Science.gov

Sample records for stress induced martensitic

  1. Magnetic indication of the stress-induced martensitic transformation in ferromagnetic Ni Mn Ga alloy

    NASA Astrophysics Data System (ADS)

    Heczko, O.; L'vov, V. A.; Straka, L.; Hannula, S.-P.

    2006-07-01

    A quantitative study of the stress-induced martensitic transformation in Ni 49.7Mn 29.1Ga 21.2 magnetic shape memory alloy has been carried out in two different ways: the first way is based on the measurements of saturation magnetization under variable mechanical stress and the second one is founded on the quantitative theoretical treatment of experimental stress-strain loops. A functional dependence between the volume fraction of transformed martensite and applied stress has been determined from both magnetization and strain values. A quantitative agreement between the functions determined in two different ways has been observed, and hence, the effectiveness of the magnetic indication of the stress-induced martensitic transformations has been proved. This method can be used to monitor stress-induced transformations in martensitic films, needles and small specimens.

  2. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  3. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  4. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  5. Stress-induced martensite variant reorientation in magnetic shape memory Ni Mn Ga single crystal studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Molnar, P.; Sittner, P.; Lukas, P.; Hannula, S.-P.; Heczko, O.

    2008-06-01

    Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal was studied in situ by the neutron diffraction technique. Principles of determination of individual tetragonal martensitic variants in shape memory alloys are explained. Using neutron diffraction we show that the macroscopic strain originates solely from the martensite structure reorientation or variant redistribution. Neutron diffraction also reveals that the reorientation of martensite is not fully completed even at a stress value of 25 MPa, which is about 20 times larger than the mean stress needed for reorientation. Only one twinning system is active during the reorientation process.

  6. On the mechanism of two way shape memory effect obtained by stabilized stress induced martensite

    SciTech Connect

    Guilemany, J.M.; Fernandez, J. . Dept. de Ingenieria Quimica y Metalurgia)

    1994-02-01

    Two way shape memory effect (TWME) can be obtained by suitable thermomechanical processing which involve repetitive training routines. J. Perkins found that TWME take place as a result of a macroscopic non-uniform residual stress field, concluding that plastic deformation was necessary to get TWME. K. Enami et al found that complex dislocations arrays are generated by thermomechanical cycling during the training procedure. TWME results obtained by the above training methods are not as good as would be expected, because during the thermal cycles, above and below A[sub f] and M[sub f] respectively, new dislocations are generated which interact with the dislocations that control TWME so giving a loss of TWME. A different training method has been developed by J.M. Guilemany et al based on the stabilization of stress induced martensite variants (SSIM). This method has been derived from the observation made by J. Perkins and R.O. Sponholz who found that retained (not stabilized) martensite acts as a nucleation site of thermal martensite. Thus, during cooling the stabilized martensite would grow or influence the nucleation and growth of the thermal martensite giving TWME. The effect of training temperature, time and stress on TWME obtained by SSIM has been studied.

  7. Stress-induced martensitic transformation in Ni-Ti(-Cu) interlayers controlling stress distribution in functional coatings during sliding

    NASA Astrophysics Data System (ADS)

    Callisti, M.; Polcar, T.

    2015-01-01

    The stress-induced martensitic transformation occurring in sputter-deposited Ni48.1Ti51.9 and Ni43.4Ti49.6Cu7 interlayers, integrated in a W-S-C/Ni-Ti(-Cu) bilayer design, was investigated by transmission electron microscopy, after these bilayers were subjected to different sliding conditions. Martensitic bands across the interlayers were formed depending on the sliding direction with their shape and distribution a function primarily of both applied normal load and grain size. The Ni48.1Ti51.9 interlayer (lateral grain size of ∼3 μm) showed well oriented and ordered martensitic bands extended through the interlayer thickness under low load (5 N). At a higher load (18 N) the growth of these bands was limited by the stabilised martensite formed as a consequence of the high compressive stress, at the interface with the substrate. The Ni43.4Ti49.6Cu7 interlayer (lateral grain size of ∼650 nm) exhibited no significant evidence of stabilised martensite under different loading conditions. The martensitic transformation was limited by the smaller grain size and most of the stress was relaxed by elastic and, to some extent, pseudo-elastic deformation of the austenitic phase. Grain boundaries were found to stop the growth of martensitic bands, thus limiting the activation of the martensitic transformation into the neighbouring grains during sliding. The grain refinement caused a change in the capability of the interlayer to relax shear and compressive stresses. Such a change was found to affect the formation of the WS2-rich tribolayer on the W-S-C sliding surface, and consequently the shear stress transmitted down throughout the bilayers thickness. Accordingly, different levels of deformation were observed on the top layer.

  8. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2013-04-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  9. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2014-01-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  10. Trigger Stress for Stress-Induced Martensitic Transformation during Tensile Deformation in Ti-Al-Nb Alloys: Effect of Grain Size

    NASA Astrophysics Data System (ADS)

    Paradkar, Archana; Kamat, S. V.; Gogia, A. K.; Kashyap, B. P.

    2008-03-01

    The effect of β grain size on trigger stress for stress-induced martensitic transformation during tensile deformation in Ti-Al-Nb alloys was investigated. The trigger stress for stress-induced martensitic transformation (SIMT) in Ti-Al-Nb alloys exhibited a U-shaped behavior with variation in grain size. The variation of trigger stress with grain size was explained qualitatively, in terms of the contrasting change in the internal elastic energy stored in matrix due to formation of martensite (Δ E el ) and the irreversible work done in overcoming the internal frictional resistance to phase boundary movement (∂ E irr) with β grain size.

  11. Development of Stress-Induced Martensitic Transformation in TiNi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pieczyska, Elzbieta Alicja; Staszczak, Maria; Dunić, Vladimir; Slavković, Radovan; Tobushi, Hisaaki; Takeda, Kohei

    2014-07-01

    TiNi shape memory alloy (SMA) was subjected to tension at strain-controlled test on quasistatic testing machine. The nucleation, development, and saturation of the stress-induced martensitic transformation were investigated, taking into account the obtained dependency of mechanical parameters and the specimen temperature changes measured by an infrared camera (IR). Three kinds of data obtained by the IR system were analyzed: the temperature distribution on the SMA sample surface, the temperature changes derived as average from the chosen sample area, and the temperature profiles obtained along the sample length. The temperature distribution shows nucleation of the transformation process and a creation of the transformation bands. The average temperature reflects the effects of thermomechanical coupling, accompanying exothermic martensitic forward and endothermic reverse transformation. The temperature profiles revealed the temperature difference between the band and the rest of the sample. The experimental results were supported with finite element method numerical analysis (FEM). The FEM software components for structural and heat transfer problems, coupled in partitioned approach, were used for thermomechanical analysis.

  12. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-08-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  13. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  14. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure.

    PubMed

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  15. Stress-induced martensitic transformation and impact toughness of cast irons and high-carbon Fe-Ni-C steel

    NASA Astrophysics Data System (ADS)

    Zhang, M.-X.; Kelly, P. M.

    2001-11-01

    The relationship between the impact toughness and stress-induced martensitic transformation, which occurs during the impact process, has been studied in white cast irons and an Fe-Ni-C alloy at different temperatures. The experimental results have shown that in the brittle white cast irons, the stress-induced martensitic transformation makes a positive contribution to the impact toughness, and lowering the stability of austenite increases the toughness. In contrast, the transformation makes a negative contribution to the toughness of high-carbon austenitic steels, and lowering the stability of austenite decreases the toughness. The present work supports the early theory[1] that the magnitude of the toughness change depends on the fracture properties of the new phase and the energy being dissipated during the transformation process. Using the crystallographic model for the stress-induced martensitic transformation, which was originally developed in ceramics and was then refined and extended to irons and steels, the effect of the stress-induced martensitic transformation on the impact toughness can be predicted.

  16. An energy criterion for the stress-induced martensitic transformation in a ductile system

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Weng, G. J.

    1994-11-01

    An energy criterion is developed to calculate the stress-strain behavior of a ductile system involving martensitic transformation under the application of stress. The martensitic inclusions are taken to develop from the ductile austenitic matrix due to the reduction in the Gibbs free energy, which consists of the chemical free energy and the surface energy of the parent and product phases, and the mechanical potential energy of the nonlinear system. The inclusions thus formed are assumed to be thin spheroidal platelets, randomly oriented in the matrix, each possessing a normal and shear component of transformation strain. A micromechanical theory is established to determine the nonlinear potential energy and the change in Gibbs free energy of the two-phase system at a given stage of transformation. It is found that the stressstrain behavior of the metastable system is the outcome of two competing effects, one from the ductility due to the plastic deformation of the ductile matrix and the phase transformation strain of the martensite inclusions, and the other from the stiffness due to the purely elastic response of the transformed martensites. While the ductility prevails in the early stage of deformation the stiffening effect later becomes more dominant with increasing amount of transformation. The resulting stress-strain curve then exhibits the familiar sigmoidal shape, characteristically different from that of an ordinary ductile phase. The theory does not assume any a priori law for the evolving volume fraction of the martensite ; it is calculated incrementally based on the change of Gibbs free energy between the current and the transformed state. Nor does the theory assume any a priori flow rule for the transformation strains, which are calculated strictly from the lattice parameters of the parent and transformed phase. Comparison with some available experimental data for the stress-strain behavior of a TRIP steel and the corresponding evolution of the

  17. Stressed microstructures in thermally induced M9R M18R martensites

    NASA Astrophysics Data System (ADS)

    Balandraud, Xavier; Zanzotto, Giovanni

    2007-01-01

    We revisit the phase transformation that produces 'long-period stacking' M9R-M18R martensites in Cu-based shape-memory alloys and analyze some associated microstructures, in particular, the typical wedge-shaped configuration. Our basic premise is that the cubic-to-monoclinic martensitic phase change in these alloys is, geometrically, but a slight modification of the well-known bcc-to-9R transformation occurring in various elemental crystals, whose lattice strain is, at the microlevel, the same Bain strain as for the bcc-to-fcc transformation. For the memory alloys we thus determine the 'near-Bain' microstrain, thereby analyzing the faulted, long-period stacking martensite as a mesoscale structure derived from compatibility with the austenite. We compute the transformation-twin systems, habit planes, average deformation and stacking-fault density of the 9R, 18R, M9R or M18R martensites, as they arise from the compatibility conditions between the parent and product lattices. We confirm earlier conclusions that a stress-free wedge is not kinematically compatible in these materials. However, we show that this microstructure is 'close enough' to compatibility, finding that its stress levels are low and should cause only minimal plastification and damage in the crystal. The wedge is therefore rationalized as a viable path for the transformation also in these substances. We verify this to hold for all the lattice parameters reported for Cu-based alloys. In general, we conclude that martensitic microstructures can be stressed to a degree also in good memory materials. Furthermore, we find that the lattice-parameter relations, guaranteeing the zero-stress compatibility of special configurations favoring the transformation and its reversibility, do not need to be strictly enforced in these crystals, because the residual stresses in microstructures are low regardless of lattice-parameter values.

  18. THE EFFECT OF REPEATED COMPRESSIVE DYNAMIC LOADING ON THE STRESS-INDUCED MARTENSITIC TRANSFORMATION IN NiTi SHAPE MEMORY ALLOYS

    SciTech Connect

    D. MILLER; W. THISSELL; ET AL

    2000-08-01

    It has been shown that quasi-static, cyclic, isothermal mechanical loading influences the mechanical response of the stress-induced martensitic transformation in fully annealed NiTi Shape Memory Alloys (SMAs). As the cycle number increases, hardening of the stress-strain response during the martensitic phase transformation is seen along with a decrease in the threshold stress for initiation of stress-induced martensite. Also, the amount of plastic strain and detwinned martensitic strain decreases as the cycle number increases. However, NiTi SMAs have not been experimentally explored under high compressive strain rates. This research explores the cyclic near-adiabatic stress-induced martensitic loading using a Split Hopkinskin Pressure Bar (SHPB). The results of the dynamic loading tests are presented with emphasis on the loading rate, stress-strain response, specimen temperature and post-test microstructural evaluation. The results from the high strain rate tests show similarities with the quasi-static results in the hardening of the stress-strain response and shifting of the threshold stress for initiation of stress-induced martensite.

  19. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    SciTech Connect

    Vaidyanathan, R.; Bourke, M.A.M.; Dunand, D.C.

    1998-12-31

    Superelastic NiTi (51.0 at% Ni) with 0, 10 and 20 vol% TiC particles were deformed under uniaxial compression as neutron diffraction spectra were simultaneously obtained. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. A detailed Rietveld determination is made of the phase fractions and the evolving strains in the reinforcing TiC particles and the austenite as it transforms to martensite on loading (and its subsequent back transformation on unloading). These strains are used to shed light on the phenomenon of load transfer in composites where the matrix undergoes a stress-induced phase transformation.

  20. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression

    SciTech Connect

    Orgeas, L.; Favier, D.

    1998-09-18

    The thermomechanical behavior of stress-induced martensitic transformation in an equiatomic NiTi alloy was investigated with respect to different deformation modes including uniaxial tension, compression and shear of plate specimens at different temperatures above the M{sub s} temperature. Results showed that loading conditions have significant influences on the deformation behavior of the alloy. In particular, deformation behavior was observed to be asymmetric in tension and in compression. The physical origins of such an asymmetry ar explored. Comparison among the results obtained from the tension, compression and shear tests disproves the use of classical Von Mises equivalent in the modelling of the three-dimensional behavior of martensitic transformation in this alloy. Based on this analysis, another criterion for yielding, which involves the third stress invariant, is therefore suggested.

  1. Stress-Induced Martensite in Front of Crack Tips in NiTi Shape Memory Alloys: Modeling Versus Experiments

    NASA Astrophysics Data System (ADS)

    Maletta, C.; Young, M. L.

    2011-07-01

    NiTi-based shape memory alloys (SMAs) exhibit an unusual stress distribution at the crack tip as compared to common engineering materials, due to a stress-induced martensitic transformation resulting from highly localized stresses. Understanding the fracture mechanics of NiTi-based SMAs is critical to many of their applications. Here, we develop an analytical model, which predicts the boundaries of the transformation region in the crack tip vicinity of NiTi-based SMAs. The proposed model is based on a recent analytical approach which uses modified linear elastic fracture mechanics concepts to predict the crack tip stress distribution and transformation region in SMAs but, unfortunately, it applies only to the plane stress condition. To overcome this limitation, the proposed model accounts for stress triaxiality, which plays an important role in restricting crack tip plastic deformations in common ductile metals as well as the stress-induced martensite in NiTi SMAs. The effects of triaxial stress at the crack tip are taken into account by including a new parameter, the transformation constraint factor, which is based on the plastic constraint factor of elasto-plastic materials. The predictions of the model are compared with synchrotron x-ray micro-diffraction observations and satisfactory agreement is observed between the two results. Finally, the evolution of crack tip transformation boundaries during fracture tests of miniature compact tension specimens is predicted and the effects of applied load and crack length are discussed.

  2. A Stress-Induced Martensitic Transformation in Aged Ti49Ni51 Alloy after High-Velocity Impact

    PubMed Central

    Zhu, Yingying; Wang, Haizhen; Gao, Zhiyong; Cai, Wei

    2016-01-01

    The effects of a high-velocity impact on the microstructure, phase transformation and mechanical property of aged Ti49Ni51 alloy are investigated. The transformation behavior and microstructure along the impact direction after impact emerge with regionalization characteristics, including a deformed region near the crater (0–4 mm) and an un-deformed region of the distal crater (5–6 mm). Stress-induced martensite is the main deformation mechanism in the deforming region of aged Ti49Ni51 alloy under high-velocity impact. PMID:28773622

  3. A Stress-Induced Martensitic Transformation in Aged Ti49Ni51 Alloy after High-Velocity Impact.

    PubMed

    Zhu, Yingying; Wang, Haizhen; Gao, Zhiyong; Cai, Wei

    2016-06-23

    The effects of a high-velocity impact on the microstructure, phase transformation and mechanical property of aged Ti49Ni51 alloy are investigated. The transformation behavior and microstructure along the impact direction after impact emerge with regionalization characteristics, including a deformed region near the crater (0-4 mm) and an un-deformed region of the distal crater (5-6 mm). Stress-induced martensite is the main deformation mechanism in the deforming region of aged Ti49Ni51 alloy under high-velocity impact.

  4. Stress-induced martensitic transformation in high-strength [236]-oriented Ni51Ti36.5Hf12.5 single crystals

    NASA Astrophysics Data System (ADS)

    Surikov, N. Y.; Eftifeeva, A. S.; Panchenko, E. Yu; Chumlyakov, Yu I.

    2015-10-01

    The effects of heat treatment on the stress-induced B2-B19' martensitic transformations in the Ni51.0Ti36.5Hf12.5 single crystals oriented along [236] direction are studied. It is shown that in the annealed at 1323K for 4 h crystals, the temperature range of superelasticity increase almost twofold from 75K up to 135K as compared to the as-grown single crystal contained disperse particles of H-phase. The [236]-oriented Ni51.0Ti36.5Hf12.5 single crystals are characterized with high levels of applied compressive stress up to 1700 MPa in the as-grown state and 1900 MPa in annealed crystals for the completely reversible stress- induced B2-B19' martensitic transformation with reversible strain up to |εSE| =1.4%.

  5. The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis.

    PubMed

    Weafer, F M; Guo, Y; Bruzzi, M S

    2016-01-01

    NiTi׳s superelasticity is exploited in a number of biomedical devices, in particular self-expanding endovascular stents. These stents are often laser-cut from textured micro-tubing; texture is the distribution of crystallographic grain orientations in a polycrystalline material which has been experimentally shown to have a marked influence on mechanical properties. This study offers a computational examination into the effect of texture on the stress-induced martensite transformation (SIMT) in a micro-dogbone NiTi specimen subject to tensile loading. Finite Element Analysis (FEA) is employed to simulate the transformational behaviour of the specimen on a micro-scale level. To represent a realistic grain structure in the FEA model, grains present in a 200µm×290µm test site located at the centre edge of the specimen were identified using Scanning Electron Microscopy (SEM). Grains are assumed to have homogenous behaviour with properties varying according to their crystallographic orientation to the loading direction. Required material properties were extracted from uniaxial stress-strain curves of single crystals for each crystallographic orientation for input into the in-built UMAT/Nitinol. The orientation of each grain in the test site was identified using Electron Back-Scatter Diffraction (EBSD) techniques. In this way, a quantitative explanation is offered to the effect of crystallographic texture on SIMT. Finally, the evolution of grains in the specimen, during the transformation process, was experimentally investigated by means of an in-situ SEM tensile test.

  6. Shock-induced martensitic transformations in near-equiatomic NiTi alloys

    SciTech Connect

    Thakur, A.M.; Thadhani, N.N.; Schwarz, R.B.

    1997-07-01

    Shock-impact generated tensile-stress pulses were used to induce B2-to-monoclinic martensitic transformations in two near-equiatomic NiTi alloys having different martensite transformation start (M{sub s}) temperatures. The NiTi-I alloy (M{sub s} {approx} +27 C) impacted at room temperature at 2.0 and 2.7 GPa tensile stress-pulse magnitude, showed acicular martensite morphology. These martensite needles had a substructure containing microtwins, typical of stress-assisted martensite. The NiTi-II alloy (M{sub s} {approx} {minus}45 C) showed no martensite formation when shocked with tensile-stress pulses of 2 GPa. For tensile stresses of 4.1 GPa, the alloy showed spall initiation near the region of maximum tensile-stress duration. In addition, monoclinic martensite needles, with a well-defined dislocation substructure, typical of strain-induced martensite, were seen clustering around the spall region. No stress-assisted martensite was formed in this alloy due to its very low M{sub s} temperature. The present article documents results of the use of a metallurgical technique for generating large-amplitude tensile stress pulses of finite duration for studies of phase transformations involving changes from a high density to a low density state.

  7. Stress-induced martensitic transformation during tensile test of full-size TF conductor jacket tube at 4.2 K

    SciTech Connect

    Yang, H. H.; Li, S. P.; Wu, Z. X.; Huang, C. J.; Huang, R. J.; Li, L. F.

    2014-01-27

    The toroidal-field (TF) conductor jacket of International Thermonuclear Experimental Reactor (ITER) is made of modified 316LN stainless steel, which is influenced by heat treatment at approximately 650 °C for 200 h to produce Nb{sub 3}Sn superconducting materials at the final stage. Due to the high electromagnetic forces arising during magnet operation, higher mechanical properties of the jacket materials at cryogenic temperatures are required. In our work, mechanical properties of the full-size TF conductor jacket tube were investigated, which satisfied the ITER requirements. Stress-induced martensitic transformation mechanism during tensile test of the conductor jacket material at 4.2 K was characterized by means of in-situ temperature dependent XRD, vibrating sample magnetometer (VSM) and in conjunction with transmission electron microscopy (TEM). The tensile behavior related to the amount of stress-induced phase transformation at cryogenic temperature was also discussed.

  8. In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    SciTech Connect

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2016-01-10

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated prior to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.

  9. Strain-induced martensite to austenite reverse transformation in an ultrafine-grained Fe-Ni-Mn martensitic steel

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Koohdar, H. R.; Habibi-Parsa, M.; Nedjad, S. Hossein; Alidokht, S. A.; Langdon, Terence G.

    2014-05-01

    Research was conducted to evaluate the effect of heavy cold rolling on microstructural evolution in an Fe-10Ni-7Mn (wt.%) martensitic steel. The chemical driving force for the strain-induced martensite to austenite reverse transformation was calculated using thermodynamic principles and a model was developed for estimating the effect of applied stress on the driving force of the martensite to austenite reverse transformation through heavy cold rolling. These calculations show that, in order to make a reverse transformation feasible, the applied stress on the material should supply the total driving force, both chemical and non-chemical, for the transformation. It is demonstrated that after 60% cold rolling the required driving force for the reverse transformation may be provided. Experimental results, including cold rolling and transmission electron microscopy images, are utilized to verify the thermodynamic calculations.

  10. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai

    2015-07-01

    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.

  11. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  12. Evolution of Intergranular Stresses in a Martensitic and an Austenitic NiTi Wire during Loading-unloading Tensile Deformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Yu, C.; Daymond, M R; Ren, Y.

    2015-06-01

    In situ synchrotron X-ray diffraction testing was carried out on a martensitic and an austenitic NiTi wire to study the evolution of internal stresses and the stress-induced martensite (SIM) phase transformation during room temperature tensile deformation. From the point of lattice strain evolution, it is concluded that (1) for the martensitic NiTi wire, detwinning of the [011](B19') type II twins and the {010}(B19') compound twins is responsible for internal strains formed at the early stage of deformation. (2) The measured diffraction moduli of individual martensite families show large elastic anisotropy and strong influences of texture. (3) For the austenitic NiTi wire, internal residual stresses were produced due to transformation-induced plasticity, which is more likely to occur in austenite families that have higher elastic moduli than their associated martensite families. (4) Plastic deformation was observed in the SIM at higher stresses, which largely decreased the lower plateau stresses.

  13. The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.

    2017-07-01

    This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  14. The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.

    2017-10-01

    This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  15. Assessment of Pipe Coupling by Using the Recovery of Stress-Induced Martensites in Superelastic Cu-11.8Al-0.6Be-0.5Nb Alloy

    NASA Astrophysics Data System (ADS)

    de Oliveira, Danniel F.; Brito, Ieverton Caindre A.; França, Fabio José C.; de Lima, Severino Jackson G.; Mello, Tadeu Antonio A.; Gomes, Rodinei M.

    2017-05-01

    Superelastic Cu-11.8wt.%Al-0.6wt.%Be-0.5wt.%Nb shape memory alloy was tested under loading and unloading tensile tests at different temperatures and different strain rates of 5 × 10-4 s-1 and 1 × 10-5 s-1. The results of tests performed at 243 and 298 K demonstrate that this Cu-Al-Be alloy exhibits an appreciable amount of residual strain at room temperature, reaching strain levels as high as high as 4% when tested at 243 K for an imposed deformation of 7%. The residual stress associated with retained martensite is reverted by heating at the new austenite start ( A s) temperature, which is 60 °C higher than that of the initial alloy. In addition, with increasing temperature, the critical stress for the austenite → martensite transformation increases. Tube joining experiments show that the reversion of retained martensite is very effective to make pipe coupler fittings. The reversion of stress-induced martensite results in a coupling with a pull-out force equivalent to that obtainable by conventional shape memory effect.

  16. In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young's modulus [In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    SciTech Connect

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2015-11-04

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated prior to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.

  17. In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young's modulus [In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    DOE PAGES

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2015-11-04

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less

  18. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  19. An assessment of the influence of complex stress states on martensite start temperature

    SciTech Connect

    Todinov, M.T.; Knott, J.F.; Strangwood, M.

    1996-12-01

    In the present investigation a general model for predicting the influence of a complex stress state on the martensite start temperature of polycrystalline materials is proposed. An analytical equation linking the martensite start temperature and the principal stresses has been derived. It has been established that the martensite start temperature depends only on maximum and minimum principal stresses and is independent of the intermediate principal stress. Analytical relationships for the habit plane orientation of the first martensite plates to form have also been derived. The possible habit planes were found to be parallel to the direction of the intermediate principal stress. In cases where the magnitude of the stresses acting leads to relatively small changes in martensite start temperature, the general model can be simplified so that the shift in martensite start temperature can be presented as a linear function of maximum and minimum principal stresses.

  20. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-11-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  1. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  2. Field induced martensitic phase transition in nonstoichoimetric Ni45Mn44Sn11 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Chabri, T.; Venimadhav, A.; Nath, T. K.

    2017-05-01

    Nonstoichiometric high-Mn content Mn45Ni44Sn11 ferromagnetic shape memory alloys (FSMAs) were prepared by arc melting technique. First order transition near the martensitic transition (austenitic → martensitic) has been observed from magnetization, differential scanning calorimetry and resistivity measurements upon heating and cooling run. The austenitic phase was transformed into the martensitic phase, which means that these alloys have potential as FSMA applications. The shift of martensitic transition to the lower temperature with the magnetic field confirms the field induced martensitic transition. This signifies that the highly ordered austenitic phase can be arrested to the lower temperature with the application of magnetic field.

  3. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    SciTech Connect

    Ahn, T.-H.; Oh, C.-S.; Kim, D. H.; Oh, K. H.; Bei, Hongbin; George, Easo P; Han, H. N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  4. Electron backscattered diffraction study of ɛ/α' martensitic variants induced by plastic deformation in 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Gey, N.; Petit, B.; Humbert, M.

    2005-12-01

    The electron backscattered diffraction (EBSD) technique has been used to assess crystallographic features of the residual γ phase and the strain-induced ɛ/α' martensites in a 304 stainless steel, tensile tested to 10 pct strain at T=-60 °C. The martensitic transformation rate varies according to the γ-grain orientation against the applied stress and the γ-grain size. The α'-transformation textures as well as the γ-misorientation spreads observed in specific γ-grain orientations have been analyzed. Large misorientation spreads are observed in the less-transformed γ grains. This reveals an important crystallographic slip activity, even if less strain-induced martensite has been formed. A strong γ → α' variant selection was detected in the cube- and Goss-oriented γ grains for which the transformation is less developed. For the {110} <1-11> and copper-oriented γ grains, the amount of α' martensite is significantly higher and the γ → α' variant selection is less pronounced. This variant selection is then analyzed on at a local scale and is related to the presence of {111} γ localized deformation bands on which further ɛ/α' martensites have nucleated.

  5. Preferred orientation of rolling-induced \\varepsilon martensite in an Fe-Mn-Si alloy

    NASA Astrophysics Data System (ADS)

    Jee, K. K.; Jang, W. Y.; Chung, Y. H.

    2003-10-01

    Preferred orientation of \\varepsilon martensite induced by cold rolling is studied in an Fe-27Mn-3.5Si alloy. Since the flat rolling is essentially a plane strain condition, cold rolling is applied to induced the martensite. The alloy consists of stacking faults and thermal \\varepsilon martensite with some variants in γ matrix. By cold rolling, \\varepsilon martensite plates are preferably induced with a single variant, producing a preferred orientation. Rolling-induced \\varepsilon martensite is observed to possess a preferred orientation of (1013)\\varepsilon [3032]\\varepsilon. It is revealed that the [3032]\\varepsilon and normal direction of (1013)\\varepsilon experience the largest contraction and expansion, respectively, in γto\\varepsilon shear deformation when c/a is almost (8/3)^{1/2}.

  6. Dependence of the enthalpy of the direct martensitic transformation in titanium nickelide on the stress

    NASA Astrophysics Data System (ADS)

    Egorov, S. A.; Volkov, A. E.

    2017-02-01

    An original technique of differential thermal analysis for studying thermal properties of samples loaded with a tangential stress has been created. In a series of experiments studying the direct martensitic transformation B2 → B19' in titanium nickelide during cooling under constant stress, it has been found that the enthalpy of transformation linearly decreases with an increase in stress and, at a stress of 100 MPa, it is 30% less than that of the sample in a free state.

  7. High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional Ti-24Nb-4Zr-8Sn alloy

    SciTech Connect

    Liu, J. P.; Wang, Y. D.; Hao, Y. L.; Wang, H. L.; Wang, Y.; Nie, Z. H.; Su, R.; Wang, D.; Ren, Y.; Lu, Z. P.; Wang, J. G.; Hui, X. D.; Yang, R.

    2014-12-01

    Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at room temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Thermoelastic behaviour of martensitic alloy in the vicinity of critical point in the stress-temperature phase diagram

    NASA Astrophysics Data System (ADS)

    L'vov, V. A.; Matsishin, N.; Glavatska, N.

    2010-04-01

    The theoretical phase diagram of the shape memory alloy, which exhibits the first-order martensitic phase transition of the cubic-tetragonal type, has been considered. The thermoelastic behaviour of the ultra-soft Ni-Mn-Ga alloy in the vicinity of the endpoint of the phase transitions line has been modelled. To this end, the strain-temperature and stress-strain dependencies have been computed with the account of the temperature dependence of the elastic modulus of the alloy. Two important features of thermoelastic behaviour of the alloy have been disclosed: (1) even in the case of complete stress-induced martensitic transformation (MT), the MT strain determined from the length of the plateaus at the stress-strain curves is smaller than the 'spontaneous' tetragonal distortion of the crystal lattice, which arises on cooling of the alloy and (2) the stress-strain loops may include the plateau-like segment even at temperatures above the critical temperature, which corresponds to the endpoint of the stress-strain phase diagram. These features render the observation of the endpoint of phase transitions line impossible with the help of the stress-strain tests and make preferable the direct structural studies of MTs in the stressed single-crystalline specimens.

  9. International Conference on Martensitic Transformations (ICOMAT 92)

    DTIC Science & Technology

    1993-03-05

    of stress -induced (that is, occuring in the region ahead of a crack tip) t-ni martensitic transformation to fracture toughness Of ceramics is...discussed in detail. and considered that it is related to th differenet Initial stress iields Intr~odu4ed by the constrained- h 5tiR in the P"ent Phase...diffractometer, which makes the accurate determination of struc- tures possible for single crystal martensites produced by stress - induced transformation

  10. Stability of crystalline solids—II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal

    NASA Astrophysics Data System (ADS)

    Elliott, Ryan S.; Shaw, John A.; Triantafyllidis, Nicolas

    2006-01-01

    This paper applies the stability theory of crystalline solids presented in the companion paper (Part I) to the study of martensitic transformations found in shape memory alloys (SMA's). The focus here is on temperature-induced martensitic transformations of bi-atomic crystals under stress-free loading conditions. A set of temperature-dependent atomic potentials and a multilattice description are employed to derive the energy density of a prototypical SMA ( B2 cubic austenite crystal). The bifurcation and stability behavior are then investigated with respect to two stability criteria (Cauchy-Born (CB) and phonon). Using a 4-lattice description five different equilibrium crystal structures are predicted: B2 cubic, L10 tetragonal, B19 orthorhombic, Cmmm orthorhombic, and B19' monoclinic. For our chosen model only the B2 and B19 equilibrium paths have stable segments which satisfy both the CB- and phonon-stability criteria. These stable segments overlap in temperature indicating the possibility of a hysteretic temperature-induced proper martensitic transformation. The B2 and B19 crystal structures are common in SMA's and therefore the simulated jump in the deformation gradient at a temperature for which both crystals are stable is compared to experimental values for NiTi, AuCd, and CuAlNi. Good agreement is found for the two SMA's which have cubic to orthorhombic transformations (AuCd and CuAlNi).

  11. Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kosogor, Anna

    2016-06-01

    An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.

  12. Micromagnetic and Moessbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel

    SciTech Connect

    Meszaros, I.; Kaldor, M.; Hidasi, B.; Vertes, A.; Czako-Nagy, I.

    1996-08-01

    Strain-induced martensite in 18/8 austenitic stainless steel was studied. Magnetic measurements and Moessbauer spectroscopic investigations were performed to characterize the amount of {alpha}{prime}-martensite due to room-temperature plastic tensile loading. The effects of cold work and annealing heat treatment were explored using magnetic Barkhausen noise, saturation polarization, coercive force, hardness, and conversion electron Moessbauer spectroscopy. The suggested Barkhausen noise measurement technique proved to be a useful quantitative and nondestructive method for determining the ferromagnetic phase ratio of the studied alloy.

  13. Computer simulation of martensitic transformations in constrained, two-dimensional crystals under external stress

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Morris, J. W.

    1993-06-01

    This article reports a computer simulation study of the microstructures produced by martensitic transformations. In the present work, the transformation strain is dyadic, and the transformation is athermal and irreversible. The transformation occurs in a two-dimensional crystal that is constrained in a matrix that has no net transformation strain and may be subject to external stress. The crystal is divided into elementary cells. The transformation is simulated by computing the elastic strain energy in the linear elastic approximation and transforming the most-favored cell in each step to generate the minimum-energy transformation path. The simulation generates the microstructure at each step of the transformation and plots a temperature-transformation (TT) curve by computing the chemical driving force required to maintain the transformation and assuming that it is proportional to the undercooling. The results show that the matrix constraint causes complex, multivariant microstructures and separates M sand M f. Multiple variants partly relax the shear part of transformation strain but interfere so that the transformation is difficult to maintain. The dilational part of the transformation strain produces interesting microstructures, such as “butterfly martensite,” in partially transformed crystals. It also increases Δ M since it produces a hydrostatic stress that cannot be compensated by mixing variants. The applied stress can be divided into hydrostatic and deviatoric components. The hydrostatic component changes M swithout altering the microstructure or Δ M. The deviatoric stress changes the relative energies of the variants and produces a microstructure that is rich in the favored variant. It also increases Δ M, since single-variant transformations must be sustained against an accumulating, uncompensated shear. The thermal resistance (Δ M) increases with the magnitude of the deviatoric stress until a high-stress limit is reached and only one variant

  14. Computer simulation of martensitic transformations in constrained, two-dimensional crystals under external stress

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Morris, J. W.

    1993-06-01

    This article reports a computer simulation study of the microstructures produced by martensitic transformations. In the present work, the transformation strain is dyadic, and the transformation is athermal and irreversible. The transformation occurs in a two-dimensional crystal that is constrained in a matrix that has no net transformation strain and may be subject to external stress. The crystal is divided into elementary cells. The transformation is simulated by computing the elastic strain energy in the linear elastic approximation and transforming the most-favored cell in each step to generate the minimum-energy transformation path. The simulation generates the microstructure at each step of the transformation and plots a temperature-transformation (TT) curve by computing the chemical driving force required to maintain the transformation and assuming that it is proportional to the undercooling. The results show that the matrix constraint causes complex, multivariant microstructures and separates M sand M f. Multiple variants partly relax the shear part of transformation strain but interfere so that the transformation is difficult to maintain. The dilational part of the transformation strain produces interesting microstructures, such as "butterfly martensite," in partially transformed crystals. It also increases Δ M since it produces a hydrostatic stress that cannot be compensated by mixing variants. The applied stress can be divided into hydrostatic and deviatoric components. The hydrostatic component changes M swithout altering the microstructure or Δ M. The deviatoric stress changes the relative energies of the variants and produces a microstructure that is rich in the favored variant. It also increases Δ M, since single-variant transformations must be sustained against an accumulating, uncompensated shear. The thermal resistance (Δ M) increases with the magnitude of the deviatoric stress until a high-stress limit is reached and only one variant appears

  15. The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi. Part 2: Discussion of experimental results

    SciTech Connect

    Gall, K.; Sehitoglu, H.; Chumlyakov, Y.I.; Kireeva, I.V.; Maier, H.J.

    1999-01-01

    An experimental study was performed to determine the effect of aging on martensitic transformations in NiTi. Polycrystalline and single crystal NiTi ([100], [110], and [111] orientations) were both considered. Stress-induced transformations in single crystals of the [110] and [111] orientations. Solutionized and over-aged single crystals exhibited a strong orientation dependence of the critical stress required to trigger the transformation, {sigma}{sub cr}. The Schmid law was able to accurately predict the orientation dependence of {sigma}{sub cr} in the solutionized and over-aged single crystals. Peak-aged single crystals demonstrated a much weaker orientation dependence of {sigma}{sub cr} and in general, the Schmid law was not obeyed. By considering the local stress fields outside of the semi-coherent precipitates, the decrease in the orientation dependence of {sigma}{sub cr} was accounted for. The martensite start temperatures, M{sub s}, in aged single crystal and polycrystalline NiTi were much higher than in solutionized samples. In peak-aged NiTi the increase was primarily attributed to the local stress fields outside the coherent precipitates which create preferential nucleation sites for the martensite. In the over-aged NiTi the increase in M{sub s} was primarily attributed to the decrease in the average Ni concentration of the matrix surrounding the coarsened precipitates.

  16. Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Ungár, Tamás; Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Ribárik, Gábor; Shi, Zengmin

    2017-01-01

    Based on high-resolution neutron diffraction experiments, we will show that in lath martensite steels, the initially homogeneous dislocation structure, i.e., homogeneous on the length scale of grain size, is disrupted by plastic deformation, which, in turn, produces a composite on the length scale of martensite lath packets. The diffraction patterns of plastically strained martensitic steel reveal characteristically asymmetric peak profiles in the same way as has been observed in materials with heterogeneous dislocation structures. The quasi homogeneous lath structure, formed by quenching, is disrupted by plastic deformation producing a composite structure. Lath packets oriented favorably or unfavorably for dislocation glide become soft or hard. Two lath packet types develop by work softening or work hardening in which the dislocation densities become smaller or larger compared to the initial average dislocation density. The decomposition into soft and hard lath packets is accompanied by load redistribution and the formation of long-range internal stresses between the two lath packet types. The composite behavior of plastically deformed lath martensite opens a new way to understand the elastic-plastic response in this class of materials.

  17. Strain-Induced Martensite Formation and Recrystallization Behavior in 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Al-Fadhalah, Khaled J.

