Science.gov

Sample records for stress impairs spatial

  1. Impairments of spatial working memory and attention following acute psychosocial stress.

    PubMed

    Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R

    2015-04-01

    Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory.

  2. Peripubertal anxiety profile can predict predisposition to spatial memory impairments following chronic stress.

    PubMed

    Bellani, Rudy; Luecken, Linda J; Conrad, Cheryl D

    2006-01-30

    We tested the hypothesis that peripubertal anxiety levels are predictive of the detrimental effects of chronic stress on hippocampal-dependent spatial memory. The anxiety levels of peripubertal male Sprague-Dawley rats (43 days old) were characterized using open field and elevated plus mazes, followed by chronic restraint stress for 6 h/day/21 days beginning in young adulthood (75 days). Following chronic stress treatment, rats were tested on the spatial Y-maze using two inter-trial interval levels of difficulty (4 h: 1 day post-chronic stress; 1 min: 2 days post-chronic stress). As expected, all groups displayed intact spatial memory in the less difficult 1 min version of the Y-maze. However, in the 4 h version of the Y-maze, chronically stressed high anxiety rats showed impaired spatial memory, while chronically stressed low anxiety and control (low and high anxiety) rats displayed intact spatial memory. Moreover, a month after chronic stress ended, high anxiety rats had significantly higher basal corticosterone levels than low anxiety rats (control and stress). These results indicate that peripubertal anxiety and chronic stress interact to influence hippocampal-dependent spatial memory in adulthood.

  3. Sex-specific impairment of spatial memory in rats following a reminder of predator stress.

    PubMed

    Burke, Hanna M; Robinson, Cristina M; Wentz, Bethany; McKay, Jerel; Dexter, Kyle W; Pisansky, Julia M; Talbot, Jeffery N; Zoladz, Phillip R

    2013-07-01

    It has been suggested that cognitive impairments exhibited by people with post-traumatic stress disorder (PTSD) result from intrusive, flashback memories transiently interfering with ongoing cognitive processing. Researchers have further speculated that females are more susceptible to developing PTSD because they form stronger traumatic memories than males, hence females may be more sensitive to the negative effects of intrusive memories on cognition. We have examined how the reminder of a naturalistic stress experience would affect rat spatial memory and if sex was a contributing factor to such effects. Male and female Sprague-Dawley rats were exposed, without contact, to an adult female cat for 30 min. Five weeks later, the rats were trained to locate a hidden platform in the radial-arm water maze and given a single long-term memory test trial 24 h later. Before long-term memory testing, the rats were given a 30-min reminder of the cat exposure experienced 5 weeks earlier. The results indicated that the stress reminder impaired spatial memory in the female rats only. Control manipulations revealed that this effect was not attributable to the original cat exposure adversely impacting learning that occurred 5 weeks later, or to merely exposing rats to a novel environment or predator-related cues immediately before testing. These findings provide evidence that the reminder of a naturalistic stressful experience can impair cognitive processing in rats; moreover, since female rats were more susceptible to the memory-impairing effects of the stress reminder, the findings could lend insight into the existing sex differences in susceptibility to PTSD.

  4. Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents.

    PubMed

    Nicolle, M M; Gonzalez, J; Sugaya, K; Baskerville, K A; Bryan, D; Lund, K; Gallagher, M; McKinney, M

    2001-01-01

    Neurons and glia within the hippocampus of aged, spatial learning-impaired Long-Evans rats exhibit uniquely altered gene expression profiles, and we have postulated oxidative stress as the basis for this. To test this hypothesis we quantitated the extent of protein and nucleic acid oxidative damage, evaluated the status of mitochondrial DNA integrity, and examined several signaling entities and molecular indicators frequently associated with oxidative stress and gliosis. Immunoblotting demonstrated elevated heme oxygenase-1 in the aged-impaired hippocampus and immunocytochemistry suggested that heme oxygenase-1 is largely cytosolic and at least partly neuronal in nature. In the aged-impaired group, immunoreactivity to 8-hydroxy-2'-deoxyguanosine, an oxidative nucleic acid adduct, was found to be elevated in the dentate gyrus and in area CA1 of the hippocampal formation. Isolated mitochondrial DNA was found to be significantly damaged in the aged-impaired group. In the aged learning-impaired rats only, proteins in a 65-kDa band were found to contain excessive levels of carbonyl residues. Glial activation was examined by in situ hybridization histochemistry to tumor necrosis factor alpha and by immunocytochemistry with OX-6, which detects activated microglia. White matter in aged brains exhibited a modest up-regulation of tumor necrosis factor alpha mRNA and OX-6 immunoreactivity, but the hippocampal formation expressed tumor necrosis factor alpha mRNA equivalent to young animals and few OX-6-positive microglia. The mRNA for manganese-dependent superoxide dismutase, which is elevated in the aged hippocampus, was found preferentially expressed in neurons. We conclude that aged hippocampal neurons appear to be under oxidative stress and this is more severe in the learning-impaired subjects, suggesting a possible basis for age-induced cognitive decline.

  5. Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region.

    PubMed

    Aleisa, Abdulaziz M; Alzoubi, Karem H; Gerges, Nashaat Z; Alkadhi, Karim A

    2006-08-01

    The effect of chronic nicotine treatment on chronic psychosocial stress-induced impairment of short-term memory and long-term potentiation (LTP) was determined. An "intruder" stress model was used to induce psychosocial stress for 4-6 wk, during which rats were injected with saline or nicotine (1 mg/kg s.c.) twice a day. The radial arm water maze memory task was used to test hippocampus-dependent spatial memory. Chronic psychosocial stress impaired short-term memory without affecting the learning phase or long-term memory. Concurrent chronic nicotine treatment prevented stress-induced short-term memory impairment. In normal rats chronic nicotine treatment had no effect on learning and memory. Extracellular recordings from the CA1 region of anaesthetized rats showed severe reduction of LTP magnitude in stressed rats, which was normalized in nicotine-treated stressed rats. Nicotine had no effect on LTP in control animals. These results showed that chronic nicotine treatment improved hippocampus-dependent spatial memory and LTP only when impaired by stress.

  6. Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates.

    PubMed

    Touyarot, K; Venero, C; Sandi, C

    2004-02-01

    Although chronic stress has been reported to induce deleterious effects on hippocampal structure and function, the possible existence of individual differences in the vulnerability to develop stress-induced cognitive alterations was hypothesized. This study was designed to evaluate (i) whether individual variability in behavioural reactivity to novelty could be related to a differential vulnerability to show spatial learning deficits after chronic stress in young adult rats, and (ii) to what extent, could individual differences in stress-induced cognitive alterations be related to alterations in specific neurobiological substrates. Four month-old Wistar male rats were classified according to their locomotor reactivity to a novel environment, as either low (LR) or highly (HR) reactive, and then either submitted to psychosocial stress for 21-days (consisting of the daily cohabitation of each young adult rat with a new middle-aged rat) or left undisturbed. The results showed that psychosocial stress induced a marked deficit in spatial learning in the water maze in HR, but not in LR, rats. Then, a second experiment investigated the possible differential expression of corticosteroid receptors (MR and GR) and cell adhesion molecules (NCAM and L1) in the hippocampus of HR and LR rats, both under basal conditions and after exposure to chronic social stress. Although chronic stress induced a reduction on the hippocampal expression of MRs and the NCAM-140 isoform, the levels of these molecules did not differ between stressed rats with and without spatial learning impairments; i.e., between HR- and LR-stressed rats, respectively. Nevertheless, it should be noted that the reduction of the hippocampal expression of NCAM-140 induced by psychosocial stress was particularly marked in HR stressed rats. However, the expression of GRs, NCAM-120 and NCAM-180 isoforms, and L1, was not affected by stress, regardless of the reactivity of the animals. Therefore, although we failed to find

  7. MDMA Pretreatment Leads to Mild Chronic Unpredictable Stress-induced Impairments in Spatial Learning

    PubMed Central

    Cunningham, Jacobi I.; Raudensky, Jamie; Tonkiss, John; Yamamoto, Bryan K.

    2009-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a drug of abuse world-wide and a selective serotonin (5-HT) neurotoxin. An important factor in the risk of drug abuse and relapse is stress. Although multiple parallels exist between MDMA abuse and stress including effects on 5-HTergic neurotransmission, few studies have investigated the consequences of combined exposure to MDMA and chronic stress. Therefore, rats were pretreated with MDMA and exposed 7 days later to 10 days of mild chronic unpredictable stress (CUS). MDMA pretreatment was hypothesized to enhance the effects of CUS leading to enhanced 5-HT transporter (SERT) depletion in the hippocampus and increased anxiety and cognitive impairment. While MDMA alone increased anxiety-like behavior on the elevated plus maze, CUS alone or in combination with MDMA pretreatment did not increase anxiety-like behavior. In contrast, MDMA pretreatment led to CUS-induced learning impairment in the Morris water maze but not an enhanced depletion of hippocampal SERT protein. These results show that prior exposure to MDMA leads to stress-induced impairments in learning behavior that is not otherwise observed with stress alone and appear unrelated to an enhanced depletion of SERT. PMID:19824774

  8. Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory.

    PubMed

    Mika, Agnieszka; Mazur, Gabriel J; Hoffman, Ann N; Talboom, Joshua S; Bimonte-Nelson, Heather A; Sanabria, Federico; Conrad, Cheryl D

    2012-10-01

    Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, the fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague-Dawley rats were first trained on the RAWM and subsequently trained on FMI. After acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when sucrose reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing imprecision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher's r-to-z transformation revealed no significant differences between control and stress groups with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been directly compared within the same animals after chronic stress, using FMI, an appetitive task, and RAWM, a nonappetitive task.

  9. The impact of experienced stress on aged spatial discrimination: Cortical overreliance as a result of hippocampal impairment.

    PubMed

    Marshall, Amanda C; Cooper, Nicholas R; Geeraert, Nicolas

    2016-03-01

    A large body of neuroscientific work indicates that exposure to experienced stress causes damage to both cortical and hippocampal cells and results in impairments to cognitive abilities associated with these structures. Similarly, work within the domain of cognitive aging demonstrates that elderly participants who report experiencing greater amounts of stress show reduced levels of cognitive functioning. The present article attempted to combine both findings by collecting data from elderly and young participants who completed a spatial discrimination paradigm developed by Reagh and colleagues [Reagh et al. (2013) Hippocampus 24:303-314] to measure hippocampal-mediated cognitive processes. In order to investigate the effect of stress on the cortex and, indirectly, the hippocampus, it paired the paradigm with electroencephalographic recordings of the theta frequency band, which is thought to reflect cortical/hippocampal interactions. Findings revealed that elderly participants with high levels of experienced stress performed significantly worse on target recognition and lure discrimination and demonstrated heightened levels of cortical theta synchronization compared with young and elderly low stress counterparts. Results therefore provided further evidence for the adverse effect of stress on cognitive aging and indicate that impaired behavioral performance among high stress elderly may coincide with an overreliance on cortical cognitive processing strategies as a result of early damage to the hippocampus.

  10. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats.

    PubMed

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-07-28

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals.

  11. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    PubMed

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-07

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences.

  12. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    PubMed

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-02-25

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  13. Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake.

    PubMed

    He, Jin; Guo, Ruixian; Qiu, Pengxin; Su, Xingwen; Yan, Guangmei; Feng, Jianqiang

    2017-03-20

    Acute stress impairs the hippocampus-dependent spatial memory retrieval, and its synaptic mechanisms are associated with hippocampal CA1 long-term depression (LTD) enhancement in the adult rats. Endogenous hydrogen sulfide (H2S) is recognized as a novel gasotransmitter and has the neural protective roles. However, very little attention has been paid to understanding the effects of H2S on spatial memory retrieval impairment. We observed the protective effects of NaHS (a donor of H2S) against spatial memory retrieval impairment caused by acute stress and its synaptic mechanisms. Our results showed that NaHS abolished spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress, but not by glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic (tPDC), indicating that the activation of glutamate transporters is necessary for exogenous H2S to exert its roles. Moreover, NaHS restored the decreased glutamate uptake in the hippocampal CA1 synaptosomal fraction caused by acute stress. Dithiothreitol (DTT, a disulfide reducing agent) abolished a decrease in the glutamate uptake caused by acute stress, and NaHS eradicated the decreased glutamate uptake caused by 5,5'-dithio-bis(2-nitrobenzoic)acid (DTNB, a thiol oxidizing agent), collectively, revealing that exogenous H2S increases glutamate uptake by reducing disulfide bonds of the glutamate transporters. Additionally, NaHS inhibited the increased expression level of phosphorylated c-Jun-N-terminal kinase (JNK) in the hippocampal CA1 region caused by acute stress. The JNK inhibitor SP600125 eliminated spatial memory retrieval impairment, hippocampal CA1 LTD enhancement and the decreased glutamate uptake caused by acute stress, indicating that exogenous H2S exerts these roles by inhibiting the activation of JNK signaling pathway.

  14. Sex-specific impairment and recovery of spatial learning following the end of chronic unpredictable restraint stress: potential relevance of limbic GAD.

    PubMed

    Ortiz, J Bryce; Taylor, Sara B; Hoffman, Ann N; Campbell, Alyssa N; Lucas, Louis R; Conrad, Cheryl D

    2015-04-01

    Chronic restraint stress alters hippocampal-dependent spatial learning and memory in a sex-dependent manner, impairing spatial performance in male rats and leaving intact or facilitating performance in female rats. Moreover, these stress-induced spatial memory deficits improve following post-stress recovery in males. The current study examined whether restraint administered in an unpredictable manner would eliminate these sex differences and impact a post-stress period on spatial ability and limbic glutamic acid decarboxylase (GAD65) expression. Male (n=30) and female (n=30) adult Sprague-Dawley rats were assigned to non-stressed control (Con), chronic stress (Str-Imm), or chronic stress given a post-stress recovery period (Str-Rec). Stressed rats were unpredictably restrained for 21 days using daily non-repeated combinations of physical context, duration, and time of day. Then, all rats were tested on the radial arm water maze (RAWM) for 2 days and given one retention trial on the third day, with brains removed 30min later to assess GAD65 mRNA. In Str-Imm males, deficits occurred on day 1 of RAWM acquisition, an impairment that was not evident in the Str-Rec group. In contrast, females did not show significant outcomes following chronic stress or post-stress recovery. In males, amygdalar GAD65 expression negatively correlated with RAWM performance on day 1. In females, hippocampal CA1 GAD65 positively correlated with RAWM performance on day 1. These results demonstrate that GABAergic function may contribute to the sex differences observed following chronic stress. Furthermore, unpredictable restraint and a recovery period failed to eliminate the sex differences on spatial learning and memory.

  15. Fus1 KO Mouse As a Model of Oxidative Stress-Mediated Sporadic Alzheimer's Disease: Circadian Disruption and Long-Term Spatial and Olfactory Memory Impairments

    PubMed Central

    Coronas-Samano, Guillermo; Baker, Keeley L.; Tan, Winston J. T.; Ivanova, Alla V.; Verhagen, Justus V.

    2016-01-01

    Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4–5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral

  16. Loss of form vision impairs spatial imagery

    PubMed Central

    Occelli, Valeria; Lin, Jonathan B.; Lacey, Simon; Sathian, K.

    2014-01-01

    Previous studies have reported inconsistent results when comparing spatial imagery performance in the blind and the sighted, with some, but not all, studies demonstrating deficits in the blind. Here, we investigated the effect of visual status and individual preferences (“cognitive style”) on performance of a spatial imagery task. Participants with blindness resulting in the loss of form vision at or after age 6, and age- and gender-matched sighted participants, performed a spatial imagery task requiring memorization of a 4 × 4 lettered matrix and subsequent mental construction of shapes within the matrix from four-letter auditory cues. They also completed the Santa Barbara Sense of Direction Scale (SBSoDS) and a self-evaluation of cognitive style. The sighted participants also completed the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). Visual status affected performance on the spatial imagery task: the blind performed significantly worse than the sighted, independently of the age at which form vision was completely lost. Visual status did not affect the distribution of preferences based on self-reported cognitive style. Across all participants, self-reported verbalizer scores were significantly negatively correlated with accuracy on the spatial imagery task. There was a positive correlation between the SBSoDS score and accuracy on the spatial imagery task, across all participants, indicating that a better sense of direction is related to a more proficient spatial representation and that the imagery task indexes ecologically relevant spatial abilities. Moreover, the older the participants were, the worse their performance was, indicating a detrimental effect of age on spatial imagery performance. Thus, spatial skills represent an important target for rehabilitative approaches to visual impairment, and individual differences, which can modulate performance, should be taken into account in such approaches. PMID:24678294

  17. Developmental 3,4-methylenedioxymethamphetamine (MDMA) impairs sequential and spatial but not cued learning independent of growth, litter effects or injection stress.

    PubMed

    Williams, Michael T; Morford, LaRonda L; Wood, Sandra L; Rock, Stephanie L; McCrea, Anne E; Fukumura, Masao; Wallace, Tanya L; Broening, Harry W; Moran, Mary S; Vorhees, Charles V

    2003-04-04

    Previously, we have shown that rats administered MDMA from postnatal (P) days 11-20 had reductions in body weight during the period of treatment and as adults they had deficits in sequential and spatial learning and memory. In the present study, to control for weight reductions, we used litters with double the number of offspring to induce growth restriction comparable to that of standard size litters treated with MDMA. Litters were treated twice daily from P11 to 20 with vehicle or MDMA (20 mg/kg) or only weighed. Males, but not females, exposed to MDMA had longer latencies and more errors in the Cincinnati water maze compared to males of the other treatments. In the Morris water maze (210 cm pool, 10x10 cm platform), the MDMA animals were impaired relative to all other treatments during acquisition. Only the MDMA females showed deficits when the platform was shifted to a new location, however, both MDMA males and females were impaired when the location of the platform was again shifted and a reduced platform (5x5 cm) used. No differences were observed in the ability to swim a straight channel, locate a platform with a cue, or the endocrine response to forced swim among the treatment groups. No differences were seen between animals injected with saline and those only weighed. The data suggest that factors, such as growth retardation, multiple injections, or the composition of the litter, do not affect the development of learning and memory impairments resulting from P11 to 20 MDMA exposure. The large litter approach offers a novel method to control for undernutrition during the preweaning period in rodents.

  18. Indoor Spatial Updating With Impaired Vision

    PubMed Central

    Legge, Gordon E.; Granquist, Christina; Baek, Yihwa; Gage, Rachel

    2016-01-01

    Purpose Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Methods Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. Results The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. Conclusions People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient. PMID:27978556

  19. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-07-20

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress.

  20. Acute stress selectively impairs learning to act

    PubMed Central

    de Berker, Archy O.; Tirole, Margot; Rutledge, Robb B.; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  1. Auditory spatial localization: Developmental delay in children with visual impairments.

    PubMed

    Cappagli, Giulia; Gori, Monica

    2016-01-01

    For individuals with visual impairments, auditory spatial localization is one of the most important features to navigate in the environment. Many works suggest that blind adults show similar or even enhanced performance for localization of auditory cues compared to sighted adults (Collignon, Voss, Lassonde, & Lepore, 2009). To date, the investigation of auditory spatial localization in children with visual impairments has provided contrasting results. Here we report, for the first time, that contrary to visually impaired adults, children with low vision or total blindness show a significant impairment in the localization of static sounds. These results suggest that simple auditory spatial tasks are compromised in children, and that this capacity recovers over time.

  2. Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses.

    PubMed

    Chen, Yuncai; Molet, Jenny; Lauterborn, Julie C; Trieu, Brian H; Bolton, Jessica L; Patterson, Katelin P; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2016-11-02

    Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder.

  3. Learning under stress impairs memory formation.

    PubMed

    Schwabe, Lars; Wolf, Oliver T

    2010-02-01

    Converging lines of evidence indicate that stress either before or after learning influences memory. Surprisingly little is known about how memory is affected when people learn while they are stressed. Here, we examined the impact of learning under stress in 48 healthy young men and women. Participants were exposed to stress (socially evaluated cold pressor test) or a control condition while they learned emotional words and neutral words that were either conceptually associated with or unrelated to the stressor. Memory was assessed in free recall and recognition tests 24h after learning. Learning under stress reduced both free recall and recognition performance, irrespective of the emotionality and the stress context relatedness of the words. While the effect of stress was comparable in men and women, women outperformed men in the free recall test. These findings show a memory impairing effect of learning under stress in humans and challenge some assumptions of current theories about the impact of stress around the time of learning on memory formation.

  4. Spatial Coding of Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea

    2012-01-01

    The aim of this study is to examine the ability of children and adolescents with visual impairments to code and represent near space. Moreover, it examines the impact of the strategies they use and individual differences in their performance. A total of 30 individuals with visual impairments up to the age of 18 were given eight different object…

  5. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    PubMed

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring.

  6. Impairment of auditory spatial localization in congenitally blind human subjects.

    PubMed

    Gori, Monica; Sandini, Giulio; Martinoli, Cristina; Burr, David C

    2014-01-01

    Several studies have demonstrated enhanced auditory processing in the blind, suggesting that they compensate their visual impairment in part with greater sensitivity of the other senses. However, several physiological studies show that early visual deprivation can impact negatively on auditory spatial localization. Here we report for the first time severely impaired auditory localization in the congenitally blind: thresholds for spatially bisecting three consecutive, spatially-distributed sound sources were seriously compromised, on average 4.2-fold typical thresholds, and half performing at random. In agreement with previous studies, these subjects showed no deficits on simpler auditory spatial tasks or with auditory temporal bisection, suggesting that the encoding of Euclidean auditory relationships is specifically compromised in the congenitally blind. It points to the importance of visual experience in the construction and calibration of auditory spatial maps, with implications for rehabilitation strategies for the congenitally blind.

  7. A critical review of chronic stress effects on spatial learning and memory.

    PubMed

    Conrad, Cheryl D

    2010-06-30

    The purpose of this review is to evaluate the effects of chronic stress on hippocampal-dependent function, based primarily upon studies using young, adult male rodents and spatial navigation tasks. Despite this restriction, variability amongst the findings was evident and how or even whether chronic stress influenced spatial ability depended upon the type of task, the dependent variable measured and how the task was implemented, the type and duration of the stressors, housing conditions of the animals that include accessibility to food and cage mates, and duration from the end of the stress to the start of behavioral assessment. Nonetheless, patterns emerged as follows: For spatial memory, chronic stress impairs spatial reference memory and has transient effects on spatial working memory. For spatial learning, however, chronic stress effects appear to be task-specific: chronic stress impairs spatial learning on appetitively motivated tasks, such as the radial arm maze or holeboard, tasks that evoke relatively mild to low arousal components from fear. But under testing conditions that evoke moderate to strong arousal components from fear, such as during radial arm water maze testing, chronic stress appears to have minimal impairing effects or may even facilitate spatial learning. Chronic stress clearly impacts nearly every brain region and thus, how chronic stress alters hippocampal spatial ability likely depends upon the engagement of other brain structures during behavioral training and testing.

  8. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    PubMed

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  9. Chronic stress impairs collateral blood flow recovery in aged mice.

    PubMed

    Lassance-Soares, Roberta M; Sood, Subeena; Chakraborty, Nabarun; Jhamnani, Sunny; Aghili, Nima; Nashin, Hajra; Hammamieh, Rasha; Jett, Marti; Epstein, Stephen E; Burnett, Mary Susan

    2014-11-01

    Chronic stress is associated with increased risk of cardiovascular diseases. Aging is also associated with vascular dysfunction. We hypothesize that chronic stress accelerates collateral dysfunction in old mice. Mice were subjected to either chronic social defeat (CSD) or chronic cold stress (CCS). The CSD mice were housed in a box inside an aggressor's cage and exposed to the aggressor. The CCS group was placed in iced water. After chronic stress, mice underwent femoral artery ligation (FAL) and flow recovery was measured. For the CSD group, appearance and use scores of the foot and a behavioral test were performed. CSD impaired collateral flow recovery after FAL. Further, stressed mice had greater ischemic damage, impaired foot function, and altered behavior. The CCS mice also showed impaired collateral flow recovery. Chronic stress causes hind limb collateral dysfunction in old mice, a conclusion reinforced by the fact that two types of stress produced similar changes.

  10. Sex differences in stress effects on response and spatial memory formation.

    PubMed

    Guenzel, Friederike M; Wolf, Oliver T; Schwabe, Lars

    2014-03-01

    Stress and stress hormones are known to affect learning and memory processes. However, although effects of stress on hippocampus-dependent declarative learning and memory are well-documented, relatively little attention has been paid to the impact of stress on striatum-dependent stimulus-response (S-R) learning and memory. Recent evidence indicates that glucocorticoid stress hormones shortly after learning enhance S-R memory consolidation, whereas stress prior to retention testing impairs S-R memory retrieval. Whether stress affects also the acquisition of S-R memories in humans remains unclear. For this reason, we examined here the effects of acute stress on S-R memory formation and contrasted these stress effects with those on hippocampus-dependent spatial memory. Healthy men and women underwent a stressor (socially evaluated cold pressor test, SECPT) or a control manipulation before they completed an S-R task and two spatial learning tasks. Memory was assessed one week later. Our data showed that stress impaired S-R memory performance in men but not in women. Conversely, spatial memory was impaired by stress in women but not in men. These findings provide further evidence that stress may alter learning and memory processes beyond the hippocampus. Moreover, our data underline that participants' sex may play a critical role in the impact of stress on multiple memory systems.

  11. Exploring stress-induced cognitive impairment in middle aged, centrally obese adults.

    PubMed

    Lasikiewicz, N; Hendrickx, H; Talbot, D; Dye, L

    2013-01-01

    Extensive research has shown that psychosocial stress can induce cognitive impairment. However, few studies have explored impairment following acute stress exposure in individuals with central obesity. Central obesity co-occurs with glucocorticoid excess and can lead to elevated cortisol responses to stress. It is not clear whether centrally obese individuals exhibit greater cognitive impairment following acute stress. Cortisol responses to stress versus no-stress control were compared in 66 high- and low waist to hip ratio (WHR) middle-aged adults (mean age of 46 ± 7.17 years). Cognitive performance post exposure was assessed using Cambridge Automated Neuropsychological Test Battery. It was hypothesised that high WHR would exhibit greater cortisol in response to stress exposure and would show poorer cognitive performance. Males, particularly of high WHR, tended to secrete greater cortisol during stress exposure. Exposure to stress and increasing WHR were specifically associated with poorer performance on declarative memory tasks (spatial recognition memory and paired associates learning). These data tentatively suggest a reduction in cognitive performance in those with central obesity following exposure to acute stress. Further research is needed to elucidate the effects of stress on cognition in this population.

  12. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    PubMed

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini

    2015-12-01

    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 < 30 < 60 days) is correlated with a decrease in hippocampal subfield neuronal arborization and dendritic spines. These findings led us to conclude that exposure to CW MW radiation leads to oxidative/nitrosative stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss.

  13. Acute stress impairs cognitive flexibility in men, not women.

    PubMed

    Shields, Grant S; Trainor, Brian C; Lam, Jovian C W; Yonelinas, Andrew P

    2016-09-01

    Psychosocial stress influences cognitive abilities, such as long-term memory retrieval. However, less is known about the effects of stress on cognitive flexibility, which is mediated by different neurobiological circuits and could thus be regulated by different neuroendocrine pathways. In this study, we randomly assigned healthy adults to an acute stress induction or control condition and subsequently assessed participants' cognitive flexibility using an open-source version of the Wisconsin Card Sort task. Drawing on work in rodents, we hypothesized that stress would have stronger impairing effects on cognitive flexibility in men than women. As predicted, we found that stress impaired cognitive flexibility in men but did not significantly affect women. Our results thus indicate that stress exerts sex-specific effects on cognitive flexibility in humans and add to the growing body of research highlighting the need to consider sex differences in effects of stress.

  14. A high fructose diet impairs spatial memory in male rats.

    PubMed

    Ross, A P; Bartness, T J; Mielke, J G; Parent, M B

    2009-10-01

    Over the past three decades there has been a substantial increase in the amount of fructose consumed by North Americans. Recent evidence from rodents indicates that hippocampal insulin signaling facilitates memory and excessive fructose consumption produces hippocampal insulin resistance. Based on this evidence, the present study tested the hypothesis that a high fructose diet would impair hippocampal-dependent memory. Adult male Sprague-Dawley rats (postnatal day 61) were fed either a control (0% fructose) or high fructose diet (60% of calories). Food intake and body mass were measured regularly. After 19 weeks, the rats were given 3 days of training (8 trials/day) in a spatial version of the water maze task, and retention performance was probed 48 h later. The high fructose diet did not affect acquisition of the task, but did impair performance on the retention test. Specifically, rats fed a high fructose diet displayed significantly longer latencies to reach the area where the platform had been located, made significantly fewer approaches to that area, and spent significantly less time in the target quadrant than did control diet rats. There was no difference in swim speed between the two groups. The retention deficits correlated significantly with fructose-induced elevations of plasma triglyceride concentrations. Consequently, the impaired spatial water maze retention performance seen with the high fructose diet may have been attributable, at least in part, to fructose-induced increases in plasma triglycerides.

  15. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity

    PubMed Central

    Piroli, Gerardo G.; Lawrence, Robert C.; Wrighten, Shayna A.; Green, Adrienne J.; Wilson, Steven P.; Sakai, Randall R.; Kelly, Sandra J.; Wilson, Marlene A.; Mott, David D.; Reagan, Lawrence P.

    2015-01-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS–treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS–treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. PMID:26216852

  16. Encoding audio motion: spatial impairment in early blind individuals.

    PubMed

    Finocchietti, Sara; Cappagli, Giulia; Gori, Monica

    2015-01-01

    The consequence of blindness on auditory spatial localization has been an interesting issue of research in the last decade providing mixed results. Enhanced auditory spatial skills in individuals with visual impairment have been reported by multiple studies, while some aspects of spatial hearing seem to be impaired in the absence of vision. In this study, the ability to encode the trajectory of a 2-dimensional sound motion, reproducing the complete movement, and reaching the correct end-point sound position, is evaluated in 12 early blind (EB) individuals, 8 late blind (LB) individuals, and 20 age-matched sighted blindfolded controls. EB individuals correctly determine the direction of the sound motion on the horizontal axis, but show a clear deficit in encoding the sound motion in the lower side of the plane. On the contrary, LB individuals and blindfolded controls perform much better with no deficit in the lower side of the plane. In fact the mean localization error resulted 271 ± 10 mm for EB individuals, 65 ± 4 mm for LB individuals, and 68 ± 2 mm for sighted blindfolded controls. These results support the hypothesis that (i) it exists a trade-off between the development of enhanced perceptual abilities and role of vision in the sound localization abilities of EB individuals, and (ii) the visual information is fundamental in calibrating some aspects of the representation of auditory space in the brain.

  17. [Change of white matter neuronal integrity associated with spatial navigation impairment in mild cognitive impairment].

    PubMed

    Li, W P; Wang, F F; Lu, J M; Wu, S C; Wu, W B; Liu, R Y; Zhang, X; Li, M; Zhao, H; Zhu, B; Xu, Y; Zhang, B

    2017-01-17

    Objective: To analyze the correlation between white matter integrity and spatial navigation impairment in patients with mild cognitive impairment (MCI). Methods: A total of 27 MCI subjects and 24 healthy controls were enrolled from the Affiliated Drum Tower Hospital of Nanjing University Medical School from May 2015 to February 2016, who underwent 3.0 T MRI scan and 2D-computer version spatial navigation test.DTI preprocessing and tract-based spatial statistics (TBSS) were performed by PANDA.Two sample t-test and partial correlation coefficients were performed to investigate the correlation of white matter impairments and spatial navigation decline. Results: Relative to controls, MCI showed worse egocentric navigation (t=-2.202, P<0.05). Decreased FA in superior longitudinal fasciculus (left t=2.95, right t=2.95, P<0.05), inferior longitudinal fasciculus and inferior fronto-occipital fasciculus (left t=2.66, right t=2.96, P<0.05), corpus callosum (t=2.09, P<0.05), cingulum (left t=2.76, right t=2.41, P<0.05), fornix (t=4.83, P<0.05), and corticospinal tract (left t=2.33, right t=2.26, P<0.05), were found in the MCI subjects.The decreased FA value of superior longitudinal fasciculus (left r=-0.354, right r=-0.347, P<0.05), inferior longitudinal fasciculus (left r=-0.338, right r=-0.336, P<0.05), cingulum (left r=-0.395, right r=-0.370, P<0.05), right corticospinal tract (r=-0.362, P<0.05) and fornix (r=-0.369, P<0.05) were correlated with increased ego average total error.Allo average total error were negative correlated with FA value of superior longitudinal fasciculus (left r=-0.329, right r=-0.350, P<0.05), inferior longitudinal fasciculus (left r=-0.349, right r=-0.378, P<0.05), splenium of corpus callosum (r=-0.364, P<0.05) and cingulum (left r=-0.340, right r=-0.406, P<0.05). Conclusion: This study implicated the potential white matter structural basis of spatial navigation impairment and will have an impact on the further study of the neurobiological

  18. Female rats exposed to stress and alcohol show impaired memory and increased depressive-like behaviors.

    PubMed

    Gomez, J L; Luine, V N

    2014-01-17

    Exposure to daily life stressors is associated with increases in anxiety, depression, and overall negative affect. Alcohol or other psychoactive drugs are often used to alleviate stress effects. While females are more than twice as likely to develop mood disorders and are more susceptible to dependency than males, they are infrequently examined. In this study, female rats received no stress/no alcohol control (CON), alcohol alone (ALC), stress alone (STR), or stress plus alcohol (STR+ALC). Stress consisted of restraint for 6h/day/7days, and alcohol was administered immediately following restraint via gastric gavage at a dose of 2.0g/kg. Dependent measures included tests utilizing object recognition (OR), Y-maze, elevated plus maze (EPM), forced swim (FST), blood alcohol content, corticosterone levels, and body weights. ALC, STR+ALC, but not stress alone, impaired memory on OR. All treatments impaired spatial memory on the Y-maze. Anxiety was not affected on the EPM, but rats treated with alcohol or in combination with stress showed increased immobility on the FST, suggestive of alcohol-induced depression. Previously, we found alcohol reversed deleterious effects of stress on memory and mood in males, but current results show that females reacted negatively when the two treatments were combined. Thus, responses to alcohol, stress and their combination suggest that sex specific treatments are needed for stress-induced behavioral changes and that self-medicating with alcohol to cope with stress maybe deleterious in females.

  19. Impaired memory retrieval after psychosocial stress in healthy young men.

    PubMed

    Kuhlmann, Sabrina; Piel, Marcel; Wolf, Oliver T

    2005-03-16

    Glucocorticoids (GCs) are known to modulate memory in animals and humans. One popular model suggests that stress or GC treatment enhances memory consolidation while impairing delayed memory retrieval. Studies in humans have documented that treatment with GCs impairs delayed memory retrieval. Similar alterations after exposure to stress have not been observed thus far. In the present study, 19 young healthy male subjects were exposed to either a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control condition in a crossover manner. After both treatments, retrieval of a word list (learned 24 h earlier) containing 10 neutral, 10 negative, and 10 positive words was tested. The stressor induced a significant increase in salivary free cortisol and a decrease in mood. Memory retrieval (free recall) was significantly impaired after the stress condition. Follow-up analysis revealed that negative and positive words (i.e., emotionally arousing words) were affected, whereas no effect was observed for neutral words. No changes were detected for cued recall, working memory, or attention. The present study thus demonstrates that psychosocial stress impairs memory retrieval in humans and suggests that emotionally arousing material is especially sensitive to this effect.

  20. MGlu5 antagonism impairs exploration and memory of spatial and non-spatial stimuli in rats.

    PubMed

    Christoffersen, Gert R J; Simonyi, Agnes; Schachtman, Todd R; Clausen, Bettina; Clement, David; Bjerre, Vicky K; Mark, Louise T; Reinholdt, Mette; Schmith-Rasmussen, Kati; Zink, Lena V B

    2008-08-22

    Metabotropic glutamate receptor subtype 5 (mGlu5) has been implicated in memory processing in some but not all learning tasks. The reason why this receptor is involved in some tasks but not in others remains to be determined. The present experiments using rats examined effects of the mGlu5-antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP)--applied systemically i.p. (1-10mg/kg) or bilaterally into the prelimbic cortex (1-10 microg)---on the ability of rats to explore and remember new stimuli. A cross-maze, open field, and object recognition task were used to evaluate exploration and memory and it was found that: (1) locomotion during exploration of spatial environments and exploration time at novel objects were reduced by i.p. but not by prelimbic administration of MPEP, (2) spatial short-term memory was impaired in cross-maze and object discrimination was reduced after both types of administration, (3) long-term retention of spatial conditioning in the cross-maze was inhibited after i.p. applications which (4) also inhibited spontaneous alternation performance during maze-exploration. Reduced exploratory locomotion and exploration time after i.p. injections may have contributed to the observed retention impairments. However, the fact that prelimbic administration of MPEP inhibited retention without reducing exploration shows that memory formation was also impacted directly by prelimbic mGlu5 in both spatial and non-spatial learning.

  1. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress. PMID:27635201

  2. Social Stress in Young People with Specific Language Impairment

    ERIC Educational Resources Information Center

    Wadman, Ruth; Durkin, Kevin; Conti-Ramsden, Gina

    2011-01-01

    Social interactions can be a source of social stress for adolescents. Little is known about how adolescents with developmental difficulties, such as specific language impairment (SLI), feel when interacting socially. Participants included 28 adolescents with SLI and 28 adolescents with typical language abilities (TL). Self-report measures of…

  3. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    PubMed

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity.

  4. Sequential spatial frequency discrimination is consistently impaired among adult dyslexics.

    PubMed

    Ben-Yehudah, Gal; Ahissar, Merav

    2004-05-01

    The degree and nature of dyslexics' difficulties in performing basic visual tasks have been debated for more than thirty years. We recently found that dyslexics' difficulties in detecting temporally modulated gratings are specific to conditions that require accurate comparisons between sequentially presented stimuli [Brain 124 (2001) 1381]. We now examine dyslexics' spatial frequency discrimination (rather than detection), under simultaneous (spatial forced choice) and sequential (temporal forced choice) presentations. Sequential presentation (at SOAs of 0.5, 0.75 and 2.25 s) yielded better discrimination thresholds among the majority of controls (around 0.5 c/ degrees reference), but not among dyslexics. Consequently, there was a (large and significant) group effect only for the sequential conditions. Within the same dyslexic group, performance on a sequential auditory task, two-tone frequency discrimination, was impaired in a smaller proportion of the participants. Taken together, our findings indicate that visual paradigms requiring sequential comparisons are difficult for the majority of dyslexic individuals, perhaps because deficits either in visual perception or in visual memory could both lead to difficulties on these paradigms.

  5. Acute stress impairs set-shifting but not reversal learning.

    PubMed

    Butts, K A; Floresco, S B; Phillips, A G

    2013-09-01

    The ability to update and modify previously learned behavioral responses in a changing environment is essential for successful utilization of promising opportunities and for coping with adverse events. Valid models of cognitive flexibility that contribute to behavioral flexibility include set-shifting and reversal learning. One immediate effect of acute stress is the selective impairment of performance on higher-order cognitive control tasks mediated by the medial prefrontal cortex (mPFC) but not the hippocampus. Previous studies show that the mPFC is required for set-shifting but not for reversal learning, therefore the aim of the present experiment is to assess whether exposure to acute stress (15 min of mild tail-pinch stress) given immediately before testing on either a set-shifting or reversal learning tasks would impair performance selectively on the set-shifting task. An automated operant chamber-based task, confirmed that exposure to acute stress significantly disrupts set-shifting but has no effect on reversal learning. Rats exposed to an acute stressor require significantly more trials to reach criterion and make significantly more perseverative errors. Thus, these data reveal that an immediate effect of acute stress is to impair mPFC-dependent cognition selectively by disrupting the ability to inhibit the use of a previously relevant cognitive strategy.

  6. Does Chronic Unpredictable Stress during Adolescence Affect Spatial Cognition in Adulthood?

    PubMed

    Chaby, Lauren E; Sheriff, Michael J; Hirrlinger, Amy M; Lim, James; Fetherston, Thomas B; Braithwaite, Victoria A

    2015-01-01

    Spatial abilities allow animals to retain and cognitively manipulate information about their spatial environment and are dependent upon neural structures that mature during adolescence. Exposure to stress in adolescence is thought to disrupt neural maturation, possibly compromising cognitive processes later in life. We examined whether exposure to chronic unpredictable stress in adolescence affects spatial ability in late adulthood. We evaluated spatial learning, reference and working memory, as well as long-term retention of visuospatial cues using a radial arm water maze. We found that stress in adolescence decreased the rate of improvement in spatial learning in adulthood. However, we found no overall performance impairments in adult reference memory, working memory, or retention caused by adolescent-stress. Together, these findings suggest that adolescent-stress may alter the strategy used to solve spatial challenges, resulting in performance that is more consistent but is not refined by incorporating available spatial information. Interestingly, we also found that adolescent-stressed rats showed a shorter latency to begin the water maze task when re-exposed to the maze after an overnight delay compared with control rats. This suggests that adolescent exposure to reoccurring stressors may prepare animals for subsequent reoccurring challenges. Overall, our results show that stress in adolescence does not affect all cognitive processes, but may affect cognition in a context-dependent manner.

  7. Vibrissal paralysis produces increased corticosterone levels and impairment of spatial memory retrieval.

    PubMed

    Patarroyo, William E; García-Perez, Milady; Lamprea, Marisol; Múnera, Alejandro; Troncoso, Julieta

    2017-03-01

    This research was aimed at establishing how the absence of active whisking in rats affects acquisition and recovery of spatial memory. The mystacial vibrissae were irreversibly paralyzed by cutting the facial nerve's mandibular and buccal branches bilaterally in the facial nerve lesion group (N=14); control animals were submitted to sham-surgery (N=15). Sham-operated (N=11) and facial nerve-lesioned (N=10) animals were trained (one session, eight acquisition trials) and tested 24h later in a circular Barnes maze. It was found that facial nerve lesioned-animals adequately acquired the spatial task, but had impaired recovery of it when tested 24h after training as compared to control ones. Plasma corticosterone levels were measured after memory testing in four randomly chosen animals of each trained group and after a single training trial in the maze in additional facial nerve-lesioned (N=4) and sham-operated animals (N=4). Significant differences respecting the elevation of corticosterone concentration after either a single training trial or memory testing indicated that stress response was enhanced in facial nerve-lesioned animals as compared to control ones. Increased corticosterone levels during training and testing might have elicited the observed whisker paralysis-induced spatial memory retrieval impairment.

  8. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    PubMed

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory.

  9. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory

    PubMed Central

    Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J.

    2016-01-01

    Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory. PMID:28066184

  10. Presence of lacunar infarctions is associated with the spatial navigation impairment in patients with mild cognitive impairment: a DTI study

    PubMed Central

    Liu, Qing-Ping; He, Wen-Wen; Ding, Hong; Nedelska, Zuzana; Hort, Jakub; Zhang, Bing; Xu, Yun

    2016-01-01

    Lacunar cerebral infarction (LI) is one of risk factors of vascular dementia and correlates with progression of cognitive impairment including the executive functions. However, little is known on spatial navigation impairment and its underlying microstructural alteration of white matter in patients with LI and with or without mild cognitive impairment (MCI). Our aim was to investigate whether the spatial navigation impairment correlated with the white matter integrity in LI patients with MCI (LI-MCI). Thirty patients with LI were included in the study and were divided into LI-MCI (n=17) and non MCI (LI-Non MCI) groups (n=13) according neuropsychological tests.The microstructural integrity of white matter was assessed by calculating a fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) scans. The spatial navigation accuracy, separately evaluated as egocentric and allocentric, was assessed by a computerized human analogue of the Morris Water Maze tests Amunet. LI-MCI performed worse than the CN and LI-NonMCI groups on egocentric and delayed spatial navigation subtests. LI-MCI patients have spatial navigation deficits. The microstructural abnormalities in diffuse brain regions, including hippocampus, uncinate fasciculus and other brain regions may contribute to the spatial navigation impairment in LI-MCI patients at follow-up. PMID:27861154

  11. Presence of lacunar infarctions is associated with the spatial navigation impairment in patients with mild cognitive impairment: a DTI study.

    PubMed

    Wu, Yan-Feng; Wu, Wen-Bo; Liu, Qing-Ping; He, Wen-Wen; Ding, Hong; Nedelska, Zuzana; Hort, Jakub; Zhang, Bing; Xu, Yun

    2016-11-29

    Lacunar cerebral infarction (LI) is one of risk factors of vascular dementia and correlates with progression of cognitive impairment including the executive functions. However, little is known on spatial navigation impairment and its underlying microstructural alteration of white matter in patients with LI and with or without mild cognitive impairment (MCI). Our aim was to investigate whether the spatial navigation impairment correlated with the white matter integrity in LI patients with MCI (LI-MCI). Thirty patients with LI were included in the study and were divided into LI-MCI (n=17) and non MCI (LI-Non MCI) groups (n=13) according neuropsychological tests.The microstructural integrity of white matter was assessed by calculating a fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) scans. The spatial navigation accuracy, separately evaluated as egocentric and allocentric, was assessed by a computerized human analogue of the Morris Water Maze tests Amunet. LI-MCI performed worse than the CN and LI-NonMCI groups on egocentric and delayed spatial navigation subtests. LI-MCI patients have spatial navigation deficits. The microstructural abnormalities in diffuse brain regions, including hippocampus, uncinate fasciculus and other brain regions may contribute to the spatial navigation impairment in LI-MCI patients at follow-up.

  12. Spatial Compression Impairs Prism Adaptation in Healthy Individuals

    PubMed Central

    Scriven, Rachel J.; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  13. The Impact of Residual Vision in Spatial Skills of Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea

    2011-01-01

    Loss of vision is believed to have a great impact on the acquisition of spatial knowledge. The aims of the present study are to examine the performance of individuals with visual impairments on spatial tasks and the impact of residual vision on processing these tasks. In all, 28 individuals with visual impairments--blindness or low…

  14. Oxidative Stress Impairs Learning and Memory in apoE Knockout Mice

    PubMed Central

    Evola, Marianne; Hall, Allyson; Wall, Trevor; Young, Alice; Grammas, Paula

    2010-01-01

    Cardiovascular risk factors, such as oxidative stress and elevated lipids, are linked to the development of cognitive impairment. A mediator common to both stressors is the apolipoprotein E (apoE). The objectives of this study are to determine the effects of apoE deficiency and diet-induced systemic oxidative stress in mice on vascular expression of inflammatory proteins and on cognitive function. Mice are placed on a diet enriched in homocysteine for fifteen weeks and then assessed for spatial learning using an eight-arm radial maze and for inflammatory protein expression by immunohistochemistry. Our results show that diet-induced oxidative stress does not affect cognitive function in normal mice. In contrast, apoE−/− mice on the homocysteine diet show significantly impaired (p < 0. 001) maze performance. ApoE−/− mice also have high cholesterol levels. There is no expression of inflammatory proteins IL-6 and IL-8 in the vasculature of control mice on normal or homocysteine diet and little in apoE−/− mice on normal diet. In contrast, apoE−/− mice on homocysteine diet show pronounced vascular reactivity to IL-6 and IL-8 antibodies. These data show that systemic oxidative stress correlates with expression of inflammatory proteins in the cerebral vasculature and impaired cognitive function. These results are consistent with the hypothesis that an oxidative-inflammatory cycle in the cerebral vasculature could have deleterious consequences for cognition. PMID:20457176

  15. Psychosocial stress exposure impairs memory retrieval in children.

    PubMed

    Quesada, A A; Wiemers, U S; Schoofs, D; Wolf, O T

    2012-01-01

    Negative consequences of stress on working memory and delayed memory retrieval have been observed in adult humans. Little is known about the occurrence of similar effects in children. Forty-four German full-term children, aged 8-10 years, were randomly assigned to a stressful (Trier Social Stress Test for Children--TSST-C) or to a non-stressful control condition. Afterwards, delayed memory retrieval was tested using a computerized version of the well-known card game "Memory". It contained positive, neutral and negative stimuli. In addition, working memory of verbal and non-verbal material was assessed. The stressed children showed pronounced cortisol increases accompanied by a decrease in mood. Children exposed to the stressor performed poorer in the delayed memory retrieval test (memory card game). They committed more errors. No differences were found for working memory. The stress-induced memory retrieval impairment mirrors findings in adults. In contrast, the missing working memory effects could suggest developmental differences in stress sensitivity.

  16. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats.

    PubMed

    Wang, Rui; Zhang, Yu; Li, Jianguo; Zhang, Ce

    2017-03-06

    β-amyloid (Aβ) deposition is considered partially responsible for cognitive dysfunction in Alzheimer's disease (AD). Recently, resveratrol has been reported to play a potential role as a neuroprotective biofactor by modulating Aβ pathomechanisms, including through anti-neuronal apoptotic, anti-oxidative stress, and anti-neuroinflammatory effects. In addition, SIRT1 has been demonstrated to modulate learning and memory function by regulating the expression of cAMP response binding protein (CREB), which involves in modulating the expression of SIRT1. However, whether resveratrol can alleviate Aβ-induced cognitive dysfunction, whether SIRT1 expression and CREB phosphorylation in the hippocampus are affected by Aβ, and whether resveratrol influences these effects remain unknown. In the present study, we used a hippocampal injection model in rats to investigate the effects of resveratrol on Aβ1-42-induced impairment of spatial learning, memory and synaptic plasticity as well as on alterations of SIRT1 expression and CREB phosphorylation. We found that resveratrol significantly reversed the water maze behavioral impairment and the attenuation of long-term potentiation (LTP) in area CA1 that were induced by hippocampal injection of Aβ1-42. Interestingly, resveratrol also prevented the Aβ1-42-induced reductions in SIRT1 expression and CREB phosphorylation in rat hippocampus. In conclusion, in rats, resveratrol protects neurons against Aβ1-42-induced disruption of spatial learning, memory and hippocampal LTP. The mechanisms underlying the neuroprotective effects may involve rescue of SIRT1 expression and CREB phosphorylation.

  17. Acute stress impairs the retrieval of extinction memory in humans

    PubMed Central

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less

  18. Acute stress impairs the retrieval of extinction memory in humans.

    PubMed

    Raio, Candace M; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A

    2014-07-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays a critical role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent work in rodents has demonstrated that exposure to stress leads to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress response, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, a day later participants in the stress group (n=27) demonstrated significantly

  19. Neuroprotective effect of Celastrus paniculatus on chronic stress-induced cognitive impairment

    PubMed Central

    Bhagya, V.; Christofer, Thomas; Shankaranarayana Rao, B. S.

