Science.gov

Sample records for stress physiology

  1. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  2. Glucocorticoid physiology, pharmacology and stress.

    PubMed

    Munck, A; Guyre, P M

    1986-01-01

    Basal levels of glucocorticoids maintained by negative feedback regulation are known to modulate a wide range of physiological processes, through a variety of effects such as those on carbohydrate metabolism and "permissive" actions on effects of other hormones. Glucocorticoid levels increase sharply in response to the stress of any kind of threat to homeostasis. The increased levels have traditionally been ascribed the function of enhancing the organism's resistance to stress. How known physiological and pharmacological effects of high levels of glucocorticoids might accomplish this function, however, has been a mystery. A generalization that is beginning to emerge is that many of these effects may be secondary to modulation by glucocorticoids of the actions of numerous intercellular mediators, including established hormones, prostanoids, neutral proteinases, and cytokines such as interferon. These mediators participate in physiological mechanisms--endocrine, renal, immune, neural, etc.--that mount a first line of defense against such challenges to homeostasis as hemorrhage, metabolic disturbances, infection, anxiety, and others. Contrary to the traditional view that the role of glucocorticoids in stress is to enhance these defense mechanisms, it has become increasingly clear that glucocorticoids at moderate to high levels generally suppress them. This paradox first emerged when glucocorticoids were discovered to be antiinflammatory agents, and had remained a major obstacle to a unified picture of glucocorticoid function. We have suggested that stress-induced increases in glucocorticoid levels protect not against the source of stress itself but rather against the body's normal reactions to stress, preventing those reactions from overshooting and themselves threatening homeostasis. This hypothesis, the seeds of which are to be found in many earlier discussions of glucocorticoid effects, immediately accounts for the paradox noted above, and provides glucocorticoid

  3. Teaching Stress Physiology Using Zebrafish ("Danio Rerio")

    ERIC Educational Resources Information Center

    Cooper, Michael; Dhawale, Shree; Mustafa, Ahmed

    2009-01-01

    A straightforward and inexpensive laboratory experiment is presented that investigates the physiological stress response of zebrafish after a 5 degree C increase in water temperature. This experiment is designed for an undergraduate physiology lab and allows students to learn the scientific method and relevant laboratory techniques without causing…

  4. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  5. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

  6. Physiological consequences of everyday psychosocial stress.

    PubMed

    Pollard, T M

    1997-06-01

    A large body of data has been accumulated concerning physiological responses in people exposed to stressors in laboratories. Adrenaline and cortisol have become known as "stress hormones" because, in men, levels of both hormones consistently rise in response to stress in laboratory-based investigations. If chronically repeated, elevation of adrenaline and cortisol is likely to have long-term consequences for health, especially cardiovascular health, partly via the effects of the hormones on blood pressure and serum cholesterol levels. Research on people conducting their everyday lives is necessary to establish whether the same responses are shown on a day to day basis. Such research requires new methodologies and careful data collection. So far, it has been shown that adrenaline and blood pressure do seem to vary in expected ways. Other responses in everyday life, including those of cholesterol, cortisol and the immune system, are less well characterised.

  7. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  8. Principals' Management Behavior, Personality Types and Physiological Stress.

    ERIC Educational Resources Information Center

    Cooper, Bruce S.; And Others

    1988-01-01

    Data from portable heart-rate monitors and work diaries were used to relate Mintzberg's "nature of managerial work" to physiological stress in small number of working principals over three complete work days. Principals found to be working under extreme stress for long hours, and certain activities were more stressful than others. Implications are…

  9. Touch Attenuates Infants' Physiological Reactivity to Stress

    ERIC Educational Resources Information Center

    Feldman, Ruth; Singer, Magi; Zagoory, Orna

    2010-01-01

    Animal studies demonstrate that maternal touch and contact regulate infant stress, and handling during periods of maternal deprivation attenuates the stress response. To measure the effects of touch on infant stress reactivity during simulated maternal deprivation, 53 dyads were tested in two paradigms: still-face (SF) and still-face with maternal…

  10. Physiological effects of handling and hauling stress on smallmouth bass

    USGS Publications Warehouse

    Carmichael, G.J.; Wedemeyer, G.A.; McCraren, J.P.; Millard, J.L.

    1983-01-01

    Basic physiological information on the stress caused by current hatchery practices is helpful in developing new and improved techniques to increase survival. In view of the present fishery management requirements for stocking smallmouth bas (Micropterus dolomieu), baseline information on the physiological effects of handling and hauling hatchery-reared fish is needed to serve as the foundation for improving transport methods. Shell (1959) summarized several physiological characteristics of smallmouth bass, but little information on their physiological tolerance to stress exists. The present study was designed to determine the physiological effects of handling and short-term hauling in small mouth bass. Plasma chloride, sodium, potassium, and glucose dynamics were monitored in indicate the severity of the resulting stress and the recovery time needed.

  11. Oxidative stress in marine environments: biochemistry and physiological ecology.

    PubMed

    Lesser, Michael P

    2006-01-01

    Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.

  12. Measuring Physiological Stress Responses in Children: Lessons from a Novice

    ERIC Educational Resources Information Center

    Quas, Jodi A.

    2011-01-01

    In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…

  13. Developmental stress can uncouple relationships between physiology and behaviour

    PubMed Central

    Careau, Vincent; Buttemer, William A.; Buchanan, Katherine L.

    2014-01-01

    Phenotypic correlations (rP) have frequently been observed between physiological and behavioural traits, and the nature of these associations has been shown to be modulated by a range of environmental stressors. Studies to date have examined the effects of acute stressors on physiology–behaviour interrelations, but the potential for permanent changes induced by exposure to stress during development remains unexplored. We exposed female zebra finches to dietary restriction during the nestling stage and tested how this affected rP among a variety of physiological traits (haematocrit, stress-induced corticosterone level and basal metabolic rate (BMR)) and behavioural traits (activity and feeding rates in novel and familiar environments). Developmental stress completely uncoupled the relationship between activity in a novel environment and two physiological traits: haematocrit and BMR. This suggests that nutritionally based developmental stress has provoked changes in the energy budget that alleviate the trade-off between maintenance (BMR) and locomotor activities. PMID:25519754

  14. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  15. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  16. Nurses' workload and its relation with physiological stress reactions1

    PubMed Central

    Dalri, Rita de Cássia de Marchi Barcellos; da Silva, Luiz Almeida; Mendes, Aida Maria Oliveira Cruz; Robazzi, Maria Lúcia do Carmo Cruz

    2014-01-01

    OBJECTIVE: to analyze the relation between the workload and the physiological stress reactions among nurses working at a hospital service. METHODS: cross-sectional, correlational, quantitative study, involving 95 nurses, in 2011 and 2012. Spearman's bivariate Correlation Test was used. RESULTS: most subjects are female, between 23 and 61 years old and working between 21 and 78 hours per week. The most frequent physiological reactions were back pain, fatigue/exhaustion, stiff neck and stomach acidity, with 46.3% of the subjects presenting low and 42.1% moderate physiological stress responses. No correlation was found between the workload and the physiological stress responses. CONCLUSION: although most of the nurses work more than 36 hours/week, physiologically, they do not present high reaction levels in response to stress. These workers deal with conflicts in the vertical and horizontal relations between professionals, family members and patients. In that sense, taking care of professionals who offer health services can be a fundamental strategy, as good user care mainly depends on healthy teams. PMID:25591090

  17. Parasitism and Physiological Trade-Offs in Stressed Capybaras

    PubMed Central

    Eberhardt, Ayelen T.; Costa, Sebastián A.; Marini, M. Rocío; Racca, Andrea; Baldi, Cecilia J.; Robles, M. Rosario; Moreno, Pablo G.; Beldomenico, Pablo M.

    2013-01-01

    Parasites play a key role in regulating wildlife population dynamics, but their impact on the host appears to be context-dependent. Evidence indicates that a synergistic interaction between stress, host condition and parasites is implicated in this phenomenon, but more studies are needed to better understand this context-dependency. With the goal to assess the net effect of two types of chronic stress on various host-parasite interactions, we conducted an experiment in capybaras to evaluate the impact of food restriction and physical restraint on the infection intensity of specific gastrointestinal nematodes and coccidia, and how these stressors affected the growth, body condition, and some immuno-physiological parameters. Our hypothesis was that both forms of stress would result in an alteration in the host-parasite interactions, with deteriorated condition and reduced immunological investment leading to high parasite burdens and vice versa. Stressed capybaras had significantly higher coccidia infection intensities; but among individuals that were smaller, those stressed consistently showed lower helminth burdens than controls. Both stress treatments had a marked negative impact on growth and body condition, but concomitantly they had a significant positive effect on some components of the immune system. Our results suggest, on the one hand, that during prolonged periods of stress capybaras preventatively invest in some components of their immunity, such as innate humoural defenses and cells that combat helminths, which could be considered a stress-dependent prophylaxis. On the other hand, stress was found to cause greater infection intensities of protozoans but lower burdens of nematodes, indicating that the relationship between stress, physiological trade-offs and infection depends on the type of parasite in question. Moreover, both findings might be related in a causal way, as one of the immunological parameters enhanced in stressed capybaras is associated with

  18. Physiologic Measures of Animal Stress during Transitional States of Consciousness

    PubMed Central

    Meyer, Robert E.

    2015-01-01

    Simple Summary The humaneness, and therefore suitability, of any particular agent or method used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, depends on the experience of pain or distress prior to loss of consciousness. Commonly reported physiologic measures of animal stress, including physical movement and vocalization, heart rate and ECG, electroencephalographic activity, and plasma and neuronal stress markers are discussed within this context. Abstract Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion]) or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity), such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states. PMID:26479382

  19. Physiologic Measures of Animal Stress during Transitional States of Consciousness.

    PubMed

    Meyer, Robert E

    2015-08-07

    Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion]) or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity), such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states.

  20. Melissa officinalis and Passiflora caerulea infusion as physiological stress decreaser.

    PubMed

    Feliú-Hemmelmann, Karina; Monsalve, Francisco; Rivera, César

    2013-01-01

    The objective of this study was to determine the effect of a Melissa officinalis and Passiflora caerulea infusion on the severity of physiological chronic stress induced by movement restriction in CF-1 mice. 40 CF-1 male mice, six weeks of age, were divided into 4 groups (n = 10 for each group): (1) Group RS/MP received two treatments, induced stress through movement restriction and a infusion of Melissa officinalis and Passiflora caerulea in a dose of 200 mg/kg, (2) RS group with induced stress using movement restriction, (3) MP group, which received only a infusion, and (4) a CONTROL group that received no treatment. The severity of the stress was obtained by analysis of the physical parameters of body weight, thymus and spleen, and associated biomarkers with stress, corticosterone, and glucose. Animals that consumed Melissa officinalis and Passiflora caerulea infusion had lower plasma corticosterone levels (Student's t test, Welch, p = 0.05), which is the most important biomarker associated with physiological stress, demonstrating a phytotherapy effect.

  1. Stress Contagion: Physiological Covariation Between Mothers and Infants

    PubMed Central

    Waters, Sara F.; West, Tessa V.; Mendes, Wendy Berry

    2014-01-01

    Emotions are not simply concepts that live privately in the mind, but rather affective states that emanate from the individual and may influence others. We explored affect contagion in the context of one of the closest dyadic units, mother and infant. We initially separated mothers and infants; randomly assigned the mothers to experience a stressful positive-evaluation task, a stressful negative-evaluation task, or a nonstressful control task; and then reunited the mothers and infants. Three notable findings were obtained: First, infants’ physiological reactivity mirrored mothers’ reactivity engendered by the stress manipulation. Second, infants whose mothers experienced social evaluation showed more avoidance toward strangers compared with infants whose mothers were in the control condition. Third, the negative-evaluation condition, compared with the other conditions, generated greater physiological covariation in the dyads, and this covariation increased over time. These findings suggest that mothers’ stressful experiences are contagious to their infants and that members of close pairs, like mothers and infants, can reciprocally influence each other’s dynamic physiological reactivity. PMID:24482403

  2. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species.

  3. Stress physiology and developmental psychopathology: past, present, and future.

    PubMed

    Doom, Jenalee R; Gunnar, Megan R

    2013-11-01

    Research on the hypothalamic-pituitary-adrenocortical (HPA) axis has emerged as a vital area within the field of developmental psychopathology in the past 25 years. Extensive animal research has provided knowledge of the substrates and physiological mechanisms that guide development of stress reactivity and regulation using methods that are not feasible in humans. Recent advances in understanding the anatomy and physiology of the HPA axis in humans and its interactions with other stress-mediating systems, including accurate assessment of salivary cortisol, more sophisticated neuroimaging methods, and a variety of genetic analyses, have led to greater knowledge of how psychological and biological processes impact functioning. A growing body of research on HPA axis regulation and reactivity in relation to psychopathology has drawn increased focus on the prenatal period, infancy, and the pubertal transition as potentially sensitive periods of stress system development in children. Theories such as the allostatic load model have guided research by integrating multiple physiological systems and mechanisms by which stress can affect mental and physical health. However, almost none of the prominent theoretical models in stress physiology are truly developmental, and future work must incorporate how systems interact with the environment across the life span in normal and atypical development. Our theoretical advancement will depend on our ability to integrate biological and psychological models. Researchers are increasingly realizing the importance of communication across disciplinary boundaries in order to understand how experiences influence neurobehavioral development. It is important that knowledge gained over the past 25 years has been translated to prevention and treatment interventions, and we look forward to the dissemination of interventions that promote recovery from adversity.

  4. Stress physiology and developmental psychopathology: Past, present and future

    PubMed Central

    Doom, Jenalee R.; Gunnar, Megan R.

    2013-01-01

    In the past 25 years research on the hypothalamic-pituitary-adrenocortical (HPA) axis has emerged as a vital area within the field of developmental psychopathology. Extensive animal research has provided knowledge of the substrates and physiological mechanisms that guide development of stress reactivity and regulation using methods that are not feasible in humans. Recent advances in understanding the anatomy and physiology of the HPA axis in humans and its interactions with other stress-mediating systems, including accurate assessment of salivary cortisol, more sophisticated neuroimaging methods, and a variety of genetic analyses, have led to greater knowledge of how psychological and biological processes impact functioning.A growing body of research on HPA axis regulation and reactivity in relation to psychopathology has drawn increased focus on the prenatal period, infancy, and the pubertal transition as potentially sensitive periods of stress system development in children. Theories such as the Allostatic Load Model have guided research by integrating multiple physiological systems and mechanisms by which stress can affect mental and physical health. However, almost none of the prominent theoretical models in stress physiology are truly developmental, and future work must incorporate how systems interact with the environment across the lifespan in both normal and atypical development. Our theoretical advancement will depend on our ability to integrate biological and psychological models. Researchers are increasingly realizing the importance of communication across disciplinary boundaries in order to understand how experiences influence neurobehavioral development. Importantly, knowledge gained over the past 25 years has been translated to both prevention and treatment interventions, and we look forward to the dissemination of interventions that promote recovery from adversity. PMID:24342845

  5. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species. PMID:27327181

  6. [Exercise-induced shear stress: Physiological basis and clinical impact].

    PubMed

    Rodríguez-Núñez, Iván; Romero, Fernando; Saavedra, María Javiera

    2016-01-01

    The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population. PMID:27118039

  7. [Exercise-induced shear stress: Physiological basis and clinical impact].

    PubMed

    Rodríguez-Núñez, Iván; Romero, Fernando; Saavedra, María Javiera

    2016-01-01

    The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population.

  8. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  9. Does translocation influence physiological stress in the desert tortoise?

    USGS Publications Warehouse

    Drake, K.K.; Nussear, K.E.; Esque, T.C.; Barber, A.M.; Vittum, K.M.; Medica, P.A.; Tracy, C.R.; Hunter, K.W.

    2012-01-01

    Wildlife translocation is increasingly used to mitigate disturbances to animals or habitat due to human activities, yet little is known about the extent to which translocating animals causes stress. To understand the relationship between physiological stress and translocation, we conducted a multiyear study (2007–2009) using a population of desert tortoises (Gopherus agassizii) near Fort Irwin, California. Blood samples were collected from adult tortoises in three treatment groups (resident, translocated and control) for 1 year prior to and 2 years after translocation. Samples were analyzed by radioimmunoassay for plasma total corticosterone (CORT), a glucocorticoid hormone commonly associated with stress responses in reptiles. CORT values were analyzed in relation to potential covariates (animal sex, date, behavior, treatment, handling time, air temperature, home-range size, precipitation and annual plant production) among seasons and years. CORT values in males were higher than in females, and values for both varied monthly throughout the activity season and among years. Year and sex were strong predictors of CORT, and translocation explained little in terms of CORT. Based on these results, we conclude that translocation does not elicit a physiological stress response in desert tortoises.

  10. Physiological responding to stress in middle-aged males enriched for longevity: a social stress study.

    PubMed

    Jansen, Steffy W M; van Heemst, Diana; van der Grond, Jeroen; Westendorp, Rudi; Oei, Nicole Y L

    2016-01-01

    Individuals enriched for familial longevity display a lower prevalence of age-related diseases, such as cardiovascular- and metabolic diseases. Since these diseases are associated with stress and increased cortisol levels, one of the underlying mechanisms that may contribute to healthy longevity might be a more adaptive response to stress. To investigate this, male middle-aged offspring from long-lived families (n = 31) and male non-offspring (with no familial history of longevity) (n = 26) were randomly allocated to the Trier Social Stress Test or a control condition in an experimental design. Physiological (cortisol, blood pressure, heart rate) and subjective responses were measured during the entire procedure. The results showed that Offspring had lower overall cortisol levels compared to Non-offspring regardless of condition, and lower absolute cortisol output (AUCg) during stress compared to Non-Offspring, while the increase (AUCi) did not differ between groups. In addition, systolic blood pressure in Offspring was lower compared to Non-offspring during the entire procedure. At baseline, Offspring had significantly lower systolic blood pressure and reported less subjective stress than Non-offspring and showed a trend towards lower heart rate. Offspring from long-lived families might thus be less stressed prior to potentially stressful events and consequently show overall lower levels in physiological responses. Although attenuated physiological responding cannot be ruled out, lower starting points and a lower peak level in physiological responding when confronted with an actual stressor, might already limit damage due to stress over a lifetime. Lower physiological responding may also contribute to the lower prevalence of cardiovascular diseases and other stress-related diseases in healthy longevity.

  11. Molecular and physiological responses of trees to waterlogging stress.

    PubMed

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees. PMID:24611781

  12. Molecular and physiological responses of trees to waterlogging stress.

    PubMed

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees.

  13. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    PubMed

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests.

  14. Stress and the city: urbanization and its effects on the stress physiology in European blackbirds.

    PubMed

    Partecke, Jesko; Schwabl, Ingrid; Gwinner, Eberhard

    2006-08-01

    Animals colonizing cities are exposed to many novel and potentially stressful situations. There is evidence that chronic stress can cause deleterious effects. Hence, wild animals would suffer from city life unless they adjusted their stress response to the conditions in a city. Here we show that European Blackbirds born in a city have a lower stress response than their forest conspecifics. We hand-raised urban and forest-living individuals of that species under identical conditions and tested their corticosterone stress response at an age of 5, 8, and 11 months. The results suggest that the difference is genetically determined, although early developmental effects cannot be excluded. Either way, the results support the idea that urbanization creates a shift in coping styles by changing the stress physiology of animals. The reduced stress response could be ubiquitous and, presumably, necessary for all animals that thrive in ecosystems exposed to frequent anthropogenic disturbances, such as those in urban areas.

  15. Physiological stress and refuge behavior by African elephants.

    PubMed

    Jachowski, David S; Slotow, Rob; Millspaugh, Joshua J

    2012-01-01

    Physiological stress responses allow individuals to adapt to changes in their status or surroundings, but chronic exposure to stressors could have detrimental effects. Increased stress hormone secretion leads to short-term escape behavior; however, no studies have assessed the potential of longer-term escape behavior, when individuals are in a chronic physiological state. Such refuge behavior is likely to take two forms, where an individual or population restricts its space use patterns spatially (spatial refuge hypothesis), or alters its use of space temporally (temporal refuge hypothesis). We tested the spatial and temporal refuge hypotheses by comparing space use patterns among three African elephant populations maintaining different fecal glucocorticoid metabolite (FGM) concentrations. In support of the spatial refuge hypothesis, the elephant population that maintained elevated FGM concentrations (iSimangaliso) used 20% less of its reserve than did an elephant population with lower FGM concentrations (Pilanesberg) in a reserve of similar size, and 43% less than elephants in the smaller Phinda reserve. We found mixed support for the temporal refuge hypothesis; home range sizes in the iSimangaliso population did not differ by day compared to nighttime, but elephants used areas within their home ranges differently between day and night. Elephants in all three reserves generally selected forest and woodland habitats over grasslands, but elephants in iSimangaliso selected exotic forest plantations over native habitat types. Our findings suggest that chronic stress is associated with restricted space use and altered habitat preferences that resemble a facultative refuge behavioral response. Elephants can maintain elevated FGM levels for ≥ 6 years following translocation, during which they exhibit refuge behavior that is likely a result of human disturbance and habitat conditions. Wildlife managers planning to translocate animals, or to initiate other management

  16. Effect of Paroxetine on Physiological Response to Stress and Smoking

    PubMed Central

    Kotlyar, Michael; a’Absi, Mustafa; Thuras, Paul; Vuchetich, John P.; Adson, David E.; Nowack, April L.; Hatsukami, Dorothy K.

    2013-01-01

    Objective Smokers often smoke during stressful events, which leads to large increases in cardiovascular measures such as blood pressure (BP) and heart rate (HR). Since exaggerated cardiovascular response to stress is associated with cardiovascular disease risk, this study examined paroxetine’s effect on the physiological response to combining stress and smoking. Methods Sixty-two participants completed this randomized, double blind, cross-over study in which BP, HR, plasma epinephrine, norepinephrine (NE) and cortisol concentrations were measured at rest, while smoking and during a speech and math task. Laboratory sessions occurred after one month of paroxetine and after one month of placebo. Results Significant increases occurred for all measures (except cortisol) during smoking with further increases occurring during the speech task (time effect p values <0.001). After one month of paroxetine, NE and HR values were lower and cortisol values higher (vs. placebo) throughout the lab session (treatment effect p values < 0.001). Treatment × time effects were observed for blood pressure and heart rate (all p<0.01). For systolic and diastolic BP, a smaller increase (from baseline to measures during speech) was observed after paroxetine compared to placebo (both p <0.006). In both measures, the increase in response to smoking was similar for both treatments, however the further increase during the speech was smaller when taking paroxetine (vs. placebo). Conclusions This study suggests that paroxetine affects physiological response to stress in smokers. Further research is needed to determine the impact of these results on cardiovascular health. PMID:23504241

  17. Thermal stress and the physiological response to environmental toxicants.

    PubMed

    Gordon, Christopher J; Leon, Lisa R

    2005-01-01

    Most toxicological and pharmacological studies are performed in laboratory animals maintained under comfortable environmental conditions. Yet, the exposure to environmental toxicants as well as many drugs can occur under stressful environmental conditions during rest or while exercising. The intake and biological efficacy of many toxicants is exacerbated by exposure to heat stress, which can occur in several ways. The increase in pulmonary ventilation during exposure to hot environments results in an increase in the uptake of airborne toxicants. Furthermore, the transcutaneous absorption of pesticides on the skin as well as drugs delivered by skin patches is increased during heat stress because of the combined elevation in skin blood flow coupled with moist skin from sweat. The thermoregulatory response to toxicant exposure, such as hypothermia in relatively small rodents and fever in humans, also modulates the physiological response to most chemical agents. This paper endeavors to review the issue of environmental heat stress and exercise and how they influence thermoregulatory and related pathophysiological responses to environmental toxicants, as well as exposure to drugs. PMID:16422347

  18. Photosynthetic Physiological Characteristics of Gazania rigens L. Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Gao, T. T.; Zheng, S. W.; Zhou, X. H.; Wang, D. X.; Lu, X. P.

    2016-08-01

    To investigate the responses of photosynthetic physiological characteristics of Gazania rigens L. to drought stress, the changes of three cultivars (‘Xingbai’, ‘XH’ and ‘Hongwen’) photosynthetic values under drought stress were determined via LI-6400 portable photosynthesis analyzer (LI-COR, USA), and the relationships between photosynthesis and drought resistance of each cultivar were analyzed. The results showed that, three cultivars net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and light use efficiency (LUE) value indicated the trend of decreasing gradually and there existed significant reduction in Pn and Gs values. There were extremely negative significant correlations between drought stress treatment days and Pn, Gs, Tr, water use efficiency (WUE) and LUE values. A small amount of leaves began to turn soft and yellow after drought stress treatment for 10 days, but they could recover to grow quickly after rehydration. The Pn values of ‘Hongwen’ decreased quickly and changed in a large range, so it had a poor resistance; the Pn values of ‘Xingbai’ decreased slowly and changed in a small range, so it had a strong resistance; while the changes of their hybrids -‘XH’ were between its parents. This research would provide a theoretical basis for gazania resistance cultivar breeding and application in landscape.