    2015-04-01

    The effect of recrystallization on the evolution of microstructure, texture, and mechanical properties has been examined in an AISI 304 stainless steel, subjected to strain-induced α '-martensite transformation and subsequent annealing. Samples were processed by cold rolling and subzero rolling to induce different amounts of α '-martensite, using three reductions of 20, 40, and 60%, and later solution annealed to ensure complete recrystallization. Large transformation to α '-martensite occurred for subzero-rolled samples at low reduction (20%), while only a gradual increase of α '-martensite in cold-rolled samples took place with the increasing rolling reduction. Results from electron back-scattered diffraction indicate that annealing of cold-rolled samples produces finer recrystallized grains with increasing rolling reduction, while the predominant formation of α '-martensite in subzero-rolled microstructures is believed to have strong effect on the production of similar grain size upon annealing. Twin-related Σ3 boundaries were formed during annealing with maximum fraction of 53%. These boundaries become longer, straighter, and less incorporated into grain boundary network with the increasing rolling reduction and/or using subzero rolling, demonstrating an indirect mechanism of grain boundary engineering. Also, annealing caused scattering around the rolling texture components (Brass, Goss, S, and Copper) and the recrystallization textures become more random with the increasing rolling reduction and/or using subzero rolling. Nevertheless, recrystallization textures of samples reduced by 60% show formation of Cube and Dillamore orientations and strengthening of Brass orientation. This is thought to contribute to the enhancement of the tensile strength and microhardness of annealed samples.

  18. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.

    PubMed

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-05

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  19. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  20. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    PubMed Central

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  1. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  2. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-02-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  3. The Impact of Martensite Deformation on Shape Memory Effect Recovery Strain Evolution

    NASA Astrophysics Data System (ADS)

    Lanba, Asheesh; Hamilton, Reginald F.

    2015-08-01

    The one-way shape memory effect of polycrystalline NiTi is investigated after differential levels of martensite deformation. Martensite naturally forms an energy-minimizing configuration, referred to as self-accommodated, of differently oriented martensite variants, which are internally twinned. Stress preferentially orients a select variant that eventually detwins and plastically deforms at the highest stress levels. In this work, the underlying morphology is ascertained based on the evolution of micro-scale deformation measurements using digital image correlation analysis of three characteristic material responses. An initial martensitic structure is deformed at constant temperature. The forward austenite-to-martensite and reverse martensite-to-austenite phase transformations take place during temperature cycling under a constant stress. The austenite-to-martensite transformation is tensile stress induced at a constant temperature and initiates via a localized strain band. For the conversion of self-accommodated martensite to orientated morphology and further deformation, spatially heterogeneous strains accrue over the entire specimen surface. Shape memory recovery during heating, on the other hand, culminates with a centralized strain localization that persists as recovery approaches completion. The recovery temperature differential ( A f - A s) depends on the extent of deformation. This work characterizes the influence of stress on phase transformation and martensite deformation morphology for deformation in the martensitic state compared to the stress-induced phase transformation.

  4. Characterization of strain-induced martensite phase in austenitic stainless steel using a magnetic minor-loop scaling relation

    SciTech Connect

    Kobayashi, Satoru; Saito, Atsushi; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2008-05-05

    We propose a combined magnetic method using a scaling power-law rule and initial permeability in magnetic minor hysteresis loops for characterization of ferromagnetic {alpha}{sup '} martensites in austenitic stainless steel. The scaling power law between the hysteresis loss and remanence is universal, being independent of volume fraction of strain-induced {alpha}{sup '} martensites. A coefficient of the power law largely decreases with volume fraction, while the initial permeability linearly increases, reflecting a change in the morphology and quantity of martensites, respectively. The present method is highly effective for integrity assessment of austenitic stainless steels because of the sensitivity and extremely low measurement field.

  5. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Lin, Dong; Suslov, Sergey; Cheng, Gary J.

    2012-08-01

    In this study, laser shock peening (LSP) was utilized to generate localized deformation induced martensite (DIM) in NiTi shape memory alloy. The DIM was investigated by x-ray diffraction and transmission electron microscopy. The effects of temperature and laser intensity on DIM transformation were investigated. It has been found that higher laser intensity and lower processing temperature leads to higher volume fraction of DIM. This is attributed to the increase of the chemical driving force and the increase in the density of potential martensite variant for martensite nucleation at low temperatures. The localized shape memory effect in micrometer scale after low temperature LSP has been evaluated.

  6. Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress

    NASA Astrophysics Data System (ADS)

    Liang, K. F.; Lin, Z. C.; Fung, P. C. W.; Zhang, J. X.

    1997-08-01

    In order to test the concept of the physics of dissipation during first-order phase transitions in solids, we measured the internal friction (Q-1) and the relative shear modulus (μ) during a thermoelastic martensitic transformation in a NiTi alloy. We adopted two approaches: temperature variation and application of external stress. This investigation of internal friction was carried out with various vibration frequencies ω, temperature variation rates T˙, and strain variation rates ɛ˙. The index l (coupling factor between phase interface and oscillating stress) and index n (rate exponent for the effective phase transformation driving force) have been calculated from the experimental data for each case and the values of l and n are about the same in the two (doped) NiTi samples, irrespective of whether the phase transition is driven by a temperature variation or stress induced process. We compare the values of n and l for the NiTi samples with that of the other samples (VO2 ceramics and FeMn alloys), reinforcing the previous physical interpretations of these indices. We believe the indices n and l are indeed fingerprints of first-order phase transitions in solids.

  7. Processing of Ultrafine-Grained Twinning-Induced Plasticity Steel Using Martensite Treatment

    NASA Astrophysics Data System (ADS)

    Dini, Ghasem; Zamani, Davood

    2017-07-01

    For the first time, martensite treatment was used to fabricate an ultrafine-grained (UFG) twinning-induced plasticity (TWIP) steel. The effects of cold rolling with 70 pct reduction at the liquid nitrogen temperature and subsequently annealing at 973 K (700 °C) for 5 to 20 minutes on the microstructure and mechanical properties of Fe-22Mn-0.4C-1.5Al-1Si TWIP steel were investigated. The results showed that a fully recrystallized UFG TWIP steel with a mean grain size of about 400 to 600 nm can be produced by the designed martensite treatment. The UFG TWIP steel exhibited high yield and tensile strengths and relatively high ductility.

  8. Phase field approach to martensitic phase transformations with large strains and interface stresses

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.

    2014-10-01

    Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit, which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp interface approach. Namely, for the propagating nonequilibrium interface, a structural part of the interface Cauchy stresses reduces to a biaxial tension with the magnitude equal to the temperature-dependent interface energy. Additional elastic and viscous contributions to the interface stresses do not require separate constitutive equations and are determined by solution of the coupled system of phase field and mechanics equations. Ginzburg-Landau equations are derived for the evolution of the order parameters and temperature evolution equation. Boundary conditions for the order parameters include variation of the surface energy during phase transformation. Because elastic energy is defined per unit volume of unloaded (intermediate) configuration, additional contributions to the Ginzburg-Landau equations and the expression for entropy appear, which are important even for small strains. A complete system of equations for fifth- and sixth-degree polynomials in terms of the order parameters is presented in the reference and actual configurations. An analytical solution for the propagating interface and critical martensitic nucleus which includes distribution of components of interface stresses has been found for the sixth-degree polynomial. This required resolving a fundamental problem in the interface and surface science: how to define the Gibbsian dividing surface, i.e., the sharp interface equivalent to the finite-width interface. An unexpected, simple solution was found utilizing the principle of static equivalence. In fact, even two equations for determination of the

  9. Temperature dependence of magnetically induced deformation of Ni-Mn-Ga martensite

    NASA Astrophysics Data System (ADS)

    L'Vov, V. A.; Glavatska, N.; Aaltio, I.; Söderberg, O.; Glavatskiy, I.; Hannula, S.-P.

    2008-05-01

    In the present work the contributions of the temperature-dependent (i) crystal lattice parameters (related to the magnetic anisotropy energy), (ii) Young's modulus, (iii) saturation magnetization and (iv) thermal fluctuations of the microstress to the temperature dependence of the magnetic field induced strain (MFIS) in Ni-Mn-Ga martensite are considered in the framework of a statistical model. Both individual and cooperative effects of these factors on the achievable MFIS value and on the characteristic values of the magnetic fields, which trigger and saturate MFIS, are estimated. It is shown that all the factors affect both the achievable MFIS value and characteristic fields under the real experimental conditions, and none of them can be neglected in the quantitative theoretical analysis of the experimental strain-field dependencies obtained for different temperature values. In addition, the influence of specimen shape on the characteristic fields is illustrated for different temperature values. For the available experimental dependencies (i) (iii) and the reasonable set of model parameters the switching magnetic field proved to be equal to 160 kA/m when the temperature was by 15 K below the martensite start temperature and raised to 320 kA/m when the temperature was by 45 K below the martensite start temperature. Obtained results agree with the experimental data reported by O. Heczko and L. Straka, in J. Appl. Phys. 94, 7139 (2003).

  10. Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steels

    SciTech Connect

    Figueroa, C. A.; Alvarez, F.; Mitchell, D. R. G.; Collins, G. A.; Short, K. T.

    2006-09-15

    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI{sup 3}) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the {alpha}{sup '}-martensite is degraded to{alpha}-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of Cr{sub x}C during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 deg. ) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 {mu}m)

  11. Shock-Induced Martensite Reversal in Fe/30%Ni.

    DTIC Science & Technology

    1980-02-14

    Reed (1961) (88) 95 8.032 2016 -- Graham et al. (1967) 95 8.020±.003 2315 541 1594 Present work 5 8.158 HuOoniot modulus: 1163 Graham et al. (1967) 95...stress deviators (Subroutine DEVIAT). h h T h AV Vh ,S Z At are transferred from F- subroutine EXSTAT2 a. - x h )a,, + xh bo = (1-x )b,, + xhb112 h hcp

  12. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    PubMed

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  13. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  14. Direct observation of temperature-/magnetic-field-induced transition between martensite and premartensite and their relaxation in Ni–Mn–In–Al alloy

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Xia, Z. C.; Wang, R. L.; Wei, M.; Jin, Z.; Huang, S.; Shang, C.; Wu, H.; Zhang, X. X.; Xiao, G. L.; Ouyang, Z. W.

    2017-04-01

    The microstructure evolution of the transition between premartensite and martensite in Ni50Mn34In15.5Al0.5 alloy was investigated directly by in situ optical microscope under various temperatures and pulsed magnetic fields. The microscopic observations at different temperatures indicate that the martensitic transition from premartensite to martensite and the reverse transition can be induced through cooling and heating respectively. A time-dependent relaxation phenomenon can be detected in the cooling process, in other words, the martensite continues to grow with holding time at temperatures between the martensite start and finish temperature, and the relaxation time to the equilibrium state at temperatures near the martensitic transition finishing temperature is shorter than that at higher temperatures. Reverse martensitic transition from martensite to premartensite induced by a pulsed magnetic field and the isothermal growth of martensite after removing the pulsed high magnetic field can be observed at a temperature of 230 K, at which the reverse transition induced by the magnetic field is partly reversible. Hence, the result here directly evidences the isothermal nature of the martensitic transition and the athermal nature of the reverse transition.

  15. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  16. Defect-induced incompatibility of elastic strains: Dislocations within the Landau theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, R.; Lookman, T.; Saxena, A.

    2008-11-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  17. Defect-induced incompatability of elastic strains: dislocations within the Landau theory of martensitic phase transformations

    SciTech Connect

    Groger, Roman1; Lockman, Turab; Saxena, Avadh

    2008-01-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  18. Pinning-induced stabilization of martensite Part I. Stabilization due to static pinning of interfaces

    SciTech Connect

    Kustov, S.; Pons, J.; Cesari, E.; Humbeeck, J. van

    2004-06-07

    A simple model, based on thermoelastic force balance, is suggested for the part of the stabilization of martensite resulting from pinning of interfaces, which is complementary to atomic reordering. A simple static solution is obtained for the overheating required to initiate the motion of an interface, pinned by quenched-in defects. Qualitative analysis of the pinning-induced stabilization in polyvariant sample is performed, assuming fractal fragmentation of variant structure. The model predicts that: - shift to higher temperatures and broadening of the reverse transformation range occurs during pinning-induced stabilization; - if the reverse transformation remains complete, pinning-induced stabilization does not break the thermoelastic sequence of the transformation; - kinetics of shift and broadening of the reverse transformation can be different; the shift of the reverse transformation start temperature first reaches saturation value, whereas the increase of the transformation finish temperature is a more long-term process. Numerical estimates show that pinning can easily account for the experimentally observed values of the thermal stabilization of martensite.

  19. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  20. Identification of epsilon martensite in a Fe-based shape memory alloy by means of EBSD.

    PubMed

    Verbeken, K; Van Caenegem, N; Raabe, D

    2009-01-01

    Ferrous shape memory alloys (SMAs) are often thought to become a new, important group of SMAs. The shape memory effect in these alloys is based on the reversible, stress-induced martensitic transformation of austenite to epsilon martensite. The identification and quantification of epsilon martensite is crucial when evaluating the shape memory behaviour of this material. Previous work displayed that promising results were obtained when studying the evolution of the amount of epsilon martensite after different processing steps with Electron BackScatter Diffraction (EBSD). The present work will discuss in detail, on the one hand, the challenges and opportunities arising during the identification of epsilon martensite by means of EBSD and, on the other hand, the possible interpretations that might be given to these findings. It will be illustrated that although the specific nature of the austenite to epsilon martensite transformation can still cause some points of discussion, EBSD has a high potential for identifying epsilon martensite.

  1. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  2. Effects of strain and strain-induced α'-martensite on passive films in AISI 304 austenitic stainless steel.

    PubMed

    Lv, Jinlong; Luo, Hongyun

    2014-01-01

    In this paper, the effects of strain and heat treatment on strain-induced α'-martensite of AISI 304 stainless steel tubes were measured by X-ray diffraction. Moreover, the effects of strain and content of α'-martensite on passivated property on the surface of the material in borate buffer solution were evaluated by electrochemical technique. The results showed that the volume fraction of α'-martensite increased gradually with the increase of tensile strain for as-received and solid solution samples. However, α'-martensite in as-received sample was more than that in the solid solution sample. The electrochemical impedance spectroscopy results showed that the solid solution treatment improved corrosion resistance of the steel, especially for samples with small strain. Moreover, acceptor densities were always higher than donor densities for as-received and solid solution samples. With the increase of strain, the increase tendency of acceptor density was more significant than that of donor density. We also found that the total density of the acceptor and donor almost increased linearly with the increase of α'-martensite. The present results indicated that the increased acceptor density might lead to the decreased corrosion resistance of the steel. © 2013.

  3. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    SciTech Connect

    Bischoff, A. J. Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K.; Mayr, S. G.

    2016-04-11

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  4. Linking simulations and experiments for the multiscale tracking of thermally induced martensitic phase transformation in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Frantziskonis, George N.

    2016-10-01

    Martensitic phase transformation in NiTi shape memory alloys (SMA) occurs over a hierarchy of spatial scales, as evidenced from observed multiscale patterns of the martensitic phase fraction, which depend on the material microstructure and on the size of the SMA specimen. This paper presents a methodology for the multiscale tracking of the thermally induced martensitic phase transformation process in NiTi SMA. Fine scale stochastic phase field simulations are coupled to macroscale experimental measurements through the compound wavelet matrix method (CWM). A novel process for obtaining CWM fine scale wavelet coefficients is used that enhances the effectiveness of the method in transferring uncertainties from fine to coarse scales, and also ensures the preservation of spatial correlations in the phase fraction pattern. Size effects, well-documented in the literature, play an important role in designing the multiscale tracking methodology. Molecular dynamics (MD) simulations are employed to verify the phase field simulations in terms of different statistical measures and to demonstrate size effects at the nanometer scale. The effects of thermally induced martensite phase fraction uncertainties on the constitutive response of NiTi SMA is demonstrated.

  5. Twinning and martensite in a 304 austenitic stainless steel

    SciTech Connect

    Shen, Yongfeng; Li, Xi; Sun, Xin; Wang, Y. D.; Zuo, Liang

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyond that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.

  6. Corrosion and Stress Corrosion Cracking of High Cr Ferritic-Martensitic Steels in Supercritical Water

    SciTech Connect

    Jinsung, Jang; Seong Sik, Hwang; Chang Hee, Han; Byung Hak, Lee

    2006-07-01

    Corrosion behavior of the F-M (ferritic-martensitic) steels (T91, T92, T122) and Fe-base ODS (oxide dispersion strengthened) alloy (MA956{sup TM}) were evaluated in an aerated (8 ppm D.O.) SCW (supercritical water) at the temperature range between 300 and 627 deg C under 25 MPa. In aerated SCW the weight change of the F-M steel specimens became greater as the test temperature increased. However, the extent of the weight change at 350 deg C, just below the critical temperature appeared not to be less than those at 550 deg C. And the weight changes of all the F-M steel specimens in the deaerated SCW (for 347 hrs in 100 ppb D.O. for 347 hrs, and in 10 ppb D.O. for 432 hrs) tended to converge to about 1 mgcm{sup -2}. In aerated or deaerated conditions 20Cr Fe-base ODS alloy appeared to be very resistant to a SCW corrosion at all the test temperatures up to 500 hrs. Stress corrosion cracking (SCC) behavior of 9Cr F-M steels (T91 and T92) was investigated by CERT (Constant Extension Rate Test) in SCW at various temperatures and D.O. levels with different strain rates. T91 did not show any evidence of a SCC in a fully deaerated (below 10 ppb D.O.) SCW at 500, 550, and 600 deg C at the test conditions. T92 specimens were tested at 500 deg C in SCW with different D.O. levels. The strain rate did not seem to affect the SCC behavior of the T92 steel, but D.O. in SCW seems to affect the SCC behavior to some extent. The total elongation of T92 in SCW of 100 ppb or of 500 ppb D.O. was significantly smaller than that at a fully deaerated (below 10 ppb D.O.) SCW (about 15 vs. 20%), and it appears to provide a clue to a SCC on the fracture surface after the CERT test. (authors)

  7. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Yangwei; Xu, Xin; Liu, Chengze

    2015-09-01

    Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha" martensite transformation occurs.

  8. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  9. Modeling the effects of stress state and crystal orientation on the stress-induced transformation of NiTi single crystals

    SciTech Connect

    Buchheit, T.E.; Wert, J.A. . Dept. of Materials Science and Engineering)

    1994-11-01

    A model that combines the phenomenological theory of martensite with a generalized Schmid's law has been used to predict the principal stress combinations required to induce the martensitic transformation in unconstrained NiTi shape memory alloy (SMA) single crystals. The transformation surfaces prescribed by the model are anisotropic and asymmetric, reflecting the unidirectional character of shear on individual martensite habit planes. Model predictions of the transformation strain as a function of stress axis orientation for uniaxial applied stress further demonstrate the anisotropy of the stress-induced transformation in NiTi single crystals. Model results for the uniaxial stress case compare favorably with previously published experimental observations for aged NiTi single crystals.

  10. On the Micromechanisms of Shock-Induced Martensitic Transformation in Tantalum

    SciTech Connect

    Hsiung, L L

    2005-12-07

    Shock-induced twinning and martensitic transformation in tantalum, which exhibits no solid-state phase transformation under hydrostatic pressures up to 100 GPa, have been further investigated. Since the volume fraction and size of twin and phase domains are small in scale, they are considered foming by heterogeneous nucleation that is catalyzed by high density lattice dislocations. A dynamic dislocation mechanism is accordingly proposed based upon the observation of dense dislocation clustering within shock-recovered tantalum. The dense dislocation clustering can cause a significant increase of strain energy in local regions of {beta} (bcc) matrix, which renders mechanical instability and initiates the nucleation of twin and phase domains through the spontaneous reactions of dislocation dissociation within the dislocation clusters. That is, twin domains can be nucleated within the clusters through the homogeneous dissociation of 1/2<111> dislocations into 1/6<111> partial dislocations, and {omega} phase domains can be nucleated within the closters through the inhomogeneous dissociation of 1/2<111> dislocations into 1/12<111>, 1/3<111> and 1/12<111> partial dislocations.

  11. Stress-induced flowering

    PubMed Central

    Wada, Kaede C

    2010-01-01

    Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering. PMID:20505356

  12. Importance of crack-propagation-induced ε-martensite in strain-controlled low-cycle fatigue of high-Mn austenitic steel

    NASA Astrophysics Data System (ADS)

    Li, Huichao; Koyama, Motomichi; Sawaguchi, Takahiro; Tsuzaki, Kaneaki; Noguchi, Hiroshi

    2015-06-01

    We investigated the roles of deformation-induced ε-martensitic transformation on strain-controlled low-cycle fatigue (LCF) through crack-propagation analysis involving a notching technique that used a focused ion beam (FIB) setup on Fe-30Mn-4Si-2Al austenitic steel. Using the FIB notch, we separated the microstructure evolution into macroscopic cyclic deformation-induced and crack-propagation-induced microstructures. Following this, we clarified the fatigue crack-propagation-induced ε-martensitic transformation to decelerate crack propagation at a total strain range of 2%, obtaining an extraordinary LCF life of 1.1 × 104 cycles.

  13. A scanning Hall probe imaging study of the field induced martensite-austenite phase transition in Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Moore, J D; Chattopadhyay, M K; Morrison, Kelly; Cohen, L F; Roy, S B

    2010-01-13

    The martensite to austenite phase transition in the off-stoichiometric Heusler alloy Ni(50)Mn(34)In(16) can be induced both by temperature change and by application of a magnetic field. We have used scanning Hall probe imaging to study the magnetic field induced martensite-austenite phase transition. The study provides clear visual evidence of the coexistence of the martensite and austenite phases across this field induced transition in both increasing and decreasing magnetic fields. Clear evidence of thermomagnetic history effects associated with the martensite-austenite phase transition is also obtained. Quantitative analysis of the magnetic field dependence of the volume fraction of the austenite phase in Ni(50)Mn(34)In(16) shows evidence of a nucleation and growth mechanism across the field induced martensite-austenite phase transition. The local M-H loops constructed from the Hall images indicate the presence of a landscape of the critical magnetic field (for the field induced transition) distributed over the sample volume and thus confirm the disorder influenced nature of this first-order magnetic phase transition.

  14. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  15. Martensitic transformation in ZrO 2-based ceramics at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.-F.; Hong, C.-S.; Li, Y.-Y.; Zhang, Z.

    The microstructural changes associated with the tetragonal to monoclinic martensitic transformation at cryogenic temperatures in sintered CeO2-ZrO2 ceramics containing 15.5-16.5 mol% CeO2 have been studied by means of TEM observations. X-ray diffraction analysis indicates that the stress-induced martensitic phase increases with decreases in both temperature and CeO2 content. The effects of martensitic morphologies, anti-phase boundaries (APBs) and various dislocation features on mechanical properties are also discussed in the paper.

  16. Study of the {alpha}{double_prime} phase texture obtained by martensitic {beta}-{alpha}{double_prime} phase transformation induced by tensile test in a sheet of Ti5Al2Sn4Zr4Mo2Cr1Fe

    SciTech Connect

    Pionnier, D.; Humbert, M.; Philippe, M.J.; Combres, Y.

    1998-10-09

    The purpose was to investigate the texture development of the {alpha}{double_prime} orthorhombic martensite phase induced by stress within a commercial sheet of Ti5Al2Sn4Zr4Mo2Cr1Fe. First, the experimental textures of the initial b.c.c. phase, then of the b.c.c. phase and the {alpha}{double_prime} martensite phase after a uniaxial deformation were determined from pole figures. Comparison of the {alpha}{double_prime} experimental texture with a {alpha}{double_prime} texture, simulated with no variant selection from the b.c.c. texture of the initial {beta} matrix clearly shows that a strong variant selection was induced by stress. In order to better understand the formation of this {alpha}{double_prime} orthorhombic texture, texture transformations were simulated according to different variant selection assumptions. As a result, it was shown that the {alpha}{double_prime} orthorhombic texture is formed by the variants favorably oriented with respect to stresses induced during tensile test.

  17. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    SciTech Connect

    Li, Zongbin; Zou, Naifu; Zhao, Xiang; Zuo, Liang E-mail: yudong.zhang@univ-lorraine.fr; Zhang, Yudong E-mail: yudong.zhang@univ-lorraine.fr; Esling, Claude; Gan, Weimin

    2014-07-14

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  18. Optimization of Heat Treatments for Reversion of Strain-Induced Martensite in 304L SS Explosive Clad

    NASA Astrophysics Data System (ADS)

    Prasanthi, T. N.; Sudha, C.; Parida, P. K.; Dasgupta, Arup; Saroja, S.

    2016-02-01

    Explosive clad joints of 304L SS and Ti-5Ta-2Nb alloy, fabricated for an important application in the spent nuclear fuel reprocessing industry showed formation of deformation induced metastable α' martensite and fcc Ti phase in SS and TiTaNb alloy respectively. A biphasic structure consisting of metastable phases is not preferred for industrial applications due to degradation of corrosion and mechanical properties of the structural materials during service. Hence, it is essential to carry out post cladding heat treatments. The results reported in this paper provide evidence for the presence of α' phase in 304L SS in `as clad' joints and its reversion process during thermal exposure. The temperature window in the range of 400-700 °C and time was optimized based on complete transformation of the metastable phases to parent phases, and avoiding the formation of brittle Fe-Ti intermetallics at the interface. A systematic increase in the fraction of austenite phase associated with the reversion phenomena has been studied using electron back scattered diffraction and transmission electron microscopy. Orientation relationship between product fcc and parent bcc phases was found to obey the K-S relationship. The reverted γ phase was found to nucleate within the martensite laths. A temperature of 550 °C for duration of about 10 h was found to be optimum for the post cladding treatments of the explosive clad joints.

  19. FEM simulation of residual stresses induced by laser Peening

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Sollier, A.; Chaieb, I.; Berthe, L.; Bartnicki, E.; Braham, C.; Fabbro, R.

    2003-08-01

    Benefits from laser Peening have been demonstrated several times in fields like fatigue, wear or stress corrosion cracking. However, in spite of recent work on the calculation of residual stresses, very few authors have considered a finite element method (FEM) approach to predict laser-induced mechanical effect. This comes mainly from the high strain rates involved during LP (10^6 s^{-1}), that necessitate the precise determination of dynamic properties, and also from the possible combination of thermal and mechanical loadings in the case of LP without protective coatings. In this paper, we aim at presenting a global approach of the problem, starting from the determination of loading conditions and dynamic yield strengths, to finish with FEM calculation of residual stress fields induced on a 12% Cr martensitic stainless steel and a 7075 aluminium alloy.

  20. Luders-like deformation associated with martensite reorientation in NiTi

    SciTech Connect

    Liu, Y.; Liu, Y.; Van Humbeeck, J.

    1998-09-15

    It is known that near-equiatomic NiTi shape memory alloys may exhibit a Lueders-like deformation behavior under a variety of testing conditions. These conditions include the tensile deformation associated with the stress-induced martensitic transformation from the austenite, the reverse transformation of the stress-induced martensite to austenite in pseudoelasticity, and the deformation in martensitic state via a martensite variant reorientation process. The Lueders-like deformation behavior is characterized by a stress plateau and a stress-drop at the beginning of the process for the forward transformation upon loading and a stress minimum for the reverse transformation on unloading. Based largely on this observation in pseudoelasticity, it has been suggested that the stress peaks at the beginning of the stress plateau are associated with the nucleation of the product phase for the corresponding transformations and that the stress plateau corresponds to the process of the transformations. This common belief, however, is challenged by a number of experimental observations. This seems to suggest that the occurrence of the stress plateau on a stress-strain curve is mechanical in nature instead of being determined by the transformation. This uncertainty, however, needs to be clarified.

  1. A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping

    NASA Astrophysics Data System (ADS)

    Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang

    2017-03-01

    In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.

  2. A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping

    NASA Astrophysics Data System (ADS)

    Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang

    2017-01-01

    In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.

  3. Stress-induced cardiomyopathy

    PubMed Central

    Lisung, Fausto Gabriel; Shah, Ankit B; Levitt, Howard L; Coplan, Neil B

    2015-01-01

    A woman in her early 70s presented with chest pain, dyspnoea and diaphoresis 30 min after her husband expired in our hospital. Cardiac markers were elevated and there were acute changes in ECG suggestive for acute coronary syndrome. Echocardiogram showed apical akinesis, basal segment hyperkinesis with an ejection fraction of 30%. Cardiac catheterisation was performed showing non-obstructive coronary arteries, leading to the diagnosis of stress-induced cardiomyopathy. The patient improved with medical management. Repeat echocardiogram 2 months later showed resolution of heart failure with an ejection fraction of 65–70%. PMID:25858931

  4. Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Barnard, Leland M.; Parish, Chad M.; Busby, Jeremy T.; Morgan, Dane; Allen, Todd R.

    2013-04-01

    Ferritic/Martensitic (F/M) steels containing 9 wt.% Cr are candidates for structural and cladding components in the next generation of advanced nuclear fission and fusion reactors. Although it is known these alloys exhibit radiation-induced segregation (RIS) at grain boundaries (GBs) while in-service, little is known about the mechanism behind RIS in F/M steels. The classical understanding of RIS in F/M steels presents a mechanism where point defects migrate to GBs acting as perfect sinks. However, variation in grain boundary structure may influence the sink efficiency and these migration processes. A proton irradiated 9 wt.% Cr model alloy steel was investigated using STEM/EDS spectrum imaging and GB misorientation analysis to determine the role of GB structure on RIS at different GBs. An ab initio based rate theory model was developed and compared to the experimental findings. This investigation found Cr preferentially segregates to specific GB structures. The preferential segregation to specific GB structures suggests GB structure plays a key role in the mechanism behind radiation-induced segregation, showing that not all grain boundaries in F/M steels act as perfect sinks. The study also found how irradiation dose and temperature impact the radiation-induced segregation response in F/M steels.

  5. Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Miao, Yinbin; Li, Meimei; Kirk, Marquis A.; Maloy, Stuart A.; Stubbins, James F.

    2017-07-01

    In this paper, in situ transmission electron microscopy investigations were carried out to study the microstructural evolution of ferritic/martensitic steel T91 under 1 MeV Krypton ion irradiation up to 4.2 × 1015 ions/cm2 at 573 K, 673 K, and 773 K. At 573 K, grown-in defects are strongly modified by black-dot loops, and dislocation networks together with black-dot loops were observed after irradiation. At 673 K and 773 K, grown-in defects are only partially modified by dislocation loops; isolated loops and dislocation segments were commonly found after irradiation. Post irradiation examination indicates that at 4.2 × 1015 ions/cm2, about 51% of the loops were a0 / 2 < 111 > type for the 673 K irradiation, and the dominant loop type was a0 < 100 > for the 773 K irradiation. Finally, a dispersed barrier hardening model was employed to estimate the change in yield strength, and the calculated ion data were found to follow the similar trend as the existing neutron data with an offset of 100-150 MPa.

  6. Sandblasting induced stress release and enhanced adhesion strength of diamond films deposited on austenite stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Ye, Jiansong; Zhang, Hangcheng; Feng, Tao; Chen, Jianqing; Hu, Xiaojun

    2017-08-01

    We firstly used sandblasting to treat austenite stainless steel and then deposited a Cr/CrN interlayer by close field unbalanced magnetron sputtering on it. After that, diamond films were prepared on the interlayer. It is found that the sandblasting process induces phase transition from austenite to martensite in the surface region of the stainless steel, which decreases thermal stress in diamond films due to lower thermal expansion coefficient of martensite phase compared with that of austenite phase. The sandblasting also makes stainless steel's surface rough and the Cr/CrN interlayer film inherits the rough surface. This decreases the carburization extent of the interlayer, increases nucleation density and modifies the stress distribution. Due to lower residual stress and small extent of the interlayer's carburization, the diamond film on sandblast treated austenite stainless steel shows enhanced adhesion strength.

  7. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  8. A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Moumni, Ziad; He, Yongjun; Zhang, Weihong

    2014-03-01

    The large strain in Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite reorientation driven by mechanical stresses and/or magnetic fields. Although most experiments studying the martensite reorientation in FSMA are under 1D condition (uniaxial stress plus a perpendicular magnetic field), it has been shown that the 2D/3D configurations can improve the working stress and give much flexibility of the material's applications [He, Y.J., Chen, X., Moumni, Z., 2011. Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. Journal of Applied Physics 110, 063905]. To predict the material's behaviors in 3D loading conditions, a constitutive model is developed in this paper, based on the thermodynamics of irreversible processes with internal variables. All the martensite variants are considered in the model and the temperature effect is also taken into account. The model is able to describe all the behaviors of martensite reorientation in FSMA observed in the existing experiments: rotating/non-rotating magnetic-field-induced martensite reorientation, magnetic-field-assisted super-elasticity, super-elasticity under biaxial compressions and temperature-dependence of martensite reorientation. The model is further used to study the nonlinear bending behaviors of FSMA beams and provides some basic guidelines for designing the FSMA-based bending actuators.

  9. Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Souza Filho, I. R.; Sandim, M. J. R.; Cohen, R.; Nagamine, L. C. C. M.; Hoffmann, J.; Bolmaro, R. E.; Sandim, H. R. Z.

    2016-12-01

    Strain-induced martensite (SIM) and its reversion in a cold-rolled AISI 201 austenitic stainless steel was studied by means of magnetic properties, light optical (LOM) and scanning electron (SEM) microscopy, electron backscatter diffraction (EBSD), texture measurements, and Vickers microhardness testing. According to Thermo-calc© predictions, the BCC phase (residual δ-ferrite and SIM) is expected to be stable until 600 °C. The current material was cold rolled up to 60% thickness reduction and submitted to both isothermal and stepwise annealing up to 800 °C. Magnetic measurements were taken during annealing (in situ) of the samples and also for their post mortem conditions. The Curie temperatures (Tc) of residual δ-ferrite and SIM have similar values between 550 and 600 °C. Besides Tc, the focused magnetic parameters were saturation magnetization (Ms), remanent magnetization (MR), and coercive field (Hc). SIM reversion was found to occur in the range of 600-700 °C in good agreement with Thermo-calc© predictions. The microstructures of the material, annealed at 600 and 700 °C for 1 h, were investigated via EBSD. Microtexture measurements for these samples revealed that the texture components were mainly those found for the 60% cold rolled material. This is an evidence that the SIM reversion occurred by an athermal mechanism.

  10. In-situ investigations of the martensitic transformation in TiNi by synchrotron radiation

    SciTech Connect

    Kulkov, S.N.; Mironov, Yu.P.

    1999-01-01

    By means of synchrotron X-ray diffraction method the stress-induced martensite transformation in TiNi (with two different phase compositions) at room temperature was investigated in situ. It has been shown that in the alloys with temperature-induced martensite in the initial state a nonperiodic fluctuation of intensity of the X-ray reflexes appeared due to anomalous transformation B2 + B19{prime}{sub T} {r_arrow} B2 {r_arrow} B19{prime}{sub Si}.

  11. Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon

    2010-12-01

    Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.

  12. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  13. Impact Toughness of 0.2 Pct C-1.5 Pct Si-(1.5 to 5) Pct Mn Transformation-Induced Plasticity-Aided Steels with an Annealed Martensite Matrix

    NASA Astrophysics Data System (ADS)

    Tanino, Hikaru; Horita, Masaomi; Sugimoto, Koh-Ichi

    2016-05-01

    The impact properties of 0.2 pct C-1.5 pct Si-(1.5 to 5) pct Mn transformation-induced plasticity (TRIP)-aided steels with an annealed martensite matrix which had been subjected to isothermal transformation after inter-critical annealing were investigated for potential automotive applications. The impact properties are related to the retained austenite characteristics of the steels. The products of tensile strength (TS) and Charpy impact absorbed value (CIAV) were the same for the 1.5 and 5 pct Mn steels, although the ductile-brittle transition temperature was higher for the latter. The impact properties of the 3 pct Mn steel were worse than these two steels. The high TS × CIAV value for the 5 pct Mn steel at 293 K (25 °C) was mainly caused by the TRIP effect of a larger amount of retained austenite (36 vol pct) and the hardened matrix structure; low retained austenite stability and/or a hard martensite-austenite phase reduced this value. The higher ductile-brittle transition temperature of the 5 pct Mn steel was associated with Mn segregation, a large amount of unstable retained austenite on prior austenitic grain boundaries, and decreased cleavage fracture stress owing to the high Mn content.

  14. Magnetostrain and magnetocaloric effect by field-induced reverse martensitic transformation for Pd-doped Ni45Co5Mn37In13 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Li, Z.; Xu, K.; Yang, H. M.; Zhang, Y. L.; Jing, C.

    2015-06-01

    In the present work, polycrystalline Ni45Co5-xPdxMn37In13 (x = 0, 0.5, 1, and 3) Heusler alloys were prepared. The influences of Pd substitution for Co on crystal structure, martensitic transformation (MT), and magnetic properties have been carefully investigated for these quinary alloys. The structure measurement indicates that every sample possesses L10 martensitic structure at room temperature. With increasing of Pd content, it is found that the MT region shifts towards higher temperature, but the Curie transition region of austenitic state moves to lower temperature. Owing to the fact that the MT gradually approaches Curie point, the magnetization of austenitic phase is significantly decreased, while the one of martensitic phase almost remains unchanged. In addition, the functional properties associated with the field-induced reverse MT have been also studied in Ni45Co5-xPdxMn37In13 (x = 0, 0.5, and 1) alloys. In comparison to quaternary parent alloy, both of enhanced magnetostrain (0.3%) and isothermal entropy change (25 J/kg K) are observed in quinary Ni45Co4.5Pd0.5Mn37In13 alloy under an applied magnetic field up to 3 T. The implication of such results has been discussed in detail.

  15. A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction

    DOE PAGES

    Wang, Dongmei; Mu, Juan; Chen, Yan; ...

    2017-03-01

    The stress-induced phase transformation and micromechanical behavior of CuZr-based alloy were investigated by in-situ neutron diffraction. The pseudoelastic behavior with a pronounced strain-hardening effect is observed. The retained martensite nuclei and the residual stress obtained from the 1st cycle reduce the stress threshold for the martensitic transformation. A critical stress level is required for the reverse martensitic transformation from martensite to B2 phase. An increase of intensity for the B2 (110) plane in the 1st cycle is caused by the twinning along the {112}<111> twinning system. The convoluted stress partitioning influenced by the elastic and transformation anisotropy along with themore » newly formed martensite determines the microstress partitioning of the studied CuZr-based alloy. The reversible martensitic transformation is responsible for the pseudoelasticity. The macro mechanical behavior of the pure B2 phase can be divided into 3 stages, which are mediated by the evolvement of the martensitic transformation. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).« less

  16. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys.

    SciTech Connect

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A. H.; Paulikas, A. P.; Veal, B. W.

    2007-12-01

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys.

  17. Deformation Microstructure and Deformation-Induced Martensite in Austenitic Fe-Cr-Ni Alloys Depending on Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Gorbatov, Oleg I.; Borgenstam, Annika; Ruban, Andrei V.; Hedström, Peter

    2017-01-01

    The deformation microstructure of austenitic Fe-18Cr-(10-12)Ni (wt pct) alloys with low stacking fault energies, estimated by first-principles calculations, was investigated after cold rolling. The ɛ-martensite was found to play a key role in the nucleation of α'-martensite, and at low SFE, ɛ formation is frequent and facilitates nucleation of α' at individual shear bands, whereas shear band intersections become the dominant nucleation sites for α' when SFE increases and mechanical twinning becomes frequent.

