy and surface heterogeneity can be readily incorporated in this energetic framework. Comparisons are made with experimental strength date for sapphire fibers measured at various strain rates.« less
NASA Astrophysics Data System (ADS)
Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.
2005-04-01
Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.
Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.
1998-01-01
Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.
Shear Stress in Magnetorheological FInishing for Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2009-04-28
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by themore » hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.« less
Shear stress in magnetorheological finishing for glasses.
Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D
2009-05-01
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.
The two sides of the C-factor.
Fok, Alex S L; Aregawi, Wondwosen A
2018-04-01
The aim of this paper is to investigate the effects on shrinkage strain/stress development of the lateral constraints at the bonded surfaces of resin composite specimens used in laboratory measurement. Using three-dimensional (3D) Hooke's law, a recently developed shrinkage stress theory is extended to 3D to include the additional out-of-plane strain/stress induced by the lateral constraints at the bonded surfaces through the Poisson's ratio effect. The model contains a parameter that defines the relative thickness of the boundary layers, adjacent to the bonded surfaces, that are under such multiaxial stresses. The resulting differential equation is solved for the shrinkage stress under different boundary conditions. The accuracy of the model is assessed by comparing the numerical solutions with a wide range of experimental data, which include those from both shrinkage strain and shrinkage stress measurements. There is good agreement between theory and experiments. The model correctly predicts the different instrument-dependent effects that a specimen's configuration factor (C-factor) has on shrinkage stress. That is, for noncompliant stress-measuring instruments, shrinkage stress increases with the C-factor of the cylindrical specimen; while the opposite is true for compliant instruments. The model also provides a correction factor, which is a function of the C-factor, Poisson's ratio and boundary layer thickness of the specimen, for shrinkage strain measured using the bonded-disc method. For the resin composite examined, the boundary layers have a combined thickness that is ∼11.5% of the specimen's diameter. The theory provides a physical and mechanical basis for the C-factor using principles of engineering mechanics. The correction factor it provides allows the linear shrinkage strain of a resin composite to be obtained more accurately from the bonded-disc method. Published by Elsevier Ltd.
Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon
A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterizemore » the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).« less
NASA Astrophysics Data System (ADS)
Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica
2013-12-01
Polyphenols, as one of the most important family of phytochemicals protective substances from grape fruit, possess various biological activities and health-promoting benefits, for example: inhibition of some degenerative diseases, cardiovascular diseases and certain types of cancers, reduction of plasma oxidative stress and slowing aging. The combination of polyphenols and biomaterials may have good potential to reach good bioavailability and controlled release, as well as to give biological signaling properties to the biomaterial surfaces. In this research, conventional solvent extraction was developed for obtaining polyphenols from dry grape skins. The Folin&Ciocalteu method was used to determine the amount of total polyphenols in the extracts. Surface functionalization of two bioactive glasses (SCNA and CEL2) was performed by grafting the extracted polyphenols on their surfaces. The effectiveness of the functionalization was tested by UV spectroscopy, which analyzes the amount of polyphenols in the uptake solution (before and after functionalization) and on solid samples, and XPS, which analyzes the presence of phenols on the material surface.
NASA Technical Reports Server (NTRS)
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.
Zhao, Peng; Zhao, Ji-Cheng; Weaver, Richard
2013-05-01
The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement.
The advancement of the high precision stress polishing
NASA Astrophysics Data System (ADS)
Li, Chaoqiang; Lei, Baiping; Han, Yu
2016-10-01
The stress polishing is a kind of large-diameter aspheric machining technology with high efficiency. This paper focuses on the principle, application in the processing of large aspheric mirror, and the domestic and foreign research status of stress polishing, aimed at the problem of insufficient precision of mirror surface deformation calculated by some traditional theories and the problem that the output precision and stability of the support device in stress polishing cannot meet the requirements. The improvement methods from these three aspects are put forward, the characterization method of mirror's elastic deformation in stress polishing, the deformation theory of influence function and the calculation of correction force, the design of actuator's mechanical structure. These improve the precision of stress polishing and provide theoretical basis for the further application of stress polishing in large-diameter aspheric machining.
Cytokines and macrophage function in humans - role of stress
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald (Principal Investigator)
1996-01-01
We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.; Zhang, G.
2013-12-01
The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.
NASA Astrophysics Data System (ADS)
Brasseur, James; Paes, Paulo; Chamecki, Marcelo
2017-11-01
Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.
Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J
2016-12-01
The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.
Hattori, Koji; Munehira, Yoichi; Kobayashi, Hideki; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki
2014-09-01
We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm(2) in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 10(5)) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm(2). Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm(2). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.
1993-01-01
Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.
Surface aspects of pitting and stress corrosion cracking
NASA Technical Reports Server (NTRS)
Truhan, J. S., Jr.; Hehemann, R. F.
1977-01-01
The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.
Laggner, Maria; Pollreisz, Andreas; Schmidinger, Gerald; Schmidt-Erfurth, Ursula; Chen, Ying-Ting
2017-01-01
Limbal stem cells (LSC) account for homeostasis and regeneration of corneal epithelium. Solar ultraviolet A (UVA) is the major source causing oxidative damage in the ocular surface. Autophagy, a lysosomal degradation mechanism, is essential for physiologic function and stress defense of stem cells. PAX6, a master transcription factor governing corneal homeostasis by regulating cell cycle and cell fate of LSC, responds to oxidative stress by nucleocytoplasmic shuttling. Impaired autophagy and deregulated PAX6 have been reported in oxidative stress-related ocular surface disorders. We hypothesize a functional role for autophagy and PAX6 in LSC’s stress response to UVA. Therefore, human LSC colonies were irradiated with a sub-lethal dose of UVA and autophagic activity and intracellular reactive oxygen species (ROS) were measured by CYTO-ID assay and CM-H2DCFDA live staining, respectively. Following UVA irradiation, the percentage of autophagic cells significantly increased in LSC colonies while intracellular ROS levels remained unaffected. siRNA-mediated knockdown (KD) of ATG7 abolished UVA-induced autophagy and led to an excessive accumulation of ROS. Upon UVA exposure, LSCs displayed nuclear-to-cytoplasmic translocation of PAX6, while ATG7KD or antioxidant pretreatment largely attenuated the intracellular trafficking event. Immunofluorescence showing downregulation of proliferative marker PCNA and induction of cell cycle regulator p21 indicates cell cycle arrest in UVA-irradiated LSC. Abolishing autophagy, adenoviral-assisted restoration of nuclear PAX6 or antioxidant pretreatment abrogated the UVA-induced cell cycle arrest. Adenoviral expression of an ectopic PAX gene, PAX7, did not affect UVA cell cycle response. Furthermore, knocking down PAX6 attenuated the cell cycle progression of irradiated ATG7KD LSC by de-repressing p21 expression. Collectively, our data suggest a crosstalk between autophagy and PAX6 in regulating cell cycle response of ocular progenitors under UVA stress. Autophagy deficiency leads to impaired intracellular trafficking of PAX6, perturbed redox balance and uncurbed cell cycle progression in UVA-stressed LSCs. The coupling of autophagic machinery and PAX6 in cell cycle regulation represents an attractive therapeutic target for hyperproliferative ocular surface disorders associated with solar radiation. PMID:28700649
A mechanism for tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1986-01-01
In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weiwen; Culley, David E.; Gritsenko, Marina A.
2006-11-03
ABSTRACT In the previous study, the whole-genome gene expression profiles of D. vulgaris in response to oxidative stress and heat shock were determined. The results showed 24-28% of the responsive genes were hypothetical proteins that have not been experimentally characterized or whose function can not be deduced by simple sequence comparison. To further explore the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, attempt was made in this study to infer functions of these hypothetical proteins by phylogenomic profiling along with detailed sequence comparison against various publicly available databases. By this approach we were abletomore » assign possible functions to 25 responsive hypothetical proteins. The findings included that DVU0725, induced by oxidative stress, may be involved in lipopolysaccharide biosynthesis, implying that the alternation of lipopolysaccharide on cell surface might service as a mechanism against oxidative stress in D. vulgaris. In addition, two responsive proteins, DVU0024 encoding a putative transcriptional regulator and DVU1670 encoding predicted redox protein, were sharing co-evolution atterns with rubrerythrin in Archaeoglobus fulgidus and Clostridium perfringens, respectively, implying that they might be part of the stress response and protective systems in D. vulgaris. The study demonstrated that phylogenomic profiling is a useful tool in interpretation of experimental genomics data, and also provided further insight on cellular response to oxidative stress and heat shock in D. vulgaris.« less
Matthews, Lindsay A.; Selvaratnam, Rajeevan; Jones, Darryl R.; Akimoto, Madoka; McConkey, Brendan J.; Melacini, Giuseppe; Duncker, Bernard P.; Guarné, Alba
2014-01-01
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules. PMID:24285546
Material properties of novel polymeric films
NASA Astrophysics Data System (ADS)
Kim, Gene
This dissertation will study the material properties of two types of novel polymer films (polyelectrolyte multilayer films and photolithographic polymer films). The formation of polylelectrolyte multilayer films onto functionalized aluminum oxide surfaces and functionalized poly(ethylene terephthaltate) (PET) were studied. Functionalization of the aluminum oxide surfaces was achieved via silane coupling. Functionalization of PET surfaces was achieved via hydrolysis and amidation. Surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements were used to monitor the polyelectrolyte multilayer formation. Mechanical properties of the aluminum oxide supported polyelectrolyte multilayer films were tested using a simplified peel test. XPS was used to analyze the surfaces before and after peel. Single lap shear joint specimens were constructed to test the adhesive shear strength of the PET-supported polyelectrolyte multilayer film samples with the aid of a cyanoacrylate adhesive. The adhesive shear strength and its relation with the type of functionalization, number of polyelectrolyte layers, and the effect of polyelectrolyte conformation using added salt were explored. Also, characterization on the single lap joints after adhesive failure was carried out to determine the locus of failure within the multilayers by using XPS and SEM. Two types of photolithographic polymers were formulated and tested. These two polymers (photocrosslinkable polyacrylate (PUA), and a photocrosslinkable polyimide (HRP)) were used to investigate factors that would affect the structural integrity of these particular polymers under environmental variables such as processing (time, UV cure, pressure, and temperature) and ink exposure. Thermomechanical characterization was carried out to see the behavior of these two polymers under these environmental variables. Microscopic techniques were employed to study the morphological behavior of the two polymer systems. Also, unique in-house characterization methods such as the vibrational holographic interferometry to measure residual stress in these polymer coatings upon processing, and the environmental tensile tester (ETT) to measure ink diffusion and swelling stresses were used to further characterize these two polymers.
Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.
Shelef, Yaniv; Bar-On, Benny
2017-09-01
The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J
2011-09-01
The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; ...
2017-08-28
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less
Eyelashes divert airflow to protect the eye
Amador, Guillermo J.; Mao, Wenbin; DeMercurio, Peter; Montero, Carmen; Clewis, Joel; Alexeev, Alexander; Hu, David L.
2015-01-01
Eyelashes are ubiquitous, although their function has long remained a mystery. In this study, we elucidate the aerodynamic benefits of eyelashes. Through anatomical measurements, we find that 22 species of mammals possess eyelashes of a length one-third the eye width. Wind tunnel experiments confirm that this optimal eyelash length reduces both deposition of airborne particles and evaporation of the tear film by a factor of two. Using scaling theory, we find this optimum arises because of the incoming flow's interactions with both the eye and eyelashes. Short eyelashes create a stagnation zone above the ocular surface that thickens the boundary layer, causing shear stress to decrease with increasing eyelash length. Long eyelashes channel flow towards the ocular surface, causing shear stress to increase with increasing eyelash length. These competing effects result in a minimum shear stress for intermediate eyelash lengths. This design may be employed in creating eyelash-inspired protection for optical sensors. PMID:25716186
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less
New true-triaxial rock strength criteria considering intrinsic material characteristics
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong
2018-02-01
A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.
2D problems of surface growth theory with applications to additive manufacturing
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.; Mikhin, M. N.
2018-04-01
We study 2D problems of surface growth theory of deformable solids and their applications to the analysis of the stress-strain state of AM fabricated products and structures. Statements of the problems are given, and a solution method based on the approaches of the theory of functions of a complex variable is suggested. Computations are carried out for model problems. Qualitative and quantitative results are discussed.
Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo
2017-11-07
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa
NASA Technical Reports Server (NTRS)
Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.
2004-01-01
To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.
Li, N.; Yadav, S. K.; Liu, X. -Y.; ...
2015-11-05
Using the in situ indentation of TiN in a high-resolution transmission electron microscope, the nucleation of full as well as partial dislocations has been observed from {001} and {111} surfaces, respectively. The critical elastic strains associated with the nucleation of the dislocations were analyzed from the recorded atomic displacements, and the nucleation stresses corresponding to the measured critical strains were computed using density functional theory. The resolved shear stress was estimated to be 13.8 GPa for the partial dislocation 1/6 <110> {111} and 6.7 GPa for the full dislocation ½ <110> {110}. Moreover, such an approach of quantifying nucleation stressesmore » for defects via in situ high-resolution experiment coupled with density functional theory calculation may be applied to other unit processes.« less
Surface stress mediated image force and torque on an edge dislocation
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh
2018-07-01
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.
Gorgin Karaji, Zahra; Hedayati, Reza; Pouran, Behdad; Apachitei, Iulian; Zadpoor, Amir A
2017-07-01
Metallic porous biomaterials are recently attracting more attention thanks to the additive manufacturing techniques which help produce more complex structures as compared to conventional techniques. On the other hand, bio-functional surfaces on metallic biomaterials such as titanium and its alloys are necessary to enhance the biological interactions with the host tissue. This study discusses the effect of plasma electrolytic oxidation (PEO), as a surface modification technique to produce bio-functional layers, on the mechanical properties of additively manufactured Ti6Al4V scaffolds based on the cubic unit cell. For this purpose, the PEO process with two different oxidation times was applied on scaffolds with four different values of relative density. The effects of the PEO process were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy as well as static and dynamic (fatigue) mechanical testing under compression. SEM results indicated pore formation on the surface of the scaffolds after oxidation with a thickness of 4.85±0.36μm of the oxide layer after 2min and 9.04±2.27μm after 5min oxidation (based on optical images). The static test results showed the high effect of relative density of porous structure on its mechanical properties. However, oxidation did not influence most of the mechanical properties such as maximum stress, yield stress, plateau stress, and energy absorption, although its effect on the elastic modulus was considerable. Under fatigue loading, none of the scaffolds failed even after 10 6 loading cycles at 70% of their yield stress. Copyright © 2017 Elsevier B.V. All rights reserved.
A closed form large deformation solution of plate bending with surface effects.
Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen
2017-01-04
We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.
NASA Astrophysics Data System (ADS)
Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.
2013-12-01
The general lack of earthquake slip at shallow (< ~4 km) depths on plate-boundary faults suggests that they creep stably, a behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone. We also explore the role of absolute shear stress level before arrival of a propagating rupture. Preliminary results show that weak, velocity-strengthening fault zones have a low net power density, but are unlikely to contribute to instability via dynamic stress drops unless they are initially very close to failure. By contrast, strong and velocity-weakening faults will tend to resist coseismic slip by consuming energy if stresses are initially low; however their velocity-weakening nature means that they can support a stress drop even if relatively far below their failure strength.
Lithosphere deformation methods and models constrained by surface fault data on Mars
NASA Astrophysics Data System (ADS)
Dimitrova, Lada L.
Models of lithospheric deformation tie observed field measurements of gravity and topography with surface observations of tectonic features. An understanding of the sources of stress, and the expected style, orientation, and magnitudes of stress and associated elastic strain is important for understanding the evolution of faulting on Mars and its relationship to loading. At the same time, theoretical models of deformation mechanisms and forces, when tied to tectonic observations, can be interpreted in terms of major tectonic events and allow insights into the planet's history and evolution as well as its internal structure and processes. This is particularly important for understanding solid planetary bodies other than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g. Mars. This kind of research has implications for, and benefits from, an understanding of the petrology and surface processes. In this work, I use MGS MOLA and Radio Science data products (topography and gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics on Mars as a function of time, while satisfying geologic surface observations (surface features) that have been and are being catalogued and studied from Viking, MOLA, MOC, and THEMIS IR images. I investigate (1) the role of internal loads (internal body force effects), (2) loading from the surface and base of lithosphere, and the effects of this loading on membrane and flexural strains and stresses, and (3) the role of global contraction, all viewed in the context of how the surface elastic layer has changed as the planet has evolved. I show that deviatoric stresses associated with gravitational potential differences do a good job at matching the normal faults; however, fitting all the surface-breaking faults is more difficult. I argue that global planetary contraction is an unlikely source of significant deformation. Instead, the simplest inverse models show that small lateral variations (1¡6%) in crust and mantle density in conjunction with small vertical displacement, O(100m), provide sufficient additional GPE and membrane stress to fit the majority of the data. These inverse models are consistent with lithosphere modification by erosion from running water.
Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production
Uchino, Yuichi; Kawakita, Tetsuya; Miyazawa, Masaki; Ishii, Takamasa; Onouchi, Hiromi; Yasuda, Kayo; Ogawa, Yoko; Shimmura, Shigeto; Ishii, Naoaki; Tsubota, Kazuo
2012-01-01
Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease. PMID:23071526
Hu, Wei; Wang, Jing; McHardy, Ian; Lux, Renate; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan
2013-01-01
Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid. PMID:22538652
Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle
Lobo, Daniela P.; Wemyss, Alan M.; Smith, David J.; Straube, Anne; Betteridge, Kai B.; Salmon, Andrew H. J.; Foster, Rebecca R.; Elhegni, Hesham E.; Satchell, Simon C.; Little, Haydn A.; Pacheco-Gómez, Raúl; Simmons, Mark J.; Hicks, Matthew R.; Bates, David O.; Dafforn, Timothy R.; Arkill, Kenton P.
2016-01-01
The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature’s primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics. PMID:27570611
Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity
NASA Astrophysics Data System (ADS)
Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu
2013-12-01
The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael V. Glazoff; Jeong-Whan Yoon
2013-08-01
In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies alongmore » 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Vitaly; Sushko, Maria L.; Schreiber, Daniel K.
A density-functional-theory modeling study of atomic oxygen/sulfur adsorption and diffusion at pristine and doped Ni(111) and (110) surfaces is presented. We find that oxygen and sulfur feature comparable adsorption energies over the same surface sites, however, the surface diffusion of sulfur is characterized by an activation barrier about one half that of oxygen. Calculations with different alloying elements at Ni surfaces show that Cr strongly enhances surface binding of both species in comparison to Al. These results in combination with previous modeling studies help explain the observed differences in selective grain boundary oxidation mechanisms of Ni-Cr and Ni-Al alloys.
Growth rate models for short surface cracks in AI 2219-T851
NASA Astrophysics Data System (ADS)
Morris, W. L.; James, M. R.; Buck, O.
1981-01-01
Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.
Unsteady viscous effects in the flow over an oscillating surface. [mathematical model
NASA Technical Reports Server (NTRS)
Lerner, J. I.
1972-01-01
A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.
Friction of ice. [on Ganymede, Callisto, and Europa surfaces
NASA Technical Reports Server (NTRS)
Beeman, M.; Durham, W. B.; Kirby, S. H.
1988-01-01
Frictional sliding experiments were performed on saw-cut samples of laboratory-made polycrystalline water ice, prepared in the same way as the material used by Kirby et al. (1987) in ice deformation experiments. The data show that the maximum frictional stress is a function of the normal stress but is not measurably dependent on temperature or sliding rate over the ranges covered in these experiments (77-115 K and 0.0003-0.03 mm/s, respectively). The sliding behavior was invariably stick slip, with the sliding surfaces exhibiting only minor gouge development. In samples with anomalously low strength, a curious arrangement of densely packed short vertical fractures was observed. The results of these experiments were applied to a model of near-surface tectonic activity on Ganymede, one of Jupiter's icy moons. The results indicate that a global expansion on Ganymede of 3 linear percent will cause extensional movement on preexisting faults at depths to 7 + or - 3 km.
Kurtz-Chalot, Andréa; Villiers, Christian; Pourchez, Jérémie; Boudard, Delphine; Martini, Matteo; Marche, Patrice N; Cottier, Michèle; Forest, Valérie
2017-06-01
Nanoparticles (NP) physico-chemical features greatly influence NP/cell interactions. NP surface functionalization is often used to improve NP biocompatibility or to enhance cellular uptake. But in biological media, the formation of a protein corona adds a level of complexity. The aim of this study was to investigate in vitro the influence of NP surface functionalization on their cellular uptake and the biological response induced. 50nm fluorescent silica NP were functionalized either with amine or carboxylic groups, in presence or in absence of polyethylene glycol (PEG). NP were incubated with macrophages, cellular uptake and cellular response were assessed in terms of cytotoxicity, pro-inflammatory response and oxidative stress. The NP protein corona was also characterized by protein mass spectroscopy. Results showed that NP uptake was enhanced in absence of PEG, while NP adsorption at the cell membrane was fostered by an initial positively charged NP surface. NP toxicity was not correlated with NP uptake. NP surface functionalization also influenced the formation of the protein corona as the profile of protein binding differed among the NP types. Copyright © 2017 Elsevier B.V. All rights reserved.
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
The elasticity problem for a thick-walled cylinder containing a circumferential crack
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1983-01-01
The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.
The elasticity problem for a thick-walled cylinder containing a circumferential crack
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1982-01-01
The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.
Stress distribution and topography of Tellus Regio, Venus
NASA Technical Reports Server (NTRS)
Williams, David R.; Greeley, Ronald
1989-01-01
The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.
Nickenig, Hans-Joachim; Wichmann, Manfred; Schlegel, Karl Andreas; Nkenke, Emeka; Eitner, Stephan
2009-06-01
The purpose of this split-mouth study was to compare macro- and microstructure implant surfaces at the marginal bone level during a stress-free healing period and under functional loading. From January to February 2006, 133 implants (70 rough-surfaced microthreaded implants and 63 machined-neck implants) were inserted in the mandible of 34 patients with Kennedy Class I residual dentitions and followed until February 2008. The marginal bone level was radiographically determined, using digitized panoramic radiographs, at four time points: at implant placement (baseline level), after the healing period, after 6 months of functional loading, and at the end of follow-up. The median follow-up time was 1.9 (range: 1.9-2.1) years. The machined-neck group had a mean crestal bone loss of 0.5 mm (range: 0-2.3) after the healing period, 0.8 mm after 6 months (range: 0-2.4), and 1.1 mm (range: 0-3) at the end of follow-up. The rough-surfaced microthreaded implant group had a mean bone loss of 0.1 mm (range: -0.4-2) after the healing period, 0.4 mm (range: 0-2.1) after 6 months, and 0.5 mm (range: 0-2.1) at the end of follow-up. The two implant types showed significant differences in marginal bone levels (healing period: P=0.01; end of follow-up: P<0.01). Radiographic evaluation of marginal bone levels adjacent to machined-neck or rough-surfaced microthreaded implants showed that implants with the microthreaded design caused minimal changes in crestal bone levels during healing (stress-free) and under functional loading.
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions
NASA Astrophysics Data System (ADS)
Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan
2017-07-01
Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.
Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography
NASA Astrophysics Data System (ADS)
Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John
2014-11-01
We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.
1999-01-01
The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
A multi-purpose method for analysis of spur gear tooth loading
NASA Technical Reports Server (NTRS)
Kasuba, R.; Evans, J. W.; August, R.; Frater, J. L.
1981-01-01
A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads.
NASA Technical Reports Server (NTRS)
McManus, Hugh L.; Chamis, Christos C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.
Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P
2013-01-01
The rapid adsorption of proteins is the starting and primary biological response that occurs when a biomedical device is implanted in the physiological system. The biological response, however, depends on the surface characteristics of the device. Considering the significant interest in nano-/ultrafine surfaces and nanostructured coatings, we describe here, the interplay between grain structure and protein adsorption (bovine serum albumin: BSA) on osteoblasts functions by comparing nanograined/ultrafine-grained (NG/UFG) and coarse-grained (CG: grain size in the micrometer range) substrates by investigating cell-substrate interactions. The protein adsorption on NG/UFG surface was beneficial in favorably modulating biological functions including cell attachment, proliferation, and viability, whereas the effect was less pronounced on protein adsorbed CG surface. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on protein adsorbed NG/UFG surface. The functional response followed the sequence: NG/UFG(BSA) > NG/UFG > CG(BSA) > CG. The differences in the cellular response on bare and protein adsorbed NG/UFG and CG surfaces are attributed to cumulative contribution of grain structure and degree of hydrophilicity. The study underscores the potential advantages of protein adsorption on artificial biomedical devices to enhance the bioactivity and regulate biological functions. Copyright © 2012 Wiley Periodicals, Inc.
Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface
NASA Astrophysics Data System (ADS)
Adams, A.; Thielmann, M.; Golabek, G.
2017-12-01
Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses and eclogitization.
Setyan, Ari; Sauvain, Jean-Jacques; Guillemin, Michel; Riediker, Michael; Demirdjian, Benjamin; Rossi, Michel J
2010-12-17
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Shrinkage-stress kinetics of photopolymerised resin-composites
NASA Astrophysics Data System (ADS)
Satterthwaite, Julian D.
The use of directly-placed substances as restorative materials in teeth remains the technique of choice for preserving function and form in teeth that have cavities. The current aesthetic restorative materials of choice are resin-composite materials, although these undergo molecular densification during polymerisation, which has deleterious effects. Although shrinkage-strain is the cause, it is the shrinkage-stress effects that may be seen as being responsible for the problems with adhesive resin-based restorations that are encountered clinically, the bond may fail with separation of the material from the cavity wall, leading to marginal discolouration, pulpal irritation and subsequent necrosis, post operative sensitivity, recurrent caries and eventual failure of restorations. Other outcomes include cohesive fracture of enamel or cusps, cuspal movement (strain) and persistent pain. The aims of this research were to characterise the effects of variations in resin-composite formulation on shrinkage-strain and shrinkage-stress kinetics. In particular, the influence of the size and morphology of the dispersed phase was investigated through the study of experimental formulations. Polymerisation shrinkage-strain kinetics were assessed with the bonded-disk method. It was found that resin-composites with spherical filler particles had significantly lower shrinkage-strain compared to those with irregular filler particles. Additionally, shrinkage-strain was found to be dependent on the size of filler particle, and this trend was related, in part, to differences in the degree of conversion. The data were also used to calculate the activation energy for each material, and a relationship between this and filler particle size for the irregular fillers was demonstrated. A fixed-compliance cantilever beam instrument (Bioman) was used for characterisation of shrinkage-stress kinetics. Significant differences were identified between materials in relation to filler particle size and morphology. A hypothesis for these interactions, relating to surface area effects, was presented. The complex interactions leading to the development of shrinkage-stress were investigated further. Shrinkage-stress over a 24 hour period was assessed, and modelled through application of the Kohlrausch-Williams-Watts equation. The effect of variation in specimen dimensions were assessed, and it was shown that the relationship of the specimen height and diameter to shrinkage-stress is a function not only of the C-factor (the ratio of bonded to unbonded surfaces), but also how the C-factor is created. These relationships were characterised and descriptive equations fitted to the data to describe the phenomena. Shrinkage-stress measurements against a variety of test surfaces were also assessed, and the use of stainless steel as a test surface was validated. Finally, exploratory research was undertaken to develop a moire interferometer for the measurement of in-plane displacements and strain arising in teeth due to polymerisation of resin-composite restorations.
Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials
NASA Astrophysics Data System (ADS)
Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.
2017-12-01
Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.
NASA Technical Reports Server (NTRS)
Bennett, Richard A.; Reilinger, Robert E.; Rodi, William; Li, Yingping; Toksoz, M. Nafi; Hudnut, Ken
1995-01-01
Coseismic surface deformation associated with the M(sub w) 6.1, April 23, 1992, Joshua Tree earthquake is well represented by estimates of geodetic monument displacements at 20 locations independently derived from Global Positioning System and trilateration measurements. The rms signal to noise ratio for these inferred displacements is 1.8 with near-fault displacement estimates exceeding 40 mm. In order to determine the long-wavelength distribution of slip over the plane of rupture, a Tikhonov regularization operator is applied to these estimates which minimizes stress variability subject to purely right-lateral slip and zero surface slip constraints. The resulting slip distribution yields a geodetic moment estimate of 1.7 x 10(exp 18) N m with corresponding maximum slip around 0.8 m and compares well with independent and complementary information including seismic moment and source time function estimates and main shock and aftershock locations. From empirical Green's functions analyses, a rupture duration of 5 s is obtained which implies a rupture radius of 6-8 km. Most of the inferred slip lies to the north of the hypocenter, consistent with northward rupture propagation. Stress drop estimates are in the range of 2-4 MPa. In addition, predicted Coulomb stress increases correlate remarkably well with the distribution of aftershock hypocenters; most of the aftershocks occur in areas for which the mainshock rupture produced stress increases larger than about 0.1 MPa. In contrast, predicted stress changes are near zero at the hypocenter of the M(sub w) 7.3, June 28, 1992, Landers earthquake which nucleated about 20 km beyond the northernmost edge of the Joshua Tree rupture. Based on aftershock migrations and the predicted static stress field, we speculate that redistribution of Joshua Tree-induced stress perturbations played a role in the spatio-temporal development of the earth sequence culminating in the Landers event.
NASA Astrophysics Data System (ADS)
Greco, Roberto; Gargano, Rudy
2016-04-01
The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0, allowing for a good fitting of the experimental data, are in agreement with the values of water potential marking the limit between capillary and adsorptive soil water retention, which can be estimated from the shape of the water retention curve. Therefore, with the proposed approach, at least in principle it is possible to derive the SSSC directly from the knowledge of the SWRC.
The biological effect of asbestos exposure is dependent on changes in iron homeostasis
Abstract Functional groups on the surface of fibrous silicates can complex iron. We tested the postulate that 1) asbestos complexes and sequesters host cell iron resulting in a disruption of metal homeostasis and 2) this loss of essential metal results in an oxidative stress and...
Colors Of Liquid Crystals Used To Measure Surface Shear Stresses
NASA Technical Reports Server (NTRS)
Reda, D. C.; Muratore, J. J., Jr.
1996-01-01
Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.
Comprehensive Study of Plasma-Wall Sheath Transport Phenomena
2016-10-26
function of the applied thermo-mechanical stress. An experiment was designed to test whether and how the process of plasma erosion might depend on ...of exposed surface, a, b) pretest height and laser image, c, d) post - test height and laser image. For the following analysis, a curve fit of the...normal to the ion beam. However, even with a one -dimensional simulation, features of a similar depth and profile to the post - test surface develop
NASA Astrophysics Data System (ADS)
Verhoef, Anne; Egea, Gregorio; Garrigues, Sebastien; Vidale, Pier Luigi; Balan Sarojini, Beena
2017-04-01
Current land surface schemes in many crop, weather and climate models make use of the coupled photosynthesis-stomatal conductance (A-gs) models of plant function to determine the transpiration flux and gross primary productivity. Vegetation exchange is controlled by many environmental factors, and soil moisture control on root water uptake and stomatal function is a primary pathway for feedbacks in sub-tropical to temperate ecosystems. Representations of the above process of soil moisture control on plant function (often referred to as a 'beta' factor) vary among models. This matters because the simulated energy, water and carbon balances are very sensitive to the representation of water stress in these models. Building on Egea et al. (2011) and Verhoef and Egea (2014), we tested a range of 'beta' approaches in a leaf-level A-gs model (compatible with models such as JULES, CHTESSEL, ISBA, CLM), as well as some beta-approaches borrowed from the agronomic, and plant physiological communities (a combined soil-plant hydraulic approach, see Verhoef and Egea, 2014). Root zone soil moisture was allowed to limit plant function via individual routes (via CO2 assimilation, stomatal conductance, or mesophyll conductance) as well as combinations of that. The simulations were conducted for a typical Mediterranean field site (Avignon, France; Garrigues et al., 2015) which provides 14 years of near-continuous measurements of soil moisture and atmospheric driving data. Daytime (8-16 hrs local time) data between April-September were used. This allowed a broad range of atmospheric and soil moisture/vegetation states to be explored. A number of crops and tree types were investigated in this way. We evaluated the effect of choice of beta-function for Mediterranean climates in relation to stomatal conductance, transpiration, photosynthesis, and leaf surface temperature. We also studied the implications for a range of widely used agro-/micro-meteorological indicators such as Bowen ratio and the omega decoupling coefficient (which quantifies the degree of the aerodynamic coupling between a vegetated surface and the atmospheric boundary layer; Jacobs and de Bruin, 1992); and applications (e.g. the use of surface temperature based water stress indices). Results showed that choice of 'beta' function has far-reaching consequences. For certain widely used 'beta'-models the predicted key fluxes and state variables, predominantly compared using kernel density functions, showed considerable 'clumping' around narrow data ranges. This will have implications for the strength of land-surface feedback predicted by these models, and for any agrometeorological applications they are used for. Recommendations as to the most suitable 'beta'-functions, and related parameter sets, for Mediterranean climates were made. References Garrigues, S. et al. (2015) Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties, Hydrol. Earth Syst. Sci., 19, 3109-3131; Jacobs, C. M. J. and de Bruin, H. A. R. (1992) The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback, J. Climate, 5(7), 683-698; Verhoef, A. and Egea, G. (2014) Agriculture and Forest Meteorology, 191, 22-32; Egea, G., Verhoef, A., and Vidale, P. L. (2011) Agricultural and Forest Meteorology, 151, 1370-1384
Simple shearing flow of dry soap foams with TCP structure[Tetrahedrally Close-Packed
DOE Office of Scientific and Technical Information (OSTI.GOV)
REINELT,DOUGLAS A.; KRAYNIK,ANDREW M.
2000-02-16
The microrheology of dry soap foams subjected to large, quasistatic, simple shearing deformations is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by calculating foam structures that minimize total surface area at each value of strain. The minimal surfaces are computed with the Surface Evolver program developed by Brakke. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3} where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometrymore » and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new foam topology associated with each stable solution branch results from a cascade of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization.« less
Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen
2018-03-07
A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.
Stress in titania nanoparticles: an atomistic study.
Darkins, Robert; Sushko, Maria L; Liu, Jun; Duffy, Dorothy M
2014-05-28
Stress engineering is becoming an increasingly important method for controlling electronic, optical, and magnetic properties of nanostructures, although the concept of stress is poorly defined at the nanoscale. We outline a procedure for computing bulk and surface stress in nanoparticles using atomistic simulation. The method is applicable to ionic and non-ionic materials alike and may be extended to other nanostructures. We apply it to spherical anatase nanoparticles ranging from 2 to 6 nm in diameter and obtain a surface stress of 0.89 N m(-1), in agreement with experimental measurements. Based on the extent that stress inhomogeneities at the surface are transmitted into the bulk, two characteristic length-scales are identified: below 3 nm bulk and surface regions cannot be defined and the available analytic theories for stress are not applicable, and above about 5 nm the stress becomes well-described by the theoretical Young-Laplace equation. The effect of a net surface charge on the bulk stress is also investigated. It is found that moderate surface charges can induce significant bulk stresses, on the order of 100 MPa, in nanoparticles within this size range.
Investigation of the physical scaling of sea spray spume droplet production
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Banner, M. L.; Peirson, W. L.; Asher, W.; Morison, R. P.
2009-10-01
In this paper we report on a laboratory study, the Spray Production and Dynamics Experiment (SPANDEX), conducted at the University of New South Wales Water Research Laboratory in Australia. The goals of SPANDEX were to illuminate physical aspects of spume droplet production and dispersion; verify theoretical simplifications used to estimate the source function from ambient droplet concentration measurements; and examine the relationship between the implied source strength and forcing parameters such as wind speed, surface turbulent stress, and wave properties. Observations of droplet profiles give reasonable confirmation of the basic power law profile relationship that is commonly used to relate droplet concentrations to the surface source strength. This essentially confirms that, even in a wind tunnel, there is a near balance between droplet production and removal by gravitational settling. The observations also indicate considerable droplet mass may be present for sizes larger than 1.5 mm diameter. Phase Doppler Anemometry observations revealed significant mean horizontal and vertical slip velocities that were larger closer to the surface. The magnitude seems too large to be an acceleration time scale effect. Scaling of the droplet production surface source strength proved to be difficult. The wind speed forcing varied only 23% and the stress increased a factor of 2.2. Yet, the source strength increased by about a factor of 7. We related this to an estimate of surface wave energy flux through calculations of the standard deviation of small-scale water surface disturbance, a wave-stress parameterization, and numerical wave model simulations. This energy index only increased by a factor of 2.3 with the wind forcing. Nonetheless, a graph of spray mass surface flux versus surface disturbance energy is quasi-linear with a substantial threshold.
Detecting Subtle Shifts in Ecosystem Functioning in a Dynamic Estuarine Environment
Pratt, Daniel R.; Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Townsend, Michael; Cartner, Katie; Pilditch, Conrad A.; Harris, Rachel J.; van Colen, Carl; Rodil, Iván F.
2015-01-01
Identifying the effects of stressors before they impact ecosystem functioning can be challenging in dynamic, heterogeneous ‘real-world’ ecosystems. In aquatic systems, for example, reductions in water clarity can limit the light available for photosynthesis, with knock-on consequences for secondary consumers, though in naturally turbid wave-swept estuaries, detecting the effects of elevated turbidity can be difficult. The objective of this study was to investigate the effects of shading on ecosystem functions mediated by sandflat primary producers (microphytobenthos) and deep-dwelling surface-feeding macrofauna (Macomona liliana; Bivalvia, Veneroida, Tellinidae). Shade cloths (which reduced incident light intensity by ~80%) were deployed on an exposed, intertidal sandflat to experimentally stress the microphytobenthic community associated with the sediment surface. After 13 weeks, sediment properties, macrofauna and fluxes of oxygen and inorganic nutrients across the sediment-water interface were measured. A multivariate metric of ecosystem function (MF) was generated by combining flux-based response variables, and distance-based linear models were used to determine shifts in the drivers of ecosystem function between non-shaded and shaded plots. No significant differences in MF or in the constituent ecosystem function variables were detected between the shaded and non-shaded plots. However, shading reduced the total explained variation in MF (from 64% in non-shaded plots to 15% in shaded plots) and affected the relative influence of M. liliana and other explanatory variables on MF. This suggests that although shade stress may shift the drivers of ecosystem functioning (consistent with earlier investigations of shading effects on sandflat interaction networks), ecosystem functions appear to have a degree of resilience to those changes. PMID:26214854
Theoretical aspects of stress corrosion cracking of Alloy 22
NASA Astrophysics Data System (ADS)
Lee, Sang-Kwon; Macdonald, Digby D.
2018-05-01
Theoretical aspects of the stress corrosion cracking of Alloy 22 in contact with saturated NaCl solution are explored in terms of the Coupled Environment Fracture Model (CEFM), which was calibrated upon available experimental crack growth rate data. Crack growth rate (CGR) was then predicted as a function of stress intensity, electrochemical potential, solution conductivity, temperature, and electrochemical crack length (ECL). From the dependence of the CGR on the ECL and the evolution of a semi-elliptical surface crack in a planar surface under constant loading conditions it is predicted that penetration through the 2.5-cm thick Alloy 22 corrosion resistant layer of the waste package (WP) could occur 32,000 years after nucleation. Accordingly, the crack must nucleate within the first 968,000 years of storage. However, we predict that the Alloy 22 corrosion resistant layer will not be penetrated by SCC within the 10,000-year Intermediate Performance Period, even if a crack nucleates immediately upon placement of the WP in the repository.
NASA Astrophysics Data System (ADS)
Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.
2016-12-01
The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.
Marianelli, Prisca; Berthoz, Alain; Bennequin, Daniel
2015-02-01
The crista ampullaris is the epithelium at the end of the semicircular canals in the inner ear of vertebrates, which contains the sensory cells involved in the transduction of the rotational head movements into neuronal activity. The crista surface has the form of a saddle, or a pair of saddles separated by a crux, depending on the species and the canal considered. In birds, it was described as a catenoid by Landolt et al. (J Comp Neurol 159(2):257-287, doi: 10.1002/cne.901590207 , 1972). In the present work, we establish that this particular form results from principles of invariance maximization and energy minimization. The formulation of the invariance principle was inspired by Takumida (Biol Sci Space 15(4):356-358, 2001). More precisely, we suppose that in functional conditions, the equations of linear elasticity are valid, and we assume that in a certain domain of the cupula, in proximity of the crista surface, (1) the stress tensor of the deformed cupula is invariant under the gradient of the pressure, (2) the dissipation of energy is minimum. Then, we deduce that in this domain the crista surface is a minimal surface and that it must be either a planar, or helicoidal Scherk surface, or a piece of catenoid, which is the unique minimal surface of revolution. If we add the hypothesis that the direction of invariance of the stress tensor is unique and that a bilateral symmetry of the crista exists, only the catenoid subsists. This finding has important consequences for further functional modeling of the role of the vestibular system in head motion detection and spatial orientation.
Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake
NASA Astrophysics Data System (ADS)
Lin, Y. T.
2014-12-01
In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.
Meng, Delong; Fricke, Wieland
2017-04-01
The aim of the present work was to assess the significance of changes in root AQP gene expression and hydraulic conductivity (Lp) in the regulation of water balance in two hydroponically-grown rice cultivars (Azucena, Bala) which differ in root morphology, stomatal regulation and aquaporin (AQP) isoform expression. Plants were exposed to NaCl (25 mM, 50 mM) and osmotic stress (5%, 10% PEG6000). Root Lp was determined for exuding root systems (osmotic forces driving water uptake; 'exudation Lp') and transpiring plants (hydrostatic forces dominating; 'transpiration-Lp'). Gene expression was analysed by qPCR. Stress treatments caused a consistent and significant decrease in plant growth, transpirational water loss, stomatal conductance, shoot-to-root surface area ratio and root Lp. Comparison of exudation-with transpiration-Lp supported a significant contribution of AQP-facilitated water flow to root water uptake. Changes in root Lp in response to treatments were correlated much stronger with root morphological characteristics, such as the number of main and lateral roots, surface area ratio of root to shoot and plant transpiration rate than with AQP gene expression. Changes in root Lp, involving AQP function, form an integral part of the plant hydraulic response to stress and facilitate changes in the root-to-shoot surface area ratio, transpiration and stomatal conductance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Utilization of fractography in the evaluations of high temperature dynamic fatigue experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breder, K.; Tennery, V.J.; Mroz, T.J.
1996-12-31
The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less
Utilization of fractography in the evaluation of high temperature dynamic fatigue experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breder, K.; Wereszczak, A.A.; Tennery, V.J.
1995-12-31
The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less
NASA Technical Reports Server (NTRS)
Erdol, R.; Erdogan, F.
1976-01-01
The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.
Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins
NASA Technical Reports Server (NTRS)
Alenghat, Francis J.; Ingber, Donald E.
2002-01-01
Mechanical stresses modulate cell function by either activating or tuning signal transduction pathways. Mechanotransduction, the process by which cells convert mechanical stimuli into a chemical response, occurs both in cells specialized for sensing mechanical cues and in parenchymal cells whose primary function is not mechanosensory. However, common among the various responses to mechanical stress is the importance of direct or indirect connections between the internal cytoskeleton, the extracellular matrix (ECM), and traditional signal transducing molecules. In many instances, these elements converge at focal adhesions, sites of structural attachment between the cytoskeleton and ECM that are anchored by cell surface integrin receptors. Alenghat and Ingber discuss the accumulating evidence for the central role of cytoskeleton, ECM, and integrin-anchored focal adhesions in several mechanotransduction pathways.
Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M
2011-06-01
Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology.
Stress intensity factors in a cracked infinite elastic wedge loaded by a rigid punch
NASA Technical Reports Server (NTRS)
Erdogan, F.; Civelek, M. B.
1978-01-01
A plane elastic wedge-shaped solid was split through the application of a rigid punch. It was assumed that the coefficient of friction on the the contact area was constant, and the problem had a plane of symmetry with respect to loading and geometry, with the crack in the plane of symmetry. The problem was formulated in terms of a system of integral equations with the contact stress and the derivative of the crack surface displacement as the unknown functions. The solution was obtained for an internal crack and for an edge crack. The results include primarily the stress intensity factors at the crack tips, and the measure of the stress singularity at the wedge apex, and at the end points of the contact area.
The axisymmetric elasticity problem for a laminated plate containing a circular hole
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
The elasticity problem for a laminated thick plate which consists of two bonded dissimilar layers and which contains a circular hole is considered. The problem is formulated for arbitrary axisymmetric tractions on the hole surface by using the Love strain function. Through the expansion of the boundary conditions into Fourier series the problem is reduced to an infinite system of algebraic equations which is solved by the method of reduction. Of particular interest in the problem are the stresses along the interface as they relate to the question of delamination failure of the composite plate. These stresses are calculated and are observed to become unbounded at the hole boundary. An approximate treatment of the singular behavior of the stress state is presented and the stress intensity factors are calculated.
NASA Astrophysics Data System (ADS)
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
2004-05-01
We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.
NASA Astrophysics Data System (ADS)
Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir
2014-05-01
The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen subject to loading until failure.
Volume change associated with formation and dissociation of hydrate in sediment
Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos
2017-01-01
Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units
NASA Astrophysics Data System (ADS)
Radosław, Jasiński
2017-10-01
The identification of parameters of Menétrey-Willamsurface made of concrete, masonry or autoclaved aerated concrete is not complicated. It is much more difficult to identify failure parameters of masonry units with cavities. This paper describes the concept of identifying the parameters of Menétrey-Willam failure surface (M-W-3) with reference to masonry units with vertical cavities. The M-W-3 surface is defined by uniaxial compressive strength fc, uniaxial tensile strength ft and eccentricity of elliptical function e. A test stand was built to identify surface parameters. It was used to test behaviour of masonry units under triaxial stress and conduct tests on whole masonry units in the uniaxial state. Results from tests on tens of silicate masonry units are presented in the Haigh-Westergaard (H-W) space. Statistical analyses were used to identify the shape of surface meridian, and then to determine eccentricity of the elliptical function.
Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo
2017-10-25
Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.
Stresses in curved nematic membranes.
Santiago, J A
2018-05-01
Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.
On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium
NASA Technical Reports Server (NTRS)
Daly, S. F.; Raefsky, A.
1985-01-01
The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 0.1 - 1000 from constant viscosity up to viscosity variations of 100,000. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 10 to the 22nd sq cm/s in order for a 10 km diapir to penetrate a distance of several radii.
Stresses in curved nematic membranes
NASA Astrophysics Data System (ADS)
Santiago, J. A.
2018-05-01
Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.
Biocompatibility of austenite and martensite phases in NiTi-based alloys
NASA Astrophysics Data System (ADS)
Danilov, A.; Kapanen, A.; Kujala, S.; Saaranen, J.; Ryhänen, J.; Pramila, A.; Jämsä, T.; Tuukkanen, J.