    2016-01-01

    Objective: Several studies report that chronic stress results in impaired spatial learning and working memory and enhanced anxiety-like behavior. However, not many studies have looked into the possible ways of reversing stress-induced deficits. Celastrus paniculatus (CP), a traditional ayurvedic herbal medicine, was used to treat cognitive deficits in mentally retarded children. CP oil has been reported to have neuroprotective and antioxidant activities. However, the effects of CP oil on chronic stress-induced cognitive deficits are unclear. In the present study, we intended to analyze the neuroprotective effects of CP oil on stress-associated cognitive dysfunctions. Materials and Methods: Chronic stress was induced by subjecting rats to restrainers for 6 h a day for 21 days. CP oil (400, 600 mg/kg) or vehicle was administered intraperitoneally (i.p.) after stress protocol once a day over the next 14 days. Groups used in the present study: normal control, stress, stress + vehicle, stress + CP oil at 2 different doses (400 and 600 mg/kg, i.p.). After the drug treatment, open field and elevated plus maze (EPM) were used to analyze anxiety-like behavior, and partially baited radial arm maze (RAM) and T-maze were used to evaluate spatial learning and memory capabilities. Analysis has been done using two-way ANOVA followed by Bonferroni's post hoc test and one-way ANOVA followed by Tukey's post hoc test. Results: Stressed rats showed enhanced anxiety-like behavior in EPM (P < 0.001) and impaired performance in RAM (P < 0.001) and T-maze tasks (P < 0.001) compared to normal animals. In contrast, CP oil treatment to these rats improved their performance in both RAM (P < 0.001) and T-maze (P < 0.001). In addition, CP oil significantly reduced stress-induced anxiety behavior (P < 0.001). Conclusion: Chronic treatment with CP oil is to improve cognitive abilities in chronically stressed rats. The current study provides a novel perspective on beneficial effect of herbal

  20. Capsaicin ameliorates stress-induced Alzheimer's disease-like pathological and cognitive impairments in rats.

    PubMed

    Jiang, Xia; Jia, Lin-Wei; Li, Xiao-Hong; Cheng, Xiang-Shu; Xie, Jia-Zhao; Ma, Zhi-Wei; Xu, Wei-Jie; Liu, Yue; Yao, Yun; Du, Lai-Ling; Zhou, Xin-Wen

    2013-01-01

    Hyperphosphorylated tau aggregated into neurofibrillary tangles is a hallmark lesion of Alzheimer's disease (AD) and is linked to synaptic and cognitive impairments. In animal models, cold water stress (CWS) can cause cognitive disorder and tau hyperphosphorylation. Capsaicin (CAP), a specific TRPV1 agonist, is neuroprotective against stress-induced impairment, but the detailed mechanisms are still elusive. Here, we investigated whether CAP mitigates CWS-induced cognitive and AD-like pathological alterations in rats. The animals were administered CAP (10 mg/kg in 0.2 ml, 0.1% ethanol) or a control (0.2 ml normal saline, 0.1% ethanol) by intragastric infusion 1 h before CWS treatment. Our results showed that CAP significantly attenuated CWS-induced spatial memory impairment and suppression of PP-DG long-term potentiation; CAP abolished CWS-induced dendritic regression and enhanced several memory-associated proteins decreased by CWS, such as synapsin I and PSD93; CAP also prevented CWS-induced tau hyperphosphorylation by abolishing inhibition of protein phosphatase 2A. Taken together, this study demonstrated that activation of TRPV1 can mitigate CWS-induced AD-like neuropathological alterations and cognitive impairment and may be a promising target for therapeutic intervention in AD.

  1. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2015-01-01

    Lafora disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxiredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD.

  2. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  3. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice

    PubMed Central

    Liu, Lijie; Shen, Pei; He, Tingting; Chang, Ying; Shi, Lijuan; Tao, Shan; Li, Xiaowei; Xun, Qingying; Guo, Xiaojing; Yu, Zhiping; Wang, Jian

    2016-01-01

    Hearing loss has been associated with cognitive decline in the elderly and is considered to be an independent risk factor for dementia. One of the most common causes for acquired sensorineural hearing loss is exposure to excessive noise, which has been found to impair learning ability and cognitive performance in human subjects and animal models. Noise exposure has also been found to depress neurogenesis in the hippocampus. However, the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. In the present study, young adult CBA/CAJ mice (between 1.5 and 2 months of age) were briefly exposed a high sound level to produce moderate-to-severe hearing loss. In both the blood and hippocampus, only transient oxidative stress was observed after noise exposure. However, a deficit in spatial learning/memory was revealed 3 months after noise exposure. Moreover, the deficit was correlated with the degree of hearing loss and was associated with a decrease in neurogenesis in the hippocampus. We believe that the observed effects were likely due to hearing loss rather than the initial oxidant stress, which only lasted for a short period of time. PMID:26842803

  4. [GLIATILIN CORRECTION OF WORKING AND REFERENCE SPATIAL MEMORY IMPAIRMENT IN AGED RATS].

    PubMed

    Tyurenkov, I N; Volotova, E V; Kurkin, D V

    2015-01-01

    This work was aimed at evaluating the influence of gliatilin administration on the spatial memory in aged rats. Cognitive function and spatial memory in animals was evaluated using radial (8-beam) maze test. Errors of working spatial memory and reference memory were used as indicators of impaired cognitive function. It was found that aged (24-month) rats compared with younger (6-months) age group exhibited cognitive impairment, as manifested by deterioration of short- and long-term memory processes. Course administration of gliatilin in rats of the older age group at a dose of 100 mg/kg resulted in significant improvement of the working and reference spatial memory in aged rats.

  5. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    ERIC Educational Resources Information Center

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  6. St. John's wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity.

    PubMed

    Trofimiuk, Emil; Holownia, Adam; Braszko, Jan J

    2011-04-01

    Beneficial effects of St. John's wort (Hypericum perforatum) in the treatment of stress-evoked memory impairment were recently described. In this study, we tested a hypothesis that St. John's wort alleviates stress- and corticosterone-related memory impairments by restoring levels of synaptic plasticity proteins: neuromoduline (GAP-43) and synaptophysin (SYP) in hippocampus and prefrontal cortex. Stressed and corticosterone-treated rats displayed a decline in the acquisition of spatial working memory (p < 0.001) in the Barnes maze (BM). Chronic administration of H. perforatum (350 mg kg(-1) for 21 days), potently and significantly improved processing of spatial information in the stressed and corticosterone-injected rats (p < 0.001). Also, St Johns' wort statistically significantly (p < 0.05) increased levels of GAP-43 and SYP, respectively in the hippocampi and prefrontal cortex as measured by western immunoblotting. We found that H. perforatum prevented the deleterious effects of both chronic restraint stress and prolonged corticosterone administration on working memory measured in the BM test. The herb significantly (p < 0.01) improved hippocampus-dependent spatial working memory in comparison with control and alleviated some other negative effects of stress on cognitive functions. These findings increase our understanding of the reaction of the hippocampus and prefrontal cortex to stressful assaults and provide new insight into the possible actions of H. perforatum in the treatment of patients with impaired adaptation to environmental stressors and simultaneously suffering from cognitive impairment.

  7. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular.

  8. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment.

    PubMed

    Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2013-01-01

    Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9-10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported.

  9. Influence of acute stress on spatial tasks in humans.

    PubMed

    Richardson, Anthony E; VanderKaay Tomasulo, Melissa M

    2011-07-06

    Few studies have investigated the relationship between stress and spatial performance in humans. In this study, participants were exposed to an acute laboratory stressor (Star Mirror Tracing Task) or a control condition (watching a nature video) and then performed two spatial tasks. In the first task, participants navigated through a virtual reality (VR) environment and then returned to the environment to make directional judgments relating to the learned targets. In the second task, perspective taking, participants made directional judgments to targets after imagined body rotations with respect to a map. Compared to the control condition, participants in the Stress condition showed increases in heart rate and systolic and diastolic blood pressure indicating sympathetic adrenal medulla (SAM) axis activation. Participants in the Stress condition also reported being more anxious, angry, frustrated, and irritated than participants in the Non-Stress condition. Salivary cortisol did not differ between conditions, indicating no significant hypothalamic-pituitary-adrenocortical (HPA) axis involvement. In the VR task, memory encoding was unaffected as directional error was similar in both conditions; however, participants in the Stress condition responded more slowly, which may be due to increases in negative affect, SAM disruption in spatial memory retrieval through catecholamine release, or a combination of both factors. In the perspective taking task, participants were also slower to respond after stress, suggesting interference in the ability to adopt new spatial orientations. Additionally, sex differences were observed in that men had greater accuracy on both spatial tasks, but no significant Sex by Stress condition interactions were demonstrated.

  10. Peritraumatic reactions and posttraumatic stress disorder in psychiatrically impaired youth.

    PubMed

    Sugar, Jeff; Ford, Julian D

    2012-02-01

    Although peritraumatic dissociation and other subjective peritraumatic reactions, such as emotional distress and arousal, have been shown to affect the relationship between a traumatic event and the development of posttraumatic stress disorder (PTSD) in adults, systematic studies with youth have not been done. In a mixed ethnic and racial sample of 90 psychiatrically impaired youth (ages 10-18, 56% boys), we investigated the contributions of peritraumatic dissociation, emotional distress, and arousal to current PTSD severity after accounting for the effects of gender, trauma history, trait dissociation, and psychopathology (attention-deficit/hyperactivity disorder and depression). Peritraumatic dissociation emerged as the only peritraumatic variable associated with current PTSD severity assessed both by questionnaire and interview methods (β = .30 and .47 p < .01). Peritraumatic dissociation can be rapidly assessed in clinical practice and warrants further testing in prospective studies as a potential mediator of the trauma-PTSD relationship in youth.

  11. Auditory Processing in Specific Language Impairment (SLI): Relations with the Perception of Lexical and Phrasal Stress

    ERIC Educational Resources Information Center

    Richards, Susan; Goswami, Usha

    2015-01-01

    Purpose: We investigated whether impaired acoustic processing is a factor in developmental language disorders. The amplitude envelope of the speech signal is known to be important in language processing. We examined whether impaired perception of amplitude envelope rise time is related to impaired perception of lexical and phrasal stress in…

  12. Acute pentobarbital treatment impairs spatial learning and memory and hippocampal long-term potentiation in rats.

    PubMed

    Wang, Wei; Tan, Tao; Tu, Man; He, Wenting; Dong, Zhifang; Han, Huili

    2015-10-01

    Reports of the effects of pentobarbital on learning and memory are contradictory. Some studies have not shown any interference with learning and memory, whereas others have shown that pentobarbital impairs memory and that these impairments can last for long periods. However, it is unclear whether acute local microinjections of pentobarbital affect learning and memory, and if so, the potential mechanisms are also unclear. Here, we reported that the intra-hippocampal infusion of pentobarbital (8.0mM, 1μl per side) significantly impaired hippocampus-dependent spatial learning and memory retrieval. Moreover, in vitro electrophysiological recordings revealed that these behavioral changes were accompanied by impaired hippocampal CA1 long-term potentiation (LTP) and suppressed neuronal excitability as reflected by a decrease in the number of action potentials (APs). These results suggest that acute pentobarbital application causes spatial learning and memory deficits that might be attributable to the suppression of synaptic plasticity and neuronal excitability.

  13. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  14. Comprehension of Spatial Language in Williams Syndrome: Evidence for Impaired Spatial Representation of Verbal Descriptions

    ERIC Educational Resources Information Center

    Laing, Emma; Jarrold, Christopher

    2007-01-01

    Individuals with the rare genetic disorder, Williams syndrome, have an unusual cognitive profile with relatively good language abilities but poor non-verbal and spatial skills. This study explored the interaction between linguistic and spatial functioning in Williams syndrome by investigating individuals' comprehension of spatial language. A group…

  15. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    PubMed Central

    Wang, Qing M.; Meng, Zhaoxiang; Yin, Zhenglu

    2017-01-01

    Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD) lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75) and an abnormal gait group (n = 25). Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV) in stride length, two with base of support (BOS) deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was significantly higher in

  16. Subhypnotic doses of propofol impair spatial memory retrieval in rats

    PubMed Central

    Liu, Hu; Wang, Ting; Dai, Wei; Jiang, Zheng; Li, Yuan-hai; Liu, Xue-sheng

    2016-01-01

    Abundant evidence indicates that propofol profoundly affects memory processes, although its specific effects on memory retrieval have not been clarified. A recent study has indicated that hippocampal glycogen synthase kinase-3β (GSK-3β) activity affects memory. Constitutively active GSK-3β is required for memory retrieval, and propofol has been shown to inhibit GSK-3β. Thus, the present study examined whether propofol affects memory retrieval, and, if so, whether that effect is mediated through altered GSK-3β activity. Adult Sprague-Dawley rats were trained on a Morris water maze task (eight acquisition trials in one session) and subjected under the influence of a subhypnotic dose of propofol to a 24-hour probe trial memory retrieval test. The results showed that rats receiving pretest propofol (25 mg/kg) spent significantly less time in the target quadrant but showed no change in locomotor activity compared with those in the control group. Memory retrieval was accompanied by reduced phosphorylation of the serine-9 residue of GSK-3β in the hippocampus, whereas phosphorylation of the tyrosine-216 residue was unaffected. However, propofol blocked this retrieval-associated serine-9 phosphorylation. These findings suggest that subhypnotic propofol administration impairs memory retrieval and that the amnestic effects of propofol may be mediated by attenuated GSK-3β signaling in the hippocampus. PMID:28197192

  17. Subhypnotic doses of propofol impair spatial memory retrieval in rats.

    PubMed

    Liu, Hu; Wang, Ting; Dai, Wei; Jiang, Zheng; Li, Yuan-Hai; Liu, Xue-Sheng

    2016-12-01

    Abundant evidence indicates that propofol profoundly affects memory processes, although its specific effects on memory retrieval have not been clarified. A recent study has indicated that hippocampal glycogen synthase kinase-3β (GSK-3β) activity affects memory. Constitutively active GSK-3β is required for memory retrieval, and propofol has been shown to inhibit GSK-3β. Thus, the present study examined whether propofol affects memory retrieval, and, if so, whether that effect is mediated through altered GSK-3β activity. Adult Sprague-Dawley rats were trained on a Morris water maze task (eight acquisition trials in one session) and subjected under the influence of a subhypnotic dose of propofol to a 24-hour probe trial memory retrieval test. The results showed that rats receiving pretest propofol (25 mg/kg) spent significantly less time in the target quadrant but showed no change in locomotor activity compared with those in the control group. Memory retrieval was accompanied by reduced phosphorylation of the serine-9 residue of GSK-3β in the hippocampus, whereas phosphorylation of the tyrosine-216 residue was unaffected. However, propofol blocked this retrieval-associated serine-9 phosphorylation. These findings suggest that subhypnotic propofol administration impairs memory retrieval and that the amnestic effects of propofol may be mediated by attenuated GSK-3β signaling in the hippocampus.

  18. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  19. Chlorpheniramine impairs spatial choice learning in telencephalon-ablated fish.

    PubMed

    Romaguera, Fernanda; Mattioli, Rosana

    2008-01-01

    This work investigated the effect of the H1 receptor blockade in the forebrain of ablated Carassius auratus in a simple stimulus-response learning task using a T-maze test with positive reinforcement. The goldfish were submitted to surgery for removal of both telencephalic lobes five days before beginning the experiment. A T-shaped glass aquarium was employed, with two feeders located at the extremities of the long arm. One of the two feeders was blocked. The experimental trials were performed in nine consecutive days. Each fish was individually placed in the short arm and confined there for thirty seconds, then it was allowed to swim through the aquarium to search for food for ten minutes (maximum period). Time to find food was analysed in seconds. Animals were injected intraperitoneally with chlorpheniramine (CPA) at 16 mg/kg of body weight or saline after every trial, ten minutes after being placed back in the home aquarium. The results show that all the training latencies of the A-SAL group were higher than the latencies of the S-SAL group. The S-SAL group had decreased latencies from the second trial on, while the S-CPA group showed decreased latencies after the fourth trial. The A-SAL group showed reduced latencies after the fifth trial, but the A-CPA group maintained the latencies throughout the experiment. This suggests that CPA impairs the consolidation of learning both on telencephalon ablated animals and in sham-operated ones through its action on mesencephalic structures of the brain and/or on the cerebellum in teleost fish.

  20. Spatial and dynamical handwriting analysis in mild cognitive impairment.

    PubMed

    Kawa, Jacek; Bednorz, Adam; Stępień, Paula; Derejczyk, Jarosław; Bugdol, Monika

    2017-03-01

    Background and Objectives Standard clinical procedure of Mild Cognitive Impairment (MCI) assessment employs time-consuming tests of psychological evaluation and requires the involvement of specialists. The employment of quantitative methods proves to be superior to clinical judgment, yet reliable, fast and inexpensive tests are not available. This study was conducted as a first step towards the development of a diagnostic tool based on handwriting. Methods In this paper the handwriting sample of a group of 37 patients with MCI (mean age 76.1±5.8) and 37 healthy controls (mean age 74.8±5.7) was collected using a Livescribe Echo Pen while completing three tasks: (1) regular writing, (2) all-capital-letters writing, and (3) single letter multiply repeated. Parameters differentiating both groups were selected in each task. Results Subjects with confirmed MCI needed more time to complete task one (median 119.5s, IQR - interquartile range - 38.1 vs. 95.1s, IQR 29.2 in control and MCI group, p-value <0.05) and two (median 84.2s, IQR 49.2 and 53.7s, IQR 30.5 in control and MCI group) as their writing was significantly slower. These results were associated with a longer time to complete a single stroke of written text. The written text was also noticeably larger in the MCI group in all three tasks (e.g. median height of the text block in task 2 being 22.3mm, IQR 12.9 in MCI and 20.2mm, IQR 8.7 in control group). Moreover, the MCI group showed more variation in the dynamics of writing: longer pause between strokes in task 1 and 2. The all-capital-letters task produced most of the discriminating features. Conclusion Proposed handwriting features are significant in distinguishing MCI patients. Inclusion of quantitative handwriting analysis in psychological assessment may be a step forward towards a fast MCI diagnosis.

  1. Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning.

    PubMed

    Gilbert, M E; Kelly, M E; Samsam, T E; Goodman, J H

    2005-08-01

    The dentate granule cell (DG) layer of the hippocampal formation has the distinctive property of ongoing neurogenesis that continues throughout adult life. Although the function of these newly generated neurons and the mechanisms that control their birth are unknown, age, activity, diet and psychosocial stress have all been demonstrated to regulate this type of neurogenesis. Little information on the impact of environmental insults on this process has appeared to date. Developmental lead (Pb) exposure has been well documented to impair cognitive function in children and animals and reduce activity-dependent synaptic plasticity in the hippocampus of rodents. Therefore, we examined the effects of this classic environmental neurotoxicant on hippocampal-dependent learning and adult neurogenesis in the hippocampus. Pregnant rats were exposed to a low level of Pb-acetate (0.2%) via the drinking water from late gestation (GD 16) until weaning on postnatal day 21 (PN 21). At weaning, half of the Pb-exposed animals were weaned to control drinking water and the remainder were maintained on Pb water until termination of the study. Animals were paired- housed and on PN 75 were administered a series of injections of a thymidine analog bromodeoxyuridine (BrdU), a marker of DNA synthesis that labels proliferating cells and their progeny. At 12-h intervals for 12 days, rats received an ip injection of BrdU (50 mg/kg). Subjects were sacrificed and perfused 24 h and 28 days after the last injection. Spatial learning was assessed in an independent group of animals beginning on PN 110 using a Morris water maze. No Pb-induced impairments were evident in water maze learning. Immunohistochemistry for the detection of BrdU-labeled cells was performed on 40-microm coronal sections throughout the hippocampus. Continuous exposure to Pb (Life) reduced the total number of BrdU-positive cells at 28 days without affecting the total number of labeled cells evident 24 h after the last injection

  2. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats

    PubMed Central

    Almaguer-Melian, William; Bergado-Rosado, Jorge; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Mercerón-Martínez, Daymara; Frey, Julietta U.

    2012-01-01

    Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the “synaptic tagging hypothesis.” Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937–12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory. PMID:22215603

  3. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  4. The Use of Spatialized Speech in Auditory Interfaces for Computer Users Who Are Visually Impaired

    ERIC Educational Resources Information Center

    Sodnik, Jaka; Jakus, Grega; Tomazic, Saso

    2012-01-01

    Introduction: This article reports on a study that explored the benefits and drawbacks of using spatially positioned synthesized speech in auditory interfaces for computer users who are visually impaired (that is, are blind or have low vision). The study was a practical application of such systems--an enhanced word processing application compared…

  5. Spatial but Not Object Memory Impairments in Children with Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Nadel, Lynn; Uecker, Anne

    1998-01-01

    Thirty Native American children (mean age=10.3 years), 15 identified with fetal alcohol syndrome (FAS) and 15 controls, were asked to recall places and objects in a task previously shown to be sensitive to memory skills in individuals with and without mental retardation. Children with FAS demonstrated a spatial but not an object memory impairment.…

  6. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  7. Predicting Efficiency of Travel in Young, Visually Impaired Children from Their Other Spatial Skills.

    ERIC Educational Resources Information Center

    Hill, Anita; And Others

    1985-01-01

    To test ways of predicting how efficiently visually impaired children learn travel skills, a criteria checklist of spatial skills was developed for close-body space, local space, and geographical/travel space. Comparison was made between predictors of efficient learning including subjective ratings of teachers, personal qualities and factors of…

  8. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    PubMed

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration.

  9. Ginger pharmacopuncture improves cognitive impairment and oxidative stress following cerebral ischemia.

    PubMed

    Jittiwat, Jinatta; Wattanathorn, Jintanaporn

    2012-12-01

    Recent findings have demonstrated that acupuncture and ginger can each improve memory impairment following cerebral ischemia. We hypothesized that ginger pharmacopuncture, a combination of these two treatments, could increase the beneficial effects. Due to the limitation of supporting evidence, we aimed to determine whether ginger pharmacopuncture could improve cognitive function and oxidative stress following cerebral ischemia. Male Wistar rats were induced by right middle cerebral artery occlusion (Rt. MCAO) and subjected to either acupuncture or ginger pharmacopuncture once daily over a period of 14 days after Rt. MCAO. Cognitive function was determined every 7 days, using escape latency and retention time as indices, and the oxidative stress status of the rats was determined at the end of the study. Rats subjected either to acupuncture or to ginger pharmacopuncture at GV20 demonstrated enhanced spatial memory, and the activities of catalase and glutathione peroxidase in both cerebral cortex and hippocampus were improved. Elevation of superoxide dismutase activity was observed only in the hippocampus. Cognitive enhancement was observed sooner with ginger pharmacopuncture than with acupuncture. The cognitive enhancing effect of acupuncture and ginger pharmacopuncture is likely to be at least partially attributable to decreased oxidative stress. However, other mechanisms may also be involved, and this requires further study.

  10. Stress Administered Prior to Encoding Impairs Neutral but Enhances Emotional Long-Term Episodic Memories

    ERIC Educational Resources Information Center

    Payne, Jessica D.; Jackson, Eric D.; Hoscheidt, Siobhan; Ryan, Lee; Jacobs, W. Jake; Nadel, Lynn

    2007-01-01

    Stressful events frequently comprise both neutral and emotionally arousing information, yet the impact of stress on emotional and neutral events is still not fully understood. The hippocampus and frontal cortex have dense concentrations of receptors for stress hormones, such as cortisol, which at high levels can impair performance on hippocampally…

  11. STAT1 negatively regulates spatial memory formation and mediates the memory-impairing effect of Aβ.

    PubMed

    Hsu, Wei-Lun; Ma, Yun-Li; Hsieh, Ding-You; Liu, Yen-Chen; Lee, Eminy Hy

    2014-02-01

    Signal transducer and activator of transcription-1 (STAT1) has an important role in inflammation and the innate immune response, but its role in the central nervous system is less well understood. Here, we examined the role of STAT1 in spatial learning and memory, and assessed the involvement of STAT1 in mediating the memory-impairing effect of amyloid-beta (Aβ). We found that water maze training downregulated STAT1 expression in the rat hippocampal CA1 area, and spatial learning and memory function was enhanced in Stat1-knockout mice. Conversely, overexpression of STAT1 impaired water maze performance. STAT1 strongly upregulated the expression of the extracellular matrix protein laminin β1 (LB1), which also impaired water maze performance in rats. Furthermore, Aβ impaired spatial learning and memory in association with a dose-dependent increase in STAT1 and LB1 expression, but knockdown of STAT1 and LB1 both reversed this effect of Aβ. This Aβ-induced increase in STAT1 and LB1 expression was also associated with a decrease in the expression of the N-methyl-D-aspartate receptor (NMDAR) subunits, NR1, and NR2B. Overexpression of NR1 or NR2B or exogenous application of NMDA reversed Aβ-induced learning and memory deficits as well as Aβ-induced STAT1 and LB1 expression. Our results demonstrate that STAT1 negatively regulates spatial learning and memory through transcriptional regulation of LB1 expression. We also identified a novel mechanism for Aβ pathogenesis through STAT1 induction. Notably, impairment of spatial learning and memory by this STAT1-mediated mechanism is independent of cAMP responsive element-binding protein signaling.

  12. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus.

    PubMed

    Guan, Zhiwei; Peng, Xuwen; Fang, Jidong

    2004-08-20

    Loss of sleep may result in memory impairment. However, little is known about the biochemical basis for memory deficits induced by sleep deprivation. Extracellular signal-regulated kinase (ERK) is involved in memory consolidation in different tasks. Phosphorylation of ERK is necessary for its activation and is an important step in mediating neuronal responses to synaptic activities. The aim of the present study was to determine the effects of total sleep deprivation (TSD) on memory and ERK phosphorylation in the brain. Rats were trained in Morris water maze to find a hidden platform (a spatial task) or a visible platform (a nonspatial task) after 6 h TSD or spontaneous sleep. TSD had no effect on spatial learning, but significantly impaired spatial memory tested 24 h after training. Nonspatial learning and memory were not impaired by TSD. Phospho-ERK levels in the hippocampus were significantly reduced after 6 h TSD compared to the controls and returned to the control levels after 2 h recovery sleep. Total ERK1 and ERK2 were slightly increased after 6 h TSD and returned to the control levels after 2 h recovery sleep. These alterations were not observed in the cortex after TSD. Protein phosphotase-1 and mitogen-activated protein kinase phosphatase-2, which dephosphorylates phospho-ERK, were also measured, but they were not altered by TSD. The impairments of both spatial memory and ERK phosphorylation indicate that the hippocampus is vulnerable to sleep loss. These results are consistent with the idea that decreased ERK activation in the hippocampus is involved in sleep deprivation-induced spatial memory impairment.

  13. Impairment of simultaneous-spatial working memory in nonverbal (visuospatial) learning disability: a treatment case study.

    PubMed

    Mammarella, Irene C; Coltri, Silvia; Lucangeli, Daniela; Cornoldi, Cesare

    2009-10-01

    We report the case of B.A., an 11-year-old child with a nonverbal (visuospatial) learning disability (NLD). Detailed psychometric and neuropsychological assessment on visuospatial working memory (VSWM) revealed specific simultaneous-spatial working memory impairment. A treatment targeting simultaneous-spatial working memory was given to B.A. for seven sessions (over one month); this resulted in improvement of simultaneous-spatial working memory, with the benefit that the training was maintained after six months. Discussion of clinical and theoretical implications is given, taking account of the distinctions that can be made between the different components of visuospatial working memory and different subtypes of NLD, thus allowing the tailoring of specific training to target the impaired VSWM component.

  14. Chronic Stress Impairs Collateral Blood Flow Recovery in Aged Mice

    DTIC Science & Technology

    2014-10-15

    factor associated with atherosclerosis [19, 20]. Chronic stress, mental disorders, and non-pathological psychological stress states are associat- ed...Grahame-Clarke, C., Shanks, N., et al. (2003). Chronic stress accelerates atherosclerosis in the apolipoprotein E deficient mouse. Stress, 6(4), 297–299. 4...of oxidative stress in atherosclerosis . American of Journal in Cardiology, 91, 7A–11A. 11. Balkaya, M., Prinz, V., Custodis, F., et al. (2011

  15. Retrosplenial cortex lesions impair water maze strategies learning or spatial place learning depending on prior experience of the rat.

    PubMed

    Cain, Donald P; Humpartzoomian, Richard; Boon, Francis

    2006-06-30

    There has been debate whether lesions strictly limited to retrosplenial (RS) cortex impair spatial navigation, and how robust and reliable any such impairment is. The present study used a detailed behavioral analysis with naive or strategies-pretrained rats given RS lesions and trained in a water maze (WM). Naive RS lesioned rats failed to acquire the required WM strategies throughout training. Strategies-pretrained RS lesioned rats were specifically impaired in spatial place memory without a WM strategies impairment. Additional training overcame the spatial memory impairment. Thus the behavioral consequences of the lesion depend on the specific previous experience of the animal. The use of appropriate training and testing techniques has revealed experience-dependant dissociable impairments in WM strategies learning and in spatial memory, indicating that RS cortex is involved in both forms of learning.

  16. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  17. Influence of anxiety in spatial memory impairments related to the loss of vestibular function in rat.

    PubMed

    Machado, M L; Lelong-Boulouard, V; Smith, P F; Freret, T; Philoxene, B; Denise, P; Besnard, S

    2012-08-30

    It is now well established that vestibular information plays an important role in spatial memory processes. Although vestibular lesions induce anxiety in humans, this finding remains controversial in rodents. However, it is possible that anxiety-related behavior is associated with spatial memory impairments after vestibular lesions. We aimed to evaluate anxiety-like behavior and the effect of an anxiolytic treatment during a complex spatial memory task in a rat model of compensated bilateral vestibular lesions. Adult rats were divided into four groups, with or without vestibular lesions and, treated or untreated by diazepam. The vestibular lesion was performed by transtympanic injection of arsanilate and compared to transtympanic saline injection. Diazepam or saline was administered 1h before each test or learning session. Vestibular-lesioned rats exhibited anxiety-like behavior which was decreased with diazepam. Spatial memory performance was similar in control-treated and untreated groups, suggesting no effect on memory at the dose of diazepam used. Spatial memory performances were not modified by anxiolytic drug treatment in vestibular-lesioned rats compared to vestibular-lesioned rats without drug treatment. We conclude that bilateral vestibular lesions in rats induced anxiety-like behavior which was unrelated to spatial memory impairment and was probably specifically related to the loss of vestibular information.

  18. Hippocampal brain-derived neurotrophic factor mediates recovery from chronic stress-induced spatial reference memory deficits.

    PubMed

    Ortiz, J Bryce; Mathewson, Coy M; Hoffman, Ann N; Hanavan, Paul D; Terwilliger, Ernest F; Conrad, Cheryl D

    2014-11-01

    Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain.

  19. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    PubMed

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel.

  20. Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n (56)Fe Radiation.

    PubMed

    Britten, Richard A; Jewell, Jessica S; Davis, Leslie K; Miller, Vania D; Hadley, Melissa M; Semmes, O John; Lonart, György; Dutta, Sucharita M

    2017-03-01

    Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n (56)Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n (56)Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor

  1. Psychosocial stress induces working memory impairments in an n-back paradigm.

    PubMed

    Schoofs, Daniela; Preuss, Diana; Wolf, Oliver T

    2008-06-01

    In contrast to the substantial number of studies investigating the effects of stress on declarative memory, effects of stress on working memory have received less attention. We compared working memory (numerical n-back task with single digits) in 40 men exposed either to psychosocial stress (Trier Social Stress Test (TSST)) or a control condition. Task difficulty was varied using two conditions (2-back vs. 3-back). Salivary cortisol (as a marker of hypothalamus-pituitary-adrenal (HPA) activity) and salivary alpha-amylase (sAA as a marker of sympathetic nervous system (SNS) activity) were assessed immediately before and three times after the stress or control condition. As expected stress resulted in an increase in cortisol, sAA, and negative affect. Subjects exposed to stress showed significant working memory impairments in both workload conditions. The analysis of variance indicated a main effect of stress for reaction time as well as accuracy. In addition, for reaction time a stress-block interaction occurred. Follow up tests revealed that only during the first block at each level of difficulty performance was significantly impaired by stress. Thus, the effects of stress became smaller the longer the task was performed. Results provide further evidence for impaired working memory after acute stress and illustrate the time course of this phenomenon.

  2. Pre-training administration of tianeptine, but not propranolol, protects hippocampus-dependent memory from being impaired by predator stress.

    PubMed

    Campbell, Adam M; Park, Collin R; Zoladz, Phillip R; Muñoz, Carmen; Fleshner, Monika; Diamond, David M

    2008-02-01

    Extensive research has shown that the antidepressant tianeptine blocks the adverse effects of chronic stress on hippocampal functioning. The current series of experiments extended this area of investigation by examining the influence of tianeptine on acute stress-induced impairments of spatial (hippocampus-dependent) memory. Tianeptine (10 mg/kg, ip) administered to adult male rats before, but not after, water maze training blocked the amnestic effects of predator stress (occurring between training and retrieval) on memory. The protective effects of tianeptine on memory occurred in rats which had extensive pre-stress training, as well as in rats which had only a single day of training. Tianeptine blocked stress effects on memory without altering the stress-induced increase in corticosterone levels. Propranolol, a beta-adrenergic receptor antagonist (5 and 10 mg/kg, ip), in contrast, did not block stress-induced amnesia. These findings indicate that treatment with tianeptine, unlike propanolol, provides an effective means with which to block the adverse effects of stress on cognitive functions of the hippocampus.

  3. (-)Epigallocatechin-3-gallate decreases the stress-induced impairment of learning and memory in rats.

    PubMed

    Soung, Hung-Sheng; Wang, Mao-Hsien; Tseng, Hsiang-Chien; Fang, Hsu-Wei; Chang, Kuo-Chi

    2015-08-18

    Stress induces reactive oxygen species (ROS) and causes alterations in brain cytoarchitecture and cognition. Green tea has potent antioxidative properties especially the tea catechin (-) epigallocatechin-3-gallate (EGCG). These powerful antioxidative properties are able to protect against various oxidative damages. In this study we investigated the impact of stress on rats' locomotor activity, learning and memory. Many tea catechins, including EGCG, were examined for their possible therapeutic effects in treating stress-induced impairment. Our results indicated that locomotor activity was decreased, and the learning and memory were impaired in stressed rats (SRs). EGCG treatment was able to prevent the decreased locomotor activity as well as improve the learning and memory in SRs. EGCG treatment was also able to reduce the increased oxidative status in SRs' hippocampi. The above results suggest a therapeutic effect of EGCG in treating stress-induced impairment of learning and memory, most likely by means of its powerful antioxidative properties.

  4. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory.

    PubMed

    Korotkova, Tatiana; Fuchs, Elke C; Ponomarenko, Alexey; von Engelhardt, Jakob; Monyer, Hannah

    2010-11-04

    Activity of parvalbumin-positive hippocampal interneurons is critical for network synchronization but the receptors involved therein have remained largely unknown. Here we report network and behavioral deficits in mice with selective ablation of NMDA receptors in parvalbumin-positive interneurons (NR1(PVCre-/-)). Recordings of local field potentials and unitary neuronal activity in the hippocampal CA1 area revealed altered theta oscillations (5-10 Hz) in freely behaving NR1(PVCre-/-) mice. Moreover, in contrast to controls, in NR1(PVCre-/-) mice the remaining theta rhythm was abolished by the administration of atropine. Gamma oscillations (35-85 Hz) were increased and less modulated by the concurrent theta rhythm in the mutant. Positional firing of pyramidal cells in NR1(PVCre-/-) mice was less spatially and temporally precise. Finally, NR1(PVCre-/-) mice exhibited impaired spatial working as well as spatial short- and long-term recognition memory but showed no deficits in open field exploratory activity and spatial reference learning.

  5. Increased stress responsivity in schizotypy leads to diminished spatial working memory performance.

    PubMed

    Smith, Nathan T; Lenzenweger, Mark F

    2013-10-01

    Past research has emphasized the association between stress and the manifestation of psychotic symptoms in schizophrenia, yet relatively little is known about how environmental stressors affect cognitive processes in the illness. The present study sought to determine the effects of a loud noise stressor on a range of cognitive tasks, including spatial working memory (SWM), short-term visual memory, and sustained visual attention. Twenty-nine (29) schizotypic subjects and 45 controls performed the cognitive tasks across four waves of data collection: baseline, a noisy stress condition, and two follow-up conditions. Heart rate (BPM) was measured at each wave and subjective ratings of stress were collected in response to the loud noise stressor. Schizotypic subjects exhibited significantly greater increases in BPM during the loud, noisy stressor in comparison to controls. Additionally, schizotypic subjects' subjective ratings of stress in response to the loud noise were significantly greater than the controls' ratings. As hypothesized a priori, schizotypic subjects experienced significant decreases in SWM from baseline to the noisy stress condition in comparison to controls. Performance on non-SWM cognitive tasks did not significantly differ during the noisy stress condition and SWM performance did not significantly differ during noise-free conditions. Results from the present study highlight SWM as being particularly susceptible to loud noise stressors in a schizotypic population. Although the source of the induced impairment is not clear, one possibility is that the encoding stage of SWM was negatively affected by the loud noise.

  6. Long-Term Heavy Ketamine Use is Associated with Spatial Memory Impairment and Altered Hippocampal Activation

    PubMed Central

    Morgan, Celia J. A.; Dodds, Chris M.; Furby, Hannah; Pepper, Fiona; Fam, Johnson; Freeman, Tom P.; Hughes, Emer; Doeller, Christian; King, John; Howes, Oliver; Stone, James M.

    2014-01-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to examine the neural mechanism by which heavy ketamine use impairs spatial memory processing. In a sample of 11 frequent ketamine users and 15 poly-drug controls, matched for IQ, age, years in education. We used fMRI utilizing an ROI approach to examine the neural activity of three regions known to support successful navigation; the hippocampus, parahippocampal gyrus, and the caudate nucleus during a virtual reality task of spatial memory. Frequent ketamine users displayed spatial memory deficits, accompanied by and related to, reduced activation in both the right hippocampus and left parahippocampal gyrus during navigation from memory, and in the left caudate during memory updating, compared to controls. Ketamine users also exhibited schizotypal and dissociative symptoms that were related to hippocampal activation. Impairments in spatial memory observed in ketamine users are related to changes in medial temporal lobe activation. Disrupted medial temporal lobe function may be a consequence of chronic ketamine abuse and may relate to schizophrenia-like symptomatology observed in ketamine users. PMID:25538631

  7. Single prolonged stress impairs social and object novelty recognition in rats.

    PubMed

    Eagle, Andrew L; Fitzpatrick, Chris J; Perrine, Shane A

    2013-11-01

    Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event and manifests as re-experiencing, arousal, avoidance, and negative cognition/mood symptoms. Avoidant symptoms, as well as the newly defined negative cognitions/mood, are a serious complication leading to diminished interest in once important or positive activities, such as social interaction; however, the basis of these symptoms remains poorly understood. PTSD patients also exhibit impaired object and social recognition, which may underlie the avoidance and symptoms of negative cognition, such as social estrangement or diminished interest in activities. Previous studies have demonstrated that single prolonged stress (SPS), models PTSD phenotypes, including impairments in learning and memory. Therefore, it was hypothesized that SPS would impair social and object recognition memory. Male Sprague Dawley rats were exposed to SPS then tested in the social choice test (SCT) or novel object recognition test (NOR). These tests measure recognition of novelty over familiarity, a natural preference of rodents. Results show that SPS impaired preference for both social and object novelty. In addition, SPS impairment in social recognition may be caused by impaired behavioral flexibility, or an inability to shift behavior during the SCT. These results demonstrate that traumatic stress can impair social and object recognition memory, which may underlie certain avoidant symptoms or negative cognition in PTSD and be related to impaired behavioral flexibility.

  8. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress.

    PubMed

    Jauregui-Huerta, Fernando; Zhang, Limei; Yañez-Delgadillo, Griselda; Hernandez-Carrillo, Pamela; García-Estrada, Joaquín; Luquín, Sonia

    2015-01-01

    In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21-35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5'Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects.

  9. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress

    PubMed Central

    Jauregui-Huerta, Fernando; Zhang, Limei; Yañez-Delgadillo, Griselda; Hernandez-Carrillo, Pamela; García-Estrada, Joaquín; Luquín, Sonia

    2015-01-01

    In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21–35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5′Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects. PMID:26347648

  10. Vitamin E prevents high-fat high-carbohydrates diet-induced memory impairment: the role of oxidative stress.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Salah, Heba A; Hasan, Zuheir

    2013-07-02

    Memory and learning are impaired by imbalanced diet consumption. High-fat high-carbohydrate diet (HFCD) induces oxidative stress, which results in neuronal damage and interference with synaptic transmission; hence, a decline in cognitive function. Vitamin E is a fat soluble antioxidant that is believed to have positive effects on learning and memory. In this study, we tested the hypothesis that chronic administration of vitamin E prevents learning and memory impairment induced by HFCD. In addition, possible molecular targets for HFCD, and vitamin E that lead to cognitive effects were examined. Vitamin E and/or HFCD were concurrently administered to animals for 6 weeks. Thereafter, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). Additionally, brain derived neurotrophic factor (BDNF) level and antioxidant markers were assessed in the hippocampus. The results of this project revealed that HFCD impairs both short-term and long-term memories (p<0.05). The administration of vitamin E prevented the memory impairment induced by HFCD consumption (p<0.05). The consumption of HFCD reduced activities of hippocampal superoxide dismutase (SOD) and catalase (p<0.05); whereas the levels of thiobarbituric acid reactive substances (TBARS) and oxidized glutathione (GSSG) were elevated (p<0.05). The administration of vitamin E normalized the effect of HFCD on the oxidative stress markers. None of the treatments induced changes in the levels of BDNF or glutathione peroxidase (GPx). In conclusion, HFCD induces memory impairment, and the administration of vitamin E prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus.

  11. Children with Specific Language Impairment Show Rapid, Implicit Learning of Stress Assignment Rules

    ERIC Educational Resources Information Center

    Plante, Elena; Bahl, Megha; Vance, Rebecca; Gerken, LouAnn

    2010-01-01

    An implicit learning paradigm was used to assess children's sensitivity to syllable stress information in an artificial language. Study 1 demonstrated that preschool children, with and without specific language impairment (SLI), can generalize patterns of stress heard during a brief period of familiarization, and can also abstract underlying…

  12. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress

    PubMed Central

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z

    2014-01-01

    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress. PMID:24589888

  13. Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice

    PubMed Central

    Castilla-Ortega, Estela; Hoyo-Becerra, Carolina; Pedraza, Carmen; Chun, Jerold; Rodríguez De Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J.

    2011-01-01

    Background The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. Methodology/Principal Findings Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice. Conclusions/Significance These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology. PMID:21980482

  14. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    PubMed

    Collison, Kate S; Makhoul, Nadine J; Zaidi, Marya Z; Saleh, Soad M; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A

    2012-01-01

    Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame

  15. Patterns of preserved and impaired spatial memory in a case of developmental amnesia

    PubMed Central

    Rosenbaum, R. Shayna; Cassidy, Benjamin N.; Herdman, Katherine A.

    2015-01-01

    The hippocampus is believed to have evolved to support allocentric spatial representations of environments as well as the details of personal episodes that occur within them, whereas other brain structures are believed to support complementary egocentric spatial representations. Studies of patients with adult-onset lesions lend support to these distinctions for newly encountered places but suggest that with time and/or experience, schematic aspects of environments can exist independent of the hippocampus. Less clear is the quality of spatial memories acquired in individuals with impaired episodic memory in the context of a hippocampal system that did not develop normally. Here we describe a detailed investigation of the integrity of spatial representations of environments navigated repeatedly over many years in the rare case of H.C., a person with congenital absence of the mammillary bodies and abnormal hippocampal and fornix development. H.C. and controls who had extensive experience navigating the residential and downtown areas known to H.C. were tested on mental navigation tasks that assess the identity, location, and spatial relations among landmarks, and the ability to represent routes. H.C. was able to represent distances and directions between familiar landmarks and provide accurate, though inefficient, route descriptions. However, difficulties producing detailed spatial features on maps and accurately ordering more than two landmarks that are in close proximity to one another along a route suggest a spatial representation that includes only coarse, schematic information that lacks coherence and that cannot be used flexibly. This pattern of performance is considered in the context of other areas of preservation and impairment exhibited by H.C. and suggests that the allocentric-egocentric dichotomy with respect to hippocampal and extended hippocampal system function may need to be reconsidered. PMID:26029074

  16. Selective white matter pathology induces a specific impairment in spatial working memory.

    PubMed

    Coltman, Robin; Spain, Aisling; Tsenkina, Yanina; Fowler, Jill H; Smith, Jessica; Scullion, Gillian; Allerhand, Mike; Scott, Fiona; Kalaria, Rajesh N; Ihara, Masafumi; Daumas, Stephanie; Deary, Ian J; Wood, Emma; McCulloch, James; Horsburgh, Karen

    2011-12-01

    The integrity of the white matter is critical in regulating efficient neuronal communication and maintaining cognitive function. Damage to brain white matter putatively contributes to age-related cognitive decline. There is a growing interest in animal models from which the mechanistic basis of white matter pathology in aging can be elucidated but to date there has been a lack of systematic behavior and pathology in the same mice. Anatomically widespread, diffuse white matter damage was induced, in 3 different cohorts of C57Bl/6J mice, by chronic hypoperfusion produced by bilateral carotid stenosis. A comprehensive assessment of spatial memory (spatial reference learning and memory; cohort 1) and serial spatial learning and memory (cohort 2) using the water maze, and spatial working memory (cohort 3) using the 8-arm radial arm maze, was conducted. In parallel, a systematic assessment of white matter components (myelin, axon, glia) was conducted using immunohistochemical markers (myelin-associated glycoprotein [MAG], degraded myelin basic protein [dMBP], anti-amyloid precursor protein [APP], anti-ionized calcium-binding adapter molecule [Iba-1]). Ischemic neuronal perikarya damage, assessed using histology (hematoxylin and eosin; H&E), was absent in all shams but was present in some hypoperfused mice (2/11 in cohort 1, 4/14 in cohort 2, and 17/24 in cohort 3). All animals with neuronal perikaryal damage were excluded from further study. Diffuse white matter damage occurred, throughout the brain, in all hypoperfused mice in each cohort and was essentially absent in sham-operated controls. There was a selective impairment in spatial working memory, with all other measures of spatial memory remaining intact, in hypoperfused mice with selective white matter damage. The results demonstrate that diffuse white matter pathology, in the absence of gray matter damage, induces a selective impairment of spatial working memory. This highlights the importance of assessing

  17. Self-Knowledge Dim-Out: Stress Impairs Metacognitive Accuracy.

    PubMed

    Reyes, Gabriel; Silva, Jaime R; Jaramillo, Karina; Rehbein, Lucio; Sackur, Jérôme

    2015-01-01

    Modulation of frontal lobes activity is believed to be an important pathway trough which the hypothalamic-pituitary-adrenal (HPA) axis stress response impacts cognitive and emotional functioning. Here, we investigate the effects of stress on metacognition, which is the ability to monitor and control one's own cognition. As the frontal lobes have been shown to play a critical role in metacognition, we predicted that under activation of the HPA axis, participants should be less accurate in the assessment of their own performances in a perceptual decision task, irrespective of the effect of stress on the first order perceptual decision itself. To test this prediction, we constituted three groups of high, medium and low stress responders based on cortisol concentration in saliva in response to a standardized psycho-social stress challenge (the Trier Social Stress Test). We then assessed the accuracy of participants' confidence judgments in a visual discrimination task. As predicted, we found that high biological reactivity to stress correlates with lower sensitivity in metacognition. In sum, participants under stress know less when they know and when they do not know.

  18. Self-Knowledge Dim-Out: Stress Impairs Metacognitive Accuracy

    PubMed Central

    Reyes, Gabriel; Silva, Jaime R.; Jaramillo, Karina; Rehbein, Lucio; Sackur, Jérôme

    2015-01-01

    Modulation of frontal lobes activity is believed to be an important pathway trough which the hypothalamic-pituitary-adrenal (HPA) axis stress response impacts cognitive and emotional functioning. Here, we investigate the effects of stress on metacognition, which is the ability to monitor and control one's own cognition. As the frontal lobes have been shown to play a critical role in metacognition, we predicted that under activation of the HPA axis, participants should be less accurate in the assessment of their own performances in a perceptual decision task, irrespective of the effect of stress on the first order perceptual decision itself. To test this prediction, we constituted three groups of high, medium and low stress responders based on cortisol concentration in saliva in response to a standardized psycho-social stress challenge (the Trier Social Stress Test). We then assessed the accuracy of participants' confidence judgments in a visual discrimination task. As predicted, we found that high biological reactivity to stress correlates with lower sensitivity in metacognition. In sum, participants under stress know less when they know and when they do not know. PMID:26252222

  19. Stress signalling pathways that impair prefrontal cortex structure and function

    PubMed Central

    2010-01-01

    The prefrontal cortex (PFC)—the most evolved brain region—subserves our highest-order cognitive abilities. However, it is also the brain region that is most sensitive to the detrimental effects of stress exposure. Even quite mild acute uncontrollable stress can cause a rapid and dramatic loss of prefrontal cognitive abilities, and more prolonged stress exposure causes architectural changes in prefrontal dendrites. Recent research has begun to reveal the intracellular signalling pathways that mediate the effects of stress on the PFC. This research has provided clues as to why genetic or environmental insults that disinhibit stress signalling pathways can lead to symptoms of profound prefrontal cortical dysfunction in mental illness. PMID:19455173

  20. Impaired neuronal nitric oxide synthase-mediated vasodilator responses to mental stress in essential hypertension.

    PubMed

    Khan, Sitara G; Geer, Amber; Fok, Henry W; Shabeeh, Husain; Brett, Sally E; Shah, Ajay M; Chowienczyk, Philip J

    2015-04-01

    Neuronal NO synthase (nNOS) regulates blood flow in resistance vasculature at rest and during mental stress. To investigate whether nNOS signaling is dysfunctional in essential hypertension, forearm blood flow responses to mental stress were examined in 88 subjects: 48 with essential hypertension (42±14 years; blood pressure, 141±17/85±15 mm Hg; mean±SD) and 40 normotensive controls (38±14 years; 117±13/74±9 mm Hg). A subsample of 34 subjects (17 hypertensive) participated in a single blind 2-phase crossover study, in which placebo or sildenafil 50 mg PO was administered before an intrabrachial artery infusion of the selective nNOS inhibitor S-methyl-l-thiocitrulline (SMTC, 0.05, 0.1, and 0.2 μmol/min) at rest and during mental stress. In a further subsample (n=21) with an impaired blood flow response to mental stress, responses were measured in the presence and absence of the α-adrenergic antagonist phentolamine. The blood flow response to mental stress was impaired in hypertensive compared with normotensive subjects (37±7% versus 70±8% increase over baseline; P<0.001). SMTC blunted responses to mental stress in normotensive but not in hypertensive subjects (reduction of 40±11% versus 3.0±14%, respectively, P=0.01, between groups). Sildenafil reduced the blood flow response to stress in normotensive subjects from 89±14% to 43±14% (P<0.03) but had no significant effect in hypertensive subjects. Phentolamine augmented impaired blood flow responses to mental stress from 39±8% to 67±13% (P<0.02). Essential hypertension is associated with impaired mental stress-induced nNOS-mediated vasodilator responses; this may relate to increased sympathetic outflow in hypertension. nNOS dysfunction may impair vascular homeostasis in essential hypertension and contribute to stress-induced cardiovascular events.

  1. Role of Glia in Stress-Induced Enhancement and Impairment of Memory

    PubMed Central

    Pearson-Leary, Jiah; Osborne, Danielle Maria; McNay, Ewan C.

    2016-01-01

    Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized. PMID:26793072

  2. Role of Glia in Stress-Induced Enhancement and Impairment of Memory.

    PubMed

    Pearson-Leary, Jiah; Osborne, Danielle Maria; McNay, Ewan C

    2015-01-01

    Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized.

  3. Physical Activity Attenuates Intermittent Hypoxia-induced Spatial Learning Deficits and Oxidative Stress

    PubMed Central

    Gozal, David; Nair, Deepti; Goldbart, Aviv D.