  18. Modeling the coupling between martensitic phase transformation and plasticity in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Manchiraju, Sivom

    The thermo-mechanical response of NiTi shape memory alloys (SMAs) is predominantly dictated by two inelastic deformation processes---martensitic phase transformation and plastic deformation. This thesis presents a new microstructural finite element (MFE) model that couples these processes and anisotropic elasticity. The coupling occurs via the stress redistribution induced by each mechanism. The approach includes three key improvements to the literature. First, transformation and plasticity are modeled at a crystallographic level and can occur simultaneously. Second, a rigorous large-strain finite element formulation is used, thereby capturing texture development (crystal rotation). Third, the formulation adopts recent first principle calculations of monoclinic martensite stiffness. The model is calibrated to experimental data for polycrystalline NiTi (49.9 at% Ni). Inputs include anisotropic elastic properties, texture, and DSC data as well as a subset of pseudoelastic and load-biased thermal cycling data. This calibration process provides updated material values---namely, larger self-hardening between similar martensite plates. It is then assessed against additional pseudoelastic and load-biased thermal cycling experimental data and neutron diffraction measurements of martensite texture evolution. Several experimental trends are captured---in particular, the transformation strain during thermal cycling monotonically increases with increasing bias stress, reaching a peak and then decreasing due to intervention of plasticity---a trend which existing MFE models are unable to capture. Plasticity is also shown to enhance stress-induced martensite formation during loading and generate retained martensite upon unloading. The simulations even enable a quantitative connection between deformation processing and two-way shape memory effect. Some experimental trends are not captured---in particular, the ratcheting of macrostrain with repeated thermal cycling. This may

  19. Radiation induced segregation and precipitation behavior in self-ion irradiated Ferritic/Martensitic HT9 steel

    NASA Astrophysics Data System (ADS)

    Zheng, Ce; Auger, Maria A.; Moody, Michael P.; Kaoumi, Djamel

    2017-08-01

    In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470 °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α‧ phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.

  20. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    NASA Astrophysics Data System (ADS)

    Hemery, Samuel; Berdin, Clotilde; Auger, Thierry; Bourhi, Mariem

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture.

  1. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Kolli, R. Prakash; Joost, William J.; Ankem, Sreeramamurthy

    2015-06-01

    In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

  2. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  3. Probing Martensitic Transition in Nitinol Wire: A Comparison of X-ray Diffraction and Other Techniques

    SciTech Connect

    Butler, J.; Tiernan, P.; Tofail, S. A. M.; Ghandi, A. A.

    2011-01-17

    Martensitic to austenite transformation in Nitinol wire can be measured by a number of techniques such as XRD (X-Ray Diffraction), DSC (Differential Scanning Calorimetry), BFR (Bend and Free Recovery) and Vickers indentation recovery. A comparison of results from these varied characterisation techniques is reported here to obtain a greater understanding of the thermal-elastic-structural changes associated with martensitic transformation. The transformation temperatures measured by DSC were found to correspond well with the structural and mechanical information obtained from XRD, BFR and Vickers indent recovery methods. Indent recovery is a relatively new and accurate method of monitoring stress induced martensitic transformations in NiTi and is one of only a few methods of stress inducing martensitic transformation in large scale samples. It is especially useful for NiTi in the as-cast billet form, where tensile testing is impossible. BFR is uniquely popular in the NiTi wire manufacturing sector and is recognised as the most accurate method of measuring the transformation temperature. Here the material is stressed to a representative in-service stress level during the test. No other test uses the shape memory effect for measuring the transformation temperature of NiTi. The results show that the DSC thermogram and XRD diffractogram have a peak overlap which is a common occurrence in NiTi that has been extensively processed. The XRD method further explains the observations in the DSC thermogram and in combination they confirm the transformation temperature.

  4. Modeling thermally induced martensitic transformations in nickel titanium shape memory alloys

    NASA Astrophysics Data System (ADS)

    Jaeger, Stefanie; Eggeler, Gunther; Kastner, Oliver

    2015-05-01

    During stress-free thermal analysis with differential scanning calorimetry (DSC), nickel titanium (NiTi) shape memory alloys show a thermal hysteresis which is affected by cooling/heating rates. Moreover, the Ni content of near equiatomic alloys governs the phase transition temperatures. This contribution aims at establishing a constitutive equation which can account for these effects, building on earlier work by Müller, Achenbach and Seelecke (MAS). To be specific, we discuss our new method with a focus on NiTi alloys. As in the original MAS model, our approach is rooted in a non-convex free energy representation and rate equations are utilized to incorporate history dependence during non-equilibrium processes. The relaxation times of these rate equations are determined by characteristic transformation probabilities which in turn are governed by the free energy landscape of our system. We show how the model can be parameterized to rationalize experimental DSC data observed for NiTi samples of variable composition and measured at variable cooling/heating rates. The good agreement between model predictions and experimental results suggests that thermal hystereses are not only related to interfacial strain energy effects but also affected by the transient character of the transformation process incorporating specific thermal relaxation times. Our analysis shows that we observe strong hysteretic effects when the cooling/heating rates exceed these characteristic relaxation rates.

  5. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  6. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-x Ga25Cu x (0  ⩽  x  ⩽  7) melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Li, Zongbin; Zou, Naifu; Sánchez-Valdés, C. F.; Sánchez Llamazares, J. L.; Yang, Bo; Hu, Yong; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2016-01-01

    We have studied the phase transformation behavior of \\text{N}{{\\text{i}}50}\\text{M}{{\\text{n}}25}-x\\text{G}{{\\text{a}}25}\\text{C}{{\\text{u}}x} melt-spun ribbons with x  =  0, 1, 2, …, 7 (at%). It is shown that Cu substitution simultaneously increases and decreases the martensitic transformation temperature T M and the magnetic transition temperature of austenite T\\text{C}\\text{A} , respectively. In Ni50Mn18Ga25Cu7 ribbons, the magnetic and structural transformations are coupled. The field-induced martensitic transformation from a paramagnetic austenite with lower magnetization to a ferromagnetic martensite with higher magnetization has been studied. The critical field μ o H cr above which the magnetic field can induce the martensitic transition is well defined and decreases linearly with the decrease of the temperature at a reduction rate of 1 T K-1. Under a magnetic field of 5 T, the starting temperature of martensitic transformation (M s) increases by ~9 K. Such a magnetic field-induced transformation is irreversible and temperature dependent, giving rise to the maximum magnetic entropy change of 17.8 J kg-1 K-1 and hysteresis losses of 43.6 J kg-1 under the magnetic field change of 5 T, respectively.

  7. Temperature-induced martensite in magnetic shape memory Fe{sub 2}MnGa observed by photoemission electron microscopy

    SciTech Connect

    Jenkins, Catherine; Scholl, Andreas; Kainuma, R.; Elmers, Hans-Joachim; Omori, Toshihiro

    2012-01-18

    The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe{sub 2}MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni{sub 2}MnGa, although the pinning in the recent work is an epitaxial interface and in this work the e ective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the coupling behavior between the magnetism and the structural evolution.

  8. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

    NASA Astrophysics Data System (ADS)

    Hu, Qiaodan; Zhou, Zhenni; Yang, Liang; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-08-01

    The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z (Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

  9. Cold-rolling behavior of biomedical Ni-free Co-Cr-Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena.

    PubMed

    Mori, Manami; Yamanaka, Kenta; Chiba, Akihiko

    2015-03-01

    Ni-free Co-Cr-Mo alloys are some of the most difficult-to-work metallic materials used commonly in biomedical applications. Since the difficulty in plastically deforming them limits their use, an in-depth understanding of their plastic deformability is of crucial importance for both academic and practical purposes. In this study, the microstructural evolution of a Co-29Cr-6Mo-0.2N (mass%) alloy during cold rolling was investigated. Further, its work-hardening behavior is discussed while focusing on the strain-induced face-centered cubic (fcc) γ→hexagonal close-packed (hcp) ε martensitic transformation (SIMT). The planar dislocation slip and subsequent SIMT occurred even in the initial stage of the deformation process owing to the low stability of the γ-phase and contributed to the work hardening behavior. However, the amount of the SIMTed ε-phase did not explain the overall variation in work hardening during cold rolling. It was found that the intersecting of the SIMTed ε-plates enhanced local strain evolution and then produced fine domain-like deformation microstructures at the intersections. Consequently, the degree of work hardening was reduced during subsequent plastic deformation, resulting in the alloy exhibiting a two-stage work hardening behavior. The results obtained in this study suggest that the interaction between ε-martensites, and ultimately its relaxation mechanism, is of significant importance; therefore, this aspect should be addressed in detail; the atomic structures of the γ-matrix/ε-martensite interfaces, the phenomenon of slip transfer at the interfaces, and the slipping behavior of the ε-phase itself are needed to be elucidated for further increasing the cold deformability of such alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Adaptive modulations of martensites.

    PubMed

    Kaufmann, S; Rössler, U K; Heczko, O; Wuttig, M; Buschbeck, J; Schultz, L; Fähler, S

    2010-04-09

    Modulated phases occur in numerous functional materials like giant ferroelectrics and magnetic shape-memory alloys. To understand the origin of these phases, we employ and generalize the concept of adaptive martensite. As a starting point, we investigate the coexistence of austenite, adaptive 14M phase, and tetragonal martensite in Ni-Mn-Ga magnetic shape-memory alloy epitaxial films. We show that the modulated martensite can be constructed from nanotwinned variants of the tetragonal martensite phase. By combining the concept of adaptive martensite with branching of twin variants, we can explain key features of modulated phases from a microscopic view. This includes metastability, the sequence of 6M-10M-14M-NM intermartensitic transitions, and the magnetocrystalline anisotropy.

  11. Antioxidant-Induced Stress

    PubMed Central

    Villanueva, Cleva; Kross, Robert D.

    2012-01-01

    Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that “antioxidant-induced stress” results when antioxidants overwhelm the body’s free radicals. PMID:22408440

  12. Stress proteins induced by arsenic.

    PubMed

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  13. Deformation behavior of duplex austenite and ε-martensite high-Mn steel.

    PubMed

    Kwon, Ki Hyuk; Suh, Byeong-Chan; Baik, Sung-Il; Kim, Young-Woon; Choi, Jong-Kyo; Kim, Nack J

    2013-02-01

    Deformation and work hardening behavior of Fe-17Mn-0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.

  14. Chemical and mechanical stabilization of martensite

    SciTech Connect

    Kustov, S.; Pons, J.; Cesari, E.; Van Humbeeck, J

    2004-09-06

    An algorithm of quantitative analysis of two basic contributions to the stabilization of martensite - atomic reordering ('chemical' stabilization component) and pinning of interfaces ('mechanical' contribution) - has been developed. The algorithm uses data obtained by routine calorimetry measurements. The possibility to quantitatively separate contributions of 'chemical' and 'mechanical' stabilization components stems from the fact that they affect the first reverse transformation of stabilized martensite through thermodynamically reversible and irreversible factors, respectively. Analysis of the thermodynamics of the thermoelastic martensitic transformations allowed us to conclude that stabilization of martensite should be described in terms of pure shift and broadening of the reverse transformation. These parameters are shown to have a clear physical meaning. Namely, pure shift of the reverse transformation as a result of martensite stabilization provides an upper estimate for the atomic reordering or 'chemical' contribution to the stabilization, whereas broadening of the reverse transformation represents a lower limit for pinning-induced or 'mechanical' stabilization component. Experimental data on stabilization of a Cu-Zn-Al alloy are analyzed, indicating that contributions of 'chemical' and 'mechanical' stabilization components are comparable but depend on martensite ageing period and details of the initial heat treatment of samples.

  15. Texture evolution during nitinol martensite detwinning and phase transformation

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.

    2013-12-01

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

  16. Texture evolution during nitinol martensite detwinning and phase transformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  17. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.

    2017-07-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ∼ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.

  18. Pitting and stress cracking of 12Cr-Ni-Mo martensitic stainless steels in chloride and sulfide environments

    SciTech Connect

    Yoshino, Y.; Ikegaya, A.

    1985-02-01

    Laboratory melted 12Cr-Ni-Mo steels were tested in chloride/sulfide solutions at 60/sup 0/C and at room temperature to evaluate their resistance to pitting and stress cracking in connection with environmental and metallurgical factors. H/sub 2/S had adverse effects on pitting resistance. Stress cracking at 60/sup 0/C associated with the formation of pits. In a sulfide solution at room temperature, cracking occurs by hydrogen embrittlement and in chlorideatsulfide solutions, by active path corrosion. These steels were tempered at 600/sup 0/C for the single temper treatment and 700/sup 0/C followed by 600/sup 0/C for double tempering. The double temper treatment intensified pitting and stress cracking at 60/sup 0/C while improving stress cracking resistance at room temperature, as reported elsewhere. Fracture was mixed mode in the single temper condition and transgranular quasi-cleavage with double tempering regardless of solution temperature. The metallurgical changes associated with the temper treatments were studied and discussed.

  19. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Marini, B.; Averty, X.; Wident, P.; Forget, P.; Barcelo, F.

    2015-10-01

    The hardening and the embrittlement under neutron irradiation of an A508 type RPV steel considering three different microstructures (bainite, bainite-martensite and martensite)have been investigated These microstructures were obtained by quenching after autenitization at 1100 °C. The irradiation induced hardening appears to depend on microstructure and is correlated to the yield stress before irradiation. The irradiation induced embrittlement shows a more complex dependence. Martensite bearing microstructures are more sensitive to non hardening embrittlement than pure bainite. This enhanced sensitivity is associated with the development of intergranular brittle facture after irradiation; the pure martensite being more affected than the bainite-martensite. It is of interest to note that this mixed microstructure appears to be more embrittled than the pure bainitic or martensitic phases in terms of temperature transition shift. This behaviour which could emerge from the synergy of the embrittlement mechanisms of the two phases needs further investigations. However, the role of microstructure on brittle intergranular fracture development appears to be qualitatively similar under neutron irradiation and thermal ageing.

  20. Reversion of a Parent {130 }⟨310⟩ α'' Martensitic Twinning System at the Origin of {332 }⟨113⟩ β Twins Observed in Metastable β Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Castany, P.; Yang, Y.; Bertrand, E.; Gloriant, T.

    2016-12-01

    In bcc metastable β titanium alloys, and particularly in superelastic alloys, a unique {332 }⟨113 ⟩ twinning system occurs during plastic deformation. However, in situ synchrotron x-ray diffraction during a tensile test shows that the β phase totally transforms into α'' martensite under stress in a Ti-27Nb (at. %) alloy. {332 }⟨113⟩ β twins are thus not formed directly in the β phase but are the result of the reversion of {130 }⟨310⟩ α'' parent twins occurring in martensite under stress. The formation of an interfacial twin boundary ω phase is also observed to accommodate strains induced during the phase reversion.

  1. Interface Propagation and Microstructure Evolution in Phase Field Models of Stress-Induced Martensitic Phase Transformations

    DTIC Science & Technology

    2010-01-01

    simulation, the initial conditions are g1 ¼ g2 ¼ 0:1 in a circle of radius 2 nm (an embryo ) at the center of the sample and zero elsewhere. The boundary...in narrow bands around the interfaces if the driving force is less than a critical value, K: Fig. 10. Evolution of an embryo , gi ¼ 0:1, in a circle...concentration curve does not exhibit a hysteresis loop and energy dissipation. 4. In Fig. 22 we display the evolution of an embryo with gi ¼ 0:1 as in

  2. Hydrogen-assisted damage in austenite/martensite dual-phase steel

    NASA Astrophysics Data System (ADS)

    Koyama, Motomichi; Cem Tasan, Cemal; Nagashima, Tatsuya; Akiyama, Eiji; Raabe, Dierk; Tsuzaki, Kaneaki

    2016-01-01

    For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy. Localized diffusible hydrogen in martensite causes cracking through two mechanisms: (1) interaction between {1 1 0}M localized slip and {1 1 2}M twin and (2) cracking of martensite-martensite grain interfaces. The former resulted in nanovoids along the {1 1 2}M twin. The coalescence of the nanovoids generated plate-like microvoids. The latter caused shear localization on the specific plane where the crack along the martensite/martensite boundary exists, which led to additional martensite/martensite boundary cracking.

  3. High resolution studies in martensite

    SciTech Connect

    Sarikaya, M.; Easterling, K.; Thomas, G.

    1980-03-01

    Detailed microstructural studies were performed on the lath martensite in steels containing 0.1 and 0.3 wt %-low alloy structural steels by lattice imaging. This method is providing information on the fine substructural details of dislocated martensite.

  4. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Hamilton, M.L. ); Huang, F.H.; Hu, Wan-Liang )

    1992-06-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were re-examined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9.

  5. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Huang, F.H.; Hu, W.L. ); Hamilton, M.L. )

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs.

  6. Understanding of martensitic (TiCu)-based bulk metallic glasses through deformation behavior of a binary Ti{sub 50}Cu{sub 50} martensitic alloy

    SciTech Connect

    Kim, K. B.; Song, K. A.; Zhang, X. F.; Yi, S.

    2008-06-16

    A binary Ti{sub 50}Cu{sub 50} martensitic alloy having similar atomic clusters to (TiCu)-based martensitic bulk metallic glasses presents a large plastic strain of 18.04% with high fracture strength of 1705 MPa. Detailed microstructural investigations point out that martensite embedded in {gamma}-TiCu matrix is effective to dissipate localization of the shear stress thus leading to rotational propagation, interaction, and multiplication of the shear bands. Furthermore, the propagation of microcracks formed by local stress transition during deformation is hindered by the martensite.

  7. Martensitic transformation of NiTi studied at the nanometer scale by local mechanical spectroscopy

    SciTech Connect

    Oulevey, F.; Gremaud, G.; Mari, D.; Kulik, A.J.; Burnham, N.A.; Benoit, W.

    1999-12-17

    Near-stoichiometric NiTi alloys exhibit a martensitic phase transformation between a low-temperature monoclinic phase, called martensite, and a high temperature cubic phase with B2 structure, called austenite. This transformation is responsible for the shape memory and pseudo-elastic effects in deformed NiTi alloys. Optical microscopy observation suggests that the transformation occurs very suddenly inside an austenite grain. This has led to the concept of military transformation. The width of the globally measured transformation would then be a sum of different narrow contributions coming from different places inside the sample. this image is, however, not universally accepted. A measurement inside one single grain of a polycrystal would be a way to address these questions. Both the special scale of the R phase distribution and the military character of the transformation will have an effect on the result of such a measurement. The martensitic transformation of such alloys has already been observed on bulk samples by mechanical spectroscopy, i.e., measurement of the inelastic part of the deformation induced by a cyclic stress. Such measurements, also called Internal Friction measurements, give access to the mechanical energy dissipation during the phase transition. However, they give an average behavior of all parts of the sample. This paper reports the first local (i.e., at a submicron scale) mechanical spectroscopy measurement of the martensitic transformation in thermally cycled NiTi alloys.

  8. Suppression of martensitic transformation in Fe50Mn23Ga27 by local symmetry breaking

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Liu, Xiaolian; Yan, Mi; Wu, Chen; Ren, Shuai; Li, Huiying; Fang, Minxia; Qiu, Zhiyong; Ren, Xiaobing

    2015-05-01

    Defects-induced local symmetry breaking has led to unusual properties in nonferromagnetic ferroelastic materials upon suppressing their martensitic transformation. Thus, it is of interest to discover additional properties by local symmetry breaking in one important class of the ferroelastic materials, i.e., the ferromagnetic shape memory alloys. In this letter, it is found that local symmetry breaking including both tetragonal nano-inclusions and anti-phase boundaries (APBs), suppresses martensitic transformation of a body-centered-cubic Fe50Mn23Ga27 alloy, however, does not affect the magnetic ordering. Large electrical resistivity is retained to the low temperature ferromagnetic state, behaving like a half-metal ferromagnet. Lower ordering degree at APBs and local stress fields generated by the lattice expansion of tetragonal nanoparticles hinder the formation of long-range-ordered martensites. The half-metal-like conducting behavior upon suppressing martensitic transformation extends the regime of ferromagnetic shape memory materials and may lead to potential applications in spintronic devices.

  9. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Zhang, X.

    2016-01-01

    Although abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. Numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction, have been applied to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. Here we briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. In the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  10. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  11. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  12. Microstructure and martensitic transformation of Ni-Ti-Pr alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chunwang; Zhao, Shilei; Jin, Yongjun; Guo, Shaoqiang; Hou, Qingyu

    2017-09-01

    The effect of Pr addition on the microstructure and martensitic transformation behavior of Ni50Ti50- x Pr x ( x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) alloys were investigated experimentally. Results show that the microstructures of Ni-Ti-Pr alloys consist of the NiTi matrix and the NiPr precipitate with the Ti solute. The martensitic transformation start temperature decreases gradually with the increase in Pr fraction. The stress around NiPr precipitates is responsible for the decrease in martensitic transformation temperature with the increase in Pr fraction in Ni-Ti-Pr alloys.

  13. Investigation on Residual Stress Induced by Shot Peening

    NASA Astrophysics Data System (ADS)

    Zhao, Chunmei; Gao, Yukui; Guo, Jing; Wang, Qiang; Fu, Lichao; Yang, Qingxiang

    2015-03-01

    The high strength steel widely used in the aviation industry was chosen in this paper. The shot peening (SP) tests with different technical parameters were carried out, and compressive residual stress (CRS) distribution along the depth was determined. The phase structures before and after SP were analyzed by XRD and TEM. Microhardness and fatigue life were measured, and the morphology of fatigue fracture was also observed. The effects of different technical parameters on CRS field were investigated, and the CRS features with the characteristic parameters were analyzed deeply to summarize the rules. The results show that the CRS field induced by SP can be expressed by four characteristic parameters: the surface CRS σsrs, the maximum CRS σmrs, the depth of maximum CRS ξm and the depth of CRS (strengthened depth) ξ0. Martensite matrix is not changed by SP, while its boundary changes ambiguous with the formation of dislocations. After SP, the microhardness of the specimen increase, and the fatigue crack source moves inwards. The SP saturated time is 1 min. With the increase of SP intensity, σsrs, σmrs, ξm, and ξ0 all increase. While with the increase of SP angle, ξ0 grows gradually. The strengthen effect behaves more obviously as the shot size increases, and the shot material with larger hardness cause higher level of CRS field. Dual SP mainly increases σsrs value.

  14. Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy

    PubMed Central

    Takeda, Kohei; Matsui, Ryosuke; Tobushi, Hisaaki; Pieczyska, Elzbieta A.

    2014-01-01

    The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA) in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1) In the loading process, temperature increases due to the exothermic martensitic transformation (MT) until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2) In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3) Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4) If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5) It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant. PMID:28788547

  15. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  16. The Trier Social Stress Test protocol for inducing psychological stress.

    PubMed

    Birkett, Melissa A

    2011-10-19

    This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety. Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity. In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers. These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor). Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience. Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST. In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task. Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and

  17. Stress induced obesity: lessons from rodent models of stress

    PubMed Central

    Patterson, Zachary R.; Abizaid, Alfonso

    2013-01-01

    Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the

  18. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy

    PubMed Central

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A.

    2012-01-01

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain. PMID:28817016

  19. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    PubMed

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  20. Prediction of machining induced residual stresses

    NASA Astrophysics Data System (ADS)

    Pramod, Monangi; Reddy, Yarkareddy Gopi; Prakash Marimuthu, K.

    2017-07-01

    Whenever a component is machined, residual stresses are induced in it. These residual stresses induced in the component reduce its fatigue life, corrosion resistance and wear resistance. Thus it is important to predict and control the machining-induced residual stress. A lot of research is being carried out in this area in the past decade. This paper aims at prediction of residual stresses during machining of Ti-6Al-4V. A model was developed and under various combinations of cutting conditions such as, speed, feed and depth of cut, the behavior of residual stresses were simulated using Finite Element Model. The present work deals with the development of thermo-mechanical model to predict the machining induced residual stresses in Titanium alloy. The simulation results are compared with the published results. The results are in good agreement with the published results. Future work involves optimization or the cutting parameters that effect the machining induced residual stresses. The results obtained were validated with previous work.

  1. Irradiation-induced impurity segregation and ductile-to-brittle transition temperature shift in high chromium ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Flewitt, P. E. J.

    2007-08-01

    A model is presented to predict irradiation-induced impurity segregation and its contribution to the ductile-to-brittle transition temperature (DBTT) shift in high chromium ferritic steels. The hardening contribution (dislocation loops, voids and precipitates) is also considered in this study. The predicted results are compared with the experimental DBTT shifts data for irradiated 9Cr1MoVNb and 12Cr1MoVW steels with different grain sizes.

  2. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  3. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  4. Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel

    2017-01-01

    The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.

  5. Martensitic transformation in a B2-containing CuZr-based BMG composite revealed by in situ neutron diffraction

    DOE PAGES

    Song, Gian; Lee, Chanho; Hong, Sung Hwan; ...

    2017-06-27

    Here, CuZr-based bulk-metallic-glass (BMG) composites reinforced by a B2-type CuZr crystalline-phase (CP) have been widely studied, and exhibit that the plastic deformation of the CP induces martensitic transformation from the B2 to B19', which plays a dominant role in the deformation behavior and mechanical properties. In the present study, 2.0% Co containing CuZr-based BMG composites were investigated using in-situ neutron-diffraction technique. The in-situ neutron-diffraction results reveal the continuous load transfer from the glass matrix to B2 CP and martensitic transformation from the B2 CP to B19' during the deformation of the composite. Moreover, it was found that the martensitic transformationmore » is initiated at the applied stress higher than 1500 MPa, and is significantly suppressed during the deformation, as compared to other 0.5% Co-containing CuZr-based BMG composites. Based on these in-situ neutron-diffraction results, the martensitic transformation is strongly affected by the amount of the addition of Co, which determines the mechanical properties of CP-reinforced BMG composites, such as ductility and hardening capability.« less

  6. Stress induces transient auditory hypersensitivity in rats.

    PubMed

    Mazurek, Birgit; Haupt, Heidemarie; Joachim, Ricarda; Klapp, Burghard F; Stöver, Timo; Szczepek, Agnieszka J

    2010-01-01

    Exposure to harsh environment induces stress reactions that increase probability of survival. Stress influences the endocrine, nervous and immune systems and affects the functioning of a variety of organs. Numerous researchers demonstrated that a 24-h exposure to an acoustic rodent repellent provokes stress reaction in exposed animals. In addition to the activated hypothalamic-pituitary-adrenal (HPA) axis, exposed animals had pathological reactions in the reproductive organs, bronchia and skin. Here, we examined the effect of above stress model on the auditory system of Wistar rats. We found that 24-h stress decreases the thresholds and increases the amplitudes of auditory brainstem responses and distortion product otoacoustic emissions. Resultant auditory hypersensitivity was transient and most pronounced between 3 and 6h post-stress, returning to control levels one week later. The concentration of corticosterone and tumor necrosis factor alpha was systemically elevated in stressed animals between 3 and 6h post-stress, confirming the activation of the HPA axis. In addition, expression of the HPA-axis-associated genes: glucocorticoid receptor (GR) and hypoxia-inducible factor 1 alpha (Hif1a) was modulated in the auditory tissues. In detail, in the inferior colliculus, we found an up-regulation of GR mRNA 3h post-stress and continuous up-regulation of Hif1a up to 24h post-stress. In the spiral ganglion, we found no differences in gene expression between stressed and control animals. In the organ of Corti, expression of GR mRNA remained stable, whereas that of Hif1a was significantly down-regulated one week after stress. In addition, the expression of an outer hair cell marker prestin was significantly up-regulated 6h post-stress. We conclude that 24-h stress induces transient hypersensitivity of the auditory system and modulates gene expression in a tissue-specific manner. Stress-induced auditory hypersensitivity could have evolutionary consequence by giving animals

  7. Martensitic transformations in high-strength steels at aging

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Bannykh, O. A.

    2011-04-01

    The effect of heat treatment and elastic stresses on the texture of maraging NiTi-steels is studied. The interruption of the decomposition of martensite at the early stages is shown to be accompanied by the γ → α transformation, which proceeds upon cooling from the aging temperature and under elastic (σ < σ0.2) tensile stresses. The martensite has a crystallographic texture, which is caused by the evolution of hot-deformation texture as a result of quenching and decomposition of a supersaturated α solid solution.

  8. Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition

    NASA Astrophysics Data System (ADS)

    Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg

    2015-10-01

    Phase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations. A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium system is determined by improving the unary descriptions of pure nickel and pure titanium, especially regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B 2 -B 19' transformation in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.

  9. Analysis of neutron diffraction spectra acquired [ital in situ] during stress-induced transformations in superelastic NiTi

    SciTech Connect

    Vaidyanathan, R. ); Bourke, M.A. ); Dunand, D.C. )

    1999-09-01

    Neutron diffraction spectra were obtained during various stages of a reversible stress-induced austenite to martensite phase transformation in superelastic NiTi. This was accomplished by neutron diffraction measurements on bulk polycrystalline NiTi samples simultaneously subjected to mechanical loading. Analysis of the data was carried out using individual lattice plane ([ital hkl]) reflections as well as by Rietveld refinement. In the Rietveld procedure, strains in austenite were described in terms of an isotropic ([ital hkl] independent) and an anisotropic ([ital hkl] dependent) component. At higher stresses, austenite lattice plane reflections exhibited nonlinear and dissimilar elastic responses which may be attributed to the transformation. The texture evolution is significant in both austenite and martensite phases during the transformation and two approaches were used to describe this evolving texture, i.e., an ellipsoidal model due to March[endash]Dollase and a generalized spherical-harmonic approach. The respective predictions of the phase fraction evolution as a function of applied stress were compared. A methodology is thus established to quantify the discrete phase strains, phase volume fractions, and texture during such transformations. [copyright] [ital 1999 American Institute of Physics.

  10. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  11. Temperature dependence of single twin boundary motion in Ni-Mn-Ga martensite

    NASA Astrophysics Data System (ADS)

    Straka, L.; Hänninen, H.; Heczko, O.

    2011-04-01

    Magnetic-field-induced reorientation in Ni-Mn-Ga five-layered martensite (10 M) mediated by the motion of single twin boundary was evaluated from magnetization measurements between 20 and 300 K. At 300 K, the single twin boundary moved in an exceptionally small field of 25 kA/m. Twinning stress, as a measure of the twin boundary mobility, was determined from the magnetization curves using a magnetic-energy-based model; it increased from ≈0.1 MPa at 300 K to ≈0.8 MPa at 20 K. The dependence is discussed in terms of thermal activation and the effect of intermartensitic transformation is considered.

  12. Elastocaloric effect associated with the martensitic transition in shape-memory alloys.

    PubMed

    Bonnot, Erell; Romero, Ricardo; Mañosa, Lluís; Vives, Eduard; Planes, Antoni

    2008-03-28

    The elastocaloric effect in the vicinity of the martensitic transition of a Cu-Zn-Al single crystal has been studied by inducing the transition by strain or stress measurements. While transition trajectories show significant differences, the entropy change associated with the whole transformation (DeltaS_(t)) is coincident in both kinds of experiments since entropy production is small compared to DeltaS_(t). The values agree with estimations based on the Clausius-Clapeyron equation. The possibility of using these materials for mechanical refrigeration is also discussed.

  13. High strain rate deformation of martensitic NiTi shape memory alloy

    SciTech Connect

    Liu, Y.; Humbeeck, J. van; Li, Y.; Ramesh, K.T.

    1999-06-04

    Shape memory alloys possess three fundamental properties due to their unique deformation mechanisms: shape memory effect, superelasticity and high damping capacity. The first two properties have already shown significant prospects for application, while the third one has not attracted significant attention. Recently, however, these materials appear promising for civil engineering applications due to the high damping capacity, coupling with good strength, ductility and very good corrosion resistance. Previous research on the deformation behavior of SMAs has been focused on low strain rates. Recently, some preliminary results have been reported on stress-induced martensite formation with austenitic SMAs subjected to impact. However, the high strain rate deformation behavior of SMAs in their martensitic state has not been reported. In the present work, the mechanical behavior of a martensitic NiTi SMA under very high state rate (3 {times} 10{sup 3} s{sup {minus}1}) compression is obtained and is primarily compared to its low rate (3 {times} 10{sup {minus}4} s{sup {minus}1}) deformation behavior.

  14. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  15. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  16. Stress Drops for Potentially Induced Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Beroza, G. C.; Ellsworth, W. L.

    2015-12-01

    Stress drop, the difference between shear stress acting across a fault before and after an earthquake, is a fundamental parameter of the earthquake source process and the generation of strong ground motions. Higher stress drops usually lead to more high-frequency ground motions. Hough [2014 and 2015] observed low intensities in "Did You Feel It?" data for injection-induced earthquakes, and interpreted them to be a result of low stress drops. It is also possible that the low recorded intensities could be a result of propagation effects. Atkinson et al. [2015] show that the shallow depth of injection-induced earthquakes can lead to a lack of high-frequency ground motion as well. We apply the spectral ratio method of Imanishi and Ellsworth [2006] to analyze stress drops of injection-induced earthquakes, using smaller earthquakes with similar waveforms as empirical Green's functions (eGfs). Both the effects of path and linear site response should be cancelled out through the spectral ratio analysis. We apply this technique to the Guy-Greenbrier earthquake sequence in central Arkansas. The earthquakes migrated along the Guy-Greenbrier Fault while nearby injection wells were operating in 2010-2011. Huang and Beroza [GRL, 2015] improved the magnitude of completeness to about -1 using template matching and found that the earthquakes deviated from Gutenberg-Richter statistics during the operation of nearby injection wells. We identify 49 clusters of highly similar events in the Huang and Beroza [2015] catalog and calculate stress drops using the source model described in Imanishi and Ellsworth [2006]. Our results suggest that stress drops of the Guy-Greenbrier sequence are similar to tectonic earthquakes at Parkfield, California (the attached figure). We will also present stress drop analysis of other suspected induced earthquake sequences using the same method.

  17. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  18. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  19. Stress induced hypotension in pure autonomic failure

    PubMed Central

    Thijs, R D; van Dijk, J G

    2006-01-01

    A 47 year old woman with pure autonomic failure complained of dizziness during emotional stress. Emotional stimuli have not previously been reported to cause hypotension in patients with autonomic failure. In the patient, ambulatory blood pressure recording revealed severe hypotension (50/30 mm Hg) after a stressful event. During a tilt table test, hyperventilation was shown to cause a significant fall of blood pressure. This suggests that emotional stress can induce hypotension, probably through hyperventilation, in subjects with autonomic failure. PMID:16354738

  20. Computer Simulation of Martensitic Transformations.

    NASA Astrophysics Data System (ADS)

    Rifkin, Jonathan A.

    This investigation attempted to determine the mechanism of martensitic nucleation by employing computer molecular dynamics; simulations were conducted of various lattices defects to see if they can serve as nucleation sites. As a prerequisite to the simulations the relation between transformation properties and interatomic potential was studied. It was found that the interatomic potential must have specific properties to successfully simulate solid-solid transformations; in particular it needs a long range oscillating tail. We've also studied homogeneous transformations between BCC and FCC structures and concluded it is unlikely that any has a lower energy barrier energy than the Bain transformation. A two dimensional solid was modelled first to gain experience on a relatively simple system; the transformation was from a square lattice to a triangular one. Next a three dimensional system was studied whose interatomic potential was chosen to mimic sodium. Because of the low transition temperature (18K) the transformation from the low temperature phase to high temperature phase was studied (FCC to BCC). The two dimensional system displayed many phenomena characteristic of real martensitic systems: defects promoted nucleation, the martensite grew in plates, some plates served to nucleate new plates (autocatalytic nucleation) and some defects gave rise to multiple plates (butterfly martensite). The three dimensional system did not undergo a permanent martensitic transformation but it did show signs of temporary transformations where some martensite formed and then dissipated. This happened following the dissociation of a screw dislocation into two partial dislocations.

  1. [Stress-induced cellular adaptive mutagenesis].

    PubMed

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  2. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    SciTech Connect

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  3. Stress induced changes in testis function.

    PubMed

    López-Calderón, A; Ariznavarreta, C; González-Quijano, M I; Tresguerres, J A; Calderón, M D

    1991-01-01

    The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.

  4. Cold stress induces lower urinary tract symptoms.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs.

  5. Acute stress may induce ovulation in women

    PubMed Central

    2010-01-01

    Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment. PMID:20504303

  6. Stress induced neuroendocrine-immune plasticity

    PubMed Central

    Liezmann, Christiane; Stock, Daniel; Peters, Eva M. J.

    2012-01-01

    Research over the past decade has revealed close interaction between the nervous and immune systems in regulation of peripheral inflammation linking psychosocial stress with chronic somatic disease and aging. Moreover emerging data suggests that chronic inflammations lead to a pro-inflammatory status underlying premature aging called inflammaging. In this context, the spleen can be seen as a switch board monitoring peripherally derived neuroendocrine-immune mediators in the blood and keeping up a close communication with the central stress response via its mainly sympathetic innervation. The effect aims at balanced and well-timed stress axis activation and immune adaptation in acute peripheral inflammatory events. Constant adjustment to the needs generated by environmental and endogenous challenges is provided by neuroendocrine-immune plasticity. However, maladaptive plasticity induced e.g., by chronic stress-axis activation and excessive non-neuronal derived neuroendocrine mediators may be at the heart of the observed stress sensitivity promote inflammaging under chronic inflammatory conditions. We here review the role of neurotransmitters, neuropeptides and neurotrophins as stress mediators modulating the immune response in the spleen and their potential role in inflammaging. PMID:23467333

  7. A phenomenological approach to micromagnetics in martensitic steels

    NASA Astrophysics Data System (ADS)

    Tomka, G. J.; Gore, J. G.; Earl, J.; Murray, N.; Maylin, M. G.; Squire, P. T.

    2000-09-01

    A series of applied field measurements have been done on rods of martensitic steel using a BH-permeameter incorporated into a stress-strain apparatus. Zero stress measurements have been cross-checked using a VSM. For the unstressed steel, it is shown that it is necessary to adapt the Jiles-Atherton model to account for a significant departure in the virgin and demagnetisation curves from that predicted in the standard model. The adapted model gives a good description of magnetisation changes for points on the curve and provides an insight into the reversal mechanism in martensitic steel. Measurements under stress indicate that the nature of the reversal mechanism is stress dependent.

  8. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  9. Influences of cyclic loading on martensite transformation of TRIP steels

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.

    2013-03-01

    While austenite transformation into martensite induces increasing of the crack initiation life and restraining of the growth of fatigue cracks in cyclic-loading processes, TRIP-assisted steels have a better fatigue life than the AHSS (Advance High Strength Steels). As two key parameters in the cyclic loading process, strain amplitude and cyclic frequency are used in a kinetic transformation model to reasonably evaluate the phase transformation from austenite into martensite with the shear-band intersections theory, in which strain amplitude and cyclic frequency are related to the rate of shear-band intersection formation and the driving force of phase transformation. The results revealed that the martensite volume fraction increased and the rate of phase transformation decrease while the number of cycles increased, and the martensite volume fraction was almost constant after the number of cycles was more than 2000 times. Higher strain amplitude promotes martensite transformation and higher cyclic frequency impedes phase transformation, which are interpreted by temperature increment, the driving force of phase transformation and the rate of shearband intersection formation.

  10. Martensitic transformation, shape memory effects, and other curious mechanical effects

    SciTech Connect

    Vandermeer, R.A.