  19. [Physiological responses of Gracilaria lemaneiformis to copper stress].

    PubMed

    Zhu, Xi-Feng; Zou, Ding-Hui; Jian, Jian-Bo; Chen, Wei-Zhou; Liu, Hui-Hui; Du, Hong

    2009-06-01

    Gracilaria lemaneiformis was exposed to 0, 25, 50, 100, 250 and 500 microg x L(-1) of Cu2+ to study its physiological responses to Cu2+ stress. When the Cu2+ concentration was > or = 50 microg x L(-1), the relative growth rate (RGR) of G. lemaneiformis decreased significantly, and the optimal quantum yield (Fv/Fm), the maximum relative electron transfer rate (rETRmax), and the relative electron transfer efficiency (alpha) exhibited the same variation trend, compared with the control. With the increase of Cu2+ concentration, the maximum net photosynthetic rate (Pmax) and light saturation point (LSP) decreased significantly, light compensation point (LCP) had a significant increase, while chlorophyll a, carotenoid, and phycobiliprotein contents decreased after an initial increase. When the Cu2+ concentration reached 500 microg x L(-1), the chlorophyll a, carotenoid, and phycobiliprotein contents decreased significantly. It was suggested that G. lemaneiformis could tolerate low concentration Cu2+ stress, but its physiological activities were inhibited markedly when exposed to > or =50 microg x L(-1) of Cu2+.

  20. Measuring physiological stress in Australian flying-fox populations.

    PubMed

    McMichael, Lee A; Edson, Daniel; Field, Hume

    2014-09-01

    Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5-305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3-370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3-311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2-205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species. PMID:24990534

  1. Parental Anxiety Prospectively Predicts Fearful Children's Physiological Recovery from Stress.

    PubMed

    Borelli, Jessica L; Smiley, Patricia; Bond, D Kyle; Buttitta, Katherine V; DeMeules, Madeleine; Perrone, Laura; Welindt, Nicole; Rasmussen, Hannah F; West, Jessica L

    2015-10-01

    Parental anxiety confers risk for the development of an anxiety disorder in children, and this risk may be transmitted through children's stress reactivity. Further, some children may be more vulnerable to reactivity in the presence of parent factors such as anxiety. In this study, we examined whether parents' anxiety symptoms prospectively predict school-aged children's physiological reactivity following stress, assessed through their electrodermal activity (galvanic skin response) during recovery from a performance challenge task, and whether this varies as a function of children's temperamental fearfulness. Parents and their children (N = 68) reported on their anxiety symptoms at Time 1 of data collection, and parents characterized the extent to which their children had fearful temperaments. At Time 2 children completed the performance challenge and two recovery tasks. Greater parental anxiety symptom severity at Time 1 predicted children's higher electrodermal response during both recovery tasks following the failure task. Further, these effects are specific to children with medium and high fearful temperament, whereas for children low in fearfulness, the association between parent anxiety and child reactivity is not significant. Findings provide additional evidence for the diathesis-stress hypothesis and are discussed in terms of their contribution to the literature on developmental psychopathology.

  2. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of

  3. Characterization of the physiological stress response in lingcod

    USGS Publications Warehouse

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  4. Nest ectoparasites increase physiological stress in breeding birds: an experiment

    NASA Astrophysics Data System (ADS)

    Martínez-de La Puente, Josué; Merino, Santiago; Tomás, Gustavo; Moreno, Juan; Morales, Judith; Lobato, Elisa; Martínez, Javier

    2011-02-01

    Parasites are undoubtedly a biotic factor that produces stress. Heat shock proteins (HSPs) are important molecules buffering cellular damage under adverse conditions. During the breeding season, blue tit Cyanistes caeruleus (L.) adults are affected by blood parasites, nest-dwelling parasites and biting flies, potentially affecting their HSP-mediated responses. Here, we treated females with primaquine to reduce blood parasites and fumigated nests with permethrin to reduce nest-dwelling parasites to test whether these treatments affect HSP60 level during the breeding season. Medicated females, but not controls, had a significant reduction of the intensity of infection by Haemoproteus spp. blood parasites. However, final intensity of infection did not differ significantly between groups, and we did not find an effect of medication on change in HSP60 level. Fumigation reduced the abundance of nest-dwelling parasites (mites, fleas and blowfly larvae) and engorged biting midges in nests. Females breeding in non-fumigated nests increased HSP60 levels during the season more than those breeding in fumigated nests. Furthermore, the change in HSP60 level was positively correlated with the abundance of biting midges. These results show how infections by nest ectoparasites during the breeding period can increase the level of HSPs and suggest that biting midges impose physiological costs on breeding female blue tits. Although plausible, the alternative that biting midges prefer to feed on more stressed birds is poorly supported by previous studies.

  5. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  6. Evolution of physiological responses to salt stress in hexaploid wheat

    PubMed Central

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-01-01

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K+ Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na+ retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na+ removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  7. Effect of transport stress on physiological responses of male bovines.

    PubMed

    Chacon, G; Garcia-Belenguer, S; Villarroel, M; Maria, G A

    2005-12-01

    Forty-eight slaughter bulls were transported by road in groups of eight for approximately 30 min, 3 h and 6 h in two replicates. Animal welfare during the transport process was assessed. Loadings and unloadings were evaluated with a scoring method. Heart rates were monitored at the farm before loading and during all stages of transport. Blood samples were taken from all animals a week before transport and at sticking and analysed in terms of haematological values: hematocrit, haemoglobin, red and white blood cells (RBC and WBC), differential WBC counts and neutrophil:lymphocyte ratio. Glucose, creatine kinase, lactate and cortisol were also determined. To evaluate differences in meat quality, pH and water-holding capacity (WHC) were measured 24 h after slaughter. The loading and unloading scores were very low (low stress) but were associated with changes in heart rate, especially loading. Animals recovered their resting heart rate during the journey in medium and long transports. On the other hand, animals transported around 30 min maintained an elevated heart rate during the whole journey. All animals showed a stress response with significantly higher (p < 0.05) levels of erythrocyte series, N:L ratio, glucose and lactate. Animals transported for 3 and 6 hours had significantly (P<0.05) higher levels of cortisol than controls or 30 min transports, without differences between control and the shortest journey. Different transport times did not influence meat quality. Under good conditions, the transport had a slight effect on welfare, meat quality or physiological parameters related with stress.

  8. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.

  9. Physiological mechanisms used by fish to cope with salinity stress.

    PubMed

    Kültz, Dietmar

    2015-06-01

    Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg(-1)). However, some species tolerate up to 130 g kg(-1) salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg(-1). The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex

  10. Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.

    PubMed

    Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir

    2009-01-01

    Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined. PMID:19592729

  11. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined. PMID:20528296

  12. Personality traits modulate emotional and physiological responses to stress.

    PubMed

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  13. Physiological Reactivity and Recent Life-Stress Experience.

    ERIC Educational Resources Information Center

    Pardine, Peter; Napoli, Anthony

    1983-01-01

    Assessed differences in cardiovascular reactivity between high and low life-stress students (N=26). Results indicated high life-stress individuals maintained their elevated stressor levels throughout recovery from a laboratory stressor, and showed significantly higher systolic recovery levels compared to the low stress group. (JAC)

  14. Personality traits modulate emotional and physiological responses to stress

    PubMed Central

    Childs, Emma; White, Tara L.; de Wit, Harriet

    2014-01-01

    An individual’s susceptibility to psychological and physical disorders associated with chronic stress exposure e.g., cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardised laboratory psychosocial stress task, the Trier Social Stress Test (TSST). Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the TSST. Individuals with high Agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high Communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease. PMID:25036730

  15. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  16. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended.

  17. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    PubMed Central

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  18. Speaking under pressure: Low linguistic complexity is linked to high physiological and emotional stress reactivity

    PubMed Central

    Saslow, Laura R.; McCoy, Shannon; van der Löwe, Ilmo; Cosley, Brandon; Vartan, Arbi; Oveis, Christopher; Keltner, Dacher; Moskowitz, Judith T.; Epel, Elissa S.

    2014-01-01

    What can a speech reveal about someone's state? We tested the idea that greater stress reactivity would relate to lower linguistic cognitive complexity while speaking. In Study 1, we tested whether heart rate and emotional stress reactivity to a stressful discussion would relate to lower linguistic complexity. In Studies 2 and 3 we tested whether a greater cortisol response to a standardized stressful task including a speech (Trier Social Stress Test) would be linked to speaking with less linguistic complexity during the task. We found evidence that measures of stress responsivity (emotional and physiological) and chronic stress are tied to variability in the cognitive complexity of speech. Taken together, these results provide evidence that our individual experiences of stress or ‘stress signatures’—how our body and mind react to stress both in the moment and over the longer term—are linked to how complexly we speak under stress. PMID:24354732

  19. Does the arrival index predict physiological stress reactivity in children.

    PubMed

    de Veld, Danielle M J; Riksen-Walraven, J Marianne; de Weerth, Carolina

    2014-09-01

    Knowledge about children's stress reactivity and its correlates is mostly based on one stress task, making it hard to assess the generalizability of the results. The development of an additional stress paradigm for children, that also limits stress exposure and test time, could greatly advance this field of research. Research in adults may provide a starting point for the development of such an additional stress paradigm, as changes in salivary cortisol and alpha-amylase (sAA) over a 1-h pre-stress period in the laboratory correlated strongly with subsequent reactivity to stress task (Balodis et al., 2010, Psychoneuroendocrinology 35:1363-73). The present study examined whether such strong correlations could be replicated in 9- to 11-year-old children. Cortisol and sAA samples were collected from 158 children (83 girls) during a 2.5-h visit to the laboratory. This visit included a 1-h pre-stress period in which children performed some non-stressful tasks and relaxed before taking part in a psychosocial stress task (TSST-C). A higher cortisol arrival index was significantly and weakly correlated with a higher AUCg but unrelated to cortisol reactivity to the stressor. A higher sAA arrival index was significantly and moderately related to lower stress reactivity and to a lower AUCi. Children's personality and emotion regulation variables were unrelated to the cortisol and sAA arrival indices. The results of this study do not provide a basis for the development of an additional stress paradigm for children. Further replications in children and adults are needed to clarify the potential meaning of an arrival index.

  20. Morpho-physiological and proteome level responses to cadmium stress in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potentiality associated mechanisms in Sorghum bicolor leaves at the pro...

  1. Relevance of proteomic investigations in plant abiotic stress physiology.

    PubMed

    Hakeem, Khalid Rehman; Chandna, Ruby; Ahmad, Parvaiz; Iqbal, Muhammad; Ozturk, Munir

    2012-11-01

    Plant growth and productivity are influenced by various abiotic stresses. Stressful conditions may lead to delays in seed germination, reduced seedling growth, and decreased crop yields. Plants respond to environmental stresses via differential expression of a subset of genes, which results in changes in omic compositions, such as transcriptome, proteome, and metabolome. Since the development of modern biotechnology, various research projects have been carried out to understand the approaches that plants have adopted to overcome environmental stresses. Advancements in omics have made functional genomics easy to understand. Since the fundamentals of classical genomics were unable to clear up confusion related to the functional aspects of the metabolic processes taking place during stress conditions, new fields have been designed and are known as omics. Proteomics, the analysis of genomic complements of proteins, has caused a flurry of activity in the past few years. It defines protein functions in cells and explains how those protein functions respond to changing environmental conditions. The ability of crop plants to cope up with the variety of environmental stresses depends on a number of changes in their proteins, which may be up- and downregulated as a result of altered gene expression. Most of these molecules display an essential function, either in the regulation of the response (e.g., components of the signal transduction pathway), or in the adaptation process (e.g., enzymes involved in stress repair and degradation of damaged cellular contents), allowing plants to recover and survive the stress. Many of these proteins are constitutively expressed under normal conditions, but when under stress, they undergo a modification of their expression levels. This review will explain how proteomics can help in elucidating important plant processes in response to various abiotic stresses.

  2. The association between openness and physiological responses to recurrent social stress.

    PubMed

    Lü, Wei; Wang, Zhenhong; Hughes, Brian M

    2016-08-01

    The association between openness (assessed by shortened Chinese version of NEO Five-Factor Inventory, NEOFFI) and physiological reactivity to, and recovery from, social stress (a video-recorded, timed public speaking task with evaluators present in the room), and physiological adaptation to repeated social stress was examined in the present study. Subjective and physiological data were collected from 70 college students across five laboratory stages: baseline, stress exposure period 1, post-stress period 1, stress exposure period 2, and post-stress period 2. Results indicated that higher openness was associated with lesser heart rate (HR) reactivity to the first and second stress exposure, and lesser systolic blood pressure (SBP) reactivity to the second stress exposure. Higher openness was associated with higher resting respiratory sinus arrhythmia (RSA), lesser RSA withdrawals to the first stress exposure, and more complete RSA recovery after the first stress exposure. Moreover, higher openness was associated with pronounced systolic and diastolic blood pressure (SBP, DBP) adaptation with greater decreases in SBP and DBP reactivity across the two successive stress exposures. These findings might shed light on the biological basis linking openness to health. PMID:27181704

  3. Environmental stress and the physiology, performance and health of ruminants.

    PubMed

    Webster, A J

    1983-12-01

    A satisfactory environment is one that satisfies the following four criteria: thermal comfort, physical comfort, disease control and behavioral satisfaction. Environmental stress, which may be direct or indirect, is anything that departs from these criteria. Analysis of environmental stress is best achieved by the statistical approach, obtaining correlations from large numbers of animals in natural environments with the experimental approach, and a proper analysis of these correlations into probable causative effects. The amount of scientific attention devoted to thermal stress in ruminants has been very large, yet its practical importance compared, e.g., with environmental stress and disease is relatively small. The most important environmental stresses today are those that have resulted from housing and other attempts to ameliorate the thermal environment. These include air pollution, physical injuries from building surfaces and the extremes of confinement. The contribution of environmental stresses to injury and to diseases such as mastitis and calf pneumonia are discussed and schemes are proposed for future experiments designed to analyze interactions between environment and disease. Examples are also given of approaches to the analysis of the stress of behavioral deprivation.

  4. Glycated hemoglobin as a physiological measure of stress and its relations to some psychological stress indicators.

    PubMed

    Schuck, P

    1998-01-01

    A counterbalanced design with two groups of nondiabetic medical students, each serving the other as a control when undergoing examination, was used to evaluate the diagnostic importance of glycated hemoglobin (HbA1c) as a measure of chronic stress. As previous studies suggested, significant statistical differences were found for the group conditions, but no time effects. Closer examination showed a considerable overlap of the two frequency distributions, however. Using the cross point of the two curves as a cutoff, sensitivity of diagnostic decisions based on the HbA1c scores alone would be about .6 and specificity about .7 As with most physiological measures of acute stress, the correlation coefficients of the used psychological inventories and the HbA1c scores were generally low. Among the scales specific for the situation, only control and competence expectancy reached significance (r = -.31); among the personality traits, only anxiety and the blunting scores of the Miller Behavioral Style Scale met the significance criterion. PMID:9695900

  5. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.

    PubMed

    Höper, Dirk; Bernhardt, Jörg; Hecker, Michael

    2006-03-01

    The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth. The enzymes catalyzing the metabolic steps from glucose to 2-oxoglutarate, however, were almost constantly synthesized during salt stress despite the growth arrest. This indicates an enhanced need for the proline precursor glutamate. The synthesis of enzymes involved in sulfate assimilation and in the formation of Fe-S clusters was also induced, suggesting an enhanced need for the formation or repair of Fe-S clusters in response to salt stress. One of the most obvious changes in the protein synthesis profile can be followed by the very strong induction of the SigB regulon. Furthermore, members of the SigW regulon and of the PerR regulon, indicating oxidative stress after salt challenge, were also induced. This proteomic approach provides an overview of cell adaptation to an osmotic upshift in B. subtilis visualizing the most dramatic changes in the protein synthesis pattern.

  6. Collegiate Swimmers: Sex Differences in Self-Reports and Indices of Physiological Stress.

    ERIC Educational Resources Information Center

    Gackenbach, Jayne

    1982-01-01

    Psychological and physiological stress indices were taken from collegiate swimmers of both sexes. Later a scale of self-reported masculinity and femininity was administered. Males had higher systolic blood pressure but lower self-reported anxiety and hostility with the stress of competition. Differences in relative masculinity/femininity allow…

  7. Physiologic Arousal to Social Stress in Children with Autism Spectrum Disorders: A Pilot Study

    ERIC Educational Resources Information Center

    Levine, Todd P.; Sheinkopf, Stephen J.; Pescosolido, Matthew; Rodino, Alison; Elia, Gregory; Lester, Barry

    2012-01-01

    Little is known about arousal to socially stressful situations in children with Autism Spectrum Disorders. This preliminary study investigates physiologic arousal in children with high functioning autism (HFA, n = 19) compared to a comparison group (n = 11) before, during, and after the Trier Social Stress Test. The HFA group was more likely to…

  8. Cluster-based analysis for personalized stress evaluation using physiological signals.

    PubMed

    Xu, Qianli; Nwe, Tin Lay; Guan, Cuntai

    2015-01-01

    Technology development in wearable sensors and biosignal processing has made it possible to detect human stress from the physiological features. However, the intersubject difference in stress responses presents a major challenge for reliable and accurate stress estimation. This research proposes a novel cluster-based analysis method to measure perceived stress using physiological signals, which accounts for the intersubject differences. The physiological data are collected when human subjects undergo a series of task-rest cycles, incurring varying levels of stress that is indicated by an index of the State Trait Anxiety Inventory. Next, a quantitative measurement of stress is developed by analyzing the physiological features in two steps: 1) a k -means clustering process to divide subjects into different categories (clusters), and 2) cluster-wise stress evaluation using the general regression neural network. Experimental results show a significant improvement in evaluation accuracy as compared to traditional methods without clustering. The proposed method is useful in developing intelligent, personalized products for human stress management. PMID:25561450

  9. Food availability is expressed through physiological stress indicators in nestling white ibis: A food supplementation experiment

    USGS Publications Warehouse

    Herring, G.; Cook, Mark I.; Gawlik, D.E.; Call, Erynn M.

    2011-01-01

    Physiological responses to environmental stress such as adrenocortical hormones and cellular stress proteins have recently emerged as potentially powerful tools for investigating physiological effects of avian food limitation. However, little is known about the physiological stress responses of free-living nestling birds to environmental variation in food availability. We experimentally tested how hydrologically mediated changes in food availability affect the physiological stress responses of juvenile white ibises Eudocimus albus in a fluctuating wetland. We provided supplementary food to free-living nestlings during 2years with contrasting hydrologic and food availability conditions, and used plasma (PCORT) and faecal (FCORT) corticosterone and heat shock proteins (HSP60 and HSP70) from first-hatched (A-nestlings) and second-hatched (B-nestlings) to detect relatively short- to long-term responses to food limitation. Nestling physiological stress responses were relatively low in all treatments during the year with optimal food availability, but PCORT, FCORT and HSP60 levels increased during the poor food year. FCORT and HSP60 responses were clearly due to nutritional condition as elevated concentrations were evident primarily in control nestlings. Significant year by hatch order interactions for both FCORT and HSP60 revealed that these increases were largely incurred by B-nestlings. FCORT and HSP60 responses were also well developed early in neonatal development and remained elevated for the duration of the experiment suggesting a chronic stress response. PCORT and HSP70 were less informative stress responses. The nutritionally mediated increases in FCORT and HSP60 provide compelling evidence that white ibis nestlings can be physiologically affected by environmental food levels. FCORT and HSP60 are effective indicators of nutritional mediated stress for nestling white ibises and potentially for other species prone to capture or handling stress. ?? 2010 The Authors

  10. Medical legacy of Apollo. [physiological effects of stresses

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1974-01-01

    Since Apollo crews enjoyed freedom of movement and experienced many of the same problems as earlier crews, confinement had to be ruled out in the etiology of space flight-related changes. Apollo was a mission of physiological firsts: the first inflight illnesses were reported, and a series of cardiac arrhythmias occurred. The most important physiological changes were decreased cardiovascular responsiveness, reduced red blood cell mass, and musculoskeletal deterioration. Vestibular-related problems were also noted for the first time. Crewmen lost weight as a result of a hypocaloric regimen inflight and a tendency to lose body tissue under hypogravic conditions. Aldosterone production increased causing some intracellular fluid loss. Very few of the crewmen experienced any psychological problems after Apollo.

  11. Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses

    PubMed Central

    Omsland, Anders; Miranda, Katrina M.; Friedman, Richard L.; Boitano, Scott

    2008-01-01

    Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-µM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide (O2.−) and hydrogen peroxide (H2O2) on low numbers of colony forming units (CFU) of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at sub-antimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens. PMID:18462394

  12. Physiological changes induced by chromium stress in plants: an overview.

    PubMed

    Hayat, Shamsul; Khalique, Gulshan; Irfan, Mohammad; Wani, Arif Shafi; Tripathi, Bhumi Nath; Ahmad, Aqil

    2012-07-01

    This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.

  13. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    PubMed Central

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037

  14. Linking physiology and gene expression: peanut response to abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future of crop production in the U.S., as well as in other areas of the world, will rely upon the crop’s ability to yield under decreased water availability and oftentimes critical heat stress. Our group has initiated research in the west Texas peanut production region investigating the effects ...

  15. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  16. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings.

    PubMed

    Mastouri, Fatemeh; Björkman, Thomas; Harman, Gary E

    2010-11-01

    Trichoderma spp. are endophytic plant symbionts that are widely used as seed treatments to control diseases and to enhance plant growth and yield. Although some recent work has been published on their abilities to alleviate abiotic stresses, specific knowledge of mechanisms, abilities to control multiple plant stress factors, their effects on seed and seedlings is lacking. We examined the effects of seed treatment with T. harzianum strain T22 on germination of seed exposed to biotic stress (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity, chilling, or heat stress). We also evaluated the ability of the beneficial fungus to overcome physiological stress (poor seed quality induced by seed aging). If seed were not under any of the stresses noted above, T22 generally had little effect upon seedling performance. However, under stress, treated seed germinated consistently faster and more uniformly than untreated seeds whether the stress was osmotic, salt, or suboptimal temperatures. The consistent response to varying stresses suggests a common mechanism through which the plant-fungus association enhances tolerance to a wide range of abiotic stresses as well as biotic stress. A common factor that negatively affects plants under these stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that T22 reduced damages resulting from accumulation of ROS in stressed plants. Treatment of seeds reduced accumulation of lipid peroxides in seedlings under osmotic stress or in aged seeds. In addition, we showed that the effect of exogenous application of an antioxidant, glutathione, or application of T22, resulted in a similar positive effect on seed germination under osmotic stress or in aged seed. This evidence supports the model that T. harzianum strain T22 increases seedling vigor and ameliorates stress by inducing physiological protection in plants against oxidative damage.

  17. Variations of physiological and innate immunological responses in goldfish (Carassius auratus) subjected to recurrent acute stress.

    PubMed

    Eslamloo, Khalil; Akhavan, Sobhan R; Fallah, Farzin Jamalzad; Henry, Morgane A

    2014-03-01

    This study was undertaken to investigate the influence of repeated acute stress on the physiological status and non-specific immune response of goldfish, Carassius auratus. The acute stress was a succession of a 3 min-chasing period followed by a 2 min-air exposure. The goldfish in triplicate tanks were subjected 3 times daily to this stress for one (S3) or three (S9) days. A separate group of unstressed fish was used as control for each sampling time. Blood samples were collected 12, 48 and 120 h after the last stress procedure. Variations of globulin levels, plasma anti-protease and bactericidal activities were not significant in the present study. The haematological parameters and plasma total protein and albumin strongly declined in S9 fish 12 h post-stress compared to control fish. However, plasma cortisol, glucose and lactate levels in both S3 and S9 transiently increased compared to the control fish. Similarly, plasma peroxidase activity transiently increased in both stressed groups 12 h after stress. An increase in plasma lysozyme and complement activities suggested a hormesis-like effect with one-day acute stress improving the immunological response of goldfish while an extension of the stress period to three days impaired physiology and immunity for up to 5 days. This study revealed that recurrent acute stress could immunosuppress goldfish as usually expected of chronic stress.

  18. Physiological response to hooking stress in hatchery and wild rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wydoski, R.S.; Wedemeyer, G.A.; Nelson, N. C.

    1976-01-01

    This study evaluated the physiological response of rainbow trout to hooking stress after being played under standardized conditions (0–5 min) and estimated the time needed for recovery (to 72 h). Plasma osmolality and chloride measurements were used to evaluate osmoregulatory disturbances and gill ion-exchange function, and plasma glucose was used as an index of the generalized nonspecific physiological stress response. Hooking stress caused more severe blood chemistry differences in hatchery fish than in wild trout. Also, hooking stress imposed a greater stress on larger than on smaller hatchery rainbow trout. Higher water temperatures aggravated the delayed hyperglycemia and hyperchloremia in both hatchery and wild trout but only about 3 days were needed for recovery at 4, 10, or 20 C.