2003-10-01
The effect of surface phase composition on the biocompatibility of NiTi-based shape memory alloys was studied. The biocompatibility characteristics of parent β-phase (austenite) in binary NiTi and of martensite in ternary NiTiCu alloys after similar surface mechanical treatment were compared. The martensitic phase as a result of surface mechanical treatment (strain-induced martensite) was shown to decrease the biocompatibility of material in comparison to fully austenite state. The cytotoxicity (amount of dead cells / 1000 cells) and cell attachent (paxillin count / frame) were found to be linear functions of structural stresses in austenite.
Mechanistic design concepts for conventional flexible pavements
NASA Astrophysics Data System (ADS)
Elliott, R. P.; Thompson, M. R.
1985-02-01
Mechanical design concepts for convetional flexible pavement (asphalt concrete (AC) surface plus granular base/subbase) for highways are proposed and validated. The procedure is based on ILLI-PAVE, a stress dependent finite element computer program, coupled with appropriate transfer functions. Two design criteria are considered: AC flexural fatigue cracking and subgrade rutting. Algorithms were developed relating pavement response parameters (stresses, strains, deflections) to AC thickness, AC moduli, granular layer thickness, and subgrade moduli. Extensive analyses of the AASHO Road Test flexible pavement data are presented supporting the validity of the proposed concepts.
Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress
Angelos, Mathew G.; Brown, Melissa A.; Satterwhite, Lisa L.; Levering, Vrad W.; Shaked, Natan T.; Truskey, George A.
2010-01-01
Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α5β1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α5β1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. PMID:21112278
Vitry, Pauline; Valotteau, Claire; Feuillie, Cécile; Bernard, Simon
2017-01-01
ABSTRACT Bacterial pathogens that colonize host surfaces are subjected to physical stresses such as fluid flow and cell surface contacts. How bacteria respond to such mechanical cues is an important yet poorly understood issue. Staphylococcus aureus uses a repertoire of surface proteins to resist shear stress during the colonization of host tissues, but whether their adhesive functions can be modulated by physical forces is not known. Here, we show that the interaction of S. aureus clumping factor B (ClfB) with the squamous epithelial cell envelope protein loricrin is enhanced by mechanical force. We find that ClfB mediates S. aureus adhesion to loricrin through weak and strong molecular interactions both in a laboratory strain and in a clinical isolate. Strong forces (~1,500 pN), among the strongest measured for a receptor-ligand bond, are consistent with a high-affinity “dock, lock, and latch” binding mechanism involving dynamic conformational changes in the adhesin. Notably, we demonstrate that the strength of the ClfB-loricrin bond increases as mechanical force is applied. These findings favor a two-state model whereby bacterial adhesion to loricrin is enhanced through force-induced conformational changes in the ClfB molecule, from a weakly binding folded state to a strongly binding extended state. This force-sensitive mechanism may provide S. aureus with a means to finely tune its adhesive properties during the colonization of host surfaces, helping cells to attach firmly under high shear stress and to detach and spread under low shear stress. PMID:29208742
Surface temperatures and glassy state investigations in tribology, part 1
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1978-01-01
The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.
Lai, Y W; Hamann, S; Ehmann, M; Ludwig, A
2011-06-01
We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent. © 2011 American Institute of Physics
Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities.
Barnum, Thomas R; Weller, Donald E; Williams, Meghan
2017-12-01
More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [<2.5%], medium [2.5% to 10%], and high [>10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community metrics were also more sensitive to changes in the abundance rather than the gain or loss of trait combinations, showing the potential for trait-based approaches to serve as early warning indicators of environmental stress for monitoring and biological assessment programs. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Toparli, M. Burak; Fitzpatrick, Michael E.; Gungor, Salih
2015-09-01
In this study, residual stress fields, including the near-surface residual stresses, were determined for an Al7050-T7451 sample after laser peening. The contour method was applied to measure one component of the residual stress, and the relaxed stresses on the cut surfaces were then measured by X-ray diffraction. This allowed calculation of the three orthogonal stress components using the superposition principle. The near-surface results were validated with results from incremental hole drilling and conventional X-ray diffraction. The results demonstrate that multiple residual stress components can be determined using a combination of the contour method and another technique. If the measured stress components are congruent with the principal stress axes in the sample, then this allows for determination of the complete stress tensor.
Transient thermal stress problem for a circumferentially cracked hollow cylinder
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1982-01-01
The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.
A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations
Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera
2017-09-04
Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less
A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera
Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less
A Viscoelastic Hybrid Shell Finite Element
NASA Technical Reports Server (NTRS)
Johnson, Arthur
1999-01-01
An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Dalessandri, Tim; Strid, Jessica
2014-01-01
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088
Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi
2015-08-01
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation
Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun
2016-01-01
Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088
Thermally induced stresses in boulders on airless body surfaces: Implications for breakdown
NASA Astrophysics Data System (ADS)
Molaro, Jamie; Byrne, Shane
2016-10-01
We investigate the role of thermally induced rock breakdown in the evolution of airless body surfaces. This process is driven by the propagation of microcracks due to stress caused by changes in temperature. Here we model the thermomechanical response of spherical lunar boulders of varying size to diurnal thermal forcing. Exploring the magnitude and distribution of induced stresses reveals a bimodal response. During sunrise, high stresses occur in the boulders' interiors that are associated with large-scale temperature gradients (developed due to overnight cooling). During sunset, high stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller radii, suggesting that larger boulders break down more quickly. Boulders ≤30 cm exhibit a weak response to thermal forcing, suggesting a boulder-size threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown.As boulders increase in size (>1 m), stresses increase to several 10s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. The rate of stress-increase is rapid until the boulder reaches ~5 times the skin depth (~4 m) in size. Above this size, stresses only slowly increase as the surface loses thermal contact with the boulder center. Boulders between 3 m and 7 m have less volume of material to erode than larger boulders (> 10 m) but only moderately lower stresses, suggesting they may be preferentially broken down by this process.Stress orientations can yield insight into how breakdown may occur. Interior stresses act on a plane perpendicular to the path of the sun, driving the propagation of surface-parallel cracks and contributing to exfoliation of planar fragments. Exterior stresses act parallel to the boulder surface driving the propagation of surface-perpendicular cracks and contributing to granular disintegration. These two mechanisms likely work together to hasten disaggregation of the near-surface.We will present results for boulder stresses on the Moon and other airless bodies, and discuss implications for breakdown on these surfaces.
On the residual yield stress of shocked metals
NASA Astrophysics Data System (ADS)
Chapman, David; Eakins, Daniel; Savinykh, Andrey; Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey
2013-06-01
The measurement of the free-surface velocity is commonly employed in planar shock-compression experiments. It is known that the peak free-surface velocity of a shocked elastic-plastic material should be slightly less than twice the particle velocity behind shock front; this difference being proportional to the yield stress. Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material hardening or softening. With this objective, we performed comparative measurements of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected hysteresis in the elastic-plastic compression-unloading cycle for both AD1 and Ma2; where qualitatively the peak free-surface velocity increased with increasing specimen thickness. However, the relative change in magnitude of hysteresis as function of specimen thickness observed for the Ma2 alloy was smaller than expected given the large observed change in precursor magnitude. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in various coordinate directions. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079
NASA Astrophysics Data System (ADS)
Zhong, L. Q.; Liang, Y. L.; Hu, H.
2017-09-01
In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.
Improvement of Functional Properties by Sever Plastic Deformation on Parts of Titanium Biomaterials
NASA Astrophysics Data System (ADS)
Czán, Andrej; Babík, Ondrej; Daniš, Igor; Martikáň, Pavol; Czánová, Tatiana
2017-12-01
Main task of materials for invasive implantology is their biocompatibility with the tissue but also requirements for improving the functional properties of given materials are increasing constantly. One of problems of materials biocompatibility is the impossibility to improve of functional properties by change the percentage of the chemical elements and so it is necessary to find other innovative methods of improving of functional properties such as mechanical action in the form of high deformation process. This paper is focused on various methods of high deformation process such as Equal Channel Angular Pressing (ECAP) when rods with record strength properties were obtained.The actual studies of the deformation process properties as tri-axial compress stress acting on workpiece with high speed of deformation shows effects similar to results obtained using the other methods, but in lower levels of stress. Hydrostatic extrusion (HE) is applying for the purpose of refining the structure of the commercially pure titanium up to nano-scale. Experiments showed the ability to reduce the grain size below 100 nm. Due to the significant change in the performance of the titanium materials by severe plastic deformation is required to identify the processability of materials with respect to the identification of created surfaces and monitoring the surface integrity, where the experimental results show ability of SPD technologies application on biomaterials.
The surface crack problem for a functionally graded coating bonded to a homogeneous layer
NASA Astrophysics Data System (ADS)
Kasmalkar, Maheendra B.
In the continuing search for materials which can withstand the grueling requirements of modern day applications, Functionally Graded Materials (FGMs) seem to be a promising alternative to conventional materials. These nonhomogeneous materials offer better interfacial properties by improving bond strength and reducing thermal mismatch. Before putting these materials into application, an important step in the design of FGMs is the stress analysis and fracture characterization. The fracture performance of FGM coatings on homogeneous substrates is the focus of this study. In this study, various internal and surface crack configurations in the coating and the substrate are subjected to mechanical and thermal loads. The analysis is linear elastic. The thermo-mechanical properties of the FGM coating are assumed to vary exponentially with the spatial coordinate. The equilibrium equations are solved using integral transforms. The resulting singular integral equations are solved using numerical integration. The results of interest for this mode I formulation are the stress intensity factors and the crack opening displacements. The effects of the nonhomogeneity parameter and various dimensionless length parameters are studied. One of the most important outcomes of this study is the theoretical proof that "kink" in material property at the interface does not introduce any singularity. In the numerical results it is observed that generally the stress intensity factors tend to increase with material nonhomogeneity. Also, it is observed that the substrate thickness tends to suppress cracking in the coating. In pure thermal loading, the surface cracks may either be arrested or there might be crack closure. The stress intensity factors from different loadings can be added up to obtain the resultant stress intensity factor for multiple loading. Results in this study have wide-ranging applications. They can be applied to thermal barrier coatings on turbine components, combustion chambers, parts of the airframe for the "Space Plane", soil mechanics, bone fractures and many more applications where the material is macroscopically nonhomogeneous. Thus this study solves a basic problem common to a variety of applications in diverse fields.
Chen, H; Zhao, T; Wang, Y; Sun, Y C
2016-10-18
To establish a digital method for production of custom trays for edentulous jaws using fused deposition modeling (FDM) based on three-dimensional (3D) scans of primary jaw impressions, and to quantitatively evaluate the accuracy. A red modeling compound was used to make a primary impression of a standard maxillary edentulous plaster model. The plaster model data and the primary impression tissue surface data were obtained using a 3D scanner. In the Gemomagic 2012 software, several commands were used, such as interactive drawing curves, partial filling holes, local offset, bodily offset, bodily shell, to imitate clinical procedures of drawing tray boundary, filling undercut, buffer, and generating the tray body. A standard shape of tray handle was designed and attached to the tray body and the data saved as stereolithography (STL) format. The data were imported into a computer system connected to a 3D FDM printing device, and the custom tray for the edentulous jaw model was printed layer upon layer at 0.2 mm/layer, using polylactic acid (PLA) filament, the tissue surface of the tray was then scanned with a 3D scanner. The registration functions of Geomagic 2012 was used to register the 3-dimentional surface data, and the point-cloud deviation analysis function of the Imageware 13.0 system was used to analyze the error. The CAD data of the custom tray was registered to the scan data, and the error between them was analyzed. The scanned plaster model surface was registered to the scanned impression surface and the scanned tray data to the CAD data, then the distance between the surface of plaster model and the scanned tissue surface of the custom tray was measured in Imageware 13.0. The deviation between the computer aided design data and the scanned data of the custom tray was (0.17±0.20) mm, with (0.19±0.18) mm in the primary stress-bearing area, (0.17±0.22) mm in the secondary stress-bearing area, (0.30±0.29) mm in the border seal area, (0.08±0.06) mm in the buffer area; the space between the tissue faces of the plaster model and the scanned tissue surface of custom tray was (1.98±0.40) mm, with (1.85±0.24) mm in the primary stress-bearing area, (1.86±0.26) mm in the secondary stress-bearing area, (1.77±0.36) mm in the border seal area, (2.90±0.26) mm in the buffer area. With 3D scanning, computer aided design and FDM technology, an efficient means of custom tray production was established.
NASA Astrophysics Data System (ADS)
Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.
2017-12-01
Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting events and more prolonged response to drying cycles, as opposed to binary behavior in the control.
Mapping apparent stress and energy radiation over fault zones of major earthquakes
McGarr, A.; Fletcher, Joe B.
2002-01-01
Using published slip models for five major earthquakes, 1979 Imperial Valley, 1989 Loma Prieta, 1992 Landers, 1994 Northridge, and 1995 Kobe, we produce maps of apparent stress and radiated seismic energy over their fault surfaces. The slip models, obtained by inverting seismic and geodetic data, entail the division of the fault surfaces into many subfaults for which the time histories of seismic slip are determined. To estimate the seismic energy radiated by each subfault, we measure the near-fault seismic-energy flux from the time-dependent slip there and then multiply by a function of rupture velocity to obtain the corresponding energy that propagates into the far-field. This function, the ratio of far-field to near-fault energy, is typically less than 1/3, inasmuch as most of the near-fault energy remains near the fault and is associated with permanent earthquake deformation. Adding the energy contributions from all of the subfaults yields an estimate of the total seismic energy, which can be compared with independent energy estimates based on seismic-energy flux measured in the far-field, often at teleseismic distances. Estimates of seismic energy based on slip models are robust, in that different models, for a given earthquake, yield energy estimates that are in close agreement. Moreover, the slip-model estimates of energy are generally in good accord with independent estimates by others, based on regional or teleseismic data. Apparent stress is estimated for each subfault by dividing the corresponding seismic moment into the radiated energy. Distributions of apparent stress over an earthquake fault zone show considerable heterogeneity, with peak values that are typically about double the whole-earthquake values (based on the ratio of seismic energy to seismic moment). The range of apparent stresses estimated for subfaults of the events studied here is similar to the range of apparent stresses for earthquakes in continental settings, with peak values of about 8 MPa in each case. For earthquakes in compressional tectonic settings, peak apparent stresses at a given depth are substantially greater than corresponding peak values from events in extensional settings; this suggests that crustal strength, inferred from laboratory measurements, may be a limiting factor. Lower bounds on shear stresses inferred from the apparent stress distribution of the 1995 Kobe earthquake are consistent with tectonic-stress estimates reported by Spudich et al. (1998), based partly on slip-vector rake changes.
NASA Astrophysics Data System (ADS)
Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan
2013-12-01
Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.
On the State of Stress and Failure Prediction Near Planetary Surface Loads
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1996-03-01
The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.
NASA Astrophysics Data System (ADS)
Lei, Xiao; Narsu, B.; Yun, Guohong; Li, Jiangang; Yao, Haiyan
2016-05-01
Surface effects play a deterministic role in the physical and mechanical properties of nanosized materials and structures. In this paper, we present a self-consistent theoretical scheme for describing the elasticity of nanowires. The natural frequency and the critical compression force of axial buckling are obtained analytically, taking into consideration the influences of lower symmetry, additional elastic parameters, surface reconstruction, surface elasticity, and residual surface stress. Applications of the present theory to elastic systems for the <1 0 0 > axially oriented Si and Cu nanowires and Ag <1 1 0 > axially oriented nanowires yield good agreement with experimental data and calculated results. The larger positive value of the new elastic parameter c12α taken into account for Si <1 0 0 > oriented nanowires drives the curves of natural frequency and critical compression force versus thickness towards the results obtained from density functional theory simulation. Negative surface stress decreases the critical load for axial buckling, thus making the nanowires very easy to bend into various structures. The present study is envisaged to provide useful insights for the design and application of nanowire-based devices.
Stress field models from Maxwell stress functions: southern California
NASA Astrophysics Data System (ADS)
Bird, Peter
2017-08-01
The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp shallow stress maxima and discontinuous horizontal compression at the Moho, which the new model can only approximate. The new model also lacks the spatial resolution to portray the localized stress states that may occur near the central surfaces of weak faults; instead, the model portrays the regional or background stress field which provides boundary conditions for weak faults. Peak shear stresses in one registered model and one alternate model are 120 and 150 MPa, respectively, while peak vertically integrated shear stresses are 2.9 × 1012 and 4.1 × 1012 N m-1. Channeling of deviatoric stress along the strong Great Valley and the western slope of the Peninsular Ranges is evident. In the neotectonics of southern California, it appears that deviatoric stress and long-term strain rate have a negative correlation, because regions of low heat flow are strong and act as stress guides, while undergoing very little internal deformation. In contrast, active faults lie preferentially in areas with higher heat flow, and their low strength keeps deviatoric stresses locally modest.
Kawasaki, Shinji; Mizuguchi, Keisuke; Sato, Masaru; Kono, Tetsuya; Shimizu, Hirofumi
2013-07-01
Water-soluble orange carotenoid proteins (OCPs) that bind 3'-hydroxyechinenone are found in cyanobacteria, and are thought to play a key role in photoprotection. The distribution of OCPs in eukaryotes remains largely unknown. In this study, we identified a novel OCP that predominantly binds astaxanthin from a eukaryotic microalga, strain Ki-4, isolated from a dry surface of heated asphalt in midsummer. A purified astaxanthin-binding OCP, named AstaP, shows high solubility in water with an absorption peak at 484 nm, and possesses a heat-stable activity that quenches singlet oxygen. The deduced amino acid sequence of AstaP comprises an N-terminal hydrophobic signal peptide, fasciclin domains found in secreted and cell surface proteins, and N-linked glycosylation sites, the first example of a carotenoprotein among fasciclin family proteins. AstaP homologs of unknown function are distributed mainly in organisms from the hydrosphere, such as marine bacteria, cyanobacteria, sea anemone and eukaryotic microalgae; however, AstaP exhibits a unique extraordinarily high isoelectric point (pI) value among homologs. The gene encoding AstaP, as well as the AstaP peptide, is expressed abundantly under conditions of dehydration and salt stress in conjunction with high light exposure. As a unique aqueous carotenoprotein, AstaP will provide a novel function of OCPs in protection against extreme photooxidative stresses.
Liu, Jia-Kuang; Lee, Tzer-Min; Liu, I-Hua
2011-08-01
For orthodontic applications, equiatomic nickel-titanium (NiTi) wires are used to level and align the teeth under bending conditions in the oral environment for long periods. The aim of study was to investigate the influence of bending stress on the nickel release of commercial NiTi orthodontic wires in vitro, simulating the intraoral environment as realistically as possible. Two types of as-received orthodontic NiTi wires, free of performed internal stress, were immersed in artificial saliva. Half of the NiTi wires were exposed to continuous bending stress throughout the 14-day experimental period. The stressed NiTi wires exhibited substantial increases in the nickel release compared with the unstressed specimens during all experimental periods. The highest dissolution rate during the 0 to 1 day incubation period was observed for all stressed specimens. However, a slight increase of nickel released as a function of time was observed in the 3 groups of stressed specimens after 3 days of immersion. For the stressed specimens, it was hypothesized that the bending stress would induce buckling or cracking of the protective oxide film of the NiTi wires. In this study, the mechanism of nickel release was the underlying metal surface reacting with the surrounding environment. The results indicated that bending stress influences the nickel release of NiTi wires. The factor of loading condition with respect to corrosion behavior and passive film should be considered in view of the widespread use of NiTi wires for dental devices. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayati, Yazdan; Eskandari-Ghadi, Morteza
2018-02-01
An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcmanus, H.L.; Chamis, C.C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almer, J. D.; Stock, S. R.; Northeastern Univ.
2010-08-26
High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients weremore » observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.« less
Goktas, Selda; Pierre, Nicolas; Abe, Koki; Dmytryk, John; McFetridge, Peter S
2010-03-01
These investigations describe the development of a novel ex vivo three-dimensional scaffold derived from the human umbilical vein (HUV), and its potential as a regenerative matrix for tissue regeneration. Unique properties associated with the vascular wall have shown potential to function as a surgical barrier for guided tissue regeneration, particularly with the regeneration of periodontal tissues. HUV was isolated from umbilical cords using a semiautomated machining technology, decellularized using 1% sodium dodecyl sulfate, and then opened longitudinally to form tissue sheets. Uniaxial tensile testing, stress relaxation, and suture retention tests were performed on the acellular matrix to evaluate the HUV's biomechanical properties, followed by an evaluation of cellular interactions by seeding human gingival fibroblasts to assess adhesion, metabolic function, and proliferation on the scaffold. The scaffold's biomechanical properties were shown to display anisotropic behavior, which is attributed to the ex vivo material's composite structure. Detailed results indicated that the ultimate tensile strength of the longitudinal strips was significantly higher than that of the circumferential strips (p < 0.001). The HUV also exhibited significantly higher stress relaxation response in the longitudinal direction than in the circumferential orientation (p < 0.05). The ablumenal and lumenal surfaces of the material were also shown to differentially influence cell proliferation and metabolic activity, with both cellular functions significantly increased on the ablumenal surface (p < 0.05). Human gingival fibroblast migration into the scaffold was also influenced by the organization of extracellular matrix components, where the lumenal surface inhibits cell migration, acting as a barrier, while the ablumenal surface, which is proposed to interface with the wound site, promotes cellular invasion. These results show the HUV bioscaffold to be a promising naturally derived surgical barrier that may function well as a resorbable guided tissue regeneration membrane as well as in other clinical applications.
NASA Astrophysics Data System (ADS)
Yi, X.; Duan, H. L.
2009-08-01
Surface stress is widely used to characterize the adsorption effect on the mechanical response of nanomaterials and nanodevices. However, quantitative relations between continuum-level descriptions of surface stress and molecular-level descriptions of adsorbate interactions are not well established. In this paper, we first obtain the relations between the adsorption-induced surface stress and the van der Waals and Coulomb interactions in terms of the physical and chemical interactions between adsorbates and solid surfaces. Then, we present a theoretical framework to predict the deflection and resonance frequencies of microcantilevers with the simultaneous effects of the eigenstrain, surface stress and adsorption mass. Finally, the adsorption-induced deflection and resonance frequency shift of microcantilevers are numerically analyzed for the van der Waals and Coulomb interactions. The present theoretical framework quantifies the mechanisms of the adsorption-induced surface stress, and thus provides guidelines to the analysis of the sensitivities, and the identification of the detected substance in the design and application of micro- and nanocantilever sensors.
Geophysical imaging reveals topographic stress control of bedrock weathering
NASA Astrophysics Data System (ADS)
St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.
2015-10-01
Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.
Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.
Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing
2014-04-01
Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.
Modeling of stress distributions on the microstructural level in Alloy 600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozaczek, K.J.; Petrovic, B.G.; Ruud, C.O.
1995-04-01
Stress distribution in a random polycrystalline material (Alloy 600) was studied using a topologically correct microstructural model. Distributions of von Mises and hydrostatic stresses at the grain vertices, which could be important in intergranular stress corrosion cracking, were analyzed as functions of microstructure, grain orientations and loading conditions. Grain size, shape, and orientation had a more pronounced effect on stress distribution than loading conditions. At grain vertices the stress concentration factor was higher for hydrostatic stress (1.7) than for von Mises stress (1.5). The stress/strain distribution in the volume (grain interiors) is a normal distribution and does not depend onmore » the location of the studied material volume i.e., surface vs/bulk. The analysis of stress distribution in the volume showed the von Mises stress concentration of 1.75 and stress concentration of 2.2 for the hydrostatic pressure. The observed stress concentration is high enough to cause localized plastic microdeformation, even when the polycrystalline aggregate is in the macroscopic elastic regime. Modeling of stresses and strains in polycrystalline materials can identify the microstructures (grain size distributions, texture) intrinsically susceptible to stress/strain concentrations and justify the correctness of applied stress state during the stress corrosion cracking tests. Also, it supplies the information necessary to formulate the local failure criteria and interpret of nondestructive stress measurements.« less
Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli
2018-04-30
An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Intrinsic stress evolution during amorphous oxide film growth on Al surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.