    1982-01-08

    The objective of this paper is to review tutorially the subject of martensitic transformations in uranium alloys emphasizing their role in the shape memory effect (SME). We examine first what a martensitic transformation is, illustrating some of its characteristics with specific examples. As well as being athermal in nature, as expected, data are presented indicating that martensitic transformations in some uranium alloys also have a strong isothermal component. In addition, a few alloys are known to exhibit thermoelastic martensitic reactions. The SME, which is associated with these, is defined and demonstrated graphically with data from a uranium-6 wt % niobium alloy. Some of the important variables influencing SME behavior are described. Specifically, these are reheat temperature, amount of deformation, crystal structure, and composition. A mechanism for SME is postulated and the association with martensitic transformation is detailed. A self-induced shape instability in the uranium-7.5 wt % niobium-2.5 wt % zirconium alloy with a rationalization of the behavior in terms of texture and lattice parameter change during aging is reviewed and discussed. 24 figures.

  11. Magnetic field aberration induced by cycle stress

    NASA Astrophysics Data System (ADS)

    En, Yang; luming, Li; Xing, Chen

    2007-05-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method—the potential possibility of quantitative measurement.

  12. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    PubMed

    Pun, G P Purja; Mishin, Y

    2010-10-06

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  13. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  14. Mechanically induced residual stresses: Modelling and characterisation

    NASA Astrophysics Data System (ADS)

    Stranart, Jean-Claude E.

    Accurate characterisation of residual stress represents a major challenge to the engineering community. This is because it is difficult to validate the measurement and the accuracy is doubtful. It is with this in mind that the current research program concerning the characterisation of mechanically induced residual stresses was undertaken. Specifically, the cold expansion of fastener holes and the shot peening treatment of aerospace alloys, aluminium 7075 and titanium Ti-6Al-4V, are considered. The objective of this study is to characterise residual stresses resulting from cold working using three powerful techniques. These are: (i) theoretical using three dimensional non-linear finite element modelling, (ii) semi-destructive using a modified incremental hole drilling technique and (iii) nondestructive using a newly developed guided wave method supplemented by traditional C-scan measurements. The three dimensional finite element results of both simultaneous and sequential cold expansion of two fastener holes revealed the importance of the separation distance, the expansion level and the loading history upon the development and growth of the plastic zone and unloading residual stresses. It further showed that the commonly adopted two dimensional finite element models are inaccurate and incapable of predicting these residual stresses. Similarly, the dynamic elasto-plastic finite element studies of shot peening showed that the depth of the compressed layer, surface and sub-surface residual stresses are significantly influenced by the shot characteristics. Furthermore, the results reveal that the separation distance between two simultaneously impacting shots governs the plastic zone development and its growth. In the semi-destructive incremental hole drilling technique, the accuracy of the newly developed calibration coefficients and measurement techniques were verified with a known stress field and the method was used to measure peening residual stresses. Unlike

  15. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    PubMed Central

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg−1 K−1 or 22 J kg −1 K−1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed. PMID:28091551

  16. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys.

    PubMed

    Bruno, N M; Wang, S; Karaman, I; Chumlyakov, Y I

    2017-01-16

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg(-1) K(-1) or 22 J kg (-1) K(-1), and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  17. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg‑1 K‑1 or 22 J kg ‑1 K‑1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  18. Analysis of stress-induced Burgers vector anisotropy in pressurized tube specimens of irradiated ferritic-martensitic steel: JLF-1

    SciTech Connect

    Gelles, D.S.; Shibayama, T.

    1998-09-01

    A procedure for determining the Burgers vector anisotropy in irradiated ferritic steels allowing identification of all a<100> and all a/2<111> dislocations in a region of interest is applied to a pressurized tube specimen of JLF-1 irradiated at 430 C to 14.3 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV) or 61 dpa. Analysis of micrographs indicates large anisotropy in Burgers vector populations develop during irradiation creep.

  19. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  20. Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach

    NASA Astrophysics Data System (ADS)

    Maletta, C.; Sgambitterra, E.; Furgiuele, F.; Casati, R.; Tuissi, A.

    2012-11-01

    Strain controlled fatigue tests of a pseudoelastic nickel-titanium (NiTi) shape memory alloy (SMA) have been carried out in this investigation. In particular, flat dog-bone shaped specimens, obtained from commercial NiTi sheets, have been analyzed, under pull-pull loading conditions, in two subsequent steps: (i) material stabilization and (ii) fatigue life estimation. The first step was carried out to obtain a stable pseudoelastic response of the SMA, i.e. with no residual deformations upon unloading, and it can be regarded as a preliminary processing condition of the alloy. Results on functional fatigue, i.e. in terms of stabilized pseudoelastic response, and on structural fatigue, in terms of cycles to failure, are reported and discussed. Furthermore, a modified Coffin-Manson approach for fatigue life estimation of SMAs is proposed, which takes into account the strain mechanisms involved during repeated stress-induced martensitic transformations.

  1. Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface.

    PubMed

    Levitas, Valery I; Javanbakht, Mahdi

    2010-10-15

    The Ginzburg-Landau theory for multivariant martensitic phase transformations is advanced in three directions: the potential is developed that introduces the surface tension at interfaces; a mixed term in gradient energy is introduced to control the martensite-martensite interface energy independent of that for austenite-martensite; and a noncontradictory expression for variable surface energy is suggested. The problems of surface-induced pretransformation, barrierless multivariant nucleation, and the growth of an embryo in a nanosize sample are solved to elucidate the effect of the above contributions. The obtained results represent an advanced model for coherent interface.

  2. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    NASA Astrophysics Data System (ADS)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  3. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  4. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    SciTech Connect

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the <100> directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a)/sup 2/ from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V/sub 2/Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy ..beta../m wall motion relative to the easy m/m motion of the A15's. For the V/sub 2/Zr, a peak in delta is observed, qualitatively in agreement with expected ..beta../m wall motion.

  5. Stress state in turbopump bearing induced by shrink fitting

    NASA Technical Reports Server (NTRS)

    Sims, P.; Zee, R.

    1991-01-01

    The stress generated by shrink fitting in bearing-like geometries is studied. The feasibility of using strain gages to determine the strain induced by shrink fitting process is demonstrated. Results from a ring with a uniform cross section reveal the validity of simple stress mechanics calculations for determining the stress state induced in this geometry by shrink fitting.

  6. Smog induces oxidative stress and microbiota disruption.

    PubMed

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  7. Melamine Induces Oxidative Stress in Mouse Ovary.

    PubMed

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  8. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  9. Cleavage fracture in bainitic and martensitic microstructures

    SciTech Connect

    Zhang, X.Z.; Knott, J.F.

    1999-09-29

    This paper addresses the mechanisms of cleavage fracture in the pressure-vessel steel A533B. Microstructures of single bainite microstructures exhibit a higher propensity for brittle cleavage fracture than do those of auto-tempered martensites. The K{sub 1c} values of mixed microstructures are determined by the statistical distribution of the two phases and the range of the values is bounded by limits set by those for the single-phase microstructures. The results are explained in terms of the RKR model, which involves a local cleavage stress {sigma}*{sub F} and a distance ahead of the macrocrack tip, X, as two critical parameters. It is found that the carbides or carbide colonies act as critical microcrack nuclei, and hence play a key role in determining the fracture toughness, although packet boundaries in bainite may give rise to pop-in arrests in displacement-controlled tests.

  10. Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena

    NASA Astrophysics Data System (ADS)

    Jin, Yongmei M.; Wang, Yu U.; Ren, Yang

    2015-12-01

    Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.

  11. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    PubMed Central

    Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010

  12. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    PubMed

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. DHEA administration modulates stress-induced analgesia in rats.

    PubMed

    Cecconello, Ana Lúcia; Torres, Iraci L S; Oliveira, Carla; Zanini, Priscila; Niches, Gabriela; Ribeiro, Maria Flávia Marques

    2016-04-01

    An important aspect of adaptive stress response is the pain response suppression that occurs during or following stress exposure, which is often referred to as acute stress-induced analgesia. Dehydroepiandrosterone (DHEA) participates in the modulation of adaptive stress response, changing the HPA axis activity. The effect of DHEA on the HPA axis activity is dependent on the state and uses the same systems that participate in the regulation of acute stress-induced analgesia. The impact of DHEA on nociception has been studied; however, the effect of DHEA on stress-induced analgesia is not known. Thus, the aim of the present study was to evaluate the effect of DHEA on stress-induced analgesia and determine the best time for hormone administration in relation to exposure to stressor stimulus. The animals were stressed by restraint for 1h in a single exposure and received treatment with DHEA by a single injection before the stress or a single injection after the stress. Nociception was assessed with a tail-flick apparatus. Serum corticosterone levels were measured. DHEA administered before exposure to stress prolonged the acute stress-induced analgesia. This effect was not observed when the DHEA was administered after the stress. DHEA treatment in non-stressed rats did not alter the nociceptive threshold, suggesting that the DHEA effect on nociception is state-dependent. The injection of DHEA had the same effect as exposure to acute stress, with both increasing the levels of corticosterone. In conclusion, acute treatment with DHEA mimics the response to acute stress indexed by an increase in activity of the HPA axis. The treatment with DHEA before stress exposure may facilitate adaptive stress response, prolonging acute stress-induced analgesia, which may be a therapeutic strategy of interest to clinics.

  14. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.

    PubMed

    Chirtoc, M; Gibkes, J; Wernhardt, R; Pelzl, J; Wieck, A

    2008-09-01

    We develop the theoretical description of 3omega signals from the resistive Wollaston thermal probe (ThP) of a scanning thermal microscope (SThM) in terms of an equivalent low-pass filter. The normalized amplitude and phase frequency spectra are completely characterized by a single parameter, the crossover frequency f(c)(k) depending on the sample thermal conductivity k. The application concerns polycrystalline NiTi shape memory alloy microstructured by focused Ga ion beam milling and implantation. The calibration of the ThP combined with a novel two-step normalization procedure allowed quantitative exploitation of 3omega signal variations as small as -1.75% in amplitude and 0.60 degrees in phase upon heating the sample from room temperature to 100 degrees C. This corresponds to k increase of 23.9% that is consistent with the expected thermal conductivity variation due to martensite-austenite structural phase transition. To our knowledge this is for the first time that SThM 3omega phase information is used quantitatively as well. The static, calibrated 3omega measurements are complementary to 3omega SThM images of the patterned sample surface. The local SThM measurement of temperature-dependent thermal conductivity opens the possibility to imaging structural phase transitions at submicron scale.

  15. Temperature-dependent quantitative 3{omega} scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition

    SciTech Connect

    Chirtoc, M.; Gibkes, J.; Wernhardt, R.; Pelzl, J.; Wieck, A.

    2008-09-15

    We develop the theoretical description of 3{omega} signals from the resistive Wollaston thermal probe (ThP) of a scanning thermal microscope (SThM) in terms of an equivalent low-pass filter. The normalized amplitude and phase frequency spectra are completely characterized by a single parameter, the crossover frequency f{sub c}(k) depending on the sample thermal conductivity k. The application concerns polycrystalline NiTi shape memory alloy microstructured by focused Ga ion beam milling and implantation. The calibration of the ThP combined with a novel two-step normalization procedure allowed quantitative exploitation of 3{omega} signal variations as small as -1.75% in amplitude and 0.60 deg. in phase upon heating the sample from room temperature to 100 deg. C. This corresponds to k increase of 23.9% that is consistent with the expected thermal conductivity variation due to martensite-austenite structural phase transition. To our knowledge this is for the first time that SThM 3{omega} phase information is used quantitatively as well. The static, calibrated 3{omega} measurements are complementary to 3{omega} SThM images of the patterned sample surface. The local SThM measurement of temperature-dependent thermal conductivity opens the possibility to imaging structural phase transitions at submicron scale.

  16. Structure and mechanical properties of hot-deformed low-carbon martensitic steel

    NASA Astrophysics Data System (ADS)

    Romanov, I. D.; Shatsov, A. A.; Zakirova, M. G.; Berezin, S. K.

    2016-03-01

    The structural changes in low-carbon martensitic 15Kh2G2NMFBA steel induced by its hot forging in the temperature range 1150-850°C have been studied. The calculated cracking resistance parameter I c is in agreement with its experimental value. A relation is found between the lath sizes in the martensite structure and the change in the impact toughness characteristics. A combined regime of hot deformation and hot treatment of the low-carbon martensitic steel is proposed to form submicrometer-sized structural elements and high strength and impact toughness characteristics.

  17. Lath martensites in low carbon steels

    SciTech Connect

    Sarikaya, M.; Thomas, G.

    1982-01-01

    The morphology and crystallography of lath martensite in low and medium carbon steels have been studied by transmission electron microscopy and diffraction. The steels have microduplex structures of dislocated lath martensite (a < b much less than c) with fairly straight boundaries and continuous interlath thin films of retained austenite. Stacks of laths (i.e., single crystals of martensite) form the packets which are derived from different (111) transformation variants of austenite. Microdiffraction experiments directly allow the determination of the orientation relationships between austenite and martensite. Relative orientations of adjacent individual laths cluster about common orientations from small to large angular differences all around a common <110>M direction. The overall microstructure and orientations result from minimization of the total strain and shape deformation. Considerable accommodation occurs by deformation of laths (sometimes twinned) and austenite (sometimes tripped to twin martensite). In the meantime, microchemical analyses have shown considerable carbon segregation to the martensite-austenite interface. 4 figures.

  18. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L'vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  19. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  20. Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy

    NASA Astrophysics Data System (ADS)

    Demakov, S. L.; Stepanov, S. I.; Illarionov, A. G.; Ryzhkov, M. A.

    2017-03-01

    Anisotropy of the thermal expansion coefficient (TEC) has been revealed along the axes of the crystal lattice of the α″ titanium martensite in the two-phase (α + β) titanium alloy of grade VT16 (Ti-3Al-5V-4.5Mo, wt %). It has been established by the method of in situ X-ray diffraction analysis that the lattice parameter b of the orthorhombic martensite obtained by quenching from different temperatures decreases upon heating. The TECs along the axes of the crystal lattice of the martensite obtained by quenching from different temperatures have been calculated. It has been shown that the uniaxial extension of bars of the VT16 alloy quenched for the metastable β phase with relative deformations of 0.7, 1, 2, 3, 4, 5, 6, and 8% leads to the formation of the deformation-induced martensite with an axial texture along the b direction of the martensite lattice. In the course of dilatometric studies of the deformed bars, it has been established that there are two temperature intervals (from-100 to +70°C and from 150 to 300°C) with a low TEC. In the first interval, the value of the TEC varies from-2 × 10-6 to +8 × 10-6 K-1 and is determined by the volume fraction of the oriented α″ martensite. This Invar effect is one-dimensional and is manifested along the b axis of the martensite.

  1. Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite

    NASA Astrophysics Data System (ADS)

    Wang, Meimei; Tasan, C. Cem; Koyama, Motomichi; Ponge, Dirk; Raabe, Dierk

    2015-09-01

    Partial reversion of interlath austenite nano-films is investigated as a potential remedy for hydrogen embrittlement susceptibility of martensitic steels. We conducted uniaxial tensile tests on hydrogen-free and pre-charged medium-Mn transformation-induced plasticity-maraging steels with different austenite film thicknesses. Mechanisms of crack propagation and microstructure interaction are quantitatively analyzed using electron channelling contrast imaging and electron backscatter diffraction, revealing a promising strategy to utilize austenite reversion for hydrogen-resistant martensitic steel design.

  2. A theoretical and experimental investigation of power harvesting using the NiMnGa martensite reorientation mechanism

    NASA Astrophysics Data System (ADS)

    Bruno, Nickolaus M.; Ciocanel, Constantin; Feigenbaum, Heidi P.; Waldauer, Alex

    2012-09-01

    Magnetic shape memory alloys (MSMAs) can exhibit the shape memory effect when there is a magnetic field in the vicinity of a material point. The microstructure of the MSMAs is comprised of tetragonal martensite variants, each with their preferred internal magnetization orientation. Starting from a random variant orientation, the application of a large enough magnetic field will cause the variants to reorient so that the internal magnetization vectors align with the external field. Then, keeping the magnetic field constant and adding a variable compressive stress in a direction normal to that of the magnetic field, some or all of the martensitic variants may rotate into a stress preferred state. As the variants reorient, the internal magnetization vectors rotate, and the material’s magnetization changes. For power harvesting and sensing applications, the change in magnetization induces a current in a pickup coil placed around the MSMA specimen, resulting in an output voltage at its terminals according to Faraday’s law of inductance. This paper focuses on the evaluation of the voltage output, both experimentally and numerically, in an attempt to assess the ability of a MSMA thermodynamic based constitutive model, used in conjunction with Faraday’s law of induction, to predict the variant reorientation induced voltage output. Assessing the accuracy of the predicted voltage is beneficial for the design of both MSMA based power harvesting devices and MSMA based displacement sensors.

  3. Salubrious effects of oxytocin on social stress-induced deficits

    PubMed Central

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  4. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  5. Malonate induces the assembly of cytoplasmic stress granules.

    PubMed

    Fu, Xue; Gao, Xingjie; Ge, Lin; Cui, Xiaoteng; Su, Chao; Yang, Wendong; Sun, Xiaoming; Zhang, Wei; Yao, Zhi; Yang, Xi; Yang, Jie

    2016-01-01

    Malonate, a classic inhibitor of respiratory electron transport chain, induces mitochondrial stress. Stress granules (SGs) are a kind of dynamic foci structure during stress. The study on the connection of mitochondrial stress and SG assembly is still limited. Here, we demonstrated that malonate treatment leads to SG formation and translation inhibition, apart from mitochondrial stress, including enhanced ROS formation, reduced mitochondrial Δψm and ATP level. The phosphorylation levels of eIF2α and 4EBP1 protein were affected upon mitochondrial dysfunction. However, knockdown of 4EBP1 affected SG formation, rather than eIF2α. In addition, an increase of ATP level under mitochondrial stress enhanced malonate-induced SG aggregation. Overall, malonate stimulation triggers mitochondrial stress and induces the assembly of non-canonical cellular SGs via 4EBP1 pathway.

  6. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    PubMed

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd.

  7. Martensitic and magnetic transformation in Mn50Ni50-xSnx ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ma, L.; Wang, S. Q.; Li, Y. Z.; Zhen, C. M.; Hou, D. L.; Wang, W. H.; Chen, J. L.; Wu, G. H.

    2012-10-01

    A martensitic transformation (MT) from a body-centered-cubic austenitic phase to a tetragonal martensitic phase has been found in Mn50Ni50-xSnx (0 ≤ x ≤ 11) alloys. The martensitic transformation temperature can be decreased by about 71.6 K by increasing the Sn concentration by 1 at. %. For 9 ≤ x ≤ 11, Mn50Ni50-xSnx ferromagnetic shape memory alloys are obtained. Due to the large magnetization difference (ΔM = 60 emu/g) and small thermal hysteresis (ΔT = 6 K) in the Mn50Ni40Sn10 alloy, a two-way magnetic-field-induced martensitic transformation is observed with dT/dH = 2 K/T.

  8. Differentiating stress to wheat fields induced by Diuraphis noxia from other stress causing factors

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a method to differentiate two categories of stress to wheat fields, stress induced by the Russian wheat aphid, Diuraphis noxia (Mordvilko), and stress caused by other factors. The study used a set of 11 spatial pattern metrics derived from multispectral im...

  9. Experimentally induced stress validated by EMG activity.

    PubMed

    Luijcks, Rosan; Hermens, Hermie J; Bodar, Lonneke; Vossen, Catherine J; Van Os, Jim; Lousberg, Richel

    2014-01-01

    Experience of stress may lead to increased electromyography (EMG) activity in specific muscles compared to a non-stressful situation. The main aim of this study was to develop and validate a stress-EMG paradigm in which a single uncontrollable and unpredictable nociceptive stimulus was presented. EMG activity of the trapezius muscles was the response of interest. In addition to linear time effects, non-linear EMG time courses were also examined. Taking into account the hierarchical structure of the dataset, a multilevel random regression model was applied. The stress paradigm, executed in N = 70 subjects, consisted of a 3-minute baseline measurement, a 3-minute pre-stimulus stress period and a 2-minute post-stimulus phase. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. EMG activity during the entire experiment was conform a priori expectations: the pre-stimulus phase showed a significantly higher mean EMG activity level compared to the other two phases, and an immediate EMG response to the stimulus was demonstrated. In addition, the analyses revealed significant non-linear EMG time courses in all three phases. Linear and quadratic EMG time courses were significantly modified by subjective anticipatory stress level, measured just before the start of the stress task. Linking subjective anticipatory stress to EMG stress reactivity revealed that subjects with a high anticipatory stress level responded with more EMG activity during the pre-stimulus stress phase, whereas subjects with a low stress level showed an inverse effect. Results suggest that the stress paradigm presented here is a valid test to quantify individual differences in stress susceptibility. Further studies with this paradigm are required to demonstrate its potential use in mechanistic clinical studies.

  10. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    NASA Astrophysics Data System (ADS)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  11. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  12. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.

    PubMed

    Hossain, R; Pahlevani, F; Quadir, M Z; Sahajwalla, V

    2016-10-11

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels' performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  13. Horizontal stresses induced by vertical processes in planetary lithospheres

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    1993-01-01

    Understanding the state of stress in the elastic lithosphere is of fundamental importance for planetary geophysics, as it is the link between the observed geologic structures on the surface and the processes which form and modify these structures. As such, it can provide valuable constraints for the difficult problem of determining interior structure and processes. On the Earth, most large scale, organized deformation can be related to lateral tectonics associated with plate dynamics; however, the tectonics on many extraterrestrial bodies (such as the Moon, Mars, and most of the outer-planet satellites) appears to be primarily vertical in nature, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. The largest stress contributions from vertical loading come from the flexure of the lithosphere, which induces both bending moments and membrane stresses. We are concerned here only with nonflexural changes in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. It is also of interest for providing a reference state of stress for interpreting stress measurements in the crust of the Earth.

  14. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  15. Sertraline induces endoplasmic reticulum stress in hepatic cells.

    PubMed

    Chen, Si; Xuan, Jiekun; Couch, Letha; Iyer, Advait; Wu, Yuanfeng; Li, Quan-Zhen; Guo, Lei

    2014-08-01

    Sertraline is used for the treatment of depression, and is also used for the treatment of panic, obsessive-compulsive, and post-traumatic stress disorders. Previously, we have demonstrated that sertraline caused hepatic cytotoxicity, with mitochondrial dysfunction and apoptosis being underlying mechanisms. In this study, we used microarray and other biochemical and molecular analyses to identify endoplasmic reticulum (ER) stress as a novel molecular mechanism. HepG2 cells were exposed to sertraline and subjected to whole genome gene expression microarray analysis. Pathway analysis revealed that ER stress is among the significantly affected biological changes. We confirmed the increased expression of ER stress makers by real-time PCR and Western blots. The expression of typical ER stress markers such as PERK, IRE1α, and CHOP was significantly increased. To study better ER stress-mediated drug-induced liver toxicity; we established in vitro systems for monitoring ER stress quantitatively and efficiently, using Gaussia luciferase (Gluc) and secreted alkaline phosphatase (SEAP) as ER stress reporters. These in vitro systems were validated using well-known ER stress inducers. In these two reporter assays, sertraline inhibited the secretion of Gluc and SEAP. Moreover, we demonstrated that sertraline-induced apoptosis was coupled to ER stress and that the apoptotic effect was attenuated by 4-phenylbutyrate, a potent ER stress inhibitor. In addition, we showed that the MAP4K4-JNK signaling pathway contributed to the process of sertraline-induced ER stress. In summary, we demonstrated that ER stress is a mechanism of sertraline-induced liver toxicity. Published by Elsevier Ireland Ltd.

  16. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  17. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  18. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    PubMed

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  20. Metabolic Stress Induced by Arginine Deprivation Induces Autophagy Cell Death in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Research, 69(2):700-708...TITLE: Metabolic stress induced by arginine deprivation induces autophagy cell death in prostate cancer PRINCIPAL INVESTIGATOR: Richard Bold, MD...4. TITLE AND SUBTITLE Metabolic stress induced by arginine deprivation induces autophagy cell 5a. CONTRACT NUMBER death in prostate cancer 5b

  1. Statistical Description of Wave Induced Vibratory Stresses in Ships.

    DTIC Science & Technology

    1980-12-01

    AD-Aill 186 NORSKE VERITAS OSLO FIG 13/10 STATISTICAL DESCRIPTION OF WAVE INDUCED VIBRATORY STRESSES IN S--ETC(U) I DEC 80 S GRAN DTC623-80-C-20007...UNCLASSIFIED 80-1171 USCG-M-2-81 NL Ummli.mm....m REPORT NO. CG-M-2-814 STATISTICAL DESCRIPTION OF WAVE INDUCED VIBRATORY STRESSES IN SHIPS Sverre Gran...Ttle anld Si ,fb.le 5. Roer, Dole December 1980 Statistical Description of Wave Induced Decmber 1980 Vibratory Stresses in Ships 6. Pef om.. O,’gOr n

  2. Drilling-induced core fractures and in situ stress

    NASA Astrophysics Data System (ADS)

    Li, Yongyi; Schmitt, Douglas R.

    1998-03-01

    The relationship between the shapes of drilling-induced core fractures and the in situ state of stress is developed. The stress concentrations at the well bore bottom are first determined using a complete three-dimensional finite element analysis. Existing in situ compressional stresses generate large tensions in the immediate vicinity of the bottom hole which are sufficient to rupture the rock. Tensile fracture trajectories within these concentrated stress fields are predicted using a simple model of fracture propagation. These modeled fracture trajectories resemble well the observed shapes of drilling-induced core disking, petal, and petal-centerline fractures. Further, this agreement suggests that both the shape of the drilling-induced fracture and the location at which it initiates depends on the in situ stress state existing in the rock mass prior to drilling; the core fractures contain substantial information on in situ stress conditions. In all faulting regimes the coring-induced fractures initiate near the bit cut except for most cases under thrust faulting regime where the fracture initiates on the well bore axis. Further, under thrust faulting conditions only disk fractures appear possible. Both petal and disking fractures can be produced in strike-slip and normal faulting regimes depending upon the relative magnitudes between the least compressive horizontal principal stress and the vertical overburden stress. The predicted fracture shapes are in good qualitative agreement with observations of drilling-induced fractures described in the literature from laboratory experiments and field programs in which in situ stresses are measured by other means. The relationship of the morphology of coring induced fractures and in situ stresses suggests that the fractures can be used as independent complementary indicators in identifying stress regimes.

  3. Stress-induced changes in wheat grain composition and quality.

    PubMed

    Ashraf, M

    2014-01-01

    Abiotic stresses such as drought, salinity, waterlogging, and high temperature cause a myriad of changes in the metabolism of plants, and there is a lot of overlap in these changes in plants in response to different stresses such as drought and salinity. These stress-induced metabolic changes cause impaired crop growth thereby resulting in poor yield. The metabolic changes taking place in several plant species due to a particular abiotic stress have been revealed from the whole plant to the molecular level by researchers, but most studies have focused on organs such as leaf, stem, and root. Information on such stress-induced changes in seed or grains is infrequent in the literature. From the information that is available, it is now evident that abiotic stress can induce considerable changes in the composition and quality of cereal grains including those of wheat, the premier staple food crop in the world. Thus, the present review discusses how far different types of stresses, mainly salinity, drought, high temperature, and waterlogging, can alter the wheat grain composition and quality. By fully uncovering the stress-induced changes in the nutritional values of wheat grains it would be possible to establish whether balanced supplies of essential nutrients are available to the human population from the wheat crop grown on stress-affected areas.

  4. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress.

    PubMed

    Shor, Erika; Fox, Catherine A; Broach, James R

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors.

  5. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  6. ER stress induced by ionising radiation in IEC-6 cells.

    PubMed

    Zhang, Bo; Wang, Yan; Pang, Xueli; Su, Yongping; Ai, Guoping; Wang, Tao

    2010-06-01

    Ionising radiation (IR) can evoke a series of biochemical events inside the cell. However, whether IR can directly induce endoplasmic reticulum (ER) stress is not clear. In our previous study, we found that there might be a causative link between IR and ER stress. In this study, we further characterised the type of ER stress induced by IR. Rat intestinal epithelial cells IEC-6 were irradiated at a dose of 10 Gy, and total RNA and proteins were harvested at indicated time points. The mRNA and protein expression of immunoglobulin heavy chain binding protein (BiP) and glucose regulated protein 94 (GRP94) was detected along with proteins associated with ER stress signal pathways. Our results indicated that IR induced up-regulation of ER stress marker including BiP and GRP94 at protein and mRNA levels in IEC-6 cells. Increased phosphorylation of eukaryotic translation initiation factor 2 (eIF2alpha) and induced mRNA splicing of X-box binding protein 1 (XBP1) suggested that PERK (interferon-induced double-stranded RNA-activated protein kinase (PRKR) -like endoplasmic reticulum kinase) and IRE1 (inositol requirement 1) signal transduction pathways were involved in this kind of ER stress. However, the active form of activating transcription factor 6 (ATF6) did not change significantly in irradiated cells, which suggested that the ATF6 pathway was not involved. Thus, we concluded that IR could induce moderate ER stress directly in IEC-6 cells.

  7. γ→α‧ Martensitic transformation and magnetic property of cold rolled Fe-20Mn-4Al-0.3C steel

    NASA Astrophysics Data System (ADS)

    Ma, Biao; Li, Changsheng; Han, Yahui; Wang, Jikai

    2016-12-01

    Direct γ→α‧ martensitic transformation during cold rolling deformation was investigated for a high-Mn non-magnetic steel. Its influence on magnetic property was also analyzed. The magnetization under rolling reduction less than 50% almost presents a linear increase with the applied magnetic field. With deformation up to 73% and 93% thickness reductions, strain induced α‧-martensite transformation starts to occur, causing the steel to be slightly magnetized. The α‧-martensite prefers to nucleate directly at either microband-microband or microband-twin intersections without participation of intermediate ε-martensite. The volume fraction of α‧-martensite is estimated as 0.070% and 0.17%, respectively, based on the magnetic hysteresis loops. Such a small fraction of ferromagnetic α‧-martensite shows little influence on the magnetic induction intensity and low relative permeability.

  8. Salubrious effects of oxytocin on social stress-induced deficits.

    PubMed

    Smith, Adam S; Wang, Zuoxin

    2012-03-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While positive social interactions can attenuate stress and promote health, the social environment can also be a major source of stress when it includes social disruption, confrontation, isolation, or neglect. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.

  9. Caffeine attenuated ER stress-induced leptin resistance in neurons.

    PubMed

    Hosoi, Toru; Toyoda, Keisuke; Nakatsu, Kanako; Ozawa, Koichiro

    2014-05-21

    Exposing the endoplasmic reticulum (ER) to stress causes the accumulation of unfolded proteins, and subsequently results in ER stress. ER stress may be involved in various disorders such as obesity, diabetes, and neurodegenerative diseases. Leptin is an important circulating hormone, that inhibits food intake and accelerates energy consumption, which suppresses body weight gain. Recent studies demonstrated that leptin resistance is one of the main factors involved in the development of obesity. We and other groups recently reported the role of ER stress in the development of leptin resistance. Therefore, identifying drugs that target ER stress may be a promising fundamental strategy for the treatment of obesity. In the present study, we investigated whether caffeine could affect ER stress and the subsequent development of leptin resistance. We showed that caffeine exhibited chaperone activity, which attenuated protein aggregation. Caffeine also inhibited the ER stress-induced activation of IRE1 and PERK, which suggested the attenuation of ER stress. Moreover, caffeine markedly improved ER stress-induced impairments in the leptin-induced phosphorylation of STAT3. Therefore, these results suggest caffeine may have pharmacological properties that ameliorate leptin resistance by reducing ER stress.

  10. Neurobiology of Stress-Induced Reproductive Dysfunction In Female Macaques

    PubMed Central

    Bethea, Cynthia L.; Centeno, Maria Luisa; Cameron, Judy L.

    2012-01-01

    It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress-sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (Stress Sensitive) or to continue to ovulate (Stress Resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus and have reduced GnRH transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases. PMID:18931961

  11. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  12. Two-way shape memory effect developed by martensite deformation in NiTi

    SciTech Connect

    Liu, Y.; Liu, Y.; Van Humbeeck, J.

    1998-12-11

    The effect of tensile deformation in the martensitic state on the transformation behavior of a polycrystalline near-equiatomic NiTi alloy was investigated by differential scanning calorimetry and thermal mechanical analysis. The experimental results indicated that the process of martensite reorientation proceeded in a Lueders manner over a stress plateau and continued into the next stage of uniform deformation with an increasing stress. The transition of the martensite reorientation process from a localized manner to a uniform manner during tensile deformation of a polycrystalline matrix is yet to be explained. The results also demonstrated that the reorientation deformation was effective in developing a two-way memory effect. The maximum two-way memory effect developed was comparable in magnitude to that developed by conventional training procedures in similar alloys. The deformation also caused a thermal stabilization to the deformed martensite. The stabilization effect was a one-time effect, which vanished once the deformed martensite reverted back to austenite on heating.

  13. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    SciTech Connect

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.

  14. Exercise-induced stress response as an adaptive tolerance strategy.

    PubMed Central

    Sonneborn, J S; Barbee, S A

    1998-01-01

    Interaction between the quality of the environment and the health of the exposed population determines the survival response of living organisms. The phenomenon of induced tolerance by exposure to threshold levels of stressors to stimulate natural defense mechanisms has potential therapeutic value. The paucity of information on predictability of individual response and information on the operative fundamental mechanisms limit applicability of the adaptive tolerance strategy. A potential biomarker of the stress response includes members of the stress-inducible ubiquitin gene family. Transcript sizes detected with Northern blot analysis identify different classes of ubiquitin gene family members and the intensity of the radioactive signal allows abundance determinations. Using moderate exercise as the stressor, significant increase (p < 0.028) in abundance of inducible polyubiquitin genes was found in human blood. Both the potential of exercise as a model system of a natural stress inducer and polyubiquitin as a biomarker of stress were established in these studies. Images Figure 1 Figure 2 PMID:9539026

  15. On the effects of irradiation and helium on the yield stress changes and hardening and non-hardening embrittlement of ˜8Cr tempered martensitic steels: Compilation and analysis of existing data

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Odette, G. Robert; Kishimoto, Hirotatsu; Rensman, Jan-Willem; Miao, Pifeng

    2006-09-01

    Data on irradiation hardening and embrittlement of 8-10Cr normalized and tempered martensitic steel (TMS) alloys has been compiled from the literature, including results from neutron, spallation proton (SP) and He-ion (HI) irradiations. Limitations of this database are briefly described. Simple, phenomenological-empirical fitting models were used to assess the dose (displacement-per-atom, dpa), irradiation temperature ( Ti) and test temperature ( Tt) dependence of yield stress changes (Δ σy), as well as the corresponding dependence of sub-sized Charpy V-notch impact test transition temperature shifts (Δ Tc). The Δ σy are generally similar for SP and neutron irradiations, with very high and low helium to dpa ratios, respectively. Further, the Δ σy trends were found to be remarkably consistent with the Ti and dpa hardening-dependence of low alloy steels irradiated at much lower doses. The similar Ti and (low) dose dependence of Δ σy and Δ Tc, as well as an analysis of paired Δ Tc-Δ σy datasets, show that embrittlement is typically dominated by a hardening mechanism below about 400 °C. However, the corresponding hardening-Charpy shift coefficient, Cc = Δ Tc/Δ σy ≈ 0.38 ± 0.18 °C/MPa is lower than that for the fracture toughness reference temperature, T0, with Δ T0/Δ σy ≈ 0.58 ± 0.1 °C/MPa, indicating that sub-sized Charpy tests provide non-conservative estimates of embrittlement. The Cc increases at Ti > 400 °C, and Δ Tc > 0 are sometimes observed in association with Δ σy ⩽ 0, indicative of a non-hardening embrittlement (NHE) contribution. Analysis of limited data on embrittlement due to thermal aging supports this conclusion, and we hypothesize that the NHE regime may be shifted to lower temperatures by radiation enhanced diffusion. Possible effects of helium on embrittlement for Ti between 300 and 400 °C are also assessed based on observed trends in Cc. The available data is limited, scattered, and potentially confounded. However

  16. R&D 100, 2016: Stress-Induced Fabrication

    ScienceCinema

    Fan, Hongyou; Brennan, Tom; Wise, Jack; Liu, Sheng; Hickman, Randy

    2016-12-09

    Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.

  17. R&D 100, 2016: Stress-Induced Fabrication

    SciTech Connect

    Fan, Hongyou; Brennan, Tom; Wise, Jack; Liu, Sheng; Hickman, Randy

    2016-11-07

    Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.

  18. FMRFamide signaling promotes stress-induced sleep in Drosophila

    PubMed Central

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D.; Raizen, David M.; Williams, Julie A.

    2015-01-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. PMID:25668617

  19. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  20. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    PubMed

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress.

  1. Emotional Intelligence, Personality, and Task-Induced Stress

    ERIC Educational Resources Information Center

    Matthews, Gerald; Emo, Amanda K.; Funke, Gregory; Zeidner, Moshe; Roberts, Richard D.; Costa, Paul T.; Schulze, Ralf

    2006-01-01

    Emotional intelligence (EI) may predict stress responses and coping strategies in a variety of applied settings. This study compares EI and the personality factors of the Five Factor Model (FFM) as predictors of task-induced stress responses. Participants (N = 200) were randomly assigned to 1 of 4 task conditions, 3 of which were designed to be…

  2. Chlorpyrifos induces endoplasmic reticulum stress in JEG-3 cells.

    PubMed

    Reyna, Luciana; Flores-Martín, Jésica; Ridano, Magali E; Panzetta-Dutari, Graciela M; Genti-Raimondi, Susana

    2017-04-01

    Chlorpyrifos (CPF) is an organophosphorous pesticide widely used in agricultural, industrial, and household applications. We have previously shown that JEG-3 cells are able to attenuate the oxidative stress induced by CPF through the adaptive activation of the Nrf2/ARE pathway. Considering that there is a relationship between oxidative stress and endoplasmic reticulum stress (ER), herein we investigated whether CPF also induces ER stress in JEG-3 cells. Cells were exposed to 50μM or 100μM CPF during 24h in conditions where cell viability was not altered. Western blot and PCR assays were used to explore the protein and mRNA levels of ER stress biomarkers, respectively. CPF induced an increase of the typical ER stress-related proteins, such as GRP78/BiP and IRE1α, a sensor for the unfolded protein response, as well as in phospho-eIF2α and XBP1 mRNA splicing. Additionally, CPF led to a decrease in p53 protein expression. The downregulation of p53 levels induced by CPF was partially blocked when cells were exposed to CPF in the presence of the proteasome inhibitor MG132. Altogether, these findings point out that CPF induces ER stress in JEG-3 cells; however these cells are able to attenuate it downregulating the levels of the pro-apoptotic protein p53.

  3. ATR inhibition rewires cellular signaling networks induced by replication stress.

    PubMed

    Wagner, Sebastian A; Oehler, Hannah; Voigt, Andrea; Dalic, Denis; Freiwald, Anja; Serve, Hubert; Beli, Petra

    2016-02-01

    The slowing down or stalling of replication forks is commonly known as replication stress and arises from multiple causes such as DNA lesions, nucleotide depletion, RNA-DNA hybrids, and oncogene activation. The ataxia telangiectasia and Rad3-related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancers that exhibit high levels of replication stress. However, the cellular signaling induced by replication stress and the substrate spectrum of ATR has not been systematically investigated. In this study, we employed quantitative MS-based proteomics to define the cellular signaling after nucleotide depletion-induced replication stress and replication fork collapse following ATR inhibition. We demonstrate that replication stress results in increased phosphorylation of a subset of proteins, many of which are involved in RNA splicing and transcription and have previously not been associated with the cellular replication stress response. Furthermore, our data reveal the ATR-dependent phosphorylation following replication stress and discover novel putative ATR target sites on MCM6, TOPBP1, RAD51AP1, and PSMD4. We establish that ATR inhibition rewires cellular signaling networks induced by replication stress and leads to the activation of the ATM-driven double-strand break repair signaling.