    2010-01-01

    Rationale: Exposure to intermittent hypoxia (IH), such as occurs in sleep-disordered breathing, is associated with substantial cognitive impairments, oxidative stress and inflammation, and increased neuronal cell losses in brain regions underlying learning and memory in rats. Physical activity (PA) is now recognized as neuroprotective in models of neuronal injury and degeneration. Objectives: To examine whether PA will ameliorate IH-induced deficits. Methods: Young adult Sprague-Dawley rats were randomly assigned to one of four treatment groups including normal activity (NA) or PA for 3 months and then subjected to either normoxia (RA) or exposure to IH during the light phase during the last 14 days. Measurements and Main Results: Significant impairments in IH-exposed rats emerged on both latency and pathlength to locate the hidden platform in a water maze and decreased spatial bias during the probe trials. These impairments were not observed in PA-IH rats. In addition, the PA-IH group, relative to NA-IH, conferred greater resistance to both lipid peroxidation and 8-hydroxy-2′-deoxyguanosine (DNA damage) in both the cortex and hippocampus. In support of a neuroprotective effect from PA, PA-IH versus NA-IH rats showed greater AKT activation and neuronal insulin growth factor-1 in these regions. Conclusions: Behavioral modifications such as increased physical activity are associated with decreased susceptibility to IH-induced spatial task deficits and lead to reduced oxidative stress, possibly through improved preservation of insulin growth factor-1–Akt neuronal signaling. Considering the many advantages of PA, interventional strategies targeting behavioral modifications leading to increased PA should be pursued in patients with sleep-disordered breathing. PMID:20224062

  4. Impairment of Rat Spatial Learning and Memory in a New Model of Cold Water-Induced Chronic Hypothermia: Implication for Alzheimer's Disease.

    PubMed

    Ahmadian-Attari, Mohammad Mahdi; Dargahi, Leila; Mosaddegh, Mahmoud; Kamalinejad, Mohammad; Khallaghi, Behzad; Noorbala, Fatemeh; Ahmadiani, Abolhassan

    2015-08-01

    Alzheimer's disease (AD) is a primary neurodegenerative disorder associated with progressive memory impairment. Recent studies suggest that hypothermia may contribute to the development and exacerbation of AD. The aim of this study was to investigate the role of chronic hypothermia on spatial learning and memory performance as well as brain immunohistochemical (IHC) and molecular changes. Four groups of male rats were placed in cold water (3.5 ± 0.5 °C) once a day for 1, 3, 6, and 14 days, four other groups were placed in warm water (32 °C) as the control groups to eliminate the effect of swimming stress, and one more group which comprised intact animals that were kept in a normothermic situation and had no swimming stress. Twenty-four hours after the last intervention, spatial learning and memory were assessed, using the modified Morris water maze. After the behavioral test, the rats' brains were removed for IHC and Western blotting. The results showed that memory retrieval is impaired after 14 days of cold water-induced hypothermia (CWH) (P < 0.05). IHC showed the formation of beta-amyloid plaques after a 14-day CWH. The molecular changes demonstrated that a 14-day CWH induces tau hyperphosphorylation, apoptosis, and reduces COX-II expression. Therefore, chronic CWH, independent of forced swimming stress, impairs learning and memory through molecular mechanisms similar to those of AD. In conclusion, CWH may serve as an important model to assess the role of hypothermia in AD pathogenesis.

  5. Impaired stress awareness in Spanish children with developmental dyslexia.

    PubMed

    Jiménez-Fernández, Gracia; Gutiérrez-Palma, Nicolás; Defior, Sylvia

    2015-02-01

    The role of segmental phonology in developmental dyslexia (DD) is well established (e.g., deficit in phonological awareness), but the role of suprasegmental phonology (prosody) has been less widely investigated. Stress is one of the main prosodic features and refers to the relative prominence of syllables (strong/weak) within a word. The aim of the present study is to examine stress awareness in children with dyslexia and the possible mediation of phonemic awareness on suprasegmental phonological skills. Thirty-one Spanish children with DD and 31 chronological age-control children participated. Two stress awareness tasks were administrated, one with words and another with pseudowords. Results show that the children with dyslexia performed more poorly on both tasks than control children. The pattern of results in accuracy and reaction time suggest that, while children without difficulties use different strategies depending on the type of item, the children with dyslexia employ the same strategy to resolve the two tasks without any benefit of lexical knowledge about stress. Even so, this strategy did not work so efficiently as it did in the control group, which led the group with dyslexia to make a greater number of mistakes. It was also found that, when phonemic awareness was entered as a covariate, accuracy differences disappeared, but only in the word stress task. However, when lexical knowledge was not necessary (as in the pseudoword stress task) differences still remained statistically significant. Implications on the importance of suprasegmental processing in reading acquisition disabilities are discussed.

  6. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia.

    PubMed

    Calderone, Daniel J; Hoptman, Matthew J; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J; Bar, Moshe; Javitt, Daniel C; Butler, Pamela D

    2013-08-01

    Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The "frame and fill" model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object "framing" circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia.

  7. Impaired early visual response modulations to spatial information in chronic schizophrenia

    PubMed Central

    Knebel, Jean-François; Javitt, Daniel C.; Murray, Micah M.

    2011-01-01

    Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia. PMID:21764264

  8. The context counts: congruent learning and testing environments prevent memory retrieval impairment following stress.

    PubMed

    Schwabe, Lars; Wolf, Oliver T

    2009-09-01

    Stress before retention testing impairs memory, whereas memory performance is enhanced when the learning context is reinstated at retrieval. In the present study, we examined whether the negative impact of stress before memory retrieval can be attenuated when memory is tested in the same environmental context as that in which learning took place. Subjects learned a 2-D object location task in a room scented with vanilla. Twenty-four hours later, they were exposed to stress or a control condition before memory for the object location task was assessed in a cued-recall test, either in the learning context or in a different context (unfamiliar room without the odor). Stress impaired memory when assessed in the unfamiliar context, but not when assessed in the learning context. These results suggest that the detrimental effects of stress on memory retrieval can be abolished when a distinct learning context is reinstated at test.

  9. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation

    PubMed Central

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael

    2016-01-01

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH+ cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders. PMID:27528659

  10. Specific impairment of visual spatial covert attention mechanisms in Parkinson's disease.

    PubMed

    Sampaio, Joana; Bobrowicz-Campos, Elzbieta; André, Rui; Almeida, Inês; Faria, Pedro; Januário, Cristina; Freire, António; Castelo-Branco, Miguel

    2011-01-01

    Visual deficits in early and high level processing nodes have been documented in Parkinson's disease (PD). Non-motor high level visual integration deficits in PD seem to have a cortical basis independently of a low level retinal contribution. It is however an open question whether sensory and visual attention deficits can be separated in PD. Here, we have explicitly separated visual and attentional disease related patterns of performance, by using bias free staircase procedures measuring psychophysical contrast sensitivity across visual space under covert attention conditions with distinct types of cues (valid, neutral and invalid). This further enabled the analysis of patterns of dorsal-ventral (up-down) and physiological inter-hemispheric asymmetries. We have found that under these carefully controlled covert attention conditions PD subjects show impaired psychophysical performance enhancement by valid attentional cues. Interestingly, PD patients also show paradoxically increased visual homogeneity of spatial performance profiles, suggesting flattening of high level modulation of spatial attention. Finally we have found impaired higher level attentional modulation of contrast sensitivity in the visual periphery, where mechanisms of covert attention are at higher demands. These findings demonstrate a specific loss of attentional mechanisms in PD and a pathological redistribution of spatial mechanisms of covert attention.

  11. Mice with Deficient BK Channel Function Show Impaired Prepulse Inhibition and Spatial Learning, but Normal Working and Spatial Reference Memory

    PubMed Central

    Azzopardi, Erin; Ruettiger, Lukas; Ruth, Peter; Schmid, Susanne

    2013-01-01

    Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels) have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection. PMID:24303038

  12. The aftermath of terrorism: posttraumatic stress and functional impairment after the 2011 Oslo bombing

    PubMed Central

    Solberg, Øivind; Blix, Ines; Heir, Trond

    2015-01-01

    Objective: In the present study we wanted to investigate the link between exposure, posttraumatic stress symptomatology, and functional impairment in the aftermath of terrorism. Method: Posttraumatic stress symptomatology and functional impairment related to the Oslo bombing 22nd of July, 2011, in directly and indirectly exposed individuals (N = 1927) were assessed together with demographics, exposure, peri-traumatic reactions, and event centrality approximately 1 year after the attack. Results: Directly and indirectly exposed individuals qualifying for posttraumatic stress disorder (PTSD) reported similar peri-traumatic reactions, event centrality, and functional impairment. However, clusters within the PTSD symptomatology were differentially associated with impairment as a function of their exposure. In the directly exposed group, all clusters within the PTSD symptomatology were associated with impairment in function, while only emotional numbing was associated with impairment within the indirectly exposed group. Conclusion: Considering that terror attacks frequently involve directly exposed individuals and a larger population of indirectly exposed individuals, this finding is of importance, especially in the design of intervention programs and the development of treatment policies. PMID:26300833

  13. Diagnostic Methods for Predicting Performance Impairment Associated with Combat Stress

    DTIC Science & Technology

    2007-08-01

    measures in a multivariate model . Research at Georgia State University, employing simulated military tasks representing sentry duty, peacekeeping operations... model . Individual differences in concurrent CBFV were not related to vigilance. o Subjective state measures demonstrated task-induced stress and...Matthews et al. (2004, 2005), generalize to cognitive vigilance. The resource model of vigilance (Davies & Parasuraman, 1982; Warm, Matthews & Finomore

  14. Mechanisms of Aerobic Performance Impairment With Heat Stress and Dehydration

    DTIC Science & Technology

    2010-08-01

    Jones (65) demonstrated that a menthol mouth rinse reduced RPE (com- pared with placebo) by 15% and improved TTE by 9% during exercise-heat stress...potentials. Appl Physiol Nutr Metab 35: 456–463, 2010. 65. Mundel T, Jones DA. The effects of swilling an l()- menthol solution during exercise in the

  15. Diagnostic Methods for Predicting Performance Impairment Associated With Combat Stress

    DTIC Science & Technology

    2004-12-01

    physiological stress index. The design of the study allows us to compare TCD, salivary cortisol, and subjective state as predictors of subsequent...provide a suitable environment for correlating changes in brain physiology with vigilance performance over a prolonged period of time. The Transcranial...may produce multiple, independent changes in physiological and psychological functioning, changes that cannot be adequately described in terms of

  16. Spatial memory impairment by TRPC1 depletion is ameliorated by environmental enrichment

    PubMed Central

    Xu, Hua; Luo, Xiaobin; Chang, Raymond Chuen-Chung; Liu, Jianjun; Yang, Xifei

    2016-01-01

    Canonical transient receptor potential (TRPC) channels are widely expressed throughout the nervous system whereas their functions remain largely unclear. Here we investigated the effects of TRPC1 deletion on spatial memory ability of mice and the potential intervention by environmental enrichment (EE). Significant spatial memory impairment assessed by conditional fearing test, Y maze test and step-down test in TRPC1 knockout mice was revealed. The behavioral abnormality were attenuated by the treatment of EE. Proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) and tandem mass spectrometry (MS) revealed that TRPC1 deletion caused differential expression of a total of 10 proteins (8 up-regulated and 2 down-regulated) in hippocampus. EE treatment resulted in differential expression of a total of 22 proteins (2 up-regulated and 20 down-regulated) in hippocampus of TRPC1 knockout mice. Among these differentially expressed proteins, the expression of α-internexin and glia maturation factor β (GMF-β), two proteins shown to impair memory, were significantly down-regulated in hippocampus of TRPC1 knockout mice by EE treatment. Taken together, these data suggested that TRPC1 regulated directly or indirectly the expression of multiple proteins, which may be crucial for the maintenance of memory ability, and that EE treatment modulated spatial memory impairment caused by TRPC1 depletion and the mechanisms may involve the modulation of EE on the expression of those dys-regulated proteins such as α-internexin and GMF-β in hippocampus. PMID:27034165

  17. Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness to stress

    PubMed Central

    Escusa-Toret, Stéphanie; Vonk, Willianne I. M.; Frydman, Judith

    2014-01-01

    The extensive links between proteotoxic stress, protein aggregation and pathologies ranging from aging to neurodegeneration underscore the importance of understanding how cells manage protein misfolding. Using live-cell imaging, we here determine the fate of stress-induced misfolded proteins from their initial appearance until their elimination. Upon denaturation, misfolded proteins are sequestered from the bulk cytoplasm into dynamic ER-associated puncta that move and coalesce into larger structures in an energy-dependent but cytoskeleton-independent manner. These puncta, which we name Q-bodies, concentrate different misfolded and stress-denatured proteins en-route to degradation, but do not contain amyloid aggregates, which localize instead to the IPOD. Q-body formation and clearance depends on an intact cortical ER and a complex chaperone network that is affected by rapamycin and impaired during chronological aging. Importantly, Q-body formation enhances cellular fitness during stress. We conclude that spatial sequestration of misfolded proteins in Q-bodies is an early quality control strategy occurring synchronously with degradation to clear the cytoplasm from potentially toxic species. PMID:24036477

  18. Stress, gender, cognitive impairment, and outpatient physician use in later life.

    PubMed

    Krause, N

    1996-01-01

    The purpose of this study was to look at the interface between stressful life events, gender, cognitive impairment, and the use of outpatient physician services among older adults. A theoretical rationale is presented, suggesting that older men who are suffering from either mild or moderate levels of cognitive impairment are especially likely to use outpatient physician services when they are confronted by undesirable stressful events. Analyses with data provided by a nationwide sample of elderly people provide support for this complex three-way interaction.

  19. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    PubMed

    Crane, Justin D; Abadi, Arkan; Hettinga, Bart P; Ogborn, Daniel I; MacNeil, Lauren G; Steinberg, Gregory R; Tarnopolsky, Mark A

    2013-01-01

    Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/-) mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/-) mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/-) mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  20. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models.

    PubMed

    Lee, Sang Ah; Tucci, Valter; Vallortigara, Giorgio

    2017-02-09

    Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory) using two different environmental cues (rectangular geometry, striped landmark) in mouse models of human genetic disorders: Prader-Willi syndrome (PWScr(m+/p-) mice, n = 12) and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12). This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.

  1. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    PubMed Central

    Lee, Sang Ah; Tucci, Valter; Vallortigara, Giorgio

    2017-01-01

    Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory) using two different environmental cues (rectangular geometry, striped landmark) in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12) and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12). This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts. PMID:28208764

  2. Lipopolysaccharide-Induced Spatial Memory and Synaptic Plasticity Impairment Is Preventable by Captopril

    PubMed Central

    Abareshi, Azam; Anaeigoudari, Akbar; Norouzi, Fatemeh; Shafei, Mohammad Naser; Khazaei, Majid

    2016-01-01

    Introduction. Renin-angiotensin system has a role in inflammation and also is involved in many brain functions such as learning, memory, and emotion. Neuroimmune factors have been proposed as the contributors to the pathogenesis of memory impairments. In the present study, the effect of captopril on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide (LPS) was investigated. Methods. The rats were divided and treated into control (saline), LPS (1 mg/kg), LPS-captopril (LPS-Capto; 50 mg/kg captopril before LPS), and captopril groups (50 mg/kg) before saline. Morris water maze was done. Long-term potentiation (LTP) from CA1 area of hippocampus was assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results. In the LPS group, the spent time and traveled path to reach the platform were longer than those in the control, while, in the LPS-Capto group, they were shorter than those in the LPS group. Moreover, the slope and amplitude of field excitatory postsynaptic potential (fEPSP) decreased in the LPS group, as compared to the control group, whereas, in the LPS-Capto group, they increased compared to the LPS group. Conclusion. The results of the present study showed that captopril improved the LPS-induced memory and LTP impairments induced by LPS in rats. Further investigations are required in order to better understand the exact responsible mechanism(s). PMID:27830176

  3. Antiamnesic activity of Syzygium cumini against scopolamine induced spatial memory impairments in rats.

    PubMed

    Alikatte, Kanaka Latha; Akondi, Butchi Raju; Yerragunta, Venu Gopal; Veerareddy, Prabhakar Reddy; Palle, Suresh

    2012-11-01

    We evaluated the Antiamnesic effects of methanolic extract of Syzygium cumini (MESC) on spatial memory impairments induced by scopolamine (1 mg/kg, i.p.), a muscarinic antagonist, using the Radial arm maze, Morris water maze, learned helpless ness tests. Effect of MESC was evaluated and compared to standard drug, piracetam (200 mg/kg, i.p.). The MESC significantly (p<0.05) improved the impairment of short term or working memory induced by scopolamine in the Radial arm maze test, and significantly (p<0.05) reversed cognitive impairments in rats as measured by the learned helplessness test. In addition, MESC decreased escape latencies in the Morris water maze test. The activity of acetylcholinesterase in the brain was inhibited significantly (p<0.05) by treatment with MESC to a level similar to that observed in rats treated with piracetam. Moreover treatment with MESC (200 and 400 mg/kg, p.o.) to scopolamine induced rats significantly (p<0.05) decreased TBARS levels which was accompanied by an increase in the activities of SOD and Catalase. MESC has dose dependent effect and 400 mg/kg dose shown more prominent results when compared to 200 mg/kg dose of MESC. These results indicate that MESC may exert anti-amnesic activity via inhibition of acetylcholinesterase and antioxidant mechanisms in the brain.

  4. Xylaria nigripes mitigates spatial memory impairment induced by rapid eye movement sleep deprivation.

    PubMed

    Zhao, Zhengqing; Li, Yanpeng; Chen, Haiyan; Huang, Liuqing; Zhao, Fei; Yu, Qiang; Xiang, Zhenghua; Zhao, Zhongxin

    2014-01-01

    We aimed to investigate the effects of Xylaria nigripes (XN) extracts on the rapid eye movement sleep deprivation (REMSD)-induced memory impairment, and explore related mechanism. Male Sprague Dawley rats were randomly divided into 6 groups: cage control (CC)-NaCl group; tank control (TC)-NaCl group; sleep deprivation (SD)-NaCl group; CC-XN group; TC-XN group and SD-XN group. The rats were administered with intragastric XN and 0.9% of sodium chloride. SD group rats were deprived of REM sleep for 72 h. Morris water maze (MWM) was used to assess the effects of XN on spatial learning and memory. The expression of cAMP-response element binding protein (CREB) and p-CREB were also investigated in all groups. Result showed rats in SD-NaCl group had significantly longer mean escape latencies in finding the platform as compared to the control rats (p<0.05) in MWM test. The SD-NaCl group spent significantly less time in goal quadrant compared with the SD-XN group. REMSD and XN did not alter CREB expression in the hippocampus, while sleep deprivation resulted in reduced phosphorylation of CREB in the hippocampus, which was reversed by XN. XN mitigates spatial memory impairment induced by REMSD in rat. Phosphorylation of CREB in hippocampus might be one of the mechanisms.

  5. Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor

    PubMed Central

    Chang, Eric H.; Volpe, Bruce T.; Mackay, Meggan; Aranow, Cynthia; Watson, Philip; Kowal, Czeslawa; Storbeck, Justin; Mattis, Paul; Berlin, RoseAnn; Chen, Huiyi; Mader, Simone; Huerta, Tomás S.; Huerta, Patricio T.; Diamond, Betty

    2015-01-01

    Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present. PMID:26286205

  6. Impairment of Sulfite Reductase Decreases Oxidative Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Wang, Meiping; Jia, Yunli; Xu, Ziwei; Xia, Zongliang

    2016-01-01

    As an essential enzyme in the sulfate assimilation reductive pathway, sulfite reductase (SiR) plays important roles in diverse metabolic processes such as sulfur homeostasis and cysteine metabolism. However, whether plant SiR is involved in oxidative stress response is largely unknown. Here, we show that SiR functions in methyl viologen (MV)-induced oxidative stress in Arabidopsis. The transcript levels of SiR were higher in leaves, immature siliques, and roots and were markedly and rapidly up-regulated by MV exposure. The SiR knock-down transgenic lines had about 60% residual transcripts and were more susceptible than wild-type when exposed to oxidative stress. The severe damage phenotypes of the SiR-impaired lines were accompanied by increases of hydrogen peroxide (H2O2), malondialdehyde (MDA), and sulfite accumulations, but less amounts of glutathione (GSH). Interestingly, application of exogenous GSH effectively rescued corresponding MV hypersensitivity in SiR-impaired plants. qRT-PCR analysis revealed that there was significantly increased expression of several sulfite metabolism-related genes in SiR-impaired lines. Noticeably, enhanced transcripts of the three APR genes were quite evident in SiR-impaired plants; suggesting that the increased sulfite in the SiR-impaired plants could be a result of the reduced SiR coupled to enhanced APR expression during oxidative stress. Together, our results indicate that SiR is involved in oxidative stress tolerance possibly by maintaining sulfite homeostasis, regulating GSH levels, and modulating sulfite metabolism-related gene expression in Arabidopsis. SiR could be exploited for engineering environmental stress-tolerant plants in molecular breeding of crops. PMID:27994615

  7. Association Between Parenting Stress and Functional Impairment Among Children Diagnosed with Neurodevelopmental Disorders.

    PubMed

    Almogbel, Yasser S; Goyal, Rohit; Sansgiry, Sujit S

    2017-02-08

    The objective of this study was to examine the association between parenting stress and functional impairment among children with Neurodevelopmental Disorder (NDD). A sample of 150 parents of children diagnosed with NDD were recruited from schools that offer special education services. Parents completed a self-administered survey containing the parenting stress index-short form (PSI-SF) scale and the Columbia Impairment Scale. The multiple logistic regression conducted to compare those with clinically significant PSI-SF scores indicated that the risk of parents with clinically significant scores of parenting stress increased 5.5 times with functionally impaired children with NDD. Further the risk of stress increased 4.6 times when these parents reported having their own disorder/disease. The risk of stress was reduced by 57% for those who had higher than a college level education compared to those with a college level education or below. These findings might help health care providers to initiate early intervention strategies such as peer support and education that can prevent parenting stress and reduce the risk of potential incidence of depression.

  8. Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories.

    PubMed

    Payne, Jessica D; Jackson, Eric D; Hoscheidt, Siobhan; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn

    2007-12-01

    Stressful events frequently comprise both neutral and emotionally arousing information, yet the impact of stress on emotional and neutral events is still not fully understood. The hippocampus and frontal cortex have dense concentrations of receptors for stress hormones, such as cortisol, which at high levels can impair performance on hippocampally dependent memory tasks. Yet, the same stress hormones can facilitate memory for emotional information, which involves interactions between the hippocampus and amygdala. Here, we induced psychosocial stress prior to encoding and examined its long-term effects on memory for emotional and neutral episodes. The stress manipulation disrupted long-term memory for a neutral episode, but facilitated long-term memory for an equivalent emotional episode compared with a control condition. The stress manipulation also increased salivary cortisol, catecholamines as indicated by the presence of alpha-amylase, heart rate, and subjectively reported stress. Stressed subjects reported more false memories than nonstressed control subjects, and these false memories correlated positively with cortisol levels, providing evidence for a relationship between stress and false memory formation. Our results demonstrate that stress, when administered prior to encoding, produces different patterns of long-term remembering for neutral and emotional episodes. These differences likely emerge from differential actions of stress hormones on memory-relevant regions of the brain.

  9. Developmental stress impairs performance on an association task in male and female songbirds, but impairs auditory learning in females only.

    PubMed

    Farrell, Tara M; Morgan, Amanda; MacDougall-Shackleton, Scott A

    2016-01-01

    In songbirds, early-life environments critically shape song development. Many studies have demonstrated that developmental stress impairs song learning and the development of song-control regions of the brain in males. However, song has evolved through signaller-receiver networks and the effect stress has on the ability to receive auditory signals is equally important, especially for females who use song as an indicator of mate quality. Female song preferences have been the metric used to evaluate how developmental stress affects auditory learning, but preferences are shaped by many non-cognitive factors and preclude the evaluation of auditory learning abilities in males. To determine whether developmental stress specifically affects auditory learning in both sexes, we subjected juvenile European starlings, Sturnus vulgaris, to either an ad libitum or an unpredictable food supply treatment from 35 to 115 days of age. In adulthood, we assessed learning of both auditory and visual discrimination tasks. Females reared in the experimental group were slower than females in the control group to acquire a relative frequency auditory task, and slower than their male counterparts to acquire an absolute frequency auditory task. There was no difference in auditory performance between treatment groups for males. However, on the colour association task, birds from the experimental group committed more errors per trial than control birds. There was no correlation in performance across the cognitive tasks. Developmental stress did not affect all cognitive processes equally across the sexes. Our results suggest that the male auditory system may be more robust to developmental stress than that of females.

  10. Implementation of Biofeedback Techniques To Reduce Stress Involving Communication Skills with Elementary School Hearing Impaired Students.

    ERIC Educational Resources Information Center

    Litus, Tonyia J.

    Two sixth-grade, hearing-impaired students were studied to determine the effectiveness of stress management techniques using biofeedback instruments to monitor their nervous and cardiovascular systems. The male student had behavior problems, exhibiting explosive behavior without warning. The female student experienced excessive audible inhalations…

  11. Stress Constellations and Coping Styles of Older Adults with Age-Related Visual Impairment

    ERIC Educational Resources Information Center

    Lee, Kyoung Othelia; Brennan, Mark

    2006-01-01

    Narrative data from two earlier studies of adaptation to age-related visual impairment were examined for constellations of stressors and coping styles. In the course of previous qualitative analyses, the researchers identified stress and coping codes according to behavioral, psychological, and social domains using a grounded theory approach. In…

  12. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs

    PubMed Central

    Tennessen, Jennifer B.; Parks, Susan E.; Langkilde, Tracy

    2014-01-01

    Human-generated noise has profoundly changed natural soundscapes in aquatic and terrestrial ecosystems, imposing novel pressures on ecological processes. Despite interest in identifying the ecological consequences of these altered soundscapes, little is known about the sublethal impacts on wildlife population health and individual fitness. We present evidence that noise induces a physiological stress response in an amphibian and impairs mate attraction in the natural environment. Traffic noise increased levels of a stress-relevant glucocorticoid hormone (corticosterone) in female wood frogs (Lithobates sylvaticus) and impaired female travel towards a male breeding chorus in the field, providing insight into the sublethal consequences of acoustic habitat loss. Given that prolonged elevated levels of corticosterone can have deleterious consequences on survival and reproduction and that impaired mate attraction can impact population persistence, our results suggest a novel pathway by which human activities may be imposing population-level impacts on globally declining amphibians. PMID:27293653

  13. Effects of cholecystokinin-8 on morphine-induced spatial reference memory impairment in mice.

    PubMed

    Yang, Shengchang; Wen, Di; Dong, Mei; Li, Dong; Sun, Donglei; Ma, Chunling; Cong, Bin

    2013-11-01

    Acute and chronic exposure to opiate drugs impaired various types of memory processes. To date, there is no preventive treatment for opiate-induced memory impairment and the related mechanism is still unclear. CCK-8 is the most potent endogenous anti-opioid peptide and has been shown to exert memory-enhancing effect, but the effect of CCK-8 on morphine-induced memory impairment has not been reported. By using Morris water maze, we found that escape latency to the hidden platform in navigation test was not influenced, but performance in the probe test was seriously poor in morphine dependency mice. Amnesia induced by chronic morphine treatment was significantly alleviated by pre-treatment with CCK-8 (0.01, 0.1 and 1 μg, i.c.v.), and CCK-8 (0.1 and 1 μg, i.c.v.) treatment alone could improve performance in either navigation or probe test. Furthermore, Golgi-Cox staining analysis revealed that pre-treatment with CCK-8 (1 μg, i.c.v.) reversed spine density decreased in CA1 region of hippocampus in morphine dependency mice, and CCK-8 (1 μg, i.c.v.) alone obviously increased spine density in CA1. Our findings conclude spine density change in CA1 region of hippocampus may be the structural plasticity mechanism which is responsible for enhancing effect of CCK-8 on spatial reference memory. Therefore, CCK-8 could effectively improve memory impairment in morphine dependency mice.

  14. Late-Onset Cognitive Impairments after Early-Life Stress Are Shaped by Inherited Differences in Stress Reactivity

    PubMed Central

    McIlwrick, Silja; Pohl, Tobias; Chen, Alon; Touma, Chadi

    2017-01-01

    Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS. PMID:28261058

  15. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  16. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood.

    PubMed

    McCormick, Cheryl M; Thomas, Catherine M; Sheridan, Cheryl S; Nixon, Feather; Flynn, Jennifer A; Mathews, Iva Z

    2012-06-01

    The ongoing development of the hippocampus in adolescence may be vulnerable to stressors. The effects of social instability stress (SS) in adolescence (daily 1 h isolation and change of cage partner postnatal days 30-45) on cell proliferation in the dentate gyrus (DG) in adolescence (on days 33 and 46, experiment 1) and in adulthood (experiment 2) was examined in Long Evans male rats and compared to nonstressed controls (CTL). Additionally, in experiment 2, a separate group of SS and CTL rats was tested on either a spatial (hippocampal-dependent) or nonspatial (nonhippocampal dependent) version of an object memory test and also were used to investigate hippocampal expression of markers of synaptic plasticity. No memory impairment was evident until the SS rats were adults, and the impairment was only on the spatial test. SS rats initially (postnatal day 33) had increased cell proliferation based on counts of Ki67 immunoreactive (ir) cells and greater survival of immature neurons based on counts of doublecortin ir cells on day 46 and in adulthood, irrespective of behavioral testing. Counts of microglia in the DG did not differ by stress group, but behavioral testing was associated with reduced microglia counts compared to nontested rats. As adults, SS and CTL rats did not differ in hippocampal expression of synaptophysin, but compared to CTL rats, SS rats had higher expression of basal calcium/calmodulin-dependent kinase II (CamKII), and lower expression of the phosphorylated CamKII subunit threonine 286, signaling molecules related to synaptic plasticity. The results are contrasted with those from previous reports of chronic stress in adult rats, and we conclude that adolescent stress alters the ongoing development of the hippocampus leading to impaired spatial memory in adulthood, highlighting the heightened vulnerability to stressors in adolescence.

  17. Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Aβ) induced oxidative stress and cognitive impairment in normal and diabetic rats.

    PubMed

    Briyal, Seema; Shepard, Cortney; Gulati, Anil

    2014-05-01

    Alzheimer's disease (AD) is a progressive brain disorder leading to impairment of learning and memory. Amyloid β (Aβ) induced oxidative stress has been implicated in the initiation and progression of AD. Endothelin (ET) and its receptors have been considered as therapeutic targets for AD. Recent studies indicate that stimulation of ETB receptors may provide neuroprotection. The purpose of this study was to determine the preventative effect of selectively stimulating ETB receptors on cognitive impairment and oxidative stress in Aβ treated non-diabetic and diabetic (induced by streptozotocin) rats. Rats were concurrently treated with Aβ1-40 (day 1, 7 and 14) and either saline, IRL-1620 (an ETB agonist), and/or BQ788 (an ETB antagonist) daily for 14 days in the lateral cerebral ventricles using sterotaxically implanted cannula; experiments were performed on day 15. Aβ treatment produced a significant (p<0.0001) increase of 360% and 365% in malondialdehyde levels (a marker of lipid peroxidation) in non-diabetic and diabetic rats, respectively, compared to sham group. Antioxidants (superoxide dismutase and reduced glutathione) decreased following Aβ treatment compared to sham group. Treatment with IRL-1620 reversed these effects, indicating that ETB receptor stimulation reduces oxidative stress injury following Aβ treatment. In Morris swim task, Aβ treated rats showed impairment in spatial memory. Rats treated with IRL-1620 significantly reduced the cognitive impairment induced by Aβ. BQ788 treatment completely blocked IRL-1620 induced reduction in oxidative stress and cognitive impairment. Results of the present study demonstrate that IRL-1620 improved both acquisition (learning) and retention (memory) on water maze task and reduced oxidative stress parameters. It can be speculated that ETB receptor stimulation prevents cognitive impairment and may be useful in neurodegenerative diseases.

  18. Chronic stress impairs learning and hippocampal cell proliferation in senescence-accelerated prone mice.

    PubMed

    Yan, Weihong; Zhang, Ting; Jia, Weiping; Sun, Xiaojiang; Liu, Xueyuan

    2011-02-25

    Chronic stress can induce cognitive impairment. It is unclear whether a higher susceptibility to chronic stress is associated with the progression of pathological brain aging. Senescence-accelerated prone mouse 8 (SAMP8) is a naturally occurring animal model of accelerated brain aging. Senescence-accelerated resistant mouse 1 (SAMR1) is usually used as the normal control. In this study, we examined the effects of chronic restraint stress (CRS) on learning in the Y-maze, hippocampal cell proliferation, and the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of 4-month-old SAMP8 and SAMR1. The results showed that exposure to CRS impaired learning and hippocampal cell proliferation in SAMP8 and SAMR1 but to a much greater extent in SAMP8. Furthermore, CRS significantly decreased the expression of BDNF protein and mRNA in the hippocampus of SAMP8 and SAMR1. These data indicated that SAMP8 is more sensitive to the deleterious effects of CRS on learning than SAMR1. A greater decrease in hippocampal cell proliferation caused by chronic stress may be part of the underlying mechanism for the more severe learning deficit observed in SAMP8. In addition, our findings suggested a role of BDNF in the stress-induced impairment of learning and hippocampal cell proliferation in both strains.

  19. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats.

    PubMed

    Hashemi Nosrat Abadi, T; Vaghef, L; Babri, S; Mahmood-Alilo, M; Beirami, M

    2013-06-01

    Chronic ethanol consumption is often accompanied by numerous cognitive deficits and may lead to long-lasting impairments in spatial learning and memory. The aim of the present study was to evaluate the therapeutic potential of regular treadmill exercise on hippocampal-dependent memory in ethanol-treated rats. Spatial memory was tested in a Morris Water Maze task. Adult male Wistar rats were exposed to ethanol (4 g/kg, 20% v/v for 4 weeks) and effects of three exercise protocols (pre-ethanol, post-ethanol and pre-to-post-ethanol treatment) were examined. Results showed that ethanol exposure resulted in longer escape latencies during the acquisition phase of the Morris Water Maze task. Moreover, all three exercise protocols significantly decreased the latency to locate the hidden platform. During the probe trial, ethanol led to decreased time spent in the target quadrant. In contrast, performance on the probe trial was significantly better in the rats that had done the post- and pre-to-post-ethanol, but not pre-ethanol, exercises. These findings suggest that treadmill running can attenuate the adverse effects of chronic ethanol exposure on spatial memory, and may serve as a non-pharmacological alcohol abuse treatment.

  20. An instructional guide for reducing the stress of hearing parents of hearing-impaired children.

    PubMed

    Adams, J W; Tidwell, R

    1989-12-01

    The impact of a self-instructional program to reduce stress levels of parents of hearing-impaired children is examined. Fifty parents with hearing-impaired children were randomly assigned to one of two groups: Participating Parents, who received a Self-Instructional Parent Program (SIPP); and Non-participating Parents, who received no such program. Findings indicate that the participating parents did not experience significant decreases in their stress levels or in the perceived incidence of misbehavior in their children in comparison with non-participating parents. Participating parents, however, reported a decrease in their children's misbehavior; non-participating parents noted an increase. Additionally, the findings also associated increasing stress on the part of parents with parental perceptions of burgeoning misbehavior on the part of the child.

  1. Repeated Social Stress Increases Reward Salience and Impairs Encoding of Prediction by Rat Locus Coeruleus Neurons

    PubMed Central

    Chaijale, Nayla N; Snyder, Kevin; Arner, Jay; Curtis, Andre L; Valentino, Rita J

    2015-01-01

    Stress is implicated in psychopathology characterized by cognitive dysfunction. Cognitive responses to stress are regulated by the locus coeruleus–norepinephrine (LC–NE) system. As social stress is a prevalent human stressor, this study determined the impact of repeated social stress on the relationship between LC neuronal activity and behavior during the performance of cognitive tasks. Social stress-exposed rats performed better at intradimensional set shifting (IDS) and made fewer perseverative errors during reversal learning (REV). LC neurons of control rats were task responsive, being activated after the choice and before reward. Social stress shifted LC neuronal activity from being task responsive to being reward responsive during IDS and REV. LC neurons of stressed rats were activated by reward and tonically inhibited by reward omission with incorrect choices. In contrast, LC neurons of stress-naive rats were only tonically inhibited by reward omission. Reward-related LC activation in stressed rats was unrelated to predictability because it did not habituate as learning progressed. The findings suggest that social stress history increases reward salience and impairs processes that compute predictability for LC neurons. These effects of social stress on LC neuronal activity could facilitate learning as indicated by improved performance in stressed rats. However, the ability of social stress history to enhance responses to behavioral outcomes may have a role in the association between stress and addictive behaviors. In addition, magnified fluctuations in LC activity in response to opposing behavioral consequences may underlie volatile changes in emotional arousal that characterize post-traumatic stress disorder. PMID:25109891

  2. Repeated social stress increases reward salience and impairs encoding of prediction by rat locus coeruleus neurons.

    PubMed

    Chaijale, Nayla N; Snyder, Kevin; Arner, Jay; Curtis, Andre L; Valentino, Rita J

    2015-01-01

    Stress is implicated in psychopathology characterized by cognitive dysfunction. Cognitive responses to stress are regulated by the locus coeruleus-norepinephrine (LC-NE) system. As social stress is a prevalent human stressor, this study determined the impact of repeated social stress on the relationship between LC neuronal activity and behavior during the performance of cognitive tasks. Social stress-exposed rats performed better at intradimensional set shifting (IDS) and made fewer perseverative errors during reversal learning (REV). LC neurons of control rats were task responsive, being activated after the choice and before reward. Social stress shifted LC neuronal activity from being task responsive to being reward responsive during IDS and REV. LC neurons of stressed rats were activated by reward and tonically inhibited by reward omission with incorrect choices. In contrast, LC neurons of stress-naive rats were only tonically inhibited by reward omission. Reward-related LC activation in stressed rats was unrelated to predictability because it did not habituate as learning progressed. The findings suggest that social stress history increases reward salience and impairs processes that compute predictability for LC neurons. These effects of social stress on LC neuronal activity could facilitate learning as indicated by improved performance in stressed rats. However, the ability of social stress history to enhance responses to behavioral outcomes may have a role in the association between stress and addictive behaviors. In addition, magnified fluctuations in LC activity in response to opposing behavioral consequences may underlie volatile changes in emotional arousal that characterize post-traumatic stress disorder.

  3. Anti-glucocorticoid gene therapy reverses the impairing effects of elevated corticosterone on spatial memory, hippocampal neuronal excitability, and synaptic plasticity.

    PubMed

    Dumas, Theodore C; Gillette, Todd; Ferguson, Deveroux; Hamilton, Kelly; Sapolsky, Robert M

    2010-02-03

    Moderate release of the major stress hormones, glucocorticoids (GCs), improves hippocampal function and memory. In contrast, excessive or prolonged elevations produce impairments. Enzymatic degradation and reformation of GCs help to maintain optimal levels within target tissues, including the brain. We hypothesized that expressing a GC-degrading enzyme in hippocampal neurons would attenuate the negative impact of an excessive elevation in GC levels on synaptic physiology and spatial memory. We tested this by expressing 11-beta-hydroxysteroid dehydrogenase (type II) in dentate gyrus granule cells during a 3 d GC treatment followed by examination of synaptic responses in hippocampal slices or spatial performance in the Morris water maze. In adrenalectomized rats with basal GC replacement, additional GC treatments for 3 d reduced synaptic strength and promoted the expression of long-term depression at medial perforant path synapses, increased granule cell and CA1 pyramidal cell excitability, and impaired spatial reference memory (without influencing learning). Expression of 11-beta-hydroxysteroid dehydrogenase (type II), mostly in mature dentate gyrus granule cells, reversed the effects of high GC levels on granule cell and pyramidal cell excitability, perforant path synaptic plasticity, and spatial memory. These data demonstrate the ability of neuroprotective gene expression limited to a specific cell population to both locally and trans-synaptically offset neurophysiological disruptions produced by prolonged increases in circulating stress hormones. This report supplies the first physiological explanation for previously demonstrated cognitive sparing by anti-stress gene therapy approaches and lends additional insight into the hippocampal processes that are important for memory.

  4. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats.

    PubMed

    Hritcu, Lucian; Cioanca, Oana; Hancianu, Monica

    2012-04-15

    Lavender is reported to be an effective medical plant in treating inflammation, depression, stress and mild anxiety in Europe and the USA. The present study investigated the effects of two different lavender essential oils from Lavandula angustifolia ssp. angustifolia Mill. (Lamiaceae) and Lavandula hybrida Rev. (Lamiaceae) on neurological capacity of male Wistar rats subjected to scopolamine (0.7mg/kg)-induced dementia rat model. Chronic exposures to lavender essential oils (daily, for 7 continuous days) significantly reduced anxiety-like behavior and inhibited depression in elevated plus-maze and forced swimming tests, suggesting anxiolytic and antidepressant activity. Also, spatial memory performance in Y-maze and radial arm-maze tasks was improved, suggesting positive effects on memory formation. Taken together, multiple exposures to lavender essential oils could effectively reverse spatial memory deficits induced by dysfunction of the cholinergic system in the rat brain and might provide an opportunity for management neurological abnormalities in dementia conditions.

  5. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood.

    PubMed

    Chaby, Lauren E; Cavigelli, Sonia A; Hirrlinger, Amy M; Lim, James; Warg, Kendall M; Braithwaite, Victoria A

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.

  6. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood

    PubMed Central

    Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans. PMID:26696849

  7. Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats.

    PubMed

    Majkutewicz, Irena; Kurowska, Ewelina; Podlacha, Magdalena; Myślińska, Dorota; Grembecka, Beata; Ruciński, Jan; Plucińska, Karolina; Jerzemowska, Grażyna; Wrona, Danuta

    2016-07-15

    Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a widely-accepted animal model of sporadic Alzheimer's disease (sAD). The present study evaluated the ability of dimethyl fumarate (DMF), an agent with antioxidant and anti-inflammatory properties, to prevent spatial memory impairments and hippocampal neurodegeneration mediated by ICV injection of STZ in 4-month-old rats. Rodent chow containing DMF (0.4%) or standard rodent chow was made available on day 0. Rat body weight and food intake were measured daily for whole the experiment (21days). STZ or vehicle (SHAM) ICV injections were performed on days 2 and 4. Spatial reference and working memory were evaluated using the Morris water maze on days 14-21. Cells containing Fluoro-Jade B (neurodegeneration marker), IL-6, IL-10 were quantified in the hippocampus and choline acetyltransferase (ChAT) in the basal forebrain. The disruption of spatial memory and a high density of hippocampal CA1-3 cells labeled with Fluoro-Jade B or containing IL-6 or IL-10 were observed in the STZ group but not in the STZ+DMF group, as compared to the SHAM or SHAM+DMF groups. STZ vs. STZ+DMF differences were found: worse reference memory acquisition, fewer ChAT-positive neurons in the medial septum (Ch1), more Fluoro-Jade-positive CA1 hippocampal cells in STZ rats. DMF therapy in a rodent model of sAD prevented the disruption of spatial reference and working memory, loss of Ch1 cholinergic cells and hippocampal neurodegeneration as well as the induction of IL-6 and IL-10 in CA1. These beneficial cognitive and molecular effects validate the anti-inflammatory and neuroprotective properties of DMF in the hippocampus.

  8. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment

    USGS Publications Warehouse

    Gebler, J.B.

    2004-01-01

    The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.

  9. Spatial resolution for feature binding is impaired in peripheral and amblyopic vision.

    PubMed

    Neri, Peter; Levi, Dennis M

    2006-07-01

    We measured spatial resolution for discriminating targets that differed from nearby distractors in either color or orientation or their conjunction. In the fovea of normal human observers, whenever both attributes are big enough to be individually visible, their conjunction is also visible. In the periphery, the two attributes may be visible, but their conjunction may be invisible. We found a similar impairment in resolving conjunctions for the fovea of deprived eyes of humans with abnormal visual development (amblyopia). These results are quantitatively explained by a model of primary visual cortex (V1) in which orientation and color maps are imperfectly co-registered topographically. Our results in persons with amblyopia indicate that the ability of the fovea to compensate for this poor co-registration is consolidated by visual experience during postnatal development.

  10. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    PubMed Central

    Sekler, Alejandra; Jiménez, José M; Rojo, Leonel; Pastene, Edgard; Fuentes, Patricio; Slachevsky, Andrea; Maccioni, Ricardo B

    2008-01-01

    Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP), plasma malondialdehyde and total antioxidative capacity (TAC), as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59) and a control group of neurologically normal subjects (n = 29), attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery), while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol) of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC) of patients. In this context, the subset of subjects exhibiting cognitive impairment were divided into two subgroups according with their Global Dementia Scale performance: a subgroup with mild AD and a subgroup with moderate to severe AD. Significant differences in AOC were found between subgroups. The different correlations between cognitive impairment of subgroups of subjects with the oxidative stress profile are discussed in the context of AD pathogenesis. PMID:19043515

  11. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    PubMed Central

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  12. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    PubMed

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals.

  13. Chronic, Severe Hypertension Does Not Impair Spatial Learning and Memory in Sprague-Dawley Rats

    PubMed Central

    Kadish, Inga; van Groen, Thomas; Wyss, J. Michael

    2001-01-01

    This study tested the hypothesis that long-term hypertension impairs spatial learning and memory in rats. In 6-wk-old Sprague-Dawley rats, chronic hypertension was induced by placing one of three sizes of stainless steel clips around the descending aorta (above the renal artery), resulting in a 20–80-mm Hg increase of arterial pressure in all arteries above the clip, that is, the upper trunk and head. Ten months later, the rats were tested for 5 d in a repeated-acquisition water maze task, and on the fifth day, they were tested in a probe trial; that is, there was no escape platform present. At the end of the testing period, the nonsurgical and sham control groups had similar final escape latencies (16 ± 4 sec and 23 ± 9 sec, respectively) that were not significantly different from those of the three hypertensive groups. Rats with mild hypertension (140–160 mm Hg) had a final escape latency of 25 ± 6 sec, whereas severely hypertensive rats (170–199 mm Hg) had a final escape latency of 21 ± 7 sec and extremely hypertensive rats (>200 Hg) had a final escape latency of 19 ± 5 sec. All five groups also displayed a similar preference for the correct quadrant in the probe trial. Together, these data suggest that sustained, severe hypertension for over 10 mo is not sufficient to impair spatial learning and memory deficits in otherwise normal rats. PMID:11274256

  14. Sodium valproate exposure during the brain growth spurt transiently impairs spatial learning in prepubertal rats

    PubMed Central

    Filgueiras, Cláudio C.; Pohl-Guimarães, Fernanda; Krahe, Thomas E.; Medina, Alexandre E.

    2012-01-01

    The brain is extremely vulnerable to teratogenic insults during the brain growth spurt, a period that starts during the third trimester of human gestation and is characterized by synaptogenesis establishment of neuronal circuits. While the treatment of epilepsy during pregnancy increases the risk of neurodevelopmental disorders in offspring, the consequences of exposure to anticonvulsants during the brain growth spurt remain poorly known. Here we investigate whether exposure to sodium valproate (VPA) during a similar period in rats impairs spatial learning of juvenile rats. Long-Evans rats were exposed to VPA (200mg/kg) or saline solution (SAL) every other day between postnatal day (PN) 4 and PN10. At PN23 and PN30, Morris water maze performance was evaluated during 6 consecutive days. In the group of animals which started their tests at PN23, the VPA exposure impaired both, swimming speed and learning/memory performance. Interestingly, no differences were observed between VPA and control animals tested from PN30 to PN35. Our data suggests that the neurobehavioral deficits caused by VPA exposure during the brain growth spurt are transitory. PMID:23178315

  15. Cognitive impairments in former patients with work-related stress complaints - one year later.

    PubMed

    Eskildsen, Anita; Andersen, Lars Peter; Pedersen, Anders Degn; Andersen, Johan Hviid

    2016-11-01

    Patients on sick leave due to work-related stress often present with cognitive impairments. The aim of this prospective cohort study was to examine the long-term consequences of prolonged work-related stress in terms of cognitive functioning one year after initial professional care seeking. We tested a group of patients with work-related stress with a comprehensive neuropsychological test battery at two occasions, one year apart. At both time points, we compared the performance of patients with healthy controls matched pairwise on sex, age and length of education. This paper presents the results from the one-year follow-up. When adjusting for practice effects, patients improved on measures of prospective memory and processing speed. However, patients continued to perform worse than controls on all tests, though only half of the comparisons reached statistical significance. The effect sizes of the differences between the two groups at one-year follow-up were small to medium. In conclusion, former patients with prolonged work-related stress improved, but they continued to perform worse than controls after one year. In the acute phase, the largest impairments were related to executive function and mental speed but at follow-up memory impairments also became apparent.

  16. [Online Health Services for the Prevention of Stress-associated Psychological Impairments at the Workplace].

    PubMed

    von Hofe, I; Latza, U; Lönnfors, S; Muckelbauer, R

    2016-04-14

    Objective: The aim of this systematic review is to provide an overview of the evidence from randomized controlled trials (RCTs) on the effect of online health services for the prevention of stress-associated psychological impairments at the workplace. Methods: The databases EMBASE, PubMed and PsycINFO were systematically searched for English, French and German references. Included were RCTs that examined the influence of online health services on stress-associated impairment in adult employees at the workplace. The Critical Appraisal Skills Programme (CASP) checklist was used for quality appraisal. Results: Out of 5 632 identified references, 13 RCTs were included in this study. The intervention approaches included movement and relaxation exercises, imparting of knowledge, cognitive-behavioral/social-behavioral interventions, risk communication, health coaching, mindfulness training, and career identity training. In 4 RCTs among mainly white collar employees, the interventions led to improvements in stress-associated outcomes (2 RCTs of high, one of medium and one of low quality level). 9 further RCTs (5 of them of a medium and 4 of a low quality level) did not show a beneficial intervention effect. Conclusion: There are effective health services for the prevention of stress-associated psychological impairments at the workplace. A final conclusion on the kind of intervention that is effective cannot be drawn due to the limited number of RCTs using various intervention approaches. Interventions of at least 12 weeks and a combination of multiple approaches were more often effective.

  17. Examining factors involved in stress-related working memory impairments: Independent or conditional effects?

    PubMed

    Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A

    2015-12-01

    A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering.

  18. β-Asarone Rescues Pb-Induced Impairments of Spatial Memory and Synaptogenesis in Rats

    PubMed Central

    Zou, Rong-Xin; Xu, Yi; Du, Yang; Wang, Shuang; Xu, Lai; Chen, Yuan-Zhi; Wang, Hui-Li; Chen, Xiang-Tao

    2016-01-01

    Chronic lead (Pb) exposure causes cognitive deficits. This study aimed to explore the neuroprotective effect and mechanism of β-asarone, an active component from Chinese Herbs Acorus tatarinowii Schott, to alleviate impairments of spatial memory and synaptogenesis in Pb-exposed rats. Both Sprague-Dawley developmental rat pups and adult rats were used in the study. Developmental rat pups were exposed to Pb throughout the lactation period and β-asarone (10, 40mg kg-1, respectively) was given intraperitoneally from postnatal day 14 to 21. Also, the adult rats were exposed to Pb from embryo stage to 11 weeks old and β-asarone (2.5, 10, 40mg kg-1, respectively) was given from 9 to 11 weeks old. The level of β-asarone in brain tissue was measured by High Performance Liquid Chromatography. The Morris water maze test and Golgi-Cox staining method were used to assess spatial memory ability and synaptogenesis. The protein expression of NR2B subunit of NMDA receptor, Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and Wnt family member 7A (Wnt7a) in hippocampus, as well as mRNA expression of Arc/Arg3.1 and Wnt7a, was also explored. We found that β-asarone could pass through the blood brain barrier quickly. And β-asarone effectively attenuated Pb-induced reduction of spine density in hippocampal CA1 and dentate gyrus areas in a dose-dependent manner both in developmental and adult rats, meanwhile the Pb-induced impairments of learning and memory were partially rescued. In addition, β-asarone effectively up-regulated the protein expression of NR2B, Arc and Wnt7a, as well as the mRNA levels of Arc/Arg3.1 and Wnt7a, which had been suppressed by Pb exposure. The results suggest the neuroprotective properties of β-asarone against Pb-induced memory impairments, and the effect is possibly through the regulation of synaptogenesis, which is mediated via Arc/Arg3.1 and Wnt pathway. PMID:27936013

  19. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  20. Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning.