  19. The thyroid during pregnancy: a physiological and pathological stress test.

    PubMed

    Shah, M S; Davies, T F; Stagnaro-Green, A

    2003-09-01

    Pregnancy and the postpartum are times of marked and rapid change in the thyroid gland. Normal physiological changes include enhanced thyroid hormone production, modulation of thyroid hormone metabolism by placental deiodinases, and decreasing titers of thyroid antibodies in thyroid antibody positive women. Hyperemesis gravidarum is associated with suppressed thyroid stimulating hormone levels and free T4 elevations. Graves' disease typically becomes quiescent during pregnancy, followed by a postpartum flare. Women with pre-existing hypothyroidism frequently require an increase in their levothryoxine requirement in the 1(st) trimester, and subclinical hypothyroidism early in pregnancy is linked to both miscarriage and impaired neurological development in the unborn child. Postpartum thyroiditis occurs in 7.2% of women, and euthyroid women who are thyroid antibody positive in the 1(st) trimester of pregnancy have a doubling of the miscarriage rate.

  20. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  1. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    PubMed

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  2. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    NASA Astrophysics Data System (ADS)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  3. Sex differences in physiological reactivity to acute psychosocial stress in adolescence.

    PubMed

    Ordaz, Sarah; Luna, Beatriz

    2012-08-01

    Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems

  4. Stress physiology in marine mammals: how well do they fit the terrestrial model?

    PubMed

    Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall

    2015-07-01

    Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.

  5. Stress physiology in marine mammals: how well do they fit the terrestrial model?

    PubMed

    Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall

    2015-07-01

    Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested. PMID:25913694

  6. Stress hyperthermia: physiological arguments that it is a fever.

    PubMed

    Briese, E; Cabanac, M

    1991-06-01

    The theory that stress (or emotional) rise in central temperature (Tc) in rats is a fever with an upward shift of the set-point temperature was tested with three experiments: 1) Measurement of tail skin temperature and Tc during the emotional Tc rise; 2) Investigation of the effect of ambient temperature on the emotional Tc rise; and 3) The assessment of emotional Tc rise during daytime and nighttime. Skin vasomotor responses helped the increase of Tc toward a higher level and contributed to the regulation of central temperature at this new higher level. The cold environment did not diminish the emotional rise of central temperature as it would be expected in the case of a hyperthermia. However, at night emotional fever reached a higher level than during the daytime, suggesting that prostaglandin rise in Tc is distinct from emotional or stress-induced hyperthermia. In conclusion, the experiments reported here confirm the hypothesis that the rise of Tc induced by handling or disturbance of the rats is regulated, and is due to a shift of the set-point as occurs in fever. PMID:1896496

  7. To explore relationships between physiological stress signals and stress behaviors in preterm infants during periods of exposure to environmental stress in the hospital.

    PubMed

    Peng, Niang-Huei; Chen, Chao-Huei; Bachman, Jean; Lin, Hong-Chin; Wang, Teh-Ming; Chang, Yue-Cune; Chang, Yu-Shan

    2011-10-01

    The purpose of this exploratory descriptive study was to examine relationships among physiological stress signals (heart rate (HR), respiratory rate (RR), and oxygen saturation) and stress behaviors (6 stress behaviors related to sleep-wake states, 10 self-regulatory behaviors, and 17 behavioral stress cues) in preterm infants during periods of environmental stress. This research used a prospective repeated-measures design in a convenience sample of preterm infants of <37 weeks' gestational age and <28 days' postnatal age. All infants were in the incubator in a neonatal intensive care unit or a sick baby care unit in one of two hospitals at the time of data collection. Multiple linear regressions of generalized estimating equations were used to determine relationships. Variables were measured every 2 min over 4 hr, for a total of 4,164 observations in 37 preterm infants. There were statistically significant relationships between 9 stress behavioral responses and changes in HR (seven stress behaviors and two self-regulatory behaviors; p < .05), between 9 stress behavioral responses and changes in RR (seven stress behaviors and two self-regulatory behaviors; p < .05), and between 11 stress behavioral responses and changes in oxygen saturation (seven stress behaviors and four self-regulatory behaviors; p < .05). Findings demonstrate that the functions of self-regulatory behaviors and some special behaviors in preterm infants during environmental stress are related to physiological stress signals. However, results should be investigated further in larger samples.

  8. [Effects of calcium fertilizer application on peanut growth, physiological characteristics, yield and quality under drought stress].

    PubMed

    Gu, Xue-hua; Sun, Lian-qiang; Gao, Bo; Sun, Qi-ze; Liu, Chen; Zhang, Jia-lei; Li, Xiang-dong

    2015-05-01

    An experiment was carried out to study the effects of different rates of calcium application on peanut growth, physiological characteristics, yield and quality under drought stress at pegging stage and pod setting stage in pool cultivation with rainproof, using variety 606 as experimental material. The results showed that applying Ca fertilizer under drought stress could promote peanut growth, increase the chlorophyll content, leaf photosynthetic rate and the root vitality, increase the recovery ability of peanut during rewatering after drought stress, alleviate the impact of drought stress on peanut. Applying Ca fertilizer under drought stress increased pod and kernel yields because of the increase of kernel rate and pod number per plant. It also increased the fat and protein contents of peanut kernel, and improved peanut kernel quality under drought stress. It was suggested that 300 kg · hm(-2) Ca application is the best choice to alleviate the impact of drought stress on peanut.

  9. Stunning fish with CO2 or electricity: contradictory results on behavioural and physiological stress responses.

    PubMed

    Gräns, A; Niklasson, L; Sandblom, E; Sundell, K; Algers, B; Berg, C; Lundh, T; Axelsson, M; Sundh, H; Kiessling, A

    2016-02-01

    Studies that address fish welfare before slaughter have concluded that many of the traditional systems used to stun fish including CO2 narcosis are unacceptable as they cause avoidable stress before death. One system recommended as a better alternative is electrical stunning, however, the welfare aspects of this method are not yet fully understood. To assess welfare in aquaculture both behavioural and physiological measurements have been used, but few studies have examined the relationship between these variables. In an on-site study aversive behaviours and several physiological stress indicators, including plasma levels of cortisol and ions as well as blood physiological variables, were compared in Arctic char (Salvelinus alpinus) stunned with CO2 or electricity. Exposure to water saturated with CO2 triggered aversive struggling and escape responses for several minutes before immobilization, whereas in fish exposed to an electric current immobilization was close to instant. On average, it took 5 min for the fish to recover from electrical stunning, whereas fish stunned with CO2 did not recover. Despite this, the electrically stunned fish had more than double the plasma levels of cortisol compared with fish stunned with CO2. This result is surprising considering that the behavioural reactions were much more pronounced following CO2 exposure. These contradictory results are discussed with regard to animal welfare and stress physiological responses. The present results emphasise the importance of using an integrative and interdisciplinary approach and to include both behavioural and physiological stress indicators in order to make accurate welfare assessments of fish in aquaculture.

  10. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

    PubMed

    Nguyen, Phuc H; Tuzun, Egemen; Quick, Christopher M

    2016-09-01

    Aortic pulse pressure arises from the interaction of the heart, the systemic arterial system, and peripheral microcirculations. The complex interaction between hemodynamics and arterial remodeling precludes the ability to experimentally ascribe changes in aortic pulse pressure to particular adaptive responses. Therefore, the purpose of the present work was to use a human systemic arterial system model to test the hypothesis that pulse pressure homeostasis can emerge from physiological adaptation of systemic arteries to local mechanical stresses. First, we assumed a systemic arterial system that had a realistic topology consisting of 121 arterial segments. Then the relationships of pulsatile blood pressures and flows in arterial segments were characterized by standard pulse transmission equations. Finally, each arterial segment was assumed to remodel to local stresses following three simple rules: 1) increases in endothelial shear stress increases radius, 2) increases in wall circumferential stress increases wall thickness, and 3) increases in wall circumferential stress decreases wall stiffness. Simulation of adaptation by iteratively calculating pulsatile hemodynamics, mechanical stresses, and vascular remodeling led to a general behavior in response to mechanical perturbations: initial increases in pulse pressure led to increased arterial compliances, and decreases in pulse pressure led to decreased compliances. Consequently, vascular adaptation returned pulse pressures back toward baseline conditions. This behavior manifested when modeling physiological adaptive responses to changes in cardiac output, changes in peripheral resistances, and changes in local arterial radii. The present work, thus, revealed that pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

  11. Predator exposure alters stress physiology in guppies across timescales.

    PubMed

    Fischer, Eva K; Harris, Rayna M; Hofmann, Hans A; Hoke, Kim L

    2014-02-01

    In vertebrates, glucocorticoids mediate a wide-range of responses to stressors. For this reason, they are implicated in adaptation to changes in predation pressure. Trinidadian guppies (Poecilia reticulata) from high-predation environments have repeatedly and independently colonized and adapted to low-predation environments, resulting in parallel changes in life history, morphology, and behavior. We validated methods for non-invasive waterborne hormone sample collection in this species, and used this technique to examine genetic and environmental effects of predation on basal glucocorticoid (cortisol) levels. To examine genetic differences, we compared waterborne cortisol levels in high- and low-predation fish from two distinct population pairs. We found that fish from high-predation localities had lower cortisol levels than their low-predation counterparts. To isolate environmental influences, we compared waterborne cortisol levels in genetically similar fish reared with and without exposure to predator chemical cues. We found that fish reared with predator chemical cues had lower waterborne cortisol levels than those reared without. Comparisons of waterborne and whole-body cortisol levels demonstrated that populations differed in overall cortisol levels in the body, whereas rearing conditions altered the release of cortisol from the body into the water. Thus, evolutionary history with predators and lifetime exposure to predator cues were both associated with lower cortisol release, but depended on distinct physiological mechanisms. PMID:24370688

  12. Complexity of physiological responses decreases in high-stress musical performance.

    PubMed

    Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P

    2013-12-01

    For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public. PMID:24068177

  13. Thermal imaging to detect physiological indicators of stress in humans

    NASA Astrophysics Data System (ADS)

    Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.

    2013-05-01

    Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.

  14. Annotation and prediction of stress and workload from physiological and inertial signals.

    PubMed

    Ghosh, Arindam; Danieli, Morena; Riccardi, Giuseppe

    2015-08-01

    Continuous daily stress and high workload can have negative effects on individuals' physical and mental well-being. It has been shown that physiological signals may support the prediction of stress and workload. However, previous research is limited by the low diversity of signals concurring to such predictive tasks and controlled experimental design. In this paper we present 1) a pipeline for continuous and real-life acquisition of physiological and inertial signals 2) a mobile agent application for on-the-go event annotation and 3) an end-to-end signal processing and classification system for stress and workload from diverse signal streams. We study physiological signals such as Galvanic Skin Response (GSR), Skin Temperature (ST), Inter Beat Interval (IBI) and Blood Volume Pulse (BVP) collected using a non-invasive wearable device; and inertial signals collected from accelerometer and gyroscope sensors. We combine them with subjects' inputs (e.g. event tagging) acquired using the agent application, and their emotion regulation scores. In our experiments we explore signal combination and selection techniques for stress and workload prediction from subjects whose signals have been recorded continuously during their daily life. The end-to-end classification system is described for feature extraction, signal artifact removal, and classification. We show that a combination of physiological, inertial and user event signals provides accurate prediction of stress for real-life users and signals. PMID:26736585

  15. Hsp transcript induction is correlated with physiological changes under drought stress in Indian mustard.

    PubMed

    Aneja, Bharti; Yadav, Neelam R; Kumar, Neeraj; Yadav, Ram C

    2015-07-01

    Brassica juncea is an important oilseed crop and drought stress is major abiotic stress that limits its growth and productivity. RH0116 (drought tolerant) and RH8812 (drought sensitive) genotypes were undertaken to study some of the physiological parameters and hsp gene expression related to stress tolerance under drought stress conditions. Differential response in terms of seed germination, electrolyte leakage, RWC, osmotic potential was observed in the selected genotypes. In vitro seed germination studies using PEG stress treatments indicated reduced seed germination with increasing levels of stress treatment. Electrolyte leakage increased, whereas, relative water content and osmotic potential decreased in stressed seedlings. Expression of hsp gene was found to be upregulated during drought stress as the transcripts were present only in the stressed plants and disappeared upon rehydration. The drought tolerant variety showed higher transcript accumulation as compared to the sensitive variety. The study showed that drought induced changes in gene expression in two contrasting genotypes were consistent with the physiological response. PMID:26261395

  16. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress.

    PubMed

    Zhang, Xia; Wei, Liqin; Wang, Zizhang; Wang, Tai

    2013-03-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore, understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge. Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress, and is thus an ideal plant for studying this tolerance mechanism. In this study, we examined the salt and alkaline-salt stress tolerance of P. tenuiflora, and analyzed gene expression profiles under these stresses. Physiological experiments revealed that P. tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2 CO3 (pH 11.0) for 6 d. We identified 4,982 unigenes closely homologous to rice and barley. Furthermore, 1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments. Differentially expressed genes were overrepresented in functions of photosynthesis, oxidation reduction, signal transduction, and transcription regulation. Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure, photosynthesis, and protein synthesis. Comparing with salt stress, alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H(+) transport and citric acid synthesis. These data indicate common and diverse features of salt and alkaline-salt stress tolerance, and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  17. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica.

    PubMed

    Del Carmen Martínez-Ballesta, María; Moreno, Diego A; Carvajal, Micaela

    2013-01-01

    Glucosinolates, a class of secondary metabolites, mainly found in Brassicaceae, are affected by the changing environment. This review is focusing on the physiological significance of glucosinolates and their hydrolysis products in the plant response to different abiotic stresses. Special attention is paid to the crosstalk between some of the physiological processes involved in stress response and glucosinolate metabolism, with the resulting connection between both pathways in which signaling mechanisms glucosinolate may act as signals themselves. The function of glucosinolates, further than in defense switching, is discussed in terms of alleviating pathogen attack under abiotic stress. The fact that the exogenous addition of glucosinolate hydrolysis products may alleviate certain stress conditions through its effect on specific proteins is described in light of the recent reports, but the molecular mechanisms involved in this response merit further research. Finally, the transient allocation and re-distribution of glucosinolates as a response to environmental changes is summarized.

  18. Host stress physiology and Trypanosoma haemoparasite infection influence innate immunity in the woylie (Bettongia penicillata).

    PubMed

    Hing, Stephanie; Currie, Andrew; Broomfield, Steven; Keatley, Sarah; Jones, Krista; Thompson, R C Andrew; Narayan, Edward; Godfrey, Stephanie S

    2016-06-01

    Understanding immune function is critical to conserving wildlife in view of infectious disease threats, particularly in threatened species vulnerable to stress, immunocompromise and infection. However, few studies examine stress, immune function and infection in wildlife. We used a flow cytometry protocol developed for human infants to assess phagocytosis, a key component of innate immunity, in a critically endangered marsupial, the woylie (Bettongia penicillata). The effects of stress physiology and Trypanosoma infection on phagocytosis were investigated. Blood and faecal samples were collected from woylies in a captive facility over three months. Trypanosoma status was determined using PCR. Faecal cortisol metabolites (FCM) were quantified by enzyme-immunoassay. Mean phagocytosis measured was >90%. An interaction between sex and FCM influenced the percentage of phagocytosing leukocytes, possibly reflecting the influence of sex hormones and glucocorticoids. An interaction between Trypanosoma status and FCM influenced phagocytosis index, suggesting that stress physiology and infection status influence innate immunity. PMID:27260808

  19. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only

  20. Physiological Integration Ameliorates Negative Effects of Drought Stress in the Clonal Herb Fragaria orientalis

    PubMed Central

    Zhang, Yunchun; Zhang, Qiaoying; Sammul, Marek

    2012-01-01

    Clonal growth allows plants to spread horizontally and to establish ramets in sites of contrasting resource status. If ramets remain physiologically integrated, clones in heterogeneous environments can act as cooperative systems – effects of stress on one ramet can be ameliorated by another connected ramet inhabiting benign conditions. But little is known about the effects of patch contrast on physiological integration of clonal plants and no study has addressed its effects on physiological traits like osmolytes, reactive oxygen intermediates and antioxidant enzymes. We examined the effect of physiological integration on survival, growth and stress indicators such as osmolytes, reactive oxygen intermediates (ROIs) and antioxidant enzymes in a clonal plant, Fragaria orientalis, growing in homogenous and heterogeneous environments differing in patch contrast of water availability (1 homogeneous (no contrast) group; 2 low contrast group; 3 high contrast group). Drought stress markedly reduced the survival and growth of the severed ramets of F. orientalis, especially in high contrast treatments. Support from a ramet growing in benign patch considerably reduced drought stress and enhanced growth of ramets in dry patches. The larger the contrast between water availability, the larger the amount of support the depending ramet received from the supporting one. This support strongly affected the growth of the supporting ramet, but not to an extent to cause increase in stress indicators. We also found indication of costs related to maintenance of physiological connection between ramets. Thus, the net benefit of physiological integration depends on the environment and integration between ramets of F. orientalis could be advantageous only in heterogeneous conditions with a high contrast. PMID:22957054

  1. Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis.

    PubMed

    Zhang, Yunchun; Zhang, Qiaoying; Sammul, Marek

    2012-01-01

    Clonal growth allows plants to spread horizontally and to establish ramets in sites of contrasting resource status. If ramets remain physiologically integrated, clones in heterogeneous environments can act as cooperative systems--effects of stress on one ramet can be ameliorated by another connected ramet inhabiting benign conditions. But little is known about the effects of patch contrast on physiological integration of clonal plants and no study has addressed its effects on physiological traits like osmolytes, reactive oxygen intermediates and antioxidant enzymes. We examined the effect of physiological integration on survival, growth and stress indicators such as osmolytes, reactive oxygen intermediates (ROIs) and antioxidant enzymes in a clonal plant, Fragaria orientalis, growing in homogenous and heterogeneous environments differing in patch contrast of water availability (1 homogeneous (no contrast) group; 2 low contrast group; 3 high contrast group). Drought stress markedly reduced the survival and growth of the severed ramets of F. orientalis, especially in high contrast treatments. Support from a ramet growing in benign patch considerably reduced drought stress and enhanced growth of ramets in dry patches. The larger the contrast between water availability, the larger the amount of support the depending ramet received from the supporting one. This support strongly affected the growth of the supporting ramet, but not to an extent to cause increase in stress indicators. We also found indication of costs related to maintenance of physiological connection between ramets. Thus, the net benefit of physiological integration depends on the environment and integration between ramets of F. orientalis could be advantageous only in heterogeneous conditions with a high contrast. PMID:22957054

  2. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance

    PubMed Central

    Lima, John Milton; Nath, Manoj; Dokku, Prasad; Raman, K. V.; Kulkarni, K. P.; Vishwakarma, C.; Sahoo, S. P.; Mohapatra, U. B.; Mithra, S. V. Amitha; Chinnusamy, V.; Robin, S.; Sarla, N.; Seshashayee, M.; Singh, K.; Singh, A. K.; Singh, N. K.; Sharma, R. P.; Mohapatra, T.

    2015-01-01

    Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and

  3. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs

    PubMed Central

    Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating

  4. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs.

    PubMed

    Nemeth, Matthias; Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels

  5. Infant's physiological response to short heat stress during sauna bath.

    PubMed

    Rissmann, A; Al-Karawi, J; Jorch, G

    2002-01-01

    Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p < 0.05) probably due to redistribution of cold peripheral blood into the core of the body. Mean systolic and diastolic arterial blood pressure and mean heart rate remained unchanged after sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p < 0.05) and rose again after sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.

  6. The Role of Nature in Coping with Psycho-Physiological Stress: A Literature Review on Restorativeness

    PubMed Central

    Berto, Rita

    2014-01-01

    Physical settings can play a role in coping with stress; in particular experimental research has found strong evidence between exposure to natural environments and recovery from physiological stress and mental fatigue, giving support to both Stress Recovery Theory and Attention Restoration Theory. In fact, exposure to natural environments protects people against the impact of environmental stressors and offer physiological, emotional and attention restoration more so than urban environments. Natural places that allow the renewal of personal adaptive resources to meet the demands of everyday life are called restorative environments. Natural environments elicit greater calming responses than urban environments, and in relation to their vision there is a general reduction of physiological symptoms of stress. Exposure to natural scenes mediates the negative effects of stress reducing the negative mood state and above all enhancing positive emotions. Moreover, one can recover the decrease of cognitive performance associated with stress, especially reflected in attention tasks, through the salutary effect of viewing nature. Giving the many benefits of contact with nature, plans for urban environments should attend to restorativeness. PMID:25431444

  7. The role of nature in coping with psycho-physiological stress: a literature review on restorativeness.

    PubMed

    Berto, Rita

    2014-01-01

    Physical settings can play a role in coping with stress; in particular experimental research has found strong evidence between exposure to natural environments and recovery from physiological stress and mental fatigue, giving support to both Stress Recovery Theory and Attention Restoration Theory. In fact, exposure to natural environments protects people against the impact of environmental stressors and offer physiological, emotional and attention restoration more so than urban environments. Natural places that allow the renewal of personal adaptive resources to meet the demands of everyday life are called restorative environments. Natural environments elicit greater calming responses than urban environments, and in relation to their vision there is a general reduction of physiological symptoms of stress. Exposure to natural scenes mediates the negative effects of stress reducing the negative mood state and above all enhancing positive emotions. Moreover, one can recover the decrease of cognitive performance associated with stress, especially reflected in attention tasks, through the salutary effect of viewing nature. Giving the many benefits of contact with nature, plans for urban environments should attend to restorativeness. PMID:25431444

  8. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants.

    PubMed

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-05-03

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.

  9. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions.

    PubMed

    Munck, A; Guyre, P M; Holbrook, N J

    1984-01-01

    Almost any kind of threat to homeostasis or stress will cause plasma glucocorticoid levels to rise. The increased levels have traditionally been ascribed the physiological function of enhancing the organism's resistance to stress, a role well recognized in glucocorticoid therapy. How the known physiological and pharmacological effects of glucocorticoids might accomplish this function, however, remains a mystery. A generalization that is beginning to emerge is that many of these effects may be secondary to modulation by glucocorticoids of the actions of numerous intercellular mediators, including established hormones, prostaglandins and other arachidonic acid metabolites, certain secreted neutral proteinases, lymphokines, and a variety of bioactive peptides. These mediators participate in physiological mechanisms--endocrine, renal, immune, neural, etc.--that mount a first line of defense against such challenges to homeostasis as hemorrhage, metabolic disturbances, infection, anxiety, and others. Contrary to the traditional view that glucocorticoids enhance these defense mechanisms, however, it has become increasingly clear that glucocorticoids at moderate to high levels generally suppress them. This paradox, which first emerged when glucocorticoids were discovered to be antiinflammatory agents, remains a major obstacle to a unified picture of glucocorticoid function. We propose that stress-induced increases in glucocorticoid levels protect not against the source of stress itself but rather against the body's normal reactions to stress, preventing those reactions from overshooting and themselves threatening homeostasis. This hypothesis, the seeds of which are to be found in many discussions of particular glucocorticoid effects, immediately accounts for the paradox noted above. Furthermore, it provides glucocorticoid physiology with a unified conceptual framework that can accommodate such apparently unrelated physiological and pharmacological effects as those on

  10. Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.).

    PubMed

    Saha, Prasenjit; Sade, Nir; Arzani, Ahmad; Rubio Wilhelmi, Maria Del Mar; Coe, Kevin M; Li, Bosheng; Blumwald, Eduardo

    2016-10-01

    The emerging model Setaria viridis with its C4 photosynthesis and adaptation to hot and dry locations is a promising system to investigate water use and abiotic stress tolerance. We investigated the physiological plasticity of six S. viridis natural accessions that originated from different regions of the world under normal conditions and conditions of water-deficit stress and high temperatures. Accessions Zha-1, A10.1 and Ula-1 showed significantly higher leaf water potential (Ψleaf), photosynthesis (A), transpiration (E), and stomatal conductance (gs) rates compared to Ast-1, Aba-1 and Sha-1 when grown under stress conditions. Expression analysis of genes associated with C4 photosynthesis, aquaporins, ABA biosynthesis and signaling including genes involved in stress revealed an increased sensitivity of Ast-1, Aba-1 and Sha-1 to stresses. Correlation analysis of gene expression data with physiological and biochemical changes characterized A10.1 and Ast-1 as two extreme tolerant and sensitive accessions originated from United States and Azerbaijan under water-deficit and heat stress, respectively. Although preliminary, our study demonstrated the plasticity of S. viridis accessions under stress, and allows the identification of tolerant and sensitive accessions that could be use to study the mechanisms associated with stress tolerance and to characterize of the regulatory networks involved in C4 grasses. PMID:27593471

  11. Tameness and stress physiology in a predator-naive island species confronted with novel predation threat

    PubMed Central

    Rödl, Thomas; Berger, Silke; Michael Romero, L; Wikelski, Martin

    2006-01-01

    Tame behaviour, i.e. low wariness, in terrestrial island species is often attributed to low predation pressure. However, we know little about its physiological control and its flexibility in the face of predator introductions. Marine iguanas (Amblyrhynchus cristatus) on the Galápagos Islands are a good model to study the physiological correlates of low wariness. They have lived virtually without predation for 5–15 Myr until some populations were first confronted with feral cats and dogs some 150 years ago. We tested whether and to what extent marine iguanas can adjust their behaviour and endocrine stress response to novel predation threats. Here, we show that a corticosterone stress response to experimental chasing is absent in naive animals, but is quickly restored with experience. Initially, low wariness also increases with experience, but remains an order of magnitude too low to allow successful escape from introduced predators. Our data suggest that the ability of marine iguanas to cope with predator introductions is limited by narrow reaction norms for behavioural wariness rather than by constraints in the underlying physiological stress system. In general, we predict that island endemics show flexible physiological stress responses but are restricted by narrow behavioural plasticity. PMID:17476779

  12. Developing Physiologic Stress Profiles for School-Age Children Who Stutter

    ERIC Educational Resources Information Center

    Ortega, Aishah Y.; Ambrose, Nicoline G.