  4. Heat stress-induced life span extension in yeast.

    PubMed

    Shama, S; Lai, C Y; Antoniazzi, J M; Jiang, J C; Jazwinski, S M

    1998-12-15

    The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genes RAS1 and RAS2 were necessary to observe this effect of heat stress. The RAS2 gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether. RAS1, on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between the RAS genes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. The ras2 mutation clearly hindered resumption of growth and recovery from stress, while the ras1 mutation did not. The HSP104 gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that the RAS genes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.

  5. Reversed austenite for enhancing ductility of martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  6. Thermally activated martensitic transformations in Mg-PSZ

    SciTech Connect

    Behrens, G.; Heuer, A.H.

    1996-04-01

    The thermally activated, stress-assisted martensitic tetragonal {yields} monoclinic (t {yields} m) and tetragonal {yields} orthorhombic (t {yields} o) transformations in a high-toughness Mg-PSZ were investigated by monitoring the phase assemblage with Raman spectroscopy after a variety of heat treatments and loading conditions. After a short anneal at 1,000 C, which transforms m- and o-ZrO{sub 2} to the t polymorph, isothermal t {yields} m and t {yields} o transformations occur at room temperature during the months following the anneal. The transformation rates in the annealed samples are greatly enhanced under external stress. Alternatively, samples containing regions of significant residual stress, introduced by indentation for example, and then annealed at relatively low temperatures, underwent additional thermally activated transformation in the stressed regions. The thermodynamics and kinetics of this complex transformation ``plasticity,`` and its effect on mechanical properties, are discussed.

  7. Stress Inducement: The Silent Combat Multiplier

    DTIC Science & Technology

    1991-12-19

    Advanced Military Studies United States Army Command and General Staff College Fort Leavenworth, Kansas First Term AY 91-92 Approved for PNbfic Rcke...PUBLIC RELEASE; DISTRIBUTION UNLIMITED IU. ABSTRACT (Ma&tmum2OworW) SEE ATTACHED 14. SUBJECT TERMS IS. NUMBER OF PAGES STRESS PSYCHOLOGICAL ASPECTS OF...advantage by taking actions which increase enemy stress levels. The psychological dimensions of the modern battlefield are examined to determine if factors

  8. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  9. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  10. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Koizumi, Yuichiro; Chiba, Akihiko

    2014-04-01

    Locally developed strains caused by athermal γ face-centered cubic (fcc)→ε hexagonal close-packed (hcp) martensitic transformation were investigated for the γ matrix of Ni-free Co-29Cr-6Mo (wt%) alloys prepared with or without added nitrogen. Electron-backscatter-diffraction-(EBSD)-based strain analysis revealed that in addition to ε-martensite interiors, the N-free alloy that had a duplex microstructure consisting of the γ matrix and athermal ε-martensite plates showed larger magnitudes of both elastic and plastic strains in the γ phase matrix than the N-doped counterpart that did not have a ε-martensite phase. Transmission electron microscopy (TEM) results indicated that the ε-martensite microplates were aggregates of thin ε-layers, which were formed by three different {111}γ〈112¯〉γ Shockley partial dislocations in accordance with a previously proposed mechanism (Putaux and Chevalier, 1996) that canceled the shear strains of the individual variants. The plastic strains are believed to have originated from the martensitic transformation itself, and the activity of dislocations is believed to be the origin of the transformation. We have revealed that the elastic strains in the γ matrix originate from interactions among the ε-martensite phase, extended dislocations, and/or thin ε-layers. The dislocations highly dissociated into stacking faults, making stress relaxation at intersections difficult and further introducing local strain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing.

    PubMed

    Cong, D Y; Saha, G; Barnett, M R

    2014-12-01

    This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Use of cyclic current reversal polarization voltammetry for investigating the relationship between corrosion resistance and heat-treatment induced variations in microstructures of 400 C martensitic stainless steels

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1992-01-01

    Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters.

  13. A new paradigm to induce mental stress: the Sing-a-Song Stress Test (SSST)

    PubMed Central

    Brouwer, Anne-Marie; Hogervorst, Maarten A.

    2014-01-01

    We here introduce a new experimental paradigm to induce mental stress in a quick and easy way while adhering to ethical standards and controlling for potential confounds resulting from sensory input and body movements. In our Sing-a-Song Stress Test, participants are presented with neutral messages on a screen, interleaved with 1-min time intervals. The final message is that the participant should sing a song aloud after the interval has elapsed. Participants sit still during the whole procedure. We found that heart rate and skin conductance during the 1-min intervals following the sing-a-song stress message are substantially higher than during intervals following neutral messages. The order of magnitude of the rise is comparable to that achieved by the Trier Social Stress Test. Skin conductance increase correlates positively with experienced stress level as reported by participants. We also simulated stress detection in real time. When using both skin conductance and heart rate, stress is detected for 18 out of 20 participants, approximately 10 s after onset of the sing-a-song message. In conclusion, the Sing-a-Song Stress Test provides a quick, easy, controlled and potent way to induce mental stress and could be helpful in studies ranging from examining physiological effects of mental stress to evaluating interventions to reduce stress. PMID:25120425

  14. Rosa rugosa Aqueous Extract Alleviates Endurance Exercise-Induced Stress.

    PubMed

    Seo, Eunjin; You, Yanghee; Yoon, Ho-Geun; Kim, Boemjeong; Kim, Kyungmi; Lee, Yoo-Hyun; Lee, Jeongmin; Chung, Jin Woong; Shim, Sangin; Jun, Woojin

    2015-06-01

    This study was performed to investigate the effect of water extract from Rosa rugosa (RRW) on endurance exercise-induced stress in mice. The mice were orally administered with distilled water or RRW, respectively. The endurance capacity was evaluated by exhaustive swimming using an adjustable-current water pool. Mice administered RRW swam longer before becoming exhausted. Also, RRW administration resulted in less lipid peroxidation, lower muscular antioxidant enzyme activities, and lower cortisol level. The results suggest that RRW can prevent exercise-induced stress by decreasing oxidative stress levels.

  15. Radial Distribution of Martensitic Phase Transformation in a Metastable Stainless Steel under Torsional Deformation: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Cakmak, Ercan; Choo, Hahn; An, Ke; Ren, Yang

    2011-01-01

    The strain-induced martensitic phase transformation in a metastable 304 L stainless steel under torsional deformation was investigated using synchrotron X-ray diffraction. The measured radial distribution of the martensite phase fraction in a solid cylindrical specimen agrees well with the prediction based on a combination of transformation kinetics and a radial plastic strain distribution equation.

  16. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  17. Environmental stress induces trinucleotide repeat mutagenesis in human cells

    PubMed Central

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.

    2015-01-01

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  18. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  19. Stress proteins are induced by space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo

    The space environment contains two major biologically significant influences such as space radiations and microgravity. Almost all organisms possess essential recognition and response systems for environmental changes. The famous one of cellular stress responses is the gene induction of heat shock protein (HSP). HSP expression is increased under elevated temperatures, and also increased by other sources of cellular stress, including ionizing radiation, oxidative injury, osmotic stress and the unfolded protein response. HSPs assist in the folding and maintenance of newly translated proteins, the refolding of denatured proteins and the further unfolding of misfolded or destabilized proteins to protect the cell from crisis. Based on our space experiment, we report the results and discussion from the viewpoint of HSP expression after exposure to space environment.

  20. Stress-induced obesity and the emotional nervous system.

    PubMed

    Dallman, Mary F

    2010-03-01

    Stress and emotional brain networks foster eating behaviors that can lead to obesity. The neural networks underlying the complex interactions among stressors, body, brain and food intake are now better understood. Stressors, by activating a neural stress-response network, bias cognition toward increased emotional activity and degraded executive function. This causes formed habits to be used rather than a cognitive appraisal of responses. Stress also induces secretion of glucocorticoids, which increases motivation for food, and insulin, which promotes food intake and obesity. Pleasurable feeding then reduces activity in the stress-response network, reinforcing the feeding habit. These effects of stressors emphasize the importance of teaching mental reappraisal techniques to restore responses from habitual to thoughtful, thus battling stress-induced obesity.

  1. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  2. Overlay degradation induced by film stress

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Luo, Shing-Ann; Yang, Mars; Yang, Elvis; Hung, Yung-Tai; Luoh, Tuung; Yang, T. H.; Chen, K. C.

    2017-03-01

    The semiconductor industry has continually sought the approaches to produce memory devices with increased memory cells per memory die. One way to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories is 3D stacked flash cell array. In constructing 3D NAND flash memories, increasing the number of stacked layers to build more memory cell number per unit area necessitates many high-aspect-ratio etching processes accordingly the incorporation of thick and unique etching hard-mask scheme has been indispensable. However, the ever increasingly thick requirement on etching hard-mask has made the hard-mask film stress control extremely important for maintaining good process qualities. The residual film stress alters the wafer shape consequently several process impacts have been readily observed across wafer, such as wafer chucking error on scanner, film peeling, materials coating and baking defects, critical dimension (CD) non-uniformity and overlay degradation. This work investigates the overlay and residual order performance indicator (ROPI) degradation coupling with increasingly thick advanced patterning film (APF) etching hard-mask. Various APF films deposited by plasma enhanced chemical vapor deposition (PECVD) method under different deposition temperatures, chemicals combinations, radio frequency powers and chamber pressures were carried out. And -342MPa to +80MPa film stress with different film thicknesses were generated for the overlay performance study. The results revealed the overlay degradation doesn't directly correlate with convex or concave wafer shapes but the magnitude of residual APF film stress, while increasing the APF thickness will worsen the overlay performance and ROPI strongly. High-stress APF film was also observed to enhance the scanner chucking difference and lead to more serious wafer to wafer overlay variation. To reduce the overlay degradation from ever increasingly thick APF etching hard-mask, optimizing the

  3. Acute psychological stress-induced water intoxication.

    PubMed

    Mukherjee, Sagarika; Antonarakis, Emmanuel S; Asaduzzaman, S; Peters, John R

    2005-01-01

    Excessive water drinking is a recognised feature of schizophrenia. We present here a case of excessive water drinking precipitated by acute psychological stress. A 52-year-old woman, with no previous mental health problems, was found in a state of altered consciousness and was profoundly hyponatraemic. She had consumed excess amount of water due to severe mental stress. She was treated with hypertonic saline followed by fluid restrictions. The water intoxication had caused brain damage which led to behavioural changes and impaired cognition. We describe the pathophysiology of water intoxication.

  4. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  6. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  7. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    PubMed

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Angina and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Raggi, Paolo; Vaccarino, Viola

    2015-01-01

    Objective Mental stress-induced myocardial ischemia is a common phenomenon in patients with coronary artery disease (CAD) and an emerging prognostic factor. Mental stress ischemia is correlated with ambulatory ischemia. However, whether it is related to angina symptoms during daily life has not been examined. Methods We assessed angina-frequency (past month) in 98 post-myocardial infarction (MI) subjects (age 18-60 years) using the Seattle Angina Questionnaire. Patients underwent [99mTc]sestamibi SPECT perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed-difference score (SDS), the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjustment for age, sex, smoking, CAD-severity, depressive, anger and anxiety symptoms, each 1-point increase in mental-stress SDS was associated with 1.73-unit increase in the angina-frequency score (95% CI: 0.09-3.37) and 17% higher odds of being in a higher angina-frequency category (OR: 1.17, 95% CI: 1.00-1.38). Depressive symptoms were associated with 12% higher odds of being in a higher angina-frequency category (OR: 1.12, 95% CI: 1.03-1.21). In contrast, exercise/pharmacological stress-induced SDS was not associated with angina-frequency. Conclusion Among young and middle-aged post-MI patients, myocardial ischemia induced by mental stress in the lab, but not by exercise/pharmacological stress, is associated with higher frequency of retrospectively reported angina during the day. Psychosocial stressors related to mental stress ischemia may be important contributory factor to daily angina. PMID:25727240

  9. Martensitic fcc-to-hcp transformations in solid xenon under pressure: a first-principles study.

    PubMed

    Kim, Eunja; Nicol, Malcolm; Cynn, Hyunchae; Yoo, Choong-Shik

    2006-01-27

    First-principles calculations reveal that the fcc-to-hcp pressure-induced transformation in solid xenon proceeds through two mechanisms between 5 and 70 GPa. The dynamics of the phase transition involves a sluggish stacking-disorder growth at lower pressures (path I) that changes to a path involving an orthorhombic distortion at higher pressures (path II). The switchover is governed by a delicate interplay of energetics (enthalpy of the system for the structural stability) and kinetics (energy barrier for the transition). The two types of martensitic transformations involved in this pressure-induced structural transformation are a twinned martensitic transition at lower pressures and a slipped martensitic transition at higher pressures.

  10. Temporal pore pressure induced stress changes during injection and depletion

    NASA Astrophysics Data System (ADS)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  11. Relationship between acoustic emission energy and the kinetics of martensite formation in plain carbon steels

    NASA Astrophysics Data System (ADS)

    van Bohemen, S. M. C.

    2015-01-01

    The kinetics of the martensitic transformation in Fe-0.80C determined on the basis of dilatometry data is compared to the acoustic emission (AE) energy accompanying the transformation in the same steel reported in a previous study. The discrepancy between the AE energy and the volume fraction of martensite indicates that the mechanism for the generation of AE during the martensitic transformation is not solely dependent on the kinetics and the associated moving interfaces as suggested in previous studies. During the growth of martensite, slip takes place in order to relieve internal stresses, and dislocations are thought to be mainly introduced in the relatively soft austenite matrix. The quantitative analysis in this study demonstrates that the AE energy generated per unit time is a function of both the transformation kinetics and the volume fraction of remaining austenite. This strongly indicates that the moving dislocations associated with the plastic deformation of the austenite surrounding the as-formed martensite are the dominant sources of the generated acoustic waves. This improved AE source model is consistent with the well-accepted mechanism of AE during conventional plastic deformation due to an external load.

  12. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  13. Physical properties of Fe-Co-Ni-Ti alloy in the vicinity of martensitic transformation

    SciTech Connect

    Cesari, E.; Pons, J.; Segui, C.; Chernenko, V.A.; Kokorin, V.V.

    1999-01-08

    The shape memory steels have recently received much attention, from which a considerable progress has been achieved in understanding the factors which are of particular importance for their development. Among these steels, a special interest has been paid to the ferromagnetic Fe-Ni- and Fe-Co-based alloys mainly because of the thermoelastic character of the fcc ({gamma})-bct ({alpha}) martensitic transformation that they exhibit under the action of temperature (shape memory effect), stress (superelasticity) and magnetic field (magnetoelasticity). In the present work the authors report the results of the experimental investigation about the {gamma}-{alpha} thermoelastic martensitic transformation in Fe-Co-Ni-Ti alloy using different techniques (notably DSC, DMA, dilatometry, TEM and magnetic susceptibility). One of the objectives was to find the appropriate thermal treatments in order to increase the martensitic transformation temperatures up to room temperature.

  14. Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite

    NASA Astrophysics Data System (ADS)

    Gundyrev, V. M.; Zel'dovich, V. I.; Schastlivtsev, V. M.

    2016-10-01

    Based on X-ray diffraction studies of the martensite texture in a single martensite packet, exact orientation relationships between the orientations of martensite crystallites and the original austenite single crystal in medium-carbon steel 37KhN3A have been determined to be as follows: (011)α||(1; 0.990; 1.009)γ to an accuracy of ± 0.15°, [ {01overline 1 } ]_α ||{[ {1;1.163; - 2.133} ]_γ } to an accuracy of ±0.15°. It has been shown that the orientation relationships proved to be almost the same as in the Fe-31% Ni alloy with a twinned martensite with close lattice parameters. Therefore, the conclusion has been drawn that the mechanism of the lattice deformation upon the martensitic transformation is the same in both alloys. It is described as follows. The lattice deformation occurs by shear on the (111) plane in the {[ {11overline 2 } ]_{_γ }} direction and is accompanied by an additional change in the dimensions in the mutually perpendicular directions {[ {11overline 2 } ]_{_γ }},[ {111} ],and{[ {1overline 1 0} ]_{_γ }}. The invariantlattice deformation is implemented by slip in martensite on the planes of the (112)α type in the direction {[ {overline 1 overline 1 1} ]_α }. One of the 24 crystallographically equivalent variants of the transformation mechanism has been considered. Apart from this type of deformation, an additional deformation of martensite is possible that does not change its orientation. It has been shown that the orientation of the martensite crystallite calculated via the phenomenological theory of the martensitic transformations (PTMT) differs by approximately 1° from the experimentally determined orientation. This refers to both the lath and twinned martensite. In the twinned martensite, the invariant plane obtained in the PTMT calculations and the habit plane coincide. In lath martensite of 37KhN3A steel, the invariant plane of the martensite crystal obtained in PTMT calculations deviates by 25° from the orientation of the

  15. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  16. Hydrophobic substances induce water stress in microbial cells

    PubMed Central

    Bhaganna, Prashanth; Volkers, Rita J. M.; Bell, Andrew N. W.; Kluge, Kathrin; Timson, David J.; McGrath, John W.; Ruijssenaars, Harald J.; Hallsworth, John E.

    2010-01-01

    Summary Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes – metabolites that protect against osmotic and chaotrope‐induced stresses – ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope‐induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes. PMID:21255365

  17. Cellular and Molecular Basis for Stress-Induced Depression

    PubMed Central

    Seo, Ji-Seon; Wei, Jing; Qin, Luye; Kim, Yong; Yan, Zhen

    2016-01-01

    Chronic stress plays a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2+) glutamatergic neurons. Viral expression of p11 in D2+ PrL neurons alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2+ neuron-specific or global deletion of p11. In stressed animals, overexpression of p11 in D2+ PrL neurons rescues depression-like behaviors by restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression, which provides a framework for the development of new strategies to treat stress-associated mental illnesses. PMID:27457815

  18. Magnetic-field-induced changes in superparamagnetic cluster dynamics in the martensitic phase of Ni43Co7Mn40Sn10

    NASA Astrophysics Data System (ADS)

    Kuhns, P. L.; Hoch, M. J. R.; Yuan, S.; Reyes, A. P.; Srivastava, V.; James, R. D.; Leighton, C.

    2016-06-01

    The off-stoichiometric Heusler alloys, such as Ni50Mn25+yX25-y (X = Sn, In, Ga, etc.), have been extensively investigated using a variety of experimental techniques to probe their interesting and potentially useful magnetic properties. Recent 55Mn nuclear magnetic resonance (NMR) experiments, carried out largely in zero field (ZF) and making use of the large internal hyperfine field at the nuclear sites, have demonstrated the power of this approach in determining the ground state magnetic characteristics of these materials. In particular, the results reveal that distinct nanoscale ferromagnetic and antiferromagnetic phases coexist. A key parameter used in interpreting the NMR data is the transverse relaxation time T2 which, inter alia, determines the NMR blocking temperature TBN M R of magnetic regions. The present experiments on a polycrystalline sample of a specific illustrative alloy, Ni43Co7Mn40Sn10, which has received considerable attention, show that the application of relatively small external fields, comparable to or greater than the local anisotropy field in the ferromagnetic cluster regions, produces dramatic changes in T2 and hence TBN M R . The experimental findings are discussed using an extended version of a recently proposed nanocluster model for superparamagnetic systems. It is demonstrated that the field and temperature induced changes in T2 provide a significant test of the model and lead to a notable advance in applying the NMR technique to the investigation of the magnetic properties of this type of alloy.

  19. Strategies to ameliorate abiotic stress-induced plant senescence.

    PubMed

    Gepstein, Shimon; Glick, Bernard R

    2013-08-01

    The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.

  20. Swim-stress-induced antinociception in young rats.

    PubMed Central

    Jackson, H. C.; Kitchen, I.

    1989-01-01

    1. Opioid and non-opioid mechanisms have been implicated in the phenomenon of stress-induced antinociception in adult rodents. We have studied stress-induced antinociception in developing rats and characterized differences in the neurochemical basis of this effect in pre- and post-weanling animals. 2. Twenty and 25 day old rats were stressed using warm water (20 degrees C) swimming for 3 or 10 min periods and antinociception was assessed by the tail immersion test (50 degrees C). 3. A 3 min swim in 20 and 25 day old rats produced marked antinociception which was blocked by naloxone, Mr 1452, 16-methyl cyprenorphine and levallorphan but not Mr 1453 or N-methyl levallorphan. The delta-opioid receptor antagonist ICI 174,864 attenuated stress-induced antinociception in 25 day old rats but was without effect in 20 day old animals. 4. A 10 min swim in 25 day old rats produced antinociception which was non-opioid in nature. In contrast, antinociception was not observed in 20 day old rats after a 10 min swim-stress. 5. Pretreatment of animals with dexamethasone blocked 3 min swim-stress antinociception in 20 and 25 day old animals but had no effect on antinociception induced by a 10 min swim. 6. Swim-stress-induced antinociception can be observed in young rats and dissociated into opioid and non-opioid types dependent on the duration of swimming stress. The non-opioid type appears to develop more slowly and cannot be observed in preweanling rats. The opioid type is a predominantly mu-receptor phenomenon in preweanling animals but delta-receptor components are observable in postweanling rats. PMID:2720296

  1. Anharmonicity induced thermal modulation in stressed graphene

    NASA Astrophysics Data System (ADS)

    Jiang, JianJun; Fu, WeiCheng; Chen, JiGe; Zhao, Hong

    2017-07-01

    Thermal properties are essentially decided by atomic geometry and thus stress is the most direct way for manipulating. In this paper, we investigate stress modulation of thermal conductivity of graphene by molecular dynamics simulations and discuss the underlying microscopic mechanism. It is found that thermal conductivity of flexural-free graphene increases with compression and decreases with strain, while thermal conductivity of flexural-included graphene decreases with both compression and strain. Such difference in thermal behavior originates from the changes in the anharmonicity of the interatomic potential, where the wrinkle scattering is responsible for the thermal conductivity diminishment in flexural-included graphene under strain. By comparing the results obtained from the Tersoff and AIREBO potentials, it is revealed that the degree of the symmetry of interatomic potential determines the thermal conductivity variation of graphene. Our results indicate that the symmetry of interatomic potential should be taken into careful consideration in constructing the lattice model of graphene.

  2. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.

    PubMed

    Elmay, W; Prima, F; Gloriant, T; Bolle, B; Zhong, Y; Patoor, E; Laheurte, P

    2013-02-01

    Thermomechanical treatments have been proved to be an efficient way to improve superelastic properties of metastable β type titanium alloys through several studies. In this paper, this treatment routes, already performed on superelastic alloys, are applied to the Ti-24Nb alloy (at%) consisting of a pure martensite α'' microstructure. By short-time annealing treatments performed on the heavily deformed material, an interesting combination of a large recoverable strain of about 2.5%, a low elastic modulus (35 GPa) and a high strength (900 MPa) was achieved. These properties are shown to be due to a complex microstructure consisting of the precipitation of nanoscale (α+ω) phases in ultra-fine β grains. This microstructure allows a superelastic behavior through stress-induced α'' martensitic transformation. In this study, the microstructures were characterized by X-ray diffraction and transmission electron microscopy and the evolution of the elastic modulus and the strain recovery as a function of the applied strain was investigated through loading-unloading tensile tests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis

    PubMed Central

    2014-01-01

    Background Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. Methods Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0–100 μM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. Results Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. Conclusion (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging. PMID:24712558

  4. Chewing gum and impasse-induced self-reported stress.

    PubMed

    Torney, Laura K; Johnson, Andrew J; Miles, Christopher

    2009-12-01

    An insoluble anagram task [Zellner, D., Loaiza, S., Gonzalez, Z., Pita, J., Morales, J., Pecora, D., et al. (2006). Food selection changes under stress. Physiology and Behaviour, 87, 789-793] was used to investigate the proposition that chewing gum reduces self-rated stress [Scholey, A., Haskell, C., Robertson, B., Kennedy, D., Milne, A., & Wetherell, M. (2009). Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress. Physiology and Behaviour, 97, 304-312]. Using a between-participants design, 40 participants performed an insoluble anagram task followed by a soluble anagram task. These tasks were performed with or without chewing gum. Self-rated measures were taken at baseline, post-stressor, and post-recovery task. The insoluble anagram task was found to amplify stress in terms of increases in self-rated stress and reductions in both self-rated calmness and contentedness. However, chewing gum was found not to mediate the level of stress experienced. Furthermore, chewing gum did not result in superior performance on the soluble anagram task. The present study fails to generalise the findings of Scholey et al. to an impasse-induced stress that has social components. The explanation for the discrepancy with Scholey et al. is unclear; however, it is suggested that the impossibility of the insoluble anagram task may negate any secondary stress reducing benefits arising from chewing gum-induced task improvement.

  5. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  6. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kohno, Y.; Kohyama, A.; Hirose, T.; Hamilton, M. L.; Narui, M.

    Mechanical property changes of Fe- XCr-2W-0.2V,Ta ( X: 2.25-12) low activation ferritic/martensitic steels including Japanese Low Activation Ferritic/martensitic (JLF) steels and F82H after neutron irradiation were investigated with emphasis on Charpy impact property, tensile property and irradiation creep properties. Dose dependence of ductile-to-brittle transition temperature (DBTT) in JLF-1 (9Cr steel) irradiated at 646-700 K increased with irradiation up to 20 dpa and then decreased with further irradiation showing highest DBTT of 260 K at 20 dpa. F82H showed similar dose dependence in DBTT to JLF-1 with higher transition temperature than that of JLF-1 at the same displacement damage. Yield strength in JLF steels and F82H showed similar dose dependence to that of DBTT. Yield strength increased with irradiation up to 15-20 dpa and then decreased to saturate above about 40 dpa. Irradiation hardening in 7-9%Cr steels (JLF-1, JLF-3, F82H) were observed to be smaller than those in steels with 2.25%Cr (JLF-4) or 12%Cr (JLF-5). Dependences of creep strain on applied hoop stress and neutron fluence were measured to be 1.5 and 1, respectively. Temperature dependence of creep coefficient showed a maximum at about 700 K which was caused by irradiation induced void formation or irradiation enhanced creep deformation. Creep coefficient of F82H was larger than those of JLF steels above 750 K. This was considered to be caused by the differences in N and Ta concentration between F82H and JLF steels.

  7. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  8. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur.

  9. Emotional intelligence, personality, and task-induced stress.

    PubMed

    Matthews, Gerald; Emo, Amanda K; Funke, Gregory; Zeidner, Moshe; Roberts, Richard D; Costa, Paul T; Schulze, Ralf

    2006-06-01

    Emotional intelligence (EI) may predict stress responses and coping strategies in a variety of applied settings. This study compares EI and the personality factors of the Five Factor Model (FFM) as predictors of task-induced stress responses. Participants (N = 200) were randomly assigned to 1 of 4 task conditions, 3 of which were designed to be stressful. Results confirmed that low EI was related to worry states and avoidance coping, even with the FFM statistically controlled. However, EI was not specifically related to task-induced changes in stress state. Results also confirmed that Neuroticism related to distress, worry, and emotion-focused coping, and Conscientiousness predicted use of task-focused coping. The applied utility of EI and personality measures is discussed.

  10. Gender differences in neural correlates of stress-induced anxiety.

    PubMed

    Seo, Dongju; Ahluwalia, Aneesha; Potenza, Marc N; Sinha, Rajita

    2017-01-02

    Although gender differences have been identified as a crucial factor for understanding stress-related anxiety and associated clinical disorders, the neural mechanisms underlying these differences remain unclear. To explore gender differences in the neural correlates of stress-induced anxiety, the current study used functional magnetic resonance imaging to examine brain responses in 96 healthy men and women with commensurable levels of trait anxiety as they engaged in a personalized guided imagery paradigm to provoke stress and neutral-relaxing experiences. During the task, a significant gender main effect emerged, with men displaying greater responses in the caudate, cingulate gyrus, midbrain, thalamus, and cerebellum. In contrast, women showed greater responses in the posterior insula, temporal gyrus, and occipital lobe. Additionally, a significant anxiety ratings × gender interaction from whole-brain regression analyses was observed in the dorsomedial prefrontal cortex, left inferior parietal lobe, left temporal gyrus, occipital gyrus, and cerebellum (P < 0.05, whole-brain family-wise error corrected), with positive associations between activity in these regions and stress-induced anxiety in women, but negative associations in men, indicating that men and women differentially use neural resources when experiencing stress-induced anxiety. The findings suggest that in response to stress, there is a greater use of the medial prefrontal-parietal cortices in experiencing subjective anxiety in women, while decreased use of this circuit was associated with increased subjective anxiety states in men. The current study has implications for understanding gender-specific differences in stress-induced anxiety and vulnerability to stress-related clinical disorders, and for developing more effective treatment strategies tailored to each gender. © 2016 Wiley Periodicals, Inc.

  11. Study of inducer load and stress, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.

  12. Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling.

    PubMed

    Banerjee, Srijita; Zhao, Yanhua; Sarkar, Partha S; Rosenblatt, Kevin P; Tilton, Ronald G; Choudhary, Sanjeev

    2013-01-01

    Both endoplasmic reticulum (ER) stress, a fundamental cell response associated with stress-initiated unfolded protein response (UPR), and loss of Klotho, an anti-aging hormone linked to NF-κB-induced inflammation, occur in chronic metabolic diseases such as obesity and type 2 diabetes. We investigated if the loss of Klotho is causally linked to increased ER stress. We treated human renal epithelial HK-2, alveolar epithelial A549, HEK293, and SH-SH-SY5Y neuroblastoma cells with ER stress-inducing agents, thapsigargin and/or tunicamycin. Effects of overexpression or siRNA-mediated knockdown of Klotho on UPR signaling was investigated by immunoblotting and Real-time PCR. Elevated Klotho levels in HK-2 cells decreased expression of ER stress markers phospho--IRE1, XBP-1s, BiP, CHOP, pJNK, and phospho-p38, all of which were elevated in response to tunicamycin and/or thapsigargin. Similar results were observed using A549 cells for XBP-1s, BiP, and CHOP in response to thapsigargin. Conversely, knockdown of Klotho in HEK 293 cells using siRNA caused further thapsigargin-induced increases in pIRE-1, XBP-1s, and BiP. Klotho overexpression in A549 cells blocked thapsigargin-induced caspase and PARP cleavage and improved cell viability. Our data indicate that Klotho has an important role in regulating ER stress and that loss of Klotho is causally linked to ER stress-induced apoptosis. Copyright © 2013 S. Karger AG, Basel.

  13. Repeated social defeat stress induces chronic hyperthermia in rats.

    PubMed

    Hayashida, Sota; Oka, Takakazu; Mera, Takashi; Tsuji, Sadatoshi

    2010-08-04

    Psychological stressors are known to increase core body temperature (T(c)) in laboratory animals. Such single stress-induced hyperthermic responses are typically monophasic, as T(c) returns to baseline within several hours. However, studies on the effects of repeated psychological stress on T(c) are limited. Therefore, we measured T(c) changes in male Wistar rats after they were subjected to 4 social defeat periods (each period consisting of 7 daily 1h stress exposures during the light cycle followed by a stress-free day). We also assessed affective-like behavioral changes by elevated plus maze and forced swim tests. In the stressed rats, the first social defeat experience induced a robust increase in T(c) (+1.3 degrees C). However, the T(c) of these rats was not different from control animals during the subsequent dark period. In comparison, after 4 periods of social defeat, stressed rats showed a small but significantly higher (+0.2-0.3 degree C) T(c) versus control rats during both light and dark periods. Stressed rats did not show increased anxiety-like behavior versus control rats as assessed by the elevated plus maze test. However, in the forced swim test, the immobility time of stressed rats was significantly longer versus control rats, suggesting an increase in depression-like behavior. Furthermore, hyperthermia and depression-like behavior were still observed 8 days after cessation of the final social defeat session. These results suggest that repeated social defeat stress induces a chronic hyperthermia in rats that is associated with behavior resembling depression but not anxiety.

  14. Stress induced telomere shortening: longer life with less mutations?

    PubMed Central

    2014-01-01

    Background Mutations accumulate as a result of DNA damage and imperfect DNA repair machinery. In higher eukaryotes the accumulation and spread of mutations is limited in two primary ways: through p53-mediated programmed cell death and cellular senescence mediated by telomeres. Telomeres shorten at every cell division and cell stops dividing once the shortest telomere reaches a critical length. It has been shown that the rate of telomere attrition is accelerated when cells are exposed to DNA damaging agents. However the implications of this mechanism are not fully understood. Results With the help of in silico model we investigate the effect of genotoxic stress on telomere attrition and apoptosis in a population of non-identical replicating cells. When comparing the populations of cells with constant vs. stress-induced rate of telomere shortening we find that stress induced telomere shortening (SITS) increases longevity while reducing mutation rate. Interestingly, however, the effect takes place only when genotoxic stresses (e.g. reactive oxygen species due to metabolic activity) are distributed non-equally among cells. Conclusions Our results for the first time show how non-equal distribution of metabolic load (and associated genotoxic stresses) combined with stress induced telomere shortening can delay aging and minimize mutations. PMID:24580844

  15. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  16. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  17. Mechanical Ventilation-Induced Oxidative Stress in the Diaphragm

    PubMed Central

    Falk, Darin J.; Kavazis, Andreas N.; Whidden, Melissa A.; Smuder, Ashley J.; McClung, Joseph M.; Hudson, Matthew B.

    2011-01-01

    Background: Prolonged mechanical ventilation (MV) results in a rapid onset of diaphragmatic atrophy that is primarily due to increased proteolysis. Although MV-induced protease activation can involve several factors, it is clear that oxidative stress is a required signal for protease activation in the diaphragm during prolonged MV. However, the oxidant-producing pathways in the diaphragm that contribute to MV-induced oxidative stress remain unknown. We have demonstrated that prolonged MV results in increased diaphragmatic expression of a key stress-sensitive enzyme, heme oxygenase (HO)-1. Paradoxically, HO-1 can function as either a pro-oxidant or an antioxidant, and the role that HO-1 plays in MV-induced diaphragmatic oxidative stress is unknown. We tested the hypothesis that HO-1 acts as a pro-oxidant in the diaphragm during prolonged MV. Methods: To determine whether HO-1 functions as a pro-oxidant or an antioxidant in the diaphragm during MV, we assigned rats into three experimental groups: (1) a control group, (2) a group that received 18 h of MV and saline solution, and (3) a group that received 18 h of MV and was treated with a selective HO-1 inhibitor. Indices of oxidative stress, protease activation, and fiber atrophy were measured in the diaphragm. Results: Inhibition of HO-1 activity did not prevent or exacerbate MV-induced diaphragmatic oxidative stress (as indicated by biomarkers of oxidative damage). Further, inhibition of HO-1 activity did not influence MV-induced protease activation or myofiber atrophy in the diaphragm. Conclusions: Our results indicate that HO-1 is neither a pro-oxidant nor an antioxidant in the diaphragm during MV. Furthermore, our findings reveal that HO-1 does not play an important role in MV-induced protease activation and diaphragmatic atrophy. PMID:21106654

  18. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  19. Tau protein is essential for stress-induced brain pathology

    PubMed Central

    Lopes, Sofia; Vaz-Silva, João; Pinto, Vitor; Dalla, Christina; Kokras, Nikolaos; Bedenk, Benedikt; Mack, Natalie; Czisch, Michael; Almeida, Osborne F. X.; Sousa, Nuno; Sotiropoulos, Ioannis

    2016-01-01

    Exposure to chronic stress is frequently accompanied by cognitive and affective disorders in association with neurostructural adaptations. Chronic stress was previously shown to trigger Alzheimer’s-like neuropathology, which is characterized by Tau hyperphosphorylation and missorting into dendritic spines followed by memory deficits. Here, we demonstrate that stress-driven hippocampal deficits in wild-type mice are accompanied by synaptic missorting of Tau and enhanced Fyn/GluN2B-driven synaptic signaling. In contrast, mice lacking Tau [Tau knockout (Tau-KO) mice] do not exhibit stress-induced pathological behaviors and atrophy of hippocampal dendrites or deficits of hippocampal connectivity. These findings implicate Tau as an essential mediator of the adverse effects of stress on brain structure and function. PMID:27274066

  20. Reducing stress-induced birefringence in optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Várallyay, Z.; Arashitani, Y.; Varga, G.

    2011-01-01

    Coated and ribboned optical fibers are liable to external stress of the coating materials which may induce additional birefringence in the fiber glass. This residual stress in the coating may increase the polarization mode dispersion (PMD) of the fibers with a value well above allowed in modern, optical telecommunication systems. We report our numerical efforts on reducing the stress caused birefringence in fiber ribbons optimizing the geometry as well as the material parameters of the coating materials. We found that changing the cross-sectional geometry of the fiber ribbon such as edge shape or the ratio of primary and secondary coatings may lead to significant stress and constitutively PMD reduction in optical fibers. Changing the stiffness or the glass transition temperature (GTT) of the different components may also yield optimal conditions for stress reduction according to our finite element analyzes.

  1. Gravity-induced stresses near a vertical cliff

    USGS Publications Warehouse

    Savage, W.Z.

    1993-01-01

    The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.

  2. Aneuploidy-induced cellular stresses limit autophagic degradation

    PubMed Central

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-01-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941

  3. Aneuploidy-induced cellular stresses limit autophagic degradation.

    PubMed

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-10-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state.

  4. Thiamine deficiency induces endoplasmic reticulum stress in neurons.

    PubMed

    Wang, X; Wang, B; Fan, Z; Shi, X; Ke, Z-J; Luo, J

    2007-02-09

    Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as glucose-regulated protein (GRP) 78, growth arrest and DNA-damage inducible protein or C/EBP-homologus protein (GADD153/Chop), phosphorylation of eIF2alpha and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage.

  5. Novel photon detection based on electronically induced stress in silicon

    NASA Astrophysics Data System (ADS)

    Datskos, Panagiolis G.; Rajic, Slobodan; Datskou, Irene; Egert, Charles M.

    1998-07-01

    The feasibility of microcantilever-based optical detection is demonstrated. Specifically, we report here on an evaluation of laboratory prototypes that are based on commercially available microcantilevers. In this work, optical transduction techniques were used to measure microcantilever response to photons and study the electronic stress in silicon microcantilevers, and their temporal and photometric response. The photo-generation of free charge carriers (electrons, holes) in a semiconductor gives rise to photo-induced (electronic) mechanical strain. The excess charge carriers responsible for the photo-induced stress, were produced via photon irradiation from a diode laser with wavelength (lambda) equals 780 nm. We found that for silicon, the photo-induced stress results in a contraction of the crystal lattice due to the presence of excess electron-hole-pairs. In addition, the photo-induced stress is of opposite direction and about four times larger than the stress resulting from direct thermal excitation. When charge carriers are generated in a short time, a very rapid deflection of the microcantilever is observed (response time approximately microseconds).