    PubMed

    Nishimura, Masataka; Gu, Xue; Swann, John W

    2011-11-01

    Impaired learning and memory are common in epilepsy syndromes of childhood. Clinical investigations suggest that the developing brain may be particularly vulnerable to the effects of intractable seizure disorders. Magnetic resonance imaging (MRI) studies have demonstrated reduced volumes in brain regions involved in learning and memory. The earlier the onset of an epilepsy the larger the effects seem to be on both brain anatomy and cognition. Thus, childhood epilepsy has been proposed to interfere in some unknown way with brain development. Experiments reported here explore these ideas by examining the effects of seizures in infant mice on learning and memory and on the growth of CA1 hippocampal pyramidal cell dendrites. Fifteen brief seizures were induced by flurothyl between postnatal days 7 and 11 in mice that express green fluorescent protein (GFP) in hippocampal pyramidal cells. One to 44days later, dendritic arbors were reconstructed to measure growth. Spatial learning and memory were also assessed in a water maze. Our results show that recurrent seizures produced marked deficits in learning and memory. Seizures also dramatically slowed the growth of basilar dendrites while neurons in littermate control mice continued to add new dendritic branches and lengthen existing branches. When experiments were performed in older mice, seizures had no measureable effects on either dendrite arbor complexity or spatial learning and memory. Our results suggest that the recurring seizures of intractable childhood epilepsy contribute to associated learning and memory deficits by suppressing dendrite growth.

  1. Health functioning impairments associated with posttraumatic stress disorder, anxiety disorders, and depression.

    PubMed

    Zayfert, Claudia; Dums, Aricca R; Ferguson, Robert J; Hegel, Mark T

    2002-04-01

    Although anxiety disorders have been associated with impairments in self-reported health functioning, the relative effect of various anxiety disorders has not been studied. We compared health functioning of patients with a principal diagnosis of posttraumatic stress disorder (PTSD), panic disorder (PD), generalized anxiety disorder (GAD), and major depressive disorder (MDD). Patients with PTSD and MDD were equally impaired on overall mental health functioning, and both were significantly worse than patients with PD and GAD. PTSD was associated with significantly worse physical health functioning relative to PD, GAD, and MDD. Hierarchical regression showed that the association of PTSD with physical health functioning was unique and was not caused by the effects of age, depression, or comorbid anxiety disorders. Both PTSD and comorbid anxiety accounted for unique variance in mental functioning. These results highlight the association of PTSD with impaired physical and mental functioning and suggest that effective treatment of PTSD may affect overall health.

  2. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior.

    PubMed

    López-Granero, Caridad; Ruiz-Muñoz, Ana M; Nieto-Escámez, Francisco A; Colomina, María T; Aschner, Michael; Sánchez-Santed, Fernando

    2016-03-01

    Little is known about the long-term effects of chronic exposure to low-level organophosphate (OP) pesticides, and the role of neurotransmitter systems, other than the cholinergic system, in mediating OP neurotoxicity. In this study, rats were administered 5mg/kg/day of chlorpyrifos (CPF) for 6 months commencing at 3-months-of-age. The animals were examined 7 months later (at 16-months-of-age) for spatial learning and memory in the Morris water maze (MWM) and locomotor activity. In addition, we assessed the chronic effects of CPF on glutamatergic and gamma-aminobutyric acid (GABAergic) function using pharmacological challenges with dizocilpine (MK801) and diazepam. Impaired performance related to altered search patterns, including thigmotaxis and long-term spatial memory was noted in the MWM in animals exposed to CPF, pointing to dietary CPF-induced behavioral disturbances, such as anxiety. Twenty-four hours after the 31st session of repeated acquisition task, 0.1mg/kg MK801, an N-methyl-d-aspartate (NMDA) antagonist was intraperitoneally (i.p.) injected for 4 consecutive days. Decreased latencies in the MWM in the control group were noted after two sessions with MK801 treatment. Once the MWM assessment was completed, animals were administered 0.1 or 0.2mg/kg of MK801 and 1 or 3mg/kg of diazepam i.p., and tested for locomotor activity. Both groups, the CPF dietary and control, displayed analogous performance in motor activity. In conclusion, our data point to a connection between the long-term spatial memory, thigmotaxic response and CPF long after the exposure ended.

  3. Maternal exercise during pregnancy ameliorates the postnatal neuronal impairments induced by prenatal restraint stress in mice.

    PubMed

    Bustamante, Carlos; Henríquez, Ricardo; Medina, Felipe; Reinoso, Carmen; Vargas, Ronald; Pascual, Rodrigo

    2013-06-01

    Clinical and preclinical studies have demonstrated that prenatal stress (PS) induces neuronal and behavioral disturbances in the offspring. In the present study, we determined whether maternal voluntary wheel running (VWR) during pregnancy could reverse the putative deleterious effects of PS on the neurodevelopment and behavior of the offspring. Pregnant CF-1 mice were randomly assigned to control, restraint stressed or restraint stressed+VWR groups. Dams of the stressed group were subjected to restraint stress between gestational days 14 and delivery, while control pregnant dams remained undisturbed in their home cages. Dams of the restraint stressed+VWR group were subjected to exercise between gestational days 1 and 17. On postnatal day 23 (P23), male pups were assigned to one of the following experimental groups: mice born from control dams, stressed dams or stressed+VWR dams. Locomotor behavior and pyramidal neuronal morphology were evaluated at P23. Animals were then sacrificed, and Golgi-impregnated pyramidal neurons of the parietal cortex were morphometrically analyzed. Here, we present two major findings: first, PS produced significantly diminished dendritic growth of parietal neurons without altered locomotor behavior of the offspring; and second, maternal VWR significantly offset morphological impairments.

  4. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men.

    PubMed

    Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut

    2010-09-01

    Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.

  5. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment.

    PubMed

    Zhang, Xiaoming; Xu, Linhao; He, Daqiang; Ling, Shucai

    2013-01-01

    Poor management of DM causes cognitive impairment while the mechanism is still unconfirmed. The aim of the present study was to investigate the activation of C/EBP Homology Protein (CHOP), the prominent mediator of the endoplasmic reticulum (ER) stress-induced apoptosis under hyperglycemia. We employed streptozotocin- (STZ-) induced diabetic rats to explore the ability of learning and memory by the Morris water maze test. The ultrastructure of hippocampus in diabetic rats and cultured neurons in high glucose medium were observed by transmission electron microscopy and scanning electron microscopy. TUNEL staining was also performed to assess apoptotic cells while the expression of CHOP was assayed by immunohistochemistry and Western blot assay in these hippocampal neurons. Six weeks after diabetes induction, the escape latency increased and the average frequency in finding the platform decreased in diabetic rats (P < 0.05). The morphology of neuron and synaptic structure was impaired; the number of TUNEL-positive cells and the expression of CHOP in hippocampus of diabetic rats and high glucose medium cultured neurons were markedly altered (P < 0.05). The present results suggested that the CHOP-dependent endoplasmic reticulum (ER) stress-mediated apoptosis may be involved in hyperglycemia-induced hippocampal synapses and neurons impairment and promote the diabetic cognitive impairment.

  6. ER stress induced impaired TLR signaling and macrophage differentiation of human monocytes.

    PubMed

    Komura, Takuya; Sakai, Yoshio; Honda, Masao; Takamura, Toshinari; Wada, Takashi; Kaneko, Shuichi

    2013-03-01

    Endoplasmic reticulum (ER) stress causes impairment of the intracellular protein synthesis machinery, affecting various organ functions and homeostasis systems, including immunity. We found that ER stress induced by the N-linked glycosylation inhibitor, tunicamycin, caused susceptibility to apoptosis in the human monocytic cell line, THP-1 cells. Importantly, prior to tunicamycin-induced apoptosis, the proinflammatory response to toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS) stimulation was attenuated with respect to the expression of the proinflammatory cytokines. This impaired expression of proinflammatory cytokines was a consequence of the inhibition of NF-κB activation. Moreover, tunicamycin-induced ER stress disturbed the differentiation of THP-1 cells into macrophages induced by phorbol-12-myristate-13-acetate treatment. We also confirmed that ER stress affected the response of primary human monocytes to TLR ligand and their ability to differentiate into macrophages. These data suggest that ER stress imposes an important pathological insult to the immune system, affecting the crucial functions of monocytes.

  7. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    PubMed

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  8. Increasing orthostatic stress impairs neurocognitive functioning in chronic fatigue syndrome with postural tachycardia syndrome.

    PubMed

    Ocon, Anthony J; Messer, Zachary R; Medow, Marvin S; Stewart, Julian M

    2012-03-01

    CFS (chronic fatigue syndrome) is commonly co-morbid with POTS (postural tachycardia syndrome). Individuals with CFS/POTS experience unrelenting fatigue, tachycardia during orthostatic stress and ill-defined neurocognitive impairment, often described as 'mental fog'. We hypothesized that orthostatic stress causes neurocognitive impairment in CFS/POTS related to decreased CBFV (cerebral blood flow velocity). A total of 16 CFS/POTS and 20 control subjects underwent graded tilt table testing (at 0, 15, 30, 45, 60 and 75°) with continuous cardiovascular, cerebrovascular, and respiratory monitoring and neurocognitive testing using an n-back task at each angle. The n-back task tests working memory, concentration, attention and information processing. The n-back task imposes increasing cognitive challenge with escalating (0-, 1-, 2-, 3- and 4-back) difficulty levels. Subject dropout due to orthostatic presyncope at each angle was similar between groups. There were no n-back accuracy or RT (reaction time) differences between groups while supine. CFS/POTS subjects responded less correctly during the n-back task test and had greater nRT (normalized RT) at 45, 60 and 75°. Furthermore, at 75° CFS/POTS subjects responded less correctly and had greater nRT than controls during the 2-, 3- and 4-back tests. Changes in CBFV were not different between the groups and were not associated with n-back task test scores. Thus we conclude that increasing orthostatic stress combined with a cognitive challenge impairs the neurocognitive abilities of working memory, accuracy and information processing in CFS/POTS, but that this is not related to changes in CBFV. Individuals with CFS/POTS should be aware that orthostatic stress may impair their neurocognitive abilities.

  9. Alteration of neurotrophin and cytokine expression in lymphocytes as novel peripheral markers of spatial memory deficits induced by prenatal stress.

    PubMed

    Pascuan, C G; Di Rosso, M E; Pivoz-Avedikian, J E; Wald, M R; Zorrilla Zubilete, M A; Genaro, A M

    2017-05-01

    Much evidence has suggested that early life adversity can have a lasting effect on behavior. The aim of this study was to explore the impact of prenatal exposure to stress on cognition in adult life and how it impacts chronic stress situations. In addition, we investigated the participation of glucocorticoids, neurotrophins and cytokines in prenatal stress effects. For this purpose, pregnant mice were placed in a cylindrical restraint tube for 2h daily during the last week of pregnancy. Control pregnant females were left undisturbed during their entire pregnancy period. Object-in-place task results showed that adult female mice exposed to prenatal stress exhibited an impairment in spatial memory. However, in the alternation test this memory deficit was only found in prenatally stressed mice submitted to chronic stress. This alteration occurred in parallel with a decrease in BDNF, an increase in glucocorticoid receptors and an alteration of Th1/Th2 in the hippocampus. Interestingly, these changes were observed in peripheral lymph nodes as well. However, none of the mentioned changes were observed in adult male mice. These results indicate that lymphoid cells could be good candidates as peripheral markers of susceptibility to behavioral alterations associated with prenatal exposure to stress.

  10. Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice.

    PubMed

    Tian, Xia; Sun, Lingyan; Gou, Lingshan; Ling, Xin; Feng, Yan; Wang, Ling; Yin, Xiaoxing; Liu, Yi

    2013-03-29

    The present work was aimed to study the protective effect of l-theanine on chronic restraint stress (CRS)-induced cognitive impairments in mice. The stress was produced by restraining the animals in well-ventilated polypropylene tubes (3.2 cm in diameter ×10.5 cm in length) for 8h once daily for 21 consecutive days. L-theanine (2 and 4 mg/kg) was administered 30 min before the animals subjected to acute immobilized stress. At week 4, mice were subjected to Morris water maze and step-through tests to measure the cognitive function followed by oxidative parameters and corticosterone as well as catecholamines (norepinephrine and dopamine) subsequently. Our results showed that the cognitive performances in CRS group were markedly deteriorated, accompanied by noticeable alterations in oxidative parameters and catecholamine levels in the hippocampus and the cerebral cortex as well as corticosterone and catecholamine levels in the serum. However, not only did l-theanine treatment exhibit a reversal of the cognitive impairments and oxidative damage induced by CRS, but also reversed the abnormal level of corticosterone in the serum as well as the abnormal levels of catecholamines in the brain and the serum. This study indicated the protective effect of l-theanine against CRS-induced cognitive impairments in mice.

  11. Stress-induced cortisol secretion impairs detection performance in x-ray baggage screening for hidden weapons by screening novices.

    PubMed

    Thomas, Livia; Schwaninger, Adrian; Heimgartner, Nadja; Hedinger, Patrik; Hofer, Franziska; Ehlert, Ulrike; Wirtz, Petra H

    2014-09-01

    Aviation security strongly depends on screeners' performance in the detection of threat objects in x-ray images of passenger bags. We examined for the first time the effects of stress and stress-induced cortisol increases on detection performance of hidden weapons in an x-ray baggage screening task. We randomly assigned 48 participants either to a stress or a nonstress group. The stress group was exposed to a standardized psychosocial stress test (TSST). Before and after stress/nonstress, participants had to detect threat objects in a computer-based object recognition test (X-ray ORT). We repeatedly measured salivary cortisol and X-ray ORT performance before and after stress/nonstress. Cortisol increases in reaction to psychosocial stress induction but not to nonstress independently impaired x-ray detection performance. Our results suggest that stress-induced cortisol increases at peak reactivity impair x-ray screening performance.

  12. Israeli adolescents with ongoing exposure to terrorism: suicidal ideation, posttraumatic stress disorder, and functional impairment.

    PubMed

    Chemtob, Claude M; Pat-Horenczyk, Ruth; Madan, Anita; Pitman, Seth R; Wang, Yanping; Doppelt, Osnat; Burns, Kelly Dugan; Abramovitz, Robert; Brom, Daniel

    2011-12-01

    In this study, we examined the relationships among terrorism exposure, functional impairment, suicidal ideation, and probable partial or full posttraumatic stress disorder (PTSD) from exposure to terrorism in adolescents continuously exposed to this threat in Israel. A convenience sample of 2,094 students, aged 12 to 18, was drawn from 10 Israeli secondary schools. In terms of demographic factors, older age was associated with increased risk for suicidal ideation, OR = 1.33, 95% CI [1.09, 1.62], p < .01, but was protective against probable partial or full PTSD, OR = 0.72, 95% CI [0.54, 0.95], p < .05; female gender was associated with greater likelihood of probable partial or full PTSD, OR = 1.57, 95% CI [1.02, 2.40], p < .05. Exposure to trauma due to terrorism was associated with increased risk for each of the measured outcomes including probable partial or full PTSD, functional impairment, and suicidal ideation. When age, gender, level of exposure to terrorism, probable partial or full PTSD, and functional impairment were examined together, only terrorism exposure and functional impairment were associated with suicidal ideation. This study underscores the importance and feasibility of examining exposure to terrorism and functional impairment as risk factors for suicidal ideation.

  13. Voluntary Exercise Impairs Initial Delayed Spatial Alternation Performance in Estradiol Treated Ovariectomized Middle-Aged Rats

    PubMed Central

    Neese, Steven L.; Korol, Donna L.; Schantz, Susan L.

    2013-01-01

    Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long- Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions. PMID:24013039

  14. Acute stress impairs recall after interference in older people, but not in young people.

    PubMed

    Hidalgo, Vanesa; Almela, Mercedes; Villada, Carolina; Salvador, Alicia

    2014-03-01

    Stress has been associated with negative changes observed during the aging process. However, very little research has been carried out on the role of age in acute stress effects on memory. We aimed to explore the role of age and sex in the relationship between hypothalamus-pituitary-adrenal axis (HPA-axis) and sympathetic nervous system (SNS) reactivity to psychosocial stress and short-term declarative memory performance. To do so, sixty-seven participants divided into two age groups (each group with a similar number of men and women) were exposed to the Trier Social Stress Test (TSST) and a control condition in a crossover design. Memory performance was assessed by the Rey Auditory Verbal Learning Test (RAVLT). As expected, worse memory performance was associated with age; but more interestingly, the stressor impaired recall after interference only in the older group. In addition, this effect was negatively correlated with the alpha-amylase over cortisol ratio, which has recently been suggested as a good marker of stress system dysregulation. However, we failed to find sex differences in memory performance. These results show that age moderates stress-induced effects on declarative memory, and they point out the importance of studying both of the physiological systems involved in the stress response together.

  15. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats.

    PubMed

    Mohammadi, Hadis Said; Goudarzi, Iran; Lashkarbolouki, Taghi; Abrari, Kataneh; Elahdadi Salmani, Mahmoud

    2014-08-15

    There are several reports that cognitive impairment is observed in stress related disorders and chronic stress impairs learning and memory. However, very few studies have looked into the possible ways of preventing this stress-induced deficit. This research study was conducted to evaluate the effects of quercetin, a natural flavonoid, with strong antioxidant and free radical scavenger properties, on chronic stress induced learning and memory deficits and oxidative stress in hippocampus. For chronic stress, rats were restrained daily for 6h/day (from 9:00 to 15:00) for 21 days in well-ventilated plexiglass tubes without access to food and water. The animals were injected with quercetin or vehicle 60 min before restraint stress over a period of 21 days. Then, rats trained with six trials per day for 6 consecutive days in the water maze. On day 28, a probe test was done to measure memory retention. In addition, oxidative stress markers in the hippocampus were evaluated. Results of this study demonstrated that chronic stress exposure rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. Quercetin (50mg/kg) treatment during restraint stress (21 days) markedly decreased escape latency and increased time spent in target quadrant during Morris water maze task. In comparison to vehicle treated group, chronic-stress group had significantly higher malondialdehyde (MDA) levels, significantly higher superoxide dismutase (SOD) activity and significantly lower glutathione peroxidase (GPx) activity in the hippocampus. Quercetin treatment caused a significant decrease in the hippocampus MDA levels and improves SOD and GPx activities in stressed animals. Finally, quercetin significantly decreased plasma corticosterone levels in stressed animals. Based on results of this study, chronic stress has detrimental effects on learning and memory and quercetin treatment

  16. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents

    PubMed Central

    2014-01-01

    Background Chronic stress is generally known to exacerbate the development of numerous neuropsychiatric diseases such as fear and anxiety disorders, which is at least partially due to the disinhibition of amygdala subsequent to the prolonged stress exposure. GABA receptor A (GABAAR) mediates the primary component of inhibition in brain and its activation produces two forms of inhibition: the phasic and tonic inhibition. While both of them are critically engaged in limiting the activity of amygdala, their roles in the amygdala disinhibition subsequent to chronic stress exposure are largely unknown. Results We investigated the possible alterations of phasic and tonic GABAAR currents and their roles in the amygdala disinhibition subsequent to chronic stress. We found that both chronic immobilization and unpredictable stress led to long lasting loss of tonic GABAAR currents in the projection neurons of lateral amygdala. By contrast, the phasic GABAAR currents, as measured by the spontaneous inhibitory postsynaptic currents, were virtually unaltered. The loss of tonic inhibition varied with the duration of daily stress and the total days of stress exposure. It was prevented by pretreatment with metyrapone to block corticosterone synthesis or RU 38486, a glucocorticoid receptor antagonist, suggesting the critical involvement of glucocorticoid receptor activation. Moreover, chronic treatment with corticosterone mimicked the effect of chronic stress and reduced the tonic inhibition in lateral amygdala of control mice. The loss of tonic inhibition resulted in the impaired GABAergic gating on neuronal excitability in amygdala, which was prevented by metyrapone pretreatment. Conclusions Our study suggests that enduring loss of tonic but not phasic GABAAR currents critically contributes to the prolonged amygdala disinhibition subsequent to chronic stress. We propose that the preferential loss of tonic inhibition may account for the development of stress

  17. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue

    PubMed Central

    Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin; Garg, Sanjay; Yung, Raymond

    2016-01-01

    Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation. PMID:27777379

  18. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    PubMed

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  19. Neuroligin 1 deletion results in impaired spatial memory and increased repetitive behavior

    PubMed Central

    Blundell, Jacqueline; Blaiss, Cory A.; Etherton, Mark R.; Espinosa, Felipe; Tabuchi, Katsuhiko; Walz, Christopher; Bolliger, Marc F.; Südhof, Thomas C.; Powell, Craig M.

    2010-01-01

    Neuroligins (NLs) are a family of neural cell-adhesion molecules that are involved in excitatory/inhibitory synapse specification. Multiple members of the NL family (including NL1) and their binding partners have been linked to cases of human autism and mental retardation. We have now characterized NL1 deficient mice in autism and mental retardation-relevant behavioral tasks. NL1 KO mice display deficits in spatial learning and memory that correlate with impaired hippocampal long-term potentiation. In addition, NL1 KO mice exhibit a dramatic increase in repetitive, stereotyped grooming behavior, a potential autism-relevant abnormality. This repetitive stereotyped grooming abnormality in NL1 KO mice is associated with a reduced NMDA/AMPA ratio at cortico-striatal synapses. Interestingly, we further demonstrate that the increased repetitive grooming phenotype can be rescued in adult mice by administration of the NMDA receptor partial co-agonist D-cycloserine. Broadly, these data are consistent with a role of synaptic cell-adhesion molecules in general, and neuroligin-1 in particular, in autism, and implicate reduced excitatory synaptic transmission as a potential mechanism and treatment target for repetitive behavioral abnormalities. PMID:20147539

  20. Perceived caregiver stress in Alzheimer's disease and mild cognitive impairment: A case control study

    PubMed Central

    Anand, Kuljeet Singh; Dhikav, Vikas; Sachdeva, Ankur; Mishra, Pinki

    2016-01-01

    Objectives: Cross sectional studies have reported a tremendous amount of stress in caregivers of patients with Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). The present study aimed at evaluating the perceived stress in caregivers of patients with AD and MCI compared to controls. Materials and Methods: Caregivers of patients diagnosed with Alzheimer's disease/Mild Cognitive Impairment were recruited at the Memory Clinic of Neurology Department of a Tertiary Care Hospital in Northern India. The controls included caregivers of patients with chronic medical and psychiatric disorders. Caregivers were interviewed using Perceived Stress Scale (PSS) and the patients were assessed using The Blessed Activity of Daily Living (ADL), Mini Mental State Examination (MMSE) and Clinical Dementia Rating scale. The perceived stress of caregivers was compared amongst both groups and correlated with the severity of illness and activities of daily living of the patients. Results: Caregivers of a total of 31 patients of AD/MCI (Males = 24, Females = 7), and 30 controls (Males = 18, Females = 12) were interviewed. PSS Score was 23.29 ± 7.17 in cases and 7.5 ± 3.12 in controls. ADL Score was 7.97±5.53 in cases and 0.00 in controls. There was a significant difference between the PSS and ADL scores between those with AD and controls (P < 0.0001). Caregivers of patients with MCI had lower PSS scores compared to AD caregivers but significantly higher scores compared to caregivers of other chronic disorders. Similarly, correlation between Perceived Stress and ADL was significant (P < 0.001). Conclusions: Present study shows that caregivers of patients with AD/MCI have a high perceived stress compared to caregivers of patients with other chronic illness. PMID:27011630

  1. Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress.

    PubMed

    Lombardi, Angela; Tomer, Yaron

    2017-02-23

    Despite substantial advances in the research exploring the pathogenesis of Type 1 Diabetes (T1D), the pathophysiological mechanisms involved remain unknown. We hypothesized in this study that interferon alpha (IFNα) participates in the early stages of T1D development by triggering endoplasmic reticulum (ER) stress. To verify our hypothesis, human islets and human EndoC-βH1 cells were exposed to IFNα and tested for ER stress markers, glucose stimulated insulin secretion (GSIS) and insulin content. IFNα treatment induced upregulation of ER stress markers including Binding immunoglobulin Protein, phospho-eukaryotic translation initiation factor 2α, spliced- X-box binding protein-1, C/EBP homologous protein and activating transcription factor 4. Intriguingly, IFNα treatment did not impair GSIS but significantly decreased insulin production in both human islets and EndoC-βH1 cells. Furthermore, IFNα decreased the expression of both proinsulin convertase 1 and proinsulin convertase 2, suggesting an altered functional state of the beta cells characterized by a slower proinsulin-insulin conversion. Pretreatment of both human islets and EndoC-βH1 cells with chemical chaperones 4-phenylbutyric acid and tauroursodeoxycholic acid completely prevented IFNα effects, indicating an ER stress-mediated impairment of insulin production. We demonstrated for the first time that IFNα elicits ER stress in human beta cells providing a novel mechanistic role for this virus-induced cytokine in the development of T1D. Compounds targeting molecular processes altered in ER-stressed beta cells could represent a potential therapeutic strategy to prevent IFNα-induced beta cell dysfunction in the early onset of T1D.

  2. A Negative Life Event Impairs Psychosocial Stress, Recovery and Running Economy of Runners.

    PubMed

    Otter, R T A; Brink, M S; Diercks, R L; Lemmink, K A P M

    2016-03-01

    The purpose was to investigate how a negative life event (NLE) affects perceived psychosocial stress, recovery and running economy (RE). Competitive runners were monitored in a prospective non-experimental cohort study over one full training season in which they experienced the same unplanned severe NLE. 16 runners recorded stress and recovery scores (RESTQ-Sport) every week. The average scores over 3 weeks before the NLE were used as a baseline and were compared to scores during the week of the NLE (week 0), week 1 and week 2. 7 runners completed a submaximal treadmill test before and after the NLE. Repeated measures ANOVAs revealed that most scores on general stress scales were increased in week 0 and 1. Of the general recovery scales, "general well-being" was decreased in week 0 and 1, "social" and "physical recovery" were decreased in week 0. No changes in the sport-specific stress scales were found. However, 2 of the sport-specific recovery scales were decreased in week 0. An impaired RE was shown 3 weeks after the NLE. Therefore, it is important to know what is going on in an athlete's life, because stressful life events alter RE after the stress and recovery already returned to normal levels.

  3. Influence of Perceived Stress on Incident Amnestic Mild Cognitive Impairment: Results From the Einstein Aging Study.

    PubMed

    Katz, Mindy J; Derby, Carol A; Wang, Cuiling; Sliwinski, Martin J; Ezzati, Ali; Zimmerman, Molly E; Zwerling, Jessica L; Lipton, Richard B

    2016-01-01

    Stress is a potentially remediable risk factor for amnestic mild cognitive impairment (aMCI). Our objective is to determine whether perceived stress predicts incident aMCI and to determine if the influence of stress on aMCI is independent of known aMCI risk factors, particularly demographic variables, depression, and apolipoprotein genotype. The Einstein Aging Study is a longitudinal community-based study of older adults. The Perceived Stress Scale (PSS) was administered annually in the Einstein Aging Study to participants (N=507; 71 developed incident aMCI; mean follow-up time=3.6 y, SD=2.0) who were aged 70 years and older, free of aMCI and dementia at baseline PSS administration, and had at least 1 subsequent annual follow-up. Cox hazard models were used to examine time to aMCI onset adjusting for covariates. High levels of perceived stress are associated with a 30% greater risk of incident aMCI (per 5-point increase in PSS: hazard ratio=1.30; 95% confidence interval, 1.08-1.58) independent of covariates. The consistency of results after covariate adjustment and the lack of evidence for reverse causation in longitudinal analyses suggest that these findings are robust. Understanding of the effect of perceived stress on cognition may lead to intervention strategies that prevent the onset of aMCI and Alzheimer dementia.

  4. Acute stress does not impair long-term memory retrieval in older people.

    PubMed

    Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Puig-Perez, Sara; Salvador, Alicia

    2013-09-01

    Previous studies have shown that stress-induced cortisol increases impair memory retrieval in young people. This effect has not been studied in older people; however, some findings suggest that age-related changes in the brain can affect the relationships between acute stress, cortisol and memory in older people. Our aim was to investigate the effects of acute stress on long-term memory retrieval in healthy older people. To this end, 76 participants from 56 to 76 years old (38 men and 38 women) were exposed to an acute psychosocial stressor or a control task. After the stress/control task, the recall of pictures, words and stories learned the previous day was assessed. There were no differences in memory retrieval between the stress and control groups on any of the memory tasks. In addition, stress-induced cortisol response was not associated with memory retrieval. An age-related decrease in cortisol receptors and functional changes in the amygdala and hippocampus could underlie the differences observed between the results from this study and those found in studies performed with young people.

  5. NAP prevents acute cerebral oxidative stress and protects against long-term brain injury and cognitive impairment in a model of neonatal hypoxia-ischemia.

    PubMed

    Greggio, Samuel; de Paula, Simone; de Oliveira, Iuri M; Trindade, Cristiano; Rosa, Renato M; Henriques, João A P; DaCosta, Jaderson C

    2011-10-01

    Hypoxia-ischemia (HI) is a common cause of neonatal brain damage with lifelong morbidities in which current therapies are limited. In this study, we investigated the effect of neuropeptide NAP (NAPVSIPQ) on early cerebral oxidative stress, long-term neurological function and brain injury after neonatal HI. Seven-day-old rat pups were subjected to an HI model by applying a unilateral carotid artery occlusion and systemic hypoxia. The animals were randomly assigned to groups receiving an intraperitoneal injection of NAP (3 μg/g) or vehicle immediately (0 h) and 24 h after HI. Brain DNA damage, lipid peroxidation and reduced glutathione (GSH) content were determined 24 h after the last NAP injection. Cognitive impairment was assessed on postnatal day 60 using the spatial version of the Morris water maze learning task. Next, the animals were euthanized to assess the cerebral hemispheric volume using the Cavalieri principle associated with the counting point method. We observed that NAP prevented the acute HI-induced DNA and lipid membrane damage and also recovered the GSH levels in the injured hemisphere of the HI rat pups. Further, NAP was able to prevent impairments in learning and long-term spatial memory and to significantly reduce brain damage up to 7 weeks following the neonatal HI injury. Our findings demonstrate that NAP confers potent neuroprotection from acute brain oxidative stress, long-term cognitive impairment and brain lesions induced by neonatal HI through, at least in part, the modulation of the glutathione-mediated antioxidant system.

  6. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    PubMed

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  7. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    PubMed

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD.

  8. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    PubMed

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F; Díaz-Véliz, Gabriela F; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  9. Prenatal Stress Down-Regulates Reelin Expression by Methylation of Its Promoter and Induces Adult Behavioral Impairments in Rats

    PubMed Central

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F.; Díaz-Véliz, Gabriela F.; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  10. Adult-onset focal expression of mutated human tau in the hippocampus impairs spatial working memory of rats.

    PubMed

    Mustroph, Martina L; King, Michael A; Klein, Ronald L; Ramirez, Julio J

    2012-07-15

    Tauopathy in the hippocampus is one of the earliest cardinal features of Alzheimer's disease (AD), a condition characterized by progressive memory impairments. In fact, density of tau neurofibrillary tangles (NFTs) in the hippocampus strongly correlates with severity of cognitive impairments in AD. In the present study, we employed a somatic cell gene transfer technique to create a rodent model of tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the hippocampus of adult rats. The P301L mutation is causal for frontotemporal dementia with parkinsonism-17 (FTDP-17), but it has been used for studying memory effects characteristic of AD in transgenic mice. To ascertain if P301L-induced mnemonic deficits are persistent, animals were tested for 6 months. It was hypothesized that adult-onset, spatially restricted tau expression in the hippocampus would produce progressive spatial working memory deficits on a learned alternation task. Rats injected with the tau vector exhibited persistent impairments on the hippocampal-dependent task beginning at about 6 weeks post-transduction compared to rats injected with a green fluorescent protein vector. Histological analysis of brains for expression of human tau revealed hyperphosphorylated human tau and NFTs in the hippocampus in experimental animals only. Thus, adult-onset, vector-induced tauopathy spatially restricted to the hippocampus progressively impaired spatial working memory in rats. We conclude that the model faithfully reproduces histological and behavioral findings characteristic of dementing tauopathies. The rapid onset of sustained memory impairment establishes a preclinical model particularly suited to the development of potential tauopathy therapeutics.

  11. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology.

    PubMed

    Sanders, Ashley F P; Hobbs, Diana A; Stephenson, David D; Laird, Robert D; Beaton, Elliott A

    2017-04-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial working memory impairments in 20 children with 22q11.2DS and 32 typically developing (TD) children ages 7 to 16. Children with 22q11.2DS demonstrated poorer working memory, reduced post-stress respiratory sinus arrhythmia recovery, and overall increased levels of cortisol in comparison to TD children. Anxiety, but not physiological stress responsivity, mediated the relationship between 22q11.2DS diagnosis and visuospatial working memory impairment. Findings indicate that anxiety exacerbates impaired working memory in children with 22q11.2DS.

  12. Visuo-spatial path learning, stress, and cortisol secretion following military cadets' first parachute jump: the effect of increasing task complexity.

    PubMed

    Taverniers, John; Smeets, Tom; Lo Bue, Salvatore; Syroit, Jef; Van Ruysseveldt, Joris; Pattyn, Nathalie; von Grumbkow, Jasper

    2011-09-01

    The present field experiment examined how multi-trial visuo-spatial learning and memory performance are impacted by excessive arousal, instigated by a potentially life-threatening event (i.e., a first parachute jump). Throughout a parachute training activity, subjective and neuroendocrine (i.e., cortisol) stress levels were assessed of 61 male military cadets who were randomly assigned to a control (n = 30) or a jump stress condition (n = 31). Post-stress learning and memory capacity was assessed with a 10-trial path-learning task that permitted emergence of learning curves. Pre-activity cortisol concentrations indicated a significant neuroendocrine anticipatory stress response in the stress group. Following parachuting, subjective stress levels and salivary cortisol reactivity differed significantly between groups. Visuo-spatial path-learning performance was impaired significantly after jump stress exposure, relative to the control group. Moreover, examination of the learning curves showed similar learning and memory performance at onset of the trials, with curves bifurcating as the task became more complex. These findings are in accordance with leading theories that acknowledge a moderating effect of task complexity. In sum, the present study extends knowledge concerning anticipatory stress effects, endogenously instigated cortisol reactivity, and the influence of extreme arousal on visuo-spatial path learning.

  13. Post-training Inactivation of the Anterior Thalamic Nuclei Impairs Spatial Performance on the Radial Arm Maze

    PubMed Central

    Harvey, Ryan E.; Thompson, Shannon M.; Sanchez, Lilliana M.; Yoder, Ryan M.; Clark, Benjamin J.

    2017-01-01

    The limbic thalamus, specifically the anterior thalamic nuclei (ATN), contains brain signals including that of head direction cells, which fire as a function of an animal's directional orientation in an environment. Recent work has suggested that this directional orientation information stemming from the ATN contributes to the generation of hippocampal and parahippocampal spatial representations, and may contribute to the establishment of unique spatial representations in radially oriented tasks such as the radial arm maze. While previous studies have shown that ATN lesions can impair spatial working memory performance in the radial maze, little work has been done to investigate spatial reference memory in a discrimination task variant. Further, while previous studies have shown that ATN lesions can impair performance in the radial maze, these studies produced the ATN lesions prior to training. It is therefore unclear whether the ATN lesions disrupted acquisition or retention of radial maze performance. Here, we tested the role of ATN signaling in a previously learned spatial discrimination task on a radial arm maze. Rats were first trained to asymptotic levels in a task in which two maze arms were consistently baited across training. After 24 h, animals received muscimol inactivation of the ATN before a 4 trial probe test. We report impairments in post-inactivation trials, suggesting that signals from the ATN modulate the use of a previously acquired spatial discrimination in the radial-arm maze. The results are discussed in relation to the thalamo-cortical limbic circuits involved in spatial information processing, with an emphasis on the head direction signal. PMID:28321178

  14. Post-training Inactivation of the Anterior Thalamic Nuclei Impairs Spatial Performance on the Radial Arm Maze.

    PubMed

    Harvey, Ryan E; Thompson, Shannon M; Sanchez, Lilliana M; Yoder, Ryan M; Clark, Benjamin J

    2017-01-01

    The limbic thalamus, specifically the anterior thalamic nuclei (ATN), contains brain signals including that of head direction cells, which fire as a function of an animal's directional orientation in an environment. Recent work has suggested that this directional orientation information stemming from the ATN contributes to the generation of hippocampal and parahippocampal spatial representations, and may contribute to the establishment of unique spatial representations in radially oriented tasks such as the radial arm maze. While previous studies have shown that ATN lesions can impair spatial working memory performance in the radial maze, little work has been done to investigate spatial reference memory in a discrimination task variant. Further, while previous studies have shown that ATN lesions can impair performance in the radial maze, these studies produced the ATN lesions prior to training. It is therefore unclear whether the ATN lesions disrupted acquisition or retention of radial maze performance. Here, we tested the role of ATN signaling in a previously learned spatial discrimination task on a radial arm maze. Rats were first trained to asymptotic levels in a task in which two maze arms were consistently baited across training. After 24 h, animals received muscimol inactivation of the ATN before a 4 trial probe test. We report impairments in post-inactivation trials, suggesting that signals from the ATN modulate the use of a previously acquired spatial discrimination in the radial-arm maze. The results are discussed in relation to the thalamo-cortical limbic circuits involved in spatial information processing, with an emphasis on the head direction signal.

  15. Pressor recovery after acute stress is impaired in high fructose-fed Lean Zucker rats.

    PubMed

    Thompson, Jennifer A; D'Angelo, Gerard; Mintz, James D; Fulton, David J; Stepp, David W

    2016-06-01

    Insulin resistance is a powerful predictor of cardiovascular disease; however, the mechanistic link remains unclear. This study aims to determine if early cardiovascular changes associated with short-term fructose feeding in the absence of obesity manifest as abnormal blood pressure control. Metabolic dysfunction was induced in Lean Zucker rats by short-term high-fructose feeding. Rats were implanted with telemetry devices for the measurement of mean arterial blood pressure (MAP) and subjected to air jet stress at 5 and 8 weeks after feeding. Additional animals were catheterized under anesthesia for the determination of MAP and blood flow responses in the hind limb and mesenteric vascular beds to intravenous injection of isoproterenol (0.001-0.5 μm), a β-adrenergic agonist. Metabolic dysfunction in high-fructose rats was not accompanied by changes in 24-h MAP Yet, animals fed a high-fructose diet for 8 weeks exhibited a marked impairment in blood pressure recovery after air-jet stress. Dose-dependent decreases in MAP and peripheral blood flow in response to isoproterenol treatment were significantly attenuated in high-fructose rats. These data suggest that impaired blood pressure recovery to acute mental stress precedes the onset of hypertension in the early stages of insulin resistance. Further, blunted responses to isoproterenol implicate β2-adrenergic sensitivity as a possible mechanism responsible for altered blood pressure control after short-term high-fructose feeding.

  16. Impaired Driving Performance as Evidence of a Magnocellular Deficit in Dyslexia and Visual Stress.

    PubMed

    Fisher, Carri; Chekaluk, Eugene; Irwin, Julia

    2015-11-01

    High comorbidity and an overlap in symptomology have been demonstrated between dyslexia and visual stress. Several researchers have hypothesized an underlying or causal influence that may account for this relationship. The magnocellular theory of dyslexia proposes that a deficit in visuo-temporal processing can explain symptomology for both disorders. If the magnocellular theory holds true, individuals who experience symptomology for these disorders should show impairment on a visuo-temporal task, such as driving. Eighteen male participants formed the sample for this study. Self-report measures assessed dyslexia and visual stress symptomology as well as participant IQ. Participants completed a drive simulation in which errors in response to road signs were measured. Bivariate correlations revealed significant associations between scores on measures of dyslexia and visual stress. Results also demonstrated that self-reported symptomology predicts magnocellular impairment as measured by performance on a driving task. Results from this study suggest that a magnocellular deficit offers a likely explanation for individuals who report high symptomology across both conditions. While conclusions about the impact of these disorders on driving performance should not be derived from this research alone, this study provides a platform for the development of future research, utilizing a clinical population and on-road driving assessment techniques.

  17. MEMANTINE ATTENUATES THE OKADAIC ACID INDUCED SHORT-TERM SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS IN RATS.

    PubMed

    Dashniani, M; Chighladze, M; Burjanadze, M; Beselia, G; Kruashvili, L

    2016-03-01

    In the present study, the possible beneficial effect of memantine on the Okadaic Acid (OA) induced spatial short-term memory impairment was examined in spatial alternation task, and the neuroprotective potential of memantine on OA-induced structural changes in the hippocampus was evaluated by Nissl staining. OA was dissolved in artificial cerebrospinal fluid (aCSF) and injected intracerebroventriculary (ICV) 200 ng in a volume of 10 μl bilaterally. Vehicle control received aCSF ICV bilaterally. Control and OA injected rats were divided into 2 subgroups injected i.p. with saline or memantine (5 mg/kg). Memantine or saline were given daily for 13 days starting from the day of OA injection. Behavioral study showed that bilateral ICV microinjection of OA induced impairment in spatial short-term memory. Nissl staining in the present study showed that the ICV microinjection of OA significantly decreased the number of surviving pyramidal neurons in the CA1 region of the hippocampus. Chronic administration of memantine effectively attenuated OA induced spatial short-term memory impairment and the OA-induced neuropathological changes in the hippocampus. Therefore, ICV injection of OA can be used as an experimental model to study mechanisms of neurodegeneration and define novel therapeutics targets for AD pathology.

  18. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin

    PubMed Central

    Jang, Hyun-Ju; Hwang, Daniel H.

    2015-01-01

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Activation of Toll-like receptor 4 (TLR4) induces proinflammatory response and endoplasmic reticulum (ER) stress. Saturated fatty acids (SFA) activate TLR4, which induces ER stress and endothelial dysfunction. Therefore, we determined whether TLR4-mediated ER stress is an obligatory step mediating SFA-induced endothelial dysfunction. Palmitate stimulated proinflammatory responses and ER stress, and this was suppressed by knockdown of TLR4 in primary human aortic endothelial cells (HAEC). Next, we examined the role of TLR4 in vasodilatory responses in intact vessels isolated from wild-type (WT, C57BL/6) and TLR4-KO mice after feeding high-fat (HFD) or normal chow diet (NCD) for 12 wk. Arterioles isolated from HFD WT mice exhibited impaired insulin-stimulated vasodilation compared with arterioles isolated from NCD WT mice. Deficiency of TLR4 was protective from HFD-induced impairment of insulin-stimulated vasodilation. There were no differences in acetylcholine (Ach)- or sodium nitroprusside (SNP)-stimulated vasodilation between the two groups. Furthermore, we examined whether ER stress is involved in SFA-induced impairment of vasodilator actions of insulin. Infusion of palmitate showed the impairment of vasodilatory response to insulin, which was ameliorated by coinfusion with tauroursodeoxycholic acid (TUDCA), an ER stress suppressor. Taken together, the results suggest that TLR4-induced ER stress may be an obligatory step mediating the SFA-mediated endothelial dysfunction. PMID:26522062

  19. Managing Parenting Stress through Life Skills Training: A Supportive Intervention for Mothers with Visually Impaired Children

    PubMed Central

    Khooshab, Elham; Jahanbin, Iran; Ghadakpour, Soraya; Keshavarzi, Sareh

    2016-01-01

    Background: Vision impairment in children is one of the most severe disabilities that cause stress in parents. Therefore, it seems necessary to establish and conduct interventions for controlling parenting stress and preventing its negative consequences. This study aimed to investigate the effect of life skills training (LST) program on parenting stress of mothers with blind children aged 7 to 12 years. Methods: This study was a non-blinded randomized controlled trial. 52 mothers with blind children studying at Shoorideh Shirazi educational complex, Shiraz, Iran in 2013 were enrolled, using census sampling method. Balanced block randomization method was used to allocate the participants to groups. The intervention group participated in an LST program consisting of 5 two-hour sessions per week for 5 consecutive weeks but the control group didn’t. Data were collected using a demographic questionnaire and Parenting Stress Index; they were completed three times by the participants of both groups before, immediately after, and one month after the intervention. Collected data were analyzed using Chi-square, independent t-test and repeated measures analysis of variances (ANOVA). Results: The LST program could decrease parenting stress in the intervention group mothers (P<0/001). This statistically significant reduction in the mean scores of parenting stress was observed in both children and parents. Conclusion: LST program could reduce parenting stress in mothers with blind children. Therefore, it can be used as an efficient, cost-effective and simple technique for managing parenting stress in such parents. Trial Registration Number: IRCT201405147531N6 PMID:27382593

  20. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    PubMed

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc.

  1. Symptoms Associated with Vestibular Impairment in Veterans with Posttraumatic Stress Disorder.

    PubMed

    Haber, Yaa O; Chandler, Helena K; Serrador, Jorge M

    2016-01-01

    Posttraumatic stress disorder (PTSD) is a chronic and disabling, anxiety disorder resulting from exposure to life threatening events such as a serious accident, abuse or combat (DSM IV definition). Among veterans with PTSD, a common complaint is dizziness, disorientation and/or postural imbalance in environments such as grocery stores and shopping malls. The etiology of these symptoms in PTSD is poorly understood and some attribute them to anxiety or traumatic brain injury. There is a possibility that an impaired vestibular system may contribute to these symptoms since, symptoms of an impaired vestibular system include dizziness, disorientation and postural imbalance. To our knowledge, this is the first report to describe the nature of vestibular related symptoms in veterans with and without PTSD. We measured PTSD symptoms using the Posttraumatic Stress Disorder Checklist (PCL-C) and compared it to responses on vestibular function scales including the Dizziness Handicap Inventory (DHI), the Vertigo Symptom Scale Short Form (VSS-SF), the Chambless Mobility Inventory (CMI), and the Neurobehavioral Scale Inventory (NSI) in order to identify vestibular-related symptoms. Our findings indicate that veterans with worse PTSD symptoms report increased vestibular related symptoms. Additionally veterans with PTSD reported 3 times more dizziness related handicap than veterans without PTSD. Veterans with increased avoidance reported more vertigo and dizziness related handicap than those with PTSD and reduced avoidance. We describe possible contributing factors to increased reports of vestibular symptoms in PTSD, namely, anxiety, a vestibular component as well as an interactive effect of anxiety and vestibular impairment. We also present some preliminary analyses regarding the contribution of TBI. This data suggests possible evidence for vestibular symptom reporting in veterans with PTSD, which may be explained by possible underlying vestibular impairment, worthy of further

  2. Symptoms Associated with Vestibular Impairment in Veterans with Posttraumatic Stress Disorder

    PubMed Central

    2016-01-01

    Posttraumatic stress disorder (PTSD) is a chronic and disabling, anxiety disorder resulting from exposure to life threatening events such as a serious accident, abuse or combat (DSM IV definition). Among veterans with PTSD, a common complaint is dizziness, disorientation and/or postural imbalance in environments such as grocery stores and shopping malls. The etiology of these symptoms in PTSD is poorly understood and some attribute them to anxiety or traumatic brain injury. There is a possibility that an impaired vestibular system may contribute to these symptoms since, symptoms of an impaired vestibular system include dizziness, disorientation and postural imbalance. To our knowledge, this is the first report to describe the nature of vestibular related symptoms in veterans with and without PTSD. We measured PTSD symptoms using the Posttraumatic Stress Disorder Checklist (PCL-C) and compared it to responses on vestibular function scales including the Dizziness Handicap Inventory (DHI), the Vertigo Symptom Scale Short Form (VSS-SF), the Chambless Mobility Inventory (CMI), and the Neurobehavioral Scale Inventory (NSI) in order to identify vestibular-related symptoms. Our findings indicate that veterans with worse PTSD symptoms report increased vestibular related symptoms. Additionally veterans with PTSD reported 3 times more dizziness related handicap than veterans without PTSD. Veterans with increased avoidance reported more vertigo and dizziness related handicap than those with PTSD and reduced avoidance. We describe possible contributing factors to increased reports of vestibular symptoms in PTSD, namely, anxiety, a vestibular component as well as an interactive effect of anxiety and vestibular impairment. We also present some preliminary analyses regarding the contribution of TBI. This data suggests possible evidence for vestibular symptom reporting in veterans with PTSD, which may be explained by possible underlying vestibular impairment, worthy of further

  3. Dissecting the molecular mechanisms that impair stress granule formation in aging cells.

    PubMed

    Moujaber, Ossama; Mahboubi, Hicham; Kodiha, Mohamed; Bouttier, Manuella; Bednarz, Klaudia; Bakshi, Ragini; White, John; Larose, Louise; Colmegna, Inés; Stochaj, Ursula

    2017-03-01

    Aging affects numerous aspects of cell biology, but the senescence-associated changes in the stress response are only beginning to emerge. To obtain mechanistic insights into these events, we examined the formation of canonical and non-canonical stress granules (SGs) in the cytoplasm. SG generation is a key event after exposure to physiological or environmental stressors. It requires the SG-nucleating proteins G3BP1 and TIA-1/TIAR and stress-related signaling events. To analyze SG formation, we used two independent models of somatic cell aging. In both model systems, cellular senescence impaired the assembly of two SG classes: (i) it compromised the formation of canonical SGs, and (ii) skewed the production of non-canonical SGs. We dissected the mechanisms underlying these senescence-dependent changes in granule biogenesis and identified several specific targets that were modulated by aging. Thus, we demonstrate a depletion of G3BP1 and TIA-1/TIAR in senescent cells and show that the loss of G3BP1 contributed to impaired SG formation. We further reveal that aging reduced Sp1 levels; this transcription factor regulated G3BP1 and TIA-1/TIAR abundance. The assembly of canonical SGs relies on the phosphorylation of translation initiation factor eIF2α. We show that senescence can cause eIF2α hyperphosphorylation. CReP is a subunit of protein phosphatase 1 and critical to reverse the stress-dependent phosphorylation of eIF2α. We demonstrate that the loss of CReP correlated with the aging-related hyperphosphorylation of eIF2α. Together, we have identified significant changes in the stress response of aging cells and provide mechanistic insights. Based on our work, we propose that the decline in SG formation can provide a new biomarker to evaluate cellular aging.

  4. Variable impact of chronic stress on spatial learning and memory in BXD mice.

    PubMed

    Shea, Chloe J A; Carhuatanta, Kimberly A K; Wagner, Jessica; Bechmann, Naomi; Moore, Raquel; Herman, James P; Jankord, Ryan

    2015-10-15

    The effects of chronic stress on learning are highly variable across individuals. This variability stems from gene-environment interactions. However, the mechanisms by which stress affects genetic predictors of learning are unclear. Thus, we aim to determine whether the genetic pathways that predict spatial memory performance are altered by previous exposure to chronic stress. Sixty-two BXD recombinant inbred strains of mice, as well as parent strains C57BL/6J and DBA/2J, were randomly assigned as behavioral control or to a chronic variable stress paradigm and then underwent behavioral testing to assess spatial memory and learning performance using the Morris water maze. Quantitative trait loci (QTL) mapping was completed for average escape latency times for both control and stress animals. Loci on chromosomes 5 and 10 were found in both control and stress environmental populations; eight additional loci were found to be unique to either the control or stress environment. In sum, results indicate that certain genetic loci predict spatial memory performance regardless of prior stress exposure, while exposure to stress also reveals unique genetic predictors of training during the memory task. Thus, we find that genetic predictors contributing to spatial learning and memory are susceptible to the presence of chronic stress.