    2011-01-01

    Purpose: Physiologic reactivity profiles were generated for 9 school-age children with a history of stuttering. Utilizing salivary sampling, stress biomarkers cortisol and alpha-amylase were measured in response to normal daily stressors. Children with a history of stuttering were characterized as high or low autonomic reactors when compared to…

  13. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  14. Physiological Regulation of Stress in Referred Adolescents: The Role of the Parent-Adolescent Relationship

    ERIC Educational Resources Information Center

    Willemen, Agnes M.; Schuengel, Carlo; Koot, Hans M.

    2009-01-01

    Background: Psychopathology in youth appears to be linked to deficits in regulating affective responses to stressful situations. In children, high-quality parental support facilitates affect regulation. However, in adolescence, the role of parent-child interaction in the regulation of affect is unclear. This study examined physiological reactivity…

  15. Early Childcare, Executive Functioning, and the Moderating Role of Early Stress Physiology

    ERIC Educational Resources Information Center

    Berry, Daniel; Willoughby, Michael T.; Blair, Clancy; Ursache, Alexandra; Granger, Douglas A.

    2014-01-01

    Intervention studies indicate that children's childcare experiences can be leveraged to support the development of executive functioning (EF). The role of more normative childcare experiences is less clear. Increasingly, theory and empirical work suggest that individual differences in children's physiological stress systems may be…

  16. Associations of Marital Conflict with Emotional and Physiological Stress: Evidence for Different Patterns of Dysregulation

    ERIC Educational Resources Information Center

    Lucas-Thompson, Rachel G.

    2012-01-01

    The goal of this study was to explore theoretically suggested but untested links between interparental conflict and stress physiology in late adolescence. A multi-method study was conducted involving families (n = 42) who previously participated in the University California, Irvine site of the NICHD Study of Early Child Care and Youth Development;…

  17. A Comparison of Exercise and Meditation in Reducing Physiological Response to Stress.

    ERIC Educational Resources Information Center

    Sime, Wesley E.

    The purpose of this investigation was to compare the effects of brief treadmill exercise and meditation with a placebo-control treatment for reduction in several physiological and psychological measures of stress, anxiety, and tension before and after a written final examination in 48 high-test anxiety subjects. The subjects, 24 men and 24 women,…

  18. Glutathione is involved in physiological response of Candida utilis to acid stress.

    PubMed

    Wang, Da-Hui; Zhang, Jun-Li; Dong, Ying-Ying; Wei, Gong-Yuan; Qi, Bin

    2015-12-01

    Candida utilis often encounters an acid stress environment when hexose and pentose are metabolized to produce acidic bio-based materials. In order to reveal the physiological role of glutathione (GSH) in the response of cells of this industrial yeast to acid stress, an efficient GSH-producing strain of C. utilis CCTCC M 209298 and its mutants deficient in GSH biosynthesis, C. utilis Δgsh1 and Δgsh2, were used in this study. A long-term mild acid challenge (pH 3.5 for 6 h) and a short-term severe acid challenge (pH 1.5 for 2 h) were conducted at 18 h during batch culture of the yeast to generate acid stress conditions. Differences in the physiological performances among the three strains under acid stress were analyzed in terms of GSH biosynthesis and distribution; intracellular pH; activities of γ-glutamylcysteine synthetase, catalase, and superoxide dismutase; intracellular ATP level; and ATP/ADP ratio. The intracellular GSH content of the yeast was found to be correlated with changes in physiological data, and a higher intracellular GSH content led to greater relief of cells to the acid stress, suggesting that GSH may be involved in protecting C. utilis against acid stress. Results presented in this manuscript not only increase our understanding of the impact of GSH on the physiology of C. utilis but also help us to comprehend the mechanism underlying the response to acid stress of eukaryotic microorganisms. PMID:26346268

  19. Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations

    PubMed Central

    Kish, Nicole E.; Helmuth, Brian; Wethey, David S.

    2016-01-01

    Models of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes. We quantified the skill of four simple models of body temperature (a primary determinant of physiological stress) of an intertidal mussel, Mytilus californianus, using common metrics of model performance, such as root mean square error, as well as forecast verification skill scores developed by the meteorological community. We used a physiologically grounded framework to assess each model's ability to predict optimal, sub-optimal, sub-lethal and lethal physiological responses. Models diverged in their ability to predict different levels of physiological stress when evaluated using skill scores, even though common metrics, such as root mean square error, indicated similar accuracy overall. Results from this study emphasize the importance of grounding assessments of model skill in the context of an organism's physiology and, especially, of considering the implications of false-positive and false-negative errors when forecasting the ecological effects of environmental change. PMID:27729979

  20. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology

    PubMed Central

    Narayan, E. J.

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology

  1. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology.

    PubMed

    Narayan, E J

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo-pituitary-interrenal axis) and the reproductive endocrine system (the hypothalamo-pituitary-gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for

  2. Effects of Oxidative Stress on Behavior, Physiology, and the Redox Thiol Proteome of Caenorhabditis elegans

    PubMed Central

    Kumsta, Caroline; Thamsen, Maike

    2011-01-01

    Abstract Accumulation of reactive oxygen species has been implicated in various diseases and aging. However, the precise physiological effects of accumulating oxidants are still largely undefined. Here, we applied a short-term peroxide stress treatment to young Caenorhabditis elegans and measured behavioral, physiological, and cellular consequences. We discovered that exposure to peroxide stress causes a number of immediate changes, including loss in mobility, decreased growth rate, and decreased cellular adenosine triphosphate levels. Many of these alterations, which are highly reminiscent of changes in aging animals, are reversible, suggesting the presence of effective antioxidant systems in young C. elegans. One of these antioxidant systems involves the highly abundant protein peroxiredoxin 2 (PRDX-2), whose gene deletion causes phenotypes symptomatic of chronic peroxide stress and shortens lifespan. Applying the quantitative redox proteomic technique OxICAT to oxidatively stressed wild-type and prdx-2 deletion worms, we identified oxidation-sensitive cysteines in 40 different proteins, including proteins involved in mobility and feeding (e.g., MYO-2 and LET-75), protein translation and homeostasis (e.g., elongation factor 1 [EFT-1] and heat shock protein 1), and adenosine triphosphate regeneration (e.g., nucleoside diphosphate kinase). The oxidative modification of some of these redox-sensitive cysteines may contribute to the physiological and behavioral changes observed in oxidatively stressed animals. Antioxid. Redox Signal. 14, 1023–1037. PMID:20649472

  3. [Effects of drought stress on the root growth and development and physiological characteristics of peanut].

    PubMed

    Ding, Hong; Zhang, Zhi-Meng; Dai, Liang-Xiang; Kang, Tao; Ci, Dun-Wei; Song, Wen-Wu

    2013-06-01

    Taking two peanut varieties Huayu 17 and Tangke 8 as test objects, a soil column culture experiment was conducted in a rainproof tank to study the peanut root morphological development and physiological characteristics at late growth stages under moderate drought and well-watered conditions. Tanke 8 had more developed root system and higher yield and drought coefficient, while Huayu 17 had poorer root adaptability to drought stress. For the two varieties, their root length density and root biomass were mainly distributed in 0-40 cm soil layer, whereas their root traits differed in the same soil layer. The total root length, total root surface area, and total root volume of Huayu 17 at each growth stage were smaller under drought stress than under well-balanced water treatment, while these root characteristics of Tangke 8 under drought stress only decreased at flowering-pegging stage. Drought stress increased the root biomass, surface area, and volume of the two varieties in 20-40 cm soil layer, but decreased these root traits in the soil layers below 40 cm. Under drought stress, the root activity of the two varieties in the soil layers below 40 cm at pod filling stage decreased, and the decrement was larger for Huayu 17. The differences in the root system development and physiological characteristics of the two varieties at late growth stages under drought stress suggested that the root system of the two varieties had different water absorption and utilization under drought stress.

  4. Physiological and Behavioral Stress and Anxiety in Children with Autism Spectrum Disorders during Routine Oral Care

    PubMed Central

    Lane, Christianne J.; Williams, Marian E.; Dawson, Michael E.; Polido, José C.; Cermak, Sharon A.

    2014-01-01

    Background. Children with autism spectrum disorders (ASD) commonly exhibit uncooperative behaviors which impede oral care. Previous studies have utilized dentist-report measures of uncooperative behaviors in children with ASD but none have utilized an objective measure of children's behavior or a physiological measure of distress. This study investigated behavioral and physiological distress in children with ASD during routine oral care and examined factors associated with this distress. Methods. Participants were 44 children (n = 22 typical, n = 22 ASD) aged 6–12 receiving routine dental cleanings. Behavioral and physiological measures of stress and anxiety were collected during dental cleanings. Results. Children with ASD exhibited greater distress, compared to the typical group, on dentist-report and researcher-coded measures of overt distress behaviors and on physiological measures. Correlations between physiological and behavioral measures of distress were found in the ASD but not in the typical group. Behavioral distress was correlated with age in the typical group and with expressive communication ability and sensory processing difficulties in the ASD group; physiological distress was correlated with parent-report of anxiety in the typical group and sensory processing difficulties in the ASD group. Conclusions. Novel strategies may be required to decrease behavioral and physiological distress in children with ASD in the dental clinic. PMID:25114916

  5. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

    PubMed

    Boden, Guenther; Song, Weiwei; Duan, Xunbao; Cheung, Peter; Kresge, Karen; Barrero, Carlos; Merali, Salim

    2011-07-01

    Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity-related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2-α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol-3-kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ~17% and ~50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12-h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.

  6. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2015-11-01

    The purpose of this study was to investigate the influence of non-physiological high shear stress on activation and shedding of platelet GP IIb/IIIa receptors. The healthy donor blood was exposed to three levels of high shear stresses (25, 75, 125 Pa) from the physiological to non-physiological status with three short exposure time (0.05, 0.5, 1.5 s), created by a specific blood shearing system. The activation and shedding of the platelet GPIIb/IIIa were analyzed using flow cytometry and enzyme-linked immunosorbent assay. In addition, platelet P-selectin expression of sheared blood, which is a marker for activated platelets, was also analyzed. The results from the present study showed that the number of activated platelets, as indicated by the surface GPIIb/IIIa activation and P-selectin expression, increased with increasing the shear stress level and exposure time. However, the mean fluorescence of GPIIb/IIIa on the platelet surface, decreased with increasing the shear stress level and exposure time. The reduction of GPIIb/IIIa on the platelet surface was further proved by the reduction of further activated platelet GPIIb/IIIa surface expression induced by ADP and the increase in GPIIb/IIIa concentration in microparticle-free plasma with increasing the applied shear stress and exposure time. It is clear that non-physiological shear stress induce a paradoxical phenomenon, in which both activation and shedding of the GPIIb/IIIa on the platelet surface occur simultaneously. This study may offer a new perspective to explain the reason of both increased thrombosis and bleeding events in patients implanted with high shear blood-contacting medical devices. PMID:26160282

  7. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    PubMed Central

    Kebede, Hirut; Abbas, Hamed K.; Fisher, Daniel K.; Bellaloui, Nacer

    2012-01-01

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination. PMID:23202322

  8. Comparison of physiological reactions and physiological strain in healthy men under heat stress in dry and steam heat saunas.

    PubMed

    Pilch, W; Szygula, Z; Palka, T; Pilch, P; Cison, T; Wiecha, S; Tota, L

    2014-06-01

    The aim of the paper was to follow up major physiological reactions, provoked by heat stress during dry and wet sauna baths. A physical strain index and subjective estimation of heat comfort of subjects who had not taken sauna baths before was also evaluated. Ten healthy males aged 25-28 underwent a dry sauna bath and then after a one-month break they underwent a steam sauna bath. Each time, they entered the sauna chamber 3 times for 15 minutes with five-minute breaks. During breaks they cooled their bodies with a cold shower and then rested in a sitting position. Before and after the baths, body mass and blood pressure were measured. Rectal temperature and heart rate were monitored during the baths. The physiological strain index (PSI) and cumulative heat strain index (CHSI) were calculated. Subjects assessed heat comfort by Bedford's scale. Greater body mass losses were observed after the dry sauna bath compared to the wet sauna (-0.72 vs. -0.36 kg respectively). However, larger increases in rectal temperature and heart rate were observed during the wet sauna bath (38.8% and 21.2% respectively). Both types of sauna baths caused elevation of systolic blood pressure, but changes were greater after the dry one. Diastolic pressure was reduced similarly. Subjective feelings of heat comfort as well as PSI (4.83 ± 0.29 vs. 5.7 ± 0.28) and CHSI (76.3 ± 18.4 vs. 144.6 ± 21.7) were greater during the wet sauna bath. It can be concluded that due to high humidity and reduction of thermoregulation mechanisms, the wet sauna is more stressful for the organism than the dry sauna, where the temperature is higher with low humidity. Both observed indexes (PSI and CHSI) could be appropriate for objective assessment of heat strain during passive heating of the organism.

  9. An instrument to monitor physiological and environmental parameters associated with heat stress on an ambulatory subject.

    PubMed

    Cassels, B M

    1991-06-01

    This paper outlines the development and construction of an instrument for use on an ambulatory subject which monitors selected physiological and environmental parameters that are a reflection of the degree of physiological strain associated with heat stress. The resulting instrument is rugged, reliable, and uses existing practical technology for in-the-field ambulatory monitoring, and provides minimal restriction to subject movement. The physiological parameters monitored (heart rate and skin temperature) were selected following examination of systemic, skin, and psychoneurotic heat disorders, with the environmental parameters (wind velocity, ambient temperature and relative humidity) based on existing heat stress indices' correlation with physiological parameters. A microprocessor is utilized for data acquisition, mathematical computation and long term storage, and software for downloading the data to a large mainframe computer is provided. Following calibration of the transduction circuits, the instrument was assembled and tested. Improvements are required to obtain the reliability originally envisaged. Additional field trials would see the collection of data to establish criteria to determine the values of the parameters monitored enabling prediction of the onset of heat stress in hot, humid environments.

  10. Physiological and Proteomic Analyses of Saccharum spp. Grown under Salt Stress

    PubMed Central

    Murad, Aline Melro; Molinari, Hugo Bruno Correa; Magalhães, Beatriz Simas; Franco, Augusto Cesar; Takahashi, Frederico Scherr Caldeira; de Oliveira-, Nelson Gomes; Franco, Octávio Luiz; Quirino, Betania Ferraz

    2014-01-01

    Sugarcane (Saccharum spp.) is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA) content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn2+ increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane. PMID:24893295

  11. Organizational and activational effects of testosterone on masculinization of female physiological and behavioral stress responses.

    PubMed

    Goel, Nirupa; Bale, Tracy L

    2008-12-01

    The prevalence of affective disorders is two times greater in women than in men. The onset of anxiety and depression occurs at different ages that may correspond to key developmental periods when the brain is more vulnerable to hormonal and exogenous influences. Because stressful life events can precipitate disease onset, the development of greater stress sensitivity in females may contribute to their increased vulnerability. Gonadal hormone exposure in males during early development and again from puberty onward plays a prominent role in sexually dimorphic brain formation, possibly contributing to sex differences in stress responsivity. Therefore, organizational effects of testosterone propionate (TP) administered postnatally and activational effects of TP administered beginning at puberty on adult female physiological and behavioral stress responses were examined in mice. Although the activational effects of TP in females ameliorated the sex difference in the hypothalamic-pituitary-adrenal axis stress response, there was no effect of postnatal TP. Similarly, higher immobile time in intact females in the tail suspension test was blunted by activational TP in the absence of postnatal TP. However, in the marble-burying test of anxiety-like behaviors, organizational and activational TP independently resulted in increased burying behaviors. These results show that TP administration has distinct effects on reducing physiological and behavioral stress responsivity in rodent models and suggest that sex differences in these responses may partially result from the absence of testosterone in females.

  12. Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses.

    PubMed

    Peng, Yong-Lin; Gao, Zhan-Wu; Gao, Ying; Liu, Guo-Fang; Sheng, Lian-Xi; Wang, De-Li

    2008-01-01

    Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCl, Na(2)SO(4), NaHCO(3) and Na(2)CO(3)) and 30 salt-alkaline combinations (salinity 24-120 mmol/L and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (Pstresses led to changes in the root activity along the salinity gradient (Pphysiological responses (leaf electrolyte leakage rate and proline content) in order to adapt to mixed salt-alkaline stresses. It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity). Further, the effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of ecological and physiological characteristics in plants. PMID:18666949

  13. [Effects of temperature stress on physiological indices of Chilo suppressalis Walker (Lepidoptera: Pyralidae) diapause larvae].

    PubMed

    Qiang, Cheng-Kui; Du, Yu-Zhou; Yu, Ling-Ya; Qin, Yue-Hua; Feng, Wu-Jian

    2012-05-01

    To understand the physiological mechanisms of temperature stress on the diapause larvae of rice stem borer Chilo suppressalis Walker at physiological and biochemical levels, determinations were made on the contents of water, lipid, total sugar and low molecular mass carbohydrates and the activities of SOD, POD, CAT in the larvae after series temperature stress (STS) and gradient temperature stress (GTS). With the decrease of temperature, the water content in the larvae decreased, and the decrement below 0 degrees C was significantly larger in treatment GTS than in treatment STS. The lipid content in the larvae decreased gradually, but no significant difference was observed between treatments STS and GTS. The total sugar content in the larvae in treatment STS increased after an initial decrease, but that in treatment GTS continued to decline. Four species of low molecular carbohydrates, i. e. , trehalose, glucose, glycerol and fructose were detected in the larvae. In treatment STS, the contents of glycose, glycerol and fructose in the larvae decreased after an initial increase, while the trehalose content was in adverse. In treatment GTS, the trehalose content decreased first and increased then, the glucose and glycerol were in adverse, but the fructose content had little change. In the range from 14 to -14 degrees C, the SOD and POD activities in the larvae in treatment STS were significantly lower than those in treatment GTS, but the CAT activity was in adverse. The changes of these indices reflected the physiological responses of C. suppressalis diapause larvae to different temperature stress.

  14. Physiological stress in koala populations near the arid edge of their distribution.

    PubMed

    Davies, Nicole Ashley; Gramotnev, Galina; McAlpine, Clive; Seabrook, Leonie; Baxter, Greg; Lunney, Daniel; Rhodes, Jonathan R; Bradley, Adrian

    2013-01-01

    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species' distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species' responses to climate change.

  15. Physiological Stress in Koala Populations near the Arid Edge of Their Distribution

    PubMed Central

    Davies, Nicole Ashley; Gramotnev, Galina; McAlpine, Clive; Seabrook, Leonie; Baxter, Greg; Lunney, Daniel; Rhodes, Jonathan R.; Bradley, Adrian

    2013-01-01

    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species’ distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species’ responses to climate change. PMID:24265749

  16. [Effects of grafting on physiological characteristics of melon (Cucumis melo) seedlings under copper stress].

    PubMed

    Tan, Ming-min; Zhang, Xin-ying; Fu, Qiu-shi; He, Zhong-qun; Wang, Huai-song

    2014-12-01

    The effects of grafting on physiological characters of melon (Cucumis melo) seedlings under copper stress were investigated with Pumpkin Jingxinzhen No. 3 as stock and oriental melon IVF09 as scion. The results showed that the physiological characters of melon seedlings were inhibited significantly under copper stress. Compared with self-rooted seedlings, the biomass, the contents of photosynthetic pigment, glucose and fructose, the photosynthetic parameters, the activities of sucrose phosphate synthase, neutral invertase and acid invertase in the leaves of the grafted seedlings were increased significantly. The uptake of nutrients was improved with the contents of K, P, Na increased and the content of Cu decreased. When the concentration of Cu2+ stress was 800 micromol L(-1), the contents of Cu in the leaves and roots of the grafted seedlings were decreased by 31.3% and 15.2%, respectively. Endogenous hormone balance of seedlings was improved by grafting. In the grafted seedlings, the content of IAA and peroxidase activity were higher, whereas the contents of ABA, maleicdialdehyde, the activities of superoxide dismutase and catalase were lower than that in the control. It was concluded that the copper stress on the physiological characters of melon seedlings was relieved by grafting which improved the resistance of the grafted seedlings. PMID:25876409

  17. Resilience Training Program Reduces Physiological and Psychological Stress in Police Officers

    PubMed Central

    Atkinson, Mike

    2012-01-01

    Research suggests that police work is among the most stressful occupations in the world and officers typically suffer a variety of physiological, psychological, and behavioral effects and symptoms. Officers operating under severe or chronic stress are likely to be at greater risk of error, accidents, and overreactions that can compromise their performance, jeopardize public safety, and pose significant liability costs to the organization. Therefore, this study explored the nature and degree of physiological activation typically experienced of officers on the job and the impact of the Coherence Advantage resilience and performance enhancement training on a group of police officers from Santa Clara County, California. Areas assessed included vitality, emotional well-being, stress coping and interpersonal skills, work performance, workplace effectiveness and climate, family relationships, and physiological recalibration following acute stressors. Physiological measurements were obtained to determine the real-time cardiovascular impact of acutely stressful situations encountered in highly realistic simulated police calls used in police training and to identify officers at increased risk of future health challenges. The resilience-building training improved officers' capacity to recognize and self-regulate their responses to stressors in both work and personal contexts. Officers experienced reductions in stress, negative emotions, depression, and increased peacefulness and vitality as compared to a control group. Improvements in family relationships, more effective communication and cooperation within work teams, and enhanced work performance also were noted. Heart rate and blood pressure measurements taken during simulated police call scenarios showed that acutely stressful circumstances typically encountered on the job result in a tremendous degree of physiological activation, from which it takes a considerable amount of time to recover. Autonomic nervous system

  18. Resilience Training Program Reduces Physiological and Psychological Stress in Police Officers.

    PubMed

    McCraty, Rollin; Atkinson, Mike

    2012-11-01

    Research suggests that police work is among the most stressful occupations in the world and officers typically suffer a variety of physiological, psychological, and behavioral effects and symptoms. Officers operating under severe or chronic stress are likely to be at greater risk of error, accidents, and overreactions that can compromise their performance, jeopardize public safety, and pose significant liability costs to the organization. Therefore, this study explored the nature and degree of physiological activation typically experienced of officers on the job and the impact of the Coherence Advantage resilience and performance enhancement training on a group of police officers from Santa Clara County, California. Areas assessed included vitality, emotional well-being, stress coping and interpersonal skills, work performance, workplace effectiveness and climate, family relationships, and physiological recalibration following acute stressors. Physiological measurements were obtained to determine the real-time cardiovascular impact of acutely stressful situations encountered in highly realistic simulated police calls used in police training and to identify officers at increased risk of future health challenges. The resilience-building training improved officers' capacity to recognize and self-regulate their responses to stressors in both work and personal contexts. Officers experienced reductions in stress, negative emotions, depression, and increased peacefulness and vitality as compared to a control group. Improvements in family relationships, more effective communication and cooperation within work teams, and enhanced work performance also were noted. Heart rate and blood pressure measurements taken during simulated police call scenarios showed that acutely stressful circumstances typically encountered on the job result in a tremendous degree of physiological activation, from which it takes a considerable amount of time to recover. Autonomic nervous system

  19. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes

    PubMed Central

    Gouvêa, Devin Y.; Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments. PMID:26713620

  20. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    PubMed

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-01-01

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  1. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    PubMed

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-11-26

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  2. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    PubMed Central

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  3. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    PubMed

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  4. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology

    PubMed Central

    Torner, Luz

    2016-01-01

    Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive hormone due to the key roles it plays in the modulation of the stress response and during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote physiological responses related to reproduction, stress adaptation, neurogenesis, and neuroprotection. The action of PRL on the nervous system contributes to the wide array of changes that occur in the female brain during pregnancy and result in the attenuation of the hypothalamic–pituitary–adrenal axis. Together, all these changes promote behavioral and physiological adaptations of the new mother to enable reproductive success. Brain adaptations driven by PRL are also important for the regulation of maternal emotionality and well-being. PRL also affects the male brain during the stress response, but its effects have been less studied. PRL regulates neurogenesis both in the subventricular zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or exposure to substances that reduce neurogenesis or other conditions, could contribute to maladaptive responses and pathological behavioral outcomes. Here, we review the PRL system and the role it plays in the modulation of stress response and emotion regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the putative neuronal mechanisms underlying these effects, and their contribution to the onset of psychopathological states such as depression. PMID:27065946

  5. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    PubMed

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  6. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology.