2014-03-03
The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.
Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651
Jomaa, Walid; Songmene, Victor; Bocher, Philippe
2014-01-01
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534
Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness
NASA Astrophysics Data System (ADS)
Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin
Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.
NASA Astrophysics Data System (ADS)
van Emmerik, Tim; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick
2015-04-01
Recent research on an agricultural maize canopy has demonstrated that leaf water content can change considerably during the day and in response to water stress. Model simulations suggest that these changes have a significant impact on radar backscatter, particularly in times of water stress. Radar is already used for several vegetation and soil monitoring applications, and might be used for water stress detection in agricultural canopies. Radar observations of the land surface are sensitive because it results in two-way attenuation of the reflected signal from the soil surface, and vegetation contributes to total backscatter from the canopy itself. An important driver that determines the impact of vegetation on backscatter is the dielectric constant of the leaves, which is primarily a function of their moisture content. Understanding the effects of water stress on the dynamics of leaf dielectric properties might shed light on how radar can be used to detect vegetation water stress. Previous studies have investigated the dielectric properties of vegetation. However, this has mainly been done using destructive sampling or in-vivo measurements of tree trunks. Unfortunately, few in-vivo measurements of leaf dielectric properties exist. This study presents datasets of in-vivo dielectric measurements of maize leaves, taken during two field experiments. One experiment was done using was done during a period of water stress, the other during a period without. Field measurements revealed a different vertical profile in dielectric properties for the period with and without water stress. During a period of increased water stress, the diurnal dynamics of leaves at different heights responded differently to a decrease in bulk moisture content. This study provides insight in the effect of water stress on leaf dielectric properties and water content, and highlights the potential use of radar for water stress detection in agricultural canopies.
NASA Astrophysics Data System (ADS)
Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.
2014-02-01
Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.
Stability analysis of nanoscale surface patterns in stressed solids
NASA Astrophysics Data System (ADS)
Kostyrko, Sergey A.; Shuvalov, Gleb M.
2018-05-01
Here, we use the theory of surface elasticity to extend the morphological instability analysis of stressed solids developed in the works of Asaro, Tiller, Grinfeld, Srolovitz and many others. Within the framework of Gurtin-Murdoch model, the surface phase is assumed to be a negligibly thin layer with the elastic properties which differ from those of the bulk material. We consider the mass transport mechanism driven by the variation of surface and bulk energy along undulated surface of stressed solid. The linearized surface evolution equation is derived in the case of plane strain conditions and describes the amplitude change of surface perturbations with time. A parametric analysis of this equation leads to the definition of critical conditions which depend on undulation wavelength, residual surface stress, applied loading, surface and bulk elastic constants and predict the surface morphological stability.
Oxidative stress detection by MEMS cantilever sensor array based electronic nose
NASA Astrophysics Data System (ADS)
Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.
2018-05-01
This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.
Beninson, Lida A; Brown, Peter N; Loughridge, Alice B; Saludes, Jonel P; Maslanik, Thomas; Hills, Abigail K; Woodworth, Tyler; Craig, Wendy; Yin, Hang; Fleshner, Monika
2014-01-01
Exosomes, biologically active nanoparticles (40-100 nm) released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA). Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72) and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS) activation of alpha-1 adrenergic receptors (ADRs), since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.
Simple shearing flow of dry soap foams with tetrahedrally close-packed structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinelt, Douglas A.; Kraynik, Andrew M.
2000-05-01
The microrheology of dry soap foams subjected to quasistatic, simple shearing flow is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by using the Surface Evolver to calculate foam structures that minimize total surface area at each value of strain. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3}, where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations thatmore » violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new structure associated with each stable solution branch results from an avalanche of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization. (c) 2000 Society of Rheology.« less
New Insights into the Explosion Source from SPE
NASA Astrophysics Data System (ADS)
Patton, H. J.
2015-12-01
Phase I of the Source Physics Experiments (SPE) is a series of chemical explosions at varying depths and yields detonated in the same emplacement hole on Climax stock, a granitic pluton located on the Nevada National Security Site. To date, four of the seven planned tests have been conducted, the last in May 2015, called SPE-4P, with a scaled depth of burial of 1549 m/kt1/3 in order to localize the source in time and space. Surface ground motions validated that the source medium did not undergo spallation, and a key experimental objective was achieved where SPE-4P is the closest of all tests in the series to a pure monopole source and will serve as an empirical Green's function for analysis against other SPE tests. A scientific objective of SPE is to understand mechanisms of rock damage for generating seismic waves, particularly surface and S waves, including prompt damage under compressive stresses and "late-time" damage under tensile stresses. Studies have shown that prompt damage can explain ~75% of the seismic moment for some SPE tests. Spallation is a form of late-time damage and a facilitator of damage mechanisms under tensile stresses including inelastic brittle deformation and shear dilatancy on pre-existing faults or joints. As an empirical Green's function, SPE-4P allows the study of late-time damage mechanisms on other SPE tests that induce spallation and late-time damage, and I'll discuss these studies. The importance for nuclear monitoring cannot be overstated because new research shows that damage mechanisms can affect surface wave magnitude Ms more than tectonic release, and are a likely factor related to anomalous mb-Ms behavior for North Korean tests.
Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening
NASA Astrophysics Data System (ADS)
Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.
2018-02-01
45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd M.
2017-02-01
The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.
Kalaitzidis, Demetrios; Efeyan, Alejo; Kfoury, Youmna; Nayyar, Naema; Sykes, David B.; Mercier, Francois E.; Papazian, Ani; Baryawno, Ninib; Victora, Gabriel D.; Sabatini, David M.; Scadden, David T.
2017-01-01
The mTOR pathway is a critical determinant of cell persistence and growth wherein mTOR complex 1 (mTORC1) mediates a balance between growth factor stimuli and nutrient availability. Amino acids or glucose facilitates mTORC1 activation by inducing RagA GTPase recruitment of mTORC1 to the lysosomal outer surface, enabling activation of mTOR by the Ras homolog Rheb. Thereby, RagA alters mTORC1-driven growth in times of nutrient abundance or scarcity. Here, we have evaluated differential nutrient-sensing dependence through RagA and mTORC1 in hematopoietic progenitors, which dynamically drive mature cell production, and hematopoietic stem cells (HSC), which provide a quiescent cellular reserve. In nutrient-abundant conditions, RagA-deficient HSC were functionally unimpaired and upregulated mTORC1 via nutrient-insensitive mechanisms. RagA was also dispensable for HSC function under nutritional stress conditions. Similarly, hyperactivation of RagA did not affect HSC function. In contrast, RagA deficiency markedly altered progenitor population function and mature cell output. Therefore, RagA is a molecular mechanism that distinguishes the functional attributes of reactive progenitors from a reserve stem cell pool. The indifference of HSC to nutrient sensing through RagA contributes to their molecular resilience to nutritional stress, a characteristic that is relevant to organismal viability in evolution and in modern HSC transplantation approaches. PMID:28319048
Surface properties and exponential stress relaxations of mammalian meibum films.
Eftimov, Petar; Yokoi, Norihiko; Tonchev, Vesselin; Nencheva, Yana; Georgiev, Georgi As
2017-03-01
The surface properties of meibomian secretion (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The interfacial properties of canine, cMGS, and feline, fMGS, meibum films were studied using a Langmuir surface balance. These species were selected because they have blinking frequency and TF stability similar to those of humans. The sample's performance during dynamic area changes was evaluated by surface pressure (π)-area (A) isocycles and the layer structure was monitored with Brewster angle microscopy. The films' dilatational rheology was probed via the stress-relaxation technique. The animal MGS showed similar behavior both between each other and with human MGS (studied previously). They form reversible, non-collapsible, multilayer thick films. The relaxations of canine, feline, and human MGS films were well described by double exponential decay reflecting the presence of two processes: (1) fast elastic process, with characteristic time τ < 10 s and (2) slow viscous process, with τ > 100 s-emphasizing the meibum layers viscoelasticity. The temperature decrease from 35 to 25 °C resulted in decreased thickness and lateral expansion of all MGS layers accompanied with increase of the π/A hysteresis and of the elastic process contribution to π relaxation transients. Thus, MGS films of mammals with similar blinking frequency and TF stability have similar surface properties and stress relaxations unaltered by the interspecies MGS compositional variations. Such knowledge may impact the selection of animal mimics of human MGS and on a better understanding of lipid classes' impact on meibum functionality.
NASA Astrophysics Data System (ADS)
Cen, Duofeng; Huang, Da
2017-06-01
Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.
Research on anti crack mechanism of bionic coupling brake disc
NASA Astrophysics Data System (ADS)
Shi, Lifeng; Yang, Xiao; Zheng, Lingnan; Wu, Can; Ni, Jing
2017-09-01
According to the biological function of fatigue resistance possessed by biology, this study designed a Bionic Coupling Brake Disc (BCBD) which can inhibit crack propagation as the result of improving fatigue property. Thermal stress field of brake disc was calculated under emergency working condition, and circumferential and radial stress field which lead to fatigue failure of brake disc were investigated simultaneously. Results showed that the maximum temperature of surface reached 890°C and the maximum residual tensile stress was 207 Mpa when the initial velocity of vehicle was 200 km/h. Based on the theory of elastic plastic fracture mechanics, the crack opening displacement and the crack front J integrals of the BCBD and traditional brake disc (TBD) with pre-cracking were calculated, and the strength of crack front was compared. Results revealed the growth behavior of fatigue crack located on surface of brake disc, and proved the anti fatigue resistance of BCBD was better, and the strength of crack resistance of BCBD was much stronger than that of TBD. This simulation research provided significant references for optimization and manufacturing of BCBD.
Stress concentration in periodically rough Hertzian contact: Hertz to soft-flat-punch transition
Raphaël, E.; Léger, L.; Restagno, F.; Poulard, C.
2016-01-01
We report on the elastic contact between a spherical lens and a patterned substrate, composed of a hexagonal lattice of cylindrical pillars. The stress field and the size of the contact area are obtained by means of numerical methods: a superposition method of discrete pressure elements and an iterative bisection-like method. For small indentations, a transition from a Hertzian to a soft-flat-punch behaviour is observed when the surface fraction of the substrate that is covered by the pillars is increased. In particular, we present a master curve defined by two dimensionless parameters, which allows one to predict the stress at the centre of the contact region in terms of the surface fraction occupied by pillars. The transition between the limiting contact regimes, Hertzian and soft-flat-punch, is well described by a rational function. Additionally, a simple model to describe the Boussinesq–Cerruti-like contact between the lens and a single elastic pillar, which takes into account the pillar geometry and the elastic properties of the two bodies, is presented. PMID:27713659
Modelling storm development and the impact when introducing waves, sea spray and heat fluxes
NASA Astrophysics Data System (ADS)
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik
2015-04-01
In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.
Enhanced magneto-optical imaging of internal stresses in the removed surface layer
NASA Astrophysics Data System (ADS)
Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy
2015-10-01
The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.
Dislocation mechanisms in stressed crystals with surface effects
NASA Astrophysics Data System (ADS)
Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team
2014-03-01
Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.
Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry
NASA Technical Reports Server (NTRS)
Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)
2002-01-01
While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Feng, Pin-Hao; Lagutin, Sergei A.
2000-01-01
In this report, we propose a new geometry for low-noise, increased-strength helical gears of the Novikov-Wildhaber type. Contact stresses are reduced as a result of their convex-concave gear tooth surfaces. The gear tooth surfaces are crowned in the profile direction to localize bearing contact and in the longitudinal direction to obtain a parabolic function of transmission errors. Such a function results in the reduction of noise and vibrations. Methods for the generation of the proposed gear tooth surfaces by grinding and hobbing are considered, and a tooth contact analysis (TCA) computer program to simulate meshing and contact is applied. The report also investigates the influence of misalignment on transmission errors and shift of bearing contact. Numerical examples to illustrate the developed approaches are proposed. The proposed geometry was patented by Ford/UIC (Serial Number 09-340-824, pending) on June 28, 1999.
Uncoated microcantilevers as chemical sensors
Thundat, Thomas G.
2001-01-01
A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.
Highlights of the SEASAT-SASS program - A review
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.
1983-01-01
Some important concepts of the SEASAT-SASS program are described and some of the decisions made during the program as to methods for relating wind to backscatter are discussed. The radar scatterometer design is analyzed along with the model function, which is an empirical relationship between the backscatter value and the wind speed, wind direction, and incidence angle of the radar beam with the sea surface. The results of Monte Carlo studies of mesoscale turbulence and of studies of wind stress on the sea surface involving SASS are reviewed.
Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian
2018-05-01
Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Akono, Céline; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe
2015-12-25
Carbon nanotubes (CNT) and nano-graphite (NG) are graphene-based nanomaterials which share exceptional physicochemical properties, but whose health impacts are unfortunately still not well understood. On the other hand, carbon black (CB) is a conventional and widely studied material. The comparison of these three carbon-based nanomaterials is thus of great interest to improve our understanding of their toxicity. An acid functionalization was carried out on CNT, NG and CB so that, after a thorough characterization, their impacts on RAW 264.7 macrophages could be compared for a similar surface chemistry (15 to 120 μg·mL(-1) nanomaterials, 90-min to 24-h contact). Functionalized nanomaterials triggered a weak cytotoxicity similar to the pristine nanomaterials. Acid functionalization increased the pro-inflammatory response except for CB which did not trigger any TNF-α production before or after functionalization, and seemed to strongly decrease the oxidative stress. The toxicological impact of acid functionalization appeared thus to follow a similar trend whatever the carbon-based nanomaterial. At equivalent dose expressed in surface and equivalent surface chemistry, the toxicological responses from murine macrophages to NG were higher than for CNT and CB. It seemed to correspond to the hypothesis of a platelet and fiber paradigm. Copyright © 2015. Published by Elsevier Ltd.
Aguilar Gutierrez, Oscar F; Herrera Valencia, Edtson E; Rey, Alejandro D
2017-10-01
Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang
2018-01-01
In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.
a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear
NASA Astrophysics Data System (ADS)
Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu
This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.
NASA Astrophysics Data System (ADS)
Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.
2015-12-01
Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.
Hua, Yang; Liu, Zhanqiang
2018-05-24
Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.
Lord, Kevin; Moll, David; Lindsey, John K.; Mahne, Sarah; Raman, Girija; Dugas, Tammy; Cormier, Stephania; Troxlair, Dana; Lomnicki, Slawo; Dellinger, Barry; Varner, Kurt
2011-01-01
Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown Norway rats were dosed (8 mg/kg, i.t.) 24 hr prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed. PMID:21385100
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
NASA Technical Reports Server (NTRS)
Iyer, Saiganesh; Lerch, Brad (Technical Monitor)
2001-01-01
The magnitude of yield and flow stresses in aged Inconel 718 are observed to be different in tension and compression. This phenomenon, called the Strength differential (SD), contradicts the metal plasticity axiom that the second deviatoric stress invariant alone is sufficient for representing yield and flow. Apparently, at least one of the other two stress invariants is also significant. A unified viscoplastic model was developed that is able to account for the SD effect in aged Inconel 718. Building this model involved both theory and experiments. First, a general threshold function was proposed that depends on all three stress invariants and then the flow and evolution laws were developed using a potential-based thermodynamic framework. Judiciously chosen shear and axial tests were conducted to characterize the material. Shear tests involved monotonic loading, relaxation, and creep tests with different loading rates and load levels. The axial tests were tension and compression tests that resulted in sufficiently large inelastic strains. All tests were performed at 650 C. The viscoplastic material parameters were determined by optimizing the fit to the shear tests, during which the first and the third stress invariants remained zero. The threshold surface parameters were then fit to the tension and compression test data. An experimental procedure was established to quantify the effect of each stress invariant on inelastic deformation. This requires conducting tests with nonproportional three-dimensional load paths. Validation of the model was done using biaxial tests on tubular specimens of aged Inconel 718 using proportional and nonproportional axial-torsion loading. These biaxial tests also helped to determine the most appropriate form of the threshold function; that is, how to combine the stress invariants. Of the set of trial threshold functions, the ones that incorporated the third stress invariant give the best predictions. However, inclusion of the first stress invariant does not significantly improve the model predictions. The model shows excellent predictive capability for nonproportional load paths. Additionally, it reduces to the well-known models of Mises Drucker and Drucker-Prager. The requisite experiments involve reasonably simple load paths in the axial-shear stress plane and hence can be performed on a variety of different materials: be they metallic, geological. polymeric, ceramic or granular. The general form of the threshold function allows representation of inelastic deformation in a range of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco
2015-05-01
Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tractmore » as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.« less
NASA Astrophysics Data System (ADS)
Sova, A.; Courbon, C.; Valiorgue, F.; Rech, J.; Bertrand, Ph.
2017-12-01
In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.
On the breakup of tectonic plates by polar wandering
NASA Technical Reports Server (NTRS)
Liu, H. S.
1973-01-01
The observed boundary system of the major tectonic plates on the surface of the earth lends fresh support to the hypothesis of polar wandering. A dynamic model of the outer shell of the earth under the influence of polar shift is developed. The analysis falls into two parts: (1) deriving equations for stresses caused by polar shifting; and (2) deducing the pattern according to which the fracture of the shell can be expected. For stress analysis, the theory of plates and shells is the dominant feature of this model. In order to determine the fracture pattern, the existence of a mathematical theorem of plasticity is recalled: it says that the plastic flow begins to occur when a function in terms of the differences of the three principal stresses surpasses a certain critical value. By introducing the figures for the geophysical constants, this model generates stresses which could produce an initial break in the lithosphere.
Thermal regimes of Rocky Mountain lakes warm with climate change
Roberts, James J.
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083
Thermal regimes of Rocky Mountain lakes warm with climate change
Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.
Thermal regimes of Rocky Mountain lakes warm with climate change.
Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.
On volume-source representations based on the representation theorem
NASA Astrophysics Data System (ADS)
Ichihara, Mie; Kusakabe, Tetsuya; Kame, Nobuki; Kumagai, Hiroyuki
2016-01-01
We discuss different ways to characterize a moment tensor associated with an actual volume change of ΔV C , which has been represented in terms of either the stress glut or the corresponding stress-free volume change ΔV T . Eshelby's virtual operation provides a conceptual model relating ΔV C to ΔV T and the stress glut, where non-elastic processes such as phase transitions allow ΔV T to be introduced and subsequent elastic deformation of - ΔV T is assumed to produce the stress glut. While it is true that ΔV T correctly represents the moment tensor of an actual volume source with volume change ΔV C , an explanation as to why such an operation relating ΔV C to ΔV T exists has not previously been given. This study presents a comprehensive explanation of the relationship between ΔV C and ΔV T based on the representation theorem. The displacement field is represented using Green's function, which consists of two integrals over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological framework, the contribution from the second term should be included as an additional surface displacement. We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical procedure based on the representation theorem enables us to specify the additional imaginary displacement necessary for representing a volume source only by the displacement term, which links ΔV C to ΔV T . It also specifies the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives the "stress glut." The imaginary displacement-stress approach clarifies the mathematical background to the classical theory.
Influence of Tidal Forces on the Triggering of Seismic Events
NASA Astrophysics Data System (ADS)
Varga, Péter; Grafarend, Erik
2018-05-01
Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its immediate vicinity.
Influence of Tidal Forces on the Triggering of Seismic Events
NASA Astrophysics Data System (ADS)
Varga, Péter; Grafarend, Erik
2017-05-01
Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its immediate vicinity.
NASA Astrophysics Data System (ADS)
Wang, N.; Li, J.; Borisov, D.; Gharti, H. N.; Shen, Y.; Zhang, W.; Savage, B. K.
2016-12-01
We incorporate 3D anelastic attenuation into the collocated-grid finite-difference method on curvilinear grids (Zhang et al., 2012), using the rheological model of the generalized Maxwell body (Emmerich and Korn, 1987; Moczo and Kristek, 2005; Käser et al., 2007). We follow a conventional procedure to calculate the anelastic coefficients (Emmerich and Korn, 1987) determined by the Q(ω)-law, with a modification in the choice of frequency band and thus the relaxation frequencies that equidistantly cover the logarithmic frequency range. We show that such an optimization of anelastic coefficients is more accurate when using a fixed number of relaxation mechanisms to fit the frequency independent Q-factors. We use curvilinear grids to represent the surface topography. The velocity-stress form of the 3D isotropic anelastic wave equation is solved with a collocated-grid finite-difference method. Compared with the elastic case, we need to solve additional material-independent anelastic functions (Kristek and Moczo, 2003) for the mechanisms at each relaxation frequency. Based on the stress-strain relation, we calculate the spatial partial derivatives of the anelastic functions indirectly thereby saving computational storage and improving computational efficiency. The complex-frequency-shifted perfectly matched layer (CFS-PML) is used for the absorbing boundary condition based on the auxiliary difference equation (Zhang and Shen, 2010). The traction image method (Zhang and Chen, 2006) is employed for the free-surface boundary condition. We perform several numerical experiments including homogeneous full-space models and layered half-space models, considering both flat and 3D Gaussian-shape hill surfaces. The results match very well with those of the spectral-element method (Komatitisch and Tromp, 2002; Savage et al., 2010), verifying the simulations by our method in the anelastic model with surface topography.
Sound radiation due to boundary layer transition
NASA Technical Reports Server (NTRS)
Wang, Meng
1993-01-01
This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.
A model of the ground surface temperature for micrometeorological analysis
NASA Astrophysics Data System (ADS)
Leaf, Julian S.; Erell, Evyatar
2017-07-01
Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation
NASA Astrophysics Data System (ADS)
Hecquet, Pascal
2018-04-01
In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.
Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).
Ikkatai, Yuko; Watanabe, Shigeru
2015-08-05
Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.
NASA Astrophysics Data System (ADS)
Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.
2018-03-01
In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.
Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho
2009-01-01
Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...
Designing Microstructures/Structures for Desired Functional Material and Local Fields
2015-12-02
utilized to engineer multifunctional soft materials for multi-sensing, multi- actuating , human-machine interfaces. [3] Establish a theoretical framework...model for surface elasticity, (ii) derived a new type of Maxwell stress in soft materials due to quantum mechanical-elasticity coupling and...elucidated its ramification in engineering multifunctional soft materials, and (iii) demonstrated the possibility of concurrent magnetoelectricity and
Off-axis mirror fabrication from spherical surfaces under mechanical stress
NASA Astrophysics Data System (ADS)
Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon
2013-09-01
The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.
Bonessio, Noemi; Arias, Ana; Lomiento, Guiseppe; Peters, Ove A
2017-01-01
The aim of this study was to investigate and compare, via finite element analysis (FEA), the effects of endodontic access and canal preparation on stress distribution under functional loading of a mandibular molar treated with novel (TRUShape) and conventional (Vortex) rotary root canal preparation instruments. Identical plastic mandibular molars with natural anatomy had all 4 canals shaped with either TRUShape or a conventional rotary, Vortex (#20 and #30, both by Dentsply Tulsa Dental). Finite element analysis was used to evaluate stress distribution in untreated and treated models. Micro-computed tomography (MCT) of the extracted teeth shaped in vitro was used to inform the FEA model regarding the geometry of root canals and external surfaces. Modeling the intact periodontal support and cancellous/cortical bone was based on anatomical data. Profiles of average and maximum von Mises stresses in dentin of the four treated conditions under functional loading were compared to the untreated model. This comparison was performed for each tooth model with and without root canal obturation and composite restoration. On average, the dentin sections with the most changes after preparation were located in the access cavity, with average stress increase up to +5.7, +8.5, +8.9, and +10.2 % for the TRUShape #20, Vortex #20, TRUShape #30 and Vortex #30, respectively, relative to the untreated model. Within the root canal system, the average stress differences were smaller than <5 % with lower values for TRUShape preparation. A reduction of the average stress in the access cavity was observed as an effect of the composite restoration, while about the same von Mises stress' profiles were found into the root canal. In this finite element analysis, preparation of the access cavity resulted in increased von Mises stresses under functional occlusal load. The limited (up to 0.7 %) retained radicular dentin in the TRUShape versus the Vortex cavity proved effective in reducing masticatory stresses. The bonded restoration modeled in this study only partially counterbalance the combined effects of access cavity and root canal preparation.
Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun
2016-04-01
This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
When sticky fluids don't stick: yield-stress fluid drops on heated surfaces
NASA Astrophysics Data System (ADS)
Blackwell, Brendan; Wu, Alex; Ewoldt, Randy
2016-11-01
Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact; this sticky behavior motivates several applications of these rheologically-complex materials. Here we describe experiments with aqueous yield stress fluids that are more 'sticky' than water at room temperature (e.g. supporting larger coating thicknesses), but are less 'sticky' at higher temperatures. Specifically, we study the conditions for aqueous yield stress fluids to bounce and slide on heated surfaces when water sticks. Here we present high-speed imaging and color interferometry to observe the thickness of the vapor layer between the drop and the surface during both stick and non-stick events. We use these data to gain insight into the physics behind the phenomenon of the yield-stress fluids bouncing and sliding, rather than sticking, on hot surfaces.
The Effect of Framework Design on Stress Distribution in Implant-Supported FPDs: A 3-D FEM Study
Eraslan, Oguz; Inan, Ozgur; Secilmis, Asli
2010-01-01
Objectives: The biomechanical behavior of the superstructure plays an important role in the functional longevity of dental implants. However, information about the influence of framework design on stresses transmitted to the implants and supporting tissues is limited. The purpose of this study was to evaluate the effects of framework designs on stress distribution at the supporting bone and supporting implants. Methods: In this study, the three-dimensional (3D) finite element stress analysis method was used. Three types of 3D mathematical models simulating three different framework designs for implant-supported 3-unit posterior fixed partial dentures were prepared with supporting structures. Convex (1), concave (2), and conventional (3) pontic framework designs were simulated. A 300-N static vertical occlusal load was applied on the node at the center of occlusal surface of the pontic to calculate the stress distributions. As a second condition, frameworks were directly loaded to evaluate the effect of the framework design clearly. The Solidworks/Cosmosworks structural analysis programs were used for finite element modeling/analysis. Results: The analysis of the von Mises stress values revealed that maximum stress concentrations were located at the loading areas for all models. The pontic side marginal edges of restorations and the necks of implants were other stress concentration regions. There was no clear difference among models when the restorations were loaded at occlusal surfaces. When the veneering porcelain was removed, and load was applied directly to the framework, there was a clear increase in stress concentration with a concave design on supporting implants and bone structure. Conclusions: The present study showed that the use of a concave design in the pontic frameworks of fixed partial dentures increases the von Mises stress levels on implant abutments and supporting bone structure. However, the veneering porcelain element reduces the effect of the framework and compensates for design weaknesses. PMID:20922156
Limit analysis of multi-layered plates. Part I: The homogenized Love-Kirchhoff model
NASA Astrophysics Data System (ADS)
Dallot, Julien; Sab, Karam
The purpose of this paper is to determine Gphom, the overall homogenized Love-Kirchhoff strength domain of a rigid perfectly plastic multi-layered plate, and to study the relationship between the 3D and the homogenized Love-Kirchhoff plate limit analysis problems. In the Love-Kirchhoff model, the generalized stresses are the in-plane (membrane) and the out-of-plane (flexural) stress field resultants. The homogenization method proposed by Bourgeois [1997. Modélisation numérique des panneaux structuraux légers. Ph.D. Thesis, University Aix-Marseille] and Sab [2003. Yield design of thin periodic plates by a homogenization technique and an application to masonry wall. C. R. Méc. 331, 641-646] for in-plane periodic rigid perfectly plastic plates is justified using the asymptotic expansion method. For laminated plates, an explicit parametric representation of the yield surface ∂Gphom is given thanks to the π-function (the plastic dissipation power density function) that describes the local strength domain at each point of the plate. This representation also provides a localization method for the determination of the 3D stress components corresponding to every generalized stress belonging to ∂Gphom. For a laminated plate described with a yield function of the form F(x3,σ)=σu(x3)F^(σ), where σu is a positive even function of the out-of-plane coordinate x3 and F^ is a convex function of the local stress σ, two effective constants and a normalization procedure are introduced. A symmetric sandwich plate consisting of two Von-Mises materials ( σu=σ1u in the skins and σu=σ2u in the core) is studied. It is found that, for small enough contrast ratios ( r=σ1u/σ2u≤5), the normalized strength domain G^phom is close to the one corresponding to a homogeneous Von-Mises plate [Ilyushin, A.-A., 1956. Plasticité. Eyrolles, Paris].
ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori
This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.
Mechanism of valvular regurgitation.
Khoo, Nee S; Smallhorn, Jeffery F
2011-10-01
Despite improvements in surgical techniques, valvular regurgitation results in major morbidity in children with heart disease. Functional anatomy, mechanisms of valve closure and adaptation to changing hemodynamic stress in normal mitral and tricuspid valves are complex and only partially understood. As well, pathology of atrioventricular valve regurgitation is further complicated by congenital valve abnormalities involving leaflet tissue, supporting chordal apparatus and displaced papillary muscles. This review provides a current understanding of the mechanisms that result in atrioventricular valve failure. Mitral valve leaflets have contractile elements, in addition to atrial muscle modulation of leaflet tension. When placed under mechanical tethering stress, the mitral valve adapts by leaflet expansion, which increases coaptation surface reserve and chordal thickening. Both pediatric and adult studies are increasingly reporting on the importance of subvalvar apparatus function in maintaining valve competency. The maintenance of efficient valve function is accomplished by a complex series of events involving atrial and annular contraction, annular deformation, active leaflet tension, chordal transmission of papillary muscle contractions and ventricular contraction.
Alméras, Tancrède; Gril, Joseph
2007-11-01
Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the outer border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.
NASA Astrophysics Data System (ADS)
Yi, Dake; Wang, TzuChiang
2018-06-01
In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.
Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu
2015-09-16
The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the role of constant-stress surfaces in the problem of minimizing elastic stress concentration
NASA Technical Reports Server (NTRS)
Wheeler, L.
1976-01-01
Cases involving antiplane shear deformation, axisymmetric torsion, and plane strain theory, with surfaces of constant stress magnitude optimal in terms of minimizing stress, are investigated. Results for the plane theory refer to exterior doubly connected domains. Stresses generated by torsion of an elastic solid lying within a radially convex region of revolution with plane ends, body force absent, and lateral surface traction-free, are examined. The unknown portion of the boundary of such domains may involve a hole, fillet, or notch.
The Nature of Residual Stress and Its Measurement.
1981-07-16
that stress can relax due to microplasticity in the near- surface region (see the chapter by James). As the surface is ini- tially in compression, the...material by boring or electro- polishing and to determine the stress from measurements of strain on the surface opposite to the one where material is...Naval Research, particularly Dr. B. A. MacDcnald. APPENDIX We consider the determination by diffraction of the three-di- mensional stress tensor for a
NASA Astrophysics Data System (ADS)
Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.
2015-05-01
The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.
Evaluation of Process Performance for Sustainable Hard Machining
NASA Astrophysics Data System (ADS)
Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.
This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.
SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects
Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel
2017-01-01
The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582
SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.
Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel
2017-02-23
The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.
Redox-induced surface stress of polypyrrole-based actuators.
Tabard-Cossa, Vincent; Godin, Michel; Grütter, Peter; Burgess, Ian; Lennox, R B
2005-09-22
We measure the surface stress induced by electrochemical transformations of a thin conducting polymer film. One side of a micromechanical cantilever-based sensor is covered with an electropolymerized dodecyl benzenesulfonate-doped polypyrrole (PPyDBS) film. The microcantilever serves as both the working electrode (in a conventional three-electrode cell configuration) and as the mechanical transducer for simultaneous, in situ, and real-time measurements of the current and interfacial stress changes. A compressive change in surface stress of about -2 N/m is observed when the conducting polymer is electrochemically switched between its oxidized (PPy+) and neutral (PPy0) state by cyclic voltammetry. The surface stress sensor's response during the anomalous first reductive scan is examined. The effect of long-term cycling on the mechanical transformation ability of PPy(DBS) films in both surfactant and halide-based electrolytes is also discussed. We have identified two main competing origins of surface stress acting on the PPy(DBS)/ gold-coated microcantilever: one purely mechanical due to the volume change of the conducting polymer, and a second charge-induced, owing to the interaction of anions of the supporting electrolyte with the gold surface.
A methodology for modeling surface effects on stiff and soft solids
NASA Astrophysics Data System (ADS)
He, Jin; Park, Harold S.
2017-09-01
We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.
A methodology for modeling surface effects on stiff and soft solids
NASA Astrophysics Data System (ADS)
He, Jin; Park, Harold S.
2018-06-01
We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.
Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed
2007-01-01
The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.
Ionization and Corona Discharges from Stressed Rocks
NASA Astrophysics Data System (ADS)
Winnick, M. J.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Freund, F. T.
2008-12-01
Pre-earthquake signals have long been observed and documented, though they have not been adequately explained scientifically. These signals include air ionization, occasional flashes of light from the ground, radio frequency emissions, and effects on the ionosphere that occur hours or even days before large earthquakes. The theory that rocks function as p-type semiconductors when deviatoric stresses are applied offers a mechanism for this group of earthquake precursors. When an igneous or high-grade metamorphic rock is subjected to deviatoric stresses, peroxy bonds that exist in the rock's minerals as point defects dissociate, releasing positive hole charge carriers. The positive holes travel by phonon-assisted electron hopping from the stressed into and through the unstressed rock volume and build up a positive surface charge. At sufficiently large electric fields, especially along edges and sharp points of the rock, air molecules become field-ionized, loosing an electron to the rock surface and turning into airborne positive ions. This in turn can lead to corona discharges, which manifest themselves by flashes of light and radio frequency emissions. We applied concentrated stresses to one end of a block of gabbro, 30 x 15 x 10 cm3, inside a shielded Faraday cage and observed positive ion currents through an air gap about 25 cm from the place where the stresses were applied, punctuated by short bursts, accompanied by flashes of light and radio frequency emissions characteristic of a corona discharge. These observations may serve to explain a range of pre-earthquake signals, in particular changes in air conductivity, luminous phenomena, radio frequency noise, and ionospheric perturbations.
Residual stress and damage-induced critical fracture on CO2 laser treated fused silica
NASA Astrophysics Data System (ADS)
Matthews, M. J.; Stolken, J. S.; Vignes, R. M.; Norton, M. A.; Yang, S.; Cooke, J. D.; Guss, G. M.; Adams, J. J.
2009-10-01
Localized damage repair and polishing of silica-based optics using mid- and far-IR CO2 lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO2 laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work we present the results of 351 nm, 3ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO2 laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1~40s square pulse CO2 laser exposures created over 0.5-1.25kW/cm2 with a 1-3mm 1/e2 diameter beam (Tmax~1500-3000K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for Tmax>=2000K. The effect of cooling rate on fictive temperature caused by CO2 laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.
Strain Sensors, Methods of Making Same, and Applications of Same
NASA Technical Reports Server (NTRS)
Hatfield, Walter (Inventor); Biris, Alexandru S. (Inventor); Trigwell, Steven (Inventor)
2015-01-01
In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.
Strain sensors, methods of making same, and applications of same
Biris, Alexandru S.; Trigwell, Steven; Hatfield, Walter
2015-06-30
In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2017-12-01
Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2000-01-01
During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.
Formation of strained ring-shaped islands around square notches.
Colin, Jérôme
2012-06-06
The location and morphology of a two-dimensional island has been studied theoretically as a function of the misfit stress in the neighbourhood of a square notch present on the free surface of an epitaxially stressed film deposited on a substrate. From a static energy calculation, it has been shown that the notches can drive the motion of the islands towards the notches. It was then found that, depending on the side length and depth of the notch, self-organized formation at constant volume of a two-dimensional ring-shaped island can be favoured along the periphery of the pre-existing notch with respect to the notch shrinking.
NASA Technical Reports Server (NTRS)
Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.
1990-01-01
A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models.
Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress
NASA Astrophysics Data System (ADS)
Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed
2013-07-01
The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.
Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J
2015-12-01
Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram-positive bacteria (S. aureus and S. epidermidis) decreased with increasing nanoscale surface roughness, and was not affected by grain refinement. Ultimately, this study demonstrated the advantages of the proposed shot peening treatment to produce multifunctional 316L stainless steel materials for improved implant functions without necessitating the use of drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, F. S.
Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting andmore » solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.« less
Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model
NASA Astrophysics Data System (ADS)
Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.
2017-11-01
Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.
2007-02-28
where they exhibited the maximum values, which were the midsurface and 0/-0 surface for two laminates with 0=150 and 0=400. a) 50000 40000 - 0 30000...the first and second invariants of the strain tensor calculated at the midsurface in the x=O cross section as a function of distance from the hole edge...Y Figure 7. Comparison of the distributions of strain tensor invariants predicted in the matrix phase at the midsurface at x=0 as a function of
A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation
NASA Astrophysics Data System (ADS)
Schiefelbein, Bryan Edward
Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.
MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Kyung
Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to themore » reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (K d) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA hybridization and the conventional mode for cocaine detection, the lowest detectable concentration was determined by binding activity between the ligand and receptor molecules. In order to overcome this limitation for cocaine detection, a novel competition sensing mode that relies on rate of aptamers unbinding from the cantilever due to either diffusion or reaction with cocaine as target ligands in solution was investigated. The rate of unbinding is found to be dependent on the concentration of cocaine molecules. A model based on diffusion-reaction equation was developed to explain the experimental observation. Experimental results indicate that the competition mode reduces the lowest detectable threshold to 200 nM which is comparable to that achieved analytical techniques such as mass spectrometry.« less
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Central apelin mediates stress-induced gastrointestinal motor dysfunction in rats.
Bülbül, Mehmet; İzgüt-Uysal, V Nimet; Sinen, Osman; Birsen, İlknur; Tanrıöver, Gamze
2016-02-15
Apelin, an endogenous ligand for APJ receptor, has been reported to be upregulated in paraventricular nucleus (PVN) following stress. Central apelin is known to stimulate release of corticotropin-releasing factor (CRF) via APJ receptor. We tested the hypothesis that stress-induced gastrointestinal (GI) dysfunction is mediated by central apelin. We also assessed the effect of exogenous apelin on GI motility under nonstressed (NS) conditions in conscious rats. Prior to solid gastric emptying (GE) and colon transit (CT) measurements, APJ receptor antagonist F13A was centrally administered under NS conditions and following acute stress (AS), chronic homotypic stress (CHS), and chronic heterotypic stress (CHeS). Plasma corticosterone was assayed. Strain gage transducers were implanted on serosal surfaces of antrum and distal colon to record postprandial motility. Stress exposure induced coexpression of c-Fos and apelin in hypothalamic PVN. Enhanced hypothalamic apelin and CRF levels in microdialysates were detected following AS and CHeS, which were negatively and positively correlated with GE and CT, respectively. Central F13A administration abolished delayed GE and accelerated CT induced by AS and CHeS. Central apelin-13 administration increased the plasma corticosterone and inhibited GE and CT by attenuating antral and colonic contractions. The inhibitory effect elicited by apelin-13 was abolished by central pretreatment of CRF antagonist CRF9-41 in antrum, but not in distal colon. Central endogenous apelin mediates stress-induced changes in gastric and colonic motor functions through APJ receptor. The inhibitory effects of central exogenous apelin-13 on GI motility appear to be partly CRF dependent. Apelin-13 inhibits colon motor functions through a CRF-independent pathway. Copyright © 2016 the American Physiological Society.
Xie, Yufen; Zhou, Sichang; Jiang, Zhongliang; Dai, Jing; Puscheck, Elizabeth E; Lee, Icksoo; Parker, Graham; Hüttemann, Maik; Rappolee, Daniel A
2014-01-01
Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. Implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor (FGF)4 enabled highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2) initiated the most TSC differentiation after 24 hr despite FGF4. However, hypoxic stress supported differentiation poorly after 4–7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential, maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos), and high pyruvate kinase M2 (glycolysis) despite FGF4 removal. Inhibiting OxPhos inhibited differentiation at the differentiation optimum at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2>0.5–2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation. PMID:25239494
Altubasi, Ibrahim M
2018-06-07
Knee osteoarthritis is a common and a disabling musculoskeletal disorder. Patients with knee osteoarthritis have activity limitations which are linked to the strength of the quadriceps muscle. Previous research reported that the relationship between quadriceps muscle strength and physical function is moderated by the level of knee joint frontal plane laxity. The purpose of the current study is to reexamine the moderation effect of the knee joint laxity as measured by stress radiographs on the relationship between quadriceps muscle strength and physical function. One-hundred and sixty osteoarthritis patients participated in this cross-sectional study. Isometric quadriceps muscle strength was measured using an isokinetic dynamometer. Self-rated and performance-based physical function were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and Get Up and Go test, respectively. Stress radiographs which were taken while applying varus and valgus loads to knee using the TELOS device. Knee joint laxity was determined by measuring the distance between joint surfaces on the medial and lateral sides. Hierarchical multiple regression models were constructed to study the moderation effect of laxity on the strength function relationship. Two regression models were constructed for self-rated and performance-based function. After controlling for demographics, strength contributed significantly in the models. The addition of laxity and laxity-strength interaction did not add significant contributions in the regression models. Frontal plane knee joint laxity measured by stress radiographs does not moderate the relationship between quadriceps muscle strength and physical function in patients with osteoarthritis. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meserve, Justin
Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.
Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2013-12-01
Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability, hydrology, and geomorphology in and near fault-bounded mountain ranges in general.
Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries.
Vasco, Enrique; Polop, Celia
2017-12-22
The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.
Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries
NASA Astrophysics Data System (ADS)
Vasco, Enrique; Polop, Celia
2017-12-01
The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.
NASA Astrophysics Data System (ADS)
Hecquet, Pascal
2010-02-01
In the Shuttleworth's equation gij=γδij+dγ/dɛij, γ is the surface energy and gij is the surface stress with respect to the corresponding bulk quantity. At equilibrium and T=0 K, the bulk energy is the cohesive energy and the bulk stress is zero ( p=0). For i=j ( ɛii is hydrostatic) and for a flat surface, we show that the equilibrium surface stress gii corresponds to a surface pressure located mainly at the first monolayer and that the presence of the surface energy γ in the Shuttleworth's equation results from the matter conservation rule. Indeed, γ is an energy calculated per constant unit area while the atomic surface varies with the deformation as ( 1+ɛii). The equilibrium surface stress gii present at the surface is parallel to the surface. When gii is positive, this signifies that the surface atoms tend to contract together in the direction i even if the bulk pressure p is zero.
Olives, Juan
2010-03-03
The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.
Stress intensity factors in a hollow cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Delale, F.
1980-01-01
An exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero and the normal traction is an arbitrary function of r. For various crack geometries and radius ratios, the numerical results are obtained for a uniform crack surface pressure, for a uniform pressure acting on the inside wall of the cylinder, and for a rotating disk.
Stress intensity factors in a hollow cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
In this paper, an exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero, and the normal traction is an arbitrary function of radius. For various crack geometries and radius ratios, the numerical results are obtained for a uniform crack surface pressure, for a uniform pressure acting on the inside wall of the cylinder, and for a rotating disk.
A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia
NASA Astrophysics Data System (ADS)
Schmidt, D. A.; Houston, H.
2016-12-01
We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed to better refine the pattern of slip across the fault.
1977-05-01
1OUM 44 rRE JamesIV FUNCION , Jn Vanlo07 James C./Miller NW147-C0_el H~fumnan Factors Research, Incorporated AE OKUI UBR Goleta, California 93017 311...a reduction in renal blood flow) and dilation of the skeletal muscle vessels produce a redistribution of the enlarged cardiac output which anticipates
Sheel Bansal; Bradley J. St. Clair; Constance A. Harrington; Peter J. Gould
2015-01-01
The success of conifers over much of the worldâs terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold...
Yu, Ling; Shi, ZhuanZhuan; Gao, LiXia; Li, ChangMing
2015-09-01
In vitro cell-based analysis is strongly affected by material's surface chemical properties. The cell spreading, migration, and proliferation on a substrate surface are initiated and controlled by successful adhesion, particularly for anchor-dependent cells. Unfortunately, polydimethylsiloxane (PDMS), one of the most used polymeric materials for construction of microfluidic and miniaturized biomedical analytic devices, is not a cell-friendly surface because of its inherent hydrophobic property. Herein, a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (poly(GMA-co-pEGMA)) polymer brush was synthesized on a PDMS surface through a surface-initiated atom-transfer radical polymerization method. Contact angle and Fourier transform infrared characterization show that the poly (GMA-co-pEGMA) polymer brush functionalization can increase wettability of PDMS and introduce epoxy, hydroxyl, and ether groups into PDMS surface. In vitro cell growth assay demonstrates that cell adhesion and proliferation on poly(GMA-co-pEGMA) polymer brush-functionalized PDMS (poly(GMA-co-pEGMA)@PDMS) are better than on pristine PDMS. Additionally, immobilization of collagen type I (CI) and fibronectin (FN) on poly(GMA-co-pEGMA)@PDMS is better than direct coating of CI and FN on pristine PDMS to promote cell adhesion. Furthermore, increased intracellular reactive oxygen species and cell mitochondrial membrane depolarization, two indicators of cell oxidative stress, are observed from cells growing on pristine PDMS, but not from those on poly(GMA-co-pEGMA)@PDMS. Collectively, we demonstrate that poly(GMA-co-pEGMA) functionalization can enhance cell adhesion and proliferation on PDMS, and thus can be potentially used for microfluidic cell assay devices for cellular physiology study or drug screening. © 2015 Wiley Periodicals, Inc.
The continuing conundrum of the LEA proteins.
Tunnacliffe, Alan; Wise, Michael J
2007-10-01
Research into late embryogenesis abundant (LEA) proteins has been ongoing for more than 20 years but, although there is a strong association of LEA proteins with abiotic stress tolerance particularly dehydration and cold stress, for most of that time, their function has been entirely obscure. After their initial discovery in plant seeds, three major groups (numbered 1, 2 and 3) of LEA proteins have been described in a range of different plants and plant tissues. Homologues of groups 1 and 3 proteins have also been found in bacteria and in certain invertebrates. In this review, we present some new data, survey the biochemistry, biophysics and bioinformatics of the LEA proteins and highlight several possible functions. These include roles as antioxidants and as membrane and protein stabilisers during water stress, either by direct interaction or by acting as molecular shields. Along with other hydrophilic proteins and compatible solutes, LEA proteins might also serve as "space fillers" to prevent cellular collapse at low water activities. This multifunctional capacity of the LEA proteins is probably attributable in part to their structural plasticity, as they are largely lacking in secondary structure in the fully hydrated state, but can become more folded during water stress and/or through association with membrane surfaces. The challenge now facing researchers investigating these enigmatic proteins is to make sense of the various in vitro defined functions in the living cell: Are the LEA proteins truly multi-talented, or are they still just misunderstood?