  5. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation

    PubMed Central

    Tripathi, Madhulika; Zhang, Cheng Wu; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Moe, Kyaw Thu; DeSilva, Deidre Anne; Yen, Paul Michael

    2016-01-01

    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy. PMID:27929536

  6. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation.

    PubMed

    Tripathi, Madhulika; Zhang, Cheng Wu; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Moe, Kyaw Thu; DeSilva, Deidre Anne; Yen, Paul Michael

    2016-12-08

    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy.

  7. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    PubMed

    Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A; Graham, Brett H; Bellen, Hugo J

    2015-07-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  8. Beyond substance abuse: stress, burnout, and depression as causes of physician impairment and disruptive behavior.

    PubMed

    Brown, Stephen D; Goske, Marilyn J; Johnson, Craig M

    2009-07-01

    Disruptive physician behavior may diminish productivity, lead to medical errors, and compromise patient safety. The purpose of this paper is to review how common psychological conditions such as depression, stress, and burnout may drive disruptive behavior in the workplace and result in impaired patterns of professional conduct similar to what is seen with substance abuse. Problems related to these psychological morbidities may be more effectively managed with improved understanding of the conditions and behaviors, their associated risk factors, and the barriers that exist to reporting them. Further research and educational programs are warranted to address how these conditions might affect radiology.

  9. Water stress effects on spatially referenced cotton crop canopy properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  10. Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    PubMed Central

    Tong, Jian-Bin; Wong, Richard; Ching, Yick-Pang; Qiu, Guang; Tang, Siu-Wa; Lee, Tatia M. C.; So, Kwok-Fai

    2011-01-01

    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress. PMID:21935393

  11. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  12. Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze.

    PubMed

    Gallagher, Michela; Burwell, Rebecca; Burchinal, Margaret

    2015-08-01

    The Morris water maze task was originally designed to assess the rat's ability to learn to navigate to a specific location in a relatively large spatial environment. This article describes new measures that provide information about the spatial distribution of the rat's search during both training and probe trial performance. The basic new measure optimizes the use of computer tracking to identify the rat's position with respect to the target location. This proximity measure was found to be highly sensitive to age-related impairment in an assessment of young and aged male Long-Evans rats. Also described is the development of a learning index that provides a continuous, graded measure of the severity of age-related impairment in the task. An index of this type should be useful in correlational analyses with other neurobiological or behavioral measures for the study of individual differences in functional/biological decline in aging.

  13. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats

    PubMed Central

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h). In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role. PMID:28355243

  14. Noisy galvanic vestibular stimulation enhances spatial memory in cognitive impairment-induced by intracerebroventricular-streptozotocin administration.

    PubMed

    Adel Ghahraman, Mansoureh; Zahmatkesh, Maryam; Pourbakht, Akram; Seifi, Behjat; Jalaie, Shohreh; Adeli, Soheila; Niknami, Zohreh

    2016-04-01

    There are several anatomical connections between vestibular system and brain areas construct spatial memory. Since subliminal noisy galvanic vestibular stimulation (GVS) has been demonstrated to enhance some types of memory, we speculated that application of noisy GVS may improve spatial memory in a rat model of intracerebroventricular streptozotocin (ICV-STZ)-induced cognitive impairment. Moreover, we attempted to determine the effect of repeated exposure to GVS on spatial memory performance. The spatial memory was assessed using Morris water maze test. The groups received 1 (ICV-STZ/GVS-I) or 5 (ICV-STZ/GVS-II) sessions, each lasting 30 min, of low amplitude noisy GVS, or no GVS at all (Control, ICV-saline, ICV-STZ/noGVS). Hippocampal morphological changes investigated with cresyl violet staining and the immediate early gene product c-Fos, as a neuronal activity marker, was measured. Hippocampal c-Fos positive cells increased in both GVS stimulated groups. We observed significantly improved spatial performance only in ICV-STZ/GVS-II group. Histological evaluation showed normal density in ICV-STZ/GVS-II group whereas degeneration observed in ICV-STZ/GVS-I group similar to ICV-STZ/noGVS. The results showed the improvement of memory impairment after repeated exposure to GVS. This effect may be due in part to frequent activation of the vestibular neurons and the hippocampal regions connected to them. Our current study suggests the potential role of GVS as a practical method to combat cognitive decline induced by sporadic Alzheimer disease.

  15. Selective enhancement of spatial learning under chronic psychosocial stress.

    PubMed

    Bartolomucci, Alessandro; de Biurrun, Gabriel; Czéh, Boldizsár; van Kampen, Marja; Fuchs, Eberhard

    2002-06-01

    The hippocampus has long been proved to be implicated in several learning and memory processes. Being integrated into the limbic-hypothalamus-pituitary-adrenal axis, the hippocampus also plays an active role in the regulation of the stress response. Long lasting elevated levels of glucocorticoids resulting from a prolonged stress exposure affect hippocampal functions and structure, inducing learning and memory alterations and suppressing cell proliferation in the adult dentate gyrus. Here, adult male tree shrews (Tupaia belangeri) exposed to chronic psychosocial stress were tested repeatedly on a holeboard apparatus using two different learning tasks devised to evaluate hippocampal-dependent and hippocampal-independent cognitive function. We show that chronic stress enhanced learning in animals performing the hippocampal-dependent task, whereas no stress-induced effect was found in the hippocampal-independent task. Additionally, after five weeks of stress, cell proliferation was reduced in the hippocampal dentate gyrus. These results indicate that specific memory processes not only may remain intact, but indeed are facilitated by chronic stress, despite elevated cortisol levels and suppressed hippocampal cell proliferation.

  16. The acute inhibition of rapid eye movement sleep by citalopram may impair spatial learning and passive avoidance in mice.

    PubMed

    Bridoux, A; Laloux, C; Derambure, P; Bordet, R; Monaca Charley, C

    2013-03-01

    Rapid eye movement (REM) sleep is known to be essential for memory. Hence, REM sleep deprivation impairs memory processes. The frequently prescribed selective serotonin reuptake inhibitors (SSRIs) are known to cause REM sleep deprivation and to impair cognitive performance in humans and rodents. We suggested that impaired memory processes by citalopram in C57/BL6 mice could be explained by the acute inhibition of REM sleep. We hypothesized that those acute citalopram 5 and 10 mg/kg injections induced REM sleep deprivation, altered cognitive performance in passive avoidance, impaired spatial memory compared to controls. Three experiments have been realized: (1) mice received successively physiological saline, injection of citalopram 5 and 10 mg/kg and were recorded by polysomnographic recording after each injection. (2) Cognitive performance was evaluated in the passive avoidance with two groups of mice. One group received citalopram before training and one, after training. (3) Spatial learning was evaluated with another group of animals in the Y-maze test. At 5 and 10 mg/kg, citalopram delayed REM sleep onset and decreased REM sleep amounts (vs. controls). The same doses were administrated in the passive avoidance test and have significantly shortened latency to enter the dark compartment. In the Y-maze, citalopram-treated mice showed a decreased percentage of time spent in the novel arm in contrast to the two other arms compared with controls. We showed that citalopram impaired cognitive performance in behavioral tasks. Those impairments could be linked to REM sleep deprivation induced by citalopram although causal relationship needs to be investigated in further studies.

  17. Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression

    PubMed Central

    Benoit, Jamie D.; Rakic, Pasko; Frick, Karyn M.

    2015-01-01

    Stress during pregnancy has a wide variety of negative effects in both human [1] and animal offspring [2]. These effects are especially apparent in various forms of learning and memory such as object recognition [3] and spatial memory [4]. The cognitive effects of prenatal stress (PNS) may be mediated through epigenetic changes such as histone acetylation and DNA methylation [5]. As such, the present study investigated the effects of chronic unpredictable PNS on memory and epigenetic measures in adult offspring. Mice that underwent PNS exhibited impaired spatial memory in the Morris water maze, as well as sex-specific changes in levels of DNA methyltransferase (DNMT) 1 protein, and acetylated histone H3 (AcH3) in the hippocampus, and serum corticosterone. Male mice exposed to PNS exhibited decreased hippocampal AcH3, whereas female PNS mice displayed a further reduction in AcH3, as well as heightened hippocampal DNMT1 protein levels and corticosterone levels. These data suggest that PNS may epigenetically reduce transcription in the hippocampus, particularly in females in whom this effect may be related to increased baseline stress hormone levels, and which may underlie the sexual dimorphism in rates of mental illness in humans. PMID:25496779

  18. Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression.

    PubMed

    Benoit, Jamie D; Rakic, Pasko; Frick, Karyn M

    2015-03-15

    Stress during pregnancy has a wide variety of negative effects in both human [1] and animal offspring [2]. These effects are especially apparent in various forms of learning and memory such as object recognition [3] and spatial memory [4]. The cognitive effects of prenatal stress (PNS) may be mediated through epigenetic changes such as histone acetylation and DNA methylation [5]. As such, the present study investigated the effects of chronic unpredictable PNS on memory and epigenetic measures in adult offspring. Mice that underwent PNS exhibited impaired spatial memory in the Morris water maze, as well as sex-specific changes in levels of DNA methyltransferase (DNMT) 1 protein, and acetylated histone H3 (AcH3) in the hippocampus, and serum corticosterone. Male mice exposed to PNS exhibited decreased hippocampal AcH3, whereas female PNS mice displayed a further reduction in AcH3, as well as heightened hippocampal DNMT1 protein levels and corticosterone levels. These data suggest that PNS may epigenetically reduce transcription in the hippocampus, particularly in females in whom this effect may be related to increased baseline stress hormone levels, and which may underlie the sexual dimorphism in rates of mental illness in humans.

  19. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation

    PubMed Central

    Valentin-Vega, Yasmine A.; Wang, Yong-Dong; Parker, Matthew; Patmore, Deanna M.; Kanagaraj, Anderson; Moore, Jennifer; Rusch, Michael; Finkelstein, David; Ellison, David W.; Gilbertson, Richard J.; Zhang, Jinghui; Kim, Hong Joo; Taylor, J. Paul

    2016-01-01

    DDX3X is a DEAD-box RNA helicase that has been implicated in multiple aspects of RNA metabolism including translation initiation and the assembly of stress granules (SGs). Recent genomic studies have reported recurrent DDX3X mutations in numerous tumors including medulloblastoma (MB), but the physiological impact of these mutations is poorly understood. Here we show that a consistent feature of MB-associated mutations is SG hyper-assembly and concomitant translation impairment. We used CLIP-seq to obtain a comprehensive assessment of DDX3X binding targets and ribosome profiling for high-resolution assessment of global translation. Surprisingly, mutant DDX3X expression caused broad inhibition of translation that impacted DDX3X targeted and non-targeted mRNAs alike. Assessment of translation efficiency with single-cell resolution revealed that SG hyper-assembly correlated precisely with impaired global translation. SG hyper-assembly and translation impairment driven by mutant DDX3X were rescued by a genetic approach that limited SG assembly and by deletion of the N-terminal low complexity domain within DDX3X. Thus, in addition to a primary defect at the level of translation initiation caused by DDX3X mutation, SG assembly itself contributes to global translation inhibition. This work provides mechanistic insights into the consequences of cancer-related DDX3X mutations, suggesting that globally reduced translation may provide a context-dependent survival advantage that must be considered as a possible contributor to tumorigenesis. PMID:27180681

  20. A comparative study on oxidative stress role in nasal breathing impairment and obstructive sleep apnoea syndrome.

    PubMed

    Passali, D; Corallo, G; Petti, A; Longini, M; Passali, F M; Buonocore, G; Bellussi, L M

    2016-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a sleep disorder that leads to metabolic abnormalities and increased cardiovascular risk. This study aimed to define the expression and clinical significance of biomarkers involved in oxidative stress in patients with OSAS. A prospective study was designed to compare outcomes of oxidative stress laboratory tests in three groups of subjects. The study involved the recruitment of three groups of subjects, 10 patients with obstructive sleep apnoea syndrome with AHI > 30; 10 patients suffering from snoring at night with AHI < 15; 10 patients with nasal respiratory impairment with AHI < 5. Patients were subjected to skin prick tests for common aero-allergens, nasal endoscopy, active anterior rhinomanometry, fibrolaryngoscopy and polysomnography; and extra-routine diagnostic tests and procedures; analysis of oxidative and antioxidant (plasma thiol groups) biomarkers in blood and urine samples. No statistical differences in age, sex distribution or body mass index were present between the three groups (p > 0.05). There were significant differences in AHI among the three groups of patients (p < 0.05). No statistical significance was found in the Analysis of Variance (ANOVA) test (p > 0.05) between the levels of biomarkers of oxidative stress in the three populations studied. The results of our study show that the nose can play a role in the pathogenesis of OSAS through the production of biomarkers of oxidative stress.

  1. Anesthetic ketamine counteracts repetitive mechanical stress-induced learning and memory impairment in developing mice.

    PubMed

    Peng, Sheng; Zhang, Yan; Wang, Hua; Ren, Bingxu; Zhang, Jiannan

    2011-10-01

    The aim of this study is to investigate whether ketamine, a noncompetitive N-methyl-D: -aspartate receptor (NMDAR) antagonist, had an influence on learning and memory in developing mice. Fifty Kunming mice aged 21 days were randomly divided into 5 subgroups (n = 10 for each) to receive intraperitoneal injection of equal volume of saline (S group) or ketamine (25, 50 or 100 mg/kg of body weight/day) for 7 consecutive days, or to be left untreated (C group). A step-down passive avoidance test was performed to evaluate learning and memory in these mice on days 8 and 9. Additionally, the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was determined. Rats receiving saline or sub-anesthetic dose of ketamine (25 mg/kg) showed significantly decreased abilities of learning and memory and reduced expression of BDNF, compared to the normal controls (P < 0.05). In contrast, comparable abilities of learning and memory and expression of BDNF were found for anesthetic doses of ketamine (50 or 100 mg/kg)-treated rats and controls (P > 0.05). Repetitive mechanical stress impairs learning and memory performance in developing mice, which may be associated with decreased BDNF expression. The stress-induced learning and memory impairment can be prevented by anesthetic doses of ketamine.

  2. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-“Chemobrain”

    PubMed Central

    Gaman, Amelia Maria; Uzoni, Adriana; Popa-Wagner, Aurel; Andrei, Anghel; Petcu, Eugen-Bogdan

    2016-01-01

    Chemobrain or chemotherapy induced cognitive impairment (CICI) represents a new clinical syndrome characterised by memory, learning and motor function impairment. As numerous patients with cancer are long-term survivors, CICI represent a significant factor which may interfere with their quality of life. However, this entity CICI must be distinguished from other cognitive syndromes and addressed accordingly. At the present time, experimental and clinical research suggests that CICI could be induced by numerous factors including oxidative stress. This type of CNS injury has been previously described in cancer patients treated with common anti-neoplastic drugs such as doxorubicine, carmustine, methotrexate and cyclophosphamide. It seems that all these pharmacological factors promote neuronal death through a final common pathway represented by TNF alpha (tumour necrosis factor). However, as cancer in general is diagnosed more commonly in the aging population, the elderly oncological patient must be treated with great care since aging per se is also impacted by oxidative stress and potentiually by TNF alpha deleterious action on brain parenchyma. In this context, some patients may develop cognitive dysfunction well before the appearance of CICI. In addition, chemotherapy may worsen their cognitive function. Therefore, at the present time, there is an acute need for development of effective therapeutic methods to prevent CICI as well as new methods of early CICI diagnosis. PMID:27330845

  3. Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice

    PubMed Central

    Amin, Faiz Ul; Shah, Shahid Ali; Kim, Myeong Ok

    2017-01-01

    Increasing evidence demonstrates that β-amyloid (Aβ) elicits oxidative stress, which contributes to the pathogenesis and disease progression of Alzheimer’s disease (AD). The aims of the present study were to determine and explore the antioxidant nature and potential mechanism of vanillic acid (VA) in Aβ1-42-induced oxidative stress and neuroinflammation mediated cognitive impairment in mice. An intracerebroventricular (i.c.v.) injection of Aβ1-42 into the mouse brain triggered increased reactive oxygen species (ROS) levels, neuroinflammation, synaptic deficits, memory impairment, and neurodegeneration. In contrast, the i.p. (intraperitoneal) administration of VA (30 mg/kg, for 3 weeks) after Aβ1-42-injection enhanced glutathione levels (GSH) and abrogated ROS generation accompanied by an induction of the endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) via the activation of Akt and glycogen synthase kinase 3β (GSK-3β) in the brain mice. Additionally, VA treatment decreased Aβ1-42-induced neuronal apoptosis and neuroinflammation and improved synaptic and cognitive deficits. Moreover, VA was nontoxic to HT22 cells and increased cell viability after Aβ1-42 exposure. To our knowledge, this study is the first to reveal the neuroprotective effect of VA against Aβ1-42-induced neurotoxicity. Our findings demonstrate that VA could potentially serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD. PMID:28098243

  4. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4.

    PubMed

    Chiang, Chih-Kang; Nangaku, Masaomi; Tanaka, Tetsuhiro; Iwawaki, Takao; Inagi, Reiko

    2013-02-15

    Hypoxia upregulates the hypoxia-inducible factor (HIF) pathway and the endoplasmic reticulum (ER) stress signal, unfolded protein response (UPR). The cross talk of both signals affects the pathogenic alteration by hypoxia. Here we showed that ER stress induced by tunicamycin or thapsigargin suppressed inducible (CoCl(2) or hypoxia) transcription of erythropoietin (EPO), a representative HIF target gene, in HepG2. This suppression was inversely correlated with UPR activation, as estimated by expression of the UPR regulator glucose-regulated protein 78, and restored by an ER stress inhibitor, salubrinal, in association with normalization of the UPR state. Importantly, the decreased EPO expression was also observed in HepG2 overexpressing UPR activating transcription factor (ATF)4. Overexpression of mutated ATF4 that lacks the transcriptional activity did not alter EPO transcriptional regulation. Transcriptional activity of the EPO 3'-enhancer, which is mainly regulated by HIF, was abolished by both ER stressors and ATF4 overexpression, while nuclear HIF accumulation or expression of other HIF target genes was not suppressed by ER stress. Chromatin immunoprecipitation analysis identified a novel ATF4 binding site (TGACCTCT) within the EPO 3'-enhancer region, suggesting a distinct role for ATF4 in UPR-dependent suppression of the enhancer. Induction of ER stress in rat liver and kidney by tunicamycin decreased the hepatic and renal mRNA and plasma level of EPO. Collectively, ER stress selectively impairs the transcriptional activity of EPO but not of other HIF target genes. This effect is mediated by suppression of EPO 3'-enhancer activity via ATF4 without any direct effect on HIF, indicating that UPR contributes to oxygen-sensing regulation of EPO.

  5. Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine

    PubMed Central

    Abdel-Salam, Omar M.E.; El-Sayed El-Shamarka, Marwa; Salem, Neveen A.; El-Mosallamy, Aliaa E.M.K.; Sleem, Amany A.

    2012-01-01

    Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg), haloperidol, or haloperidol combined with cinnarizine was administered daily via the subcutaneous route and mice were examined on weekly basis for their ability to locate a submerged plate in the water maze test. Mice were euthanized 30 days after starting drug injection. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) were determined in brain. Haloperidol substantially impaired water maze performance. The mean time taken to find the escape platform (latency) was significantly delayed by haloperidol (2 mg/kg, i.p.) on weeks 1-8 of the test, compared with saline control group. In contrast, those treated with haloperidol and cinnarizine showed significantly shorter latencies, which indicated that learning had occurred immediately. Haloperidol resulted in increased MDA in cortex, striatum, cerebellum and midbrain. GSH decreased in cortex, striatum and cerebellum and nitric oxide increased in cortex. Meanwhile, treatment with cinnarizine (20 mg/kg) and haloperidol resulted in significant decrease in MDA cortex, striatum, cerebellum and midbrain and an increase in GSH in cortex and striatum, compared with haloperidol group. These data suggest that cinnarizine improves the haloperidol induced brain oxidative stress and impairment of learning and memory in the water maze test in mice. PMID:27540345

  6. Influence of pre-exposure to morphine on cannabinoid-induced impairment of spatial memory in male rats.

    PubMed

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser; Choopani, Samira; Zarrindast, Mohammad-Reza

    2013-11-01

    In the present study, we investigated the effects of repeated morphine pre-treatment on impairment of spatial memory acquisition induced by intra dorsal hippocampus (intra-CA1) administration of the non-selective cannabinoid CB1/CB2 receptor agonist, WIN55,212-2 in adult male rats. 2-day version of Morris water maze task has been used for the assessment of spatial memory. On the training day, rats were trained by a single training session of eight trials and 24 h later a probe trial test consist of 60s free swim period without a platform and the visible test was administered. Animals received pre-treatment subcutaneous (s.c.) injections of morphine, once daily for three days followed by five days drug-free treatment before training trials. The results indicated that bilateral pre-training intra-CA1 infusions of WIN55,212-2 (0.25 and 0.5 μg/rat) impaired acquisition of spatial memory on the training and test day. The amnesic effect of WIN55, 212-2 (0.5 μg/rat) was prevented in rats previously injected with morphine (20 mg/kg/day × 3 days, s.c.). Improvement in spatial memory acquisition in morphine-pretreated rats was inhibited by once daily administration of naloxone (1 and 2 mg/kg, s.c.) 15 min prior to injection of morphine for three days. The results suggest that sub-chronic morphine treatment may produced sensitization to cannabinoids, which in turn reversed the impairment of spatial memory acquisition induced by WIN55,212-2 and mu- opioid receptors may play an important role in this effect.

  7. Impaired neuroendocrine and immune response to acute stress in medication-naive patients with a first episode of psychosis.

    PubMed

    van Venrooij, Janine A E M; Fluitman, Sjoerd B A H A; Lijmer, Jeroen G; Kavelaars, Annemieke; Heijnen, Cobi J; Westenberg, Herman G M; Kahn, René S; Gispen-de Wied, Christine C

    2012-03-01

    Little is known about how the biological stress response systems--the autonomic nervous system (ANS), the hypothalamic-pituitary-adrenal (HPA) axis, and the immune system--function during psychosis. Results of studies on the effect of stress on the immune and autonomic system in patients with schizophrenia are inconsistent. The present study investigates whether the stress response is impaired in medication-naive patients with a first episode of psychosis. Ten male patients with a first episode of psychosis and 15 controls were exposed to the stress of public speaking. Parameters of the ANS (heart rate and catecholamines), the HPA axis (plasma adrenocorticotropic hormone [ACTH] and cortisol), and the immune system (number and activity of natural killer [NK] cells) were measured. Peak responses were calculated to examine the relationship between stress-induced activation of the different systems. Subjective stress and anxiety before and during the task were assessed. Patients and controls displayed similar autonomic responses to acute stress. However, there was an impaired HPA axis response, slow onset and return of ACTH, and flattened cortisol response and a reduced increase in number NK cells and NK cell activity in patients with a first episode of psychosis. Furthermore, in patients, the relationship between the different stress response systems was weaker or absent compared with controls. These findings indicate that impairments in stress processing are associated with the endophenotype of psychosis and are not a result of illness progression or antipsychotic medication.

  8. Reversal of propoxur-induced impairment of memory and oxidative stress by 4'-chlorodiazepam in rats.

    PubMed

    Mehta, Kapil Dev; Garg, Gobind Rai; Mehta, Ashish K; Arora, Tarun; Sharma, Amit K; Khanna, Naresh; Tripathi, Ashok K; Sharma, Krishna K

    2010-01-01

    Carbamate pesticides like propoxur have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was designed to explore the modulation of the effects of propoxur over cognitive function by progesterone (PROG) and 4'-chlorodiazepam (4CD). Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus, transfer latency (TL) on a plus maze and spatial navigation test on Morris water maze. Oxidative stress was assessed by examining brain malondialdehyde (MDA) and reduced glutathione (GSH) levels and catalase (CAT) activity. A significant reduction in SDL and prolongation of TL and spatial navigation test was found for the propoxur (10 mg/kg/d; p.o.) treated group at weeks 6 and 7 as compared with control. One-week treatment with 4CD (0.5 mg/kg/d; i.p.) antagonized the effect of propoxur on SDL, spatial navigation test as well as TL; whereas, PROG failed to modulate this effect at a dose of 15 mg/kg/d, i.p. Propoxur produced a statistically significant increase in the brain MDA levels and decrease in the brain GSH levels and CAT activity. Treatment with 4CD at the above dose attenuated the effect of propoxur on oxidative stress whereas PROG (15 mg/kg/d; i.p.) failed to influence the same. The results of the present study thus show that 4-CD has the potential to attenuate cognitive dysfunction and oxidative stress induced by toxicants like propoxur in the brain.

  9. Impaired Spatial Learning Strategies and Novel Object Recognition in Mice Haploinsufficient for the Dual Specificity Tyrosine-Regulated Kinase-1A (Dyrk1A)

    PubMed Central

    Fernández, David; de Lagrán, María Martínez; Arbonés, Maria L.; Dierssen, Mara

    2008-01-01

    Background Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. Methodology/Principal Findings We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/−) to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/− mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25°C and 17°C) and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/− mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. Conclusions/Significance The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21. PMID:18648535

  10. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy

    PubMed Central

    Hassanzadeh, Parichehr; Arbabi, Elham; Rostami, Fatemeh

    2014-01-01

    Objective(s): A growing interest has recently been attracted towards the identification of plant-based medications including those with protective effects against cognitive impairment. Sesamol has shown promising antioxidant and neuroprotective effects, therefore, we aimed to evaluate its therapeutic potential in epilepsy which is commonly associated with oxidative stress and cognitive impairment. Materials and Methods: Male Wistar rats received pentylenetetrazole (PTZ) (30 mg/kg, IP) once every other day until the development of kindling, i.e., the occurrence of stage 5 of seizures for three consecutive trials. After the completion of kindling procedure, behavioural tests including elevated plus maze and passive avoidance were performed in order to assess learning and memory. Oxidative stress was assessed by estimation of lipid peroxidation and reduced glutathione. The effects of pretreatment with sesamol (10, 20, and 30 mg/kg, IP) against PTZ-induced seizures, cognitive impairment and oxidative stress were investigated. Results: 32.45 ± 1.86 days after treatment with PTZ, kindling was developed that was associated with myoclonic jerks and generalized tonic-clonic seizures. Moreover, PTZ kindling induced a remarkable cognitive impairment and oxidative stress. Sesamol (30 mg/kg) significantly delayed the development of kindling and prevented seizure-induced cognitive impairment and oxidative stress. Conclusion: Sesamol exerts ameliorative effects in the experimental model of epilepsy. This phytochemical may be considered as a beneficial adjuvant for antiepileptic drugs. PMID:24711892

  11. Chronic caffeine treatment prevents stress-induced LTP impairment: the critical role of phosphorylated CaMKII and BDNF.

    PubMed

    Alzoubi, K H; Srivareerat, M; Aleisa, A M; Alkadhi, K A

    2013-01-01

    Caffeine has been reported to enhance cognition in animal and humans. Additionally, caffeine alleviates cognitive impairment associated with a number of disorders including Alzheimer's disease. The lipophilic nature of caffeine allows for rapid absorption into the bloodstream where it freely crosses the blood-brain barrier. Caffeine promotes dendritic spine growth in cultured hippocampal neurons, which suggests a neuroprotective effect. We examined the effect of chronic caffeine treatment on stress-induced suppression of long-term potentiation (LTP) and impairment of molecules of its signaling cascade. Rats were subjected to daily stress using the psychosocial stress paradigm (intruder model), in vivo recordings from area CA1 of the hippocampus of adult rat, and immunoblot analysis of essential signaling molecules. Caffeine prevented stress-induced LTP impairment. Western blot analysis showed reduction of the basal levels of the phosphorylated calcium calmodulin kinase II (P-CAMKII), total CaMKII, and brain-derived neurotrophic factor (BDNF) in area CA1 of stressed rats. These reductions were prevented by chronic caffeine treatment (0.33 mg/L in drinking water). In addition, caffeine prevented the upregulation of calcineurin levels in stressed rats. High-frequency stimulation (HFS) normally increased P-CaMKII, total CaMKII, and calcineurin levels in control as well as in caffeine-treated stressed rats. However, in stressed rats, the same HFS induced increases in the levels of total CaMKII and calcineurin, but not those of P-CaMKII. The levels of signaling molecules may not reflect activities of these molecules. It appears that the neuroprotective effect of caffeine involves preservation of the levels of essential kinases and phosphatases in stressed rats. This may include preservation of basal levels of BDNF by chronic caffeine treatment in stressed animals. These findings highlight the critical role of P-CaMKII and BDNF in caffeine-induced prevention of stress

  12. Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia.

    PubMed

    Facoetti, Andrea; Corradi, Nicola; Ruffino, Milena; Gori, Simone; Zorzi, Marco

    2010-08-01

    Phonological skills are foundational of reading acquisition and impaired phonological processing is widely assumed to characterize dyslexic individuals. However, reading by phonological decoding also requires rapid selection of sublexical orthographic units through serial attentional orienting, and recent studies have shown that visual spatial attention is impaired in dyslexic children. Our study investigated these different neurocognitive dysfunctions, before reading acquisition, in a sample of preschoolers including children with (N=20) and without (N=67) familial risk for developmental dyslexia. Children were tested on phonological skills, rapid automatized naming, and visual spatial attention. At-risk children presented deficits in both visual spatial attention and syllabic segmentation at the group level. Moreover, the combination of visual spatial attention and syllabic segmentation scores was more reliable than either single measure for the identification of at-risk children. These findings suggest that both visuo-attentional and perisylvian-auditory dysfunctions might adversely affect reading acquisition, and may offer a new approach for early identification and remediation of developmental dyslexia.

  13. Rhinal and Dorsolateral Prefrontal Cortex Lesions Produce Selective Impairments in Object and Spatial Learning and Memory in Canines

    PubMed Central

    Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.

    2014-01-01

    To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072

  14. Spatial Cognition in Autism Spectrum Disorders: Superior, Impaired, or Just Intact?

    ERIC Educational Resources Information Center

    Edgin, Jamie O.; Pennington, Bruce F.

    2005-01-01

    The profile of spatial ability is of interest across autism spectrum disorders (ASD) because of reported spatial strengths in ASD and due to the recent association of Asperger's syndrome with Nonverbal Learning Disability. Spatial functions were examined in relation to two cognitive theories in autism: the central coherence and executive function…

  15. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    SciTech Connect

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  16. Wfs1-deficient mice display impaired behavioural adaptation in stressful environment.

    PubMed

    Luuk, Hendrik; Plaas, Mario; Raud, Sirli; Innos, Jürgen; Sütt, Silva; Lasner, Helena; Abramov, Urho; Kurrikoff, Kaido; Kõks, Sulev; Vasar, Eero

    2009-03-17

    Wfs1-deficient mice were generated by disrupting the 8th exon of Wfs1 gene. Reproduction rates of homozygous Wfs1-deficient mice were slightly below the expected values, they displayed intolerance to glucose and overall lower body weight. The present behavioural study was performed in female Wfs1-deficient mice due to their milder metabolic disturbances. Non-fasting blood glucose levels did not differ between homozygous Wfs1-deficient mice and wild-type littermates. While there was no difference in baseline plasma corticosterone, exposure to stress induced a nearly three-fold elevation of corticosterone in Wfs1-deficient mice in relation to wild-type littermates. Wfs1-deficient mice did not display obvious shortcomings in sensory and motor functioning as exemplified by intact responses in conditioned learning paradigms and rota-rod test. Locomotor activity of Wfs1-deficient mice was significantly lower only in brightly lit environment. Short-term isolation had a significant anxiogenic-like effect on the behaviour of Wfs1-deficient mice in dark/light exploration test. Lower exploratory activity of Wfs1-deficient mice in the plus-maze was antagonised by pre-treatment with diazepam (1 mg/kg), a GABA(A) receptor agonist. Wfs1-deficient mice displayed increased anxiety-like behaviour in hyponeophagia test. The locomotor stimulatory effects of amphetamine (2.5-7.5 mg/kg) and apomorphine (3 mg/kg) were significantly attenuated and facilitated, respectively, in Wfs1-deficient mice. There were no differences between Wfs1-deficient mice and wild-types in forced swimming behaviour and conditioned fear responses. Subtle impairments in reversal learning were apparent in Wfs1-deficient mice in the Morris water maze. Altogether, the present study demonstrates impaired behavioural adaptation of Wfs1-deficient mice in stress-inducing situations. It is likely that Wfs1 protein plays a major role in the behavioural adaptation mechanisms to novel and stressful environments.

  17. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis

    PubMed Central

    Lamore, Sarah D.

    2014-01-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug. PMID:21424779

  18. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization

    PubMed Central

    Jacinto, Luis R.; Reis, Joana S.; Dias, Nuno S.; Cerqueira, João J.; Correia, José H.; Sousa, Nuno

    2013-01-01

    Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials (LFP) were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC, respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions. PMID:24137113

  19. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis.

    PubMed

    Lamore, Sarah D; Wondrak, Georg T

    2011-10-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309-322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1-2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug.

  20. Stress and glucocorticoids impair memory retrieval via β2-adrenergic, Gi/o-coupled suppression of cAMP signaling.

    PubMed

    Schutsky, Keith; Ouyang, Ming; Castelino, Christina B; Zhang, Lei; Thomas, Steven A

    2011-10-05

    Acute stress impairs the retrieval of hippocampus-dependent memory, and this effect is mimicked by exogenous administration of stress-responsive glucocorticoid hormones. It has been proposed that glucocorticoids affect memory by promoting the release and/or blocking the reuptake of norepinephrine (NE), a stress-responsive neurotransmitter. It has also been proposed that this enhanced NE signaling impairs memory retrieval by stimulating β(1)-adrenergic receptors and elevating levels of cAMP. In contrast, other evidence indicates that NE, β(1), and cAMP signaling is transiently required for the retrieval of hippocampus-dependent memory. To resolve this discrepancy, wild-type rats and mice with and without gene-targeted mutations were stressed or treated with glucocorticoids and/or adrenergic receptor drugs before testing memory for inhibitory avoidance or fear conditioning. Here we report that glucocorticoids do not require NE to impair retrieval. However, stress- and glucocorticoid-induced impairments of retrieval depend on the activation of β(2) (but not β(1))-adrenergic receptors. Offering an explanation for the opposing functions of these two receptors, the impairing effects of stress, glucocorticoids and β(2) agonists on retrieval are blocked by pertussis toxin, which inactivates signaling by G(i/o)-coupled receptors. In hippocampal slices, β(2) signaling decreases cAMP levels and greatly reduces the increase in cAMP mediated by β(1) signaling. Finally, augmenting cAMP signaling in the hippocampus prevents the impairment of retrieval by systemic β(2) agonists or glucocorticoids. These results demonstrate that the β(2) receptor can be a critical effector of acute stress, and that β(1) and β(2) receptors can have quite distinct roles in CNS signaling and cognition.

  1. Sex-specific effects of prenatal chronic mild stress on adult spatial learning capacity and regional glutamate receptor expression profiles.

    PubMed

    Wang, Yan; Ma, Yuchao; Hu, Jingmin; Zhang, Xinxin; Cheng, Wenwen; Jiang, Han; Li, Min; Ren, Jintao; Zhang, Xiaosong; Liu, Mengxi; Sun, Anji; Wang, Qi; Li, Xiaobai

    2016-07-01

    Both animal experiments and clinical studies have demonstrated that prenatal stress can cause cognitive disorders in offspring. To explore the scope of these deficits and identify potential underlying mechanisms, we examined the spatial learning and memory performance and glutamate receptor (GluR) expression patterns of adult rats exposed to prenatal chronic mild stress (PCMS). Principal component analysis (PCA) was employed to reveal the interrelationships among spatial learning indices and GluR expression changes. Female PCMS-exposed offspring exhibited markedly impaired spatial learning and memory in the Morris water maze (MWM) task compared to control females, while PCMS-exposed males showed better initial spatial learning in the MWM compared to control males. PCMS also altered basal and post-MWM glutamate receptor expression patterns, but these effects differed markedly between sexes. Male PCMS-exposed offspring exhibited elevated basal expression of NR1, mGluR5, and mGluR2/3 in the prefrontal cortex (PFC), whereas females showed no basal expression changes. Following MWM training, PCMS-exposed males expressed higher NR1 in the PFC and mammillary body (MB), higher mGluR2/3 in PFC, and lower NR2B in the hippocampus (HIP), PFC, and MB compared to unstressed MWM-trained males. Female PCMS-exposed offspring showed strongly reduced NR1 in MB and NR2B in the HIP, PFC, and MB, and increased mGluR2/3 in PFC compared to unstressed MWM-trained females. This is the first report suggesting that NMDA subunits in the MB are involved in spatial learning. Additionally, PCA further suggests that the NR1-NR2B form is the most important for spatial memory formation. These results reveal long-term sex-specific effects of PCMS on spatial learning and memory performance in adulthood and implicate GluR expression changes within HIP, PFC, and MB as possible molecular mechanisms underlying cognitive dysfunction in offspring exposed to prenatal stress.

  2. Differential activation of hippocampus and amygdala following spatial learning under stress.

    PubMed

    Akirav, I; Sandi, C; Richter-Levin, G

    2001-08-01

    We examined the activation of memory-related processes in the hippocampus and the amygdala following spatial learning under stress, in the rat. Animals were trained in a water maze in a massed spatial task under two stress conditions (cold and warm water). In the dorsal CA1, training was accompanied by increased phosphorylation of ERK2 only in animals that have acquired the task (irrespective of whether they were trained in cold or warm water). In the amygdala, significant activation of ERK2 was found only in animals that learned the task well under high levels of stress. Hence, the results suggest that the amygdala and the hippocampus are differentially activated following spatial learning, depending on the level of stress involved.

  3. Tomato leaf spatial expression of stress-induced Asr genes.

    PubMed

    Maskin, Laura; Maldonado, Sara; Iusem, Norberto D

    2008-12-01

    Asr1 and Asr2 are water stress-inducible genes belonging to the Asr gene family, which transcriptionally regulate a sugar transporter gene, at least in grape. Using an in situ RNA hybridization methodology, we determined that, in basal conditions, expression of Asr2 in tomato leaves is detected in the phloem tissue, particularly in companion phloem cells. When plants are exposed to water stress, Asr2 expression is contained in companion cells but expands occasionally to mesophyll cells. In contrast, Asr1 transcript localization seems to be sparse in leaf vascular tissue under both non-stress and stress conditions. The occurrence of Asr transcripts precisely in companion cells is in accordance with the cell type specificity reported for hexose-transporter protein molecules in grape encoded by the only Asr-target gene known to date. The results are discussed in light of the reported scarcity of plasmodesmata between companion cells and the rest of leaf tissue in the family Solanaceae.

  4. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    PubMed

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect.

  5. Laminin-β1 impairs spatial learning through inhibition of ERK/MAPK and SGK1 signaling.

    PubMed

    Yang, Ying C; Ma, Yun L; Liu, Wen T; Lee, Eminy H Y

    2011-11-01

    Laminin is a major structural element of the basal lamina consisting of an α-chain, a β-chain, and a γ-chain arranged in a cross-like structure, with their C-terminal inter-coiled. Laminin is abundantly expressed in the hippocampus of mature brain and is implicated in several psychiatric disorders, but its possible role involved in learning and memory function is not known. This issue was examined here. Our results revealed that water maze training significantly decreased laminin-β1 (LB1) expression in the rat hippocampal CA1 area. Transfection of LB1 WT plasmid to hippocampal CA1 neurons impaired water maze performance in rats. Meanwhile, it decreased the phosphorylation level of ERK/MAPK and protein kinase serum- and glucocorticoid-inducible kinase-1 (SGK1). By contrast, knockdown of endogenous LB1 expression using RNA interference (LB1 siRNA) enhanced water maze performance. Meanwhile, it increased the phosphorylation level of ERK/MAPK and SGK1. The enhancing effect of LB1 siRNA on spatial learning and on the phosphorylation of ERK/MAPK and SGK1 was blocked by co-treatment with the MEK inhibitor U0126 at a concentration that did not apparently affect spatial learning and ERK/MAPK phosphorylation alone. Further, the enhancing effect of LB1 siRNA on spatial learning and SGK1 phosphorylation was similarly blocked by co-transfection with SGK1 siRNA at a concentration that did not markedly affect spatial learning and SGK1 expression alone. These results together indicate that LB1 negatively regulates spatial learning in rats. In addition, LB1 impairs spatial learning through decreased activation of the ERK/MAPK-SGK1 signaling pathway in the rat hippocampus.

  6. A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats

    PubMed Central

    Song, Xiu-yun; Wang, Ying-ying; Chu, Shi-feng; Hu, Jin-feng; Yang, Peng-fei; Zuo, Wei; Song, Lian-kun; Zhang, Shuai; Chen, Nai-hong

    2016-01-01

    Aim: A novel coumarin derivative 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) has shown anti-apoptotic, anti-inflammatory and neuroprotective activities. In this study we investigated the effects of IMM-H004 on spatial memory in rats treated with okadaic acid (OKA), which was used to imitate Alzheimer's disease (AD)-like symptoms. Methods: SD rats were administered IMM-H004 (8 mg·kg−1·d−1, ig) or donepezil (positive control, 1 mg·kg−1·d−1, ig) for 25 d. On d 8 and 9, OKA (200 ng) was microinjected into the right ventricle. Morris water maze test was used to evaluate the spatial memory impairments. Tau and β-amyloid (Aβ) pathology in the hippocampus was detected using Western blot and immunohistochemistry. TUNEL staining was used to detect cell apoptosis. Results: OKA-treated rats showed significant impairments of spatial memory in Morris water maze test, which were largely reversed by administration of IMM-H004 or donepezil. Furthermore, OKA-treated rats exhibited significantly increased phosphorylation of tau, deposits of Aβ protein and cell apoptosis in the hippocampus, which were also reversed by administration of IMM-H004 or donepezil. Conclusion: Administration of IMM-H004 or donepezil protects rats against OKA-induced spatial memory impairments via attenuating tau or Aβ pathology. Thus, IMM-H004 may be developed as a therapeutic agent for the treatment of AD. PMID:26838073

  7. Understanding the role of mind wandering in stress-related working memory impairments.

    PubMed

    Banks, Jonathan B; Boals, Adriel

    2016-05-04

    Mind wandering has been identified as a possible cause for stress-related working memory (WM) task impairments following laboratory stressors. The current study attempted to induce mind wandering regarding negative, positive, or neutral events using an expressive writing task and examined the impact on WM task performance. We examined the role of mind wandering in understanding the impact of life stress on WM. Additionally, we explored the role of thought suppression on the relationship between mind wandering and WM. One hundred and fifty participants completed WM measures before (Time 1) and after (Time 2) the writing manipulation. The writing manipulation did not alter mind wandering or WM task performance. Time 1 WM predicted mind wandering during the Time 2 WM task, which subsequently predicted poorer Time 2 WM task performance. The impact of daily life stress on WM was mediated by mind wandering. Trait levels of thought suppression moderated the impact of mind wandering on WM. Specifically, higher levels of suppression resulted in stronger negative impact of mind wandering on WM task performance. Findings are discussed in terms of the impact of mind wandering on WM task performance.

  8. Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons

    PubMed Central

    Tammineni, Prasad; Ye, Xuan; Feng, Tuancheng; Aikal, Daniyal; Cai, Qian

    2017-01-01

    Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD. DOI: http://dx.doi.org/10.7554/eLife.21776.001 PMID:28085665

  9. Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress.

    PubMed

    E Dief, Abeer; M Samy, Doaa; I Dowedar, Fatma

    2015-01-01

    Chronic stress affects brain areas involved in learning and emotional responses through modulation of neurotropic factors or neurotransmitters. Therefore, we investigated the role of exercise and thiamine supplementation on spatial memory and on brain-derived neurotrophic factor (BDNF) and acetylcholine (Ach) content in the hippocampus of the stressed animals. Male Wistar rats were randomly assigned to 4 groups (8 rats/group): control group; stress group; swimming and stress group; and thiamine and stress group. All animals were assessed by a T maze for spatial memory or open field test for locomotion and anxiety. BDNF and Ach were estimated in the hippocampus. Chronic immobilization stress resulted in a significant decrease in BDNF and Ach levels in the hippocampus and impairment in spatial memory functions and decreased basal activity. However, either swimming training or thiamine intake for 30 d was proved to induce a significant increase both in BDNF and Ach in conjunction with improved performance in the T maze, marked anxiolytic effect and enhanced ambulation in the open field test, as compared to the stress group. Interestingly, swimming-exercised rats showed significantly higher levels of BDNF versus thiamine-receiving rats, while thiamine-receiving rats showed higher locomotor activity and less freezing behavior in the open field test compared to the swimming group. It was concluded that decreased BDNF and Ach after stress exposure could be a mechanism for the deleterious actions of stress on memory function; swimming exercise or vitamin B1 supplementation for 30 d was a protective tool to improve coping with chronic stress by modulating BDNF and Ach content along with enhancement of memory functions and motor activities.

  10. An Open-Label Trial of Memantine for Cognitive Impairment in Patients with Posttraumatic Stress Disorder

    PubMed Central

    Ramaswamy, Sriram; Madabushi, Jayakrishna; Hunziker, John; Bhatia, Subhash C.; Petty, Frederick

    2015-01-01

    Background. Studies using standard neuropsychological instruments have demonstrated memory deficits in patients with PTSD. We evaluated the efficacy and safety of the N-methyl-D-aspartate antagonist memantine in veterans with PTSD and cognitive impairment. Methods. Twenty-six veterans with PTSD and cognitive impairment received 16 weeks of memantine in an open-label fashion. Cognition was assessed using the Spatial Span, Logical Memory I, and Letter-Number Sequencing subtests of the Wechsler Memory Scale III and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RBANS measures attention, language, visuospatial skills, and immediate and delayed memories. The Clinician Administered PTSD Scale (CAPS), Hamilton Depression Scale (HAM-D), Hamilton Anxiety Scale (HAM-A), Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q), and Sheehan Disability Scale (SDS) were secondary outcome measures. Results. There was a significant improvement in RBANS, both total and subscale scores (P < 0.05), over time. There was a reduction in total CAPS scores, avoidance/numbing symptoms (CAPS-C) and hyperarousal symptoms (CAPS-D), HAM-D, Q-LES-Q, and SDS scores. However, there was no reduction in reexperiencing (CAPS-B) and HAM-A scores. Memantine was well tolerated. Conclusions. Memantine improved cognitive symptoms, PTSD symptoms, and mood in veterans with PTSD. Randomized double-blind studies are needed to validate these preliminary observations. PMID:26064685

  11. Beyond the redox imbalance: oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease

    PubMed Central

    Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.

    2016-01-01

    Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058

  12. Unlocking the relationship of biotic integrity of impaired waters to anthropogenic stresses.

    PubMed

    Novotny, Vladimir; Bartosová, Alena; O'Reilly, Neal; Ehlinger, Timothy

    2005-01-01

    The Clean Water Act expressed its goals in terms of restoring and preserving the physical, chemical and biological integrity of the Nation's waters. Integrity has been defined as the ability of the water body's ecological system to support and maintain a balanced integrated, adaptive community of organisms comparable to that of a natural biota of the region. Several indices of biotic integrity (IBIs) have been developed to measure quantitatively the biotic composition and, hence, the integrity. Integrity can be impaired by discharges of pollutants from point and nonpoint sources and by other pollution-related to watershed/landscape and channel stresses, including channel and riparian zone modifications and habitat impairment. Various models that link the stressors to the biotic assessment endpoints, i.e., the IBIs, have been presented and discussed. Simple models that link IBIs directly to single or multiple surrogate stressors such as percent imperviousness are inadequate because they may not represent a true cause-effect proximate relationship. Furthermore, some surrogate landscape parameters are irreversible and the relationships cannot be used for development of plans for restoration of the water body integrity. A concept of a layered hierarchical model that will link the watershed, landscape and stream morphology pollution stressors to the biotic assessment endpoints (IBIs) is described. The key groups of structural components of the model are: IBIs and their metrics in the top layer, chemical water and sediment risks and a habitat quality index in the layer below, in-stream concentrations in water and sediments and channel/habitat impairment parameters in the third layer, and watershed/landscaper pollution generating stressors, land use change rates, and hydrology in the lowest layer of stressors. A modified and expanded Maximum Species Richness concept is developed and used to reveal quantitatively the functional relationships between the top two layers of

  13. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress.

    PubMed

    Alzoubi, K H; Khabour, O F; Alhaidar, I A; Aleisa, A M; Alkadhi, K A

    2013-11-01

    The majority of diabetics develop serious disorders of the autonomic nervous system; however, there is no clear understanding on the causes of these complications. In this study, we examined the effect of streptozocin (STZ)-induced diabetes on activity-dependent synaptic plasticity, associated levels of brain-derived neurotrophic factor (BDNF) and antioxidant biomarkers in the rat sympathetic superior cervical ganglion. Diabetes (STZ-induced) was achieved by a single intraperitoneal injection of streptozocin (55 mg/kg).Compound action potentials were recorded from isolated ganglia before (basal) and after repetitive stimulation, or trains of paired pulses to express ganglionic long-term potentiation (gLTP) or long-term depression (gLTD). The input/output curves of ganglia from STZ-treated animals showed a marked rightward shift along most stimulus intensities, compared to those of ganglia from control animals, indicating impaired basal synaptic transmission in ganglia from STZ-induced diabetic animals. Repetitive stimulation induced robust gLTP and gLTD in ganglia isolated from control animals; the same protocols failed to induce gLTP or gLTD in ganglia from STZ-induced diabetic animals, indicating impairment of activity-dependent synaptic plasticity in these animals. Molecular analysis revealed significant reduction in the levels of BDNF and the ratio of glutathione/oxidized glutathione. Additionally, the activity of glutathione peroxidase, glutathione reductase, catalase, and the levels of thiobarbituric acid-reactive substances were increased in ganglia from STZ-treated animals. In conclusion, impaired basal synaptic transmission and synaptic plasticity are associated with reduced BDNF and altered oxidative stress biomarkers in the sympathetic ganglia from STZ-induced diabetic animals, suggesting a possible correlation of these factors with the manifestations of STZ-induced diabetes in the peripheral nervous system.

  14. Work-related stress is associated with impaired neuropsychological test performance: a clinical cross-sectional study.

    PubMed

    Eskildsen, Anita; Andersen, Lars Peter; Pedersen, Anders Degn; Vandborg, Sanne Kjær; Andersen, Johan Hviid

    2015-01-01

    Patients on sick leave due to work-related stress often complain about impaired concentration and memory. However, it is undetermined how widespread these impairments are, and which cognitive domains are most long-term stress sensitive. Previous studies show inconsistent results and are difficult to synthesize. The primary aim of this study was to examine whether patients with work-related stress complaints have cognitive impairments compared to a matched control group without stress. Our secondary aim was to examine whether the level of self-reported perceived stress is associated with neuropsychological test performance. We used a broad neuropsychological test battery to assess 59 outpatients with work-related stress complaints (without major depression) and 59 healthy controls. We matched the patients and controls pairwise by sex, age and educational level. Compared to controls, patients generally showed mildly reduced performance across all the measured domains of the neuropsychological test battery. However, only three comparisons reached statistical significance (p < 0.05). Effect sizes (Cohen's d) were generally small to medium. The most pronounced differences between patients and controls were seen on tests of prospective memory, speed and complex working memory. There were no statistical significant associations between self-reported perceived stress level and neuropsychological test performance. In conclusion, we recommend that cognitive functions should be considered when evaluating patients with work-related stress complaints, especially when given advice regarding return to work. Since this study had a cross-sectional design, it is still uncertain whether the impairments are permanent. Further study is required to establish causal links between work-related stress and cognitive deficits.