    PubMed

    Torner, Luz

    2016-01-01

    Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive hormone due to the key roles it plays in the modulation of the stress response and during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote physiological responses related to reproduction, stress adaptation, neurogenesis, and neuroprotection. The action of PRL on the nervous system contributes to the wide array of changes that occur in the female brain during pregnancy and result in the attenuation of the hypothalamic-pituitary-adrenal axis. Together, all these changes promote behavioral and physiological adaptations of the new mother to enable reproductive success. Brain adaptations driven by PRL are also important for the regulation of maternal emotionality and well-being. PRL also affects the male brain during the stress response, but its effects have been less studied. PRL regulates neurogenesis both in the subventricular zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or exposure to substances that reduce neurogenesis or other conditions, could contribute to maladaptive responses and pathological behavioral outcomes. Here, we review the PRL system and the role it plays in the modulation of stress response and emotion regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the putative neuronal mechanisms underlying these effects, and their contribution to the onset of psychopathological states such as depression.

  7. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    PubMed

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  8. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions.

    PubMed

    Hirotsu, Camila; Tufik, Sergio; Andersen, Monica Levy

    2015-11-01

    Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic-pituitary-adrenal (HPA) axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances. PMID:26779321

  9. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions

    PubMed Central

    Hirotsu, Camila; Tufik, Sergio; Andersen, Monica Levy

    2015-01-01

    Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic–pituitary–adrenal (HPA) axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances. PMID:26779321

  10. Prevalence of musculoskeletal disorders and physiological stress among adult, male potato cultivators of West Bengal, India.

    PubMed

    Das, Banibrata; Gangopadhyay, Somnath

    2015-03-01

    A total of 70 male potato cultivators were selected randomly from the villages of West Bengal, India, to evaluate musculoskeletal disorder (MSD), thermal stress, and physiological stress and were compared with 70 controls from the urban sector of West Bengal. Modified Nordic questionnaire studies and a posture analysis were performed in for the male potato cultivators by the Rapid Entire Body Assessment method. Most of the participants suffered discomfort at different parts of the body, especially in the lower back, knee, ankle, and feet regions. Potato cultivators suffered maximum discomfort during spading, planting seeds, weeding, picking crops, and sprinkling water. Therefore, it can be concluded that prolonged work activity, high repetitiveness, and remaining constantly in an awkward posture for a prolonged period of time may lead to MSDs. This study also revealed that a significant physiological load is exerted on the potato cultivators, as shown by increased heart rates.

  11. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice.

    PubMed

    Gong, Shuai; Miao, Yi-Long; Jiao, Guang-Zhong; Sun, Ming-Ju; Li, Hong; Lin, Juan; Luo, Ming-Jiu; Tan, Jing-He

    2015-01-01

    Although plasma corticosterone is considered the main glucocorticoid involved in regulation of stress responses in rodents, the presence of plasma cortisol and whether its level can be used as an indicator for rodent activation of stress remain to be determined. In this study, effects of estrous cycle stage, circadian rhythm, and acute and chronic (repeated or unpredictable) stressors of various severities on dynamics and correlation of serum cortisol and corticosterone were examined in mice. A strong (r = 0.6-0.85) correlation between serum cortisol and corticosterone was observed throughout the estrous cycle, all day long, and during acute or repeated restraints, chronic unpredictable stress and acute forced swimming or heat stress. Both hormones increased to the highest level on day 1 of repeated-restraint or unpredictable stresses, but after that, whereas the concentration of cortisol did not change, that of corticosterone showed different dynamics. Thus, whereas corticosterone declined dramatically during repeated restraints, it remained at the high level during unpredictable stress. During forced swimming or heat stress, whereas cortisol increased to the highest level within 3 min., corticosterone did not reach maximum until 40 min. of stress. Analysis with HPLC and HPLC-MS further confirmed the presence of cortisol in mouse serum. Taken together, results (i) confirmed the presence of cortisol in mouse serum and (ii) suggested that mouse serum cortisol and corticosterone are closely correlated in dynamics under different physiological or stressful conditions, but, whereas corticosterone was a more adaptation-related biomarker than cortisol during chronic stress, cortisol was a quicker responder than corticosterone during severe acute stress.

  12. Dynamics and Correlation of Serum Cortisol and Corticosterone under Different Physiological or Stressful Conditions in Mice

    PubMed Central

    Gong, Shuai; Miao, Yi-Long; Jiao, Guang-Zhong; Sun, Ming-Ju; Li, Hong; Lin, Juan; Luo, Ming-Jiu; Tan, Jing-He

    2015-01-01

    Although plasma corticosterone is considered the main glucocorticoid involved in regulation of stress responses in rodents, the presence of plasma cortisol and whether its level can be used as an indicator for rodent activation of stress remain to be determined. In this study, effects of estrous cycle stage, circadian rhythm, and acute and chronic (repeated or unpredictable) stressors of various severities on dynamics and correlation of serum cortisol and corticosterone were examined in mice. A strong (r = 0.6–0.85) correlation between serum cortisol and corticosterone was observed throughout the estrous cycle, all day long, and during acute or repeated restraints, chronic unpredictable stress and acute forced swimming or heat stress. Both hormones increased to the highest level on day 1 of repeated-restraint or unpredictable stresses, but after that, whereas the concentration of cortisol did not change, that of corticosterone showed different dynamics. Thus, whereas corticosterone declined dramatically during repeated restraints, it remained at the high level during unpredictable stress. During forced swimming or heat stress, whereas cortisol increased to the highest level within 3 min., corticosterone did not reach maximum until 40 min. of stress. Analysis with HPLC and HPLC-MS further confirmed the presence of cortisol in mouse serum. Taken together, results (i) confirmed the presence of cortisol in mouse serum and (ii) suggested that mouse serum cortisol and corticosterone are closely correlated in dynamics under different physiological or stressful conditions, but, whereas corticosterone was a more adaptation-related biomarker than cortisol during chronic stress, cortisol was a quicker responder than corticosterone during severe acute stress. PMID:25699675

  13. [Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress].

    PubMed

    Liu, Wen-Long; Wang, Kai-Rong; Wang, Ming-Lun

    2009-02-01

    To have a deep understanding on the mechanisms of cadmium (Cd) toxicity on peanut plants is of theoretical and practical significances for the selection and utilization of Cd-resistant peanut germ plasm resources. With fourteen peanut varieties as test materials and taking the chlorophyll content of functional leaves, malondialdehyde (MDA) content and cell membrane permeability of roots and leaves, and oxidative vitality of roots at flowering stage as test physiological parameters, a sand culture experiment was conducted in an artificial climate chamber to investigate the physiological responses of different peanut varieties to six levels of Cd stress. The results showed that within the range of 0-60 mg Cd x L(-1) addition, the chlorophyll content of functional leaves and the oxidative vitality of roots decreased significantly with increasing Cd addition, while the MDA content and cell membrane permeability of leaves and roots were in adverse. The cell membrane permeability of roots and leaves was the most sensitive physiological parameter, while the chlorophyll content of functional leaves was the least sensitive one in the responses of peanut plant to Cd stress. In the linear regression equations describing the relationships between test physiological parameters and Cd concentrations in nutrient solution, the absolute value of slope (b)/intercept (a) ratio, /b/a/, could better describe the sensitivity of peanut plants to Cd stress. It was known from the integrative evaluation of /b/a/ values and the cluster analysis of sensitivity that among the fourteen peanut varieties, "Zhonghua-4", "Xiangnong-55" and "Xiangnong-3010-w" were highly sensitive to Cd stress (first grade), "Lainong-29", "Xiangnongxiaoguo-w2-7", "Fenghua-2", "Lainong-13", "Yuhua-15" and "Fenghua-3" were sensitive (second grade), "Xiangnong-312", "Qiyangxiaozi" and "Pingdu-01" were less sensitive (third grade), while "Huayu-20" and "Huayu-23" were insensitive (forth grade).

  14. Sex, social status and physiological stress in primates: the importance of social and glucocorticoid dynamics

    PubMed Central

    Cavigelli, Sonia A.; Caruso, Michael J.

    2015-01-01

    Social status has been associated with health consequences, although the mechanisms by which status affects health are relatively unknown. At the physiological level, many studies have investigated the potential relationship between social behaviour/rank and physiological stress, with a particular focus on glucocorticoid (GC) production. GCs are of interest because of their experimentally established influence on health-related processes such as metabolism and immune function. Studies in a variety of species, in both naturalistic and laboratory settings, have led to complex outcomes. This paper reviews findings from primates and rodents and proposes a psychologically and physiologically relevant framework in which to study the relationship between social status and GC function. We (i) compare status-specific GC production between male and female primates, (ii) review the functional significance of different temporal patterns of GC production, (iii) propose ways to assess these temporal dynamics, and (iv) present novel hypotheses about the relationship between social status and GC temporal dynamics, and potential fitness and health implications. To understand whether GC production mediates social status-related fitness disparities, we must consider social contest conditions and the temporal dynamics of GC production. This framework will provide greater insights into the relationship between social status, physiological stress and health. PMID:25870390

  15. Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass

    PubMed Central

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L−1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  16. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    PubMed

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense.

  17. Are We There Yet? Feasibility of Continuous Stress Assessment via Wireless Physiological Sensors

    PubMed Central

    Rahman, Mahbubur; Bari, Rummana; Ali, Amin Ahsan; Sharmin, Moushumi; Raij, Andrew; Hovsepian, Karen; Hossain, Syed Monowar; Ertin, Emre; Kennedy, Ashley; Epstein, David H.; Preston, Kenzie L.; Jobes, Michelle; Beck, J. Gayle; Kedia, Satish; Ward, Kenneth D.; al'Absi, Mustafa; Kumar, Santosh

    2015-01-01

    Stress can lead to headaches and fatigue, precipitate addictive behaviors (e.g., smoking, alcohol and drug use), and lead to cardiovascular diseases and cancer. Continuous assessment of stress from sensors can be used for timely delivery of a variety of interventions to reduce or avoid stress. We investigate the feasibility of continuous stress measurement via two field studies using wireless physiological sensors — a four-week study with illicit drug users (n = 40), and a one-week study with daily smokers and social drinkers (n = 30). We find that 11+ hours/day of usable data can be obtained in a 4-week study. Significant learning effect is observed after the first week and data yield is seen to be increasing over time even in the fourth week. We propose a framework to analyze sensor data yield and find that losses in wireless channel is negligible; the main hurdle in further improving data yield is the attachment constraint. We show the feasibility of measuring stress minutes preceding events of interest and observe the sensor-derived stress to be rising prior to self-reported stress and smoking events. PMID:25821861

  18. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress

    PubMed Central

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress ‘Red Robin’) or fast (Eugenia uniflora L. ‘Etna Fire’) adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters. PMID:27242846

  19. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress.

    PubMed

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress 'Red Robin') or fast (Eugenia uniflora L. 'Etna Fire') adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters.

  20. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts

  1. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato.

    PubMed

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts

  2. Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress

    PubMed Central

    Talukdar, Dibyendu

    2013-01-01

    Background: Both lentil (Lens culinaris Medik.) and grass pea (Lathyrus sativus L.) in the family Fabaceae are two important cool-season food legumes, often experiencing water stress conditions during growth and maturity. Objective: The present study was undertaken to ascertain the response of these two crops under different water stress regimes. Materials and Methods: Different morpho-physiological and biochemical parameters were studied in a pot experiment under controlled environmental conditions. Along with control (proper irrigation, 0 stress), three sets of plants were subjected to mild (6 d), moderate (13 d) and severe (20 d) water stress by withholding irrigation at the appropriate time. Results: Compared with control, plant growth traits and seed yield components reduced significantly in both crops with increasing period of water stress, resulting in lowering of dry mass with more severe effect on lentil compared with grass pea. Foliar Relative Water Content (RWC) (%), K+/Na+ ratio, chlorophyll (chl) a, chl a/b ratio, stomatal conductance and net photosynthetic rate declined considerably in both crops under water stress. Leaf-free proline level increased significantly in both crops, but it decreased markedly in nodules of lentil and remained unchanged in grass pea. Nodulation was also affected due to water stress. The impairment in growth traits and physio-biochemical parameters under water stress was manifested in reduction of drought tolerance efficiency of both crops. Conclusion: Impact of water stress was more severe on lentil compared with grass pea, and modulation of growth traits signified necessity of a detailed strategy in breeding of food legumes under water stress. PMID:24082740

  3. The Psychological and Physiological Effects of Acute Occupational Stress in New Anesthesiology Residents: A Pilot Trial

    PubMed Central

    Eisenach, John H.; Sprung, Juraj; Clark, Matthew M.; Shanafelt, Tait D.; Johnson, Bruce D.; Kruse, Timothy N.; Chantigian, Daniel P.; Carter, Jason R.; Long, Timothy R.

    2014-01-01

    Background Occupational stress in resident physicians has profound implications for wellness, professionalism, and patient care. This observational pilot trial measured psychological and physiological stress biomarkers before, during, and after the start of anesthesia residency. Methods Eighteen physician interns scheduled to begin anesthesia residency were recruited for evaluation at three time points: baseline (collected remotely before residency in June 2013); first month visit 1 (July); and follow-up visit 2 (residency month 3–5, Sept–Nov). Validated scales were used to measure stress, anxiety, resilience, and wellness at all 3 time points. During visits 1 and 2, we measured resting heart rate variability, responses to laboratory mental stress (hemodynamic, catecholamine, cortisol, and interleukin-6) and chronic stress indices (C-reactive protein, 24 h ambulatory heart rate and blood pressure, 24 h urinary cortisol and catecholamines, overnight heart rate variability). Results Thirteen interns agreed to participate (72% enrollment). There were seven men and six women, ages 27–33 years. The mean ± SD of all study variables are reported. Conclusion The novelty of our report is the prospective design in a defined cohort of residents newly exposed to the similar occupational stress of the operating environment. Because of the paucity of literature specific to the measures and stress conditions in this investigation, no data were available to generate a priori definition of primary outcomes and a data analytic plan. These findings will allow power analysis for future design of trials examining occupational stress and stress-reducing interventions. Given the importance of physician burnout in our country, the impact of chronic stress on resident wellness requires further study. PMID:25093592

  4. Gender-specific effects of prenatal stress on emotional reactivity and stress physiology of goat kids.

    PubMed

    Roussel, S; Boissy, A; Montigny, D; Hemsworth, P H; Duvaux-Ponter, C

    2005-03-01

    The aims of this study were to investigate the effects of maternal stress during pregnancy on the emotional reactivity, the hypothalamo-pituitary-adrenocortical (HPA) axis, and the sympatho-adrenomedullary (SAM) system of goat offspring according to their gender, and to investigate the role of maternal cortisol in prenatal stress effects. Goats were exposed to ten transports in isolation or ten ACTH injections (0.125 IU/kg body weight) during the last third of pregnancy. Control goats remained undisturbed. No effect of repeated transport during the last third of pregnancy was found on basal cortisol concentrations of the offspring. However, an increase in phenylethanolamine N-methyl transferase activity in the adrenals was observed in prenatally stressed kids compared to control kids (P = 0.031). In the presence of novelty, prenatally stressed female kids were more active (P = 0.049) than control females; they also showed more signs of arousal (P = 0.039) and tended to explore more of their environment (P = 0.053) in reaction to a startling stimulus. On the contrary, prenatally stressed male kids tended to be less active (P = 0.051) than control male kids but showed more signs of distress (P = 0.047) in the presence of novelty. Intermediate effects were found on the emotional reactivity to novelty of kids born from dams given injections of ACTH. In conclusion, transport stress in pregnant goats affects the sympatho-adrenomedullary system and the emotional reactivity of their offspring in a gender-specific manner. Moreover, the effects of prenatal transport and ACTH injections showed some similarities but differed in some critical details.

  5. Gender-specific effects of prenatal stress on emotional reactivity and stress physiology of goat kids.

    PubMed

    Roussel, S; Boissy, A; Montigny, D; Hemsworth, P H; Duvaux-Ponter, C

    2005-03-01

    The aims of this study were to investigate the effects of maternal stress during pregnancy on the emotional reactivity, the hypothalamo-pituitary-adrenocortical (HPA) axis, and the sympatho-adrenomedullary (SAM) system of goat offspring according to their gender, and to investigate the role of maternal cortisol in prenatal stress effects. Goats were exposed to ten transports in isolation or ten ACTH injections (0.125 IU/kg body weight) during the last third of pregnancy. Control goats remained undisturbed. No effect of repeated transport during the last third of pregnancy was found on basal cortisol concentrations of the offspring. However, an increase in phenylethanolamine N-methyl transferase activity in the adrenals was observed in prenatally stressed kids compared to control kids (P = 0.031). In the presence of novelty, prenatally stressed female kids were more active (P = 0.049) than control females; they also showed more signs of arousal (P = 0.039) and tended to explore more of their environment (P = 0.053) in reaction to a startling stimulus. On the contrary, prenatally stressed male kids tended to be less active (P = 0.051) than control male kids but showed more signs of distress (P = 0.047) in the presence of novelty. Intermediate effects were found on the emotional reactivity to novelty of kids born from dams given injections of ACTH. In conclusion, transport stress in pregnant goats affects the sympatho-adrenomedullary system and the emotional reactivity of their offspring in a gender-specific manner. Moreover, the effects of prenatal transport and ACTH injections showed some similarities but differed in some critical details. PMID:15708753

  6. Can architectural design alter the physiological reaction to psychosocial stress? A virtual TSST experiment.

    PubMed

    Fich, Lars Brorson; Jönsson, Peter; Kirkegaard, Poul Henning; Wallergård, Mattias; Garde, Anne Helene; Hansen, Åse

    2014-08-01

    Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment influences these mechanisms. The question that this study attempts to start addressing is therefore whether certain design, characteristics of indoor spaces can make a difference to the physiological stress response as well. Using a virtual version of the Trier Social Stress Test, in which the space is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants in the closed room responded with more pronounced cortisol reactivity to stress induction, and continued to show higher levels throughout recovery, compared to participants in the open room. No differences were found regarding any part of the autonomic nervous system. PMID:24907691

  7. Physiological stress reactivity and empathy following social exclusion: a test of the defensive emotional analgesia hypothesis.

    PubMed

    Bass, Ellyn Charlotte; Stednitz, Sarah Josephine; Simonson, Kevin; Shen, Tori; Gahtan, Ethan

    2014-01-01

    Experiences of social exclusion elicit social pain responses. The current study examined the ability of social exclusion to activate physiological stress responses and adaptively modulate affect and empathy consistent with "defensive emotional analgesia." Measures of affect and empathy, and saliva samples for cortisol and alpha-amylase (sAA) analysis, were collected before and after subjects participated in a computer game ("Cyberball") designed to manipulate feelings of social exclusion. Contrary to our hypotheses, social exclusion was associated with a reduction in cortisol, and social inclusion with an increase in cortisol. Both Cyberball groups showed increases in sAA and decreases in both positive and negative affect, with the greatest drop in affect occurring after social exclusion. Empathy did not differ between the social exclusion and inclusion groups and was not correlated with cortisol or sAA levels. These results support the presence of a defensive response to social exclusion in which central stress pathways controlling cortisol release are inhibited. Cortisol and sAA were shown to have distinct patterns of responses to psychological stress, with sAA responding more rapidly. Related methodological concerns for the use of these physiological stress markers and of Cyberball in social neuroscience research are discussed.

  8. Can architectural design alter the physiological reaction to psychosocial stress? A virtual TSST experiment.

    PubMed

    Fich, Lars Brorson; Jönsson, Peter; Kirkegaard, Poul Henning; Wallergård, Mattias; Garde, Anne Helene; Hansen, Åse

    2014-08-01

    Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment influences these mechanisms. The question that this study attempts to start addressing is therefore whether certain design, characteristics of indoor spaces can make a difference to the physiological stress response as well. Using a virtual version of the Trier Social Stress Test, in which the space is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants in the closed room responded with more pronounced cortisol reactivity to stress induction, and continued to show higher levels throughout recovery, compared to participants in the open room. No differences were found regarding any part of the autonomic nervous system.

  9. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2014-01-01

    Abiotic stress is one of the primary constraints limiting the range and success of arthropods, and nowhere is this more apparent than Antarctica. Antarctic arthropods have evolved a suite of adaptations to cope with extremes in temperature and water availability. Here, we review the current state of knowledge regarding the environmental physiology of terrestrial arthropods in Antarctica. To survive low temperatures, mites and Collembola are freeze-intolerant and rely on deep supercooling, in some cases supercooling below -30°C. Also, some of these microarthropods are capable of cryoprotective dehydration to extend their supercooling capacity and reduce the risk of freezing. In contrast, the two best-studied Antarctic insects, the midges Belgica antarctica and Eretmoptera murphyi, are freeze-tolerant year-round and rely on both seasonal and rapid cold-hardening to cope with decreases in temperature. A common theme among Antarctic arthropods is extreme tolerance of dehydration; some accomplish this by cuticular mechanisms to minimize water loss across their cuticle, while a majority have highly permeable cuticles but tolerate upwards of 50-70% loss of body water. Molecular studies of Antarctic arthropod stress physiology are still in their infancy, but several recent studies are beginning to shed light on the underlying mechanisms that govern extreme stress tolerance. Some common themes that are emerging include the importance of cuticular and cytoskeletal rearrangements, heat shock proteins, metabolic restructuring and cell recycling pathways as key mediators of cold and water stress in the Antarctic.

  10. Physiological and subjective responses after psychosocial stress in Chinese hepatitis B patients.

    PubMed

    Zhao, Xiansheng; Zhao, Li; Lai, Yinyan; Jiang, Suwen; Shen, Xueyong; Liu, Sheng

    2015-02-01

    Compared with healthy participants, Chinese patients with hepatitis B (HB) experience more psychosocial stress. The present study provided the first examination of physiological and subjective responses to stress in Chinese HB patients. A standard psychosocial stressor, the Trier Social Stress Test (TSST), was administered to 26 Chinese HB patients and 24 healthy control participants. Cortisol concentrations were measured in blood samples collected before and after the stressor. Self-reported emotional responses and cardiovascular measures were examined before and after the TSST. Depression and anxiety were assessed using Hospital Anxiety and Depression Scale. Chinese HB patients exhibited higher cortisol response to the stressor than healthy control participants. Compared with healthy participants, Chinese HB patients showed higher levels of anxiety, depression and nervousness, and lower levels of calmness after the TSST. HB patients reported more negative life events in the previous 6 months and obtained higher adversity scores, as compared with control participants. Significant correlations were obtained between adversity scores and change cortisol secretion after TSST in HB patients, but not in healthy participants. This study firstly demonstrates that physiological and subjective responses to psychosocial stress among Chinese HB patients were different from that in healthy control participants.

  11. Physiological stress response to video-game playing: the contribution of built-in music.

    PubMed

    Hébert, Sylvie; Béland, Renée; Dionne-Fournelle, Odrée; Crête, Martine; Lupien, Sonia J

    2005-04-01

    Recent studies on video game playing have uncovered a wide range of measurable physiological effects on the organism, such as increases in cardiovascular activity and breathing responses. However, the exact source of these effects remains unclear. Given the well-known effects of sound on physiological activity, especially those of noise and of music, and on the secretion of the stress hormone cortisol in particular, we hypothesized that music may be a major source of stress during video game playing. We thus examined the effect of built-in music on cortisol secretion as a consequence of video game playing. Players were assigned quasi-randomly to either a Music or a Silence condition. Four saliva samples were taken, that is, after practice (T1), immediately after having played for 10 minutes (T2), 15 minutes after the end of the experiment (T3), and 30 minutes after the end of the experiment (T4). The results show that the Music group had significantly higher cortisol levels at T3, that is, when cortisol levels are assumed to reflect the stress induced by the game. These findings suggest for the first time that the auditory input contributes significantly to the stress response found during video game playing.

  12. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish

    PubMed Central

    Egan, Rupert J.; Bergner, Carisa L.; Hart, Peter C.; Cachat, Jonathan M.; Canavello, Peter R.; Elegante, Marco F.; Elkhayat, Salem I.; Bartels, Brett K.; Tien, Anna K.; Tien, David H.; Mohnot, Sopan; Beeson, Esther; Glasgow, Eric; Amri, Hakima; Zukowska, Zofia; Kalueff, Allan V.

    2010-01-01

    The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders. PMID:19540270

  13. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    PubMed Central

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  14. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum.