  6. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Zuppini, Anna; Groenendyk, Jody; Cormack, Lori A; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2002-02-26

    In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.

  7. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  8. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Liu, H.; Zhang, X. X.; Zhang, M.; Dai, X. F.; Hu, H. N.; Chen, J. L.; Wu, G. H.

    2004-08-01

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni 50+ xFe 25- xGa 25 ( x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L2→B2 transition occurs in the samples treated at 873 K, while the γ phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni 2FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni 2FeGa on the saturation magnetization and exchange interaction are also discussed.

  9. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

    PubMed Central

    Wang, Liying

    2013-01-01

    The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed. PMID:24027766

  10. Irradiation effects on precipitation and its impact on the mechanical properties of reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tanigawa, H.; Sakasegawa, H.; Hashimoto, N.; Klueh, R. L.; Ando, M.; Sokolov, M. A.

    2007-08-01

    It was previously reported that reduced-activation ferritic/martensitic steels (RAFs) showed a variety of changes in ductile-brittle transition temperature (DBTT) and yield stress after irradiation at 573 K up to 5 dpa. The precipitation behavior of the irradiated steels was examined and the presence of irradiation induced precipitation which works as if it was forced to reach the thermal equilibrium state at irradiation temperature 573 K. In this study, transmission electron microscopy was performed on extraction replica specimens to analyze the size distribution of precipitates. It turned out that the hardening level multiplied by the square root of the average block size showed a linear dependence on the extracted precipitate weight. This dependence suggests that the difference in irradiation hardening between RAFs was caused by different precipitation behavior on block, packet and prior austenitic grain boundaries during irradiation. The simple Hall-Petch law could be applicable for interpreting this dependence.

  11. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  12. Magnetic Study of Martensitic Transformation in Austenitic Stainless Steel by Low Field Hysteresis Loops Analysis

    SciTech Connect

    Zhang Lefu; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki; Mumtaz, Khalid; Ara, Katsuyuki; Sato, Masaya

    2005-04-09

    Magnetic method has been used to evaluate the volume percentage of {alpha}' martensitic phase in austenitic stainless steels by measuring saturation magnetization, and it is said to be a candidate NDE method. However, nondestructive detection of saturation magnetization without high magnetic field is difficult. In the current work, we present a NDE method for evaluating the magnetic properties of strain induced {alpha}' martensitic phase. Low field hysteresis loops of an austenitic stainless steels type SUS 304 after cold rolling were measured by using a yoke sensor. The results show that the initial permeability {mu}i and the relative coercive field Hcl calculated by low field hysteresis loop analysis keep monotonic relation with saturation magnetization and coercive force measured by VSM, respectively. By this method, it is possible to characterize the volume content and particle properties of {alpha}' martensitic phase in stainless steels.

  13. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, M.; Wang, W. Q.; Wang, W. H.; Chen, J. L.; Wu, G. H.; Meng, F. B.; Liu, H. Y.; Liu, B. D.; Qu, J. P.

    2002-11-01

    Quaternary Heusler alloy Ni2)(Mn,FeGa has been studied systematically for the structure, martensitic transformation, and magnetic properties in two systems of Ni50.5Mn25-xFexGa24.5 and Ni50.4Mn28-xFexGa21.6. Substituting Fe for Mn up to about 70%, the pure L21 phase and the thermoelastic martensitic transformation still can be observed in these quaternary systems. Iron doping dropped the martensitic transformation temperature from 220 to 140 K, increased the Curie temperature from 351 to 429 K, and broadened the thermal hysteresis from about 7 to 18 K. Magnetic analysis revealed that Fe atoms contribute to the net magnetization of the material with a moment lower than that of Mn. The temperature dependence of magnetic-field-induced strains has been improved by this doping method.

  14. Twinning in shear and uniaxial loading in five layered martensite Ni-Mn-Ga single crystals

    NASA Astrophysics Data System (ADS)

    Aaltio, Ilkka; Ge, Yanling; Hannula, Simo-Pekka

    2013-02-01

    Five-layered martensite Ni-Mn-Ga single crystals are known for their exceptionally mobile twin boundaries allowing a shape change under mechanical stress and by magnetic field. The mechanically measured twinning stress has usually been studied in uniaxial mode, however the twinning and detwinning is generally accepted to be resulted by the shear component. We have studied the twinning behavior at uniaxial and shear stress. In addition we have applied the shear stress at different angles in relation to the expected twinning direction [ {10bar 1} ]. The results show that the onset of twinning lays at similar stress levels in both uniaxial and shear modes.

  15. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  16. Microstructure and cleavage in lath martensitic steels.

    PubMed

    Morris, John W; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  17. Time-temperature equivalence in Martensite tempering

    SciTech Connect

    Hackenberg, Robert E.; Thomas, Grant A.; Speer, John G.; Matlock, David K.; Krauss, George

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  18. Oxytocin mediates stress-induced analgesia in adult mice

    PubMed Central

    Robinson, D A; Wei, F; Wang, G D; Li, P; Kim, S J; Vogt, S K; Muglia, L J; Zhuo, M

    2002-01-01

    As a neurohormone and as a neurotransmitter, oxytocin has been implicated in the stress response. Descending oxytocin-containing fibres project to the dorsal horn of the spinal cord, an area important for processing nociceptive inputs. Here we tested the hypothesis that oxytocin plays a role in stress-induced analgesia and modulates spinal sensory transmission. Mice lacking oxytocin exhibited significantly reduced stress-induced antinociception following both cold-swim (10 °C, 3 min) and restraint stress (30 min). In contrast, the mice exhibited normal behavioural responses to thermal and mechanical noxious stimuli and morphine-induced antinociception. In wild-type mice, intrathecal injection of the oxytocin antagonist dOVT (200 μm in 5 μl) significantly attenuated antinociception induced by cold-swim. Immunocytochemical staining revealed that, in the mouse, oxytocin-containing neurones in the paraventricular nucleus of the hypothalamus are activated by stress. Furthermore, oxytocin-containing fibres were present in the dorsal horn of the spinal cord. To test whether descending oxytocin-containing fibres could alter nociceptive transmission, we performed intracellular recordings of dorsal horn neurones in spinal slices from adult mice. Bath application of oxytocin (1 and 10 μm) inhibited excitatory postsynaptic potentials (EPSPs) evoked by dorsal root stimulation. This effect was reversed by the oxytocin antagonist dOVT (1 μm). Whole-cell recordings of dorsal horn neurones in postnatal rat slices revealed that the effect of oxytocin could be blocked by the addition of GTP-γ-S to the recording pipette, suggesting activation of postsynaptic oxytocin receptors. We conclude that oxytocin is important for both cold-swim and restraint stress-induced antinociception, acting by inhibiting glutamatergic spinal sensory transmission. PMID:11956346

  19. Psychological stress-induced catecholamines accelerates cutaneous aging in mice.

    PubMed

    Romana-Souza, Bruna; Santos Lima-Cezar, Gracineide; Monte-Alto-Costa, Andréa

    2015-12-01

    Psychological stress may be an important extrinsic factor which influences aging process. However, neither study demonstrated the mechanism by which chronic stress participates in skin aging. Aim of this study was to investigate the effects of chronic psychological stress on mice skin. Mice were daily submitted to rotational stress, for 28 days, until euthanasia. After 28 days, mice were killed and normal skin was analyzed. Macroscopically, dorsum skin of chronically stressed mice presented more wrinkled when compared to that of nonstressed mice. In mice skin, chronic stress increased lipid peroxidation, carbonyl protein content, nitrotyrosine levels, neutrophil infiltration, neutrophil elastase, tissue inhibitor of metalloproteinase-1 and metalloproteinase-8 levels. Nevertheless, chronic stress reduced dermis thickness, collagen type I, fibrilin-1 and elastin protein levels in mice skin. In in vitro assays, murine skin fibroblasts were exposed to elevated epinephrine levels plus inhibitors of reactive oxygen species (ROS) and reactive nitrogen species (RNS), fibroblast activity was evaluated in a short time. In skin fibroblast culture, treatment with inhibitors of ROS and RNS synthesis abolished the increase in carbonyl protein content and lipid peroxide accumulation induced by epinephrine. In conclusion, chronic psychological stress may be an important extrinsic factor, which contributes to skin aging in mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Clusters in carbon martensite: Thermodynamics and kinetics

    SciTech Connect

    Dabrowski, L.

    1998-12-01

    An original method of evaluation of the cluster population in carbon martensite has been developed. Using this method, it is shown that Kurdjumov`s model of carbon redistribution within the different octahedral site sublattices can quantitatively account for both observed normal and abnormal tetragonality in carbon martensite. It is also shown that the existence of the internal strains in martensite constitutes a necessary and sufficient condition for the energetic preference of tetrahedral over the cubic lattice. The presence of the residual tetragonal distortion in the quasi-cubic phase of k-martensite is associated with the presence of the mixed clusters formed of the atoms belonging to O{sub c} sublattice as well as to remaining ones. By using a computer simulation of the dynamical behavior of carbon martensite approaching the thermodynamical equilibrium, it was found that the ultimate state of this system is strongly beyond the thermal equilibrium. Even after long-term aging, the free energy is far beyond the minimum value allowed for this system. The reason for such a behavior and the possible aging processes proceeding in this system are discussed at the molecular level. All of the ordering parameters are affected by the aging process. The evolution proceeds in the distinctly different time intervals for different parameters. At first, the long-range ordering parameter that determines the tetragonality of martensite evolves and reaches the stable value. In the next stage, the formation and then disintegration of two-particle clusters occurs. Disintegration of two-particle clusters coincides with the stage when three-particle cluster formation occurs at a high rate. Three-particle clusters also disintegrate when some time elapses. The evolution of these processes is illustrated graphically in the time range from 16 seconds to 1500 years, as estimated on the basis of experimental data.

  1. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  2. Association between Anger and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Kelley, Mary; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Background Mental stress-induced myocardial ischemia is associated with adverse prognosis in coronary artery disease patients. Anger is thought to be a trigger of acute coronary syndromes and is associated with increased cardiovascular risk; however, little direct evidence exists for a link between anger and myocardial ischemia. Methods [99mTc]sestamibi single-photon emission tomography was performed at rest, after mental stress (a social stressor with a speech task), and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed difference score, the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. The Spielberger's State-Trait Anger Expression Inventory was used to assess different anger dimensions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjusting for demographic factors, smoking, coronary artery disease severity, depressive and anxiety symptoms, each interquartile range increment in state-anger score was associated with 0.36 units adjusted increase in ischemia as measured by the summed difference score (95% CI: 0.14-0.59); the corresponding association for trait-anger was 0.95 (95% CI: 0.21-1.69). Anger expression scales were not associated ischemia. None of the anger dimensions were related to ischemia during exercise/pharmacological stress. Conclusion Anger, both as an emotional state and as a personality trait, is significantly associated with propensity to develop myocardial ischemia during mental stress, but not during exercise/pharmacological stress. Patients with this psychological profile may be at increased risk for silent ischemia induced by emotional stress and this may translate into worse prognosis. PMID:25497256

  3. Activation of Gi induces Mechanical Hyperalgesia Post Stress or Inflammation

    PubMed Central

    Dina, Olayinka A.; Khasar, Sachia G.; Gear, Robert W.; Levine, Jon D.

    2009-01-01

    In studies of the role of primary afferent nociceptor plasticity in the transition from acute to chronic pain we recently reported that exposure to unpredictable sound stress or a prior inflammatory response induces long-term changes in the second messenger signaling pathway, in nociceptors, mediating inflammatory hyperalgesia; this change involves a switch from a Gs-cAMP-PKA to a Gi-PKC signaling pathway. To more directly study the role of Gi in mechanical hyperalgesia we evaluated the nociceptive effect of the Gi activator, mastoparan. Intradermal injection of mastoparan in the rat hind paw induces dose-dependent (0.1 ng – 1 μg) mechanical hyperalgesia. The highly selective inhibitor of Gi, Pertussis toxin, and of protein kinase C epsilon (PKCε), PKCεV1–2, both markedly attenuate mastoparan-induced hyperalgesia in stressed rats but had no effect on mastoparan-induced hyperalgesia in unstressed rats. Similar effects were observed, at the site of nociceptive testing, after recovery from carrageenan-induced inflammation. These studies provide further confirmation for a switch to a Gi-activated and PKCε-dependent signaling pathway in primary mechanical hyperalgesia, induced by stress or inflammation. PMID:19275929

  4. Infectious particles, stress, and induced prion amyloids

    PubMed Central

    2013-01-01

    Transmissible encephalopathies (TSEs) are believed by many to arise by spontaneous conversion of host prion protein (PrP) into an infectious amyloid (PrP-res, PrPSc) without nucleic acid. Many TSE agents reside in the environment, with infection controlled by public health measures. These include the disappearance of kuru with the cessation of ritual cannibalism, the dramatic reduction of epidemic bovine encephalopathy (BSE) by removal of contaminated feed, and the lack of endemic scrapie in geographically isolated Australian sheep with susceptible PrP genotypes. While prion protein modeling has engendered an intense focus on common types of protein misfolding and amyloid formation in diverse organisms and diseases, the biological characteristics of infectious TSE agents, and their recognition by the host as foreign entities, raises several fundamental new directions for fruitful investigation such as: (1) unrecognized microbial agents in the environmental metagenome that may cause latent neurodegenerative disease, (2) the evolutionary social and protective functions of different amyloid proteins in diverse organisms from bacteria to mammals, and (3) amyloid formation as a beneficial innate immune response to stress (infectious and non-infectious). This innate process however, once initiated, can become unstoppable in accelerated neuronal aging. PMID:23633671

  5. Thiamine Deficiency Induces Endoplasmic Reticulum Stress in Neurons

    PubMed Central

    Wang, Xin; Wang, Bingwei; Fan, Zhiqin; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2007-01-01

    Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as GRP78, GADD153/Chop, phosphorylation of eIF2α and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage. PMID:17137721

  6. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  7. Incommensurateness in nanotwinning models of modulated martensites

    NASA Astrophysics Data System (ADS)

    Benešová, Barbora; Frost, Miroslav; Kampschulte, Malte; Melcher, Christof; Sedlák, Petr; Seiner, Hanuš

    2015-11-01

    We study the formation of modulated martensites in ferromagnetic shape memory alloys by a mathematical model originating from the nanotwinning concept. The results show that the incommensurateness, systematically observed in experiments for the modulated phases, may be understood as a precursor effect of the intermartensitic transitions, and its appearance does not contradict the nanotwinning concept itself. The model sufficiently explains the different levels of incommensurateness reported from different experimental observations for the 14-layered and 10-layered martensites of the Ni-Mn-Ga alloy and outlines the mechanism of formation of faults in the stacking sequences of these materials.

  8. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  9. Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization.

    PubMed

    Stojadinovic, Olivera; Gordon, Katherine A; Lebrun, Elizabeth; Tomic-Canic, Marjana

    2012-02-01

    Stress-induced disruption of hormonal balance in animals and humans has a detrimental effect on wound healing. After the injury, keratinocytes migrate over the wound bed to repair a wound. However, their nonmigratory phenotype plays a role in pathogenesis of chronic wounds. Despite many therapeutic approaches, there is a dearth of treatments targeting the molecular mechanisms mediated by stress that prevent epithelization. Recent studies show that epidermal keratinocytes synthesize stress hormones. During acute wound healing, cortisol synthesis in the epidermis is tightly controlled. Further, a key intermediate molecule in the cholesterol synthesis pathway, farnesyl pyrophosphate (FPP), can bind glucocorticoid receptor (GR) and activate GR. Additionally, keratinocytes express beta-2-adrenergic-receptor (β2AR), a receptor for the stress hormone epinephrine. Importantly, migratory rates of keratinocytes are reduced by cortisol, FPP, epinephrine, and other β2AR agonists, thus indicating their role in the inhibition of epithelization. Topical inhibition of local glucocorticoid and FPP synthesis, as well as treatment with β2AR antagonists promotes wound epithelization. Modulation of local stress hormone production may represent an important therapeutic target for wound healing disorders. Topical administration of inhibitors of cortisol synthesis, statins, β2AR antagonists, and systemic beta-blockers can decrease cortisol synthesis, FPP, and epinephrine levels, respectively, thus restoring keratinocyte migration capacity. These treatment modalities could represent a novel therapeutic approach for wound healing disorders. Attenuation of the local stress-induced hormonal imbalance in epidermis may advance therapeutic modalities, thereby leading to enhanced epithelization and improved wound healing.

  10. Fluid Production Induced Stress Analysis Surrounding an Elliptic Fracture

    NASA Astrophysics Data System (ADS)

    Pandit, Harshad Rajendra

    Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America. During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture. In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture. The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

  11. Environmental stresses induce health-promoting phytochemicals in lettuce.

    PubMed

    Oh, Myung-Min; Carey, Edward E; Rajashekar, C B

    2009-07-01

    Plants typically respond to environmental stresses by inducing antioxidants as a defense mechanism. As a number of these are also phytochemicals with health-promoting qualities in the human diet, we have used mild environmental stresses to enhance the phytochemical content of lettuce, a common leafy vegetable. Five-week-old lettuce (Lactuca sativa L.) plants grown in growth chambers were exposed to mild stresses such as heat shock (40 degrees C for 10 min), chilling (4 degrees C for 1d) or high light intensity (800 micromolm(-2)s(-1) for 1d). In response to these stresses, there was a two to threefold increase in the total phenolic content and a significant increase in the antioxidant capacity. The concentrations of two major phenolic compounds in lettuce, chicoric acid and chlorogenic acid, increased significantly in response to all the stresses. Quercetin-3-O-glucoside and luteolin-7-O-glucoside were not detected in the control plants, but showed marked accumulations following the stress treatments. The results suggest that certain phenolic compounds can be induced in lettuce by environmental stresses. Of all the stress treatments, high light produced the greatest accumulation of phenolic compounds, especially following the stress treatments during the recovery. In addition, key genes such as phenylalanine ammonia-lyase (PAL), l-galactose dehydrogenase (l-GalDH), and gamma-tocopherol methyltransferase (gamma-TMT) involved in the biosynthesis of phenolic compounds, ascorbic acid, and alpha-tocopherol, respectively, were rapidly activated by chilling stress while heat shock and high light did not appear to have an effect on the expression of PAL and gamma-TMT. However, l-GalDH was consistently activated in response to all the stresses. The results also show that these mild environmental stresses had no adverse effects on the overall growth of lettuce, suggesting that it is possible to use mild environmental stresses to successfully improve the phytochemical content

  12. Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Zikry, M. A.

    2015-12-01

    A stress assisted hydrogen diffusion transport model, a dislocation-density-based multiple-slip crystalline plasticity formulation, and an overlapping fracture method were used to investigate hydrogen diffusion and embrittlement in lath martensitic steels with distributions of M23C6 carbide precipitates. The formulation accounts for variant morphologies based on orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures. The interrelated effects of martensitic block and packet boundaries and carbide precipitates on hydrogen diffusion, hydrogen assisted crack nucleation and growth, are analyzed to characterize the competition between cleavage fracture and hydrogen diffusion assisted fracture along preferential microstructural fracture planes. Stresses along the three cleavage planes and the six hydrogen embrittlement fracture planes are monitored, such that crack nucleation and growth can nucleate along energetically favorable planes. High pressure gradients result in the accumulation of hydrogen, which embrittles martensite, and results in crack nucleation and growth along {110} planes. Cleavage fracture occurs along {100} planes when there is no significant hydrogen diffusion. The predictions indicate that hydrogen diffusion can suppress the emission and accumulation of dislocation density, and lead to fracture with low plastic strains.

  13. Stress in the Adult Rat Exacerbates Muscle Pain Induced by Early-Life Stress

    PubMed Central

    Alvarez, Pedro; Green, Paul G.; Levine, Jon D.

    2013-01-01

    Background Early-life stress and exposure to stressful stimuli play a major role in the development of chronic widespread pain in adults. However, how they interact in chronic pain syndromes remains unclear. Methods Dams and neonatal litters were submitted to a restriction of nesting material (neonatal limited bedding, NLB) for one week. As adults, these rats were exposed to a painless sound stress protocol. The involvement of sympathoadrenal catecholamines, interleukin 6 (IL-6) and tumor necrosis alpha (TNFα) in nociception, was evaluated through of behavioral and ELISA assays, surgical interventions and intrathecal antisense treatments. Results Adult NLB rats exhibited mild muscle hyperalgesia, which was markedly aggravated by sound stress (peaking 15 days after exposure). Adrenal medullectomy did not modify hyperalgesia in NLB rats but prevented its aggravation by sound stress. Sustained administration of epinephrine to NLB rats mimicked sound stress effect. Intrathecal treatment with antisense directed to IL-6-receptor subunit gp130, but not to TNFα type 1 receptor (TNFR1), inhibited hyperalgesia in NLB rats. However, antisense against either gp130 or TNFR1 inhibited sound stress-induced enhancement of hyperalgesia. Compared to control rats, NLB rats exhibit increased plasma levels of IL-6 but decreased levels of TNFα, whereas sound stress increases IL-6 plasma levels in control but not in NLB rats. Conclusions Early-life stress induces a persistent elevation of IL-6, hyperalgesia and susceptibility to chronic muscle pain, which is unveiled by exposure to stress in adults. This probably depends on an interaction between adrenal catecholamines and pro-inflammatory cytokines acting at muscle nociceptor level. PMID:23706525

  14. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders

    PubMed Central

    Gu, Simeng; Wang, Wei; Huang, Jason H.

    2016-01-01

    Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC)/norepinephrine (NE) system is regarded as a critical part of the central “stress circuitry,” whose major function is to induce “fight or flight” behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty). The reason for this discrepancy might be that NE is not only for flight (fear), but also for fight (anger). Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. “Adrenaline rush or norepinephrine rush” and fear and anger emotion might act as biomarkers for mental disorders. PMID:27051536

  15. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  16. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  17. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  18. Alcohol-induced stress in painful alcoholic neuropathy.

    PubMed

    Dina, Olayinka A; Khasar, Sachia G; Alessandri-Haber, Nicole; Green, Paul G; Messing, Robert O; Levine, Jon D

    2008-01-01

    Chronic alcohol consumption induces a painful small-fiber peripheral neuropathy, the severity of which increases during alcohol withdrawal. Chronic alcohol consumption also produces a sustained increase in stress hormones, epinephrine and corticosterone, that is exacerbated during alcohol withdrawal. We report that adrenal medullectomy and administration of a glucocorticoid receptor antagonist, mifepristone (RU 38486), both prevented and reversed a model of painful peripheral neuropathy in alcohol binge-drinking rats. Chronic administration of stress levels of epinephrine to rats that had undergone adrenal medullectomy and were being fed the alcohol diet reconstituted this phenotype. Intrathecal administration of oligodeoxynucleotides antisense to the beta(2)-adrenergic- or glucocorticoid-receptor also prevented and reversed the pro-nociceptive effects of ethanol. Our results suggest a convergence of the effects of mediators of the hypothalamic-pituitary- and sympathoadrenal-stress axes on sensory neurons in the induction and maintenance of alcohol-induced painful peripheral neuropathy.

  19. Crystallography of the Delta to Alpha Martensitic Transformation in Plutonium Alloys

    SciTech Connect

    Jin, Y; Wang, Y; Khachaturyan, A; Krenn, C; Schwartz, A

    2004-07-15

    A new stress-accommodating crystallographic mechanism of the {delta} {yields} {alpha} martensitic transformation in plutonium alloys is proposed. According to this mechanism, an orientation variant of the {alpha} phase is produced by a combination of a homogeneous strain and shuffling of the alternating close-packed (111){sub {delta}} planes. It is shown that the formation of stable transformation-induced twins whose twin plane orientations and twin shear directions do not depend on the small variations of the crystal lattice parameters is the preferred stress-accommodating mode. Only these stable twins have dislocation-free twin boundaries while the twin boundaries of all others are decorated by ultra-dense distribution of partial dislocations. The theory predicts a crystal lattice rearrangement mechanism involving the (205){sub {alpha}} ((01{bar 1}){sub {delta}}) stable twins. The corresponding Invariant Plane Strain solutions, with special emphasis on two simplest shuffling modes, the single and double elementary modes, are presented and compared with the existing experimental observations. It is shown that the habit plane orientation is highly sensitive to the input values of the crystal lattice parameters and especially to the accuracy of the measured volume change in the {delta}{yields}{alpha} transformation. An analysis of these effects on the habit plane orientation and orientation relations is also presented.

  20. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa.

    PubMed

    Macdonald, Ian A; Kuehn, Meta J

    2013-07-01

    As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.

  1. Stress-Induced Outer Membrane Vesicle Production by Pseudomonas aeruginosa

    PubMed Central

    MacDonald, Ian A.

    2013-01-01

    As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa. PMID:23625841

  2. Predicting stress-induced velocity anisotropy in rocks

    SciTech Connect

    Mavko, G.; Mukerji, T.; Godfrey, N.

    1995-07-01

    A simple transformation, using measured isotropic V{sub P} and V{sub S} versus hydrostatic pressure, is presented for predicting stress-induced seismic velocity anisotropy in rocks. The compliant, crack-like portions of the pore space are characterized by generalized compressional and shear compliances that are estimated form the isotropic V{sub P} and V{sub S}. The physical assumption that the compliant porosity is crack-like means that the pressure dependence of the generalized compliances is governed primarily by normal tractions resolved across cracks and defects. This allows the measured pressure dependence to be mapped form the hydrostatic stress state to any applied nonhydrostatic stress. Predicted P- and S-wave velocities agree reasonably well with uniaxial stress data for Barre Granite and Massillon Sandstone. While it is mechanically similar to methods based on idealized ellipsoidal cracks, the approach is relatively independent of any assumed crack geometry and is not limited to small crack densities.

  3. Flow-Induced Stress Distribution in Porous Scaffolds

    NASA Astrophysics Data System (ADS)

    Papavassiliou, Dimitrios; Voronov, Roman; Vangordon, Samuel; Sikavitsas, Vassilios

    2010-11-01

    Flow-induced stresses help the differentiation and proliferation of mesenchymal cells cultured in porous scaffolds within perfusion bioreactors. The distribution of stresses in a scaffold is thus important for understanding the tissue growth process in such reactors. Computational results for flow through Poly-L-Lactic Acid porous scaffolds that have been produced with salt-leaching techniques, and for scaffolds that have been constructed with nonwoven fibers, indicate that the probability density function (pdf) of the wall stress, when normalized with the mean and the standard deviation of the pdf, appears to follow a single type of pdf. The scaffolds were imaged with micro-CT and the simulations were run with lattice Boltzmann methods. The parameters of the distribution can be obtained using Darcy's law and the Blake-Kozeny-Carman equation. Experimental results available in the literature appear to corroborate the computational findings, leading to the conclusion that stresses in high-porosity porous materials follow a single distribution.

  4. N-acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats.

    PubMed

    Sathish, Priya; Paramasivan, Vijayalakshmi; Palani, Vivekanandan; Sivanesan, Karthikeyan

    2011-03-05

    Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50mg/kg b.w.; p.o.) for 7days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.

  5. Oxidants and antioxidants relevance in rats' pulmonary induced oxidative stress

    PubMed Central

    Zamfir, C; Eloaie Zugun, F; Cojocaru, E; Tocan, L

    2011-01-01

    Introduction: Even if the reactive oxygen species were discovered, described and detailed a long time ago, there is still little data about the mechanisms of oxidative stress, their tissular effects and about an efficient antioxidant strategy, involving animal experimental models. It has been shown that the lung is one of the most exposed organs to the oxidative stress. The particular effects of different types of oxidative stress on lungs were investigated in this experimental study, in order to quantify the intensity and the extent of the pulmonary damage, featuring the antioxidant enzymatic protective role. Methods: The study of lung injury was performed on four distinct groups of Wistar rats: a control group versus a group exposed to continuous light deprivation versus a group exposed to nitrofurantoin versus a group exposed to continuous light deprivation, to nitrofurantoin and vitamin C. Pulmonary samples were taken and treated for microscopic analysis. A qualitative immunohistochemical estimation of pulmonary superoxide dismutase 1(SOD 1) was performed. Blood tests were used in order to reveal the presence and intensity of oxidative stress. Results: Continuous light deprivation and the chronic administration of nitrofurantoin acted as oxidants with a certain involvement in lung damage– vascular and alveolar wall disturbances. Adding an antioxidant, such as vitamin C, considerably improved lung reactivity to oxidative stress. Conclusion: The chronic exposure to oxidants in the induced oxidative stress sustains the development of specific lung alterations. SOD 1 positive reaction underlines the complex enzymatic defense in oxidative stress. PMID:22567046

  6. Extracytoplasmic Stress Responses Induced by Antimicrobial Cationic Polyethylenimines

    PubMed Central

    Lander, Blaine A.; Checchi, Kyle D.; Koplin, Stephen A.; Smith, Virginia F.; Domanski, Tammy L.; Isaac, Daniel D.; Lin, Shirley

    2014-01-01

    The ability of an antimicrobial, cationic polyethylenimine (PEI+) to induce the three known extracytoplasmic stress responses of Escherichia coli was quantified. Exposure of E. coli to PEI+ in solution revealed specific, concentration-dependent induction of the Cpx extracytoplasmic cellular stress response, ~2.0-2.5 fold at 320 μg/mL after 1.5 hours without significant induction of the σE or Bae stress responses. In comparison, exposure of E. coli to a non-antimicrobial polymer, polyethylene oxide (PEO), resulted in no induction of the three stress responses. The antimicrobial small molecule vanillin, a known membrane pore-forming compound, was observed to cause specific, concentration-dependent induction of the σE stress response, ~6-fold at 640 μg/mL after 1.5 hours, without significant induction of the Cpx or Bae stress responses. The different stress response induction profiles of PEI+ and vanillin suggest that although both are antimicrobial compounds, they interact with the bacterial membrane and extracytoplasmic area by unique mechanisms. EPR studies of liposomes containing spin-labeled lipids exposed to PEI+, vanillin, and PEO reveal that PEI+ and PEO increased membrane stability whereas vanillin was found to have no effect. PMID:22797865

  7. Stress-Induced Activation of Heterochromatic Transcription

    PubMed Central

    Tittel-Elmer, Mireille; Bucher, Etienne; Broger, Larissa; Mathieu, Olivier; Paszkowski, Jerzy; Vaillant, Isabelle

    2010-01-01

    Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved. PMID:21060865

  8. Mechanical stress induced mechanism of microtubule catastrophes.

    PubMed

    Hunyadi, Viktória; Chrétien, Denis; Jánosi, Imre M

    2005-05-13

    Microtubules assembled in vitro from pure tubulin can switch occasionally from growing to shrinking states or resume assembly, an unusual behavior termed "dynamic instability of microtubule growth". Its origin remains unclear and several models have been proposed, including occasional switching of the microtubules into energetically unfavorable configurations during assembly. In this study, we have asked whether the excess energy accumulated in these configurations would be of sufficient magnitude to destabilize the capping region that must exist at the end of growing microtubules. For this purpose, we have analyzed the frequency distribution of microtubules assembled in vitro from pure tubulin, and modeled the different mechanical constraints accumulated in their wall. We find that the maximal excess energy that the microtubule lattice can store is in the order of 11 kBT per dimer. Configurations that require distortions up to approximately 20 kBT are allowed at the expense of a slight conformational change, and larger distortions are not observed. Modeling of the different elastic deformations suggests that the excess energy is essentially induced by protofilament skewing, microtubule radial curvature change and inter-subunit shearing, distortions that must destabilize further the tubulin subunits interactions. These results are consistent with the hypothesis that unfavorable closure events may trigger the catastrophes observed at low tubulin concentration in vitro. In addition, we propose a novel type of representation that describes the stability of microtubule assembly systems, and which might be of considerable interest to study the effects of stabilizing and destabilizing factors on microtubule structure and dynamics.

  9. Proteome changes induced by aluminium stress in tomato roots.

    PubMed

    Zhou, Suping; Sauvé, Roger; Thannhauser, Theodore W

    2009-01-01

    Growth inhibition in acid soils due to Al stress affects crop production worldwide. To understand mechanisms in sensitive crops that are affected by Al stress, a proteomic analysis of primary tomato root tissue, grown in Al-amended and non-amended liquid cultures, was performed. DIGE-SDS-MALDI-TOF-TOF analysis of these tissues resulted in the identification of 49 proteins that were differentially accumulated. Dehydroascorbate reductase, glutathione reductase, and catalase enzymes associated with antioxidant activities were induced in Al-treated roots. Induced enzyme proteins associated with detoxification were mitochondrial aldehyde dehydrogenase, catechol oxidase, quinone reductase, and lactoylglutathione lyase. The germin-like (oxalate oxidase) proteins, the malate dehydrogenase, wali7 and heavy-metal associated domain-containing proteins were suppressed. VHA-ATP that encodes for the catalytic subunit A of the vacuolar ATP synthase was induced and two ATPase subunit 1 isoforms were suppressed. Several proteins in the active methyl cycle, including SAMS, quercetin 3-O-methyltransferase and AdoHcyase, were induced by Al stress. Other induced proteins were isovaleryl-CoA dehydrogenase and the GDSL-motif lipase hydrolase family protein. NADPH-dependent flavin reductase and beta-hydroxyacyl-ACP dehydratase were suppressed.

  10. Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI) model.

    PubMed

    Yu, Rongjun

    2016-06-01

    Humans often make decisions in stressful situations, for example when the stakes are high and the potential consequences severe, or when the clock is ticking and the task demand is overwhelming. In response, a whole train of biological responses to stress has evolved to allow organisms to make a fight-or-flight response. When under stress, fast and effortless heuristics may dominate over slow and demanding deliberation in making decisions under uncertainty. Here, I review evidence from behavioral studies and neuroimaging research on decision making under stress and propose that stress elicits a switch from an analytic reasoning system to intuitive processes, and predict that this switch is associated with diminished activity in the prefrontal executive control regions and exaggerated activity in subcortical reactive emotion brain areas. Previous studies have shown that when stressed, individuals tend to make more habitual responses than goal-directed choices, be less likely to adjust their initial judgment, and rely more on gut feelings in social situations. It is possible that stress influences the arbitration between the emotion responses in subcortical regions and deliberative processes in the prefrontal cortex, so that final decisions are based on unexamined innate responses. Future research may further test this 'stress induced deliberation-to-intuition' (SIDI) model and examine its underlying neural mechanisms.

  11. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  12. Role of oxidative stress in transformation induced by metal mixture.

    PubMed

    Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde

    2011-01-01

    Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  13. [Exercise-induced shear stress: Physiological basis and clinical impact].

    PubMed

    Rodríguez-Núñez, Iván; Romero, Fernando; Saavedra, María Javiera

    2016-01-01

    The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population.

  14. Induced groundwater flux by increases in the aquifer's total stress.

    PubMed

    Chang, Ching-Min; Yeh, Hund-Der

    2015-01-01

    Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values.

  15. Design limits for HT9 cladding using stress-induced aging data

    SciTech Connect

    Fox, G.L.

    1986-04-01

    Stress-temperature design guidelines are developed for the ferritic/martensitic cladding material HT9. High temperature operation for HT9 may cause microstructural changes/aging which softens the structure and causes increased creep rates. Higher creep strains means cladding breech becomes more probable before the end of the expected pin lifetime. Tertiary creep is considered an indication of microstructural changes and is to be avoided in fuel pin operation. The creep rate correlation, which includes tertiary creep, is examined for information on stress-temperature relationships which promote aging. This approach leads to design limits for HT9 which are compared with expected hot channel conditions for fuel pins in the Core Demonstration Experiment (CDE) planned for FFTF. The results show aging should not be significant for CDE.

  16. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    PubMed Central

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-01-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α′(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α′ martensite inclusion, the transition lattices at the ε/α′ interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283

  17. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) --> ɛ(hcp) --> α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ɛ/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ɛ martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  18. Dissecting the mechanism of martensitic transformation via atomic-scale observations.

    PubMed

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-21

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  19. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration

    PubMed Central

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C.; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2010-01-01

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32°C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32°C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm. PMID:21044625

  20. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration.

    PubMed

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2011-01-15

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32 °C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32 °C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm.

  1. Low temperature stability of 4O martensite in Ni49.1Mn38.9Sn12 metamagnetic Heusler alloy ribbons

    NASA Astrophysics Data System (ADS)

    Czaja, P.; Przewoźnik, J.; Gondek, Ł.; Hawelek, L.; Żywczak, A.; Zschech, E.

    2017-01-01

    The structural transformation sequence in Ni49.1Mn38.9Sn12 ribbons is studied using calorimetric, thermomagnetic, resistivity and in-situ XRD measurements. It is confirmed that the ferromagnetic L21 austenite phase transforms into 4O martensite at 242 K. The austenite phase persists in the sample to well below the TC of martensite. Upon further cooling the 4O martensite phase is stable down to the low temperature range, what is ascribed to its limited Ni/Mn and e/a ratios. On heating lattice constants assume lower values resulting from stress relief upon thermal cycling.

  2. Characterization of an inducible oxidative stress system in Bacillus subtilis.

    PubMed

    Bol, D K; Yasbin, R E

    1990-06-01

    Exponentially growing cells of Bacillus subtilis demonstrated inducible protection against killing by hydrogen peroxide when prechallenged with a nonlethal dose of this oxidative agent. Cells deficient in a functional recE+ gene product were as much as 100 times more sensitive to the H2O2 but still exhibited an inducible protective response. Exposure to hydrogen peroxide also induced the recE(+)-dependent DNA damage-inducible (din) genes, the resident prophage, and the product of the recE+ gene itself. Thus hydrogen peroxide is capable of inducing the SOS-like or SOB system of B. subtilis. However, the induction of this DNA repair system by other DNA-damaging agents is not sufficient to activate the protective response to hydrogen peroxide. Therefore, at least one more regulatory network (besides the SOB system) that responds to oxidative stress must exist. Furthermore, the data presented indicate that a functional catalase gene is necessary for this protective response.

  3. Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Salazar Mejía, C.; Küchler, R.; Nayak, A. K.; Felser, C.; Nicklas, M.

    2017-02-01

    Combined strain and magnetization measurements on the Heusler shape-memory alloys Ni45Co5Mn38Sb12 and Ni44Co6Mn38Sb12 give evidence for strong magneto-structural coupling. The sample length changes up to 1% at the martensitic transformation, between a ferromagnetic, austenitic phase at high temperatures and a weakly magnetic, low-symmetry martensitic phase at lower temperatures. Under moderate uniaxial stress, the change in the sample length increases to and saturates at about 3%, pointing to stabilization of a single martensitic variant. A reverse martensitic transformation can also be induced by applying magnetic field: we find that within the temperature range of thermal hysteresis of the martensitic transformation, applying a field can induce a metastable expansion of the sample, while at slightly lower temperatures, the field response is reversible. These findings provide key information for future use of Ni(Co)-Mn-Sb-based Heusler compounds in, e.g., actuators and mechanical switches.

  4. Microstructure property analysis of HFIR-irradiated reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tanigawa, H.; Hashimoto, N.; Sakasegawa, H.; Klueh, R. L.; Sokolov, M. A.; Shiba, K.; Jitsukawa, S.; Kohyama, A.