  15. Spatial Navigation in Complex and Radial Mazes in APP23 Animals and Neurotrophin Signaling as a Biological Marker of Early Impairment

    ERIC Educational Resources Information Center

    Hellweg, Rainer; Huber, Roman; Kuhl, Alexander; Riepe, Matthias W.; Lohmann, Peter

    2006-01-01

    Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease(AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse…

  16. Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition.

    PubMed

    Arnaiz, Silvia Lores; D'Amico, Gabriela; Paglia, Nora; Arismendi, Mariana; Basso, Nidia; del Rosario Lores Arnaiz, María

    2004-01-01

    In rodents, neuronal plasticity decreases and spatial learning and working memory deficits increase upon aging. Several authors have shown that rats reared in enriched environments have better cognitive performance in association with increased neuronal plasticity than animals reared in standard environments. We hypothesized that enriched environment could preserve animals from the age-associated neurological impairments, mainly through NO-dependent mechanisms of induction of neuronal plasticity. We present evidence that 27 months old rats from an enriched environment show a better performance in spatial working memory than standard reared rats of the same age. Both mtNOS and cytosolic nNOS activities were found significantly increased (73% and 155%, respectively) in female rats from enriched environment as compared with control animals kept in a standard environment. The enzymatic activity of complex I was 80% increased in rats from enriched environment as compared with control rats. We conclude that an extensively enriched environment prevents old rats from the aging-associated impairment of spatial cognition, synaptic plasticity and nitric oxide production.

  17. A single prolonged stress paradigm produces enduring impairments in social bonding in monogamous prairie voles.

    PubMed

    Arai, Aki; Hirota, Yu; Miyase, Naoki; Miyata, Shiori; Young, Larry J; Osako, Yoji; Yuri, Kazunari; Mitsui, Shinichi

    2016-12-15

    Traumatic events such as natural disasters, violent crimes, tragic accidents, and war, can have devastating impacts on social relationships, including marital partnerships. We developed a single prolonged stress (SPS) paradigm, which consisted of restraint, forced swimming, and ether anesthesia, to establish an animal model relevant to post-traumatic stress disorder. We applied a SPS paradigm to a monogamous rodent, the prairie vole (Microtus ochrogaster) in order to determine whether a traumatic event affects the establishment of pair bonds. We did not detect effects of the SPS treatment on anhedonic or anxiety-like behavior. Sham-treated male voles huddled with their partner females, following a 6day cohabitation, for a longer duration than with a novel female, indicative of a pair bond. In contrast, SPS-treated voles indiscriminately huddled with the novel and partner females. Interestingly, the impairment of pair bonding was rescued by oral administration of paroxetine, a selective serotonin reuptake inhibitor (SSRI), after the SPS treatment. Immunohistochemical analyses revealed that oxytocin immunoreactivity (IR) was significantly decreased in the supraoptic nucleus (SON), but not in the paraventricular nucleus (PVN), 7days after SPS treatment, and recovered 14days after SPS treatment. After the presentation of a partner female, oxytocin neurons labeled with Fos IR was significantly increased in SPS-treated voles compared with sham-treated voles regardless of paroxetine administration. Our results suggest that traumatic events disturb the formation of pair bond possibly through an interaction with the serotonergic system, and that SSRIs are candidates for the treatment of social problems caused by traumatic events. Further, a vole SPS model may be useful for understanding mechanisms underlying the impairment of social bonding by traumatic events.

  18. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes.

    PubMed

    Kwak, Hyo-Bum; Thalacker-Mercer, Anna; Anderson, Ethan J; Lin, Chien-Te; Kane, Daniel A; Lee, Nam-Sihk; Cortright, Ronald N; Bamman, Marcas M; Neufer, P Darrell

    2012-01-01

    Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (P<0.05) in simvastatin-treated (5 μM) vs control myotubes, providing evidence of impaired respiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy.

  19. Impairment of exploratory behavior and spatial memory in adolescent rats in lithium-pilocarpine model of temporal lobe epilepsy.

    PubMed

    Kalemenev, S V; Zubareva, O E; Frolova, E V; Sizov, V V; Lavrentyeva, V V; Lukomskaya, N Ya; Kim, K Kh; Zaitsev, A V; Magazanik, L G

    2015-01-01

    Cognitive impairment in six-week -old rats has been studied in the lithium-pilocarpine model of adolescent temporal lobe epilepsy in humans. The pilocarpine-treated rats (n =21) exhibited (a) a decreased exploratory activity in comparison with control rats (n = 20) in the open field (OP) test and (b) a slower extinction of exploratory behavior in repeated OP tests. The Morris Water Maze (MWM) test showed that the effect of training was less pronounced in the pilocarpine-treated rats, which demonstrated disruption of predominantly short-term memory. Therefore, our study has shown that lithium-pilocarpine seizures induce substantial changes in exploratory behavior and spatial memory in adolescent rats. OP and MWM tests can be used in the search of drugs reducing cognitive impairments associated with temporal lobe epilepsy.

  20. Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6.

    PubMed

    Kim, Min-Ho; Gorouhi, Farzam; Ramirez, Sandra; Granick, Jennifer L; Byrne, Barbara A; Soulika, Athena M; Simon, Scott I; Isseroff, R Rivkah

    2014-03-01

    Stress-induced hormones can alter the inflammatory response to tissue injury; however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (polymorphonuclear leukocyte (PMN))-dependent inflammatory response to a cutaneous wound. Using noninvasive real-time imaging of genetically tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6-mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2-adrenergic receptor-dependent activation of proinflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs.

  1. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment.

  2. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD

    PubMed Central

    González-Rodríguez, Á; Mayoral, R; Agra, N; Valdecantos, M P; Pardo, V; Miquilena-Colina, M E; Vargas-Castrillón, J; Lo Iacono, O; Corazzari, M; Fimia, G M; Piacentini, M; Muntané, J; Boscá, L; García-Monzón, C; Martín-Sanz, P; Valverde, Á M

    2014-01-01

    The pathogenic mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) are not fully understood. In this study, we aimed to assess the relationship between endoplasmic reticulum (ER) stress and autophagy in human and mouse hepatocytes during NAFLD. ER stress and autophagy markers were analyzed in livers from patients with biopsy-proven non-alcoholic steatosis (NAS) or non-alcoholic steatohepatitis (NASH) compared with livers from subjects with histologically normal liver, in livers from mice fed with chow diet (CHD) compared with mice fed with high fat diet (HFD) or methionine-choline-deficient (MCD) diet and in primary and Huh7 human hepatocytes loaded with palmitic acid (PA). In NASH patients, significant increases in hepatic messenger RNA levels of markers of ER stress (activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP)) and autophagy (BCN1) were found compared with NAS patients. Likewise, protein levels of GRP78, CHOP and p62/SQSTM1 (p62) autophagic substrate were significantly elevated in NASH compared with NAS patients. In livers from mice fed with HFD or MCD, ER stress-mediated signaling was parallel to the blockade of the autophagic flux assessed by increases in p62, microtubule-associated protein 2 light chain 3 (LC3-II)/LC3-I ratio and accumulation of autophagosomes compared with CHD fed mice. In Huh7 hepatic cells, treatment with PA for 8 h triggered activation of both unfolding protein response and the autophagic flux. Conversely, prolonged treatment with PA (24 h) induced ER stress and cell death together with a blockade of the autophagic flux. Under these conditions, cotreatment with rapamycin or CHOP silencing ameliorated these effects and decreased apoptosis. Our results demonstrated that the autophagic flux is impaired in the liver from both NAFLD patients and murine models of NAFLD, as well as in lipid-overloaded human hepatocytes, and it could be due to

  3. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta.

    PubMed

    Wong, Michael K; Nicholson, Catherine J; Holloway, Alison C; Hardy, Daniel B

    2015-01-01

    Maternal nicotine exposure has been associated with many adverse fetal and placental outcomes. Although underlying mechanisms remain elusive, recent studies have identified that augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. Moreover, ER function depends on proper disulfide bond formation--a partially oxygen-dependent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases. Given that nicotine compromised placental development in the rat, and placental insufficiency has been associated with poor disulfide bond formation and ER stress, we hypothesized that maternal nicotine exposure leads to both placental ER stress and impaired disulfide bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous injections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2α, Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia (Hif1α), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylated eIF2α, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of augmented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally, elevated expression of Hif1α and GCN2 (p<0.05) indicate hypoxia and amino acid deprivation in nicotine-exposed placentas, respectively, which may also cause impaired disulfide bond formation and augmented ER stress. This study is the first to link maternal nicotine exposure with both placental ER stress and disulfide bond impairment in vivo, providing novel insight into the mechanisms underlying nicotine

  4. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    An analysis was performed to interpret the spatial aspects of lake acidification. Three types of relationships were investigated based upon the August to May seasonal scene pairing. In the first type of analysis ANOVA was used to examine the mean Thematic Mapper band one count by ecophysical strata. The primary difference in the two ecophysical strata is the soil type and depth over the underlying bedrock. Examination of the August to May difference values for TM band one produced similar results. Group A and B strata were the same as above. The third type of analysis examined the relationship between values of the August to May difference from polygons which have similar ecophysical properties with the exception of sulfate deposition. For this case lakes were selected from units with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/sq m/yr.

  5. Visuo-Spatial Processing and Executive Functions in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Marton, Klara

    2008-01-01

    Background: Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims: The purpose of the study was to examine executive…

  6. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice.

    PubMed

    Gudasheva, T A; Povarnina, P Yu; Seredenin, S B

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

  7. Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats.

    PubMed

    Liu, Dexiang; Zhang, Qingrui; Gu, Jianhua; Wang, Xueer; Xie, Kai; Xian, Xiuying; Wang, Jianmei; Jiang, Hong; Wang, Zhen

    2014-03-03

    Depression is one of the most common neuropsychiatric disorders and has been associated with impaired cognition, as well as causing neuroendocrine systems and brain proteins alterations. Resveratrol is a natural polyphenol enriched in polygonum cuspidatum and has diverse biological activities, including potent antidepressant-like effects. The aim of this study was to determine whether resveratrol administration influences chronic unpredictable mild stress (CUMS)-induced cognitive deficits and explores underlying mechanisms. The results showed that CUMS (5weeks) was effective in producing cognitive deficits in rats as indicated by Morris water maze and novel object recognition task. Additionally, CUMS exposure significantly elevated serum corticosterone levels and decreased BDNF levels in the prefrontal cortex (PFC) and hippocampus, accompanied by decreased phosphorylation of extracellular signal-regulated kinase (pERK) and cAMP response element-binding protein (pCREB). Chronic administration of resveratrol (80mg/kg, i.p., 5weeks) significantly prevented all these CUMS-induced behavioral and biochemical alterations. In conclusion, our study shows that resveratrol may be an effective therapeutic agent for cognitive disturbances as was seen within the stress model and its neuroprotective effect was mediated in part by normalizing serum corticosterone levels, up-regulating of the BDNF, pCREB and pERK levels.

  8. Impaired genomic stability and increased oxidative stress exacerbate different features of Ataxia-telangiectasia.

    PubMed

    Ziv, Shelly; Brenner, Ori; Amariglio, Ninette; Smorodinsky, Nechama I; Galron, Ronit; Carrion, Danaise V; Zhang, Weijia; Sharma, Girdhar G; Pandita, Raj K; Agarwal, Manjula; Elkon, Ran; Katzin, Nirit; Bar-Am, Irit; Pandita, Tej K; Kucherlapati, Raju; Rechavi, Gideon; Shiloh, Yosef; Barzilai, Ari

    2005-10-01

    Ataxia-telangiectasia (A-T) is a multisystem, cancer-predisposing genetic disorder caused by deficiency of the ATM protein. To dissect the A-T phenotype, we augmented specific features of the human disease by generating mouse strains that combine Atm deficiency with dysfunction of other proteins. Increasing oxidative stress by combining deficiencies in Atm and superoxide dismutase 1 (Sod1) exacerbated growth retardation and markedly reduced the mean survival time following ionizing radiation. In contrast, increasing genomic instability by combining deficiencies of Atm and the mismatch repair protein Mlh1 caused a moderate increase in radiation sensitivity and dramatic increase in aggressive lymphomas, compared with thes Atm-/- single knockout. Remarkably, Atm, Mlh1 or Mlh1/Atm single or double heterozygosity did not significantly affect the life span of the various genotypes. Mlh1/Atm double null tumors were polyclonal, whereas the tumors in other genotypes were mono- or oligoclonal, demonstrating the high predisposition of thymocytes with this genotype to become malignant. Chromosomal aberrations in the tumors were localized mainly in chromosomes 12 and 15. The genomic region on chromosome 15, which contains the gene for the c-Myc oncoprotein, was commonly amplified, and elevated levels of the c-Myc protein were subsequently observed in the tumors. Our data suggest that impaired genomic instability is an important contributing factor to cancer predisposition in A-T, whereas oxidative stress is more important in the radiation sensitivity and growth retardation facets of this disease.

  9. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Marshall, E. M.

    1989-01-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  10. Protective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats

    PubMed Central

    Moghimi, Mahsa; Parvardeh, Siavash; Zanjani, Taraneh Moini; Ghafghazi, Shiva

    2016-01-01

    Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials and Methods: Cerebral ischemia was induced by transient bilateral common carotid artery occlusion in male Wistar rats. The rats were allocated to sham, ischemia, and α-terpineol-treated groups. α-Terpineol was given at doses of 50, 100, and 200 mg/kg, IP once daily for 7 days post ischemia. Morris water maze (MWM) test was used to assess spatial memory and in vivo extracellular recording of long-term potentiation (LTP) in the hippocampal dentate gyrus was carried out to evaluate synaptic plasticity. Malondialdehyde (MDA) was measured to assess the extent of lipid peroxidation in the hippocampus. Results: In MWM test, α-terpineol (100 mg/kg, IP) significantly decreased the escape latency during training trials (P<0.01). In addition, α-terpineol increased the number of crossings over the platform location and decreased average proximity to the target in probe trial (P<0.05). In electrophysiological recording, α-terpineol (100 mg/kg) facilitated the induction of LTP in the hippocampus which was persistent over 2 hr. α-Terpineol (100 and 200 mg/kg) also significantly lowered hippocampal MDA levels in rats subjected to cerebral ischemia. Conclusion: These findings indicate that α-terpineol improves cerebral ischemia-related memory impairment in rats through the facilitation of LTP and suppression of lipid peroxidation in the hippocampus. PMID:27803783

  11. A jacket for assisting sensorimotor-related impairments and spatial perception

    NASA Astrophysics Data System (ADS)

    Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana; Lampe, Renée

    2017-04-01

    A sensorimotor jacket, which is able to measure distances to nearby objects with ultrasonic sensors and to transmit information about distances via vibrating transducers, has been designed with the aim of improving the spatial awareness of patients with cerebral palsy and to facilitate spatial orientation for blind people. The efficiency was tested for patients diagnosed with cerebral palsy, blind participants and healthy people. A positive impact of the sensorimotor jacket on the performance in a spatial task has been established both in patients with cerebral palsy and blind participants. Moreover, for patients with cerebral palsy, the training effect was visible after only three training exercises.

  12. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    PubMed

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  13. Reconsolidation of a long-term spatial memory is impaired by cycloheximide when reactivated with a contextual latent learning trial in male and female rats.

    PubMed

    Flint, R W; Valentine, S; Papandrea, D

    2007-09-21

    Reconsolidation of long-term memory has become a topic of great interest in recent years, and has the potential to provide important information regarding memory processes and the treatment of memory-related disorders. The present study examined the role of systemic protein synthesis inhibition in reconsolidation of a long-term spatial memory reactivated by a contextual latent learning trial in male and female rats. Using the Morris water maze, we demonstrate that: 1) a contextual latent reactivation treatment enhances memory, 2) systemic protein synthesis inhibition selectively impairs test performance when administered in conjunction with a memory reactivation treatment, and 3) that these effects are more pronounced in female rats. These findings indicate a role for protein synthesis in the reconsolidation of a contextually reactivated long-term spatial memory using the water maze, and a potential differential effect of sex in this apparatus. The role of the strength of the memory trace is discussed and the relevance of these findings to theories of reconsolidation and therapeutic treatment of post-traumatic stress disorder is discussed.

  14. Diagnostic differentiation of mild cognitive impairment due to Alzheimer's disease using a hippocampus-dependent test of spatial memory.

    PubMed

    Moodley, Kuven; Minati, Ludovico; Contarino, Valeria; Prioni, Sara; Wood, Ruth; Cooper, Rebecca; D'Incerti, Ludovico; Tagliavini, Fabrizio; Chan, Dennis

    2015-08-01

    The hippocampus is one of the earliest brain regions affected in Alzheimer's disease (AD) and tests of hippocampal function have the potential to detect AD in its earliest stages. Given that the hippocampus is critically involved in allocentric spatial memory, this study applied a short test of spatial memory, the 4 Mountains Test (4MT), to determine whether test performance can differentiate mild cognitive impairment (MCI) patients with and without CSF biomarker evidence of underlying AD and whether the test can distinguish patients with MCI and mild AD dementia when applied in different cultural settings. Healthy controls (HC), patients with MCI, and mild AD dementia were recruited from study sites in UK and Italy. Study numbers were: HC (UK 20, Italy 10), MCI (UK 21, Italy 14), and AD (UK 11, Italy 9). Nineteen UK MCI patients were grouped into CSF biomarker-positive (MCI+, n = 10) and biomarker-negative (MCI-, n = 9) subgroups. Behavioral data were correlated with hippocampal volume and cortical thickness of the precuneus and posterior cingulate gyrus. Spatial memory was impaired in both UK and Italy MCI and AD patients. Test performance additionally differentiated between MCI+ and MCI- subgroups (P = 0.001). A 4MT score of ≤8/15 was associated with 100% sensitivity and 90% specificity for detection of early AD (MCI+ and mild AD dementia) in the UK population, and with 100% sensitivity and 50% specificity for detection of MCI and AD in the Italy sample. 4MT performance correlated with hippocampal volume in the UK population and cortical thickness of the precuneus in both study populations. In conclusion, performance on a hippocampus-sensitive test of spatial memory differentiates MCI due to AD with high diagnostic sensitivity and specificity. The observation that similar diagnostic sensitivity was obtained in two separate study populations, allied to the scalability and usability of the test in community memory clinics, supports future application of the 4MT

  15. Treatment of spatial memory impairment in hamsters infected with West Nile virus using a humanized monoclonal antibody MGAWN1.

    PubMed

    Smeraski, Cynthia A; Siddharthan, Venkatraman; Morrey, John D

    2011-07-01

    In addition to functional disorders of paresis, paralysis, and cardiopulmonary complications, subsets of West Nile virus (WNV) patients may also experience neurocognitive deficits and memory disturbances. A previous hamster study has also demonstrated spatial memory impairment using the Morris water maze (MWM) paradigm. The discovery of an efficacious therapeutic antibody MGAWN1 from pre-clinical rodent studies raises the possibility of preventing or treating WNV-induced memory deficits. In the current study, hamsters were treated intraperitoneally (i.p.) with 32 mg/kg of MGAWN1 at 4.5 days after subcutaneously (s.c.) challenging with WNV. As expected, MGAWN1 prevented mortality, weight loss, and improved food consumption of WNV-infected hamsters. The criteria for entry of surviving hamsters into the study were that they needed to have normal motor function (forelimb grip strength, beam walking) and normal spatial reference memory in the MWM probe task. Twenty-eight days after the acute phase of the disease had passed, MGAWN1- and saline-treated infected hamsters were again trained in the MWM. Spatial memory was evaluated 48 h after this training in which the hamsters searched for the location where a submerged escape platform had been positioned. Only 56% of infected hamsters treated with saline spent more time in the correct quadrant than the other three quadrants, as compared to 92% of MGAWN1-treated hamsters (P⩽0.05). Overall these studies support the possibility that WNV can cause spatial memory impairment and that therapeutic intervention may be considered.

  16. Treatment of spatial memory impairment in hamsters infected with West Nile virus using a humanized monoclonal antibody MGAWN1

    PubMed Central

    Smeraski, Cynthia A.; Siddharthan, Venkatraman; Morrey, John D.

    2011-01-01

    In addition to functional disorders of paresis, paralysis, and cardiopulmonary complications, subsets of West Nile virus (WNV) patients may also experience neurocognitive deficits and memory disturbances. A previous hamster study has also demonstrated spatial memory impairment using the Morris water maze (MWM) paradigm. The discovery of an efficacious therapeutic antibody MGAWN1 from pre-clinical rodent studies raises the possibility of preventing or treating WNV-induced memory deficits. In the current study, hamsters were treated intraperitoneally (i.p.) with 32 mg/kg of MGAWN1 at 4.5 days after subcutaneously (s.c.) challenging with WNV. As expected, MGAWN1 prevented mortality, weight loss, and improved food consumption of WNV-infected hamsters. The criteria for entry of surviving hamsters into the study were that they needed to have normal motor function (forelimb grip strength, beam walking) and normal spatial reference memory in the MWM probe task. Twenty-eight days after the acute phase of the disease had passed, MGAWN1- and saline-treated infected hamsters were again trained in the MWM. Spatial memory was evaluated 48 hours after this training in which the hamsters searched for the location where a submerged escape platform had been positioned. Only 56% of infected hamsters treated with saline spent more time in the correct quadrant than the other three quadrants, as compared to 92% of MGAWN1-treated hamsters (P ≤ 0.05). Overall these studies support the possibility that WNV can cause spatial memory impairment and that therapeutic intervention may be considered. PMID:21554903

  17. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    PubMed

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  18. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes

    PubMed Central

    Garcia-Alvarez, Gisela; Shetty, Mahesh S.; Lu, Bo; Yap, Kenrick An Fu; Oh-Hora, Masatsugu; Sajikumar, Sreedharan; Bichler, Zoë; Fivaz, Marc

    2015-01-01

    Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca2+ channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories. PMID:26236206

  19. Hippocampal damage impairs long-term spatial memory in rats: comparison between electrolytic and neurotoxic lesions.

    PubMed

    Ramos, Juan M J

    2008-03-18

    In previous studies we have suggested that the dorsal hippocampus is involved in spatial consolidation by showing that rats with electrolytic hippocampal lesions exhibit a profound deficit in the retention of an allocentric task 24 days after the acquisition. However, in various hippocampal-dependent tasks, several studies have shown an overestimation of the behavioral deficit when electrolytic versus axon-sparing cytotoxic lesions has been used. For this reason, in this report we compare the effects on spatial retention of electrolytic and neurotoxic lesions to the dorsal hippocampus. Results showed a similar deficit in spatial retention in both groups 24 days after acquisition. Thus, the hippocampus proper and not fibers of passage or extrahippocampal damage is directly responsible for the deficit in spatial retention seen in rats with electrolytic lesions.

  20. Impaired defense of core temperature in aged humans during mild cold stress.

    PubMed

    Degroot, David W; Kenney, W Larry

    2007-01-01

    Aged humans often exhibit an impaired defense of core temperature during cold stress. However, research documenting this response has typically used small subject samples and strong cold stimuli. The purpose of this study was to determine the responses of young and older subjects, matched for anthropometric characteristics, during mild cold stress. Thirty-six young (YS; 23 +/- 1 years, range 18-30) and 46 older (OS; 71 +/- 1 years, range 65-89) subjects underwent a slow transient cold air exposure from a thermoneutral baseline, during which esophageal (T(es)) and mean skin temperatures (T(sk)), O(2) consumption, and skin blood flow (SkBF; laser-Doppler flowmetry) were measured. Cold exposure was terminated at the onset of visible sustained shivering. Net metabolic heat production (M(net)), heat debt, predicted change in midregion temperature (DeltaT(mid)), and tissue insulation (I(t)) were calculated. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and expressed as percent change from baseline (DeltaCVC(%base)). There were no baseline group differences for T(es), but OS M(net) was lower (OS: 38.0 +/- 1.1; YS: 41.9 +/- 1.1 W . m(-2), P < 0.05). T(es) was well maintained in YS but fell progressively in OS (P < 0.01 for all timepoints after 35 min). The skin vasoconstrictor response to mild cold stress was attenuated in OS (42 +/- 3 vs. 53 +/- 4 DeltaCVC(%base), P < 0.01). There were no group differences for T(sk) or I(t), while M(net) remained lower in OS (P < 0.05). The DeltaT(mid) did not account for the drop in T(es) in OS. Healthy aged humans failed to maintain T(es); however, the mechanisms underlying this response are not clear.

  1. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice.

    PubMed

    Wang, Yuchan; Kan, Hongwei; Yin, Yanyan; Wu, Wangyang; Hu, Wen; Wang, Mingming; Li, Weiping; Li, Weizu

    2014-05-01

    Alzheimer's disease (AD) is one of the major neurological diseases of the elderly. Chronic stress, which can induce atrophy and functional impairments in several key brain areas such as the frontal cortex and hippocampus, plays an important role in the generation and progression of AD. Currently, there are no effective drug treatment options for preventing chronic stress induced learning and memory impairments and neuronal damage. Ginsenoside Rg1 (Rg1) is a steroidal saponin abundantly contained in ginseng. This study explored the neuroprotective effects of Rg1 on chronic restraint stress (CRS) induced learning and memory impairments in a mouse model. Our results showed that Rg1 (5mg/kg) significantly protected against learning and memory impairments induced by CRS in a Morris water maze. Besides, Rg1 (2, 5mg/kg) was able to decrease ROS generation and attenuate the neuronal oxidative damage in the frontal cortex and hippocampus CA1 in mice. Additionally, the inhibition of NOX2, p47phox and RAC1 expression is also involved in the action mechanisms of Rg1 in this experimental model. This study provided an experimental basis for the clinical application of Rg1 in chronic stress induced neuronal oxidative damage.

  2. The Relationship between Word and Stress Pattern Recognition Ability and Hearing Level in Hearing-Impaired Young Adults.

    ERIC Educational Resources Information Center

    Jackson, Pamela; Kelly-Ballweber, Denise

    1986-01-01

    The relationship between word and stress pattern recognition ability and hearing level was explored by administering the Children's Auditory Test to hearing-impaired young adults (N=27). For word recognition, subjects with average hearing loss between 85 and 100 decibels demonstrated a wide range of performance not predictable from their…

  3. Posttraumatic Stress Disorder Symptom Structure in Injured Children: Functional Impairment and Depression Symptoms in a Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Marsac, Meghan L.; Cirilli, Carla

    2010-01-01

    Objective: To examine the factor structure of posttraumatic stress disorder (PTSD) symptoms in children and adolescents who have experienced an acute single-incident trauma, associations between PTSD symptom clusters and functional impairment, and the specificity of PTSD symptoms in relation to depression and general distress. Method: Examined…

  4. Single and repeated sevoflurane or desflurane exposure does not impair spatial memory performance of young adult mice.

    PubMed

    Kilicaslan, Alper; Belviranli, Muaz; Okudan, Nilsel; Nurullahoglu Atalik, Esra

    2013-12-01

    Volatile anesthetics are known to disturb the spatial memory in aged rodents, but there is insufficient information on their effects on young adult rodents. The aim of this study was to compare the effects of single and repeated exposure to desflurane and sevoflurane on spatial learning and memory functions in young adult mice. Balb/c mice (2 months old) were randomly divided into six equal groups (n = 8). The groups with single inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 4 h, respectively. The groups with repeated inhalation were exposed to 3.3% sevoflurane or 7.8% desflurane or vehicle gas for 2 h a day during 5 consecutive days. Spatial learning and memory were tested in the Morris water maze 24 h after exposure. In the learning phase, the parameters associated with finding the hidden platform and swimming speed, and in the memory phase, time spent in the target quadrant and the adjacent quadrants, were assessed and compared between the groups. In the 4-day learning process, there was no significant difference between the groups in terms of mean latency to platform, mean distance traveled and average speed (P > 0.05). During the memory-test phase, all mice exhibited spatial memory, but there was no significant difference between the groups in terms of time spent in the target quadrant (P > 0.05). Sevoflurane and desflurane anesthesia did not impair acquisition learning and retention memory in young adult mice.

  5. Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats.

    PubMed

    Zhang, Xue-Han; Liu, Shu-Su; Yi, Feng; Zhuo, Min; Li, Bao-Ming

    2013-03-13

    Hippocampal N-methyl-D-aspartate receptor (NMDAR) is required for spatial working memory. Although evidence from genetic manipulation mice suggests an important role of hippocampal NMDAR NR2B subunits (NR2B-NMDARs) in spatial working memory, it remains unclear whether or not the requirement of hippocampal NR2B-NMDARs for spatial working memory depends on the time of spatial information maintained. Here, we investigate the contribution of hippocampal NR2B-NMDARs to spatial working memory on delayed alternation task in T-maze (DAT task) and delayed matched-to-place task in water maze (DMP task). Our data show that infusions of the NR2B-NMDAR selective antagonists, Ro25-6981 or ifenprodil, directly into the CA1 region, impair spatial working memory in DAT task with 30-s delay (not 5-s delay), but severely impair error-correction capability in both 5-s and 30-s delay task. Furthermore, intra-CA1 inhibition of NR2B-NMDARs impairs spatial working memory in DMP task with 10-min delay (not 30-s delay). Our results suggest that hippocampal NR2B-NMDARs are required for spatial working memory in long-delay task, whereas spare for spatial working memory in short-delay task. We conclude that the requirement of NR2B-NMDARs for spatial working memory is delay-dependent in the CA1 region.

  6. Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats.

    PubMed

    Al-Qahtani, Jobran M; Abdel-Wahab, Basel A; Abd El-Aziz, Samy M

    2014-01-01

    Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.

  7. Personal Guidance System for People with Visual Impairment: A Comparison of Spatial Displays for Route Guidance.

    PubMed

    Loomis, Jack M; Marston, James R; Golledge, Reginald G; Klatzky, Roberta L

    2005-01-01

    This article reports on a study of route guidance using a navigation system that receives location information from a Global Positioning System receiver. Fifteen visually impaired participants traveled along 50-meter (about 164-foot) paths in each of five conditions that were defined by the type of display interface used. One of the virtual displays-virtual speech-led to the shortest travel times and the highest subjective ratings, despite concerns about the use of headphones.

  8. Impaired spatial learning and unaltered neurogenesis in a transgenic model of Alzheimer's disease after oral aluminum exposure.

    PubMed

    Ribes, D; Colomina, M T; Vicens, P; Domingo, J L

    2010-08-01

    Although it is well established that aluminum (Al) is neurotoxic, the potential role of this element in the etiology of Alzheimer's disease (AD) is not well established. In this study, we evaluated the effects of oral Al exposure on spatial learning, memory and neurogenesis in Tg2576 mice, an animal model of AD in which Abeta plaques start to be deposited at 9 months of age. Aluminum was given as Al lactate (11 mg/g of food) for 6 months. At 11 months of age a water maze test was carried out to evaluate learning and memory. Subsequently, mice were injected with bromo-deoxyuridine (BrdU) and sacrificed 24 hours or 28 days after the last injection in order to assess proliferation, survival and differentiation of neurons. We observed impaired acquisition in the water maze task in Al-treated Tg2576 mice, as well as worse memory in the Al-exposed groups. In terms of neurogenesis, no effects of aluminum were observed in proliferation, survival and differentiation. The results of this investigation suggest that Tg2576 mice fed for 210 days with rodent chow supplemented with Al lactate at 11 mg/g of food have impaired spatial learning although their neurogenesis remains unmodified.

  9. Streptavidin-conjugated CdSe/ZnS quantum dots impaired synaptic plasticity and spatial memory process

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyan; Tang, Mingliang; Li, Zhifeng; Zha, Yingying; Cheng, Guosheng; Yin, Shuting; Chen, Jutao; Ruan, Di-yun; Chen, Lin; Wang, Ming

    2013-04-01

    Studies reported that quantum dots (QDs), as a novel probe, demonstrated a promising future for in vivo imaging, but also showed potential toxicity. This study is mainly to investigate in vivo response in the central nervous system (CNS) after exposure to QDs in a rat model of synaptic plasticity and spatial memory. Adult rats were exposed to streptavidin-conjugated CdSe/ZnS QDs (Qdots 525, purchased from Molecular Probes Inc.) by intraperitoneal injection for 7 days, followed by behavioral, electrophysiological, and biochemical examinations. The electrophysiological results show that input/output ( I/ O) functions were increased, while the peak of paired-pulse reaction and long-term potentiation were decreased after QDs insult, indicating synaptic transmission was enhanced and synaptic plasticity in the hippocampus was impaired. Meanwhile, behavioral experiments provide the evidence that QDs could impair rats' spatial memory process. All the results present evidences of interference of synaptic transmission and plasticity in rat hippocampal dentate gyrus area by QDs insult and suggest potential adverse issues which should be considered in QDs applications.

  10. Gamma irradiation-induced oxidative stress and developmental impairment in the hermaphroditic fish, Kryptolebias marmoratus embryo.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kang, Chang-Mo; Lee, Young-Mi; Lee, Jae-Seong

    2012-08-01

    This study investigated the effects of gamma radiation on the early developmental stages in hermaphroditic fish embryos of Kryptolebias marmoratus. The authors measured reactive oxygen species (ROS) level and antioxidant enzyme activities with the endpoint hatching rate after gamma irradiation of different embryonic stages. Then, the transcriptional changes of antioxidant enzyme-coding genes were evaluated by quantitative real-time reverse transcription polymerase chain reaction in response to gamma radiation on embryonic stages. Gamma radiation inhibited hatching rate and caused developmental impairment in a dose-dependent manner. Embryos showed tolerances in a developmental stage-dependent manner, indicating that early embryonic stages were more sensitive to the negative effects of gamma radiation than were later stages. After 5 Gy rate of radiation, the ROS level increased significantly at embryonic stages 2, 3, and 4 with a significant induction of all antioxidant enzyme activities. The expressions of glutathione S-transferase isoforms, catalase, superoxide dismutase (Mn-SOD, Cu/Zn-SOD), glutathione reductase, and glutathione peroxidase mRNA were upregulated in a dose-and-developmental stage-dependent manner. This finding indicates that gamma radiation can induce oxidative stress and subsequently modulates the expression of antioxidant enzyme-coding genes as one of the defense mechanisms. Interestingly, embryonic stage 1 exposed to gamma radiation showed a decreased expression in most antioxidant enzyme-coding genes, suggesting that this is also related to a lower hatching rate and developmental impairment. The results of this study provide a better understanding of the molecular mode of action of gamma radiation in aquatic organisms.

  11. Heme oxygenase (HO)-1 induction prevents Endoplasmic Reticulum stress-mediated endothelial cell death and impaired angiogenic capacity.

    PubMed

    Maamoun, Hatem; Zachariah, Matshediso; McVey, John H; Green, Fiona R; Agouni, Abdelali

    2017-03-01

    Most of diabetic cardiovascular complications are attributed to endothelial dysfunction and impaired angiogenesis. Endoplasmic Reticulum (ER) and oxidative stresses were shown to play a pivotal role in the development of endothelial dysfunction in diabetes. Hemeoxygenase-1 (HO-1) was shown to protect against oxidative stress in diabetes; however, its role in alleviating ER stress-induced endothelial dysfunction remains not fully elucidated. We aim here to test the protective role of HO-1 against high glucose-mediated ER stress and endothelial dysfunction and understand the underlying mechanisms with special emphasis on oxidative stress, inflammation and cell death. Human Umbilical Vein Endothelial Cells (HUVECs) were grown in either physiological or intermittent high concentrations of glucose for 5days in the presence or absence of Cobalt (III) Protoporphyrin IX chloride (CoPP, HO-1 inducer) or 4-Phenyl Butyric Acid (PBA, ER stress inhibitor). Using an integrated cellular and molecular approach, we then assessed ER stress and inflammatory responses, in addition to apoptosis and angiogenic capacity in these cells. Our results show that HO-1 induction prevented high glucose-mediated increase of mRNA and protein expression of key ER stress markers. Cells incubated with high glucose exhibited high levels of oxidative stress, activation of major inflammatory and apoptotic responses [nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK)] and increased rate of apoptosis; however, cells pre-treated with CoPP or PBA were fully protected. In addition, high glucose enhanced caspases 3 and 7 cleavage and activity and augmented cleaved poly ADP ribose polymerase (PARP) expression whereas HO-1 induction prevented these effects. Finally, HO-1 induction and ER stress inhibition prevented high glucose-induced reduction in NO release and impaired the angiogenic capacity of HUVECs, and enhanced vascular endothelial growth factor (VEGF)-A expression. Altogether, we show here the

  12. Exposure to low doses (20 cGy) of Hze results in spatial memory impairment in rats.

    NASA Astrophysics Data System (ADS)

    Britten, Richard; Johnson, Angela; Davis, Leslie; Green-Mitchell, Shamina; Chabriol, Olivia; Sanford, Larry; Drake, Richard

    INTRODUCTION. Current models predict that the astronauts on a mission to a deep space destination, such as Mars, will be exposed to 25 cGy of Galactic cosmic radiation (GCR). The long-term consequence of exposure to such doses is largely unknown, but given that 1.3 Gy of X-rays has been reported to lead to long-term cognitive deficits (Shore et al, 1976) and that CGR have an RBE of 2-5, it is likely that the predicted 25 cGy of GCR will lead to defects in the cognitive ability of the astronauts during and after the mission. Our studies are designed to help define the GCR dose that will lead to defects in complex working memory, and also to elucidate the mechanisms whereby hadronic radiation diminishes neurocognitive function. The identification of such processes would provide an opportunity for post-mission surveillance, and hopefully will lead to intervention strategies that will ameliorate or attenuate GCR-induced neurocognitive deficits. MATERIALS METHODS. Four-week old male Wistar rats were exposed to either X-rays or 1 GeV 56Fe. At three or six months post exposure the performance of the rats in the Barnes' Maze (Spatial memory) was established. The duration and frequency of REM sleep was also monitored to determine if the neurocognitive deficits arose due to reduced memory consolidation as a result of diminished REM sleep. We used a novel, but maturing technique, called MALDI-MS imaging (or MALDI-MSI), to identify specific regions of the brain where the neuroproteome differs in rats that have developed spatial memory impairments. RESULTS. 11.5 Gy of X-rays led to reduced performance in the Barnes's maze. In contrast, exposure to 20 cGy of Hze (1 GeV 56Fe) resulted in a significant impairment of spatial memory performance as measured in the Barnes' Maze, which was manifested by an increase in relative escape latency REL over a 5 day testing period. Such an increase in REL could arise from the rats becoming less able, or perhaps less willing, to locate the

  13. Cocaine causes memory and learning impairments in rats: involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate.

    PubMed

    Muriach, María; López-Pedrajas, Rosa; Barcia, Jorge M; Sanchez-Villarejo, María V; Almansa, Inmaculada; Romero, Francisco J

    2010-08-01

    Different mechanisms have been suggested for cocaine toxicity including an increase in oxidative stress but the association between oxidative status in the brain and cocaine induced-behaviour is poorly understood. Nuclear factor kappa B (NFkappaB) is a sensor of oxidative stress and participates in memory formation that could be involved in drug toxicity and addiction mechanisms. Therefore NFkappaB activity, oxidative stress, neuronal nitric oxide synthase (nNOS) activity, spatial learning and memory as well as the effect of topiramate, a previously proposed therapy for cocaine addiction, were evaluated in an experimental model of cocaine administration in rats. NFkappaB activity was decreased in the frontal cortex of cocaine treated rats, as well as GSH concentration and glutathione peroxidase activity in the hippocampus, whereas nNOS activity in the hippocampus was increased. Memory retrieval of experiences acquired prior to cocaine administration was impaired and negatively correlated with NFkappaB activity in the frontal cortex. In contrast, learning of new tasks was enhanced and correlated with the increase of nNOS activity and the decrease of glutathione peroxidase. These results provide evidence for a possible mechanistic role of oxidative and nitrosative stress and NFkappaB in the alterations induced by cocaine. Topiramate prevented all the alterations observed, showing novel neuroprotective properties.

  14. MONITORING CHANGES IN STRESSED ECOSYSTEMS USING SPATIAL PATTERNS OF ANT COMMUNITIES

    EPA Science Inventory

    We examined the feasibility of using changes in spatial patterns of ants-distribution on experimental plots as an indicator of response to environmental stress. We produced contour maps based on relative abundances of the three most common genera of ants based on pit-fall trap ca...

  15. Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

    PubMed Central

    Gonzales, Edson Luck T.; Yang, Sung Min; Choi, Chang Soon; Mabunga, Darine Froy N.; Kim, Hee Jin; Cheong, Jae Hoon; Ryu, Jong Hoon; Koo, Bon-Nyeo; Shin, Chan Young

    2015-01-01

    Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner. PMID:25995824

  16. Effect of neonatal handling on adult rat spatial learning and memory following acute stress.

    PubMed

    Stamatakis, A; Pondiki, S; Kitraki, E; Diamantopoulou, A; Panagiotaropoulos, T; Raftogianni, A; Stylianopoulou, F

    2008-03-01

    Brief neonatal handling permanently alters hypothalamic-pituitary-adrenal axis function resulting in increased ability to cope with stress. Since stress is known to affect cognitive abilities, in the present study we investigated the effect of brief (15 min) handling on learning and memory in the Morris water maze, following exposure to an acute restraint stress either before training or recall. Exposure of non-handled rats to the acute stress prior to training resulted in quicker learning of the task, than in the absence of the stressor. When acute stress preceded acquisition, male handled rats showed an overall better learning performance, and both sexes of handled animals were less impaired in the subsequent memory trial, compared to the respective non-handled. In addition, the number of neurons immunoreactive for GR was higher in all areas of Ammon's horn of the handled rats during the recall. In contrast, the number of neurons immunoreactive for MR was higher in the CA1 and CA2 areas of the non-handled males. When the acute restraint stress was applied prior to the memory test, neonatal handling was not effective in preventing mnemonic impairment, as all animal groups showed a similar deficit in recall. In this case, no difference between handled and non-handled rats was observed in the number of GR positive neurons in the CA2 and CA3 hippocampal areas during the memory test. These results indicate that early experience interacts with sex and acute stress exposure in adulthood to affect performance in the water maze. Hippocampal corticosterone receptors may play a role in determining the final outcome.

  17. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    PubMed

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-05

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability.

  18. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus.

    PubMed

    Giorgi, Mauro; Pompili, Assunta; Cardarelli, Silvia; Castelli, Valentina; Biagioni, Stefano; Sancesario, Giuseppe; Gasbarri, Antonella

    2015-02-01

    In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors.

  19. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  20. Age-dependent impairment of auditory processing under spatially focused and divided attention: an electrophysiological study.

    PubMed

    Wild-Wall, Nele; Falkenstein, Michael

    2010-01-01

    By using event-related potentials (ERPs) the present study examines if age-related differences in preparation and processing especially emerge during divided attention. Binaurally presented auditory cues called for focused (valid and invalid) or divided attention to one or both ears. Responses were required to subsequent monaurally presented valid targets (vowels), but had to be suppressed to non-target vowels or invalidly cued vowels. Middle-aged participants were more impaired under divided attention than young ones, likely due to an age-related decline in preparatory attention following cues as was reflected in a decreased CNV. Under divided attention, target processing was increased in the middle-aged, likely reflecting compensatory effort to fulfill task requirements in the difficult condition. Additionally, middle-aged participants processed invalidly cued stimuli more intensely as was reflected by stimulus ERPs. The results suggest an age-related impairment in attentional preparation after auditory cues especially under divided attention and latent difficulties to suppress irrelevant information.

  1. Impaired fear inhibition learning predicts the persistence of symptoms of posttraumatic stress disorder (PTSD).

    PubMed

    Sijbrandij, Marit; Engelhard, Iris M; Lommen, Miriam J J; Leer, Arne; Baas, Johanna M P

    2013-12-01

    Recent cross-sectional studies have shown that the inability to suppress fear under safe conditions is a key problem in people with posttraumatic stress disorder (PTSD). The current longitudinal study examined whether individual differences in fear inhibition predict the persistence of PTSD symptoms. Approximately 2 months after deployment to Afghanistan, 144 trauma-exposed Dutch soldiers were administered a conditional discrimination task (AX+/BX-). In this paradigm, A, B, and X are neutral stimuli. X combined with A is paired with a shock (AX+ trials); X combined with B is not (BX- trials). Fear inhibition was measured (AB trials). Startle electromyogram responses and shock expectancy ratings were recorded. PTSD symptoms were measured at 2 months and at 9 months after deployment. Results showed that greater startle responses during AB trials in individuals who discriminated between danger (AX+) and safety (BX-) during conditioning, predicted higher PTSD symptoms at 2 months and 9 months post-deployment. The predictive effect at 9 months remained significant after controlling for critical incidents during previous deployments and PTSD symptoms at 2 months. Responses to AX+ or BX- trials, or discrimination learning (AX+ minus BX-) did not predict PTSD symptoms. It is concluded that impaired fear inhibition learning seems to be involved in the persistence of PTSD symptoms.

  2. Structural impairments of hippocampus in coal mine gas explosion-related posttraumatic stress disorder.

    PubMed

    Zhang, Quan; Zhuo, Chuanjun; Lang, Xu; Li, Huabing; Qin, Wen; Yu, Chunshui

    2014-01-01

    Investigations on hippocampal and amygdalar volume have revealed inconsistent results in patients with posttraumatic stress disorder (PTSD). Little is known about the structural covariance alterations between the hippocampus and amygdala in PTSD. In this study, we evaluated the alteration in the hippocampal and amygdalar volume and their structural covariance in the coal mine gas explosion related PTSD. High resolution T1-weighted magnetic resonance imaging (MRI) was performed on coal mine gas explosion related PTSD male patients (n = 14) and non-traumatized coalminers without PTSD (n = 25). The voxel-based morphometry (VBM) method was used to test the inter-group differences in hippocampal and amygdalar volume as well as the inter-group differences in structural covariance between the ipsilateral hippocampus and amygdala. PTSD patients exhibited decreased gray matter volume (GMV) in the bilateral hippocampi compared to controls (p<0.05, FDR corrected). GMV covariances between the ipsilateral hippocampus and amygdala were significantly reduced in PTSD patients compared with controls (p<0.05, FDR corrected). The coalminers with gas explosion related PTSD had decreased hippocampal volume and structural covariance with the ipsilateral amygdala, suggesting that the structural impairment of the hippocampus may implicate in the pathophysiology of PTSD.

  3. Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes.

    PubMed

    Chen, Chun-Yan; Zhang, Shao-Li; Liu, Zhi-Yong; Tian, Yong; Sun, Qian

    2015-04-10

    Cadmium, a highly toxic environmental pollutant, is reported to induce toxicity and apoptosis in multiple organs and cells, all possibly contributing to apoptosis in certain pathophysiologic situations. Previous studies have described that cadmium toxicity induces biochemical and physiological changes in the heart and finally leads to cardiac dysfunctions, such as decreasing contractile tension, rate of tension development, heart rate, coronary flow rate and atrioventricular node conductivity. Although many progresses have been made, the mechanism responsible for cadmium-induced cellular alternations and cardiac toxicity is still not fully understood. In the present study, we demonstrated that cadmium toxicity induced dramatic endoplasmic reticulum (ER) stress and impaired energy homoeostasis in cultured cardiomyocytes. Moreover, cadmium toxicity may inhibit protein kinase B (AKT)/mTOR (mammalian target of rapamycin) pathway to reduce energy productions, by either disrupting the glucose metabolism or inhibiting mitochondrial respiratory gene expressions. Our work will help to reveal a novel mechanism to clarify the role of cadmium toxicity to cardiomyocytes and provide new possibilities for the treatment of cardiovascular diseases related to cadmium toxicity.

  4. Alpha oscillations and their impairment in affective and post-traumatic stress disorders.

    PubMed

    Eidelman-Rothman, Moranne; Levy, Jonathan; Feldman, Ruth

    2016-09-01

    Affective and anxiety disorders are debilitating conditions characterized by impairments in cognitive and social functioning. Elucidating their neural underpinnings may assist in improving diagnosis and developing targeted interventions. Neural oscillations are fundamental for brain functioning. Specifically, oscillations in the alpha frequency range (alpha rhythms) are prevalent in the awake, conscious brain and play an important role in supporting perceptual, cognitive, and social processes. We review studies utilizing various alpha power measurements to assess abnormalities in brain functioning in affective and anxiety disorders as well as obsessive compulsive and post-traumatic stress disorders. Despite some inconsistencies, studies demonstrate associations between aberrant alpha patterns and these disorders both in response to specific cognitive and emotional tasks and during a resting state. We conclude by discussing methodological considerations and future directions, and underscore the need for much further research on the role of alpha functionality in social contexts. As social dysfunction accompanies most psychiatric conditions, research on alpha's involvement in social processes may provide a unique window into the neural mechanisms underlying these disorders.

  5. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment

    PubMed Central

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R.; Stockbower, Grace E.; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A.; Detre, John A.; Wolk, David A.

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or “stress test”, may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  6. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.

  7. Disruption of estrogen receptor β gene impairs spatial learning in female mice

    PubMed Central

    Rissman, Emilie F.; Heck, Amy L.; Leonard, Julie E.; Shupnik, Margaret A.; Gustafsson, Jan-Åke

    2002-01-01

    Here we provide the first evidence, to our knowledge, that estradiol (E2) affects learning and memory via the newly discovered estrogen receptor β (ERβ). In this study, ERβ knockout (ERβKO) and wild-type littermates were tested for spatial learning in the Morris water maze after ovariectomy, appropriate control treatment, or one of two physiological doses of E2. Regardless of treatment, all wild-type females displayed significant learning. However, ERβKOs given the low dose of E2 were delayed in learning acquisition, and ERβKOs administered the higher dose of E2 failed to learn the task. These data show that ERβ is required for optimal spatial learning and may have implications for hormone replacement therapy in women. PMID:11891272

  8. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice.

    PubMed

    Wang, Hao; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Zhou, Xiu; Li, Songpei; Jo, Eunjung; Molero, Juan C; Ye, Ji-Ming

    2015-01-01

    High-carbohydrate (mainly fructose) consumption is a major dietary factor for hepatic insulin resistance, involving endoplasmic reticulum (ER) stress and lipid accumulation. Because autophagy has been implicated in ER stress, the present study investigated the role of autophagy in high-fructose (HFru) diet-induced hepatic ER stress and insulin resistance in male C57BL/6J mice. The results show that chronic HFru feeding induced glucose intolerance and impaired insulin signaling transduction in the liver, associated with ER stress and the accumulation of lipids. Intriguingly, hepatic autophagy was suppressed as a result of activation of mammalian target of rapamycin. The suppressed autophagy was detected within 6 hours after HFru feeding along with activation of both inositol-requiring enzyme 1 and protein kinase RNA-like endoplasmic reticulum kinase pathways. These events occurred prior to lipid accumulation or lipogenesis and were sufficient to blunt insulin signaling transduction with activation of c-Jun N-terminal kinase/inhibitory-κB kinase and serine phosphorylation of insulin receptor substrate 1. The stimulation of autophagy attenuated ER stress- and c-Jun N-terminal kinase/inhibitory-κB kinase-associated impairment in insulin signaling transduction in a mammalian target of rapamycin -independent manner. Taken together, our data suggest that restoration of autophagy functions disrupted by fructose is able to alleviate ER stress and improve insulin signaling transduction.

  9. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.

    PubMed

    Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio

    2017-04-01

    Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B12 deficiency, although the underlying disease mechanisms associated with vitamin B12 deficiency are poorly understood. Vitamin B12 deficiency was found to significantly increase cellular H2O2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B12 deficiency is partially attributable to oxidative stress.

  10. Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory.

    PubMed

    Varga, Andrew W; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P; Osorio, Ricardo S; Rapoport, David M; Ayappa, Indu

    2014-10-29

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA.