    PubMed

    Roy, Swapan Kumar; Cho, Seong-Woo; Kwon, Soo Jeong; Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants.

  15. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  16. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  17. Physiological Reactivity to Psychological Stress in Human Pregnancy: Current Knowledge and Future Directions

    PubMed Central

    Christian, Lisa M.

    2012-01-01

    Cardiovascular and neuroendocrine reactivity to acute stress are important predictors of health outcomes in non-pregnant populations. Greater magnitude and duration of physiological responses have been associated with increased risk of hypertensive disorders and diabetes, greater susceptibility to infectious illnesses, suppression of cell-mediated immunity as well as risk for depression and anxiety disorders. Stress reactivity during pregnancy has unique implications for maternal health, birth outcomes, and fetal development. However, as compared to the larger literature, our understanding of the predictors and consequences of exaggerated stress reactivity in pregnancy is limited. This paper reviews the current state of this literature with an emphasis on gaps in knowledge and future directions. PMID:22800930

  18. Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea

    PubMed Central

    del Hoyo, Alicia; Álvarez, Raquel; del Campo, Eva M.; Gasulla, Francisco; Barreno, Eva; Casano, Leonardo M.

    2011-01-01

    Background and Aims Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed. Methods Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed. Key Results Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (Fv/Fm), the quantum efficiency of PSII (ΦPSII) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP. Conclusions The better physiological performance of TR9 under oxidative

  19. Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.).

    PubMed

    Choudhury, Shuvasish; Sharma, Parul

    2014-12-01

    Chickpea (Cicer arietinum L.) roots were treated with aluminum (Al3+) in calcium chloride (CaCl2) solution (pH 4.7) and growth responses along with physiological and metabolic changes were investigated. Al3+ treatment for 7d resulted in a dose dependent decline of seed germination and inhibition of root growth. A significant (p ≤ 0.05) decline in fresh and dry biomass were observed after 7d of Al3+ stress.The root growth (length) was inhibited after 24 and 48 h of stress imposition. The hydrogen peroxide (H2O2) levels increased significantly (p ≤ 0.05) with respect to control in Al3+ treated roots. The hematoxylin and Evans blue assay indicated significant (p ≤ 0.05) accumulation of Al3+ in the roots and loss of plasma membrane integrity respectively. The time-course evaluation of lipid peroxidation showed increase in malondialdehyde (MDA) after 12, 24 and 48 h of stress imposition. Al3+ treatment did not alter the MDA levels after 2 or 4 h of stress, however, a minor increase was observed after 6 and 10 h of treatment. The proton (1H) nuclear magnetic resonance (NMR) spectrum of the perchloric acid extracts showed variation in the abundance of metabolites and suggested a major metabolic shift in chickpea root during Al3+ stress. The key differences that were observed include changes in energy metabolites. Accumulation of phenolic compounds suggested its possible role in Al3+ exclusion in roots during stress. The results suggested that Al3+ alters growth pattern in chickpea and induces reactive oxygen species (ROS) production that causes physiological and metabolic changes.

  20. Presence of a dog reduces subjective but not physiological stress responses to an analog trauma.

    PubMed

    Lass-Hennemann, Johanna; Peyk, Peter; Streb, Markus; Holz, Elena; Michael, Tanja

    2014-01-01

    Dogs are known to have stress and anxiety reducing effects. Several studies have shown that dogs are able to calm people during cognitive and performance stressors. Recently, therapy dogs have been proposed as a treatment adjunct for post-traumatic stress disorder patients. In this study we aimed to investigate, whether dogs also have anxiety- and stress reducing effect during "traumatic stressors." 80 healthy female participants were randomly assigned to one of four conditions. They were exposed to a "traumatic" film clip (trauma-film-paradigm). For one group of participants a friendly dog was present during the film, one group of participants was accompanied by a friendly human, another control group watched the film with a toy animal and the last group watched the film clip alone. Participants that were accompanied by the dog during the film reported lower anxiety ratings and less negative affect after the film clip as compared to the "toy dog group" and the "alone group." Results of the "dog group" were comparable to the group that was accompanied by a friendly human. There were no differences in physiological stress responses between the four conditions. Our results show that dogs are able to lessen subjectively experienced stress and anxiety during a "traumatic" stress situation. This effect was comparable to that of social support by a friendly person. Implications for PTSD patients are discussed.

  1. Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis.

    PubMed

    Ansell, Brendan R E; McConville, Malcolm J; Baker, Louise; Korhonen, Pasi K; Emery, Samantha J; Svärd, Staffan G; Gasser, Robin B; Jex, Aaron R

    2016-10-01

    Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and α-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control. PMID:27458219

  2. Presence of a dog reduces subjective but not physiological stress responses to an analog trauma

    PubMed Central

    Lass-Hennemann, Johanna; Peyk, Peter; Streb, Markus; Holz, Elena; Michael, Tanja

    2014-01-01

    Dogs are known to have stress and anxiety reducing effects. Several studies have shown that dogs are able to calm people during cognitive and performance stressors. Recently, therapy dogs have been proposed as a treatment adjunct for post-traumatic stress disorder patients. In this study we aimed to investigate, whether dogs also have anxiety- and stress reducing effect during “traumatic stressors.” 80 healthy female participants were randomly assigned to one of four conditions. They were exposed to a “traumatic” film clip (trauma-film-paradigm). For one group of participants a friendly dog was present during the film, one group of participants was accompanied by a friendly human, another control group watched the film with a toy animal and the last group watched the film clip alone. Participants that were accompanied by the dog during the film reported lower anxiety ratings and less negative affect after the film clip as compared to the “toy dog group” and the “alone group.” Results of the “dog group” were comparable to the group that was accompanied by a friendly human. There were no differences in physiological stress responses between the four conditions. Our results show that dogs are able to lessen subjectively experienced stress and anxiety during a “traumatic” stress situation. This effect was comparable to that of social support by a friendly person. Implications for PTSD patients are discussed. PMID:25250009

  3. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings.

    PubMed

    Xue, Da-Wei; Jiang, Hua; Hu, Jiang; Zhang, Xiao-Qin; Guo, Long-Biao; Zeng, Da-Li; Dong, Guo-Jun; Sun, Guo-Chang; Qian, Qian

    2012-12-01

    Global warming, which is caused by greenhouse gas emissions, makes food crops more vulnerable to heat stress. Understanding the heat stress-related mechanisms in crops and classifying heat stress-related genes can increase our knowledge in heat-resistant molecular biology and propel developments in molecular design breeding, which can help rice cope with unfavorable temperatures. In this study, we carried out a physiological analysis of rice plants after heat stress. The results show a dramatic increase in malondialdehyde contents and SOD activities. We successfully isolated 11 heat-related rice genes with known function annotation through DNSH, which is an improved SSH method for screening long cDNA fragments. The reanalysis of microarray data from public database revealed that all these genes displayed various expression patterns after heat stress, drought, cold and salt. Quantitative real-time reverse transcription PCR was also performed to validate the expression of these genes after heat stress. The expressions in 10 genes were all significantly changed except for contig 77, which is a CBL-interacting protein kinase. Several reports have been published about the members of the same gene family.

  4. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings.

    PubMed

    Xue, Da-Wei; Jiang, Hua; Hu, Jiang; Zhang, Xiao-Qin; Guo, Long-Biao; Zeng, Da-Li; Dong, Guo-Jun; Sun, Guo-Chang; Qian, Qian

    2012-12-01

    Global warming, which is caused by greenhouse gas emissions, makes food crops more vulnerable to heat stress. Understanding the heat stress-related mechanisms in crops and classifying heat stress-related genes can increase our knowledge in heat-resistant molecular biology and propel developments in molecular design breeding, which can help rice cope with unfavorable temperatures. In this study, we carried out a physiological analysis of rice plants after heat stress. The results show a dramatic increase in malondialdehyde contents and SOD activities. We successfully isolated 11 heat-related rice genes with known function annotation through DNSH, which is an improved SSH method for screening long cDNA fragments. The reanalysis of microarray data from public database revealed that all these genes displayed various expression patterns after heat stress, drought, cold and salt. Quantitative real-time reverse transcription PCR was also performed to validate the expression of these genes after heat stress. The expressions in 10 genes were all significantly changed except for contig 77, which is a CBL-interacting protein kinase. Several reports have been published about the members of the same gene family. PMID:23037947

  5. The contrasting physiological and subjective effects of chewing gum on social stress.

    PubMed

    Gray, Gemma; Miles, Christopher; Wilson, Nigel; Jenks, Rebecca; Cox, Martin; Johnson, Andrew J

    2012-04-01

    Uncertainty exists with respect to the extent to which chewing gum may attenuate stress-induced rises in cortisol secretion (Johnson, Jenks, Miles, Albert, & Cox, 2011; Scholey et al., 2009; Smith, 2010). The present study used the Trier Social Stress Task (TSST: Kirschbaum, Pirke, & Hellhammer, 1993), a task known to elevate cortisol secretion (Kudielka, Schommer, Hellhammer, & Kirschbaum, 2004), in order to examine the moderating physiological and subjective effects of chewing gum on social stress. Forty participants completed the TSST either with or without chewing gum. As expected, completion of the TSST elevated both cortisol and subjective stress levels, whilst impairing mood. Although gum moderated the perception of stress, cortisol concentrations were higher following the chewing of gum. The findings are consistent with Smith (2010) who argued that elevations in cortisol following the chewing of gum reflect heightened arousal. The findings suggest that chewing gum only benefits subjective measures of stress. The mechanism remains unclear; however, this may reflect increased cerebral blood flow, cognitive distraction, and/or effects secondary to task facilitation. PMID:22123610

  6. [Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata].

    PubMed

    Fan, Su-lu; Yuan, Zhao-he; Feng, Li-juan; Wang, Xiao-hui; Ding, Xue-mei; Zhen, Hong-li

    2011-03-01

    Taking Dahlia pinnata 'Fenxishi' as test material, this paper studied its leaf physiological and biochemical responses to different degrees of drought stress and re-watering. With the increasing extent and duration of drought stress, the leaf relative water content, water potential, and chlorophyll content of D. pinnata 'Fenxishi' decreased significantly, leaf relative electric conductivity and malondialdehyde (MDA) content had a significant increase, plasma membrane was damaged, and massive ions were leaked out. The damage of plasma membrane was most serious under severe stress, and could not recover to the control level after re-watering. The leaf soluble sugar and proline contents also increased significantly with increasing extent and duration of drought stress. Especially for proline content, it was increased significantly in the later period of moderate and severe stresses, suggesting its lower sensitivity to water deficit. The leaf soluble protein content had a trend of down-up-down, while the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) decreased after an initial increase. There were some differences in the responses of the three enzymes to drought stress and reactive oxygen, exhibiting their coordinating role. PMID:21657020

  7. Behavioral and physiological indicators of stress coping styles in larval zebrafish.

    PubMed

    Tudorache, Christian; ter Braake, Anique; Tromp, Mara; Slabbekoorn, Hans; Schaaf, Marcel J M

    2015-01-01

    Different individuals cope with stressors in different ways. Stress coping styles are defined as a coherent set of individual behavioral and physiological differences in the response to a stressor which remain consistent across time and context. In the present study, we have investigated coping styles in larval zebrafish (Danio rerio) at 8 days post-fertilization. Larvae were separated into two groups, according to the emergence sequence from a darkened into a novel well-lit environment, early (EE) and late (LE) emergers. We used brief periods of netting as a stressor. Swimming behavior and kinematics before and after netting stress were analyzed, as were whole-body cortisol levels before and at 10, 30 and 60 min after the stress event. The results show that general swimming activity was different between EE and LE larvae, with lower baseline cumulative distance and more erratic swimming movements in EE than in LE larvae. EE larvae showed a faster recovery to baseline levels after stress than LE larvae. Cortisol baseline levels were not different between EE and LE larvae, but peak levels after stress were higher and the recovery towards basal levels was faster in EE than in LE larvae. This study shows that coping styles are manifest in zebrafish larvae, and that behavior and swimming kinematics are associated with different cortisol responses to stress. A better understanding of the expression of coping styles may be of great value for medical applications, animal welfare issues and conservation.

  8. Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake.

    PubMed

    Egan, Ann E; Ulrich-Lai, Yvonne M

    2015-10-15

    Pharmacological rewards, such as drugs of abuse, evoke physiological stress responses, including increased heart rate and blood pressure, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. It is not clear to what extent the natural reward of palatable foods elicits similar physiological responses. In order to address this question, HPA axis hormones, heart rate, blood pressure and brain pCREB immunolabeling were assessed following novel and repeated sucrose exposure. Briefly, adult, male rats with ad libitum food and water were given either a single (day 1) or repeated (twice-daily for 14 days) brief (up to 30 min) exposure to a second drink bottle containing 4 ml of 30% sucrose drink vs. water (as a control for bottle presentation). Sucrose-fed rats drank more than water-fed on all days of exposure, as expected. On day 1 of exposure, heart rate, blood pressure, plasma corticosterone, and locomotion were markedly increased by presentation of the second drink bottle regardless of drink type. After repeated exposure (day 14), these responses habituated to similar extents regardless of drink type and pCREB immunolabeling in the hypothalamic paraventricular nucleus (PVN) also did not vary with drink type, whereas basolateral amygdala pCREB was increased by sucrose intake. Taken together, these data suggest that while sucrose is highly palatable, physiological stress responses were evoked principally by the drink presentation itself (e.g., an unfamiliar intervention by the investigators), as opposed to the palatability of the offered drink.

  9. Meta-analysis of digital game and study characteristics eliciting physiological stress responses.

    PubMed

    van der Vijgh, Benny; Beun, Robbert-Jan; Van Rood, Maarten; Werkhoven, Peter

    2015-08-01

    Digital games have been used as stressors in a range of disciplines for decades. Nonetheless, the underlying characteristics of these stressors and the study in which the stressor was applied are generally not recognized for their moderating effect on the measured physiological stress responses. We have therefore conducted a meta-analysis that analyzes the effects of characteristics of digital game stressors and study design on heart rate, systolic and diastolic blood pressure, in studies carried out from 1976 to 2012. In order to assess the differing quality between study designs, a new scale is developed and presented, coined reliability of effect size. The results show specific and consistent moderating functions of both game and study characteristics, on average accounting for around 43%, and in certain cases up to 57% of the variance found in physiological stress responses. Possible cognitive and physiological processes underlying these moderating functions are discussed, and a new model integrating these processes with the moderating functions is presented. These findings indicate that a digital game stressor does not act as a stressor by virtue of being a game, but rather derives its stressor function from its characteristics and the methodology in which it is used. This finding, together with the size of the associated moderations, indicates the need for a standardization of digital game stressors.

  10. Effects of restricted feeding on physiological stress parameters in growing broiler breeders.

    PubMed

    de Jong, I C; van Voorst, S; Ehlhardt, D A; Blokhuis, H J

    2002-05-01

    1. In previous studies, a lack of agreement in measurements of plasma corticosterone concentrations and heterophil:lymphocyte (H/L) ratio as physiological indices of stress, caused by hunger and frustration in restricted-fed broiler breeders, was observed. It could be suggested that the differences between previous studies were caused by differences in duration of restriction and time of the day of the measurements. Therefore, in the present study the plasma corticosterone concentration and the H/L ratio were again determined in restricted- and ad libitum-fed growing broiler breeders, taking possible causes of disagreement between previous studies into account. In addition, we measured the daily rhythm in body temperature and heart rate, and the corticosterone responses to an acute stressor as physiological indices of stress. 2. Female broiler breeders (64 per treatment, housed in groups of 4 birds) were used in the experiment. Behaviour, baseline plasma corticosterone concentrations and H/L ratio were determined at 21 d of age (immediately after the start of food restriction), and at 42 and 63 d of age. Body temperature, heart rate and activity were measured by radiotelemetry for 36 h at 49 and 70 d of age. In addition, the plasma corticosterone response to acute stress (5 min manual restraint) was measured at 77 or 78 d of age. 3. Restricted broiler breeders had higher plasma corticosterone concentrations at 42 and 63 d of age, but no differences in H/L. ratio were found between restricted birds and unrestricted control birds. Restricted broiler breeders had a higher corticosterone response to 5 min manual restraint than unrestricted birds. Restricted birds displayed a clear day-night rhythm in body temperature, heart rate and activity whereas such a rhythm was blunted in ad libitum-fed birds. 4. It is discussed that some physiological differences (plasma corticosterone concentrations, body temperature and heart rate) between ad libitum-fed and restricted broiler

  11. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased

  12. Behavioral and physiological responses of female prairie voles (Microtus ochrogaster) to various stressful conditions

    PubMed Central

    Smith, Adam S.; Lieberwirth, Claudia; Wang, Zuoxin

    2014-01-01

    Stressful life events elicit hypothalamic-pituitary-adrenal (HPA) axis activation, which may alter psychological states or behavioral routines. Therefore, the current study focused on the HPA axis response to better understand such manifestations in female prairie voles (Microtus ochrogaster). In Experiment 1, females were stressed for 1 h via one of four stressors: exposure to a novel environment, immobilization (‘plastic mesh’), brief social defeat, or prolonged social defeat. Following a 30 min recovery, the females received a 5-min elevated plus maze (EPM) test and, subsequently, blood was collected to measure plasma corticosterone concentrations. Only immobilization stress induced an anxiety-like behavioral response in the EPM test and elevated plasma corticosterone levels compared to the control groups. Corticosterone concentrations were also significantly elevated following exposure to prolonged social defeat compared to the control conditions, but not after novel environment stress or short social defeat. In Experiment 2, females were exposed to immobilization stress over 1, 3, or 7 days in a daily (predictable; pIMO) or irregular (unpredictable; uIMO) schedule. The biobehavioral stress response in females exposed to pIMO for 3 or 7 days did not differ significantly from controls, suggesting these females habituated. By comparison, females exposed to uIMO over 3 or 7 days did not habituate behaviorally or physiologically, even producing augmented corticosterone levels. In both experiments, positive correlations were found between corticosterone levels and anxiety-like behaviors in the EPM test. Together, our data suggest that the stress response by female prairie voles is dependent on stress intensity, source, previous experience, and predictability. Furthermore, the HPA axis response, as evident by corticosterone levels, is associated with the impact that these factors have on behavioral routine. PMID:23647082

  13. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    PubMed

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  14. A comparison of physiological indicators of sublethal cadmium stress in wetland plants

    USGS Publications Warehouse

    Mendelssohn, I.A.; McKee, K.L.; Kong, T.

    2001-01-01

    Physiological indices, including photosynthesis, chlorophyll fluorescence, adenylate energy charge (AEC) ratio, and leaf reflectance, were determined for Typha domingensis and Spartina alterniflora in response to increasing concentrations of Cd and compared with the growth responses of these species. Leaf expansion, the live/total ratio of plant aboveground biomass, and the aboveground regrowth rate after the initial harvests were significantly reduced with increasing Cd concentration in the growth medium. Of the four physiological responses measured, only photosynthesis and AEC responded to the Cd treatment before damage was visually apparent. Also, these indices were significantly correlated with leaf expansion rate and live/total ratio in most instances. Except at the end of the experiment, when the most stressed plants began to die, the Fv/Fm ratio was not significantly affected by the Cd treatment. The leaf spectral reflectance parameters showed no significant change during the entire treatment period. The significant correlation between the stress indicators and plant growth supported the findings that photosynthesis and AEC were the most responsive of the indicators tested, however, further research investigating other chlorophyll fluorescence and leaf reflectance parameters may demonstrate as well the value of these indicators in quantifying sublethal stress. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. Changes in the Physiological Parameters of SbPIP1-Transformed Wheat Plants under Salt Stress

    PubMed Central

    Yu, G. H.; Zhang, X.; Ma, H. X.

    2015-01-01

    The SbPIP1 gene is a new member of the plasma membrane major intrinsic gene family cloned from the euhalophyte Salicornia bigelovii Torr. In order to understand the physiological responses in plants that are mediated by the SbPIP1 gene, SbPIP1-overexpressing wheat lines and WT plants of the wheat cv. Ningmai 13 were treated with salt stress. Several physiological parameters, such as the proline content, the malondialdehyde (MDA) content, and the content of soluble sugars and proteins, were compared between SbPIP1-transformed lines and WT plants under normal growth or salt stress conditions. The results indicate that overexpression of the SbPIP1 gene can increase the accumulation of the osmolyte proline, decrease the MDA content, and enhance the soluble sugar biosynthesis in the early period but has no influence on the regulation of soluble protein biosynthesis in wheat. The results suggest that SbPIP1 contributes to salt tolerance by facilitating the accumulation of the osmolyte proline, increasing the antioxidant response, and increasing the biosynthesis of soluble sugar in the early period. These results indicate SbPIP1 plays an important role in the salt stress response. Overexpression of SbPIP1 might be used to improve the salt tolerance of important crop plants. PMID:26495278

  16. Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective

    PubMed Central

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2016-01-01

    Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other “omics” approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the “omics” level, to understand stress memory in plants better. PMID:26913046

  17. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences

    PubMed Central

    Arensdorf, Angela M.; Diedrichs, Danilo; Rutkowski, D. Thomas

    2013-01-01

    The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes. PMID:24348511

  18. Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    PubMed Central

    Moreno-Rueda, Gregorio; Redondo, Tomás; Trenzado, Cristina E.; Sanz, Ana; Zúñiga, Jesús M.

    2012-01-01

    Background Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. Methodology/Principal Findings We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. Conclusions/Significance These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability. PMID:22808144

  19. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    NASA Astrophysics Data System (ADS)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  20. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress.

    PubMed

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-03

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L(-1) K2SiO3 · nH2O addition obviously improved the plant growth. Although Na(+) concentration in plant organs was drastically increased with increasing salinity, higher levels of K(+)/Na(+) ratio was obtained after K2SiO3 · nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3 · nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3 · nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  1. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress.

    PubMed

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-01-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L(-1) K2SiO3 · nH2O addition obviously improved the plant growth. Although Na(+) concentration in plant organs was drastically increased with increasing salinity, higher levels of K(+)/Na(+) ratio was obtained after K2SiO3 · nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3 · nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3 · nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant. PMID:26235534

  2. Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress.

    PubMed

    Sivaci, Aysel; Kaya, A; Duman, Sevcan

    2014-09-01

    In this study, the changes caused by chilling stress on some physiological parameters of pepino (Solanum muricatum Ait.) plant and the effects of ascorbic acid (100 mM) applied exogenously on these changes were examined. For this purpose, the photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophylls and carotenoids), ascorbic acid, total phenolic compounds, malondialdehyde and proline contents in leaves of pepino taken on 5th and 10th days were determined. As a result of chilling stress, it was found that while the photosynthetic pigments and proline contents decreased in pepino leaves, the ascorbic acid, total phenolic compounds and malondialdehyde contents increased. In plants which were subjected to pre-treatment of ascorbic acid on the 10th day of stress, ascorbic acid and proline contents increased while a decrease was observed in malondialdehyde content, compared to stress group without pre-treated. This study may be important for explaining resistance induced by treatment of exogenous ascorbic acid in pepino exposed to chilling stress.

  3. Physiological and transcriptional memory in guard cells during repetitive dehydration stress.

    PubMed

    Virlouvet, Laetitia; Fromm, Michael

    2015-01-01

    Arabidopsis plants subjected to a daily dehydration stress and watered recovery cycle display physiological and transcriptional stress memory. Previously stressed plants have stomatal apertures that remain partially closed during a watered recovery period, facilitating reduced transpiration during a subsequent dehydration stress. Guard cells (GCs) display transcriptional memory that is similar to that in leaf tissues for some genes, but display GC-specific transcriptional memory for other genes. The rate-limiting abscisic acid (ABA) biosynthetic genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and ALDEHYDE OXIDASE 3 (AAO3) are expressed at much higher levels in GCs, particularly during the watered recovery interval, relative to their low levels in leaves. A genetic analysis using mutants in the ABA signaling pathway indicated that GC stomatal memory is ABA-dependent, and that ABA-dependent SNF1-RELATED PROTEIN KINASE 2.2 (SnRK2.2), SnRK2.3 and SnRK2.6 have distinguishable roles in the process. SnRK2.6 is more important for overall stomatal control, while SnRK2.2 and SnRK2.3 are more important for implementing GC stress memory in the subsequent dehydration response. Collectively, our results support a model of altered ABA production in GCs that maintains a partially closed stomatal aperture during an overnight watered recovery period.

  4. Effects of routine handling and tagging procedures on physiological stress responses in juvenile chinook salmon

    USGS Publications Warehouse

    Sharpe, C.S.; Thompson, D.A.; Blankenship, H.L.; Schreck, C.B.