    2004-08-01

    The effects of irradiation on the Charpy impact properties of reduced-activation ferritic/martensitic steels were investigated on a microstructural basis. It was previously reported that the ductile-brittle transition temperature (DBTT) of F82H-IEA and its heat treatment variant increased by about 130 K after irradiation at 573 K up to 5 dpa. Moreover, the shifts in ORNL9Cr-2WVTa and JLF-1 steels were much smaller, and the differences could not be interpreted as an effect of irradiation hardening. The precipitation behavior of the irradiated steels was examined by weight analysis and X-ray diffraction analysis on extraction residues, and SEM/EDS analysis was performed on extraction replica samples and fracture surfaces. These analyses suggested that the difference in the extent of DBTT shift could be explained by (1) smaller irradiation hardening at low test temperatures caused by irradiation-induced lath structure recovery (in JLF-1), and (2) the fracture stress increase caused by the irradiation-induced over-solution of Ta (in ORNL9Cr-2WVTa).

  5. High Strain Fatigue Properties of the F82H Ferritic-Martensitic Steel under Proton Irradiation.

    SciTech Connect

    Marmy, P; Oliver, Brian M. )

    2003-05-15

    During the up and down cycles of a fusion reactor, the first wall is exposed concomitantly to a flux of energetic neutrons that generates radiation defects and to a neutron thermal flux that induces thermal stresses. The resulting strains may exceed the elastic limit and induce a plastic deformation in the material. A similar situation occurs in the window of a spallation liquid source target and results in the same type of damage. This particular loading has been simulated in F82H martensitic ferritic steel, using a device allowing a fatigue test to be carried out during irradiation with 590 MeV protons. All fatigue tests were carried out at 300?C, in a strain controlled test at strain levels around 0.8%. Two different signals have been used: a fully symmetrical triangle wave signal (R=-1) and a triangle ramp with 2 min tension holds. The fatigue was investigated under three different conditions: unirradiated , irradiated and post irradiation tested, and finally in beam tested. The main result is that the in beam tested specimens have the lowest life as compared to the post irradiation tested specimens and unirradiated specimens. Hydrogen is suspected to be the main contributor to the observed embrittlement.

  6. High strain fatigue properties of F82H ferritic martensitic steel under proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Oliver, B. M.

    2003-05-01

    During the up and down cycles of a fusion reactor, the first wall is exposed concomitantly to a flux of energetic neutrons that generates radiation defects and to a thermal flux that induces thermal stresses. The resulting strains may exceed the elastic limit and induce plastic deformation in the material. A similar situation occurs in the window of a spallation liquid source target and results in the same type of damage. This particular loading has been simulated in F82H ferritic-martensitic steel, using a device allowing a fatigue test to be carried out during irradiation with 590 MeV protons. All fatigue tests were carried out in a strain controlled test at strain levels around 0.8% and at 300 °C. Two different signals have been used: a fully symmetrical triangle wave signal ( R=-1) and a triangle ramp with 2 min tension holds. The fatigue was investigated under three different conditions: unirradiated, irradiated and post-irradiation tested, and finally in-beam tested. The main result is that the in-beam tested specimens have the lowest life as compared to the post-irradiation tested specimen and unirradiated specimen. Hydrogen is suspected to be the main contributor to the observed embrittlement.

  7. Stress induced reversible crystal transition in poly(butylene succinate)

    NASA Astrophysics Data System (ADS)

    Liu, Guoming; Zheng, Liuchun; Zhang, Xiuqin; Li, Chuncheng; Wang, Dujin

    2015-03-01

    The plastic deformation mechanism of semi-crystalline polymers is a long-studied topic, which is crucial for establishing structure/property relationships. For polymers with stress induced crystal transition, some open questions still need to be answered, such as on which stage of plastic deformation does the crystal transition take place, and more importantly, what happens on the lamellar structure during crystal transition. In this talk, stress-induced reversible crystal transition in poly(butylene succinate) was systematically investigated by in-situ WAXS and SAXS. A ``lamellar thickening'' phenomenon was observed during stretching, which was shown to mainly originated from the reversible crystal transition. This mechanism was shown to be valid in poly(ethylene succinate). The critical stress for the transition was measured in a series of PBS-based crystalline-amorphous multi-block copolymers. Interestingly, these PBS copolymers exhibited identical critical stress independent of amorphous blocks. The universal critical stress for crystal transition was interpreted through a single-microfibril-stretching mechanism. The work is financially supported by the National Natural Science Foundation of China (Grant No. 51203170).

  8. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  9. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  10. [Changes of physiological functions in rats induced by immobilization stress].

    PubMed

    Kuriyama, T; Oishi, K; Kakazu, H; Machida, K

    1998-01-01

    A study was conducted on the changes of physiological function in rats due to immobilization stress. Male Fischer rats (SPF) of 32 weeks of age were housed in individual cages for 4 weeks. Then all rats were immobilized by stainless wire mesh for 6 hours daily for 3 days. Blood was collected before the 1st stress, immediately after the 1st stress, immediately after the 3rd stress and the day after the 3rd stress. The results of this experiment were as follows: (1) The total leukocyte counts in the blood of the rats after the 1st trial was significantly higher than that before the 1st trial. (2) The percentage of lymphocytes in the blood after the 1st trial was significantly lower than that before the 1st trial, whereas that of neutrophils was significantly higher. (3) Correlations between phagocytic activity and superoxide production of neutrophils by histochemical NBT reduction assay showed significantly a positive correlation before the 1st trial. However, no significant correlations were observed in immediately after the 1st trial and the 3rd trial. The day after the 3rd trial, a positive correlation was observed again. These correlations showed that an unsuitable state of the neutrophil function was induced by the immobilization stress. (4) Serum biochemical profiles were affected by the immobilization stress. Also, GOT, GPT, LDH, CK and UA were increased after the 1st trial, whereas, TG, TP, ALB and ALP were decreased after the 1st trial. T-CHO was increased only immediately after the 3rd stress. These results suggest that immobilization stress affected blood cells and serum components, and then the host defense and physiological functions were damaged respectively.

  11. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  12. Exercise-Induced Oxidative Stress Responses in the Pediatric Population.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Mastorakos, George; Fatouros, Ioannis G

    2017-01-17

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  13. ER stress induces epithelial differentiation in the mouse oesophagus.

    PubMed

    Rosekrans, Sanne L; Heijmans, Jarom; Büller, Nikè V J A; Westerlund, Jessica; Lee, Amy S; Muncan, Vanesa; van den Brink, Gijs R

    2015-02-01

    Stress in the endoplasmic reticulum (ER) leads to activation of the unfolded protein response (UPR). Xbp1, a key component of the UPR has recently been linked to the risk of developing oesophageal squamous cell carcinoma, suggesting an important role for the UPR in the oesophageal epithelium. Here we examined the role of ER stress and the UPR in oesophageal epithelial homoeostasis. We examined the expression of components of the UPR in the oesophageal epithelium. We used a pharmacological approach and a genetic approach to examine the effects of ER stress in vivo in the mouse oesophagus. The oesophagus of these mice was examined using immunohistochemistry and real-time reverse transcription (RT)-PCR. Components of the UPR were heterogeneously expressed in the basal layer of the epithelium. Induction of ER stress by 24-h treatment with thapsigargin resulted in depletion of proliferating cells in the basal layer of the oesophagus and induced differentiation. We next activated the UPR by inducible deletion of the major ER chaperone Grp78 in Ah1Cre-Rosa26-LacZ-Grp78(-/-) mice in which mutant cells could be traced by expression of LacZ. In these mice LacZ-positive mutant cells in the basal layer lost their proliferative capacity, migrated towards the oesophageal lumen and were replaced by LacZ-negative non-mutant cells. We observed no apoptosis in mutant cells. These results show that ER stress induces epithelial differentiation in precursor cells in the oesophageal epithelium. This UPR induced differentiation may serve as a quality control mechanism that protects against oesophageal cancer development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Electric field control of Martensitic Phase Transitions in Thin Films of Ni-Mn-In

    NASA Astrophysics Data System (ADS)

    Al-Aqtash, Nabil; Sokolov, Andrei; Sabirianov, Renat

    2015-03-01

    We propose the electric field control of martensite transformation of Ni-Mn-In thin films deposited on ferroelectric (FE) substrate. DFT- based calculations indicate that the off-stochiometric Ni2Mn1.5In0.5 alloy shows that the ferromagnetic (FM) cubic phase undergoes transformation to tetragonal ferromagnetic (FiM) martensite phase at low temperature. The presence of FE substrate changes the relative stability of FM austenite and FiM martensite phases. (SrZrO3/PbZrO3) superlattices were considered as FE substrates with polarization perpendicular to the interface. The relative stability of two phases of the thin films can be tuned by polarization reversal in FE due to the change in sign of induced charges at the interface. The energetically favorable structures of the FE/Ni2Mn1.5In0.5 systems depend on interface structure between FE and Ni2Mn1.5In0.5 layers, e.g Ni-(Pb-O) interface. The energy difference (per NiMnIn f.u) between FM austenite and FiM martensite states of the film on FE substrate is ΔE = 0.22 eV with polarization away from interface, upon polarization reversal ΔE = 0.75 eV, compared to (ΔE = 0.24 eV) in the bulk. Additionally Pb atoms in PbO3 planes shifted in opposite direction with respect to oxygen planes and alter the chemical bonding of Pb with Ni atoms of the thin films. These changes possibly cause the shift of the martensite transition temperature. These results clearly indicate the possibility of control of martensitic transition in Ni-Mn-In thin films by FE substrate.

  15. Distinct mechanisms are utilized to induce stress sensor gadd45b by different stress stimuli.

    PubMed

    Zumbrun, Steven D; Hoffman, Barbara; Liebermann, Dan A

    2009-12-01

    The GADD45 family of proteins consists of three small proteins, GADD45A, GADD45B, and GADD45G, implicated in modulating the cellular response to genotoxic/physiological stressors. Despite similarities in sequence, structure and function, each gadd45 gene is induced differentially by different stress stimuli. Studies on stress-mediated induction of the gadd45 genes have predominantly focused on gadd45a, with knowledge of gadd45b and gadd45g regulation lacking. To generate a more complete understanding of the regulation of gadd45 genes, a comprehensive analysis of stress-mediated induction of human gadd45b has been carried out using human RKO colorectal carcinoma cells as a model system. Novel data indicate that gadd45b induction in RKO cells is regulated by distinct mechanisms in a stress-specific manner. Methylmethane sulfonate (MMS), a DNA alkylating agent, induces gadd45b transcription through a cohort of both constitutive and inducible bound factors, including NFY, Sp1 and Egr1. In contrast, in a hyperosmotic environment generated with sorbitol, gadd45b mRNA is induced exclusively by mRNA stabilization. These findings indicate that the stress-mediated induction of gadd45b is largely distinct from gadd45a. Furthermore, data obtained provide a novel paradigm for stress-response gene induction, indicating that gadd45b induction by distinct stressors, in the same cell type and under the same experimental settings, is differentially regulated at the level of mRNA transcription or mRNA stability. Importantly, this study also provides the groundwork to further examine the regulation of gadd45b expression in in vivo settings using animal models and tissues obtained from normal individuals and cancer patients prior to and after chemotherapeutic intervention.

  16. ER stress induces NLRP3 inflammasome activation and hepatocyte death

    PubMed Central

    Lebeaupin, C; Proics, E; de Bieville, C H D; Rousseau, D; Bonnafous, S; Patouraux, S; Adam, G; Lavallard, V J; Rovere, C; Le Thuc, O; Saint-Paul, M C; Anty, R; Schneck, A S; Iannelli, A; Gugenheim, J; Tran, A; Gual, P; Bailly-Maitre, B

    2015-01-01

    The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. However, the causes and mechanisms of inflammation-mediated liver damage remain poorly understood. Endoplasmic reticulum (ER) stress is an initiator of cell death and inflammatory mechanisms. Although obesity induces ER stress, the interplay between hepatic ER stress, NLRP3 inflammasome activation and hepatocyte death signaling has not yet been explored during the etiology of chronic liver diseases. Steatosis is a common disorder affecting obese patients; moreover, 25% of these patients develop steatohepatitis with an inherent risk for progression to hepatocarcinoma. Increased plasma LPS levels have been detected in the serum of patients with steatohepatitis. We hypothesized that, as a consequence of increased plasma LPS, ER stress could be induced and lead to NLRP3 inflammasome activation and hepatocyte death associated with steatohepatitis progression. In livers from obese mice, administration of LPS or tunicamycin results in IRE1α and PERK activation, leading to the overexpression of CHOP. This, in turn, activates the NLRP3 inflammasome, subsequently initiating hepatocyte pyroptosis (caspase-1, -11, interleukin-1β secretion) and apoptosis (caspase-3, BH3-only proteins). In contrast, the LPS challenge is blocked by the ER stress inhibitor TUDCA, resulting in: CHOP downregulation, reduced caspase-1, caspase-11, caspase-3 activities, lowered interleukin-1β secretion and rescue from cell death. The central role of CHOP in mediating the activation of proinflammatory caspases and cell death was characterized by performing knockdown experiments in primary mouse hepatocytes. Finally, the analysis of human steatohepatitis liver biopsies showed a correlation between the upregulation of inflammasome and ER stress markers, as well as liver injury. We demonstrate here that ER stress leads to hepatic NLRP3 inflammasome pyroptotic death, thus contributing as a novel mechanism of

  17. Neural circuit for psychological stress-induced hyperthermia

    PubMed Central

    Nakamura, Kazuhiro

    2015-01-01

    Psychological stress-induced hyperthermia (PSH) is a basic physiological stress response to increase physical performances to defend homeostasis and life from stressors, such as natural enemies. However, excessive and long-lasting stressors can lead to chronic hyperthermia, particularly recognized in humans as a psychosomatic symptom called “psychogenic fever.” The sympathetic and neuroendocrine responses that can contribute to PSH include brown adipose tissue (BAT) thermogenesis, cutaneous vasoconstriction, tachycardia and glucocorticoid secretion. Research on the central circuits underlying these stress responses has recently revealed several fundamental circuit mechanisms including hypothalamomedullary pathways driving the sympathetic stress responses. Psychological stress activates a monosynaptic glutamatergic excitatory neurotransmission from the dorsomedial hypothalamus (DMH) to sympathetic premotor neurons in the rostral medullary raphe region (rMR) to drive BAT thermogenesis and tachycardia, leading to the development of PSH. This glutamatergic neurotransmission could be potentiated by orexin neurons in the lateral hypothalamus through their projections to the rMR. Psychological stress also activates another monosynaptic pathway from the DMH to the paraventricular hypothalamic nucleus to stimulate the hypothalamo-pituitary-adrenal axis for the secretion of glucocorticoids. PSH is independent from the prostaglandin-mediated trigger mechanism for inflammation-induced fever, and several forebrain regions are considered to provide stress-driven inputs to the DMH to activate the sympathetic- and neuroendocrine-driving neurons. The circuit mechanism of PSH based on animal experiments would be relevant to understandings of the etiology of psychogenic fever in humans. This review describes the current understandings of the central circuit mechanism of PSH with recent important progress in research. PMID:27227049

  18. Physiological changes induced by chromium stress in plants: an overview.

    PubMed

    Hayat, Shamsul; Khalique, Gulshan; Irfan, Mohammad; Wani, Arif Shafi; Tripathi, Bhumi Nath; Ahmad, Aqil

    2012-07-01

    This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.

  19. Stress-induced phase transformation in nanocrystalline UO2

    SciTech Connect

    Uberuaga, Blas Pedro; Desai, Tapan

    2009-01-01

    We report a stress-induced phase transfonnation in stoichiometric UO{sub 2} from fluorite to the {alpha}-PbO{sub 2} structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of the {alpha}-PbO{sub 2} phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confinn the existence of the {alpha}-PbO{sub 2} structure, showing that it is energetically favored under tensile loading conditions.

  20. Stress Induced Branching of Growing Crystals on Curved Surfaces.

    PubMed

    Köhler, Christian; Backofen, Rainer; Voigt, Axel

    2016-04-01

    If two-dimensional crystals grow on a curved surface, the Gaussian curvature of the surface induces elastic stress and affects the growth pathway. The elastic stress can be alleviated by incorporating defects or, if this is energetically unfavorable, via an elastic instability which leads to anisotropic growth with branched ribbonlike structures. This instability provides a generic route to grow defect-free crystals on curved surfaces. Depending on the elastic properties of the crystal and the geometric properties of the surface, different growth morphologies with two-, four-, and sixfold symmetry develop. Using a phase field crystal type modeling approach, we provide a microscopic understanding of the morphology selection.

  1. Role of Oxidative Stress in Drug-Induced Kidney Injury

    PubMed Central

    Hosohata, Keiko

    2016-01-01

    The kidney plays a primary role in maintaining homeostasis and detoxification of numerous hydrophilic xenobiotics as well as endogenous compounds. Because the kidney is exposed to a larger proportion and higher concentration of drugs and toxins than other organs through the secretion of ionic drugs by tubular organic ion transporters across the luminal membranes of renal tubular epithelial cells, and through the reabsorption of filtered toxins into the lumen of the tubule, these cells are at greater risk for injury. In fact, drug-induced kidney injury is a serious problem in clinical practice and accounts for roughly 20% of cases of acute kidney injury (AKI) among hospitalized patients. Therefore, its early detection is becoming more important. Usually, drug-induced AKI consists of two patterns of renal injury: acute tubular necrosis (ATN) and acute interstitial nephritis (AIN). Whereas AIN develops from medications that incite an allergic reaction, ATN develops from direct toxicity on tubular epithelial cells. Among several cellular mechanisms underlying ATN, oxidative stress plays an important role in progression to ATN by activation of inflammatory response via proinflammatory cytokine release and inflammatory cell accumulation in tissues. This review provides an overview of drugs associated with AKI, the role of oxidative stress in drug-induced AKI, and a biomarker for drug-induced AKI focusing on oxidative stress. PMID:27809280

  2. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  3. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  4. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  5. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552

  6. Stress-Induced Phase Transformations in Shape-Memory Polycrystals

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Schlömerkemper, Anja

    2010-06-01

    Shape-memory alloys undergo a solid-to-solid phase transformation involving a change of crystal structure. We examine model problems in the scalar setting motivated by the situation when this transformation is induced by the application of stress in a polycrystalline material made of numerous grains of the same crystalline solid with varying orientations. We show that the onset of transformation in a granular polycrystal with homogeneous elasticity is in fact predicted accurately by the so-called Sachs bound based on the ansatz of uniform stress. We also present a simple example where the onset of phase transformation is given by the Sachs bound, and the extent of phase transformation is given by the constant strain Taylor bound. Finally we discuss the stress-strain relations of the general problem using Milton-Serkov bounds.

  7. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  8. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    PubMed Central

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  9. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology.

    PubMed

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-05-10

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.

  10. Statins lower calcium-induced oxidative stress in isolated mitochondria.

    PubMed

    Parihar, A; Parihar, M S; Zenebe, W J; Ghafourifar, P

    2012-04-01

    Statins are widely used cholesterol-lowering agents that exert cholesterol-independent effects including antioxidative. The present study delineates the effects of statins, atorvastatin, and simvastatin on oxidative stress and functions of mitochondria that are the primary cellular sources of oxidative stress. In isolated rat liver mitochondria, both the statins prevented calcium-induced cytochrome c release, lipid peroxidation, and opening of the mitochondrial membrane permeability transition (MPT). Both the statins decreased the activity of mitochondrial nitric oxide synthase (mtNOS), lowered the intramitochondrial ionized calcium, and increased the mitochondrial transmembrane potential. Our findings suggest that statins lower intramitochondrial ionized calcium that decreases mtNOS activity, lowers oxidative stress, prevents MPT opening, and prevents the release of cytochrome c from the mitochondria. These results provide a novel framework for understanding the antioxidative properties of statins and their effects on mitochondrial functions.

  11. Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells.

    PubMed

    Palangi, Freshteh; Samuel, Samson M; Thompson, I Richard; Triggle, Chris R; Emara, Mohamed M

    2017-01-01

    Stress Granules (SGs) are dynamic ribonucleoprotein aggregates, which have been observed in cells subjected to environmental stresses, such as oxidative stress and heat shock (HS). Although pluripotent stem cells (PSCs) are highly sensitive to oxidative stress, the role of SGs in regulating PSC self-renewal and differentiation has not been fully elucidated. Here we found that sodium arsenite (SA) and HS, but not hydrogen peroxide (H2O2), induce SG formation in human induced (hi) PSCs. Particularly, we found that these granules contain the well-known SG proteins (G3BP, TIAR, eIF4E, eIF4A, eIF3B, eIF4G, and PABP), were found in juxtaposition to processing bodies (PBs), and were disassembled after the removal of the stress. Moreover, we showed that SA and HS, but not H2O2, promote eIF2α phosphorylation in hiPSCs forming SGs. Analysis of pluripotent protein expression showed that HS significantly reduced all tested markers (OCT4, SOX2, NANOG, KLF4, L1TD1, and LIN28A), while SA selectively reduced the expression levels of NANOG and L1TD1. Finally, in addition to LIN28A and L1TD1, we identified DPPA5 (pluripotent protein marker) as a novel component of SGs. Collectively, these results provide new insights into the molecular cues of hiPSCs responses to environmental insults.

  12. Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells

    PubMed Central

    Palangi, Freshteh; Samuel, Samson M.; Thompson, I. Richard; Triggle, Chris R.

    2017-01-01

    Stress Granules (SGs) are dynamic ribonucleoprotein aggregates, which have been observed in cells subjected to environmental stresses, such as oxidative stress and heat shock (HS). Although pluripotent stem cells (PSCs) are highly sensitive to oxidative stress, the role of SGs in regulating PSC self-renewal and differentiation has not been fully elucidated. Here we found that sodium arsenite (SA) and HS, but not hydrogen peroxide (H2O2), induce SG formation in human induced (hi) PSCs. Particularly, we found that these granules contain the well-known SG proteins (G3BP, TIAR, eIF4E, eIF4A, eIF3B, eIF4G, and PABP), were found in juxtaposition to processing bodies (PBs), and were disassembled after the removal of the stress. Moreover, we showed that SA and HS, but not H2O2, promote eIF2α phosphorylation in hiPSCs forming SGs. Analysis of pluripotent protein expression showed that HS significantly reduced all tested markers (OCT4, SOX2, NANOG, KLF4, L1TD1, and LIN28A), while SA selectively reduced the expression levels of NANOG and L1TD1. Finally, in addition to LIN28A and L1TD1, we identified DPPA5 (pluripotent protein marker) as a novel component of SGs. Collectively, these results provide new insights into the molecular cues of hiPSCs responses to environmental insults. PMID:28746394

  13. Engineering stress tolerance of Escherichia coli by stress-induced mutagenesis (SIM)-based adaptive evolution.

    PubMed

    Zhu, Linjiang; Cai, Zhen; Zhang, Yanping; Li, Yin

    2014-01-01

    Microbial tolerance to toxic products and biomass hydrolysates is a challenge for the production of fuels and chemicals from renewable resources. To improve cellular tolerance to these environmental stresses, a novel adaptive evolutionary strategy based on stress-induced mutagenesis (SIM) was developed using non-dividing cells. The concept of this method was proved using Escherichia coli FC40 as a model strain, which was used to quantitatively evaluate the rate of SIM. By deleting either the mutL or mutS gene to disturb the mismatch repair activity of the host cells, the SIM rate under stressful conditions increased by 92- and 57-fold, respectively. A periodic SIMbased adaptive evolution procedure, which synchronized the mutagenesis and the selection process in a single plate-incubation step, was then developed using the mutL-deleted mutant. E. coli mutants tolerant to high concentrations of butanol (13 g/L), NaCl (95 g/L), and high temperature (50°C) were obtained. These results indicate that stress-induced adaptive evolution in non-dividing cells is an effective approach that can improve microbial tolerance against various stresses and generate robust microbial strains suitable for production of fuels and chemicals.

  14. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys.

    PubMed

    Bönisch, Matthias; Calin, Mariana; van Humbeeck, Jan; Skrotzki, Werner; Eckert, Jürgen

    2015-03-01

    While the current research focus in the search for biocompatible low-modulus alloys is set on β-type Ti-based materials, the potential of fully martensitic Ti-based alloys remains largely unexplored. In this work, the influence of composition and pre-straining on the elastic properties of martensitic binary Ti-Nb alloys was studied. Additionally, the phase formation was compared in the as-cast versus the quenched state. The elastic moduli and hardness of the studied martensitic alloys are at a minimum of 16wt.% Nb and peak between 23.5 and 28.5wt.% Nb. The uniaxial deformation behavior of the alloys used is characterized by the absence of distinct yield points. Monotonic and cyclic (hysteretic) loading-unloading experiments were used to study the influence of Nb-content and pre-straining on the elastic moduli. Such experiments were also utilized to assess the recoverable elastic and anelastic deformations as well as hysteretic energy losses. Particular attention has been paid to the separation of non-linear elastic from anelastic strains, which govern the stress and strain limits to which a material can be loaded without deforming it plastically. It is shown that slight pre-straining of martensitic Ti-Nb alloys can lead to considerable reductions in their elastic moduli as well as increases in their total reversible strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Phase diagram of Ti50-xNi50+x : Crossover from martensite to strain glass

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Wang, Yu; Wang, Dong; Zhou, Yumei; Otsuka, Kazuhiro; Ren, Xiaobing

    2010-06-01

    We systematically investigated the variation in transition behavior and physical properties over a wide excess Ni (acting as defect) concentration range (x=0-2.5) in Ti50-xNi50+x alloys. This enables the establishment of an updated quantitative phase diagram for this important system. The phase diagram shows not only the well-known parent phase and martensite phase but also a premartensitic state and a strain glass state. Our experiments were able to determine quantitatively the borders of these states, the latter two having been unclear so far. The new phase diagram shows that a crossover from martensite to strain glass occurs at x=1.3 , and the appearance of a “premartensitic phase” below a critical temperature Tnd for defect-containing compositions (x>0) . We propose that point defects (excess Ni here) play two roles in a ferroelastic/martensitic system: (i) changing the thermodynamic driving force for the formation of long-range strain order (martensite) and (ii) creating random local stress that favors a premartensitic nanostructure and strain glass. Our work enables a simple explanation for several long-standing puzzles, such as the appearance of premartensitic nanostructure, the vanishing of transition latent heat with increasing Ni content and the anomalous negative temperature coefficient of electrical resistivity in Ni-rich Ti-Ni alloys.

  16. [Research of antioxidant defence system under alimentary induced oxidative stress].

    PubMed

    Kravchenko, Iu V; Mal'tsev, G Iu; Vasil'ev, A V

    2004-01-01

    Alimentary induced oxidative stress and its corrections in children and adults with homocysteine metabolism disorder are urgent problems for arteriosclerosis and cardiovascular disease prophylactics. For determination antioxidant status GSH-Px, SOD, GSH-reductase, catalase activities were detected. Effectiveness of Se-contained antioxidant complex "Selenec" was determined in experimental model with pubertal male Wistar rats. Including high value of methionine to semipurified diet with pyridoxine and folate deficiency induced oxidative stress. Lipid peroxidation substances were increased in blood, liver, intestine mucous tunic, aortal endothelium and myocardium. GSH-Px, SOD, GSH-reductase, catalase activities decreased significant compared to control. "Selenec" supplementation caused a decrease of thiobarbituric-reactive substances level, increasing SOD and catalase activity and decreasing GSH-Px and GSH-reductase activity in blood, liver, intestine mucous tunic, aorta and myocardium.

  17. Overloaded training increases exercise-induced oxidative stress and damage.

    PubMed

    Palazzetti, Stephane; Richard, Marie-Jeanne; Favier, Alain; Margaritis, Irene

    2003-08-01

    We hypothesized that overloaded training (OT) in triathlon would induce oxidative stress and damage on muscle and DNA. Nine male triathletes and 6 male sedentary subjects participated in this study. Before and after a 4-week OT, triathletes exercised for a duathlon. Blood ratio of reduced vs. oxidized glutathione (GSH/GSSG), plasma thiobarbituric acid reactive substances (TBARS), leukocyte DNA damage, creatine kinase (CK), and CK-MB mass in plasma, erythrocyte superoxide dismutase (SOD) activity, erythrocyte and plasma glutathione peroxidase (GSH-Px) activities, and plasma total antioxidant status (TAS) were measured before and after OT in pre- and postexercise situations. Triathletes were overloaded in response to OT. In rest conditions, OT induced plasma GSH-Px activity increase and plasma TAS decrease (both p < 0.05). In exercise conditions, OT resulted in higher exercise-induced variations of blood GSH/GSSG ratio, TBARS level (both p < 0.05), and CK-MB mass (p < 0.01) in plasma; and decreased TAS response (p < 0.05). OT could compromise the antioxidant defense mechanism with respect to exercise-induced response. The resulting increased exercise-induced oxidative stress and further cellular susceptibility to damage needs more study.

  18. Stress does not inhibit induced vitellogenesis in juvenile rainbow trout

    USGS Publications Warehouse

    Schwindt, A.R.; Feist, G.W.; Schreck, C.B.

    2007-01-01

    Vitellogenin (Vtg) is a widely used biomarker for xenoestrogen exposure in male fishes. In female fishes Vtg can be negatively affected by stress independent of declines in estrogen. However, few data are available on the effect of stress in male fish abnormally producing Vtg, such as when exposed to xenoestrogens. The objective for these studies was to determine the effects of stress on fish forced to produce Vtg. Three weeks prior to the experiment immature juvenile rainbow trout, Oncorhynchus mykiss, were acclimated to the experimental tanks and fed a maintenance ration. We induced Vtg synthesis by injecting 17??-estradiol (E2) 7 days prior to experimentation. Treatments in duplicate tanks were: (1) no stressor; (2) stressor; (3) E 2; (4) E2 and stressor. Plasma was collected at time = 0 for baseline measurements from eight fish per tank and Vtg was significantly elevated in treated fish compared to uninjected controls. Water was drained from the stressor tanks then refilled to a level that just covered the backs of the fish. Eight fish were sampled again at 4 and 9 h, and 1, 7, and 14 days of continuous stress. Stressor tanks were refilled with water to pre-stress levels and the fish were sampled after another 2 weeks. Cortisol was significantly elevated from the unstressed fish at 4 h; however, plasma Vtg in the E 2-stimulated fish was not affected by the stressor at any timepoint. These results indicate that fish capture procedures employed in the field or caging experiments likely do not lead to false negative results when plasma Vtg is used as a biomarker for xenoestrogen exposure. It also suggests that the energetic load induced by stress is insufficient to cause a reduction in Vtg, during a continuous E2 administration, at least within the timepoints examined in this study. ?? 2006 Springer Science+Business Media, Inc.

  19. Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization

    PubMed Central

    Stojadinovic, Olivera; Gordon, Katherine A.; Lebrun, Elizabeth; Tomic-Canic, Marjana

    2012-01-01

    Background Stress-induced disruption of hormonal balance in animals and humans has a detrimental effect on wound healing. The Problem After the injury, keratinocytes migrate over the wound bed to repair a wound. However, their nonmigratory phenotype plays a role in pathogenesis of chronic wounds. Despite many therapeutic approaches, there is a dearth of treatments targeting the molecular mechanisms mediated by stress that prevent epithelization. Basic/Clinical Science Advances Recent studies show that epidermal keratinocytes synthesize stress hormones. During acute wound healing, cortisol synthesis in the epidermis is tightly controlled. Further, a key intermediate molecule in the cholesterol synthesis pathway, farnesyl pyrophosphate (FPP), can bind glucocorticoid receptor (GR) and activate GR. Additionally, keratinocytes express beta-2-adrenergic-receptor (β2AR), a receptor for the stress hormone epinephrine. Importantly, migratory rates of keratinocytes are reduced by cortisol, FPP, epinephrine, and other β2AR agonists, thus indicating their role in the inhibition of epithelization. Topical inhibition of local glucocorticoid and FPP synthesis, as well as treatment with β2AR antagonists promotes wound epithelization. Clinical Care Relevance Modulation of local stress hormone production may represent an important therapeutic target for wound healing disorders. Topical administration of inhibitors of cortisol synthesis, statins, β2AR antagonists, and systemic beta-blockers can decrease cortisol synthesis, FPP, and epinephrine levels, respectively, thus restoring keratinocyte migration capacity. These treatment modalities could represent a novel therapeutic approach for wound healing disorders. Conclusion Attenuation of the local stress-induced hormonal imbalance in epidermis may advance therapeutic modalities, thereby leading to enhanced epithelization and improved wound healing. PMID:24527275

  20. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.

    PubMed

    Lovelace, Erica S; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard P; Zink, Erika M; Kim, Young-Mo; Kyle, Jennifer E; Webb-Robertson, Bobbie-Jo M; Waters, Katrina M; Metz, Thomas O; Farin, Federico; Oberlies, Nicholas H; Polyak, Stephen J

    2015-08-28

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e., 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, whereas silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  1. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    PubMed Central

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Stephen J.

    2016-01-01

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e. 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, while silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  2. Dopant-induced stress in microfabricated silicon devices

    NASA Astrophysics Data System (ADS)

    Sievilä, P.; Mäkinen, J.; Tilli, M.; Tittonen, I.

    2013-07-01

    The modification of material characteristics by introducing dopant atoms into a crystal lattice is a fundamental basis for modern micro- and nanosystems technology. In this work, the uneven distribution of dopants is shown to have a remarkable effect on the residual stress and the consequent deformation of released, mechanical silicon structures. In particular, the focus is on segregation of initial dopants inside the bulk silicon which takes place in such fabrication processes as thermal oxidation. A theoretical model based on perceiving the dopant-induced change in Si crystal lattice parameter is developed. We experimentally investigate a series of silicon-on-insulator wafers, including samples with dopant types B, P, and Sb, and concentrations in the range from 1015 to 5 × 1019 atoms cm-3. Released cantilevers are fabricated as test structures and the residual stress is determined by measuring their final curvature. Experimental results are compared with the modelled values obtained utilizing the dopant profiles determined by secondary ion mass spectrometry and concentration distribution simulations. The use of lightly doped substrates or the selection of processes not modifying the underlying Si surface (e.g., plasma enhanced chemical vapour deposition PECVD or metal deposition) is shown to be an effective solution for minimizing the dopant redistribution-induced stress. Besides the scientific impact, knowledge of the stress generated by dopants is of great significance for industrial manufacturing of a wide range of micro- and nanomechanical systems.

  3. Inheritance of stress-induced, ATF-2-dependent epigenetic change.

    PubMed

    Seong, Ki-Hyeon; Li, Dong; Shimizu, Hideyuki; Nakamura, Ryoichi; Ishii, Shunsuke

    2011-06-24

    Atf1, the fission yeast homolog of activation transcription factor-2 (ATF-2), contributes to heterochromatin formation. However, the role of ATF-2 in chromatin assembly in higher organisms remains unknown. This study reveals that Drosophila ATF-2 (dATF-2) is required for heterochromatin assembly, whereas the stress-induced phosphorylation of dATF-2, via Mekk1-p38, disrupts heterochromatin. The dATF-2 protein colocalized with HP1, not only on heterochromatin but also at specific loci in euchromatin. Heat shock or osmotic stress induced phosphorylation of dATF-2 and resulted in its release from heterochromatin. This heterochromatic disruption was an epigenetic event that was transmitted to the next generation in a non-Mendelian fashion. When embryos were exposed to heat stress over multiple generations, the defective chromatin state was maintained over multiple successive generations, though it gradually returned to the normal state. The results suggest a mechanism by which the effects of stress are inherited epigenetically via the regulation of a tight chromatin structure.

  4. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    SciTech Connect

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  5. Soil Liquefaction Resulting from Blast-Induced Spherical Stress Waves

    DTIC Science & Technology

    1990-01-01

    on vibration sensitive. two phase materials like loose saturated sands, there can be elastic strain in the water phase but plastic strain in the sand...similar behaviour. Liquefaction can be induced by a variety of loading menhanisms including monotonic stress changes, earthquakes, and blast vibrations ...A sandstone bedrock is estimated to lie between 8 and 9 m below the ground surface with a series of folded shale layers over the sandstone. The top

  6. Ultrashort Laser Pulse Induced Electromagnetic Stress on Biological Macromolecular Systems.

    DTIC Science & Technology

    1979-11-01

    ULTRASHORT LASER PULSE INDUCED ~~~~~ ELECTROMAGNET IC STRESS ON BIOLOGICAL MACROMOLECULAR SYSTEMS Adam P. Bruckner , Ph.D. ( i~iiCJ. Michael ...AFSC, Brooks Air Force Base, Texas. Dr. John Taboada (RZL) was the Laboratory Project Scientjst..in...Charge When U.S. Goverrijie~t drawings...available to the general public , including foreignnations. Thi s technical report has been reviewed and is approved for publ i-cation. OHN TABOADA , Ph.D

  7. Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of skin immune function.

    PubMed

    Bilbo, Staci D; Dhabhar, Firdaus S; Viswanathan, Kavitha; Saul, Alison; Yellon, Steven M; Nelson, Randy J

    2002-03-19

    Environmental conditions influence the onset and severity of infection and disease. Stressful conditions during winter may weaken immune function and further compromise survival by means of hypothermia, starvation, or shock. To test the hypothesis that animals may use photoperiod to anticipate the onset of seasonal stressors and adjust immune function, we evaluated glucocorticoids and the distribution of blood leukocytes in Siberian hamsters (Phodopus sungorus) exposed to long day lengths (i.e., summer) or short day (SD) lengths (i.e., winter) at baseline and during acute stress. We also investigated the influence of photoperiod and acute stress on a delayed-type hypersensitivity response in the skin. SDs increased glucocorticoid concentrations and the absolute number of circulating blood leukocytes, lymphocytes, T cells, and natural killer cells at baseline in hamsters. During stressful challenges, it appears beneficial for immune cells to exit the blood and move to primary immune defense areas such as the skin, in preparation for potential injury or infection. Acute (2 h) restraint stress induced trafficking of lymphocytes and monocytes out of the blood. This trafficking occurred more rapidly in SDs compared to long days. Baseline delayed-type hypersensitivity responses were enhanced during SDs; this effect was augmented by acute stress and likely reflected more rapid redistribution of leukocytes out of the blood and into the skin. These results suggest that photoperiod may provide a useful cue by which stressors in the environment may be anticipated to adjust the repertoire of available immune cells and increase survival likelihood.

  8. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-03-15

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA.

  9. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz

    2013-12-01

    Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells.