  11. [Gly14]-Humanin Protects Against Amyloid β Peptide-Induced Impairment of Spatial Learning and Memory in Rats.

    PubMed

    Yuan, Li; Liu, Xiao-Jie; Han, Wei-Na; Li, Qing-Shan; Wang, Zhao-Jun; Wu, Mei-Na; Yang, Wei; Qi, Jin-Shun

    2016-08-01

    Alzheimer disease (AD), a progressive neurodegenerative disorder, is characterized by cognitive decline and the accumulation of senile plaques in the brain. Amyloid β protein (Aβ) in the plaques is thought to be responsible for the memory loss in AD patients. [Gly14]-humanin (HNG), a derivative of humanin (HN), has much stronger neuroprotective effects than natural HN in vitro. However, clarification of the Aβ active center and the neuroprotective mechanism of HN still need in vivo evidence. The present study first compared the in vivo biological effects of three Aβ fragments (1-42, 31-35, and 35-31) on spatial memory in rats, and investigated the neuroprotective effects and molecular mechanisms of HNG. The results showed that intrahippocampal injection of Aβ1-42 and Aβ31-35 almost equally impaired spatial learning and memory, but the reversed sequence Aβ35-31 did not have any effect; a high dose of Aβ31-35 (20 nmol) produced a more detrimental response than a low dose (2 nmol); Aβ31-35 injection also disrupted gene and protein expression in the hippocampus, with up-regulation of caspase3 and down-regulation of STAT3; pretreatment with HNG not only protected spatial memory but also rescued STAT3 from Aβ-induced disruption; and the neuroprotective effects of HNG were effectively counteracted by genistein, a specific tyrosine kinase inhibitor. These results clearly show that sequence 31-35 in Aβ is the shortest active center responsible for the neurotoxicity of Aβ from molecule to behavior; and HNG protects spatial learning and memory in rats against Aβ-induced insults; and probably involves the activation of tyrosine kinases and subsequent beneficial modulation of STAT3 and caspase3.

  12. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.

  13. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment

    PubMed Central

    Ramos-Chávez, Lucio A.; Rendón-López, Christian R. R.; Zepeda, Angélica; Silva-Adaya, Daniela; Del Razo, Luz M.; Gonsebatt, María E.

    2015-01-01

    Inorganic arsenic (iAs) is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH), which is the main antioxidant in the central nervous system (CNS). In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs) 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR) subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females. PMID:25709567

  14. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles.

    PubMed

    Hu, Renping; Gong, Xiaolan; Duan, Yanmei; Li, Na; Che, Yi; Cui, Yaling; Zhou, Min; Liu, Chao; Wang, Han; Hong, Fashui

    2010-11-01

    Titanium dioxide nanoparticles (TiO(2) NPs) are now in daily use including popular sunscreens, toothpastes, and cosmetics. However, the effects of TiO(2) NPs on human body, especially on the central nervous system, are still unclear. The aim of this study was to determine whether TiO(2) NPs exposure results in persistent alternations in nervous system function. ICR mice were exposed to TiO(2) NPs through intragastric administration at 0, 5, 10 and 50 mg/kg body weight every day for 60 days. The Y-maze test showed that TiO(2) NPs exposure could significantly impair the behaviors of spatial recognition memory. To fully investigate the neurotoxicological consequence of TiO(2) NPs exposure, brain elements and neurochemicals were also investigated. The contents of Ca, Mg, Na, K, Fe and Zn in brain were significantly altered after TiO(2) NPs exposure. Moreover, TiO(2) NPs significantly inhibited the activities of Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase, acetylcholine esterase, and nitric oxide synthase; the function of the central cholinergic system was also noticeably disturbed and the contents of some monoamines neurotransmitters such as norepinephrine, dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid, 5-hydroxytryptamine and its metabolite 5-hydroxyindoleacetic acid were significantly decreased, while the contents of acetylcholine, glutamate, and nitric oxide were significantly increased. These first findings indicated that exposure to TiO(2) NPs could possibly impair the spatial recognition memory ability, and this deficit may be possibly attributed to the disturbance of the homeostasis of trace elements, enzymes and neurotransmitter systems in the mouse brain. Therefore, the application of TiO(2) NPs and exposure effects especially on human brain for long-term and low-dose treatment should be cautious.

  15. Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAAAntagonist pentylenetetrazole.

    PubMed

    Ruby, Norman F; Fernandez, Fabian; Garrett, Alex; Klima, Jessy; Zhang, Pei; Sapolsky, Robert; Heller, H Craig

    2013-01-01

    Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopus sungorus) [corrected] so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus.

  16. Neonatal Repeated Exposure to Isoflurane not Sevoflurane in Mice Reversibly Impaired Spatial Cognition at Juvenile-Age.

    PubMed

    Liu, Jianhui; Zhao, Yanhong; Yang, Junjun; Zhang, Xiaoqing; Zhang, Wei; Wang, Peijun

    2017-02-01

    Inhalation anesthetics facilitate surgical procedures in millions of children each year. However, animal studies demonstrate that exposure to the inhalation anesthetic isoflurane may cause neuronal cell death in developing brains. The long-term cytotoxic effects of sevoflurane, the most popular pediatric anesthetic, have not been compared with isoflurane. Thus, this study was designed to compare the effects of equipotent doses of these two anesthetics on neonatal long-term neurotoxicity. Postnatal 7-day-old (P7) C57/BL male mice were exposed to 1.5% isoflurane or 2.2% sevoflurane 2 h a day for 3 days. Non-anesthetized mice served as controls. The effects of anesthesia on learning and memory were assessed using the Morris Water Maze (MWM) at Postnatal days 30 (P30) and P60 respectively. The hippocampal content of N-methyl-D-aspartate receptor subunits (NMDA), brain-derived neurotrophic factor (BDNF), and synaptophysin (Syn) were determined by Western Blot. Neuron structure and apoptosis were assessed via Nissl and TUNEL staining, respectively. The isoflurane group exhibited cognitive impairment at P30. Repeated inhalation of isoflurane or sevoflurane caused different degrees of apoptosis and damaged hippocampal neurons in neonatal mice, particularly isoflurane. In neonatal mice, repeated exposure to isoflurane, but not sevoflurane, caused spatial cognitive impairments in juvenile mice. Our findings suggest that isoflurane induces significantly greater neurodegeneration than an equipotent minimum alveolar concentration of sevoflurane.

  17. Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia.

    PubMed

    Zoladz, Phillip R; Park, Collin R; Halonen, Joshua D; Salim, Samina; Alzoubi, Karem H; Srivareerat, Marisa; Fleshner, Monika; Alkadhi, Karim A; Diamond, David M

    2012-03-01

    We have studied the effects of spatial learning and predator stress-induced amnesia on the expression of calcium/calmodulin-dependent protein kinase II (CaMKII), brain-derived neurotrophic factor (BDNF) and calcineurin in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adult male rats were given a single training session in the radial-arm water maze (RAWM) composed of 12 trials followed by a 30-min delay period, during which rats were either returned to their home cages or given inescapable exposure to a cat. Immediately following the 30-min delay period, the rats were given a single test trial in the RAWM to assess their memory for the hidden platform location. Under control (no stress) conditions, rats exhibited intact spatial memory and an increase in phosphorylated CaMKII (p-CaMKII), total CaMKII, and BDNF in dorsal CA1. Under stress conditions, rats exhibited impaired spatial memory and a suppression of all measured markers of molecular plasticity in dorsal CA1. The molecular profiles observed in the BLA, mPFC, and ventral CA1 were markedly different from those observed in dorsal CA1. Stress exposure increased p-CaMKII in the BLA, decreased p-CaMKII in the mPFC, and had no effect on any of the markers of molecular plasticity in ventral CA1. These findings provide novel observations regarding rapidly induced changes in the expression of molecular plasticity in response to spatial learning, predator exposure, and stress-induced amnesia in brainregions involved in different aspects of memory processing.

  18. Activation pattern of the limbic system following spatial learning under stress.

    PubMed

    Kogan, Inna; Richter-Levin, Gal

    2008-02-01

    Anatomical evidence suggests an interplay between the dorsal CA1 of the hippocampus (CA1), the basolateral amygdala (BLA) and the entorhinal cortex (EC), but their specific interactions in the context of emotional memory remain obscure. Here, we sought to elucidate the activation pattern in these areas following spatial learning under different stress conditions in the Morris water maze, using cAMP response element-binding protein (CREB) activation as a marker. Stress levels were manipulated by maintaining the water maze at one of two different temperatures: lower stress (warm water) or higher stress (cold water). Three groups of animals were tested under each condition: a Learning group, trained in the water maze with a hidden escape platform; a No-Platform group, subjected to the maze without an escape platform; and a Naïve group. To evaluate the quality of the spatial memory formed, we also tested long-term memory retention of the initial location of the platform following an interference procedure (reversal training). In the CA1 and EC, we found different CREB activation patterns for the lower- and higher-stress groups. By contrast, in the BLA a similar pattern of activation was detected under both stress levels. The data reveal a difference in the sensitivity of the memory to interference, with reversal training interference affecting the memory of the initial platform location only under the higher-stress condition. The results suggest that stress-dependent alterations in limbic system activation patterns underlie differences in the quality of the memory formed.

  19. The prefrontal cortex communicates with the amygdala to impair learning after acute stress in females but not in males.

    PubMed

    Maeng, Lisa Y; Waddell, Jaylyn; Shors, Tracey J

    2010-12-01

    Acute stress exposure enhances classical eyeblink conditioning in male rats, whereas exposure to the same event dramatically impairs performance in females (Wood and Shors, 1998; Wood et al., 2001). We hypothesized that stress affects learning differently in males and females because different brain regions and circuits are being activated. In the first experiment, we determined that neuronal activity within the medial prefrontal cortex (mPFC) during the stressful event is necessary to disrupt learning in females. In both males and females, the mPFC was bilaterally inactivated with GABA agonist muscimol before the stressor. Inactivation prevented only the impaired performance in females; it had no consequence for performance in males. However, in the second experiment, excitation of the mPFC alone with GABA antagonist picrotoxin was insufficient to elicit the stress effect that was prevented through the inactivation of this region in females. Therefore, we hypothesized that the mPFC communicates with the basolateral amygdala to disrupt learning in females after the stressor. To test this hypothesis, these structures were disconnected from each other with unilateral excitotoxic (NMDA) lesions on either the same or opposite sides of the brain. Females with contralateral lesions, which disrupt the connections on both sides of the brain, were able to learn after the stressful event, whereas those with ipsilateral lesions, which disrupt only one connection, did not learn after the stressor. Together, these data indicate that the mPFC is critically involved in females during stress to impair subsequent learning and does so via communication with the amygdala.

  20. The effects of doxepin on stress-induced learning, memory impairments, and TNF-α level in the rat hippocampus

    PubMed Central

    Azadbakht, Ali Ahmad; Radahmadi, Maryam; Javanmard, Shaghayegh Haghjooye; Reisi, Parham

    2015-01-01

    Stress has a profound impact on the nervous system and causes cognitive problems that are partly related to the inflammatory effects. Besides influencing the content of neurotransmitters, antidepressants such as doxepin are likely to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Therefore, the present study investigated the effects of doxepin on passive avoidance learning and the levels of tumor necrosis factor-alpha (TNF-α) in the rat hippocampus following repeated restraint stress. Male Wistar rats were divided into five groups. Chronic stress was induced by keeping animals within an adjustable restraint chamber for 6 h every day for 21 successive days. In stress-doxepin group, stressed rats were given 1, 5 and 10 mg/kg of doxepin intraperitoneally (i.p) for 21 days and before placing them in restraint chamber. Healthy animals who served as control group and stressed rats received normal saline i.p. For evaluation of learning and memory, initial latency and step-through latency were determined using passive avoidance learning test. TNF-α levels were measured in hippocampus by enzyme-linked immunosorbant assay (ELISA) at the end of experiment. Induced stress considerably decreased the step through latencies in the rats (P<0.05) but doxepin administration prevented these changes. Stress-doxepin groups did not reveal any differences compared to control group at any given doses. TNF-α level was increased significantly (P<0.05) in stress group. Only the low dose of doxepin (1 mg/kg) decreased TNF-α level. The present findings indicated that learning and memory are impaired in stressful conditions and doxepin prevented memory deficit. It seems that inflammation may involve in induced stress memory deficits, and that doxepin is helpful in alleviating the neural complications due to stress. PMID:26752995

  1. The effects of doxepin on stress-induced learning, memory impairments, and TNF-α level in the rat hippocampus.

    PubMed

    Azadbakht, Ali Ahmad; Radahmadi, Maryam; Javanmard, Shaghayegh Haghjooye; Reisi, Parham

    2015-01-01

    Stress has a profound impact on the nervous system and causes cognitive problems that are partly related to the inflammatory effects. Besides influencing the content of neurotransmitters, antidepressants such as doxepin are likely to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Therefore, the present study investigated the effects of doxepin on passive avoidance learning and the levels of tumor necrosis factor-alpha (TNF-α) in the rat hippocampus following repeated restraint stress. Male Wistar rats were divided into five groups. Chronic stress was induced by keeping animals within an adjustable restraint chamber for 6 h every day for 21 successive days. In stress-doxepin group, stressed rats were given 1, 5 and 10 mg/kg of doxepin intraperitoneally (i.p) for 21 days and before placing them in restraint chamber. Healthy animals who served as control group and stressed rats received normal saline i.p. For evaluation of learning and memory, initial latency and step-through latency were determined using passive avoidance learning test. TNF-α levels were measured in hippocampus by enzyme-linked immunosorbant assay (ELISA) at the end of experiment. Induced stress considerably decreased the step through latencies in the rats (P<0.05) but doxepin administration prevented these changes. Stress-doxepin groups did not reveal any differences compared to control group at any given doses. TNF-α level was increased significantly (P<0.05) in stress group. Only the low dose of doxepin (1 mg/kg) decreased TNF-α level. The present findings indicated that learning and memory are impaired in stressful conditions and doxepin prevented memory deficit. It seems that inflammation may involve in induced stress memory deficits, and that doxepin is helpful in alleviating the neural complications due to stress.

  2. Impaired Sarcoplasmic Reticulum Calcium Uptake and Release Promote Electromechanically and Spatially Discordant Alternans: A Computational Study

    PubMed Central

    Weinberg, Seth H.

    2016-01-01

    Cardiac electrical dynamics are governed by cellular-level properties, such as action potential duration (APD) restitution and intracellular calcium (Ca) handling, and tissue-level properties, including conduction velocity restitution and cell–cell coupling. Irregular dynamics at the cellular level can lead to instabilities in cardiac tissue, including alternans, a beat-to-beat alternation in the action potential and/or the intracellular Ca transient. In this study, we incorporate a detailed single cell coupled map model of Ca cycling and bidirectional APD-Ca coupling into a spatially extended tissue model to investigate the influence of sarcoplasmic reticulum (SR) Ca uptake and release properties on alternans and conduction block. We find that an intermediate SR Ca uptake rate and larger SR Ca release resulted in the widest range of stimulus periods that promoted alternans. However, both reduced SR Ca uptake and release promote arrhythmogenic spatially and electromechanically discordant alternans, suggesting a complex interaction between SR Ca handling and alternans characteristics at the cellular and tissue level. PMID:27385917

  3. Impaired Sarcoplasmic Reticulum Calcium Uptake and Release Promote Electromechanically and Spatially Discordant Alternans: A Computational Study.

    PubMed

    Weinberg, Seth H

    2016-01-01

    Cardiac electrical dynamics are governed by cellular-level properties, such as action potential duration (APD) restitution and intracellular calcium (Ca) handling, and tissue-level properties, including conduction velocity restitution and cell-cell coupling. Irregular dynamics at the cellular level can lead to instabilities in cardiac tissue, including alternans, a beat-to-beat alternation in the action potential and/or the intracellular Ca transient. In this study, we incorporate a detailed single cell coupled map model of Ca cycling and bidirectional APD-Ca coupling into a spatially extended tissue model to investigate the influence of sarcoplasmic reticulum (SR) Ca uptake and release properties on alternans and conduction block. We find that an intermediate SR Ca uptake rate and larger SR Ca release resulted in the widest range of stimulus periods that promoted alternans. However, both reduced SR Ca uptake and release promote arrhythmogenic spatially and electromechanically discordant alternans, suggesting a complex interaction between SR Ca handling and alternans characteristics at the cellular and tissue level.

  4. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  5. Associations between spatial position, stress and anxiety in forest baboons Papio anubis.

    PubMed

    Tkaczynski, Patrick; MacLarnon, Ann; Ross, Caroline

    2014-10-01

    Spatial position within a group affects the value of group-living benefits such as reduced predation risk and improved foraging. The threat of predation, poor nutrition or increased competition from conspecifics can all cause stress. In many species, central positions are known to be more beneficial than peripheral positions in terms of reduced predation, vigilance and foraging. In this study, we examine whether spatial position within a group is associated with stress and anxiety in a troop of olive baboons (Papio anubis). We predicted that the benefits of occupying central positions would be reflected by a reduction in stress and anxiety for animals who spent the most time in the centre of the group. The study subjects appeared to compete actively for the centre of the group. Physiological stress measures (faecal glucocorticoid concentrations) were positively correlated with time spent in central positions. Time spent in central positions was positively correlated with proximity but negatively correlated with vigilance behaviours (alarm barks). Vigilance rates were positively correlated with measures of anxiety (self-scratch frequency). It is suggested that individuals experience chronic stress due to proximity to conspecifics in central positions, whilst perceived predation risk causes anxiety, with perceived predation risk experienced more by individuals on the periphery.

  6. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses.

    PubMed

    Escudero-Lourdes, Claudia

    2016-03-01

    Arsenic (As) is a worldwide naturally occurring metalloid. Human chronic exposure to inorganic As compounds (iAs), which are at the top of hazardous substances (ATSDR, 2013), is associated with different diseases including cancer and non- cancerous diseases. The neurotoxic effects of iAs and its methylated metabolites have been demonstrated in exposed populations and experimental models. Impaired cognitive abilities have been described in children and adults chronically exposed to iAs through drinking water. Even though different association studies failed to demonstrate that As causes neurodegenerative diseases, several toxicity mechanisms of iAs parallel those mechanisms associated with neurodegeneration, including oxidative stress and inflammation, impaired protein degradation, autophagy, and intracellular accumulation, endoplasmic reticulum stress, and mitochondrial dysfunction. Additionally, different reports have shown that specifically in brain tissue, iAs and its metabolites induce hyper-phosphorylation of the tau protein and over-regulation of the amyloid precursor protein, impaired neurotransmitters synthesis and synaptic transmission, increased glutamate receptors activation, and decreased glutamate transporters expression. Interestingly, increased and sustained pro-inflammatory responses mediated by cytokines and related factors, seems to be the triggering factor for all of such cellular pathological effects. Therefore, this review proposes that iAs-associated cognitive impairment could be the result of the activation of pro-inflammatory responses in the brain tissue, which also may favor neurodegeneration or increase the risk for neurodegenerative diseases in exposed human populations.

  7. Spatial Characteristics of Interannual Variability in Wind Stress over the Western North Pacific.

    NASA Astrophysics Data System (ADS)

    Kutsuwada, Kunio

    1988-04-01

    About 4.5 million wind data observations reported from ships during 1961-83 are used to elucidate the spatial structure of interannual variations of the wind stress over the western North Pacific (0°-0°N, 120°E-170°W). Spatially coherent features are described in terms of time series and cross-spectral analyses of monthly data of the zonal and meridional components in 2° lat-5° long quadrangles.In a large portion of the study area, the interannual variation of the zonal stress dominates that of the meridional stress. In the region of the westerlies north of 28°N, the strength of the wintertime maximum in the eastward stress changes from year to year, and the interannual variation of the zonal stress is not coherent over the whole region. The interannual energy in the region is highest in the western North Pacific and is not concentrated in any particular period bands. In the doldrums, located in the western portion of the region between the equator and 10°N, where the stress magnitude is smaller than 0.03 N m2 in the mean, the zonal stress changes coherently over the whole region in the period band around 2 yr, in which the interannual energy is concentrated. In the trades, south of 28°N, where westward stress is dominant in the mean, the interannual energy of the zonal stress is concentrated in the period band around 3.6 yr, and the variations are not coherent over the whole region.The relationship between the zonal stress and Southern Oscillation index (SOI) is examined for periods in which the interannual energy of the SOI is concentrated. In the 3.6-yr period in which the major spectral peak is found, the SOI is coherent with the zonal stress not only in the tropical area between the equator and 20°N but also in the subtropical area between 30° and 40°N; while in the 2.1-yr period in which a secondary spectral peak is found, the SOI is coherent with the zonal stress in the doldrums region. It is suggested that the variations in these period bands

  8. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.

    PubMed

    Zhang, Lei; Zhang, Hu-Qin; Liang, Xiang-Yan; Zhang, Hai-Feng; Zhang, Ting; Liu, Fang-E

    2013-11-01

    Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.

  9. Peroxisome proliferators reduce spatial memory impairment, synaptic failure, and neurodegeneration in brains of a double transgenic mice model of Alzheimer's disease.

    PubMed

    Inestrosa, Nibaldo C; Carvajal, Francisco J; Zolezzi, Juan M; Tapia-Rojas, Cheril; Serrano, Felipe; Karmelic, Daniel; Toledo, Enrique M; Toro, Andrés; Toro, Jessica; Santos, Manuel J

    2013-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-β peptide (Aβ), increase of oxidative stress, and synaptic alterations. The scavenging of reactive oxygen species through their matrix enzyme catalase is one of the most recognized functions of peroxisomes. The induction of peroxisome proliferation is attained through different mechanisms by a set of structurally diverse molecules called peroxisome proliferators. In the present work, a double transgenic mouse model of AD that co-expresses a mutant human amyloid-β protein precursor (AβPPswe) and presenilin 1 without exon 9 (PS1dE9) was utilized in order to assess the effect of peroxisomal proliferation on Aβ neurotoxicity in vivo. Mice were tested for spatial memory and their brains analyzed by cytochemical, electrophysiological, and biochemical methods. We report here that peroxisomal proliferation significantly reduces (i) memory impairment, found in this model of AD; (ii) Aβ burden and plaque-associated acetylcholinesterase activity; (iii) neuroinflammation, measured by the extent of astrogliosis and microgliosis; and (iv) the decrease in postsynaptic proteins, while promoting synaptic plasticity in the form of long-term potentiation. We concluded that peroxisomal proliferation reduces various AD neuropathological markers and peroxisome proliferators may be considered as potential therapeutic agents against the disease.

  10. Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats.

    PubMed

    Chen, Ning-Ning; Luo, Dan-Ju; Yao, Xiu-Qing; Yu, Cong; Wang, Yi; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2012-01-01

    Pesticides are widely used in agriculture, and epidemiological studies suggest that pesticide exposure is a risk factor for Alzheimer's disease (AD), but the mechanisms are elusive. Here, we studied the effects of pesticide exposure on the cognitive ability and the underlying mechanisms in rats. Deltamethrin and carbofuran were administered respectively into the rats once a day for 28 days by gavage. We found that pesticide exposure induced spatial learning and memory deficits with a simultaneous decrease of N-methyl-D-aspartate receptor 1, synaptophysin, and synapsin I, all of which are memory-related synaptic proteins. Pesticide exposure also induced tau hyperphosphorylation at multiple AD-related phosphorylation sites with activation of glycogen synthase kinase-3β and inhibition of protein phosphatase-2A. Additionally, neuron loss in the hippocampus and cortex was observed upon administration of the pesticides. These results indicate that the pesticides exposure could induce AD-like pathology and cognitive abnormality in rats.

  11. Soluble amyloid beta oligomers block the learning-induced increase in hippocampal sharp wave-ripple rate and impair spatial memory formation.

    PubMed

    Nicole, Olivier; Hadzibegovic, Senka; Gajda, Judyta; Bontempi, Bruno; Bem, Tiaza; Meyrand, Pierre

    2016-03-07

    Post-learning hippocampal sharp wave-ripples (SWRs) generated during slow wave sleep are thought to play a crucial role in memory formation. While in Alzheimer's disease, abnormal hippocampal oscillations have been reported, the functional contribution of SWRs to the typically observed spatial memory impairments remains unclear. These impairments have been related to degenerative synaptic changes produced by soluble amyloid beta oligomers (Aβos) which, surprisingly, seem to spare the SWR dynamics during routine behavior. To unravel a potential effect of Aβos on SWRs in cognitively-challenged animals, we submitted vehicle- and Aβo-injected mice to spatial recognition memory testing. While capable of forming short-term recognition memory, Aβ mice exhibited faster forgetting, suggesting successful encoding but an inability to adequately stabilize and/or retrieve previously acquired information. Without prior cognitive requirements, similar properties of SWRs were observed in both groups. In contrast, when cognitively challenged, the post-encoding and -recognition peaks in SWR occurrence observed in controls were abolished in Aβ mice, indicating impaired hippocampal processing of spatial information. These results point to a crucial involvement of SWRs in spatial memory formation and identify the Aβ-induced impairment in SWRs dynamics as a disruptive mechanism responsible for the spatial memory deficits associated with Alzheimer's disease.

  12. Soluble amyloid beta oligomers block the learning-induced increase in hippocampal sharp wave-ripple rate and impair spatial memory formation

    PubMed Central

    Nicole, Olivier; Hadzibegovic, Senka; Gajda, Judyta; Bontempi, Bruno; Bem, Tiaza; Meyrand, Pierre

    2016-01-01

    Post-learning hippocampal sharp wave-ripples (SWRs) generated during slow wave sleep are thought to play a crucial role in memory formation. While in Alzheimer’s disease, abnormal hippocampal oscillations have been reported, the functional contribution of SWRs to the typically observed spatial memory impairments remains unclear. These impairments have been related to degenerative synaptic changes produced by soluble amyloid beta oligomers (Aβos) which, surprisingly, seem to spare the SWR dynamics during routine behavior. To unravel a potential effect of Aβos on SWRs in cognitively-challenged animals, we submitted vehicle- and Aβo-injected mice to spatial recognition memory testing. While capable of forming short-term recognition memory, Aβ mice exhibited faster forgetting, suggesting successful encoding but an inability to adequately stabilize and/or retrieve previously acquired information. Without prior cognitive requirements, similar properties of SWRs were observed in both groups. In contrast, when cognitively challenged, the post-encoding and -recognition peaks in SWR occurrence observed in controls were abolished in Aβ mice, indicating impaired hippocampal processing of spatial information. These results point to a crucial involvement of SWRs in spatial memory formation and identify the Aβ-induced impairment in SWRs dynamics as a disruptive mechanism responsible for the spatial memory deficits associated with Alzheimer’s disease. PMID:26947247

  13. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    PubMed

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit.

  14. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory.

    PubMed

    Zheng, Yiwen; Geddes, Lisa; Sato, Go; Stiles, Lucy; Darlington, Cynthia L; Smith, Paul F

    2014-05-01

    Galvanic vestibular stimulation (GVS) is a method of activating the peripheral vestibular system using direct current that is widely employed in clinical neurological testing. Since movement is recognized to stimulate hippocampal neurogenesis and movement is impossible without activation of the vestibular system, we speculated that activating the vestibular system in rats while minimizing movement, by delivering GVS under anesthesia, would affect hippocampal cell proliferation and neurogenesis, and spatial memory. Compared with the sham control group, the number of cells incorporating the DNA replication marker, bromodeoxyuridine (BrdU), was significantly reduced in the bilateral hippocampi in both the cathode left-anode right and cathode right-anode left stimulation groups (P ≤ 0.0001). The majority of the BrdU(+ve) cells co-expressed Ki-67, a marker for the S phase of the cell cycle, suggesting that these BrdU(+ve) cells were still in the cell cycle; however, there was no significant difference in the degree of co-labeling between the two stimulation groups. Single labeling for doublecortin (DCX), a marker of immature neurons, showed that while there was no significant difference between the different groups in the number of DCX(+ve) cells in the right dentate gryus, in the left dentate gyrus there was a significant decrease in the cathode left-anode right group compared with the sham controls (P ≤ 0.03). Nonetheless, when animals were tested in place recognition, object exploration and Morris water maze tasks, there were no significant differences between the GVS groups and the sham controls. These results suggest that GVS can have striking effects on cell proliferation and possibly neurogenesis in the hippocampus, without affecting spatial memory.

  15. Extensive enriched environments protect old rats from the aging dependent impairment of spatial cognition, synaptic plasticity and nitric oxide production.

    PubMed

    Lores-Arnaiz, S; Bustamante, J; Arismendi, M; Vilas, S; Paglia, N; Basso, N; Capani, F; Coirini, H; Costa, J J López; Arnaiz, M R Lores

    2006-05-15

    In aged rodents, neuronal plasticity decreases while spatial learning and working memory (WM) deficits increase. As it is well known, rats reared in enriched environments (EE) show better cognitive performances and an increased neuronal plasticity than rats reared in standard environments (SE). We hypothesized that EE could preserve the aged animals from cognitive impairment through NO dependent mechanisms of neuronal plasticity. WM performance and plasticity were measured in 27-month-old rats from EE and SE. EE animals showed a better spatial WM performance (66% increase) than SE ones. Cytosolic NOS activity was 128 and 155% higher in EE male and female rats, respectively. Mitochondrial NOS activity and expression were also significantly higher in EE male and female rats. Mitochondrial NOS protein expression was higher in brain submitochondrial membranes from EE reared rats. Complex I activity was 70-80% increased in EE as compared to SE rats. A significant increase in the area of NADPH-d reactive neurons was observed in the parietotemporal cortex and CA1 hippocampal region of EE animals.

  16. Impaired retention of spatial memory after transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells

    NASA Astrophysics Data System (ADS)

    Steffenach, Hill-Aina; Sloviter, Robert S.; Moser, Edvard I.; Moser, May-Britt

    2002-03-01

    Longitudinally oriented axon collaterals of CA3 pyramidal cells may be critical for integrating distributed information in the hippocampus. To investigate the possible role of this pathway in the retention of spatial memory, we made a single transversely oriented cut through the dorsal CA3 region of each hippocampus. Although the lesion involved <3% of the hippocampal volume, it nonetheless disrupted memory retention in a water maze in preoperatively trained rats. New learning in a different water maze was attenuated. No significant impairment occurred in rats with longitudinally oriented cuts, or in animals with ibotenic acid-induced lesions of similar magnitude. To characterize the effect of a focal lesion on the integrity of longitudinally projecting axons, we stained degenerating cells and fibers in rats with unilateral CA3 transections by using FluoroJade-B. Degenerating terminals were seen across a wide region posterior to the cut, and were present in the strata of areas CA3 and CA1 that are innervated by CA3 pyramidal cells. These results suggest that the integrity of longitudinally oriented, translamellar axons of CA3 pyramidal cells may be necessary for efficient acquisition and retention of spatial memory.

  17. Self-perceived stress reactivity is an indicator of psychosocial impairment at the workplace

    PubMed Central

    2010-01-01

    Background Work related stress is associated with a range of debilitating health outcomes. However, no unanimously accepted assessment tool exists for the early identification of individuals suffering from chronic job stress. The psychological concept of self-perceived stress reactivity refers to the individual disposition of a person to answer stressors with immediate as well as long lasting stress reactions, and it could be a valid indicator of current as well as prospective adverse health outcomes. The aim of this study was to determine the extent to which perceived stress reactivity correlates with various parameters of psychosocial health, cardiovascular risk factors, and parameters of chronic stress and job stress in a sample of middle-aged industrial employees in a so-called "sandwich-position". Methods In this cross-sectional study, a total of 174 industrial employees were assessed for psychosocial and biological stress parameters. Differences between groups with high and low stress reactivity were analysed. Logistic regression models were applied to identify which parameters allow to predict perceived high versus low stress reactivity. Results In our sample various parameters of psychosocial stress like chronic stress and effort-reward imbalance were significantly increased in comparison to the normal population. Compared to employees with perceived low stress reactivity, those with perceived high stress reactivity showed poorer results in health-related complaints, depression, anxiety, sports behaviour, chronic stress, and effort-reward imbalance. The educational status of employees with perceived low stress reactivity is higher. Education, cardiovascular complaints, chronic stress, and effort-reward imbalance were moderate predictors for perceived stress reactivity. However, no relationship was found between stress reactivity and cardiovascular risk factors in our sample. Conclusions Job stress is a major burden in a relevant subgroup of industrial

  18. Spatial release from masking in normally hearing and hearing-impaired listeners as a function of the temporal overlap of competing talkersa

    PubMed Central

    Best, Virginia; Mason, Christine R.; Kidd, Gerald

    2011-01-01

    Listeners with sensorineural hearing loss are poorer than listeners with normal hearing at understanding one talker in the presence of another. This deficit is more pronounced when competing talkers are spatially separated, implying a reduced “spatial benefit” in hearing-impaired listeners. This study tested the hypothesis that this deficit is due to increased masking specifically during the simultaneous portions of competing speech signals. Monosyllabic words were compressed to a uniform duration and concatenated to create target and masker sentences with three levels of temporal overlap: 0% (non-overlapping in time), 50% (partially overlapping), or 100% (completely overlapping). Listeners with hearing loss performed particularly poorly in the 100% overlap condition, consistent with the idea that simultaneous speech sounds are most problematic for these listeners. However, spatial release from masking was reduced in all overlap conditions, suggesting that increased masking during periods of temporal overlap is only one factor limiting spatial unmasking in hearing-impaired listeners. PMID:21428524

  19. Stress history controls the spatial pattern of aftershocks: case studies from strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Utkucu, Murat; Durmuş, Hatice; Nalbant, Süleyman

    2016-09-01

    Earthquake ruptures perturb stress within the surrounding crustal volume and as it is widely accepted now these stress perturbations strongly correlates with the following seismicity. Here we have documented five cases of the mainshock-aftershock sequences generated by the strike-slip faults from different tectonic environments of world in order to demonstrate that the stress changes resulting from large preceding earthquakes decades before effect spatial distribution of the aftershocks of the current mainshocks. The studied mainshock-aftershock sequences are the 15 October 1979 Imperial Valley earthquake (Mw = 6.4) in southern California, the 27 November 1979 Khuli-Boniabad (Mw = 7.1), the 10 May 1997 Qa'enat (Mw = 7.2) and the 31 March 2006 Silakhor (Mw = 6.1) earthquakes in Iran and the 13 March 1992 Erzincan earthquake (Mw = 6.7) in Turkey. In the literature, we have been able to find only these mainshocks that are mainly characterized by dense and strong aftershock activities along and beyond the one end of their ruptures while rare aftershock occurrences with relatively lower magnitude reported for the other end of their ruptures. It is shown that the stress changes resulted from earlier mainshock(s) that are close in both time and space might be the reason behind the observed aftershock patterns. The largest aftershocks of the mainshocks studied tend to occur inside the stress-increased lobes that were also stressed by the background earthquakes and not to occur inside the stress-increased lobes that fall into the stress shadow of the background earthquakes. We suggest that the stress shadows of the previous mainshocks may persist in the crust for decades to suppress aftershock distribution of the current mainshocks. Considering active researches about use of the Coulomb stress change maps as a practical tool to forecast spatial distribution of the upcoming aftershocks for earthquake risk mitigation purposes in near-real time, it is further suggested that

  20. Impaired Ethanol-Induced Sensitization and Decreased Cannabinoid Receptor-1 in a Model of Posttraumatic Stress Disorder

    PubMed Central

    Matchynski-Franks, Jessica J.; Susick, Laura L.; Schneider, Brandy L.; Perrine, Shane A.; Conti, Alana C.

    2016-01-01

    Background and Purpose Impaired striatal neuroplasticity may underlie increased alcoholism documented in those with posttraumatic stress disorder (PTSD). Cannabinoid receptor-1 (CB1) is sensitive to the effects of ethanol (EtOH) and traumatic stress, and is a critical regulator of striatal plasticity. To investigate CB1 involvement in the PTSD-alcohol interaction, this study measured the effects of traumatic stress using a model of PTSD, mouse single-prolonged stress (mSPS), on EtOH-induced locomotor sensitization and striatal CB1 levels. Methods Mice were exposed to mSPS, which includes: 2-h restraint, 10-min group forced swim, 15-min exposure to rat bedding odor, and diethyl ether exposure until unconsciousness or control conditions. Seven days following mSPS exposure, the locomotor sensitizing effects of EtOH were assessed. CB1, post-synaptic density-95 (PSD95), and dopamine-2 receptor (D2) protein levels were then quantified in the dorsal striatum using standard immunoblotting techniques. Results Mice exposed to mSPS-EtOH demonstrated impaired EtOH-induced locomotor sensitization compared to Control-EtOH mice, which was accompanied by reduced striatal CB1 levels. EtOH increased striatal PSD95 in control and mSPS-exposed mice. Additionally, mSPS-Saline exposure increased striatal PSD95 and decreased D2 protein expression, with mSPS-EtOH exposure alleviating these changes. Conclusions These data indicate that the mSPS model of PTSD blunts the behavioral sensitizing effects of EtOH, a response that suggests impaired striatal neuroplasticity. Additionally, this study demonstrates that mice exposed to mSPS and repeated EtOH exposure decreases CB1 in the striatum, providing a mechanism of interest for understanding the effects of EtOH following severe, multimodal stress exposure. PMID:27186643

  1. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    PubMed

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress.

  2. Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain.

    PubMed

    Cardoso-Cruz, Helder; Sousa, Mafalda; Vieira, Joana B; Lima, Deolinda; Galhardo, Vasco

    2013-11-01

    The medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) form interconnected neural circuits that are important for spatial cognition and memory, but it is not known whether the functional connectivity between these areas is affected by the onset of an animal model of inflammatory pain. To address this issue, we implanted 2 multichannel arrays of electrodes in the mPFC and MD of adult rats and recorded local field potential activity during a food-reinforced spatial working memory task. Recordings were performed for 3weeks, before and after the establishment of the pain model. Our results show that inflammatory pain caused an impairment of spatial working memory performance that is associated with changes in the activity of the mPFC-MD circuit; an analysis of partial directed coherence between the areas revealed a global decrease in the connectivity of the circuit. This decrease was observed over a wide frequency range in both the frontothalamic and thalamofrontal directions of the circuit, but was more evident from MD to mPFC. In addition, spectral analysis revealed significant oscillations of power across frequency bands, namely with a strong theta component that oscillated after the onset of the painful condition. Finally, our data revealed that chronic pain induces an increase in theta/gamma phase coherence and a higher level of mPFC-MD coherence, which is partially conserved across frequency bands. The present results demonstrate that functional disturbances in mPFC-MD connectivity are a relevant cause of deficits in pain-related working memory.

  3. Allocentric Spatial Memory Testing Predicts Conversion from Mild Cognitive Impairment to Dementia: An Initial Proof-of-Concept Study

    PubMed Central

    Wood, Ruth A.; Moodley, Kuven K.; Lever, Colin; Minati, Ludovico; Chan, Dennis

    2016-01-01

    The hippocampus is one of the first regions to exhibit neurodegeneration in Alzheimer’s disease (AD), and knowledge of its role in allocentric spatial memory may therefore aid early diagnosis of AD. The 4 Mountains Test (4MT) is a short and easily administered test of spatial memory based on the cognitive map theory of hippocampal function as derived from rodent single cell and behavioral studies. The 4MT has been shown in previous cross-sectional studies to be sensitive and specific for mild cognitive impairment (MCI) due to AD. This report describes the initial results of a longitudinal study testing the hypothesis that allocentric spatial memory is predictive of conversion from MCI to dementia. Fifteen patients with MCI underwent baseline testing on the 4MT in addition to CSF amyloid/tau biomarker studies, volumetric MRI and neuropsychological assessment including the Rey Auditory Verbal Learning Test (RAVLT) and Trail Making Test “B” (TMT-B). At 24 months, 9/15 patients had converted to AD dementia. The 4MT predicted conversion to AD with 93% accuracy (Cohen’s d = 2.52). The predictive accuracies of the comparator measures were as follows: CSF tau/β-amyloid1–42 ratio 92% (d = 1.81), RAVLT 64% (d = 0.41), TMT-B 78% (d = 1.56), and hippocampal volume 77% (d = 0.65). CSF tau levels were strongly negatively correlated with 4MT scores (r = −0.71). This proof-of-concept study provides initial support for the hypothesis that allocentric spatial memory testing is a predictive cognitive marker of hippocampal neurodegeneration in pre-dementia AD. The 4MT is a brief, non-invasive, straightforward spatial memory test and is therefore ideally suited for use in routine clinical diagnostic practice. This is of particular importance given the current unmet need for simple accurate diagnostic tests for early AD and the ongoing development of potential disease-modifying therapeutic agents, which may be more efficacious when given earlier in

  4. Neuropsin Inactivation Has Protective Effects against Depressive-Like Behaviours and Memory Impairment Induced by Chronic Stress

    PubMed Central

    Chang, Simon; Bok, Philane; Sun, Cheng-Pu; Edwards, Andrew; Huang, Guo-Jen

    2016-01-01

    Mounting evidence suggests the interaction between stress and genetics contribute to the development of depressive symptoms. Currently, the molecular mechanisms mediating this process are poorly understood, hindering the development of new clinical interventions. Here, we investigate the interaction between neuropsin, a serine protease, and chronic stress on the development of depressive-like behaviours in mice. We found no difference in baseline behaviour between neuropsin knockout and wild-type mice. However, our results show that neuropsin knockout mice are protected against the development of depressive-like behaviours and memory impairment following chronic stress. We hypothesised that this difference in behaviour may be due to an interaction between neuropsin and elevated plasma corticosterone. To test this, we subjected mice to chronic corticosterone injections. These injections resulted in changes to hippocampal structure similar to that observed following chronic stress. We found that inactivation of neuropsin limits the extent of these anatomical changes in both the chronic stress and the corticosterone injection exposed cohorts. We next used viral vectors to knockdown or overexpress neuropsin in the hippocampus to confirm the results of the KO study. Additionally, we found that inactivation of neuropsin limited glutamate dysregulation, associated with increased generation of reactive oxygen species, resulting from prolonged elevated plasma corticosterone. In this study, we demonstrate that neuropsin inactivation protects against the impairment of hippocampal functions and the depressive-like behaviour induced by chronic stress or high levels of corticosterone. Consequently, we suggest neuropsin is a potential target for clinical interventions for the management of stress disorders. PMID:27701413

  5. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects

    PubMed Central

    Alomari, Rima A.; Fernandez, Mercedes; Banks, Jonathan B.; Acosta, Juliana; Tartar, Jaime L.

    2015-01-01

    Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30–40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention. PMID:26010485

  6. Response of coral assemblages to thermal stress: are bleaching intensity and spatial patterns consistent between events?

    PubMed

    Penin, Lucie; Vidal-Dupiol, Jeremie; Adjeroud, Mehdi

    2013-06-01

    Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.

  7. Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Iuchi, Katsuya; Nishimaki, Kiyomi; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-02-05

    Oxidative stress is known to play a prominent role in the onset and early stage progression of Alzheimer's disease (AD). For example, protein oxidation and lipid peroxidation levels are increased in patients with mild cognitive impairment. Here, we created a double-transgenic mouse model of AD to explore the pathological and behavioral effects of oxidative stress. Double transgenic (APP/DAL) mice were constructed by crossing Tg2576 (APP) mice, which express a mutant form of human amyloid precursor protein (APP), with DAL mice expressing a dominant-negative mutant of mitochondrial aldehyde dehydrogenase 2 (ALDH2), in which oxidative stress is enhanced. Y-maze and object recognition tests were performed at 3 and 6 months of age to evaluate learning and memory. The accumulation of amyloid plaques, deposition of phosphorylated-tau protein, and number of astrocytes in the brain were assessed histopathologically at 3, 6, 9, and 12-15 months of age. The life span of APP/DAL mice was significantly shorter than that of APP or DAL mice. In addition, they showed accelerated amyloid deposition, tau phosphorylation, and gliosis. Furthermore, these mice showed impaired performance on Y-maze and object recognition tests at 3 months of age. These data suggest that oxidative stress accelerates cognitive dysfunction and pathological insults in the brain. APP/DAL mice could be a useful model for exploring new approaches to AD treatment.

  8. Metformin Impairs Spatial Memory and Visual Acuity in Old Male Mice

    PubMed Central

    Thangthaeng, Nopporn; Rutledge, Margaret; Wong, Jessica M.; Vann, Philip H.; Forster, Michael J.; Sumien, Nathalie

    2017-01-01

    Metformin is an oral anti-diabetic used as first-line therapy for type 2 diabetes. Because benefits of metformin extend beyond diabetes to other age-related pathology, and because its effect on gene expression profiles resembles that of caloric restriction, metformin has a potential as an anti-aging intervention and may soon be assessed as an intervention to extend healthspan. However, beneficial actions of metformin in the central nervous system have not been clearly established. The current study examined the effect of chronic oral metformin treatment on motor and cognitive function when initiated in young, middle-aged, or old male mice. C57BL/6 mice aged 4, 11, or 22 months were randomly assigned to either a metformin group (2 mg/ml in drinking water) or a control group. The mice were monitored weekly for body weight, as well as food and water intake and a battery of behavioral tests for motor, cognitive and visual function was initiated after the first month of treatment. Liver, hippocampus and cortex were collected at the end of the study to assess redox homeostasis. Overall, metformin supplementation in male mice failed to affect blood glucose, body weights and redox homeostasis at any age. It also had no beneficial effect on age-related declines in psychomotor, cognitive or sensory functions. However, metformin treatment had a deleterious effect on spatial memory and visual acuity, and reduced SOD activity in brain regions. These data confirm that metformin treatment may be associated with deleterious effect resulting from the action of metformin on the central nervous system. PMID:28203479

  9. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats.

    PubMed

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-08-31

    Bisphenol-A (BPA, 4, 4'-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.

  10. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-08-01

    Bisphenol-A (BPA, 4, 4‧-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.

  11. Calpain-3 Impairs Cell Proliferation and Stimulates Oxidative Stress-Mediated Cell Death in Melanoma Cells

    PubMed Central

    Moretti, Daniele; Del Bello, Barbara; Allavena, Giulia; Corti, Alessandro; Signorini, Cinzia; Maellaro, Emilia

    2015-01-01

    Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. PMID:25658320

  12. Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice.

    PubMed

    Alboni, Silvia; Tascedda, Fabio; Corsini, Daniela; Benatti, Cristina; Caggia, Federica; Capone, Giacomo; Barden, Nicholas; Blom, Joan M C; Brunello, Nicoletta

    2011-06-01

    The gene coding for the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is a stress-responsive gene. Changes in its expression may underlie some of the pathological effects of stress-related disorders like depression. Data on the stress-induced regulation of the expression of BDNF in pathological conditions are rare because often research is conducted using healthy animals. In our experiments, we used transgenic mice with glucocorticoid receptor impaired (GR-i) expression in the hypothalamus created as a tool to study the neuroendocrine changes occurring in stress-related disorders. First, under basal condition, GR-i mice displayed lower levels of BDNF exons IX and IV and decreased CRE(BDNF) binding activity with respect to wild-type (WT) mice in the hippocampus. Then, we exposed GR-i and WT mice to an acute restraint stress (ARS) to test the hypothesis that GR-i mice display: 1] different ARS induced expression of BDNF, and 2] altered activation of signaling pathways implicated in regulating BDNF gene expression in the hippocampus with respect to WT mice. Results indicate that ARS enhanced BDNF mRNA expression mainly in the CA3 hippocampal sub-region of GR-i mice in the presence of enhanced levels of pro-BDNF protein, while no effect was observed in WT mice. Moreover, ARS reduced CREB signaling and binding to the BDNF promoter in GR-i mice but enhanced signaling and binding, possibly through ERK1/2 activation, in WT mice. Thus, life-long central GR dysfunction resulted in an altered sensitivity at the transcriptional level that may underlie an impaired response to an acute psycho-physical stress. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.

  13. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  14. Stress Impairs Optimal Behavior in a Water Foraging Choice Task in Rats

    ERIC Educational Resources Information Center

    Graham, Lauren K.; Yoon, Taejib; Kim, Jeansok J.

    2010-01-01

    Stress is a biologically significant social-environmental factor that plays a pervasive role in influencing human and animal behaviors. While stress effects on various types of memory are well characterized, its effects on other cognitive functions are relatively unknown. Here, we investigated the effects of acute, uncontrollable stress on…

  15. Formation of hippocampal mHTT aggregates leads to impaired spatial memory, hippocampal activation and adult neurogenesis.

    PubMed

    Schwab, L C; Richetin, K; Barker, R A; Déglon, N

    2017-03-09

    Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by a triad of motor, psychiatric and cognitive deficits with the latter classically attributed to disruption of fronto-striatal circuits. However, emerging evidence suggests that some of the cognitive deficits in HD may have their origin in other structures including the hippocampus. Hippocampal abnormalities have been reported in HD mouse models particularly in terms of performance on the Morris Water Maze. However, in these animals, it is difficult to be certain whether the spatial memory deficits are due to local pathology within this structure or their poor mobility and motivation. Thus, a better model of hippocampal dysfunction in HD is needed especially given that we have previously shown that patients with HD have hippocampal-related problems from the very earliest stages of disease. In this study, our aim was therefore to understand the cellular and behavioural consequences of local overexpression of mutant huntingtin (mHTT) in the hippocampus of adult mice. We found that a targeted injection of a lentivirus, encoding an N-terminal of mHTT with 82 CAG repeats, into the murine hippocampus led to the focal formation of mHTT aggregates, long-term spatial memory impairments with decreased neurogenesis and expression of the immediate early gene c-fos. This study has therefore shown for the first time that local expression of mHTT in the dentate gyrus has deleterious effects, including its neurogenic capacity, with functional behavioural consequences, which fits well with recent data on hippocampal deficits seen in patients with HD.

  16. Simulated systemic recurrent Mycoplasma infection in rats induces recurrent sickness responses without residual impairment in spatial learning and memory.

    PubMed

    Swanepoel, Tanya; Harvey, Brian H; Harden, Lois M; Laburn, Helen P; Mitchell, Duncan

    2012-02-01

    In spite of their prevalence and importance, recurrent acute infections seldom have been investigated in the laboratory. We set out to measure fever and sickness behaviour in simulated recurrent Mycoplasma infection; Mycoplasma is a common clinical cause of recurrent acute infection. Male Sprague-Dawley rats had radiotransponders implanted to measure abdominal temperature and cage activity. After recovery, rats received three intraperitoneal (I.P.) injections, 10 days apart, of either fibroblast-stimulating lipopeptide-1 (FLS-1), a pyrogenic moiety of Mycoplasma salivarium, at a dose of 500 μg.kg(-1) in 1 ml.kg(-1) phosphate-buffered saline (PBS), or vehicle (PBS, 1 ml.kg(-1)). Body mass and food intake were measured daily. For measurement of learning and memory, training in a Morris Water Maze commenced 10 days after the last of the three successive injections and continued daily for 4 days. Spatial memory was assessed on the following day. Hippocampal tissue of rats was collected on the day of the last exposure to the maze. Recurrent FSL-1 administration induced recurrent fevers (~1°C) for about 9h, recurrent lethargy (~40-60%) for 1 day, recurrent anorexia (~16-30%) for 1 day, and recurrent reductions in the rate of mass gain (~112%) for 1 day, but did not induce persistent stunting. Recurrent FSL-1 administration did not result in tolerance to fever, lethargy or anorexia. There was no residual histological damage to the hippocampus and no residual detrimental effect in learning or memory in rats. Though we cannot extrapolate our results directly to humans, clinical recurrent acute Mycoplasma infection may not impose a high risk of stunting or impaired spatial learning and memory.

  17. Combined administration of alpha1-adrenoceptor antagonist prazosin and beta-blocker propranolol impairs spatial avoidance learning on a dry arena.