    1998-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha were subjected to handling and tagging protocols typical of normal hatchery operations and monitored for their physiological response to stress. Treatments included coded-wire-tagging, counting, ventral fin clipping, adipose fin clipping, and a procedure simulating a pond split. Treatment fish were also subjected to a standardized stress challenge (1 h confinement) to evaluate their ability to deal with disturbances subsequent to a handling or tagging procedure. Circulating levels of cortisol and glucose were used as indicators of stress. Each of the treatments elicited very similar responses among treatment groups. Cortisol increased from resting levels of about 20 ng/mL to about 90 ng/mL by 1 h poststress and returned to near resting levels by 8 h poststress. Glucose levels increased from 50 mg/dL to about 80 mg/dL by 1 h poststress and remained elevated for much of the experiment. The cortisol and glucose responses to the confinement stress did not differ over time or among treatments. However, the confinement stress results do suggest a small but significant cumulative response, indicating small residual effects of the original handling protocols. No deaths were noted among treatment groups.

  5. Physiologic Stresses Reveal a Salmonella Persister State and TA Family Toxins Modulate Tolerance to These Stresses

    PubMed Central

    Silva-Herzog, Eugenia; McDonald, Erin M.; Crooks, Amy L.; Detweiler, Corrella S.

    2015-01-01

    Bacterial persister cells are considered a basis for chronic infections and relapse caused by bacterial pathogens. Persisters are phenotypic variants characterized by low metabolic activity and slow or no replication. This low metabolic state increases pathogen tolerance to antibiotics and host immune defenses that target actively growing cells. In this study we demonstrate that within a population of Salmonella enterica serotype Typhimurium, a small percentage of bacteria are reversibly tolerant to specific stressors that mimic the macrophage host environment. Numerous studies show that Toxin-Antitoxin (TA) systems contribute to persister states, based on toxin inhibition of bacterial metabolism or growth. To identify toxins that may promote a persister state in response to host-associated stressors, we analyzed the six TA loci specific to S. enterica serotypes that cause systemic infection in mammals, including five RelBE family members and one VapBC member. Deletion of TA loci increased or decreased tolerance depending on the stress conditions. Similarly, exogenous expression of toxins had mixed effects on bacterial survival in response to stress. In macrophages, S. Typhimurium induced expression of three of the toxins examined. These observations indicate that distinct toxin family members have protective capabilities for specific stressors but also suggest that TA loci have both positive and negative effects on tolerance. PMID:26633172

  6. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth.

  7. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth. PMID:25827961

  8. Transportation of young beef bulls alters circulating physiological parameters that may be effective biomarkers of stress.

    PubMed

    Buckham Sporer, K R; Weber, P S D; Burton, J L; Earley, B; Crowe, M A

    2008-06-01

    Transportation causes stress in cattle that may alter numerous physiological variables with a negative impact on production and health. The objectives of the current study were to investigate the physiological effects of truck transportation and to characterize a pattern of phenotypes in the circulation that may aid in the early identification of stress-susceptible animals that often succumb to severe respiratory disease. Thirty-six young beef bulls (Aberdeen Angus, n = 12; Friesian, n = 12; and Belgian Blue x Friesian, n = 12) were subjected to a 9-h truck transportation by road. Blood (10 mL) was collected at -24, 0, 4.5, 9.75, 14.25, 24, and 48 h relative to the initiation of transportation (0 h). Plasma was collected for the assay of various metabolic, inflammatory, and steroid variables, and total leukocyte counts were determined in whole blood at each time point. Body weight and rectal temperature were recorded at -24, 9.75, and 48 h. Transportation decreased measures of protein metabolism in the plasma, including albumin (P = 0.002), globulin (P < 0.001), urea (P = 0.006), and total protein (P < 0.001), and increased creatine kinase (P < 0.001). The energy substrate beta-hydroxybutyrate was not changed (P = 0.27). Acute phase proteins haptoglobin and fibrinogen were both decreased (P < 0.001), whereas total leukocyte counts were elevated (P = 0.002). Circulating steroid concentrations were altered, because a classical acute increase in plasma cortisol was observed with the onset of transit (P < 0.001), in association with a decrease in dehydroepiandrosterone (P = 0.07), resulting in a profound increase in cortisol:dehydroepiandrosterone ratio (P < 0.001). Plasma testosterone was decreased, whereas plasma progesterone was increased (P < 0.001) in association with the increase in cortisol (P < 0.001). There was also an effect of breed for all variables except plasma urea, creatine kinase, and testosterone, perhaps indicating that a genetic component

  9. Controlled Vestibular Stimulation, Standardization Of A Physiological Method To Release Stress In College Students.

    PubMed

    Sailesh, Kumar Sai; Mukkadan, J K

    2015-01-01

    The present study was designed to standardize optimal vestibular stimulation and to investigate its impact on anxiety levels in college students. Vestibular stimulation was achieved by swinging on a swing (Back to front direction) and the participants were advised to adjust frequency, duration and intensity, according to comfort. Frequency, intensity and duration were recorded manually. The anxiety status was assessed by using Spielberger state-trait anxiety inventory (STAI) before and after vestibular stimulation. It has been observed that the anxiety status was significantly decreased after vestibular stimulation. There is a need for future study with larger sample size to substantiate the therapeutic validity of vestibular stimulation as a physiological treatment for stress relief and stress related disorders among college students.

  10. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs.

    PubMed

    Tennessen, Jennifer B; Parks, Susan E; Langkilde, Tracy

    2014-01-01

    Human-generated noise has profoundly changed natural soundscapes in aquatic and terrestrial ecosystems, imposing novel pressures on ecological processes. Despite interest in identifying the ecological consequences of these altered soundscapes, little is known about the sublethal impacts on wildlife population health and individual fitness. We present evidence that noise induces a physiological stress response in an amphibian and impairs mate attraction in the natural environment. Traffic noise increased levels of a stress-relevant glucocorticoid hormone (corticosterone) in female wood frogs (Lithobates sylvaticus) and impaired female travel towards a male breeding chorus in the field, providing insight into the sublethal consequences of acoustic habitat loss. Given that prolonged elevated levels of corticosterone can have deleterious consequences on survival and reproduction and that impaired mate attraction can impact population persistence, our results suggest a novel pathway by which human activities may be imposing population-level impacts on globally declining amphibians.

  11. Controlled Vestibular Stimulation, Standardization Of A Physiological Method To Release Stress In College Students.

    PubMed

    Sailesh, Kumar Sai; Mukkadan, J K

    2015-01-01

    The present study was designed to standardize optimal vestibular stimulation and to investigate its impact on anxiety levels in college students. Vestibular stimulation was achieved by swinging on a swing (Back to front direction) and the participants were advised to adjust frequency, duration and intensity, according to comfort. Frequency, intensity and duration were recorded manually. The anxiety status was assessed by using Spielberger state-trait anxiety inventory (STAI) before and after vestibular stimulation. It has been observed that the anxiety status was significantly decreased after vestibular stimulation. There is a need for future study with larger sample size to substantiate the therapeutic validity of vestibular stimulation as a physiological treatment for stress relief and stress related disorders among college students. PMID:27530012

  12. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs

    PubMed Central

    Tennessen, Jennifer B.; Parks, Susan E.; Langkilde, Tracy

    2014-01-01

    Human-generated noise has profoundly changed natural soundscapes in aquatic and terrestrial ecosystems, imposing novel pressures on ecological processes. Despite interest in identifying the ecological consequences of these altered soundscapes, little is known about the sublethal impacts on wildlife population health and individual fitness. We present evidence that noise induces a physiological stress response in an amphibian and impairs mate attraction in the natural environment. Traffic noise increased levels of a stress-relevant glucocorticoid hormone (corticosterone) in female wood frogs (Lithobates sylvaticus) and impaired female travel towards a male breeding chorus in the field, providing insight into the sublethal consequences of acoustic habitat loss. Given that prolonged elevated levels of corticosterone can have deleterious consequences on survival and reproduction and that impaired mate attraction can impact population persistence, our results suggest a novel pathway by which human activities may be imposing population-level impacts on globally declining amphibians. PMID:27293653

  13. Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats.

    PubMed

    Garcia, Lêda S B; Comim, Clarissa M; Valvassori, Samira S; Réus, Gislaine Z; Stertz, Laura; Kapczinski, Flávio; Gavioli, Elaine C; Quevedo, João

    2009-04-30

    Several studies have supported the idea that ionotropic glutamate N-methyl-d-aspartate receptor (NMDA) is an important player in the etiology of psychopathologies, such as anxiety disorders and major depression. Additionally, studies have shown that ketamine induces antidepressant effects in humans as well as in rodents subjected to animal models of depression. In this context, the present study was aimed to evaluate behavioral and physiological effects of acute and chronic administration of ketamine, a NMDA receptor antagonist, in rats exposed to chronic mild stress (CMS). After 40 days of CMS, rats were treated with ketamine (15 mg/kg) and sweet food consumption, body and adrenal gland weight, corticosterone and adrenocorticotropic (ACTH) hormone levels, and hippocampal BDNF protein levels were assessed. Our findings demonstrated that CMS evoked anhedonia, induced hypertrophy of adrenal gland, impaired gain of body weight and increased corticosterone and ACTH circulating levels in rats. Acute and chronic treatment with ketamine reversed the increase in adrenal gland weight, promoted regain of body weight, and normalized corticosterone and ACTH circulating levels. Repeated, but not acute, administration of ketamine reversed anhedonia-like behavior, although the treatment with ketamine per se increased sweet food consumption in non-stressed rats. Finally, acute and chronic ketamine treatment did not alter hippocampal BDNF protein levels in stressed rats. In conclusion, these findings support the idea of a putative role of NMDA receptors in mood-related symptoms, and rapid and robust effects of ketamine in reverting mainly physiological alterations induced by chronic mild stressful situations in rats.

  14. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  15. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  16. Stress and physiological, behavioral and performance patterns of children under varied air ion levels

    NASA Astrophysics Data System (ADS)

    Fornof, K. T.; Gilbert, G. O.

    1988-12-01

    The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.

  17. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach.

    PubMed

    Granda, Víctor; Delatorre, Carolina; Cuesta, Candela; Centeno, María L; Fernández, Belén; Rodríguez, Ana; Feito, Isabel

    2014-07-01

    Seasonal drought, typical of temperate and Mediterranean environments, creates problems in establishing plantations and affects development and yield, and it has been widely studied in numerous species. Forestry fast-growing species such as Eucalyptus spp. are an important resource in such environments, selected clones being generally used for production purposes in plantations in these areas. However, use of mono-specific plantations increases risk of plant loss due to abiotic stresses, making it essential to understand differences in an individual clone's physiological responses to drought stress. In order to study clonal differences in drought responses, nine Eucalyptus globulus (Labill.) clones (C14, C46, C97, C120, C222, C371, C405, C491 and C601) were gradually subjected to severe drought stress (<14% of field capacity). A total of 31 parameters, physiological (e.g., photosynthesis, gas exchange), biochemical (e.g., chlorophyll content) and hormonal (abscisic acid [ABA] content), were analysed by classic and multivariate techniques. Relationships between parameters were established, allowing related measurements to be grouped into functional units (pigment, growth, water and ABA). Differences in these units showed that there were two distinct groups of E. globulus clones on the basis of their different strategies when faced with drought stress. The C14 group (C14, C120, C405, C491 and C601) clones behave as water savers, maintaining high water content and showing high stomatal adjustment, and reducing their aerial growth to a great extent. The C46 group (C46, C97, C222 and C371) clones behave as water spenders, reducing their water content drastically and presenting osmotic adjustment. The latter maintains the highest growth rate under the conditions tested. The method presented here can be used to identify appropriate E. globulus clones for drought environments, facilitating the selection of material for production and repopulation environments.

  18. Physiological stress response to loss of social influence and threats to masculinity.

    PubMed

    Taylor, Catherine J

    2014-02-01

    Social influence is an important component of contemporary conceptualizations of masculinity in the U.S. Men who fail to achieve masculinity by maintaining social influence in the presence of other men may be at risk of stigmatization. As such, men should be especially likely to exhibit a stress response to loss of social influence in the presence of other men. This study assesses whether men who lose social influence exhibit more of a stress response than men who gain social influence, using data collected in a laboratory setting where participants were randomly assigned into four-person groups of varying sex compositions. The groups were videotaped working on two problem-solving tasks. Independent raters assessed change in social influence using a well-validated measure borrowed from experimental work in the Status Characteristics Theory tradition. Cortisol is used as a measure of stress response because it is known to increase in response to loss of social esteem. Results show that young men who lose social influence while working with other young men exhibit cortisol response. In contrast women do not exhibit cortisol response to loss of social influence, nor do men working with women. Results are consistent with the hypothesis that loss of social influence in men may be associated with a physiological stress response because maintaining social influence is very important to men while in the presence of other men. This physiological response to loss of social influence underscores the importance to men of achieving masculinity through gaining and maintaining social influence, and avoiding the stigma associated with the failure to do so.

  19. Physiological stress response to loss of social influence and threats to masculinity.

    PubMed

    Taylor, Catherine J

    2014-02-01

    Social influence is an important component of contemporary conceptualizations of masculinity in the U.S. Men who fail to achieve masculinity by maintaining social influence in the presence of other men may be at risk of stigmatization. As such, men should be especially likely to exhibit a stress response to loss of social influence in the presence of other men. This study assesses whether men who lose social influence exhibit more of a stress response than men who gain social influence, using data collected in a laboratory setting where participants were randomly assigned into four-person groups of varying sex compositions. The groups were videotaped working on two problem-solving tasks. Independent raters assessed change in social influence using a well-validated measure borrowed from experimental work in the Status Characteristics Theory tradition. Cortisol is used as a measure of stress response because it is known to increase in response to loss of social esteem. Results show that young men who lose social influence while working with other young men exhibit cortisol response. In contrast women do not exhibit cortisol response to loss of social influence, nor do men working with women. Results are consistent with the hypothesis that loss of social influence in men may be associated with a physiological stress response because maintaining social influence is very important to men while in the presence of other men. This physiological response to loss of social influence underscores the importance to men of achieving masculinity through gaining and maintaining social influence, and avoiding the stigma associated with the failure to do so. PMID:24507910

  20. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  1. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress

    PubMed Central

    Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the

  2. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

    PubMed

    Wang, Jǖgang; Zheng, Rong; Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the

  3. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

    PubMed

    Wang, Jǖgang; Zheng, Rong; Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the

  4. Co-species housing in mice and rats: effects on physiological and behavioral stress responsivity.

    PubMed

    Arndt, Saskia S; Lohavech, Dissaya; van't Klooster, José; Ohl, Frauke

    2010-03-01

    Co-species housing of mice and rats is common practice at most breeding facilities and research laboratories, neglecting the possible effects on the animals. We investigated physiological as well as behavioral stress-reactivity in mice and rats which were either derived from a co-species or species-separated housing condition at the breeding facilities. The animals were kept under the housing condition they were used to or assigned to the opposite one. Co-species housing had a significant impact on acute stress reactivity in mice and rats but only if they were used to this housing condition throughout their lives. Moreover, the stress-effects appeared to be long lasting. Assigning animals, derived from a species-separated housing condition, to co-species housing led to chronic stress in mice and affected experimental behavior of rats. Our findings led to the conclusion that co-species housing in mice and rats should be avoided, supporting the recommendations by the U.S. National Institutes of Health (NIH) and the Dutch Ministry of Health, Welfare and Sport (VWS). In order to support the interpretation, facilitate the reproducibility and comparability and subsequently the generalizability of experimental results, breeding facilities should at least provide detailed information about their housing conditions. PMID:20079742

  5. Association between perceived racism and physiological stress indices in Native Hawaiians.

    PubMed

    Kaholokula, Joseph Keawe'aimoku; Grandinetti, Andrew; Keller, Stefan; Nacapoy, Andrea H; Kingi, Te Kani; Mau, Marjorie K

    2012-02-01

    The association between racism and the physical health of native U.S. populations has yet to be examined despite their high risk for stress-related disorders and a history of discrimination toward them. We examined the correlation between perceived racism and the two physiological stress indices of cortisol level and blood pressure in 146 adult Native Hawaiians. Attributed and felt racism were assessed with a 10-item shortened version of the Oppression Questionnaire. Height, weight, blood pressure, and salivary cortisol samples (AM and PM) were collected and analyzed along with information on Hawaiian ancestry, BMI, age, sex, marital status, education level, general psychological stress, and ethnic identity. The results indicated that Native Hawaiians reporting more attributed racism had significantly (P < .05) lower average cortisol levels than those reporting less attributed racism, after adjusting for socio-demographic, biological, and psychosocial confounders. Native Hawaiians reporting more felt racism had a significantly higher systolic blood pressure than those reporting less, but this association was not significant after adjusting for the aforementioned confounders. Racism appears to be a chronic stressor that can "get under the skin" of Native Hawaiians by affecting their physical health and risk for stress-related diseases, possibly, through mechanisms of cortisol dysregulation.

  6. Physiological reactions of the denture-bearing mucosa following mechanical stress

    NASA Astrophysics Data System (ADS)

    Niedermeier, Wilhelm; Gutmann, F.; Kessler, Manfred D.; Frank, K. H.

    1994-02-01

    The mucosa of the edentulous ridges and the hard palate is used to bear denture bases. While the etiology of mucosal disorders caused by material and microbiological factors is well known, the effects of mechanical stress on denture bearing mucosa are comparatively unexplored. To learn more about reactions of compensation against mechanical stress of the denture bearing mucosa we studied physiology of the tissues covering the alveolar ridge and the hard palate. We took non-invasive measurements of the concentration and oxygenation of hemoglobin in several places of the mucosa by using a micro-lightguide spectrophotometer (EMPHO). On this occasion the magnitude and duration of the force, the frequency of the loading and the interval of rest have been varied. The result was that the concentration of hemoglobin decreased significantly inside the mucosa when the denture bearing mucosa was stressed already by a slight but constant compression load. However, a total ischemia was not seen even in great mechanical loads. After the stress ended a reactive hyperemia took place spontaneously.

  7. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA. PMID:23733692

  8. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  9. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.

    PubMed

    Jia, Huan; Shao, Mingquan; He, Yongjun; Guan, Rongzhan; Chu, Pu; Jiang, Haidong

    2015-01-01

    Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future. PMID:26691228

  10. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    PubMed

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response.

  11. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves

    PubMed Central

    He, Yongjun; Guan, Rongzhan; Chu, Pu; Jiang, Haidong

    2015-01-01

    Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future. PMID:26691228

  12. Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel.

    PubMed

    Orr, Adrienne L; Lohse, Lonita A; Drew, Kelly L; Hermes-Lima, Marcelo

    2009-06-01

    Hibernation in Arctic ground squirrels (AGS), Spermophilus parryii, is characterized by a profound decrease in oxygen consumption and metabolic demand during torpor that is punctuated by periodic rewarming episodes, during which oxygen consumption increases dramatically. The extreme physiology of torpor or the surge in oxygen consumption during arousal may increase production of reactive oxygen species, making hibernation an injurious process for AGS. To determine if AGS tissues experience cellular stress during rewarming, we measured carbonyl proteins, lipid peroxide end products and percent oxidized glutathione in brown adipose tissue (BAT) and liver of torpid, hibernating (hAGS), late arousal (laAGS), and cold-adapted, euthermic AGS (eAGS). In BAT carbonyl proteins and lipid peroxide end products were higher in eAGS and laAGS than in hAGS. By contrast, in liver, no significant difference in carbonyl proteins was observed. In another group of animals, comparison of carbonyl proteins and percent oxidized glutathione in frontal cortex, liver, and BAT of eAGS and hAGS showed no evidence of oxidative stress associated with torpor. These results indicate that increased thermogenesis associated with arousal AGS results in tissue specific oxidative stress in BAT but not in liver. Moreover, torpor per se is largely devoid of oxidative stress, likely due to suppression of oxidative metabolism.

  13. Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit.

    PubMed

    Martínez, Brezo; Arenas, F; Rubal, M; Burgués, S; Esteban, R; García-Plazaola, I; Figueroa, F L; Pereira, R; Saldaña, L; Sousa-Pinto, I; Trilla, A; Viejo, R M

    2012-10-01

    Climate change is driving species range shifts worldwide. However, physiological responses related to distributional changes are not fully understood. Oceanographers have reported an increase in ocean temperature in the northwest Iberian Peninsula that is potentially related to the decline in some cold-temperate intertidal macroalgae in the Cantabrian Sea, namely Fucus serratus. Low tide stress could also play a role in this decline. We performed one mensurative (in situ) and two manipulative (in culture) experiments designed to evaluate the interactive effects of some physical factors. The first experiment analysed field response to low tide stress in marginal (mid-Cantabrian Sea and northern Portugal) versus central (Galicia) populations of F. serratus. Then a second experiment was performed that utilized either harsh or mild summer conditions of atmospheric temperature, irradiance, humidity, and wind velocity to compare the responses of individuals from one marginal and one central population to low tide stress. Finally, the combined effect of sea temperature and the other factors was evaluated to detect interactive effects. Changes in frond growth, maximal photosynthetic quantum yield (F(v)/F(m)), temperature, and desiccation were found. Three additive factors (solar irradiation, ocean and air temperatures) were found to drive F. serratus distribution, except under mildly humid conditions that ameliorated atmospheric thermal stress (two additive factors). Mid-Cantabrian Sea temperatures have recently increased, reaching the inhibitory levels suggested in this study of F. serratus. We also expect an additive secondary contribution of low tide stress to this species decline. On the northern Portugal coast, ocean warming plus low tide stress has not reached this species' inhibition threshold. No significant differential responses attributed to the population of origin were found. Mechanistic approaches that are designed to analyse the interactive effects of

  14. Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival

    PubMed Central

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen’s capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen’s physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen’s fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors. PMID:27578396

  15. Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

    PubMed

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen's capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen's physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen's fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors.

  16. Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

    PubMed

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen's capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen's physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen's fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors. PMID:27578396

  17. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    PubMed

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  18. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification

    PubMed Central

    Ferrier-Pagès, Christine; Hennige, Sebastian J.; Murray, Fiona; Rottier, Cécile; Wicks, Laura C.; Roberts, J. Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species. PMID:26855864

  19. Genetic variations alter physiological responses following heat stress in 2 strains of laying hens.

    PubMed

    Felver-Gant, J N; Mack, L A; Dennis, R L; Eicher, S D; Cheng, H W

    2012-07-01

    Heat stress (HS) is a major problem experienced by the poultry industry during high-temperature conditions. The ability to manage the detrimental effects of HS can be attributed to multiple factors, including genetic background of flocks. The objective of the present study was to determine the genetic variation in HS effects on laying hens' physiological homeostasis. Ninety 28-wk-old White Leghorn hens of 2 strains were used: a commercial line of individually selected hens for high egg production, DeKalb XL (DXL), and a line of group-selected hens for high productivity and survivability, named kind gentle bird (KGB). Hens were randomly paired by strain and assigned to hot or control treatment for 14 d. Physical and physiological parameters were analyzed at d 8 and 14 posttreatment. Compared with controls, HS increased hen's core body temperature (P < 0.05) and decreased BW (P < 0.05) at d 8 and 14. Heat shock protein 70 concentrations in the liver were greater in hens exposed to HS (P < 0.05). Compared with DXL hens, KGB hens had higher heat shock protein 70 concentrations (P < 0.05). The hens' liver weight decreased following HS, with less of a response in the KGB line (P < 0.05). The data indicate HS has detrimental effects on the physiology of laying hens due to genetic variations. These data provide evidence that is valuable for determining genetic interventions for laying hens under HS.

  20. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology.

    PubMed

    Kolenc, Zala; Vodnik, Dominik; Mandelc, Stanislav; Javornik, Branka; Kastelec, Damijana; Čerenak, Andreja

    2016-08-01

    Drought is one of the major environmental devastating stressors that impair the growth and productivity of crop plants. Despite the relevance of drought stress, changes in physiology and resistance mechanisms are not completely understood for certain crops, including hop (Humulus lupulus L.). In this research the drought response of hop was studied using a conventional physiological approach (gas exchange techniques, fluorescence, relative water content measurements) and proteomic analysis (2D-DIGE). Plants of two cultivars (Aurora and Savinjski golding) were exposed to progressive drought in a pot experiment and analysed at different stress stages (mild, moderate and severe). Measurements of relative water content revealed a hydrostable water balance of hop. Photosynthesis was decreased due to stomatal and non-stomatal limitation to the same extent in both cultivars. Of 28 identified differentially abundant proteins, the majority were down regulated and included in photosynthetic (41%) and sugar metabolism (33%). Fifteen % of identified proteins were classified into the nitrogen metabolism, 4% were related to a ROS related pathway and 7% to other functions. PMID:27085598

  1. Genome duplication and the evolution of physiological responses to water stress.

    PubMed

    Maherali, Hafiz; Walden, Alison E; Husband, Brian C

    2009-11-01

    Whole-genome multiplication, or polyploidy, is common in angiosperms and many species consist of multiple cytotypes that have different physiological tolerances. However, the relative importance of genome duplication vs post-duplication evolutionary change in causing differentiation between cytotypes is not known. We examined the water relations of Chamerion angustifolium, a herbaceous perennial in which diploid and tetraploid cytotypes occupy different niches. To differentiate between the effects of genome duplication and evolutionary changes that followed polyploidization, we compared extant diploids and tetraploids with experimentally synthesized neotetraploids. Tetraploids had 32% higher xylem hydraulic conductivity (K(H)) than neotetraploids and 87% higher K(H) than diploids, but vulnerability to water stress induced cavitation and gas exchange sensitivity to water potential did not differ among cytotypes. Nevertheless, tetraploids took 22% and 30% longer to wilt than neotetraploids and diploids. A simple hydraulic model suggested that tetraploids deplete soil moisture to a greater degree than neotetraploids and diploids before reaching leaf water potentials that cause stomatal closure. We conclude that the different physiological tolerances and distribution of diploid and tetraploid C. angustifolium are unlikely to be caused solely by genome duplication. The enhanced ability of tetraploids to survive water stress likely evolved after polyploidization. PMID:19703115

  2. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress.