Structure and Function of the Mucus Clearance System of the Lung
Button, Brenda M.; Button, Brian
2013-01-01
In cystic fibrosis (CF), a defect in ion transport results in thick and dehydrated airway mucus, which is difficult to clear, making such patients prone to chronic inflammation and bacterial infections. Physiotherapy using a variety of airway clearance techniques (ACTs) represents a key treatment regime by helping clear the airways of thickened, adhered, mucus and, thus, reducing the impact of lung infections and improving lung function. This article aims to bridge the gap between our understanding of the physiological effects of mechanical stresses elicited by ACTs on airway epithelia and the reported effectiveness of ACTs in CF patients. In the first part of this review, the effects of mechanical stress on airway epithelia are discussed in relation to changes in ion transport and stimulation in airway surface layer hydration. The second half is devoted to detailing the most commonly used ACTs to stimulate the removal of mucus from the airways of patients with CF. PMID:23751214
Modeling Current Transfer from PV Modules Based on Meteorological Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter; Smith, Ryan; Kurtz, Sarah
2016-11-21
Current transferred from the active cell circuit to ground in modules undergoing potential-induced degradation (PID) stress is analyzed with respect to meteorological data. Duration and coulombs transferred as a function of whether the module is wet (from dew or rain) or the extent of uncondensed surface humidity are quantified based on meteorological indicators. With this, functions predicting the mode and rate of coulomb transfer are developed for use in estimating the relative PID stress associated with temperature, moisture, and system voltage in any climate. Current transfer in a framed crystalline silicon module is relatively high when there is no condensedmore » water on the module, whereas current transfer in a thin-film module held by edge clips is not, and displays a greater fraction of coulombs transferred when wet compared to the framed module in the natural environment.« less
Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY
2008-09-02
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
Internal stress induced natural self-chemisorption of ZnO nanostructured films
Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua
2017-01-01
The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827
Internal stress induced natural self-chemisorption of ZnO nanostructured films
NASA Astrophysics Data System (ADS)
Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua
2017-02-01
The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.
Internal stress induced natural self-chemisorption of ZnO nanostructured films.
Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua
2017-02-24
The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.
Critical flaw size in silicon nitride ball bearings
NASA Astrophysics Data System (ADS)
Levesque, George Arthur
Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
NASA Astrophysics Data System (ADS)
Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.
2018-05-01
Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.
NASA Astrophysics Data System (ADS)
Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.
2017-12-01
Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.
Aral, Gurcan; Islam, Md Mahbubul; van Duin, Adri C T
2017-12-20
Highly reactive metallic nickel (Ni) is readily oxidized by oxygen (O 2 ) molecules even at low temperatures. The presence of the naturally resulting pre-oxide shell layer on metallic Ni nano materials such as Ni nanowires (NW) is responsible for degrading the deformation mechanisms and related mechanical properties. However, the role of the pre-oxide shell layer on the metallic Ni NW coupled with the complicated mechanical deformation mechanism and related properties have not yet been fully and independently understood. For this reason, the ReaxFF reactive force field for Ni/O interactions was used to investigate the effect of surface oxide layers and the size-dependent mechanical properties of Ni NWs under precisely controlled tensile loading conditions. To directly quantify the size dependent surface oxidation effect on the tensile mechanical deformation behaviour and related properties for Ni NWs, first, ReaxFF-molecular dynamics (MD) simulations were carried out to study the oxidation kinetics on the free surface of Ni NWs in a molecular O 2 environment as a function of various diameters (D = 5.0, 6.5, and 8.0 nm) of the NWs, but at the same length. Single crystalline, pure metallic Ni NWs were also studied as a reference. The results of the oxidation simulations indicate that a surface oxide shell layer with limiting thickness of ∼1.0 nm was formed on the free surface of the bare Ni NW, typically via dissociation of the O-O bonds and the subsequent formation of Ni-O bonds. Furthermore, we investigated the evolution of the size-dependent intrinsic mechanical elastic properties of the core-oxide shell (Ni/Ni x O y ) NWs by comparing them with their un-oxidized counterparts under constant uniaxial tensile loading. We found that the oxide shell layer significantly decreases the mechanical properties of metallic Ni NW as well as facilitates the initiation of plastic deformation as a function of decreasing diameter. The disordered oxide shell layer on the Ni NW's surface remarkably reduces the yield stress and Young's modulus, due to the increased softening effects with the decreasing NW diameter, compared to un-oxidized counterparts. Moreover, the onset of plastic deformation occurs at a relatively low yielding strain and stress level for the smaller diameter of oxide-coated Ni NWs in comparison to their pure counterparts. Furthermore, for pure Ni NWs, Young's modulus, the yielding stress and strain slightly decrease with the decrease in the diameter size of Ni NWs.
Single lump breast surface stress assessment study
NASA Astrophysics Data System (ADS)
Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Paitong, P.; Alcain, J. B.; Lai, S. L.; Retnasamy, V.
2017-09-01
Breast cancer is one of the commonest cancers diagnosed among women around the world. Simulation approach has been utilized to study, characterize and improvise detection methods for breast cancer. However, minimal simulation work has been done to evaluate the surface stress of the breast with lumps. Thus, in this work, simulation analysis was utilized to evaluate and assess the breast surface stress due to the presence of a lump within the internal structure of the breast. The simulation was conducted using the Elmer software. Simulation results have confirmed that the presence of a lump within the breast causes stress on the skin surface of the breast.
High Compressive Stresses Near the Surface of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2012-12-01
Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front faults of the eastern Sierra Nevada for as little as 100m of slip. The compression is consistent with a concave up flexure of the surface of the range. Conversely, elastic models also predict that markedly lower compressive stresses or even a tension would exist on exposed bedrock on the down-dropped hanging wall east of the range front faults. To test this prediction, we measured stresses at a fourth site, in the granitic rock of the Aeolian Buttes, which is east of the range front faults. The mean compressive stress there is 0.26 MPa, more than an order of magnitude less than the average at the three Yosemite sites. The measured stress magnitudes near the topographic surface of the Sierra, the distribution of sheeting joints west of the range front faults, and elastic model predictions are broadly consistent and indicate that the high compressive stresses at the surface of the Sierra Nevada are largely associated with uplift of the range, although other contributions cannot be excluded.
The rigidity and mobility of screw dislocations in a thin film
NASA Astrophysics Data System (ADS)
Wang, Fei
2018-07-01
An equation of screw dislocations in a thin film is derived for arbitrary boundary conditions. The boundary conditions can be the free surface, the fixed surface or the gradient loading imposed on the surface. The new equation makes it possible to study changes in the dislocation structure under various gradient stress applied to the surface. The rigidity and mobility of screw dislocations in a thin film are explored by using the equation. It is found that the screw dislocation core in a thin film is like a Hookean body with a specific shear stress applied to the surface. Free-surface effects on the Peierls stress are investigated and compared with previous studies. An abnormal behavior of the Peierls stress of screw dislocations in a soft-inclusion film between two rigid films is predicted theoretically.
Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?
NASA Astrophysics Data System (ADS)
Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.
2017-12-01
Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, R.; Doherty, P.; Hornbach, D.
1995-12-31
Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tubemore » reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.« less
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.
de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A
2017-08-01
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Wang, Lu; Nie, Zhihua
Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less
Residual stress in glass: indentation crack and fractography approaches.
Anunmana, Chuchai; Anusavice, Kenneth J; Mecholsky, John J
2009-11-01
To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Soda-lime-silica glass bar specimens (4 mm x 2.3 mm x 28 mm) were prepared and annealed at 650 degrees C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24h were statistically significant (p=0.003). This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime-silica glass. The indentation method may be useful for estimating residual stress in glass.
Residual stress in glass: indentation crack and fractography approaches
Anunmana, Chuchai; Anusavice, Kenneth J.; Mecholsky, John J.
2009-01-01
Objective To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Methods Soda-lime-silica glass bar specimens (4 mm × 2.3 mm × 28 mm) were prepared and annealed at 650 °C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6 N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24 h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. Results The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24 h were statistically significant (p=0.003). Significance This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime silica glass. The indentation method may be useful for estimating residual stress in glass. PMID:19671475
NASA Astrophysics Data System (ADS)
Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.
2018-04-01
In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.
Structure of a viscoplastic theory
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
The general structure of a viscoplastic theory is developed from physical and thermodynamical considerations. The flow equation is of classical form. The dynamic recovery approach is shown to be superior to the hardening function approach for incorporating nonlinear strain hardening into the material response through the evolutionary equation for back stress. A novel approach for introducing isotropic strain hardening into the theory is presented, which results in a useful simplification. In particular, the limiting stress for the kinematic saturation of state (not the drag stress) is the chosen scalar-valued state variable. The resulting simplification is that there is no coupling between dynamic and thermal recovery terms in each evolutionary equation. The derived theory of viscoplasticity has the structure of a two-surface plasticity theory when the response is plasticlike, and the structure of a Bailey-Orowan creep theory when the response is creeplike.
Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry
NASA Astrophysics Data System (ADS)
Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini
We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.
Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.
2013-01-01
Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850
Pumping-induced stress and strain in aquifer systems in Wuxi, China
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Jun; Gong, Xulong; Wu, Jichun; Wang, Zhecheng
2018-05-01
Excessive groundwater withdrawal from an aquifer system leads to three-dimensional displacement, causing changes in the states of stress and strain. Often, land subsidence and sometimes earth fissures ensue. Field investigation indicates that land subsidence and earth fissures in Wuxi, a city in eastern China, are mainly due to excessive groundwater withdrawal, and that they are temporally and spatially related to groundwater pumping. Groundwater withdrawal may cause tensile strain to develop in aquifer systems, but tensile strain does not definitely mean tensile stress. Where earth fissures are concerned, the stress state should be adopted in numerical simulations instead of the strain state and displacement. The numerical simulation undertaken for the Wuxi area shows that the zone of tensile strain occupies a large area on the ground surface; nevertheless, the zone of tensile stress is very limited. The zone of tensile stress often occurs near the ground surface, beneath which the depth to the bedrock surface is relatively small and has considerable variability. Earth fissures often initiate near the ground surface where tensile stress occurs. Tensile stress and earth fissures rarely develop at the centers of land subsidence bowls, where compressive stress is dominant.
NASA Astrophysics Data System (ADS)
Ye, Qian; Lin, Haoze
2017-07-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.
Bowness, Paul
2015-01-01
Possession of the human leukocyte antigen (HLA) class I molecule B27 is strongly associated with ankylosing spondylitis (AS), but the pathogenic role of HLA-B27 is unknown. Two broad theories most likely explain the role of HLA-B27 in AS pathogenesis. The first is based on the natural immunological function of HLA-B27 of presenting antigenic peptides to cytotoxic T cells. Thus, HLA-B27-restricted immune responses to self-antigens, or arthritogenic peptides, might drive immunopathology. B27 can also "behave badly," misfolding during assembly and leading to endoplasmic reticulum stress and autophagy responses. β2m-free B27 heavy chain structures including homodimers (B272) can also be expressed at the cell surface following endosomal recycling of cell surface heterotrimers. Cell surface free heavy chains and B272 bind to innate immune receptors on T, NK, and myeloid cells with proinflammatory effects. This review describes the natural function of HLA-B27, its disease associations, and the current theories as to its pathogenic role.
Gutman, E M
2010-10-27
In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity.
Effects of stress on heart rate complexity—A comparison between short-term and chronic stress
Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.-B.; Dimsdale, J.E.
2009-01-01
This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p < .001), this study assessed the influence of respiration rate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (p < .001), but increased HR mean (p < .001), standard deviation of R–R (SDRR) intervals (p < .001), low (LF) (p < .001) and high frequency band power (HF) (p = .009). Respiratory sinus arrhythmia (RSA) and LF/HF ratio did not change under short-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r = −.35, p = .019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV. PMID:19100813
Laboratory determination of effective stress laws for deformation and permeability of chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teufel, L W; Warpinski, N R
1990-01-01
Laboratory deformation and permeability measurements have been made on chalk samples from Ekofisk area fields as a function of confining stress and pore pressure to determine the effective stress laws for chalk. An understanding of the effective stress law is essential to obtain correct reservoir-property data from core analysis and is critical for reservoir management studies and reservoir compaction models. A powerful statistical technique known as the response surface method has been used to analyze our laboratory data determine the form of the effective stress law for deformation and permeability. Experiments were conducted on chalk samples that had a rangemore » of porosities from 15% to 36%, because porosity is the dominant intrinsic property that effects deformation and permeability behavior of chalk. Deformation of a 36% porosity chalk was highly nonlinear, but the effective stress law was linear, with {alpha} equal to about unity. Lower-porosity samples showed linear strain behavior and a linear effective stress law with {alpha} as low as 0.74. Analysis of the effective stress law for permeability is presented only for the lowest porosity chalk sample because changes in permeability in the higher-porosity chalk samples due to increasing confining stress or pore pressure were not were large enough, to deduce meaningful effective stress relationships. 15 refs., 8 figs., 2 tabs.« less
Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.
Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E
2009-03-01
This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p<.001), this study assessed the influence of respiration rate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (p<.001), but increased HR mean (p<.001), standard deviation of R-R (SDRR) intervals (p<.001), low (LF) (p<.001) and high frequency band power (HF) (p=.009). Respiratory sinus arrhythmia (RSA) and LF/HF ratio did not change under short-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.
Quantifying cell adhesion through impingement of a controlled microjet.
Visser, Claas Willem; Gielen, Marise V; Hao, Zhenxia; Le Gac, Séverine; Lohse, Detlef; Sun, Chao
2015-01-06
The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m(2)). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 10(9) cells/m(2), above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Field Observations of Coastal Air-Sea Interaction
NASA Astrophysics Data System (ADS)
Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.
2016-12-01
In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.
Effect of restoration volume on stresses in a mandibular molar: a finite element study.
Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles
2014-10-01
There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises stresses to the yield strengths of the materials revealed a relationship between a tooth's restoration volume proportion and the potential for failure, although factors other than restoration volume proportion may also impact the stresses generated in moderate-sized restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.
2010-01-01
Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.
Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.
Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J
2016-03-15
Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.
Study of copper-free back contacts to thin film cadmium telluride solar cells
NASA Astrophysics Data System (ADS)
Viswanathan, Vijay
The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.
NASA Astrophysics Data System (ADS)
Noda, A.; Saito, T.; Fukuyama, E.
2017-12-01
In southwest Japan, great thrust earthquakes occurred on the plate interface along the Nankai trough with a recurrence time of about 100 yr. Most studies estimated slip deficits on the seismogenic zone from interseismic GNSS velocity data assuming elastic slip-response functions (e.g. Loveless and Meade, 2016; Yokota et al., 2016). The observed surface velocities, however, include effects of viscoelastic relaxation in the asthenosphere caused by slip history of seismic cycles on the plate interface. Following Noda et al. (2013, GJI), the interseismic surface velocities due to seismic cycle can be represented by the superposition of (1) completely relaxed viscoelastic response to steady slip rate over the whole plate interface, (2) completely relaxed viscoelastic response to steady slip deficit rate in the seismogenic zone, and (3) surface velocity due to viscoelastic stress relaxation after the last interplate earthquake. Subtracting calculated velocities due to steady slip (1) from velocity data observed after the postseismic stress relaxation (3) decays sufficiently, we can formulate an inverse problem of estimating slip deficit rates from the residual velocities using completely relaxed slip-response functions. In an elastic (lithosphere) - viscoelastic (asthenosphere) layered half-space, the completely relaxed responses do not depend on the viscosity of asthenosphere, but depend on the thickness of lithosphere. In this study, we investigate the effects of structure model on the estimation of slip deficit rate distribution. First, we analyze GNSS daily coordinate data (GEONET F3 Solution, GSI), and obtain surface velocity data for overlapped periods of 6 yr (1996-2002, 1999-2005, 2002-2008, 2005-2011). There is no significant temporal change in the velocity data, which suggests that postseismic stress relaxations after the 1944 Tonankai and the 1946 Nankai earthquakes decayed sufficiently. Next, we estimate slip deficit rate distribution from velocity data from 2005 to 2011 together with seafloor geodetic data (Yokota et al., 2016). There is a significant difference between the results using elastic and completely relaxed responses. While the result using elastic responses shows high slip-deficit rate zone in coastal regions, they are located trenchward if using completely relaxed responses.
Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders
NASA Technical Reports Server (NTRS)
Mettu, Sambi R.; Raju, Ivatury S.; Forman, Royce G.
1992-01-01
Flaws resulting from improper welding and forging are usually modeled as cracks in flat plates, hollow cylinders or spheres. The stress intensity factor solutions for these crack cases are of great practical interest. This report describes some recent efforts at improving the stress intensity factor solutions for cracks in such geometries with emphasis on hollow cylinders. Specifically, two crack configurations for cylinders are documented. One is that of a surface crack in an axial plane and the other is a part-through thumb-nail crack in a circumferential plane. The case of a part-through surface crack in flat plates is used as a limiting case for very thin cylinders. A combination of the two cases for cylinders is used to derive a relation for the case of a surface crack in a sphere. Solutions were sought which cover the entire range of the geometrical parameters such as cylinder thickness, crack aspect ratio and crack depth. Both the internal and external position of the cracks are considered for cylinders and spheres. The finite element method was employed to obtain the basic solutions. Power-law form of loading was applied in the case of flat plates and axial cracks in cylinders and uniform tension and bending loads were applied in the case of circumferential (thumb-nail) cracks in cylinders. In the case of axial cracks, the results for tensile and bending loads were used as reference solutions in a weight function scheme so that the stress intensity factors could be computed for arbitrary stress gradients in the thickness direction. For circumferential cracks, since the crack front is not straight, the above technique could not be used. Hence for this case, only the tension and bending solutions are available at this time. The stress intensity factors from the finite element method were tabulated so that results for various geometric parameters such as crack depth-to-thickness ratio (a/t), crack aspect ratio (a/c) and internal radius-to-thickness ratio (R/t) or the crack length-to-width ratio (2c/W) could be obtained by interpolation and extrapolation. Such complete tables were then incorporated into the NASA/FLAGRO computer program which is widely used by the aerospace community for fracture mechanics analysis.
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Design of a global soil moisture initialization procedure for the simple biosphere model
NASA Technical Reports Server (NTRS)
Liston, G. E.; Sud, Y. C.; Walker, G. K.
1993-01-01
Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
NASA Technical Reports Server (NTRS)
Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)
2000-01-01
When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using DPPC as the insoluble surfacant monolayer and measured for it a surface dilatational viscosity in the LE phase that is 20 surface poise.
Results from Alloy 600 And Alloy 690 Caustic SCC Model Boiler Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Frederick D.; Thomas, Larry E.
2009-08-03
A versatile model boiler test methodology was developed and used to compare caustic stress corrosion cracking (SCC) of mill annealed Alloy 600 and thermally treated Alloy 690. The model boiler included simulated crevice devices that efficiently and consistently concentrated Na2CO3, resulting in volatilization of CO2 with the steam and concentration of NaOH at the tube surfaces. The test methodology also included variation in tube stress, either produced by the primary to secondary side pressure differential, or by a novel method that reproducibly yields a higher stress condition on the tube. The significant effect of residual stress on tube SCC wasmore » also considered. SCC of both Alloy 600 and Alloy 690 were evaluated as a function of temperature and stress. Analytical transmission electron microscopy (ATEM) evaluations of the cracks and the grain boundaries ahead of the cracks were performed, providing insight into the SCC mechanism. This model boiler test methodology may be applicable to a range of bulkwater secondary chemistries that concentrate to produce aggressive crevice environments.« less
Compression wave studies in Blair dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.
Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as muchmore » as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.« less
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
NASA Astrophysics Data System (ADS)
Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi
2010-09-01
In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.
Structure of screw dislocation core in Ta at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaofeng, E-mail: sfwang@cqu.edu.cn; Jiang, Na; Wang, Rui
2014-03-07
The core structure and Peierls stress of the 1/2 〈111〉(110) screw dislocation in Ta have been investigated theoretically using the modified Peierls–Nabarro theory that takes into account the discreteness effect of crystal. The lattice constants, the elastic properties, and the generalized-stacking-fault energy(γ-surface) under the different pressures have been calculated from the electron density functional theory. The core structure of dislocation is determined by the modified Peierls equation, and the Peierls stress is evaluated from the dislocation energy that varies periodically as dislocation moves. The results show the core width and Peierls stress in Ta are weakly dependent of the pressuremore » up to 100 GPa when the length and stress are measured separately by the Burgers vector b and shear modulus μ. This indicates that core structure is approximately scaling invariant for the screw dislocation in Ta. The scaled plasticity of Ta changes little in high pressure environment.« less
Stress errors in a case of developmental surface dyslexia in Filipino.
Dulay, Katrina May; Hanley, J Richard
2015-01-01
This paper reports the case of a dyslexic boy (L.A.) whose impaired reading of Filipino is consistent with developmental surface dyslexia. Filipino has a transparent alphabetic orthography with stress typically falling on the penultimate syllable of multisyllabic words. However, exceptions to the typical stress pattern are not marked in the Filipino orthography. L.A. read words with typical stress patterns as accurately as controls, but made many more stress errors than controls when reading Filipino words with atypical stress. He regularized the pronunciation of many of these words by incorrectly placing the stress on the penultimate syllable. Since he also read nonwords as accurately and quickly as controls and performed well on tests of phonological awareness, L.A. appears to present a clear case of developmental surface dyslexia in a transparent orthography.
Hu, L; Zhao, Z; Song, J; Fan, Y; Jiang, W; Chen, J
2001-02-01
The distribution of stress on the surface of condylar cartilage was investigated. Three-dimensional model of the 'Temporomandibular joint mandible Herbst appliance system' was set up by SUPER SAP software (version 9.3). On this model, various bite reconstruction was simulated according to specified advanced displacement and vertical bite opening. The distribution of maximum and minimum principal stress on the surface of condylar cartilage were computerized and analyzed. When Herbst appliance drove the mandible forward, the anterior condyle surface was compressed while the posterior surface was drawn. The trend of stress on the same point on the condyle surface was consistent in various reconstruction conditions, but the trend of stress on various point were different in same reconstruction conditions. All five groups of bite reconstruction (3-7 mm advancement, 4-2 mm vertical bite opening of the mandible) designed by this study can be selected in clinic according to the patient's capability of adaptation, the extent of malocclusion and the potential and direction of growth.
Chlorine stress mediates microbial surface attachment in drinking water systems.
Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei
2015-03-01
Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.
Optimized micromirror arrays for adaptive optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M. Adrian
This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics. {copyright} {ital 1999 American Institute of Physics.}« less
Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi
2015-06-01
The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.
John M. Buffington; William E. Dietrich; James W. Kirchner
1992-01-01
We report the first measurements of friction angles for a naturally formed gravel streambed. For a given test grain size placed on a bed surface, friction angles varied from 10º to over 100º; friction angle distributions can be expressed as a function of test grain size, median bed grain size, and bed sorting parameter. Friction angles decrease with increasing grain...
Estimating Vertical Stress on Soil Subjected to Vehicular Loading
2009-02-01
specified surface area of the tire . The silt and sand samples were both estimated to be 23.7-in. thick over a base of much harder soil. The pressures...study in which highway tread tires were used as opposed to the all-terrain tread currently on the vehicle. If the pressure pads are functioning...Vertical force versus time (front right CIV tire )....................................................................... 14 Tables Table 1. Testing
Raulet, David H; Marcus, Assaf; Coscoy, Laurent
2017-11-01
Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Modeling Tidal Stresses on Planetary Bodies Using an Enhanced SatStress GUI
NASA Astrophysics Data System (ADS)
Patthoff, D. A.; Pappalardo, R. T.; Tang, L.; Kay, J.; Kattenhorn, S. A.