    PubMed

    Petrasek, Tomas; Doulames, Vanessa; Prokopova, Iva; Vales, Karel; Stuchlik, Ales

    2010-04-02

    Spatial learning is a widely studied type of animal behavior often considered as a model of higher human cognitive functions. Noradrenergic receptors play a modulatory role in many nerve functions, including vigilance, attention, reward, learning and memory. The present study aimed at studying the effects of separate or combined systemic administration of the alpha1-adrenergic antagonist prazosin (1 and 2 mg/kg) and beta-blocker propranolol (5 and 20 mg/kg) on the hippocampus-dependent learning in the active allothetic place avoidance (AAPA) task. Both centrally active drugs impaired spatial learning when administered together, exerting no effect in separate applications. Locomotion was impaired only in a combined application of higher doses of both drugs (2 mg/kg prazosin and 20 mg/kg propranolol). These results suggest an in vivo interaction between these two types of receptors in spatial navigation regulation.

  18. Prenatal stress disturbs hippocampal KIF17 and NR2B in spatial cognition in male offspring.

    PubMed

    Zhao, Depeng; Liu, Dan; Chen, Xueyu; Wang, Kai; Zhang, Ai; Kang, Jiuhong; Zhou, Qian; Duan, Tao

    2013-04-01

    Numerous studies have demonstrated that prenatal stress disturbs the hippocampal-mediated learning and memory processes in offspring. The underlying mechanisms for this effect, however, remain vague. It is well documented that N-methyl-D-aspartate (NMDA) receptors play a pivotal role in learning and memory, which are related to dynamically trafficking and regulating NMDA receptors by their response motor proteins. Over the past few years, increasing numbers of studies have elucidated that hippocampal-mediated learning and memory are regulated by KIF17 (kinesin superfamily motor protein 17), which specifically transports and regulates the NMDA receptor subunit NR2B in hippocampal neurons. The present study shows the influence of prenatal stress on KIF17 and NR2B expression and hippocampal NR2A/NR2B ratio partially reflecting function of KIF17, using mice as models. It was found that prenatal stress significantly decreased the hippocampal KIF17 and NR2B level in offspring at postnatal stages of 3 weeks and 9 weeks. Moreover, hippocampal KIF17 in the prenatally stressed pups continued to be weakened even after serial Morris water maze trainings, but not NR2B. Finally, the synaptic NR2A/NR2B level was upregulated in offspring exposed to prenatal stress, which revealed the dysfunction of KIF17. Thus, we conclude that prenatal stress leads to long-lasting deterioration of the expression and function of hippocampal KIF17 in offspring, which may be related to deficits of spatial cognition caused by prenatal stress. These data underpin the hypotheses that a physiopathology of neurodevelopmental origin in early life leads to defects in learning and memory in later life.

  19. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    PubMed

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (P<0.05). Socially defeated rats made significantly more errors in long term memory tests (P<0.05) as compared to control rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK1/2), and an inflammatory marker, interleukin (IL)-6 were activated (P<0.05), while the protein levels of glyoxalase (GLO)-1, glutathione reductase (GSR)-1, calcium/calmodulin-dependent protein kinase type (CAMK)-IV, cAMP-response-element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were significantly less (P<0.05) in the hippocampus, but not in the prefrontal cortex and amygdala of socially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats.

  20. Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: possible involvement of a brain-specific transcription factor Npas4.

    PubMed

    Yun, Jaesuk; Koike, Hiroyuki; Ibi, Daisuke; Toth, Erika; Mizoguchi, Hiroyuki; Nitta, Atsumi; Yoneyama, Masanori; Ogita, Kiyokazu; Yoneda, Yukio; Nabeshima, Toshitaka; Nagai, Taku; Yamada, Kiyofumi

    2010-09-01

    Neurogenesis in the hippocampus occurs throughout life in a wide range of species and could be associated with hippocampus-dependent learning and memory. Stress is well established to seriously perturb physiological/psychological homeostasis and affect hippocampal function. In the present study, to investigate the effect of chronic restraint stress in early life on hippocampal neurogenesis and hippocampus-dependent memory, 3-week-old mice were subjected to restraint stress 6 days a week for 4 weeks. The chronic restraint stress significantly decreased the hippocampal volume by 6.3% and impaired hippocampal neurogenesis as indicated by the reduced number of Ki67-, 5-bromo-2'-deoxyuridine- and doublecortin-positive cells in the dentate gyrus. The chronic restraint stress severely impaired hippocampus-dependent contextual fear memory without affecting hippocampus-independent fear memory. The expression level of brain-specific transcription factor neuronal PAS domain protein 4 (Npas4) mRNA in the hippocampus was down-regulated by the restraint stress or by acute corticosterone treatment. Npas4 immunoreactivity was detected in progenitors, immature and mature neurons of the dentate gyrus in control and stressed mice. Our findings suggest that the chronic restraint stress decreases hippocampal neurogenesis, leading to an impairment of hippocampus-dependent fear memory in mice. Corticosterone-induced down-regulation of Npas4 expression may play a role in stress-induced impairment of hippocampal function.

  1. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy

    PubMed Central

    Mao, Ke; Lei, Ding; Zhang, Heng; You, Chao

    2017-01-01

    The primary active component of black pepper is piperine, which is purified and used to treat epilepsy, achieving higher efficiency when purified. The present study was conducted to evaluate whether the anticonvulsant effect of piperine ameliorates pilocarpine-induced epilepsy, and to investigate the mechanism underlying these effects. Epilepsy was induced in Sprague Dawley rats using pilocarpine. Pilocarpine-induced epilepsy in the rats was treated with 40 mg/kg piperine for 45 consecutive days. Status epilepticus and a Morris water maze test were used to analyze the anticonvulsant effects of piperine in the epileptic rats. Inflammation and oxidative stress were then measured using commercially-available kits following piperine treatment. Lastly, the activity of caspase-3 and the protein expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were evaluated using commercially-available kits and western blot analysis, respectively. The results demonstrated that treatment with piperine was able to reduce the status epilepticus and prevented memory impairment following pilocarpine-induced epilepsy in rats. The anticonvulsant effects of piperine decreased inflammation and oxidative stress following pilocarpine-induced epilepsy in rats. The upregulated activity of caspase-3 and expression levels of Bax/Bcl-2 were suppressed following treatment with piperine in the rats with pilocarpine-induced epilepsy. These results suggest that the anticonvulsant effects of piperine ameliorate memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy. PMID:28352353

  2. CIA2 deficiency results in impaired oxidative stress response and enhanced intracellular basal UPR activity in Saccharomyces cerevisiae.

    PubMed

    Zhao, Wei; Zheng, Hua-Zhen; Niu, Yu-Jie; Yuan, Yuan; Fang, Bing-Xiong; Liu, Yi-Na; Cai, Lu-Hui; Zhou, Zhong-Jun; Liu, Xin-Guang

    2015-03-01

    Yeast Cia2p is a component of the cytosolic Fe/S protein assembly (CIA) machinery. Initial studies of the CIA machinery were performed in yeast, but the precise role of Cia2p in this eukaryote is still unknown. We report that CIA2 deficiency results in impaired oxidative stress response, as evidenced by increased sensitivity to the oxidant cumene hydroperoxide (CHP), impaired activities of superoxide dismutases and aconitase and decreased replicative lifespan in the mutants. Moreover, intracellular reactive oxygen species levels were significantly increased in CIA2-deficient cells after treatment with CHP. We also show that CIA2-deficient cells display an increased resistance to tunicamycin-induced endoplasmic reticulum (ER) stress, as evidenced by the upregulated splicing of the mRNA of HAC1, which encodes a functional transcription factor that regulates the transcription of unfolded protein response (UPR) target genes, suggesting enhanced intracellular UPR activity. Furthermore, the transcription of several canonical UPR target genes is strongly induced in CIA2-deficient cells as compared with wild-type controls. Taken together, these results suggest the involvement of Cia2p in oxidative and ER stress responses in yeast.

  3. Possible involvement of stress hormones and hyperglycaemia in chronic mild stress-induced impairment of immune functions in diabetic mice.

    PubMed

    Rubinstein, M R; Cremaschi, G A; Oliveri, L M; Gerez, E N; Wald, M R; Genaro, A M

    2010-09-01

    Stress, an important aspect of modern life, has long been associated with an altered homeostatic state. Little is known about the effect of the life stress on the outcome of diabetes mellitus, especially related to the higher risk of infections. Here, we evaluate the effects of chronic mild stress (CMS) exposure on the evolution of type I diabetes induced by streptozotocin administration in BALB/c mice. Exposure of diabetic mice to CMS resulted in a significant reduction of survival and a sustained increase in blood glucose values. Concerning the immune response, chronic stress had a differential effect in mice with diabetes with respect to controls, showing a marked decrease in both T- and B-cell proliferation. No correlation was found between splenic catecholamine or circulating corticosterone levels and the proliferative response. However, a significant negative correlation was found between glucose levels and concanavalin A- and lipopolysaccharide-stimulated proliferative responses of T and B cells. A positive correlation between blood glucose and splenic catecholamine concentrations was found in diabetic mice but not in controls subjected to CMS. Hence, the present report shows that diabetic mice show a worse performance in immune function after stress exposure, pointing to the importance of considering life stress as a risk factor for patients with diabetes.

  4. Aminoguanidine alleviated MMA-induced impairment of cognitive ability in rats by downregulating oxidative stress and inflammatory reaction.

    PubMed

    Li, Qiliang; Song, Wenqi; Tian, Ze; Wang, Peichang

    2017-02-13

    Methylmalonic acidemia (MMA) is the most common organic acidemia in childhood. Many "treated" patients continued to display various degrees of mental retardation and psychomotor delay, which could be caused by brain damage from elevated oxidative stress. Aminoguanidine (AG), a synthetic antioxidant, was tested in a MMA rat model for its potential therapeutic effects on memory impairment. The effects of AG on MMA-induced cognitive impairment in Wistar rats were evaluated with Morris Water Maze. The levels of nerve cell apoptosis and microglial activation were investigated to illustrate the mechanisms of the improvement of cognition with AG treatment in MMA rats. To further explore the mechanism of neuroprotection induced by AG, several biomarkers including free radicals and inflammatory cytokines in the hippocampus were quantified. The results showed that the rats treated with AG exhibited better neurological behavior performances than MMA model rats. The AG-treated rats had a decreased level of apoptosis of the hippocampal neurons, which could be the structural basis of the observed neural behavior protection. In addition, AG treatment significantly inhibited the activation of microglia. The AG-treated rats had decreased levels of IL-1β, IL-6, TNF-α, NO, malonaldehyde and iNOS activities in the hippocampus. The level of glutathione and superoxide dismutase activity in the hippocampus of the AG-treated rats increased significantly. In conclusion, AG could alleviate the MMA-induced cognitive impairment via down-regulating of oxidative stress and inflammatory reaction and provide a basis as a therapeutic potential against MMA-induced cognitive impairment.

  5. Morinda citrifolia fruit reduces stress-induced impairment of cognitive function accompanied by vasculature improvement in mice.

    PubMed

    Muto, Junko; Hosung, Lee; Uwaya, Akemi; Isami, Fumiyuki; Ohno, Makoto; Mikami, Toshio

    2010-09-01

    The purpose of this study was to investigate effects of Morinda citrifolia fruit juice, which is locally called Noni, on stress-induced impairment of cognitive function. Male ICR mice were divided into four groups: Control (C mice), Restraint stress (RS mice), Restraint+Noni (Noni mice), and Restraint+vitamin E (VE mice). The RS, Noni, and VE mice were subjected to 8h of chronic restraint stress (CRS) 6days a week for 6weeks. During this period, the Noni and VE mice were given a diet supplemented with either Noni or vitamin E, respectively. At Week 5, the mice were subjected to the Morris water maze (MWM) test to measure cognitive function. At Week 7, mouse brains were isolated for immunohistochemical analysis with BrdU or CD31 antibody to assess the proliferation of new cells and blood vessel density in the dentate gyrus of the hippocampus. The time taken to reach the platform in the MWM test was shorter in the Noni mice than in the RS mice on Day 16. Malondialdehyde (MDA ) level of the Noni mice was significantly higher than that of the C mice; however no difference was found in MDA levels between the VE and C mice. Blood vessel area was significantly lower in the R and VE mice than in the C mice; no difference was found between the C and Noni mice. These findings suggest that the administration of Noni fruit juice protects brains from stress-induced impairment of cognitive function and that this protective effect may be related to improvement in stress-induced decreases in blood vessel density in the hippocampal dentate gyrus.

  6. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory.

    PubMed

    Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie

    2016-10-01

    in dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAA R δ subunit containing receptors in dentate gyrus granule cells. © 2016 Wiley Periodicals, Inc.

  7. Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction

    PubMed Central

    Mdaki, Kennedy S.; Larsen, Tricia D.; Wachal, Angela L.; Schimelpfenig, Michelle D.; Weaver, Lucinda J.; Dooyema, Samuel D. R.; Louwagie, Eli J.

    2016-01-01

    Offspring of diabetic pregnancies are at risk of cardiovascular disease at birth and throughout life, purportedly through fuel-mediated influences on the developing heart. Preventative measures focus on glycemic control, but the contribution of additional offenders, including lipids, is not understood. Cellular bioenergetics can be influenced by both diabetes and hyperlipidemia and play a pivotal role in the pathophysiology of adult cardiovascular disease. This study investigated whether a maternal high-fat diet, independently or additively with diabetes, could impair fuel metabolism, mitochondrial function, and cardiac physiology in the developing offspring's heart. Sprague-Dawley rats fed a control or high-fat diet were administered placebo or streptozotocin to induce diabetes during pregnancy and then delivered offspring from four groups: control, diabetes exposed, diet exposed, and combination exposed. Cardiac function, cellular bioenergetics (mitochondrial stress test, glycolytic stress test, and palmitate oxidation assay), lipid peroxidation, mitochondrial histology, and copy number were determined. Diabetes-exposed offspring had impaired glycolytic and respiratory capacity and a reduced proton leak. High-fat diet-exposed offspring had increased mitochondrial copy number, increased lipid peroxidation, and evidence of mitochondrial dysfunction. Combination-exposed pups were most severely affected and demonstrated cardiac lipid droplet accumulation and diastolic/systolic cardiac dysfunction that mimics that of adult diabetic cardiomyopathy. This study is the first to demonstrate that a maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancies through metabolic stress and serves as a critical step in understanding the role of cellular bioenergetics in developmentally programmed cardiac disease. PMID:26801311

  8. Spatial learning and memory impairments are associated with increased neuronal activity in 5XFAD mouse as measured by manganese-enhanced magnetic resonance imaging

    PubMed Central

    Gu, Li-Hua; Nie, Bin-Bin; Qi, Xin-Yang; Wang, Yan-Juan; Wu, Fang-Fang; Li, Xiao-Li; Bai, Feng; Chen, Xiao-Chun; Xu, Lin; Ren, Qing-Guo; Zhang, Zhi-Jun

    2016-01-01

    Dysfunction of neuronal activity is a major and early contributor to cognitive impairment in Alzheimer's disease (AD). To investigate neuronal activity alterations at early stage of AD, we encompassed behavioral testing and in vivo manganese-enhanced magnetic resonance imaging (MEMRI) in 5XFAD mice at early ages (1-, 2-, 3- and 5-month). The 5XFAD model over-express human amyloid precursor protein (APP) and presenilin 1 (PS1) harboring five familial AD mutations, which have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β. In the Morris water maze, 5XFAD mice showed longer escape latency and poorer memory retention. In the MEMRI, 5XFAD mice showed increased signal intensity in the brain regions involved in spatial cognition, including the entorhinal cortex, the hippocampus, the retrosplenial cortex and the caudate putamen. Of note, the observed alterations in spatial cognition were associated with increased MEMRI signal intensity. These findings indicate that aberrant increased basal neuronal activity may contribute to the spatial cognitive function impairment at early stage of AD, and may further suggest the potential use of MEMRI to predict cognitive impairments. Early intervention that targets aberrant neuronal activity may be crucial to prevent cognitive impairment. PMID:27542275

  9. Effects of electroacupuncture on ethanol-induced impairments of spatial learning and memory and Fos expression in the hippocampus in rats.

    PubMed

    Lu, Bin; Ma, Zhao; Cheng, Fei; Zhao, Yan; Zhang, Xin; Mao, Huijuan; Shen, Xueyong; Liu, Sheng

    2014-07-25

    It is well established that alcohol impairs spatial learning and memory. Here, we investigated the effects of electroacupuncture (EA) at ST36 or nonacupoint on ethanol-induced learning and memory impairment and the expression of Fos in the hippocampus. Ethanol (5g/kg) was administered intragastrically once a day for 5 consecutive days; 2Hz EA was administered immediately after ethanol exposure. After a 2-day ethanol abstinence, for 6 consecutive days, the rats were submitted to Morris water maze training. Probe trials were performed on 1 day after the final training session. We also applied immunohistochemistry to detect Fos-positive nuclei in the hippocampus. We found that 5-day ethanol exposure markedly decreased spatial learning and memory abilities in the Morris water maze task as indicated by escape latency and time in the target quadrant. EA treatment shortened the time of reaching platform and increased times traveled in the target quadrant (P<0.05). Animals administered with ethanol emitted significantly fewer Fos expression in the hippocampal CA1 area. EA increased Fos expression in the hippocampal CA1 area. Significant correlations were obtained between Fos protein expression in CA1 and time in the target quadrant. Altogether, these results suggest that EA protects against ethanol-induced impairments of spatial learning and memory, which may be involved in the hippocampal CA1 area. EA treatment may provide a novel nonpharmacological strategy for ethanol-induced learning and memory impairment.

  10. Physiological stress response, reflex impairment and delayed mortality of white sturgeon Acipenser transmontanus exposed to simulated fisheries stressors

    PubMed Central

    McLean, Montana F.; Hanson, Kyle C.; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Nettles, Taylor L.; Litvak, Matt K.; Crossin, Glenn T.

    2016-01-01

    White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations

  11. Physiological stress response, reflex impairment and delayed mortality of white sturgeon Acipenser transmontanus exposed to simulated fisheries stressors.

    PubMed

    McLean, Montana F; Hanson, Kyle C; Cooke, Steven J; Hinch, Scott G; Patterson, David A; Nettles, Taylor L; Litvak, Matt K; Crossin, Glenn T

    2016-01-01

    White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations.

  12. Chronic psychological stress impairs recovery of muscular function and somatic sensations over a 96-hour period.

    PubMed

    Stults-Kolehmainen, Matthew A; Bartholomew, John B; Sinha, Rajita

    2014-07-01

    The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function and somatic sensations: perceived energy, fatigue, and soreness, in a 4-day period after a bout of strenuous resistance exercise. Undergraduate resistance training students (n = 31; age, 20.26 ± 1.34 years) completed the Perceived Stress Scale and the Undergraduate Stress Questionnaire, a measure of life event stress. At a later visit, they performed an acute heavy-resistance exercise protocol (10 repetition maximum [RM] leg press test plus 6 sets: 80-100% of 10RM). Maximal isometric force (MIF), perceived energy, fatigue, and soreness were assessed in approximately 24-hour intervals after exercise. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (p = 0.027) and squared (p = 0.031) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Perceived energy (p = 0.038), fatigue (p = 0.040), and soreness (p = 0.027) all were moderated by life stress. Mean perceived stress modulated linear and squared recovery of MIF (p < 0.001) and energy (p = 0.004) but not fatigue or soreness. In all analyses, higher stress was associated with worse recovery. Stress, whether assessed as life event stress or perceived stress, moderated the recovery trajectories of muscular function and somatic sensations in a 96-hour period after strenuous resistance exercise. Therefore, under conditions of inordinate stress, individuals may need to be more mindful about observing an appropriate length of recovery.

  13. Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: exploring relations with theory of mind, episodic memory, and episodic future thinking.

    PubMed

    Lind, Sophie E; Williams, David M; Raber, Jacob; Peel, Anna; Bowler, Dermot M

    2013-11-01

    Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills--that is, difficulties generating cognitive maps of the environment--and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed.

  14. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice.

    PubMed

    Nagata, Kazufumi; Nakashima-Kamimura, Naomi; Mikami, Toshio; Ohsawa, Ikuroh; Ohta, Shigeo

    2009-01-01

    We have reported that hydrogen (H(2)) acts as an efficient antioxidant by gaseous rapid diffusion. When water saturated with hydrogen (hydrogen water) was placed into the stomach of a rat, hydrogen was detected at several microM level in blood. Because hydrogen gas is unsuitable for continuous consumption, we investigated using mice whether drinking hydrogen water ad libitum, instead of inhaling hydrogen gas, prevents cognitive impairment by reducing oxidative stress. Chronic physical restraint stress to mice enhanced levels of oxidative stress markers, malondialdehyde and 4-hydroxy-2-nonenal, in the brain, and impaired learning and memory, as judged by three different methods: passive avoidance learning, object recognition task, and the Morris water maze. Consumption of hydrogen water ad libitum throughout the whole period suppressed the increase in the oxidative stress markers and prevented cognitive impairment, as judged by all three methods, whereas hydrogen water did not improve cognitive ability when no stress was provided. Neural proliferation in the dentate gyrus of the hippocampus was suppressed by restraint stress, as observed by 5-bromo-2'-deoxyuridine incorporation and Ki-67 immunostaining, proliferation markers. The consumption of hydrogen water ameliorated the reduced proliferation although the mechanistic link between the hydrogen-dependent changes in neurogenesis and cognitive impairments remains unclear. Thus, continuous consumption of hydrogen water reduces oxidative stress in the brain, and prevents the stress-induced decline in learning and memory caused by chronic physical restraint. Hydrogen water may be applicable for preventive use in cognitive or other neuronal disorders.

  15. On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece

    NASA Astrophysics Data System (ADS)

    Kassaras, Ioannis; Kapetanidis, Vasilis; Karakonstantis, Andreas

    2016-10-01

    We analyzed a large number of focal mechanisms and relocated earthquake hypocenters to investigate the geodynamics of western Greece, the most seismically active part of the Aegean plate-boundary zone. This region was seismically activated multiple times during the last decade, providing a large amount of enhanced quality new information that was obtained by the Hellenic Unified Seismological Network (HUSN). Relocated seismicity using a double-difference method appears to be concentrated above ∼35 km depth, exhibiting spatial continuity along the convergence boundary and being clustered elsewhere. Earthquakes are confined within the accreted sediments escarpment of the down-going African plate against the un-deformed Eurasian hinterland. The data arrangement shows that Pindos constitutes a seismic boundary along which large stress heterogeneities occur. In Cephalonia no seismicity is found to be related with the offshore Cephalonia Transform Fault (CTF). Onshore, Nsbnd S crustal extension dominates, while in central and south Peloponnesus the stress field appears rotated by 90°. Shearing-stress obliquity by 30° is indicated along the major strike-slip faults, consistent with clockwise crustal rotation. Within the lower crust, the stress field appears affected by plate kinematics and distributed deformation of the lower crust and upper mantle, which guide the regional geodynamics.

  16. Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN2 expression in the PFC in rats.

    PubMed

    Luo, Pan; Chen, Cheng; Lu, Yun; Fu, TianLi; Lu, Qing; Xu, Xulin; Li, Changjun; He, Zhi; Guo, Lianjun

    2016-07-15

    Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH.

  17. D-cycloserine into the BLA reverses the impairing effects of exposure to stress on the extinction of contextual fear, but not conditioned taste aversion.

    PubMed

    Akirav, Irit; Segev, Amir; Motanis, Helen; Maroun, Mouna

    2009-11-01

    We investigated whether the N-methyl-D-aspartate (NMDA) receptor partial agonist D-cycloserine (DCS, 20 microg/side) microinfused into the basolateral amygdala (BLA) would reverse stress-induced impairment of extinction in two aversive learning paradigms: contextual fear conditioning and conditioned taste aversion (CTA). We found that DCS in the BLA show differential involvement in the extinction of these two paradigms and in its modulation of stress-induced impairment of extinction. This may suggest that the dysfunctional extinction of fear and taste aversion following exposure to a stressful experience may be modulated by different mechanisms.

  18. The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2016-10-01

    Either developmental lead or ethanol exposure can impair learning and memory via induction of oxidative stress, which results in neuronal damage. we examined the effect of combined exposure with lead and ethanol on spatial learning and memory in offspring and oxidative stress in hippocampus. Rats were exposed to lead (0.2% in drinking water) or ethanol (4 g/kg) either individually or in combination in 5th day gestation through weaning. On postnatal days (PD) 30, rats were trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done. Also, oxidative stress markers in the hippocampus were also evaluated. Results demonstrated that lead + ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. There was significant decrease in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and increase of malondialdehyde (MDA) levels in hippocampus of animals co-exposed to lead and ethanol compared with their individual exposures. We suggest that maternal consumption of ethanol during lead exposure has pronounced detrimental effects on memory, which may be mediated by oxidative stress.

  19. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1-42 oligomers in rats.

    PubMed

    Budni, J; Feijó, D P; Batista-Silva, H; Garcez, M L; Mina, F; Belletini-Santos, T; Krasilchik, L R; Luz, A P; Schiavo, G L; Quevedo, J

    2017-03-27

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The main hallmarks of this disease include progressive cognitive dysfunction and an accumulation of soluble oligomers of β-amyloid (Aβ) 1-42 peptide. In this research, we show the effects of lithium and memantine on spatial memory and neuroinflammation in an Aβ1-42 oligomers-induced animal model of dementia in rats. Aβ 1-42 oligomers were administered intrahippocampally to male wistar rats to induce dementia. Oral treatments with memantine (5mg/kg), lithium (5mg/kg), or both drugs in combination were performed over a period of 17days. 14days after the administration of the Aβ1-42 oligomers, the radial arm-maze task was performed. At the end of the test period, the animals were euthanized, and the frontal cortex and hippocampus were removed for use in our analysis. Our results showed that alone treatments with lithium or memantine ameliorate the spatial memory damage caused by Aβ1-42. The animals that received combined doses of lithium and memantine showed better cognitive performance in their latency time and total errors to find food when compared to the results from alone treatments. Moreover, in our study, lithium and/or memantine were able to reverse the decreases observed in the levels of interleukin (IL)-4 that were induced by Aβ1-42 in the frontal cortex. In the hippocampus, only memantine and the association of memantine and lithium were able to reverse this effect. Alone doses of lithium and memantine or the association of lithium and memantine caused reductions in the levels of IL-1β in the frontal cortex and hippocampus, and decreased the levels of TNF-α in the hippocampus. Taken together, these data suggest that lithium and memantine might be a potential therapy against cognitive impairment and neuroinflammation induced by Aβ1-42, and their association may be a promising alternative to be investigated in the treatment of AD-like dementia.

  20. Lidocaine Injections Targeting CA3 Hippocampus Impair Long-Term Spatial Memory and Prevent Learning-Induced Mossy Fiber Remodeling

    PubMed Central

    Holahan, Matthew R.; Routtenberg, Aryeh

    2010-01-01

    Learning a spatial location induces remodeling of the mossy fiber terminal field (MFTF) in the CA3 subfield of the dorsal hippocampus (Holahan et al., 2006; Ramirez-Amaya et al., 2001; Rekart et al., 2007a). These fibers appear to grow from the stratum lucidum (SL) into distal stratum oriens (dSO). Is this axonal growth dependent on ‘repeated and persistent’ neural activity in the CA3 region during training? To address this issue, we targeted local inactivation of the MFTF region in a post-training, consolidation paradigm. Male Wistar rats, bilaterally implanted with chronic indwelling cannulae aimed at the MFTF CA3 region, were trained on a hidden platform water maze task (10 trials per day for 5 days). Immediately after the 10th trial on each training day, rats were injected with lidocaine (4% w/V; 171 mM; n = 7) or phosphate-buffered saline (PBS; n = 7). Behavioral measures of latency, path length and thigmotaxis were recorded, as was directional heading. A retention test (probe trial) was given 7 days after the last training day and brains were subsequently processed for MFTF distribution (Timm’s stain) and cannula location. Lidocaine treatment was found to block the learning-associated structural remodeling of the MFTF that was reported previously and observed in the PBS-injected controls. During training, the lidocaine group showed elevated latencies and a misdirected heading to locate the platform on the first trial of each training day. On the 7-day retention probe trial, the lidocaine-injected group showed poor retention indicated by the absence of a search bias in the area where the platform had been located during training. These data suggest that reduction of neuronal activity in the CA3 region impairs long-term storage of spatial information. As this was associated with reduced MFTF structural remodeling, it provides initial anatomical and behavioral evidence for an activity – dependent, presynaptic growth model of memory. PMID:20865723

  1. Inhibiting 11β-hydroxysteroid dehydrogenase type 1 prevents stress effects on hippocampal synaptic plasticity and impairs contextual fear conditioning.

    PubMed

    Sarabdjitsingh, R Angela; Zhou, Ming; Yau, Joyce L W; Webster, Scott P; Walker, Brian R; Seckl, Jonathan R; Joëls, Marian; Krugers, Harm J

    2014-06-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes intracellular regeneration of corticosterone and cortisol, thereby enhancing glucocorticoid action. Inhibition of 11β-HSD1 reverses the deficits in cognition with aging, a state of elevated glucocorticoid levels. However, any impact of 11β-HSD1 inhibition during high glucocorticoid states in younger animals is unknown. Here we examined whether a single injection of the selective 11β-HSD1 inhibitor UE2316 modifies the effect of stress on hippocampal long-term potentiation and fear conditioning, a learning paradigm that is strongly modulated by glucocorticoids. We found that novelty stress suppresses hippocampal synaptic potentiation. This effect was completely prevented by administration of UE2316 one hour before stress exposure. A single injection of UE2316 also impaired contextual, but not tone-cue-fear conditioning. These observations suggest that local metabolism of glucocorticoids is relevant for the outcome of stress effects on hippocampal synaptic plasticity and contextual fear conditioning. Selective 11β-HSD1 inhibitors may be an interesting new approach to the prevention of trauma-associated psychopathology.

  2. Nicotine versus 6-hydroxy-l-nicotine against chlorisondamine induced memory impairment and oxidative stress in the rat hippocampus.

    PubMed

    Hritcu, Lucian; Ionita, Radu; Motei, Diana Elena; Babii, Cornelia; Stefan, Marius; Mihasan, Marius

    2017-02-01

    6-Hydroxy-l-nicotine (6HLN), a nicotine derivative from nicotine degradation by Arthrobacter nicotinovorans pAO1 strain was found to improve behavioral deficits and to reverse oxidative stress in the rat hippocampus. Rats were given CHL (10mg/kg, i.p.) were used as an Alzheimer's disease-like model. The nicotine (0.3mg/kg) and 6HLN (0.3mg/kg) were administered alone or in combination in the CHL-treated rats. Memory-related behaviors were evaluated using Y-maze and radial arm-maze tests. The antioxidant enzymes activity and the levels of the biomarkers of oxidative stress were measured in the hippocampus. Statistical analyses were performed using two-way ANOVA and Tukey's post hoc test. F values for which p<0.05 were regarded as statistically significant. CHL-caused memory deficits and oxidative stress enhancing were observed. Both nicotine and 6HLN administration attenuated the cognitive deficits and recovered the antioxidant capacity in the rat hippocampus of the CHL rat model. Our results suggest that 6HLN versus nicotine confers anti-amnesic properties in the CHL-induced a rat model of memory impairment via reversing cholinergic function and decreasing brain oxidative stress, suggesting the use of this compound as an alternative agent in AD treatment.

  3. Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics.

    PubMed

    Swomley, Aaron M; Butterfield, D Allan

    2015-10-01

    Alzheimer disease (AD) is a neurodegenerative disease with many known pathological features, yet there is still much debate into the exact cause and mechanisms for progression of this degenerative disorder. The amyloid-beta (Aβ)-induced oxidative stress hypothesis postulates that it is the oligomeric Aβ that inserts into membrane systems to initiate much of the oxidative stress observed in brain during the progression of the disease. In order to study the effects of oxidative stress on tissue from patients with AD and amnestic mild cognitive impairment (MCI), we have developed a method called redox proteomics that identifies specific brain proteins found to be selectively oxidized. Here, we discuss experimental findings of oxidatively modified proteins involved in three key cellular processes implicated in the pathogenesis of AD progression: energy metabolism, cell signaling and neurotransmission, as well as the proteasomal degradation pathways and antioxidant response systems. These proteomics studies conducted by our laboratory and others in the field shed light on the molecular changes imposed on the cells of AD and MCI brain, through the deregulated increase in oxidative/nitrosative stress inflicted by Aβ and mitochondrial dysfunction.

  4. Stress impairs new but not established relationships in seasonally social voles.

    PubMed

    Anacker, Allison M J; Reitz, Kara M; Goodwin, Nastacia L; Beery, Annaliese K

    2016-03-01

    Affiliative social relationships are impacted by stressors and can shape responses to stress. However, the effects of stress on social relationships in different contexts are not well understood. Meadow voles provide an opportunity to study these effects on peer relationships outside of a reproductive context. In winter months, female meadow voles cohabit with peers of both sexes, and social huddling is facilitated by exposure to short, winter-like day lengths in the lab. We investigated the role of stress and corticosterone (cort) levels in social behavior in short day-housed female meadow voles. A brief forced swim elevated cort levels, and we assessed the effects of this stressor on new and established relationships between females. In pairs formed following exposure to swim stress, the stressor significantly reduced the fraction of huddling time subjects spent with a familiar partner. Swim stress did not affect partner preferences in pairs established prior to the stressor. Finally, we examined fecal glucocorticoid metabolite levels via immunoassay in voles housed under short day (10h light) versus long day (14 h light) conditions and detected higher glucocorticoid levels in long day-housed voles. These findings support a role for stress regulation in the formation of social relationships in female meadow voles, and are consistent with a potential role for seasonal variation in cort in the behavioral transition from solitary to social. Together they highlight the importance of stress and possibly glucocorticoid signaling for social behavior.

  5. N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice.

    PubMed

    Cao, L; Li, L; Zuo, Z

    2012-09-18

    Oxidative stress contributes significantly to brain aging. Animals lacking glutamate transporter type 3 (EAAT3) have a decreased level of glutathione, the major intracellular anti-oxidant, in neurons, and present with early onset of brain aging including brain atrophy and cognitive impairment at 11 months of age. Here, 12-month-old male EAAT3 knockout mice received intraperitoneal injection of N-acetylcysteine (NAC) at 150 mg/kg once every day for 4 weeks. NAC is a membrane permeable cysteine precursor that can work as a substrate for glutathione synthesis. EAAT3 knockout mice that received saline injection or did not receive any injection were also included in the study. EAAT3 knockout mice had significantly less freezing behavior than age- and gender-matched wild-type mice in context- and tone-related fear conditioning tests. The knockout mice also had decreased levels of glutathione and increased levels of 4-hydroxy-2-nonenal and proteins containing nitrotyrosine, indicators of oxidative stress, in the cerebral cortex and hippocampus. NAC but not saline injection attenuated these behavioral and biochemical changes in the EAAT3 knockout mice. These results suggest that improvement of anti-oxidative capacity in neurons reverses the existing cognitive impairment in aging brains, implying a potential role of glutathione replacement in cognitive improvement of aging population.

  6. Panchagavya Ghrita, an Ayurvedic formulation attenuates seizures, cognitive impairment and oxidative stress in pentylenetetrazole induced seizures in rats.

    PubMed

    Joshi, R; Reeta, K H; Sharma, S K; Tripathi, M; Gupta, Y K

    2015-07-01

    Panchagavya Ghrita (PG), according to Ayurvedic formulary of India (AFI), is used to treat epilepsy (apasmara), fever (jvara), mania (unmade) and jaundice (kamala). In the present study, we examined its effect on convulsions, oxidative stress and cognitive impairment in pentylenetetrazole (PTZ) induced seizures in rats. PG @ 250, 500, 1000, 2000 and 4000 mg/kg was administered orally for 7 days to male Wistar rats. On day 7, PTZ (60 mg/kg) was injected intraperitoneally 2 h after the last dose of PG. Sodium valproate (300 mg/kg) was used as positive control. Latency to myoclonic jerks, clonus and generalized tonic clonic seizures (GTCS) were recorded for seizure severity. Cognitive impairment was assessed using elevated plus maze and passive avoidance tests. Malondialdehyde and reduced glutathione levels were measured in rat brain. The results have shown that pretreatment with PG @ 500, 1000, 2000 and 4000 mg/kg exhibited 16.6, 33.3, 50 and 100% protection against occurrence of GTCS. The pretreatment with PG has significantly improved cognitive functions and the oxidative stress induced by seizures demonstrating its protective effect against PTZ induced seizures, and further, use of PG as an anticonvulsant in Ayurvedic system of medicine.

  7. Icariside II Effectively Reduces Spatial Learning and Memory Impairments in Alzheimer's Disease Model Mice Targeting Beta-Amyloid Production.

    PubMed

    Yan, Lingli; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Fei; Shi, Jingshan; Gong, Qihai

    2017-01-01

    Icariside II (ICS II) is a broad-spectrum anti-cancer natural compound extracted from Herba Epimedii Maxim. Recently, the role of ICS II has been investigated in central nervous system, especially have a neuroprotective effect in Alzheimer's disease (AD). In this study, we attempted to investigate the effects of ICS II, on cognitive deficits and beta-amyloid (Aβ) production in APPswe/PS1dE9 (APP/PS1) double transgenic mice. It was found that chronic ICS II administrated not only effectively ameliorated cognitive function deficits, but also inhibited neuronal degeneration and reduced the formation of plaque burden. ICS II significantly suppressed Aβ production via promoting non-amyloidogenic APP cleavage process by up-regulating a disintegrin and metalloproteinase domain 10 (ADAM10) expression, inhibited amyloidogenic APP processing pathway by down-regulating amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1) expression in APP/PS1 transgenic mice. Meanwhile, ICS II attenuated peroxisome proliferator-activated receptor-γ (PPARγ) degradation as well as inhibition of eukaryotic initiation factor α phosphorylation (p-eIF2α) and PKR endoplasmic reticulum regulating kinase phosphorylation (p-PERK). Moreover, phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a possible therapeutic target for cognitive enhancement via inhibiting Aβ levels, and we also found that ICS II markedly decreased phosphodiesterase-5A (PDE5A) expression. In conclusion, the present study demonstrates that ICS II could attenuate spatial learning and memory impairments in APP/PS1 transgenic mice. This protection appears to be due to the increased ADAM10 expression and decreased expression of both APP and BACE1, resulting in inhibition of Aβ production in the hippocampus and cortex. Inhibition of PPARγ degradation and PERK/eIF2α phosphorylation are involved in the course, therefore suggesting that ICS II might be a promising

  8. Impaired hippocampus-dependent spatial flexibility and sociability represent autism-like phenotypes in GluK2 mice.

    PubMed

    Micheau, Jacques; Vimeney, Alice; Normand, Elisabeth; Mulle, Christophe; Riedel, Gernot

    2014-09-01

    Autism is a complex neurodevelopmental disorder with high heritability. grik2 (which encodes the GluK2 subunit of kainate receptors) has been identified as a susceptibility gene in Autism Spectrum Disorders (ASD), but its role in the core and associated symptoms of ASD still remains elusive. We used mice lacking GluK2 (GluK2 KO) to examine their endophenotype with a view to modeling aspects of autism, including social deficits, stereotyped and repetitive behavior and decreased cognitive abilities. Anxiety was recorded in the elevated plus maze, social behavior in a three-chamber apparatus, and cognition in different water maze protocols. Deletion of the GluK2 gene reduced locomotor activity and sociability as indicated by the social interaction task. In addition, GluK2 KO mice learnt to locate a hidden platform in a water maze surrounded by a curtain with hanging cues faster than wild-type mice. They maintained a bias toward the target quadrant when some of these cues were removed, at which point wild-types orthogonalized the behavior and showed no memory. However, GluK2 KO mice were impaired in spatial reversal learning. These behavioral data together with previously published electrophysiology showing severe anomalies in CA3 network activity, suggest a computational shift in this network for enhanced propensity of pattern completion that would explain the loss of behavioral flexibility in GluK2 KO mice. Although a single mutation cannot recapitulate the entire core symptoms of ASD, our data provide evidence for glutamatergic dysfunction underlying a number of social- and cognition-related phenotypes relevant to ASD.

  9. Chronic Stress Induces a Hyporeactivity of the Autonomic Nervous System in Response to Acute Mental Stressor and Impairs Cognitive Performance in Business Executives

    PubMed Central

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance. PMID:25807003

  10. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    PubMed

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance.

  11. Stress Changes the Spatial Arrangement of Neurons and Glial Cells of Medial Prefrontal Cortex and Sertraline and Curcumin Prevent It

    PubMed Central

    Noorafshan, Ali; Abdollahifar, Mohammad-Amin

    2015-01-01

    Objective The present study explored the three-dimensional spatial arrangements of the neurons and glial cells within the medial prefrontal cortex (mPFC) of rats. Methods It evaluated the arrangement for differences after stress with or without treatment with curcumin and sertraline using second-order stereology. Orientator method was applied to obtain isotropic uniform random sections of mPFC. The pair correlation g(r) and cross-correlation functions were estimated by counting dipole probes superimposed on histological sections of mPFC. Results The mean total volume of neurons and glial cells was 0.80 (0.05) and 0.40 (0.07), respectively in the control group. The corresponding values decreased by 50% in the stressed group. The curve of g(r) for the neurons and glial cells showed a wider gap between the stressed rats' mPFC. Theses indicate a negative correlation (repulsion) between the neurons and glial cells in the stressed rats. Evaluation of the cross-correlation function of the neurons and glial cells also showed a negative correlation in the stressed group. The estimated values of the global degree of order in the spatial point pattern for neurons and glial cells were 0.62 and 0.20 in control and stressed animals, respectively. Curcumin and sertraline protected the spatial arrangements of the cells after stress induction in rats. In addition, the volume of the neurons and glial cells remained unchanged after stress. Conclusion Dissociation of the neurons and glial cells can is seen at some places in the stressed rats' cortex. However, the spatial arrangement of the cells was remained unchanged in curcumin+stress and sertraline+stress rats. PMID:25670949

  12. Impaired Spatial Category Representations in Williams Syndrome; an Investigation of the Mechanistic Contributions of Non-verbal Cognition and Spatial Language Performance.

    PubMed

    Farran, Emily K; Atkinson, Lauren; Broadbent, Hannah

    2016-01-01

    The aims of this study were to: provide a precise characterisation of spatial category representations in Williams syndrome (WS); to determine the nature of the mechanistic contributions from spatial language performance and non-verbal cognition to spatial category representations in WS; and to explore the stability of spatial category representations in WS using error analysis. Spatial category representation was assessed across nine spatial categories (In, On, Under, In Front, Behind, Above, Below, Left, and Right) using an odd-one-out task. The performance of individuals with WS (N = 24; 12;00 years;months to 30;07 years;months) was compared to data from typically developing children aged four to 7 years (N = 75), published in Farran and Atkinson (2016). The WS group performed at the level of typical 4- and 5-year-olds. Despite this low level of ability, they demonstrated typical variation in their representation of easier to harder spatial categories, in line with the spatial category representation model (Farran and Atkinson, 2016). Error analysis of broad category understanding (i.e., category understanding which includes non-prototypical category members), however, showed that errors reflected fewer guess responses than expected by chance in the WS group only, which could suggest strategic responding in this group. Developmental trajectory analyses demonstrated a significant contributing influence of both non-verbal mental age and spatial language ability in the TD group. For the WS group, non-verbal mental age significantly contributed to spatial category representations, whilst the contributing influence of spatial language ability was marginally significant. With reference to level of ability, spatial category representations in the WS group were consistently lower than would be expected for non-verbal mental age, but on a par with their (low) spatial language mental age. Spatial category representations in WS are discussed with reference to their

  13. Impaired Spatial Category Representations in Williams Syndrome; an Investigation of the Mechanistic Contributions of Non-verbal Cognition and Spatial Language Performance

    PubMed Central

    Farran, Emily K.; Atkinson, Lauren; Broadbent, Hannah

    2016-01-01

    The aims of this study were to: provide a precise characterisation of spatial category representations in Williams syndrome (WS); to determine the nature of the mechanistic contributions from spatial language performance and non-verbal cognition to spatial category representations in WS; and to explore the stability of spatial category representations in WS using error analysis. Spatial category representation was assessed across nine spatial categories (In, On, Under, In Front, Behind, Above, Below, Left, and Right) using an odd-one-out task. The performance of individuals with WS (N = 24; 12;00 years;months to 30;07 years;months) was compared to data from typically developing children aged four to 7 years (N = 75), published in Farran and Atkinson (2016). The WS group performed at the level of typical 4- and 5-year-olds. Despite this low level of ability, they demonstrated typical variation in their representation of easier to harder spatial categories, in line with the spatial category representation model (Farran and Atkinson, 2016). Error analysis of broad category understanding (i.e., category understanding which includes non-prototypical category members), however, showed that errors reflected fewer guess responses than expected by chance in the WS group only, which could suggest strategic responding in this group. Developmental trajectory analyses demonstrated a significant contributing influence of both non-verbal mental age and spatial language ability in the TD group. For the WS group, non-verbal mental age significantly contributed to spatial category representations, whilst the contributing influence of spatial language ability was marginally significant. With reference to level of ability, spatial category representations in the WS group were consistently lower than would be expected for non-verbal mental age, but on a par with their (low) spatial language mental age. Spatial category representations in WS are discussed with reference to their

  14. ER stress and impaired autophagy flux in neuronal degeneration and brain injury.

    PubMed

    Yin, Yan; Sun, George; Li, Eric; Kiselyov, Kirill; Sun, Dandan

    2017-03-01

    Autophagy is a highly controlled lysosome-mediated function in eukaryotic cells to eliminate damaged or aged long-lived proteins and organelles. It is required for restoring cellular homeostasis in cell survival under multiple stresses. Autophagy is known to be a double-edged sword because too much activation or inhibition of autophagy can disrupt homeostatic degradation of protein and organelles within the brain and play a role in neuronal cell death. Many factors affect autophagy flux function in the brain, including endoplasmic reticulum (ER) stress, oxidative stress, and aging. Newly emerged research indicates that altered autophagy flux functionality is involved in neurodegeneration of the aged brain, chronic neurological diseases, and after traumatic and ischemic brain injuries. In search to identify neuroprotective agents that may reduce oxidative stress and stimulate autophagy, one particular neuroprotective agent docosahexaenoic acid (DHA) presents unique functions in reducing ER and oxidative stress and modulating autophagy. This review will summarize the recent findings on changes of autophagy in aging, neurodegenerative diseases, and brain injury after trauma or ischemic strokes. Discussion of DHA functions is focused on modulating ER stress and autophagy in regard to its neuroprotection and anti-tumor functions.

  15. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood.

    PubMed

    Oomen, Charlotte A; Soeters, Heleen; Audureau, Nathalie; Vermunt, Lisa; van Hasselt, Felisa N; Manders, Erik M M; Joëls, Marian; Lucassen, Paul J; Krugers, Harm

    2010-05-12

    Early life stress increases the risk for developing stress-related pathologies later in life. Recent studies in rats suggest that mild early life stress, rather than being overall unfavorable, may program the hippocampus such that it is optimally adapted to a stressful context later in life. Here, we tested whether this principle of "adaptive programming" also holds under severely adverse early life conditions, i.e., 24 h of maternal deprivation (MD), a model for maternal neglect. In young adult male rats subjected to MD on postnatal day 3, we observed reduced levels of adult hippocampal neurogenesis as measured by cell proliferation, cell survival, and neuronal differentiation. Also, mature dentate granule cells showed a change in their dendritic morphology that was most noticeable in the proximal part of the dendritic tree. Lasting structural changes due to MD were paralleled by impaired water maze acquisition but did not affect long-term potentiation in the dentate gyrus. Importantly, in the presence of high levels of the stress hormone corticosterone, even long-term potentiation in the dentate gyrus of MD animals was facilitated. In addition to this, contextual learning in a high-stress environment was enhanced in MD rats. These morphological, electrophysiological, and behavioral observations show that even a severely adverse early life environment does not evolve into overall impaired hippocampal functionality later in life. Rather, adversity early in life can prepare the organism to perform optimally under conditions associated with high corticosteroid levels in adulthood.

  16. Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice.

    PubMed

    Akatsu, Shigemi; Ishikawa, Chihiro; Takemura, Kaori; Ohtani, Akiko; Shiga, Takashi

    2015-12-01

    Environmental factors during perinatal period have various effects on behavior. The present study examined the effects of prenatal stress and neonatal handling on anxiety and spatial learning of offspring. Prenatal stress increased anxiety-related behavior of adult offspring, whereas neonatal handling had no effect. In contrast, spatial learning was not affected by prenatal stress, but improved by neonatal handling in both prenatally stressed and non-stressed mice. Next, to elucidate possible brain mechanisms mediating effects of environmental factors on behavior, we focused on serotonin (5-HT) system in the frontal cortex and hippocampus which is involved in anxiety and learning. We examined effects of environmental factors on the mRNA expression of 5-HT1A, 5-HT2A and 5-HT2C receptors in the frontal cortex and hippocampus during postnatal period and adulthood. Both prenatal stress and neonatal handling altered the mRNA expression of 5-HT receptors. These effects were dependent on environmental factors, brain regions and developmental stages. In summary, the present study revealed that prenatal stress and neonatal handling had differential effects on anxiety and spatial learning of offspring, and concomitantly the expression of 5-HT receptors. It was also shown that the effects of prenatal stress on 5-HT system were recovered partially by neonatal handling.

  17. Psychological wellbeing of Turkish university students with physical impairments: an evaluation within the stress-vulnerability paradigm.

    PubMed

    Koca-Atabey, Mujde; Karanci, A Nuray; Dirik, Gulay; Aydemir, Deniz

    2011-04-01

    Generally, universities in developing countries offer little in the way of provisions and support (material, emotional, etc.) for disabled students. Therefore, disabled students experience considerable burdens and barriers in their educational life. This study investigated the psychological wellbeing of disabled Turkish university students by examining influences on stress-related growth and psychological distress. Disability is defined within the framework of a social model. According to this view, impairment refers to the functional limitation(s) that affect(s) a person's body, whereas disability refers to the loss or limitation of opportunities owing to social, physical or psychological obstacles. Seventy disabled university students with physical impairments were administered a questionnaire package, including a sociodemographic information sheet, Ways of Coping Questionnaire, Stress-Related Growth Scale, Multidimensional Scale of Social Support, Life Events Inventory, and Brief Symptom Inventory. Snowball sampling was used and voluntary participation was essential. The results showed that disability burden, daily hassles, and helplessness coping were significant predictors of psychological symptoms. For stress-related growth the only variable that appeared significant was problem-solving coping. The results pointed out that there may be different pathways to distress and growth. In order to decrease psychological distress and enhance growth in disabled university students, disability awareness programs, changes in the barriers in the academic and physical environments of the university campuses, and coping skills training to increase problem-focused coping and to combat helplessness may prove to be effective. Reducing daily hassles for the disabled students is likely to contribute to their wellbeing by decreasing their burdens. Also, a more disability-friendly environment is likely to be empowering for disabled university students.

  18. The hormone therapy, Premarin, impairs hippocampus-dependent spatial learning and memory and reduces activation of new granule neurons in response to memory in female rats.

    PubMed

    Barha, Cindy K; Galea, Liisa A M

    2013-03-01

    Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.

  19. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    PubMed Central

    Paul, Saswati; Jeon, Won Kyung; Bizon, Jennifer L.; Han, Jung-Soo

    2015-01-01

    A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD), and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA) axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine (ACh), glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, to which could help decipher disease states and propose leads for pharmacological intervention. PMID:25883567

  20. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment.

    PubMed

    Paul, Saswati; Jeon, Won Kyung; Bizon, Jennifer L; Han, Jung-Soo

    2015-01-01

    A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role