  10. The prevalence of posttraumatic stress among women requesting induced abortion

    PubMed Central

    2013-01-01

    Objectives To describe the prevalence and pattern of traumatic experiences, to assess the prevalence of posttraumatic stress disorder (PTSD) and posttraumatic stress symptoms (PTSS), to identify risk factors for PTSD and PTSS, and to analyse the association of PTSD and PTSS with concomitant anxiety and depressive symptoms in women requesting induced abortion. Methods A Swedish multi-centre study of women requesting an induced abortion. The Screen Questionnaire – Posttraumatic Stress Disorder was used for research diagnoses of PTSD and PTSS. Anxiety and depressive symptoms were evaluated by the Hospital Anxiety and Depression Scale (HADS). Results Of the 1514 respondents, almost half reported traumatic experiences. Lifetime- and point prevalence of PTSD were 7% (95% confidence interval [CI]: 5.8–8.5) and 4% (95% CI: 3.1–5.2), respectively. The prevalence of PTSS was 23% (95% CI: 21.1–25.4). Women who reported symptoms of anxiety or depression when requesting abortion were more likely to have ongoing PTSD or PTSS. Also single-living women and smokers displayed higher rates of ongoing PTSD. Conclusions Although PTSD is rare among women who request an induced abortion, a relatively high proportion suffers from PTSS. Abortion seeking women with trauma experiences and existing or preexisting mental disorders need more consideration and alertness when counselled for termination. PMID:23978220

  11. The prevalence of posttraumatic stress among women requesting induced abortion.

    PubMed

    Wallin Lundell, Inger; Sundström Poromaa, Inger; Frans, Orjan; Helström, Lotti; Högberg, Ulf; Moby, Lena; Nyberg, Sigrid; Sydsjö, Gunilla; Georgsson Öhman, Susanne; Östlund, Ingrid; Skoog Svanberg, Agneta

    2013-12-01

    To describe the prevalence and pattern of traumatic experiences, to assess the prevalence of posttraumatic stress disorder (PTSD) and posttraumatic stress symptoms (PTSS), to identify risk factors for PTSD and PTSS, and to analyse the association of PTSD and PTSS with concomitant anxiety and depressive symptoms in women requesting induced abortion. A Swedish multi-centre study of women requesting an induced abortion. The Screen Questionnaire - Posttraumatic Stress Disorder was used for research diagnoses of PTSD and PTSS. Anxiety and depressive symptoms were evaluated by the Hospital Anxiety and Depression Scale (HADS). Of the 1514 respondents, almost half reported traumatic experiences. Lifetime- and point prevalence of PTSD were 7% (95% confidence interval [CI]: 5.8-8.5) and 4% (95% CI: 3.1-5.2), respectively. The prevalence of PTSS was 23% (95% CI: 21.1-25.4). Women who reported symptoms of anxiety or depression when requesting abortion were more likely to have ongoing PTSD or PTSS. Also single-living women and smokers displayed higher rates of ongoing PTSD. Although PTSD is rare among women who request an induced abortion, a relatively high proportion suffers from PTSS. Abortion seeking women with trauma experiences and existing or preexisting mental disorders need more consideration and alertness when counselled for termination.

  12. CAG expansion induces nucleolar stress in polyglutamine diseases

    PubMed Central

    Tsoi, Ho; Lau, Terrence Chi-Kong; Tsang, Suk-Ying; Lau, Kwok-Fai; Chan, Ho Yin Edwin

    2012-01-01

    The cell nucleus is a major site for polyglutamine (polyQ) toxicity, but the underlying mechanisms involved have yet been fully elucidated. Here, we report that mutant RNAs that carry an expanded CAG repeat (expanded CAG RNAs) induce apoptosis by activating the nucleolar stress pathway in both polyQ patients and transgenic animal disease models. We showed that expanded CAG RNAs interacted directly with nucleolin (NCL), a protein that regulates rRNA transcription. Such RNA–protein interaction deprived NCL of binding to upstream control element (UCE) of the rRNA promoter, which resulted in UCE DNA hypermethylation and subsequently perturbation of rRNA transcription. The down-regulation of rRNA transcription induced nucleolar stress and provoked apoptosis by promoting physical interaction between ribosomal proteins and MDM2. Consequently, p53 protein was found to be stabilized in cells and became concentrated in the mitochondria. Finally, we showed that mitochondrial p53 disrupted the interaction between the antiapoptotic protein, Bcl-xL, and the proapoptotic protein, Bak, which then caused cytochrome c release and caspase activation. Our work provides in vivo evidence that expanded CAG RNAs trigger nucleolar stress and induce apoptosis via p53 and describes a polyQ pathogenic mechanism that involves the nucleolus. PMID:22847428

  13. Cyclin C mediates stress-induced mitochondrial fission and apoptosis

    PubMed Central

    Wang, Kun; Yan, Ruilan; Cooper, Katrina F.; Strich, Randy

    2015-01-01

    Mitochondria are dynamic organelles that undergo constant fission and fusion cycles. In response to cellular damage, this balance is shifted dramatically toward fission. Cyclin C–Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochondrial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is independent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mitochondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mitochondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death in mammalian cells. PMID:25609094

  14. Effects of volume fraction of tempered martensite on dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Geun; Lee, You Hwan; Lee, Chong Soo; Lee, Sunghak

    2005-03-01

    The effects of the volume fraction of tempered martensite on the tensile and dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure were investigated in this study. Five microstructures having various tempered-martensite volume fractions were obtained by varying heat-treatment conditions. Dynamic torsional tests were conducted on them using a torsional Kolsky bar. The test data were analyzed in relation to microstructures, tensile properties, and adiabatic shear-band formation. Under a dynamic loading condition, the maximum shear stress increased with increasing tempered-martensite volume fraction, whereas the fracture shear strain decreased. Observation of the deformed area after the dynamic torsional test indicated that a number of voids initiated mainly at α-phase/tempered-martensite interfaces, and that the number of voids increased with increasing martensite volume fraction. Adiabatic shear bands of 6 to 10 μm in width were formed in the specimens having lower martensite volume fractions, while they were not formed in those having higher martensite volume fractions. The possibility of adiabatic shear-band formation was explained by concepts of absorbed deformation energy and void initiation.

  15. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions.

    PubMed

    Baert, Jan M; Janssen, Colin R; Sabbe, Koen; De Laender, Frederik

    2016-08-18

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions.

  16. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    PubMed Central

    Baert, Jan M.; Janssen, Colin R.; Sabbe, Koen; De Laender, Frederik

    2016-01-01

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity–ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity–productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity–productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions. PMID:27534986

  17. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  18. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  19. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    SciTech Connect

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  20. Mid-Ventricular Variant of Dobutamine-Induced Stress Cardiomyopathy

    PubMed Central

    Chandraprakasam, Satish; Kanuri, Swapna; Hunter, Claire

    2015-01-01

    Introduction: Dobutamine stress testing is a commonly used modality in detecting and estimating the prognosis in coronary artery disease (CAD). Although it is well tolerated by most patients, adverse events have been reported. Rarely, transient wall motion abnormalities can occur in the absence of obstructive CAD to suggest stress cardiomyopathy. Case Presentation: We report a 48-year-old female with intermittent chest pain. Her physical exam, cardiac enzymes and transthoracic echocardiogram were unremarkable. She underwent dobutamine stress echocardiogram to rule out obstructive CAD. After 40 micrograms (mcg)/kg/minute and 0.5 mg atropine, she complained of intense chest pain and became hypertensive. Stress echocardiogram demonstrated mid-anterior and mid-septal hypokinesis. Emergent coronary angiogram demonstrated normal coronaries. Left ventricular angiogram in the right anterior oblique projection revealed mid-ventricular ballooning during systole with apical and basal hypercontractility. Patient demonstrated excellent recovery with expectant management. Conclusions: The mechanism of mid-variant of Dobutamine-induced stress cardiomyopathy remains unclear. We think that multiple mechanisms are involved and this risk should be considered in patients with comorbid psychiatric conditions and with use of centrally acting stimulants. PMID:26425489

  1. Somatic embryogenesis - Stress-induced remodeling of plant cell fate.

    PubMed

    Fehér, Attila

    2015-04-01

    Plants as sessile organisms have remarkable developmental plasticity ensuring heir continuous adaptation to the environment. An extreme example is somatic embryogenesis, the initiation of autonomous embryo development in somatic cells in response to exogenous and/or endogenous signals. In this review I briefly overview the various pathways that can lead to embryo development in plants in addition to the fertilization of the egg cell and highlight the importance of the interaction of stress- and hormone-regulated pathways during the induction of somatic embryogenesis. Somatic embryogenesis can be initiated in planta or in vitro, directly or indirectly, and the requirement for dedifferentiation as well as the way to achieve developmental totipotency in the various systems is discussed in light of our present knowledge. The initiation of all forms of the stress/hormone-induced in vitro as well as the genetically provoked in planta somatic embryogenesis requires extensive and coordinated genetic reprogramming that has to take place at the chromatin level, as the embryogenic program is under strong epigenetic repression in vegetative plant cells. Our present knowledge on chromatin-based mechanisms potentially involved in the somatic-to-embryogenic developmental transition is summarized emphasizing the potential role of the chromatin to integrate stress, hormonal, and developmental pathways leading to the activation of the embryogenic program. The role of stress-related chromatin reorganization in the genetic instability of in vitro cultures is also discussed. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.

  2. Ethanol-induced stress response of Staphylococcus aureus.

    PubMed

    Pando, Jasmine M; Pfeltz, Richard F; Cuaron, Jesus A; Nagarajan, Vijayaraj; Mishra, Mukti N; Torres, Nathanial J; Elasri, Mohamed O; Wilkinson, Brian J; Gustafson, John E

    2017-09-01

    Transcriptional profiles of 2 unrelated clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates were analyzed following 10% (v/v) ethanol challenge (15 min), which arrested growth but did not reduce viability. Ethanol-induced stress (EIS) resulted in differential gene expression of 1091 genes, 600 common to both strains, of which 291 were upregulated. With the exception of the downregulation of genes involved with osmotic stress functions, EIS resulted in the upregulation of genes that contribute to stress response networks, notably those altered by oxidative stress, protein quality control in general, and heat shock in particular. In addition, genes involved with transcription, translation, and nucleotide biosynthesis were downregulated. relP, which encodes a small alarmone synthetase (RelP), was highly upregulated in both MRSA strains following ethanol challenge, and relP inactivation experiments indicated that this gene contributed to EIS growth arrest. A number of persistence-associated genes were also upregulated during EIS, including those that encode toxin-antitoxin systems. Overall, transcriptional profiling indicated that the MRSA investigated responded to EIS by entering a state of dormancy and by altering the expression of elements from cross protective stress response systems in an effort to protect preexisting proteins.

  3. Injection-induced seismicity on basement faults including poroelastic stressing

    NASA Astrophysics Data System (ADS)

    Chang, K. W.; Segall, P.

    2016-04-01

    Most significant induced earthquakes occur on faults within the basement beneath sedimentary cover. In this two-dimensional plane strain numerical study, we examine the full poroelastic response of basement faults to fluid injection into overlying strata, considering both (1) the permeability of the fault zone and (2) the hydraulic connectivity of the faults to the target horizon. Given hydraulic and mechanical properties, we compute the spatiotemporal change in Coulomb stress, which we separate into (1) the change in poroelastic stresses Δτs+fΔσn, where Δτs and Δσn are changes in shear and normal stress (Δτs>0 and Δσn>0 both favor slip), and (2) the change in pore pressure fΔp. Pore pressure diffusion into hydraulically connected, permeable faults dominates their mechanical stability. For hydraulically isolated or low-permeability faults, however, poroelastic stresses transmitted to deeper basement levels can trigger slip, even without elevated pore pressure. The seismicity rate on basement fault zones is predicted using the model of Dieterich (1994). High seismicity rates can occur on permeable, hydraulically connected faults due to direct pore pressure diffusion. Lower rates are predicted on isolated steeply dipping normal faults, caused solely by poroelastic stressing. In contrast, seismicity on similarly oriented reverse faults is inhibited.

  4. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge.

  5. Identification of novel stress-induced genes downstream of chop.

    PubMed Central

    Wang, X Z; Kuroda, M; Sok, J; Batchvarova, N; Kimmel, R; Chung, P; Zinszner, H; Ron, D

    1998-01-01

    CHOP (GADD153) is a small nuclear protein that dimerizes avidly with members of the C/EBP family of transcription factors. Normally undetectable, it is expressed at high levels in cells exposed to conditions that perturb protein folding in the endoplasmic reticulum and induce an endoplasmic reticulum stress response. CHOP expression in stressed cells is linked to the development of programmed cell death and, in some instances, cellular regeneration. In this study, representational difference analysis was used to compare the complement of genes expressed in stressed wild-type mouse embryonic fibroblasts with those expressed in cells nullizygous for chop. CHOP expression, in concert with a second signal, was found to be absolutely required for the activation by stress of a set of previously undescribed genes referred to as DOCs (for downstream of CHOP). DOC4 is a mammalian ortholog of a Drosophila gene, Tenm/Odz, implicated in patterning of the early fly embryo, whereas DOC6 encodes a newly recognized homolog of the actin-binding proteins villin and gelsolin. These results reveal the existence of a novel CHOP-dependent signaling pathway, distinct from the known endoplasmic reticulum unfolded protein response, which may mediate changes in cell phenotype in response to stress. PMID:9649432

  6. Aging induced ER stress alters sleep and sleep homeostasis

    PubMed Central

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  7. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.

  8. Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity.

    PubMed

    Hong, Zhiwen; Tian, Yujing; Yuan, Yibiao; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species (ROS) and nitric oxide (NO) in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA) and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT) and glutathione peroxidase (GSH-Px) were decreased by GSK1016790A, whereas the activity of superoxide dismutase (SOD) remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS) were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a ROS scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity.

  9. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  10. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  11. Adrenal-derived stress hormones modulate ozone-induced ...

    EPA Pesticide Factsheets

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  12. SOS involvement in stress-inducible biofilm formation.

    PubMed

    Gotoh, H; Kasaraneni, N; Devineni, N; Dallo, S F; Weitao, T

    2010-07-01

    Bacterial biofilm formation can be induced by antimicrobial and DNA damage agents. These agents trigger the SOS response, in which SOS sensor RecA stimulates auto-cleavage of repressor LexA. These observations lead to a hypothesis of a connection between stress-inducible biofilm formation and the RecA-LexA interplay. To test this hypothesis, three biofilm assays were conducted, viz. the standard 96-well assay, confocal laser scanning microscopy, and the newly developed biofilm-on-paper assay. It was found that biofilm stimulation by the DNA replication inhibitor hydroxyurea was dependent on RecA and appeared repressed by the non-cleavable LexA of Pseudomonas aeruginosa. Surprisingly, deletion of lexA led to reduction of both normal and stress-inducible biofilm formation, suggesting that the wild-type LexA contributes to biofilm formation. The decreases was not the result of poor growth of the mutants. These results suggest SOS involvement in hydroxyurea-inducible biofilm formation. In addition, with the paper biofilm assay, it was found that degradation of the biofilm matrix DNA by DNase I appeared to render the biofilms susceptible to the replication inhibitor. The puzzling questions concerning the roles of LexA in DNA release in the biofilm context are discussed.

  13. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  14. Modeling the Effect of Carburization and Quenching on the Development of Residual Stresses and Bending Fatigue Resistance of Steel Gears

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Freborg, Andrew M.; Hansen, Bruce D.; Srivatsan, T. S.

    2013-03-01

    Most steel gears are carburized and quenched prior to service to obtain the desired specific strength (σ/ρ) and hardness requirements. Use of carburization and quenching of steel gears creates a compressive residual stress on the carburized surface, which is beneficial for improving both bending and contact fatigue performance. Also, higher carbon content in the carburized surface decreases the starting temperature for formation of the martensitic phase and delaying the martensitic transformation at the part surface during the quenching hardening process. During the martensite phase formation, the material volume expands. The delayed martensitic transformation, coupled with the associated delayed volume expansion, induces residual compressive stress on the surface of the quenched part. The carburized case depth and distribution of carbon affect both the magnitude and the depth of the resulting residual compressive stress. In this article, the effect of carbon distribution on the residual stress in a spur gear is presented and discussed using finite element modeling to understand the intrinsic material mechanics contributing to the presence of internal stress. Influence of the joint on thermal gradient and the influence of phase transformation on the development of internal stresses are discussed using results obtained from modeling. The residual stress arising due to heat treatment is imported into single-tooth bending and dynamic contact stress analysis models to investigate the intrinsic interplay among carbon case depth, residual stress, bending load, and torsional load on potential fatigue life. Three carburization processes, followed by oil quenching, are examined. A method for designing minimum case depth so as to achieve beneficial residual stresses in gears subjected to bending and contact stresses is suggested.

  15. Soyasaponin Bb Protects Rat Hepatocytes from Alcohol-Induced Oxidative Stress by Inducing Heme Oxygenase-1

    PubMed Central

    Lijie, Zhu; Ranran, Fu; Xiuying, Liu; Yutang, He; Bo, Wang; Tao, Ma

    2016-01-01

    Background: It has been known that oxidative stress induced by alcohol played a crucial role in the formation of alcoholic liver disease. Although the formation mechanisms underlying liver injury induced by alcohol still remained largely unknown, it has been considered that oxidative stress played a core role in the pathogenesis of hepatocyte damage. Objective: The aim of this study was to investigate the effects of soyasaponin Bb (Ss-Bb) on oxidative stress in alcohol-induced rat hepatocyte injury. Results: It has been shown that the administration of Ss-Bb could significantly restore antioxidant activity in BRL 3A cells. Moreover, the impaired liver function and morphology changes resulting from ethanol exposure were improved by Ss-Bb treatment. Treatment with a pharmacological inhibitor of haem oxygenase-1 (HO-1) indicated a critical role of HO-1 in mediating the protective role. Finally, we found that pretreatment with Ss-Bb to ethanol exposure cells increased the expression level of HO-1. Conclusion: It was suggested that Ss-Bb may protect against alcohol-induced hepatocyte injury through ameliorating oxidative stress, and the induction of HO-1 was an important protective mechanism. SUMMARY Effects of soyasaponin Bb was investigated on oxidative stress in rat hepatocytesCell viability and antioxidant capacities were evaluated to determine the effectsThe expression level of HO-1 was measured to reveal the proptective mechanisms PMID:27867273

  16. Separating triggered and stress-change induced seismcity

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2013-12-01

    Once a major earthquake occurs, it usually not only triggers a sequence of many aftershock, but also changes the tectonic stress field in the regions nearby. According to the rate and state law (Dieterich, 1994), such stress changes result in a permanent change of the seismicity rate, increment or decrement. However, since aftershock sequence lasts quite a long time before it decays off, it is hard tell whether the high level of seismicity after a big earthquake is the continuation of the aftershock activity or caused by the changes of stress due this big earthquake. In this study, by making use of the space-time ETAS model (Ogata, 1998) and the stochastic declustering method (Zhuang et al., 2002, 2004), I developed a method to separate the seismicity induced by stress-change from the aftershock activity in a probability manner. For example, it is found that the probabilities that Lushan earthquakes belong the background seismcity, aftershock of the Wenchuan earthquake, are stress-change induced seismcity are, respectively, 38% and 12%, 50%. References Dieterich, J.H. (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res. , 99 , 2601-2618. Ogata, Y. (1998. Space-time point-process models for earthquake occur- rences, Ann. Inst. Stat. Math., 50, 379-402. Zhuang J., Ogata Y. and Vere-Jones D. (2004). Analyzing earthquake clustering features by using stochastic reconstruction. Journal of Geophysical Research, 109, No. B5, B05301, doi:10.1029/2003JB002879. Zhuang J., Ogata Y. and Vere-Jones D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97: 369-380.

  17. Effects of polyphenolic antioxidants on exercise-induced oxidative stress.

    PubMed

    Morillas-Ruiz, J M; Villegas García, J A; López, F J; Vidal-Guevara, M L; Zafrilla, P

    2006-06-01

    Polyphenols are of increasing interest to consumers and food manufacturers for several reasons. Commonly referred to as antioxidants (they are the most abundant antioxidants in our diets), they may prevent various oxidative stress-related diseases, such as cancer, cardiovascular disease, inflammation and others. Physical activity is known to induce oxidative stress in individuals after intensive exercise. In this study, the effect of the flavonoid contents (which are the most abundant polyphenols) was investigated, as the only antioxidant in a replacement drink designed for sportsmen on various oxidative stress biomarkers after two identical trials of sub-maximal aerobic exercise, in a group of 30 sportsmen. In one of the trials, the cyclists consumed the antioxidant supplement (with 2.3g polyphenols/trial), and in another they consumed a placebo. Blood samples were collected both at rest and after exercise immediately and 45 minutes (min) later, for measurements of plasmatic indices of oxidative stress: lipid oxidation (TBARS), total antioxidant status (TAS); protein oxidation (carbonyl groups, CO) and the lactate dehydrogenase (LDH) and creatine kinase (CK) enzymes for each trial. All values were adjusted for changes in plasma volume. No changes were detected in plasma TAS and LDH after exercise or after the polyphenolic supplement. CK and TBARS increased after exercise in both tests. However, in response to strenuous exercise, the polyphenol-supplemented test showed a smaller increase in plasma TBARS and CK than the placebo test. CO increased by 12% in response to the placebo test, whereas it decreased by 23% in the polyphenol-supplement test. This may indicate that the antioxidant supplement offered protection against exercise-induced oxidative stress.

  18. Effects of mechanical-bending and process-induced stresses on metal effective work function

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Chu, Min; Huang, Anping; Thompson, Scott

    2013-01-01

    Effective work function (EWF) change is investigated under both externally-applied mechanical stresses and process-induced stresses. Four-point wafer bending and ring bending techniques are used to generate uniaxial and biaxial mechanical stresses, respectively. For the process-induced stresses, bowing technique and charge pumping method are used for stress characterization and interface state measurement. It was found that higher stress presents in devices with thinner metal gate, regardless the thermal treatment cycle. EWF decreases under both tensile and compressive stress was observed due to the increase of defect activation energy lowering induced donor-like interface states.

  19. Experimental investigation of the influence of the stress state on the mechanical stability of austenite in multiphase steels

    NASA Astrophysics Data System (ADS)

    Furnémont, Q.; Delannay, F.; Jacques, P. J.

    2003-10-01

    The transformation-induced plasticity (TRIP) effect, i.e. the mechanically activated martensitic transformation of metastable austenite, has been proven for some years to contribute very effective to the deformation process in a large variety of iron-based alloys. In order to enlighten the influence of the stress triaxiality on the kinetics of the mechanically-induced martensitic transformation in TRIP-assisted multiphase steels, several specimens presenting austenite with different mechanical stabilities were strained under different stress states (pure uniaxial tension, uniaxial tension of notched and DENT specimens and stretching). It is shown that the stress triaxiality has a large effect on the mechanical stability of austenite dispersed in a multiphase microstructure and consequently on the mechanical properties of the investigated steels.

  20. Stress-induced crack path in Aji granite under tensile stress

    NASA Astrophysics Data System (ADS)

    Kudo, Yozo; Sano, Osam; Murashige, Naokuni; Mizuta, Yoshiaki; Nakagawa, Koji

    1992-12-01

    The double-torsion test using Aji granite was carried out to investigate the interaction between stress-induced crack path and mineral grains. Crack velocities were controlled at range 10-7 m/s to 10-1 m/s. After the stressed specimens were dyed, we checked the crack path by thin section analysis, using an optical microscope. The stress-induced crack path was divided into two types, transgranular and intergranular cracks, and each path was subdivided with respect to mineral grains. In spite of the extensive range of crack velocities, the ratios between the transgranular and intergranular crack lengths did not change. The crack paths were all jagged, and often showed detour around the grain boundary when faced with obstacles like hard grains or preexisting cracks. That is to say, quartz grain played an important role as an obstacle. Feldspar grain could change the crack path because of its cleavage plane. Biolite grain had a serious effect on the path even if its constitution ratio is very small. Fractal dimensions of the crack paths were calculated by three methods, as indicators of surface roughness. The fractal dimensions were shown in a slight trend with the change of crack velocity. This trend can be explained from the point of limited cracking rate in stress corrosion.

  1. Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation

    PubMed Central

    Szaflarski, Witold; Fay, Marta M.; Kedersha, Nancy; Zabel, Maciej; Anderson, Paul; Ivanov, Pavel

    2016-01-01

    Resistance to chemotherapy drugs is a serious therapeutic problem and its underlying molecular mechanisms are complex. Stress granules (SGs), cytoplasmic ribonucleoprotein complexes assembled in cells exposed to stress, are implicated in various aspects of cancer cell metabolism and survival. SGs promote the survival of stressed cells by reprogramming gene expression and inhibiting pro-apoptotic signaling cascades. We show that the vinca alkaloid (VA) class of anti-neoplastic agents potently activates a SG-mediated stress response program. VAs inhibit translation initiation by simultaneous activation of eIF4E-BP1 and phosphorylation of eIF2α, causing polysome disassembly and SG assembly. VA-induced SGs contain canonical SG components but lack specific signaling molecules. Blocking VA-induced SG assembly by inactivating eIF4EBP1 or inhibiting eIF2α phosphorylation decreases cancer cell viability and promotes apoptosis. Our data describe previously unappreciated effects of VAs on cellular RNA metabolism and illuminate the roles of SGs in cancer cell survival. PMID:27083003

  2. Incorporation of plasticity into the Landau-Ginzburg theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, Roman; Lookman, Turab

    2008-03-01

    The Landau-Ginzburg theory of martensitic phase transformations has been utilized to reproduce the evolution of elastic texture in defect-free materials undergoing structural phase transformations. Generalizations of this theory to phase transformations that are accompanied by significant plastic distortions (as in U6Nb) have been little studied. We propose a simple model that demonstrates how to incorporate plasticity into the Landau-Ginzburg theory. In the presence of topological defects such as dislocations, the usual Saint Venant compatibility constraint becomes an incompatibility constraint and this is represented by a tensor field ηij. In our case, the components of ηij are expressed as gradients of the components of the Nye tensor that represent the dislocation density. The presence of dislocations induces large internal stresses in certain regions of the material, and these act as initiation sites for plastic deformation. When the external loading is applied, dislocations moving from these regions cause strain hardening that is detectable in experimental uniaxial measurements. This model serves as a starting point for further development of the framework of three-dimensional rate-independent theory of plasticity within the Landau-Ginzburg formalism.

  3. Distribution of C Cr associates and mechanical stability of Cr martensitic steels

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Montanari, R.; Tata, M. E.

    1998-10-01

    Structural and mechanical stability of two martensitic steels with different Cr content (MANET and modified F82H) has been studied by means of internal friction (IF) and dynamic modulus ( Md) measurements, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) observations with EDS microanalysis and mechanical tests (hardness, Charpy). Following thermal treatments at 700°C, MANET samples cooled from the austenitic field at a rate of 150°C/min, exhibit Cr segregation both inside the grains and in the zones near grain boundaries. The Cr segregation induces internal stresses, which influence the mechanical properties, in particular the fracture mode, ductile-brittle transition temperature (DBTT) and upper shelf energy (USE). The material is not stable: DBTT changes depending on the time of the treatment and after 20 h at 700°C a mixed fracture mode (quasi-cleavage plus intercrystalline) is observed. Cr segregation is very weak in modified F82H steel submitted to the same treatments and a greater mechanical stability has been observed. The different behaviour of MANET and modified F82H is discussed on the basis of IF and Md results, which show that the stability of the distribution of C-Cr associates in as-quenched materials is a factor of great importance to avoid the Cr segregation.

  4. Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Junya; Ina, Daiki; Nakajima, Yuji; Sugimoto, Koh-ichi

    2013-11-01

    The effects of the addition of Cr, Mo, and/or Ni on the Charpy impact toughness of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel with a lath-martensite structure matrix ( i.e., a TRIP-aided martensitic steel or TM steel) were investigated with the aim of using the steel in automotive applications. In addition, the relationship between the toughness of the various alloyed steels and their metallurgical characteristics was determined. When Cr, Cr-Mo, or Cr-Mo-Ni was added to the base steel, the TM steel exhibited a high upper-shelf Charpy impact absorbed value that ranged from 100 to 120 J/cm2 and a low ductile-brittle fracture appearance transition temperature that ranged from 123 K to 143 K (-150 °C to -130 °C), while also exhibiting a tensile strength of about 1.5 GPa. This impact toughness of the alloyed steels was far superior to that of conventional martensitic steel and was caused by the presence of (i) a softened wide lath-martensite matrix, which contained only a small amount of carbide and hence had a lower carbon concentration, (ii) a large amount of finely dispersed martensite-retained austenite complex phase, and (iii) a metastable retained austenite phase of 2 to 4 vol pct in the complex phase, which led to plastic relaxation via strain-induced transformation and played an important role in the suppression of the initiation and propagation of voids and/or cleavage cracks.

  5. Martensitic transformations in laser processed coatings

    SciTech Connect

    Burg, M. van den; De Hosson, J.T.M. . Dept. of Applied Physics)

    1993-09-01

    This paper concentrates on laser coating of Fe-22 wt% Cr and a duplex steel SAF2205 by injecting Cr[sub 2]O[sub 3] powder into the melt pool. In particular the work focuses on the stabilization of high temperature distorted spinel phases due to the high quench rates involved as well as on the a quantitative crystallographic analysis of the resulting morphologies. The microstructure observed in TEM indicates that the material does not solidify in the distorted spinel structure. The presence of a small amount of cubic (Fe, Cr)-spinel suggests that the distorted spinel in fact might be nucleated from the cubic spinel phase. The plate like morphology of the distorted spinel phase in combination with the twinned internal structure of the plates put forward the idea that the transformation might be martensitic. Martensitic calculations executed with the lattice parameters of the cubic and distorted (Fe, Cr)-spinel phases are in excellent agreement with the experimental data confirming that the transformation might be martensitic indeed.

  6. Effect of Microstructure on Torsional Fatigue Endurance of Martensitic Carbon Steel

    NASA Astrophysics Data System (ADS)

    Toyoda, Shunsuke; Ishiguro, Yasuhide; Kawabata, Yoshikazu; Sakata, Kei; Sato, Akio; Sakai, Jun'ichi

    The microstructural influence of martensitic carbon steel on torsional fatigue endurance was investigated, taking into consideration the application of high strength steel electric resistance welded (ERW) tubes to automotive structural parts. The chemical composition of the base steel alloy was 0.1-0.2%C-0.2-1.5%Si-1.3-1.9%Mn-0.01%P-0.001%S-(Cr, Mo, Ti, Nb, B). Laboratory vacuum-fused ingots were hot-rolled, heated to 1023 or 1223 K in a salt bath, and then water-quenched and tempered at 473 K. Consequently, three types of microstructure, martensite (M), martensite and ferrite (M+F), and ferrite and pearlite (F+P), were prepared. Fully reversed torsional fatigue testing was conducted with 6 mm diameter round bar specimens. Torsional fatigue endurance was found to monotonously increase with increases in the tensile strength of the specimen from 540 to 1380 MPa. The martensitic single structure and the M+F dual-phase structure showed a similar level of fatigue endurance at a tensile strength of approximately 950 MPa. However, fatigue micro-crack morphology varied slightly between them. At the surface of the M+F specimen, many small cracks were observed in addition to the main crack. Conversely, in the martensitic specimen, these small cracks were rarely observed. ΔK decreasing/increasing crack growth testing with compact tension (CT)-type specimens was also conducted. Based on these experimental results, the effect of microstructure and stress level on the initiation/propagation cycle ratio is discussed. In addition to fatigue properties, some practical properties, such as low-temperature toughness and hydrogen embrittlement resistance, were also evaluated in view of actual applications for automotive structural parts.

  7. Stress-induced alterations in prefrontal dendritic spines: Implications for post-traumatic stress disorder.

    PubMed

    Moench, Kelly M; Wellman, Cara L

    2015-08-05

    The medial prefrontal cortex (mPFC) is involved in a variety of important functions including emotional regulation, HPA axis regulation, and working memory. It also demonstrates remarkable plasticity in an experience-dependent manner. There is extensive evidence that stressful experiences can produce profound changes in the morphology of neurons within mPFC with a variety of behavioral consequences. The deleterious behavioral outcomes associated with mPFC dysfunction have been implicated in multiple psychopathologies, including post-traumatic stress disorder (PTSD). Given the prevalence of these disorders, a deeper understanding of the cellular mechanisms underlying stress-induced morphological changes in mPFC is critical, and could lead to improved therapeutic treatments. Here we give a brief review of recent studies examining the mechanisms underlying changes in mPFC pyramidal neuron dendritic spines - the primary sites of excitatory input in cortical pyramidal neurons. We begin with an overview of the effects of chronic stress on mPFC dendritic spine density and morphology followed by proposed mechanisms for these changes. We then discuss the time course of stress effects on mPFC as well as potential intercellular influences. Given that many psychopathologies, including PTSD, have different prevalence rates among men and women, we end with a discussion of the sex differences that have been observed in morphological changes in mPFC. Future directions and implications for PTSD are discussed throughout. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-07

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  9. Cloning and Characterization of a Novel Drosophila Stress Induced DNase

    PubMed Central

    Seong, Chang-Soo; Varela-Ramirez, Armando; Tang, Xiaolei; Anchondo, Brenda; Magallanes, Diego; Aguilera, Renato J.

    2014-01-01

    Drosophila melanogaster flies mount an impressive immune response to a variety of pathogens with an efficient system comprised of both humoral and cellular responses. The fat body is the main producer of the anti-microbial peptides (AMPs) with anti-pathogen activity. During bacterial infection, an array of secreted peptidases, proteases and other enzymes are involved in the dissolution of debris generated by pathogen clearance. Although pathogen destruction should result in the release a large amount of nucleic acids, the mechanisms for its removal are still not known. In this report, we present the characterization of a nuclease gene that is induced not only by bacterial infection but also by oxidative stress. Expression of the identified protein has revealed that it encodes a potent nuclease that has been named Stress Induced DNase (SID). SID belongs to a family of evolutionarily conserved cation-dependent nucleases that degrade both single and double-stranded nucleic acids. Down-regulation of sid expression via RNA interference leads to significant reduction of fly viability after bacterial infection and oxidative stress. Our results indicate that SID protects flies from the toxic effects of excess DNA/RNA released by pathogen destruction and from oxidative damage. PMID:25083901

  10. Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes.

    PubMed

    Racz, Boglarka; Reglodi, Dora; Fodor, Barnabas; Gasz, Balazs; Lubics, Andrea; Gallyas, Ferenc; Roth, Erzsebet; Borsiczky, Balazs

    2007-06-01

    Articular chondrocytes have a well-developed osmoregulatory system that enables cells to survive in a constantly changing osmotic environment. However, osmotic loading exceeding that occurring under physiological conditions severely compromises chondrocyte function and leads to degenerative changes. The aim of the present study was to investigate the form of cell death and changes in apoptotic signaling pathways under hyperosmotic stress using a primary chondrocyte culture. Cell viability and apoptosis assays performed with annexin V and propidium iodide staining showed that a highly hyperosmotic medium (600 mOsm) severely reduced chondrocyte viability and led mainly to apoptotic cell death, while elevating osmotic pressure within the physiological range caused no changes compared to isosmotic conditions. Western blot analysis revealed that a 600 mOsm hyperosmotic environment induced the activation of proapoptotic members of the mitogen-activated protein kinase family such as c-Jun N-terminal kinase (JNK) and p38, and led to an increased level of extracellular signal regulated kinase (ERK1/2). Hyperosmotic stress also induced the activation of caspase-3. In summary, our results show that hyperosmotic stress leads to mainly apoptotic cell death via the involvement of proapoptotic signaling pathways in a primary chondrocyte culture.

  11. Stress-induced Ageing of Lithium-Ion Batteries.

    PubMed

    Held, Marcel; Sennhauser, Urs

    2015-01-01

    Lithium-ion batteries are well established for use in portable consumer products and are increasingly used in high power electro-mobility and photovoltaic storage applications. In hybrid and plug-in electric vehicles degradation and useful lifetime at standard operation conditions are critical parameters in addition to performance and safety. Here stress-induced ageing of commercially available high power battery cells of the type A123 AHR32113M1 Ultra-B, consisting of a LiFePO(4) cathode and a graphite anode have been investigated. A usually accepted capacity loss for electric vehicles of 20% was reached after 8560 stress profiles corresponding to a driving distance of almost 200'000 km. Cycling with a stress profile applying constant power corresponding to the average power and energy of a full stress profile and starting at 60% state of charge showed a much faster capacity loss. Electric impedance measurements show the dependence of the capacity loss and constant phase element at low frequency, indicating Li-ion diffusion blocking in the cathode. Microscopic analysis of anode, separator, and cathode, shows defect formation in bulk material and at interfaces.

  12. Thermally induced stresses and deformations in layered composite tubes

    NASA Technical Reports Server (NTRS)

    Cooper, D. E.; Cohen, D.; Rousseau, C. Q.; Hyer, M. W.; Tompkins, S. S.

    1985-01-01

    The thermally induced stresses and deformations in layered, orthotropic tubes are studied. The motivation for studying tubes is their likely application for use in space structures. Tubes are a strong candidate for this application because of their high structural efficiency, as measured by stiffness per unit weight, and their relative ease of fabrication. Also, tubes have no free edges to deteriorate or delaminate. An anticipated thermal condition for tubes in space is a circumferential temperature gradient. This type of gradient will introduce dimensional changes into the structure and may cause stresses large enough to cause damage to the material. There are potentially large differences in temperatures at different circumferential locations on the tube. Because of this, the effects of temperature dependent material properties on the stresses and deformations may be important. The study is composed of three parts: experiments to determine the functional form of the circumferential gradient and to measure tube deflections; an elasticity solution to compute the stresses and deformations; and an approximate approach to determine the effects of temperature dependent material properties.

  13. Thermally induced stresses and deformations in layered composite tubes

    NASA Technical Reports Server (NTRS)

    Cooper, D. E.; Cohen, D.; Rousseau, C. Q.; Hyer, M. W.; Tompkins, S. S.

    1985-01-01

    The thermally induced stresses and deformations in layered, orthotropic tubes are studied. The motivation for studying tubes is their likely application for use in space structures. Tubes are a strong candidate for this application because of their high structural efficiency, as measured by stiffness per unit weight, and their relative ease of fabrication. Also, tubes have no free edges to deteriorate or delaminate. An anticipated thermal condition for tubes in space is a circumferential temperature gradient. This type of gradient will introduce dimensional changes into the structure and may cause stresses large enough to cause damage to the material. There are potentially large differences in temperatures at different circumferential locations on the tube. Because of this, the effects of temperature dependent material properties on the stresses and deformations may be important. The study is composed of three parts: experiments to determine the functional form of the circumferential gradient and to measure tube deflections; an elasticity solution to compute the stresses and deformations; and an approximate approach to determine the effects of temperature dependent material properties.

  14. Stress-induced voiding in aluminum and copper interconnects

    NASA Astrophysics Data System (ADS)

    Hommel, M.; Fischer, A. H.; Glasow, A. v.; Zitzelsberger, A. E.

    2002-04-01

    Stress-induced voiding (SIV) is a serious reliability problem in metal interconnects. For aluminum a phenomenological model was developed which allows the extrapolation of metallization life times from stress conditions to operation conditions of the integrated circuit. Resistance drift measurements during high-temperature storage (HTS) on wafer-level have been performed and the experimental data could be fitted with that model. The influences of different parameters such as line width, metal level, thermal anneals of certain metal levels during processing and the deposition temperature of the interlevel dielectric material on the SIV behavior are discussed. The SIV behavior of copper dual damascene metallizations has been investigated on via line structures. A linear resistance drift during high-temperature storage has been observed. This is in contrast to aluminum, where a non-linear behavior was found. Failure analysis showed voids inside the via and not in the metal line as it has been observed in aluminum. Stress simulations have been performed in order to explain this behavior. Due to the complex stress state in a copper dual damascene via the temperature dependence of SIV in copper is different from that of aluminum.

  15. Oxidative-stress-induced epigenetic changes in chronic diabetic complications.

    PubMed

    Feng, Biao; Ruiz, Michael Anthony; Chakrabarti, Subrata

    2013-03-01

    Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.

  16. The stress-induced surface wave velocity variations in concrete

    NASA Astrophysics Data System (ADS)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-c