2014-12-01
Icy and rocky satellites of our solar system display a wide range of structural deformation on their surfaces. Some surfaces are old and heavily cratered showing little evidence for recent tectonism while other surfaces are sparsely cratered and young, with some moons showing geologically very recent or present-day activity. The young deformation can take the form of small cracks in the surface, large double ridges that can extend for thousands of km, and mountain ranges that can reach heights of several kilometers. Many of the potential sources of stress that can deform the surfaces are likely tied to the diurnal tidal deformation of the moons as they orbit their parent planets. Other secular sources of global-scale stress include: volume change induced by the melting or freezing of a subsurface liquid layer, change in the orbital parameters of the moon, or rotation of the outer shell of the satellite relative to the rest of the body (nonsynchronous rotation or true polar wander). We turn to computer modeling to correlate observed structural features to the possible stresses that created them. A variety of modeling programs exist and generally assume a thin ice shell and/or a multi-layered viscoelastic satellite. The program SatStress, which was developed by Zane Crawford and documented by Wahr et al. (2009), computes tidal and nonsynchronous rotation stresses on a satellite. It was later modified into a more user-friendly version with a graphical user interface (SatStress GUI) by Kay and Kattenhorn (2010). This implementation assumes a 4-layer viscoelastic body and is able to calculate stresses resulting from diurnal tides, nonsynchronous rotation, and ice shell thickening. Here we illustrate our recent enhancements to SatStress GUI and compare modeled stresses to example features observed on the surfaces of Ganymede, Europa, and Enceladus. Kay and Kattenhorn (2010) 41st LPSC, abs # 2046. Wahr et al. (2009) Icarus, 200, 188-206.
NASA Astrophysics Data System (ADS)
Brown, R. A.
2005-08-01
This paper is adapted from a presentation at the session of the European Geophysical Society meeting in 2002 honouring Joost Businger. It documents the interaction of the non-linear planetary boundary-layer (PBL) model (UW-PBL) and satellite remote sensing of marine surface winds from verification and calibration studies for the sensor model function to the current state of verification of the model by satellite data. It is also a personal history where Joost Businger had seminal input to this research at several critical junctures. The first scatterometer in space was on SeaSat in 1978, while currently in orbit there are the QuikSCAT and ERS-2 scatterometers and the WindSat radiometer. The volume and detail of data from the scatterometers during the past decade are unprecedented, though the value of these data depends on a careful interpretation of the PBL dynamics. The model functions (algorithms) that relate surface wind to sensor signal have evolved from straight empirical correlation with simple surface-layer 10-m winds to satellite sensor model functions for surface pressure fields. A surface stress model function is also available. The validation data for the satellite model functions depended crucially on the PBL solution. The non-linear solution for the flow of fluid in the boundary layer of a rotating coordinate system was completed in 1969. The implications for traditional ways of measuring and modelling the PBL were huge and continue to this day. Unfortunately, this solution replaced an elegant one by Ekman with a stability/finite perturbation equilibrium solution. Consequently, there has been great reluctance to accept this solution. The verification of model predictions has been obtained from the satellite data.
Procedures for experimental measurement and theoretical analysis of large plastic deformations
NASA Technical Reports Server (NTRS)
Morris, R. E.
1974-01-01
Theoretical equations are derived and analytical procedures are presented for the interpretation of experimental measurements of large plastic strains in the surface of a plate. Orthogonal gage lengths established on the metal surface are measured before and after deformation. The change in orthogonality after deformation is also measured. Equations yield the principal strains, deviatoric stresses in the absence of surface friction forces, true stresses if the stress normal to the surface is known, and the orientation angle between the deformed gage line and the principal stress-strain axes. Errors in the measurement of nominal strains greater than 3 percent are within engineering accuracy. Applications suggested for this strain measurement system include the large-strain-stress analysis of impact test models, burst tests of spherical or cylindrical pressure vessels, and to augment small-strain instrumentation tests where large strains are anticipated.
On the state of stress in the near-surface of the earth's crust
Savage, W.Z.; Swolfs, H.S.; Amadei, B.
1992-01-01
Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models-the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy-are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term. ?? 1992 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman
2018-02-01
Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.
Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser
NASA Astrophysics Data System (ADS)
Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki
2000-02-01
The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.
Surface functionalization of WS2 fullerene-like nanoparticles.
Shahar, Chen; Zbaida, David; Rapoport, Lev; Cohen, Hagai; Bendikov, Tatyana; Tannous, Johny; Dassenoy, Fabrice; Tenne, Reshef
2010-03-16
WS(2) belongs to a family of layered metal dichalcogenide compounds that are known to form cylindrical (inorganic nanotubes-INT) and polyhedral nanostructures--onion or nested fullerene-like (IF) particles. The outermost layers of these IF nanoparticles can be peeled under shear stress, thus IF nanoparticles have been studied for their use as solid lubricants. However, the IF nanoparticles tend to agglomerate, presumably because of surface structural defects induced by elastic strain and curvature, a fact that has a deleterious effect on their tribological properties. In the present work, chemical modification of the IF-WS(2) surface with alkyl-silane molecules is reported. The surface-modified IF nanoparticles display improved dispersion in oil-based suspensions. The alkyl-silane coating reduces the IF-WS(2) nanoparticles' tendency to agglomerate and consequently improves the long-term tribological behavior of oil formulated with the IF additive.
NASA Astrophysics Data System (ADS)
McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.
2004-12-01
Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.
Probabilistic Design of a Wind Tunnel Model to Match the Response of a Full-Scale Aircraft
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Stroud, W. Jefferson; Krishnamurthy, T.; Spain, Charles V.; Naser, Ahmad S.
2005-01-01
approach is presented for carrying out the reliability-based design of a plate-like wing that is part of a wind tunnel model. The goal is to design the wind tunnel model to match the stiffness characteristics of the wing box of a flight vehicle while satisfying strength-based risk/reliability requirements that prevents damage to the wind tunnel model and fixtures. The flight vehicle is a modified F/A-18 aircraft. The design problem is solved using reliability-based optimization techniques. The objective function to be minimized is the difference between the displacements of the wind tunnel model and the corresponding displacements of the flight vehicle. The design variables control the thickness distribution of the wind tunnel model. Displacements of the wind tunnel model change with the thickness distribution, while displacements of the flight vehicle are a set of fixed data. The only constraint imposed is that the probability of failure is less than a specified value. Failure is assumed to occur if the stress caused by aerodynamic pressure loading is greater than the specified strength allowable. Two uncertain quantities are considered: the allowable stress and the thickness distribution of the wind tunnel model. Reliability is calculated using Monte Carlo simulation with response surfaces that provide approximate values of stresses. The response surface equations are, in turn, computed from finite element analyses of the wind tunnel model at specified design points. Because the response surface approximations were fit over a small region centered about the current design, the response surfaces were refit periodically as the design variables changed. Coarse-grained parallelism was used to simultaneously perform multiple finite element analyses. Studies carried out in this paper demonstrate that this scheme of using moving response surfaces and coarse-grained computational parallelism reduce the execution time of the Monte Carlo simulation enough to make the design problem tractable. The results of the reliability-based designs performed in this paper show that large decreases in the probability of stress-based failure can be realized with only small sacrifices in the ability of the wind tunnel model to represent the displacements of the full-scale vehicle.
Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown
NASA Astrophysics Data System (ADS)
Molaro, J. L.; Byrne, S.; Le, J.-L.
2017-09-01
This work investigates the macroscopic thermomechanical behavior of lunar boulders by modeling their response to diurnal thermal forcing. Our results reveal a bimodal, spatiotemporally-complex stress response. During sunrise, stresses occur in the boulders' interiors that are associated with large-scale temperature gradients developed due to overnight cooling. During sunset, stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller diameters, suggesting that larger boulders break down more quickly. Boulders ≤ 30 cm exhibit a weak response to thermal forcing, suggesting a threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown. As boulders increase in size (>1 m), stresses increase to several 10 s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. As the thermal wave loses contact with the boulder interior, stresses become limited to the near-surface. This suggests that the survival time of a boulder is not only controlled by the amplitude of induced stress, but also by its diameter as compared to the diurnal skin depth. While stresses on the order of 10 MPa are enough to drive crack propagation in terrestrial environments, crack propagation rates in vacuum are not well constrained. We explore the relationship between boulder size, stress, and the direction of crack propagation, and discuss the implications for the relative breakdown rates and estimated lifetimes of boulders on airless body surfaces.
Rock failure analysis by combined thermal weakening and water jet impact
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.
1976-01-01
The influence of preheating on the initiation of fracture in rocks subjected to the impingement of a continuous water jet is studied. Preheating the rock is assumed to degrade its mechanical properties and strength in accordance with existing experimental data. The water jet is assumed to place a quasi-static loading on the surface of the rock. The loading is approximated by elementary functions which permit analytic computation of the induced stresses in a rock half-space. The resulting stresses are subsequently coupled with the Griffith criteria for tensile failure to estimate the change, due to heating, in the critical stagnation pressure and velocity of the water jet required to cause failure in the rock.
Mandato, S; Cuq, B; Ruiz, T
2012-07-01
In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.
Experimental study and FEM simulation of the simple shear test of cylindrical rods
NASA Astrophysics Data System (ADS)
Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.
Mobasheri, Ali; Henrotin, Yves; Biesalski, Hans-Konrad; Shakibaei, Mehdi
2012-01-01
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.
The Flow in a Model Rotating-Wall Bioreactor.
NASA Astrophysics Data System (ADS)
Smith, Marc K.; Neitzel, G. Paul
1997-11-01
Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).
NASA Astrophysics Data System (ADS)
Kumar, Anil; Mukhopadhyay, Santwana
2017-08-01
The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.
A new skin friction balance and selected measurements
NASA Technical Reports Server (NTRS)
Vakili, A. D.
1992-01-01
A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.
Density functional theory of gas-liquid phase separation in dilute binary mixtures
NASA Astrophysics Data System (ADS)
Okamoto, Ryuichi; Onuki, Akira
2016-06-01
We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.
NASA Astrophysics Data System (ADS)
Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol
2009-03-01
Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.
Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads
NASA Technical Reports Server (NTRS)
Schultz, R. A.; Zuber, M. T.
1994-01-01
Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.
Sectoral contributions to surface water stress in the coterminous United States
K. Averyt; J. Meldrum; P. Caldwell; G. Sun; S. McNulty; A. Huber-Lee; N. Madden
2013-01-01
Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model...
NASA Astrophysics Data System (ADS)
Bryndina, Irina; Vasilieva, Natalia
Weightlessness is accompanied by redistribution of blood flow in lung, changes of lung volumes and gas exchange (Prisk et al., 2002; Grigoriev, Baranov, 2003). On the other hand, it is known that microgravity is considered as a kind of moderate stress (Grigoriev et al., 2004). Stress response may differ in animals resistant or vulnerable to stress (Sudakov, 2007). To study the effects of simulated microgravity upon lung, we used 20 male albino rats tested for behavior in the "open field" and than divided into active (stress resistant - SR ) and passive (stress vulnerable - CV) groups. Two mouse lines were used with similar goal - C57Bl/6 and BALB/c mice (n=16). According to data obtained earlier, BALB/c mice referred as more stress vulnerable, in contrast to C57BL/6 mice, which are considered to be relatively stress resistant (Flint et al., 2007). We have previously shown that changes in lung surfactant system after psychosocial stress or long-term immobilization are less pronounced in stress resistant rats (Vasilieva, Bryndina, 2012). The aim of this work is to study the properties and biochemical composition of pulmonary surfactant and lung water balance in rats and mice with different stress resistance in antiorthostatic suspension (AOS) of short and long duration. Simulated microgravity was reproduced according to procedure of Ilyin-Novikov in modification of Morey-Holton. The duration of exposure was 10 days for rats and 30 days for mice. The properties of pulmonary surfactant were assessed by the evaluation of surface activity (surface tension - ST), the content of total phospholipids (PL) and their fractions. Simultaneously we calculated the gravimetric water balance indices: lung coefficient, "dry residue" and wet-to-dry ratio. Total and extravascular lung fluid and pulmonary blood supply were estimated as well. The experiments demonstrated that there was a decrease of surface tension of surfactant films after 10-day AOS in both groups of rats (to a greater extent in SR individuals). These findings indicate that functional properties of pulmonary surfactant were enhanced due to the increased amount of total PL (twofold in SR rats and 35 % in SV ones) and higher content of phosphatidylcholine (more considerable in SR rats, 32 %). The level of lysophosphatidylcholine was increased, too. In mice, 30-day AOS led to the increase of pulmonary coefficient by 12% in C57BL/6 and 22% in BALB/c mice in comparison to control, a value of “dry residue" decreased by 21% and 13%, respectively. There were the opposite changes of pulmonary blood supply in C57BL/6 mice (increased by 43% above control value) and BALB/c mice (decreased by 51%). Surface-active properties of pulmonary surfactant decreased in both groups of animals, but in most degree in BALB/c mice. The amount of total PL was augmented, with high level of lysophosphatidylcholine and phosphatidylethanolamine; phosphatidylcholine content was lower in BALB/c group compared to C57BL/6 one. Thus, the adaptation of lung to simulated microgravity depends on exposure duration and individual characteristics of explored animals (resistance or vulnerability to stress).
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2016-12-01
Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.
NASA Astrophysics Data System (ADS)
Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong
2015-03-01
To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.
Nonlinear flow response of soft hair beds
NASA Astrophysics Data System (ADS)
Alvarado, José; Comtet, Jean; de Langre, Emmanuel; Hosoi, A. E.
2017-10-01
We are `hairy' on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.
Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics
NASA Astrophysics Data System (ADS)
Anderson, W.
2015-12-01
Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
Gingold, Ruth; Moens, Tom; Rocha-Olivares, Axayácatl
2013-01-01
Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model.
The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis
Anderson, Donald D.; Brown, Thomas D.; Tochigi, Yuki; Martin, James A.
2013-01-01
Excessive joint surface loadings, either single (acute impact event) or repetitive (cumulative contact stress), can cause the clinical syndrome of osteoarthritis (OA). Despite advances in treatment of injured joints, the risk of OA following joint injuries has not decreased in the past 50 years. Cumulative excessive articular surface contact stress that leads to OA results from posttraumatic joint incongruity and instability, and joint dysplasia, but may also cause OA in patients without known joint abnormalities. In vitro investigations show that excessive articular cartilage loading triggers release of reactive oxygen species (ROS) from mitochondria, and that these ROS cause chondrocyte death and matrix degradation. Preventing release of ROS or inhibiting their effects preserves chondrocytes and their matrix. Fibronectin fragments released from articular cartilage subjected to excessive loads also stimulate matrix degradation; inhibition of molecular pathways initiated by these fragments prevents this effect. Additionally, injured chondrocytes release alarmins that activate chondroprogentior cells in vitro that propogate and migrate to regions of damaged cartilage. These cells also release chemokines and cytokines that may contribute to inflammation that causes progressive cartilage loss. Distraction and motion of osteoarthritic human ankles can promote joint remodeling, decrease pain, and improve joint function in patients with end-stage posttraumatic OA. These advances in understanding of how altering mechanical stresses can lead to remodeling of osteoarthritic joints and how excessive stress causes loss of articular cartilage, including identification of mechanically induced mediators of cartilage loss, provide the basis for new biologic and mechanical approaches to the prevention and treatment of OA. PMID:25067995
Kermanshah, Hamid; Geramy, Allahyar; Ebrahimi, Shahram Farzin; Bitaraf, Tahereh
2012-12-01
This study evaluated von Mises stress distribution, flexural strength and interface micrographs of IPS-Empress II (IPS) inlay-retained fixed partial dentures (IRFPD) reinforced with Zirconia bars (Zb). In the Finite element analysis, six three-dimensional models of IRFPD were designed using Solid Works 2006. Five models were reinforced with different Zb and a model without Zb was considered as a control. The bridges were loaded by 200 and 500 N forces at the middle of the pontic on the occlusal surface. Subsequently, von Mises stress and displacement of the models were evaluated along a defined path. In the experimental part, 21 bar shape specimens were fabricated from lithium disilicate and zirconia ceramic in three different designs. The zirconia-IPS interfaces and the fractured surfaces of flexural test were observed using SEM. In the connector area, von Mises stress and displacement of the models with Zb under a load of 500 N were decreased compared to the model without the Zb; however, this difference was not considerable at a load of 200 N. In the mesial connector, Von Mises stress and displacement was decreased from 12.5 Mpa for the control model tested at 500 N to 7.0 Mpa for the model with Zb and from 0.0050-0.0041 mm, respectively. SEM analyses showed that, before fracture, interfacial gaps were not observed along the interfaces, but initiated cracks propagated along the interfaces after flexural loading. IPS IRFPD reinforced by Zb can tolerate higher stresses while still functioning effectively and the interfaces may have desirable adaption.
McLaughlin, Ryan Joseph; Verlezza, Silvanna; Gray, Jennifer Megan; Hill, Matthew Nicholas; Walker, Claire-Dominique
2016-01-01
Exposure to stress during early development can exert profound effects on the maturation of the neuroendocrine stress axis. The endocannabinoid (ECB) system has recently surfaced as a fundamental component of the neuroendocrine stress response; however, the effect of early-life stress on neonatal ECB signaling and the capacity to which ECB enhancement may modulate neonatal stress responses is relatively unknown. The present study assessed whether exposure to early-life stress in the form of limited access to nesting/bedding material (LB) from postnatal (PND) day 2 to 9 alters neuroendocrine activity and hypothalamic ECB content in neonatal rats challenged with a novel immobilization stressor. Furthermore, we examined whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of anandamide (AEA) affects neuroendocrine responses in PND10 pups as a function of rearing conditions. Neonatal rats showed a robust increase in corticosterone (CORT) and adrenocorticotropin hormone (ACTH) secretion in response to immobilization stress, which was significantly blunted in pups reared in LB conditions. Accordingly, LB pups exhibited reduced stress-induced Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, with no significant differences in hypothalamic ECB content. Administration of the FAAH inhibitor URB597 (0.3 mg/kg, ip) 90 min prior to immobilization stress significantly dampened stress-induced CORT release, but only in pups reared in LB conditions. These results suggest that rearing in restricted bedding conditions dampens the neuroendocrine response to stress, while augmenting AEA mitigates stress-induced alterations in glucocorticoid secretion preferentially in pups subjected to early-life stress.
Park, Seungman
2017-09-01
Interstitial flow (IF) is a creeping flow through the interstitial space of the extracellular matrix (ECM). IF plays a key role in diverse biological functions, such as tissue homeostasis, cell function and behavior. Currently, most studies that have characterized IF have focused on the permeability of ECM or shear stress distribution on the cells, but less is known about the prediction of shear stress on the individual fibers or fiber networks despite its significance in the alignment of matrix fibers and cells observed in fibrotic or wound tissues. In this study, I developed a computational model to predict shear stress for different structured fibrous networks. To generate isotropic models, a random growth algorithm and a second-order orientation tensor were employed. Then, a three-dimensional (3D) solid model was created using computer-aided design (CAD) software for the aligned models (i.e., parallel, perpendicular and cubic models). Subsequently, a tetrahedral unstructured mesh was generated and flow solutions were calculated by solving equations for mass and momentum conservation for all models. Through the flow solutions, I estimated permeability using Darcy's law. Average shear stress (ASS) on the fibers was calculated by averaging the wall shear stress of the fibers. By using nonlinear surface fitting of permeability, viscosity, velocity, porosity and ASS, I devised new computational models. Overall, the developed models showed that higher porosity induced higher permeability, as previous empirical and theoretical models have shown. For comparison of the permeability, the present computational models were matched well with previous models, which justify our computational approach. ASS tended to increase linearly with respect to inlet velocity and dynamic viscosity, whereas permeability was almost the same. Finally, the developed model nicely predicted the ASS values that had been directly estimated from computational fluid dynamics (CFD). The present computational models will provide new tools for predicting accurate functional properties and designing fibrous porous materials, thereby significantly advancing tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
How to use retarded Green's functions in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Atsushi; Cheong, Lee Yen
2008-10-15
We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetismmore » in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.« less
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1979-01-01
Surface cracks are among the more common flaws in aircraft and pressure vessel components. Several calculations of stress-intensity factors for semi-elliptical surface cracks subjected to tension have appeared in the literature. However, some of these solutions are in disagreement by 50-100%. In this paper, stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to tension are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedom used here were more than twice the number used in previously reported solutions. Also, the stress-intensity variations in the boundary-layer region at the intersection of the crack with the free surface were investigated.
Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.
2000-01-01
Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.
Samantaray, Sweta; Neubauer, Michael; Helmschrott, Christoph
2013-01-01
Aspergillus fumigatus is a mold and the causal agent of invasive aspergillosis, a systemic disease with high lethality. Recently, we identified and functionally characterized three stress sensors implicated in the cell wall integrity (CWI) signaling of this pathogen, namely, Wsc1, Wsc3, and MidA. Here, we functionally characterize Rom2, a guanine nucleotide exchange factor with essential function for the cell wall integrity of A. fumigatus. A conditional rom2 mutant has severe growth defects under repressive conditions and incorporates all phenotypes of the three cell wall integrity sensor mutants, e.g., the echinocandin sensitivity of the Δwsc1 mutant and the Congo red, calcofluor white, and heat sensitivity of the ΔmidA mutant. Rom2 interacts with Rho1 and shows a similar intracellular distribution focused at the hyphal tips. Our results place Rom2 between the cell surface stress sensors Wsc1, Wsc3, MidA, and Rho1 and their downstream effector mitogen-activated protein (MAP) kinase module Bck1-Mkk2-MpkA. PMID:23264643
NASA Astrophysics Data System (ADS)
Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent
2017-10-01
As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.
Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár
2018-01-01
Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely to form the anatomical basis for the impaired functioning of this brain area. Indeed, impaired functioning of the prefrontal cortex, such as cognitive deficits are common in stressed individuals as well as in depressed patients. PMID:29440995
Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.
2009-01-01
A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.
NASA Technical Reports Server (NTRS)
1997-01-01
The objective of this work was to determine the three dimensional volumetric stress field, surface pressure distribution and actual contact area between a 0.50" square roller with different crown profiles and a flat raceway surface using Finite Element Analysis. The 3-dimensional stress field data was used in conjunction with several bearing fatigue life theories to extract appropriate values for stress-life exponents. Also, results of the FEA runs were used to evaluate the laminated roller model presently used for stress and life prediction.
Shields, Grant S.; Moons, Wesley G.; Slavich, George M.
2017-01-01
Executive function is a neuropsychological construct that enables controlled cognitive processing, which has been hypothesized to enhance individuals’ resilience to stress. However, little empirical work has directly examined how executive function under different conditions mitigates the negative effects of stress exposure on health. To address this issue, we recruited 110 healthy young adults and assessed their recent life stress exposure, executive function in either a stressful or non-stressful context, and current health complaints. Based on existing research, we hypothesized that individuals exhibiting better executive function following a laboratory-based stressor (but not a control task) would demonstrate weaker associations between recent stress exposure and health because they perceived recent life stressors as being less severe. Consistent with this hypothesis, better executive function during acute stress, but not in the absence of stress, was associated with an attenuated link between participants’ recent life stress exposure and their current health complaints. Moreover, this attenuating effect was mediated by lesser perceptions of stressor severity. Based on these data, we conclude that better executive function under stress is associated with fewer health complaints and that these effects may occur by reducing individuals’ perceptions of stressor severity. The data thus suggest the possibility of reducing stress-related health problems by enhancing executive function. PMID:28114849
Shields, Grant S; Moons, Wesley G; Slavich, George M
2017-01-01
Executive function is a neuropsychological construct that enables controlled cognitive processing, which has been hypothesized to enhance individuals' resilience to stress. However, little empirical work has directly examined how executive function under different conditions mitigates the negative effects of stress exposure on health. To address this issue, we recruited 110 healthy young adults and assessed their recent life stress exposure, executive function in either a stressful or non-stressful context, and current health complaints. Based on existing research, we hypothesized that individuals exhibiting better executive function following a laboratory-based stressor (but not a control task) would demonstrate weaker associations between recent stress exposure and health because they perceived recent life stressors as being less severe. Consistent with this hypothesis, better executive function during acute stress, but not in the absence of stress, was associated with an attenuated link between participants' recent life stress exposure and their current health complaints. Moreover, this attenuating effect was mediated by lesser perceptions of stressor severity. Based on these data, we conclude that better executive function under stress is associated with fewer health complaints and that these effects may occur by reducing individuals' perceptions of stressor severity. The data thus suggest the possibility of reducing stress-related health problems by enhancing executive function.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-11-03
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Nanomechanical membrane-type surface stress sensor.
Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich
2011-03-09
Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.
Wall shear stress measurement in blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, R.; Raj, R.; Boldman, D. R.
1987-01-01
The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.
NASA Astrophysics Data System (ADS)
Louna, Zineeddine; Goda, Ibrahim; Ganghoffer, Jean-François
2018-01-01
We construct in the present paper constitutive models for bone remodeling based on micromechanical analyses at the scale of a representative unit cell (RUC) including a porous trabecular microstructure. The time evolution of the microstructure is simulated as a surface remodeling process by relating the surface growth remodeling velocity to a surface driving force incorporating a (surface) Eshelby tensor. Adopting the framework of irreversible thermodynamics, a 2D constitutive model based on the setting up of the free energy density and a dissipation potential is identified from FE simulations performed over a unit cell representative of the trabecular architecture obtained from real bone microstructures. The static and evolutive effective properties of bone at the scale of the RUC are obtained by combining a methodology for the evaluation of the average kinematic and static variables over a prototype unit cell and numerical simulations with controlled imposed first gradient rates. The formulated effective growth constitutive law at the scale of the homogenized set of trabeculae within the RUC is of viscoplastic type and relates the average growth strain rate to the homogenized stress tensor. The postulated model includes a power law function of an effective stress chosen to depend on the first and second stress invariants. The model coefficients are calibrated from a set of virtual testing performed over the RUC subjected to a sequence of loadings. Numerical simulations show that overall bone growth does not show any growth kinematic hardening. The obtained results quantify the strength and importance of different types of external loads (uniaxial tension, simple shear, and biaxial loading) on the overall remodeling process and the development of elastic deformations within the RUC.
NASA Astrophysics Data System (ADS)
Wilson, Michael; Price, D.; Strohecker, Steve
1994-09-01
Germanium witness samples were impacted with the NAWCADWAR modified Cambridge liquid jet device introducing varying levels of damage about the center of each sample. Surface damage statistics were collected, scatter measurements were made at 0.67 micrometers and the samples were failed in tension using a bi-axial flexure test setup. The level and character of the damage was correlated with the reflected scatter measurements as a function of local stress and flaw size distribution. Bi-axial flexure data was analyzed to predict fracture stress and the probability of failure of the germanium samples. The mechanical data were then correlated with the scatter data in order to correlate the BRDF with the material failure. The BRDF measurements were taken in several different orientations in order to study the differences in scatter character for the in-plane and out-of-plane conditions.
Atomistic calculations of interface elastic properties in noncoherent metallic bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi Changwen; Jun, Sukky; Kouris, Demitris A.
2008-02-15
The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less
High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography
2015-08-03
Navier-Stokes equation, in effect randomizing the subfilter-scale (SFS) stress divergence. In the intervening years it has been discovered that this...surface stress models do introduce spurious effects that force deviations from LOTW at the first couple grid levels adjacent to the surface. Fig. 10 shows...SFS stress is sufficiently overwhelming to produce the overshoot. When the LES is moved into the HAZ so that the viscous effects causing the
The influence of rail surface irregularities on contact forces and local stresses
NASA Astrophysics Data System (ADS)
Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik
2015-01-01
The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.
Cracking of a layered medium on an elastic foundation under thermal shock
NASA Technical Reports Server (NTRS)
Rizk, Abd El-Fattah A.; Erdogan, Fazil
1988-01-01
The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.
Pechersky, Martin J.
1995-01-01
A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.
Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A
2005-11-01
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
The Arabidopsis DESPERADO/AtWBC11 Transporter Is Required for Cutin and Wax Secretion1[C][W
Panikashvili, David; Savaldi-Goldstein, Sigal; Mandel, Tali; Yifhar, Tamar; Franke, Rochus B.; Höfer, René; Schreiber, Lukas; Chory, Joanne; Aharoni, Asaph
2007-01-01
The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C16-18 fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses. PMID:17951461
The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion.
Panikashvili, David; Savaldi-Goldstein, Sigal; Mandel, Tali; Yifhar, Tamar; Franke, Rochus B; Höfer, René; Schreiber, Lukas; Chory, Joanne; Aharoni, Asaph
2007-12-01
The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C(16-18) fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses.
Chaperokine-induced signal transduction pathways.
Asea, Alexzander
2003-01-01
A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects--known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise.
Chaperokine-Induced Signal Transduction Pathways
Asea, Alexzander
2007-01-01
A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects - known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise. PMID:14686091
Bahrami, Babak; Shahrbaf, Shirin; Mirzakouchaki, Behnam; Ghalichi, Farzan; Ashtiani, Mohammed; Martin, Nicolas
2014-04-01
To investigate, by means of FE analysis, the effect of surface roughness treatments on the distribution of stresses at the bone-implant interface in immediately loaded mandibular implants. An accurate, high resolution, digital replica model of bone structure (cortical and trabecular components) supporting an implant was created using CT scan data and image processing software (Mimics 13.1; Materialize, Leuven, Belgium). An anatomically accurate 3D model of a mandibular-implant complex was created using a professional 3D-CAD modeller (SolidWorks, DassaultSystèmes Solid Works Corp; 2011). Finite element models were created with one of the four roughness treatments on the implant fixture surface. Of these, three were surface treated to create a uniform coating determined by the coefficient of friction (μ); these were either (1) plasma sprayed or porous-beaded (μ=1.0), (2) sandblasted (μ=0.68) or (3) polished (μ=0.4). The fourth implant had a novel two-part surface roughness consisting of a coronal polished component (μ=0.4) interfacing with the cortical bone, and a body plasma treated surface component (μ=1) interfacing with the trabecular bone. Finite element stress analysis was carried out under vertical and lateral forces. This investigation showed that the type of surface treatment on the implant fixture affects the stress at the bone-implant interface of an immediately loaded implant complex. Von Mises stress data showed that the two-part surface treatment created the better stress distribution at the implant-bone interface. The results from this FE computational analysis suggest that the proposed two-part surface treatment for IL implants creates lower stresses than single uniform treatments at the bone-implant interface, which might decrease peri-implant bone loss. Future investigations should focus on mechanical and clinical validation of these FE results. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
In vivo surface roughness evolution of a stressed metallic implant
NASA Astrophysics Data System (ADS)
Tan, Henry
2016-10-01
Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
Simulations of surface stress effects in nanoscale single crystals
NASA Astrophysics Data System (ADS)
Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.
2018-04-01
Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.
Histoplasma capsulatum Heat-Shock 60 Orchestrates the Adaptation of the Fungus to Temperature Stress
Guimarães, Allan Jefferson; Nakayasu, Ernesto S.; Sobreira, Tiago J. P.; Cordero, Radames J. B.; Nimrichter, Leonardo; Almeida, Igor C.; Nosanchuk, Joshua Daniel
2011-01-01
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins. Hsps are essential regulators of diverse constitutive metabolic processes and are markedly upregulated during stress. A 62 kDa Hsp (Hsp60) of Histoplasma capsulatum (Hc) is an immunodominant antigen and the major surface ligand to CR3 receptors on macrophages. However little is known about the function of this protein within the fungus. We characterized Hc Hsp60-protein interactions under different temperature to gain insights of its additional functions oncell wall dynamism, heat stress and pathogenesis. We conducted co-immunoprecipitations with antibodies to Hc Hsp60 using cytoplasmic and cell wall extracts. Interacting proteins were identified by shotgun proteomics. For the cell wall, 84 common interactions were identified among the 3 growth conditions, including proteins involved in heat-shock response, sugar and amino acid/protein metabolism and cell signaling. Unique interactions were found at each temperature [30°C (81 proteins), 37°C (14) and 37/40°C (47)]. There were fewer unique interactions in cytoplasm [30°C (6), 37°C (25) and 37/40°C (39)] and four common interactions, including additional Hsps and other known virulence factors. These results show the complexity of Hsp60 function and provide insights into Hc biology, which may lead to new avenues for the management of histoplasmosis. PMID:21347364
Surface Buoyancy Fluxes and the Strength of the Subpolar Gyre
NASA Astrophysics Data System (ADS)
Hogg, A. M.; Gayen, B.
2017-12-01
Midlatitude ocean gyres have long been considered to be driven by the mechanical wind stress on the ocean's surface (strictly speaking, the potential vorticity input from wind stress curl). However, surface buoyancy forcing (i.e. heating/cooling or freshening/salinification) also modifies the potential vorticity at the surface. Here, we present a simple argument to demonstrate that ocean gyres may (in principle) be driven by surface buoyancy forcing. This argument is derived in two ways: A Direct Numerical Simulation, driven purely by buoyancy forcing, which generates strong nonlinear gyers in the absence of wind stress; and A series of idealised eddy-resolving numerical ocean model simulations, in which wind stress and buoyancy flux are varied independently and together, are used to understand the relative importance of these two types of forcing. In these simulations, basin-scale gyres and western boundary currents with realistic magnitudes, remain even in the absence of mechanical forcing by surface wind stress. These results support the notion that surface buoyancy forcing can reorganise the potential vorticity in the ocean in such a way as to drive basin-scale gyres. The role of buoyancy is stronger in the subpolar gyre than in the subtropical gyre. We infer that surface buoyancy fluxes are likely to play a contributing role in governing the strength, variability and predictability of the North Atlantic subpolar gyre.
Dieterich, J.H.; Kilgore, B.D.
1996-01-01
A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.
Contour forming of metals by laser peening
Hackel, Lloyd; Harris, Fritz
2002-01-01
A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.
Graphical Representation and Origin of Piezoresistance Effect in Germanium
NASA Astrophysics Data System (ADS)
Matsuda, K.; Nagaoka, S.; Kanda, Y.
2017-06-01
The longitudinal and transverse piezoresistance coefficients of Ge at room temperature are represented graphically as a function of the crystal directions for orientation (001), (110) and (211) planes. Many valley model of conduction band and stress decoupling decoupling of the degenerate valence band into two bands of prolate and oblate ellipsoidal energy surface are shown to explain origin of the piezoresistance. One this basis, comparison between piezoresistance coefficient and theoretical model is discussed.
NASA Astrophysics Data System (ADS)
Zaal, K. J. J. M.
1991-06-01
In programming solutions of complex function theory, the complex logarithm function is replaced by the complex logarithmic function, introducing a discontinuity along the branch cut into the programmed solution which was not present in the mathematical solution. Recently, Liaw and Kamel presented their solution of the infinite anisotropic centrally cracked plate loaded by an arbitrary point force, which they used as Green's function in a boundary element method intended to evaluate the stress intensity factor at the tip of a crack originating from an elliptical home. Their solution may be used as Green's function of many more numerical methods involving anisotropic elasticity. In programming applications of Liaw and Kamel's solution, the standard definition of the logarithmic function with the branch cut at the nonpositive real axis cannot provide a reliable computation of the displacement field for Liaw and Kamel's solution. Either the branch cut should be redefined outside the domain of the logarithmic function, after proving that the domain is limited to a part of the plane, or the logarithmic function should be defined on its Riemann surface. A two dimensional line fractal can provide the link between all mesh points on the plane essential to evaluate the logarithm function on its Riemann surface. As an example, a two dimensional line fractal is defined for a mesh once used by Erdogan and Arin.
Electromagnetic δ -function sphere
NASA Astrophysics Data System (ADS)
Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Brevik, Iver
2017-10-01
We develop a formalism to extend our previous work on the electromagnetic δ -function plates to a spherical surface. The electric (λe) and magnetic (λg) couplings to the surface are through δ -function potentials defining the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The formalism incorporates dispersion. The electromagnetic Green's dyadic breaks up into transverse electric and transverse magnetic parts. We derive the Casimir interaction energy between two concentric δ -function spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive expressions for the Casimir self-energy and the total stress on a spherical shell using a δ -function potential, properly regulated by temporal and spatial point splitting, which are different from the conventional temporal point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy except in the case of an isorefractive sphere, which translates into λg=-λe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
König, Dirk, E-mail: dirk.koenig@unsw.edu.au
2016-08-15
Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCsmore » with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.« less
Computer Code for Nanostructure Simulation
NASA Technical Reports Server (NTRS)
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Analysis of Load Stress for Asphalt Pavement of Lean Concrete Base
NASA Astrophysics Data System (ADS)
Lijun, Suo; Xinwu, Wang
The study revealed that whether it is early distresses in asphalt pavement or not depends largely on working performance of base. In the field of asphalt pavement, it is widely accepted that lean concrete base, compared with the general semi-rigid base, has better working performance, such as high strength and good eroding resistance. Problem of early distresses in asphalt pavement, which caused by more traffic loadings, can be settled effectively when lean concrete is used in asphalt pavement. Traffic loading is important parameter used in the analysis of the new pavement design. However, few studies have done extensive and intensive research on the load stress for asphalt pavement of lean concrete base. Because of that, it is necessary to study the load stress for the asphalt pavement. In the paper, first of all, three-dimension finite element model of the asphalt pavement is created for the aim of doing mechanical analysis for the asphalt pavement. And then, the two main objectives of this study are investigated. One is analysis for load stress of lean concrete base, and the other is analysis for load stress of asphalt surface. The results show that load stress of lean concrete base decreases, decrease and increase with increase of base's thickness, surface's thickness and ratio of base's modulus to foundation's modulus respectively. So far as the asphalt surface is concerned, maximum shearing stress, which is caused by load, is evident in asphalt surface which is located in transverse contraction joint of lean concrete base of asphalt pavement. Maximum shearing stress decrease, decrease, decrease and increase respectively with increase of the surface's modulus, the surface's thickness, base's thickness and ratio of base's modulus to foundation's modulus.
Investigating failure behavior and origins under supposed "shear bond" loading.
Sultan, Hassam; Kelly, J Robert; Kazemi, Reza B
2015-07-01
This study evaluated failure behavior when resin-composite cylinders bonded to dentin fractured under traditional "shear" testing. Failure was assessed by scaling of failure loads to changes in cylinder radii and fracture surface analysis. Three stress models were examined including failure by: bonded area; flat-on-cylinder contact; and, uniformly-loaded, cantilevered-beam. Nine 2-mm dentin occlusal dentin discs for each radii tested were embedded in resin and bonded to resin-composite cylinders; radii (mm)=0.79375; 1.5875; 2.38125; 3.175. Samples were "shear" tested at 1.0mm/min. Following testing, disks were finished with silicone carbide paper (240-600grit) to remove residual composite debris and tested again using different radii. Failure stresses were calculated for: "shear"; flat-on-cylinder contact; and, bending of a uniformly-loaded cantilevered beam. Stress equations and constants were evaluated for each model. Fracture-surface analysis was performed. Failure stresses calculated as flat-on-cylinder contact scaled best with its radii relationship. Stress equation constants were constant for failure from the outside surface of the loaded cylinders and not with the bonded surface area or cantilevered beam. Contact failure stresses were constant over all specimen sizes. Fractography reinforced that failures originated from loaded cylinder surface and were unrelated to the bonded surface area. "Shear bond" testing does not appear to test the bonded interface. Load/area "stress" calculations have no physical meaning. While failure is related to contact stresses, the mechanism(s) likely involve non-linear damage accumulation, which may only indirectly be influenced by the interface. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Yoon, J A; Kim, D Y; Sohn, M K; Lee, J; Lee, S-G; Lee, Y-S; Han, E Y; Joo, M C; Oh, G-J; Han, J; Lee, S W; Park, M; Chang, W H; Shin, Y-I; Kim, Y-H
2016-11-01
We investigated the effect of stress hyperglycemia on the functional outcomes of non-diabetic hemorrhagic stroke. In addition, we investigated the usefulness of intensive rehabilitation for improving functional outcomes in patients with stress hyperglycemia. Non-diabetic hemorrhagic stroke patients were recruited and divided into two groups: intracerebral hemorrhage (ICH) (n = 165) and subarachnoid hemorrhage (SAH) (n = 156). Each group was divided into non-diabetics with or without stress hyperglycemia. Functional assessments were performed at 7 days and 3, 6 and 12 months after stroke onset. The non-diabetic with stress hyperglycemia groups were again divided into two groups who either received or did not receive intensive rehabilitation treatment. Serial functional outcome was compared between groups. For the ICH group, patients with stress hyperglycemia had worse modified Rankin Scale, National Institutes of Health Stroke Scale, Functional Ambulatory Category and Korean Mini-Mental State Examination scores than patients without stress hyperglycemia. For the SAH group, patients with stress hyperglycemia had worse scores on all functional assessments than patients without stress hyperglycemia at all time-points. After intensive rehabilitation treatment of patients with stress hyperglycemia, the ICH group had better scores on Functional Ambulatory Category and the SAH group had better scores on all functional assessments than patients without intensive rehabilitation treatment. Stress hyperglycemia affects the long-term prognosis of non-diabetic hemorrhagic stroke patients. Among stress hyperglycemia patients, intensive rehabilitation can enhance functional improvement after stroke. © 2016 EAN.
On the rumpling instability in thermal barrier systems
NASA Astrophysics Data System (ADS)
Panat, Rahul Padmakar
Thermal barrier coatings (TBCs) are protective multi-layered metal-ceramic coatings used in hot sections of jet engines and gas turbines. The TBCs are composed of a superalloy substrate, an intermediate metallic bond coat (BC) and a ceramic topcoat. The TBCs are beset by reliability problems arising from delamination of the ceramic topcoat due to various instabilities in the system. The present work examines one such instability of "rumpling", or progressive roughening of the BC surface in the BC-superalloy systems upon high temperature exposure. A combined experimental and analytical approach is taken to study the rumpling phenomenon. Thermal cycling and isothermal experiments are carried out in air and in vacuum to identify the driving force and the kinetics governing rumpling. The experiments show that a nominally flat BC surface rumples to a wavelength of about 60--100 mum, and an amplitude of about 4--8 mum. The rumpling is seen to be relatively insensitive to the initial BC surface morphology. Significant initial flaws are not necessary for rumpling to occur. Further, rumpling occurs even in absence of thermal cycling. To explain BC rumpling, we develop a linear stability model for surface evolution of BCs under a remote stress. The driving force for this process is the in-plane stress in the BC due to its thermal mismatch with the substrate as indicated by the experimental results. The BC volume and BC surface diffusion governs the deformation kinetics. A governing equation is derived that gives the amplitude evolution of BC surface perturbations as a function of time. The analysis establishes a range of wavelengths for which the perturbation amplitude increases at a significantly higher rate as compared with other wavelengths. At the dominant instability wavelength, under low-stress and high-temperature conditions, the model shows that the roughening is caused only by volume diffusion, while smoothing is caused only by surface diffusion. The results from this thermodynamic model agree with the experimental observations quite well. Particular BC material properties and testing conditions are identified that control the BC rumpling and hence an important TBC failure mode. Guidelines to improve TBC performance are presented.
Investigation of fatigue strength of tool steels in sheet-bulk metal forming
NASA Astrophysics Data System (ADS)
Pilz, F.; Gröbel, D.; Merklein, M.
2018-05-01
To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.
NASA Astrophysics Data System (ADS)
Hou, X. D.; Jennett, N. M.
2017-11-01
Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.
Fast and ultrafast endocytosis.
Watanabe, Shigeki; Boucrot, Emmanuel
2017-08-01
Clathrin-mediated endocytosis (CME) is the main endocytic pathway supporting housekeeping functions in cells. However, CME may be too slow to internalize proteins from the cell surface during certain physiological processes such as reaction to stress hormones ('fight-or-flight' reaction), chemotaxis or compensatory endocytosis following exocytosis of synaptic vesicles or hormone-containing vesicles. These processes take place on a millisecond to second timescale and thus require very rapid cellular reaction to prevent overstimulation or exhaustion of the response. There are several fast endocytic processes identified so far: macropinocytosis, activity-dependent bulk endocytosis (ABDE), fast-endophilin-mediated endocytosis (FEME), kiss-and-run and ultrafast endocytosis. All are clathrin-independent and are not constitutively active but may use different molecular mechanisms to rapidly remove receptors and proteins from the cell surface. Here, we review our current understanding of fast and ultrafast endocytosis, their functions, and molecular mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kimes, D. S.
1979-01-01
The effects of vegetation canopy structure on thermal infrared sensor response must be understood before vegetation surface temperatures of canopies with low percent ground cover can be accurately inferred. The response of a sensor is a function of vegetation geometric structure, the vertical surface temperature distribution of the canopy components, and sensor view angle. Large deviations between the nadir sensor effective radiant temperature (ERT) and vegetation ERT for a soybean canopy were observed throughout the growing season. The nadir sensor ERT of a soybean canopy with 35 percent ground cover deviated from the vegetation ERT by as much as 11 C during the mid-day. These deviations were quantitatively explained as a function of canopy structure and soil temperature. Remote sensing techniques which determine the vegetation canopy temperature(s) from the sensor response need to be studied.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization. PMID:28054635
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece.
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-05
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
NASA Astrophysics Data System (ADS)
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
Effects of sediment supply on surface textures of gravel‐bed rivers
Buffington, John M.; Montgomery, David R.
1999-01-01
Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (D50′). We find that surface median grain size (D50) varies inversely with sediment supply rate and systematically approaches the competent value (D50′) at low equilibrium transport rates. Furthermore, equilibrium transport rate is a power function of the difference between applied and critical shear stresses and is therefore a power function of the difference between competent and observed median grain sizes (D50′ and D50). Consequently, we propose that the difference between predicted and observed median grain sizes can be used to determine sediment supply rate in equilibrium channels. Our analysis framework collapses data from different studies toward a single relationship between sediment supply rate and surface grain size. While the approach appears promising, we caution that it has been tested only on a limited set of laboratory data and a narrow range of channel conditions.
Hayashi, Teruo
2015-04-01
Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments. © 2014 The Author. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
A three-dimensional muscle activity imaging technique for assessing pelvic muscle function
NASA Astrophysics Data System (ADS)
Zhang, Yingchun; Wang, Dan; Timm, Gerald W.
2010-11-01
A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.
Determination of surface stress by Seasat-SASS - A case study with JASIN data
NASA Technical Reports Server (NTRS)
Liu, W. T.; Large, W. G.
1981-01-01
The values of sea surface stress determined with the dissipation method and those determined with a surface-layer model from observations on F.S. Meteor during the Joint Air-Sea Interaction (JASIN) Experiment are compared with the backscatter coefficients measured by the scatterometer SASS on the satellite Seasat. This study demonstrates that SASS can be used to determine surface stress directly as well as wind speed. The quality of the surface observations used in the calibration of the retrieval algorithms, however, is important. This sample of measurements disagrees with the predictions by the existing wind retrieval algorithm under non-neutral conditions and the discrepancies depend on atmospheric stability.
Size effects and strain localization in atomic-scale cleavage modeling
NASA Astrophysics Data System (ADS)
Elsner, B. A. M.; Müller, S.
2015-09-01
In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.