    PubMed

    Deeba, Farah; Pandey, Ashutosh K; Ranjan, Sanjay; Mishra, Ashwarya; Singh, Ruchi; Sharma, Y K; Shirke, Pramod A; Pandey, Vivek

    2012-04-01

    Cotton genotype RAHS 187 was analyzed for changes in physiology, biochemistry and proteome due to drought stress. The deleterious effect of drought in cotton plants was mainly targeted towards photosynthesis. The gas-exchange parameters of net photosynthesis (A), stomatal conductance (g(s)) and transpiration (E) showed a decreasing trend as the drought intensity increased. The fluorescence parameters of, effective quantum yield of PSII (Φ(PSII)), and electron transport rates (ETR), also showed a declining trend. As the intensity of drought increased, both H(2)O(2) and MDA levels increased indicating oxidative stress. Anthocyanin levels were increased by more than four folds in the droughted plants. Two-dimensional gel electrophoresis detected more than 550 protein spots. Significantly expressed proteins were analyzed by peptide mass fingerprinting (PMF) using MALDI-TOF-TOF. The number of up-regulated spots was found to be 16 while 6 spots were down-regulated. The reasonable implications in drought response of the identified proteins vis-à-vis physiological changes are discussed. Results provide some additional information that can lead to a better understanding of the molecular basis of drought-sensitivity in cotton plants.

  3. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    PubMed

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide.

  4. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms

    PubMed Central

    Serra, Diego O; Hengge, Regine

    2014-01-01

    In natural habitats, bacteria often occur in multicellular communities characterized by a robust extracellular matrix of proteins, amyloid fibres, exopolysaccharides and extracellular DNA. These biofilms show pronounced stress resistance including a resilience against antibiotics that causes serious medical and technical problems. This review summarizes recent studies that have revealed clear spatial physiological differentiation, complex supracellular architecture and striking morphology in macrocolony biofilms. By responding to gradients of nutrients, oxygen, waste products and signalling compounds that build up in growing biofilms, various stress responses determine whether bacteria grow and proliferate or whether they enter into stationary phase and use their remaining resources for maintenance and survival. As a consequence, biofilms differentiate into at least two distinct layers of vegetatively growing and stationary phase cells that exhibit very different cellular physiology. This includes a stratification of matrix production with a major impact on microscopic architecture, biophysical properties and directly visible morphology of macrocolony biofilms. Using Escherichia coli as a model system, this review also describes our detailed current knowledge about the underlying molecular control networks – prominently featuring sigma factors, transcriptional cascades and second messengers – that drive this spatial differentiation and points out directions for future research. PMID:24725389

  5. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    USGS Publications Warehouse

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, J.F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  6. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses

    PubMed Central

    Jin, Rui; Wang, Yanping; Liu, Ruijie; Gou, Junbo; Chan, Zhulong

    2016-01-01

    Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), O2•− and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways. PMID:26779204

  7. The effects of sex and hormonal status on the physiological response to acute psychosocial stress.

    PubMed

    Kajantie, Eero; Phillips, David I W

    2006-02-01

    Whether one is male or female is one of the most important determinants of human health. While males are more susceptible to cardiovascular and infectious disease, they are outnumbered by women for many autoimmune disorders, fibromyalgia and chronic pain. Recently, individual differences in the physiological response to stress have emerged as a potentially important risk factor for these disorders. This raises the possibility that sex differences in prevalence of disease could at least in part be explained by sex differences in the nature of the physiological response to stress. In a psychophysiological laboratory, the autonomic nervous system response can be provoked by many different stressors including physical, mental and psychosocial tasks, while the hypothalamic-pituitary-adrenal axis (HPAA) response seems to be more specific to a psychosocial challenge incorporating ego involvement. The responses of both systems to different psychosocial challenges have been subject to extensive research, although in respect of sex differences the HPAA response has probably been more systematically studied. In this review, we focus on sex differences in HPAA and autonomic nervous system responses to acute psychosocial stress. Although some differences are dependent on the stressor used, the responses of both systems show marked and consistent differences according to sex, with the phase of the menstrual cycle, menopausal status and pregnancy having marked effects. Between puberty and menopause, adult women usually show lower HPAA and autonomic responses than men of same age. However, the HPAA response is higher in the luteal phase, when for example post stress free cortisol levels approach those of men. After menopause, there is an increase in sympathoadrenal responsiveness, which is attenuated during oral hormone replacement therapy, with most evidence suggesting that HPAA activity shows the same trends. Interestingly, pregnancy is associated with an attenuated response of

  8. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Wei, Hao; Chen, Yuze; Jeong, Byoung Ryong

    2016-01-01

    Background Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night). Results Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions. Conclusions Our study provides physiological evidence of the grafted plants’ response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion). PMID:27310261

  9. Communalism Predicts Maternal Affect, Stress, and Physiology Better than Ethnicity and SES

    PubMed Central

    Abdou, Cleopatra M.; Schetter, Christine Dunkel; Campos, Belinda; Hilmert, Clayton J.; Dominguez, Tyan Parker; Hobel, Calvin J.; Glynn, Laura M.; Sandman, Curt

    2010-01-01

    The present study examined the relevance of communalism, operationalized as a cultural orientation emphasizing interdependence, to maternal prenatal emotional health and physiology and distinguished its effects from those of ethnicity and childhood and adult SES. African American and European American women (N=297) were recruited early in pregnancy and followed through 32 weeks gestation using interviews and medical chart review. Overall, African American women and women of lower socioeconomic backgrounds had higher levels of negative affect, stress and blood pressure, but these ethnic and socioeconomic disparities were not observed among women higher in communalism. Hierarchical multivariate regression analyses showed that communalism was a more robust predictor of prenatal emotional health than ethnicity, childhood SES, and adult SES. Communalism also interacted with ethnicity and SES, resulting in lower blood pressure during pregnancy for African American women and women who experienced socioeconomic disadvantage over the life course. The effects of communalism on prenatal affect, stress, and physiology were not explained by depressive symptoms at study entry, perceived availability of social support, self-esteem, optimism, mastery, nor pregnancy-specific factors, including whether the pregnancy was planned, desired after conception, or how frequently the woman felt happy to be pregnant. This suggests that a communal cultural orientation benefits maternal prenatal emotional health and physiology over and above its links to better-understood personal and social resources in addition to economic resources. Implications regarding culture as a determinant of maternal prenatal health and well-being and as a potentially important lens for examining ethnic and socioeconomic inequalities in health are discussed. PMID:20658883

  10. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses

    PubMed Central

    Saulou-Bérion, Claire; Gonzalez, Ignacio; Enjalbert, Brice; Audinot, Jean-Nicolas; Fourquaux, Isabelle; Jamme, Frédéric; Cocaign-Bousquet, Muriel; Mercier-Bonin, Muriel; Girbal, Laurence

    2015-01-01

    For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins), for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR) and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes). The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL) and synthesis/modification of lipid A (lpxA and arnA). The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq) and chaperone (dnaJ), and regulation of transpeptidase expression (ycfS and ycbB). Interestingly, as these transpeptidases act on

  11. Stress Counter-Response Training Via Physiological Self-Regulation During Flight Simulation

    NASA Technical Reports Server (NTRS)

    Palsson, Olafur S.

    2000-01-01

    This study provided the first evaluation of a new training concept and technology aimed at training pilots to maintain physiological equilibrium during circumstances in an airplane cockpit. Thirty healthy subjects (16 males and 14 females) between the ages of 18 and 35 were randomized into two study groups, A and B. Subjects participated individually in a sequence of four study sessions. In the first visit, subjects were taught to operate a desktop fighter jet flight simulation program. In the three sessions that followed, subjects in group A were trained to minimize their autonomic deviation from baseline values while operating the desktop flight simulation. This was done by making their skin conductance and hand temperature deviations from baseline impair the functionality of the aircraft controls. Subjects also received auditory and visual cues about their autonomic deviation, and were instructed to keep these within pre-set limits to retain full control of the aircraft. Subjects in group B were subjected to periods of impaired aircraft functionality independent of their physiologic activity, and thus served as a control group. No statistically significant group differences were found in the flight performance scores from the three training sessions, and post-training flight performance scores of the two groups were not different. We conclude that this study did not provide clear support for this training methodology in optimizing pilot performance. However, a number of shortcomings in the current status of this training methodology may account for the lack of demonstrable training benefit to the experimental group. Suggested future modifications for research on this training methodology include: Limiting the amount of instrument impairment resulting from physiological deviations; conducting a greater number of physiological training sessions per subject; using pre-post training performance tests which invoke a greater amount of stress in subjects; and

  12. Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress.

    PubMed

    Cotrozzi, Lorenzo; Remorini, Damiano; Pellegrini, Elisa; Landi, Marco; Massai, Rossano; Nali, Cristina; Guidi, Lucia; Lorenzini, Giacomo

    2016-05-01

    Despite the huge biodiversity characterizing the Mediterranean environment, environmental constraints, such as high sunlight and high temperatures alongside with dry periods, make plant survival hard. In addition, high irradiance leads to increasing ozone (O3 ) concentrations in ambient air. In this era of global warming, it is necessary to understand the mechanisms that allow native species to tolerate these environmental constraints and how such mechanisms interact. Three Mediterranean oak species (Quercus ilex, Quercus pubescens and Quercus cerris) with different features (drought tolerant, evergreen or deciduous species) were selected to assess their biometrical, physiological and biochemical responses under drought and/or O3 stress (80-100 nl l(-1) of O3 for 5 h day(-1) for 77 consecutive days). Leaf visible injury appeared only under drought stress (alone or combined with O3 ) in all three species. Drought × O3 induced strong reductions in leaf dry weight in Q. pubescens and Q. cerris (-70 and -75%, respectively). Alterations in physiological (i.e. decrease in maximum carboxylation rate) and biochemical parameters (i.e. increase in proline content and build-up of malondialdehyde by-products) occurred in all the three species, although drought represented the major determinant. Quercus ilex and Q. pubescens, which co-occur in dry environments, were more tolerant to drought and drought × O3 . Quercus ilex was the species in which oxidative stress occurred only when drought was applied with O3 . High plasticity at a biochemical level (i.e. proline content) and evergreen habitus are likely on the basis of the higher tolerance of Q. ilex. PMID:26541269

  13. Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae.

    PubMed Central

    Trabalzini, Lorenza; Paffetti, Alessandro; Scaloni, Andrea; Talamo, Fabio; Ferro, Elisa; Coratza, Grazietta; Bovalini, Lucia; Lusini, Paola; Martelli, Paola; Santucci, Annalisa

    2003-01-01

    We report a study on the adaptive response of a wild-type wine Saccharomyces cerevisiae strain, isolated from natural spontaneous grape must, to mild and progressive physiological stresses due to fermentation. We observed by two-dimensional electrophoresis how the yeast proteome changes during glucose exhaustion, before the cell enters its complete stationary phase. On the basis of their identification, the proteins representing the S. cerevisiae proteomic response to fermentation stresses were divided into three classes: repressed proteins, induced proteins and autoproteolysed proteins. In an overall view, the proteome adaptation of S. cerevisiae at the time of glucose exhaustion seems to be directed mainly against the effects of ethanol, causing both hyperosmolarity and oxidative responses. Stress-induced autoproteolysis is directed mainly towards specific isoforms of glycolytic enzymes. Through the use of a wild-type S. cerevisiae strain and PMSF, a specific inhibitor of vacuolar proteinase B, we could also distinguish the specific contributions of the vacuole and the proteasome to the autoproteolytic process. PMID:12401115

  14. Physiological stress in the Eurasian badger (Meles meles): effects of host, disease and environment.

    PubMed

    George, Sheila C; Smith, Tessa E; Mac Cana, Pól S S; Coleman, Robert; Montgomery, William I

    2014-05-01

    A method for monitoring hypothalamic-pituitary-adrenal (HPA) responses of the Eurasian badger (Meles meles) to stressors was validated by measuring cortisol excretion in serum and faeces. Serum and faecal samples were collected under anaesthesia from live-captured, wild badgers and fresh faeces was collected from latrines at 15 social groups in County Down, Northern Ireland. Variation in levels of cortisol in wild badgers was investigated relative to disease status, season, age, sex, body mass, body condition and reproductive status and environmental factors that might influence stress. Faecal cortisol levels were significantly higher in animals testing culture-positive for Mycobacterium bovis. Prolonged elevation of cortisol can suppress immune function, which may have implications for disease transmission. There was a strong seasonal pattern in both serum cortisol, peaking in spring and faecal cortisol, peaking in summer. Cortisol levels were also higher in adults with poor body condition and low body mass. Faecal samples collected from latrines in grassland groups had significantly higher cortisol than those collected from woodland groups, possibly as a result of greater exposure to sources of environmental stress. This study is the first to investigate factors influencing physiological stress in badgers and indicates that serological and faecal excretion are valid indices of the HPA response to a range of stressors. PMID:24607571

  15. Non-invasive evaluation of physiological stress in an iconic Australian marsupial: the Koala (Phascolarctos cinereus).

    PubMed

    Narayan, Edward J; Webster, Koa; Nicolson, Vere; Mucci, Al; Hero, Jean-Marc

    2013-06-15

    Koalas (Phascolarctos cinereus) are the only extant representatives of Australia's unique marsupial family Phascolarctidae and were listed as nationally Vulnerable in 2012. Causes of mortality are diverse, although the disease chlamydiosis, dog attacks, collisions with cars, and loss of habitat represent the principal reasons for the continued species decline. Koala breeding facilities in Queensland and New South Wales, Australia have been established for conservation and tourism. Non-invasive monitoring of physiological stress is important for determining the sub-lethal effects of environmental stressors on the well-being, reproduction and survival of Koalas in Zoos and also in the wild. In this study, we developed a faecal cortisol metabolite (FCM) enzyme-immunoassay (EIA) for monitoring physiological stress in Koalas from two established Zoos in Australia and also within a free-living sub-population from Queensland. Biological validation of the FCM EIA was done using an adrenocorticotropic hormone (ACTH) challenge. We discovered excretory lag-times of FCM of 24 h in females (n=2) and 48 h in male (n=2) Koalas in response to the ACTH challenge. FCM levels showed an episodic and delayed peak response lasting up to 9 days post ACTH challenge. This finding should be taken into consideration when designing future experiments to study the impacts of short-term (acute) and chronic stressors on the Koalas. Laboratory validations were done using parallelism and recovery checks (extraction efficiency) of the cortisol standard against pooled Koala faecal extracts. Greater than 99% recovery of the cortisol standard was obtained as well as a parallel displacement curve against Koala faecal extracts. FCM levels of the captive Koalas (n=10 males and 13 females) significantly differed by sex, reproductive condition (lactating versus non-lactating Koalas) and the handling groups. Handled male Koalas had 200% higher FCM levels than their non-handled counterparts, while females

  16. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava

    PubMed Central

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  17. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-02-25

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment.

  18. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    PubMed Central

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  19. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus

    PubMed Central

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-01-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. PMID:25124288

  20. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  1. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress

    PubMed Central

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC

  2. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress.

    PubMed

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC

  3. Acute Physiological Stress Down-Regulates mRNA Expressions of Growth-Related Genes in Coho Salmon

    PubMed Central

    Nakano, Toshiki; Afonso, Luis O. B.; Beckman, Brian R.; Iwama, George K.; Devlin, Robert H.

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish. PMID:23990952

  4. Coadaptive changes in physiological and biophysical traits related to thermal stress in web spiders

    NASA Astrophysics Data System (ADS)

    Kato, Naoko; Takasago, Makoto; Omasa, Kenji; Miyashita, Tadashi

    2008-12-01

    Web spiders are considered to have expanded their habitats from dim to bright environments during the evolutionary history. Because they are sedentary predators exposed to the sun, they may have developed a suite of adaptive traits to cope with thermal stress. We examined the critical thermal maximum, spectral reflectance of solar energy by the body surface, and surface-volume ratio (SVR) for 11 spider species. Analysis of the four genera having a pair of species inhabiting both bright and dim environments showed that species in bright environments exhibited higher lethal temperatures, but spectral reflectance and SVR did not differ. Independent contrasts using the 11 species indicated that critical thermal maximum was positively correlated with spectral reflectance and spectral reflectance was negatively correlated with SVR. These results suggest that physiological tolerance to high temperatures and a biophysical mechanism to reduce heat gain evolved jointly during the history of habitat expansion in araneoid spiders.

  5. Coadaptive changes in physiological and biophysical traits related to thermal stress in web spiders.

    PubMed

    Kato, Naoko; Takasago, Makoto; Omasa, Kenji; Miyashita, Tadashi

    2008-12-01

    Web spiders are considered to have expanded their habitats from dim to bright environments during the evolutionary history. Because they are sedentary predators exposed to the sun, they may have developed a suite of adaptive traits to cope with thermal stress. We examined the critical thermal maximum, spectral reflectance of solar energy by the body surface, and surface-volume ratio (SVR) for 11 spider species. Analysis of the four genera having a pair of species inhabiting both bright and dim environments showed that species in bright environments exhibited higher lethal temperatures, but spectral reflectance and SVR did not differ. Independent contrasts using the 11 species indicated that critical thermal maximum was positively correlated with spectral reflectance and spectral reflectance was negatively correlated with SVR. These results suggest that physiological tolerance to high temperatures and a biophysical mechanism to reduce heat gain evolved jointly during the history of habitat expansion in araneoid spiders.

  6. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review. PMID:23986769

  7. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms.

    PubMed

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review.

  8. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation

    PubMed Central

    Cardoso, Gonçalo C.; Whittaker, Danielle J.; Campbell-Nelson, Samuel; Robertson, Kyle W.; Ketterson, Ellen D.

    2012-01-01

    Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat. PMID:22936840

  9. Physiological effects of thermal stress on aviators flying a UH-60 helicopter simulator.

    PubMed

    Reardon, M; Fraser, B; Omer, J

    1998-05-01

    An evaluation of the physiological effects on aviators of heat stress (90 degrees F wet bulb globe temperature [WBGT]) versus a cooler condition (70 degrees F WBGT) when wearing either a MOPP0 (Mission-Oriented Protective Posture 0) uniform or a MOPP4 ensemble encumbered with a ballistic chest plate and overwater survival gear was performed at the United States Army Aeromedical Research Laboratory. The study used a repeated-measures design with 14 aviators flying 4-hour missions in a UH-60 helicopter simulator. Average crew endurance in the MOPP4-hot condition was reduced to one-third of the fully completed mission time of 309 minutes. For the hot condition, core temperature in the simulator rose 1.4 degrees F/hour when aviators wore the encumbered MOPP4 ensemble versus 0.27 degree F/hour when they wore the MOPP0 uniform. Sweating rate in the MOPP4-hot condition was 1,523 ml/hour, resulting in 2.5% dehydration, in contrast to 183 ml/hour and 0.9% dehydration in the MOPP4-cool condition. In this study, pilots flying realistic UH-60 simulator sorties rapidly incurred significant physiological heat strain when wearing an encumbered MOPP4 flight ensemble in hot cockpit conditions.

  10. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease

    NASA Astrophysics Data System (ADS)

    Abaci, Hasan Erbil; Shen, Yu-I.; Tan, Scott; Gerecht, Sharon

    2014-05-01

    Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O2 levels in health and disease, establishing a microfluidic vascular model (μVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy μVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The μVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The μVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.

  11. Physiological effects of potassium chloride, formalin and handling stress on bonytail

    USGS Publications Warehouse

    Sykes, Catherine L.; Caldwell, Colleen A.; Gould, William R.

    2011-01-01

    We characterized the sublethal physiological changes in bonytail Gila elegans subjected to consecutive 750-mg/L potassium chloride (KCl) and 25-mg/L formalin treatments for the removal of zebra mussel Dreissena polymorpha and quagga mussel D. bugensis veligers. Plasma cortisol, glucose, and osmolality were measured over 24 h and at 14 d posthandling after exposing bonytail to KCl and one net stressor (capture with a net), KCl plus formalin and two net stressors, and one or two net stressors without chemicals. Elevated plasma cortisol (322–440 ng/mL) and glucose (254–399 mg/dL) concentrations were observed in all treatments compared with the concentrations in control fish (plasma cortisol, 56 ng/mL; glucose, 43 mg/dL). While there were no detectable differences in plasma osmolality among the treatment and control fish, a difference was observed between fish that were handled once versus twice. Chemical effects of stress were not observed in any of the physiological responses when the KCl treatment was compared with the one-net stressor treatment or when the KCl plus formalin treatment was compared with the two-net stressor treatment. Cumulative responses, however, were observed between one net stressor and two net stressors for plasma glucose and osmolality but not for plasma cortisol. Plasma cortisol and glucose levels remained elevated at 24 h posthandling, indicating that bonytail had not completely recovered from the handling stressors and would benefit from a recovery period in protected refugia before being released.

  12. Stress, Workload and Physiology Demand During Extravehicular Activity: A Pilot Study

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-01-01

    Background: Extravehicular activity (EVA), such as exercise performed under unique environmental conditions, is essential for supporting daily living in weightlessness and for further space exploration like long Mars mission. Aim: The study was planned stress, workload, and physiological demands of simulated Mars exploration. Materials and Methods: In this study, the six-person crew lived (24 hours) for 14 days during a short-term stay at the Mars Desert Research Station. The heart rates, salivary cortisol, workload, peak oxygen uptake or maximal aerobic capacity of the crew are measured before, during and after an EVA. Results: Data for heart rate showed the same trend as peak oxygen uptake or maximal aerobic capacity, with a maximal increase to 85% of peak. The rating of subscale showed a significant increase in EVA as compared to run. Salivary cortisol levels and heart rates were increased in both groups, although significant increased of cortisol levels and heart rates more in EVA as compared to hill running crew members. Conclusion: Further study is required on large scale taken into account of limitations of this study and including other physiological and psychological parameters in Mars analog environment. PMID:22754877

  13. Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle

    NASA Astrophysics Data System (ADS)

    Aengwanich, Worapol; Kongbuntad, Watee; Boonsorn, Thongchai

    2011-09-01

    The purpose of this study was to assess the effects of artificial shade, tree shade, and no shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle. Twenty-one cattle were divided into three groups: cattle maintained under artificial shade, under tree shade, and without shade. On days 1, 7, 14, 21, and 28 of the experimental period, after the cattle were set in individual stalls for 2 h, physiological changes, thiobarbituric acid reactive substances (TBARS), and total antioxidant power were investigated. The results revealed that the respiratory rate, heart rate, sweat rate and the neutrophil/lymphocyte ratio of the no-shade cattle were significantly higher than those of cattle maintained under artificial shade and tree shade ( P < 0.05). During the early period of heat exposure, the total antioxidant power of the no-shade cattle was lower than those of cattle maintained under artificial shade and tree shade, but the total antioxidant power of cattle maintained under artificial shade and tree shade were not different ( P > 0.05). However, rectal temperature and packed cell volume of the cattle in all groups did not differ ( P > 0.05). These results showed that artificial shade and tree shade can protect cattle from sunlight compared to no shade, and that the effectiveness of tree shade for sunlight protection is at an intermediate level.

  14. Physiological stress reactivity and physical and relational aggression: the moderating roles of victimization, type of stressor, and child gender.

    PubMed

    Murray-Close, Dianna; Crick, Nicki R; Tseng, Wan-Ling; Lafko, Nicole; Burrows, Casey; Pitula, Clio; Ralston, Peter

    2014-08-01

    The purpose of the present investigation was to examine the association between physiological reactivity to peer stressors and physical and relational aggression. Potential moderation by actual experiences of peer maltreatment (i.e., physical and relational victimization) and gender were also explored. One hundred ninety-six children (M = 10.11 years, SD = 0.64) participated in a laboratory stress protocol during which their systolic blood pressure, diastolic blood pressure, and skin conductance reactivity to recounting a relational stressor (e.g., threats to relationships) and an instrumental stressor (e.g., threats to physical well-being, dominance, or property) were assessed. Teachers provided reports of aggression and victimization. In both boys and girls, physical aggression was associated with blunted physiological reactivity to relational stress and heightened physiological reactivity to instrumental stress, particularly among youth higher in victimization. In girls, relational aggression was most robustly associated with blunted physiological reactivity to relational stressors, particularly among girls exhibiting higher levels of relational victimization. In boys, relational aggression was associated with heightened physiological reactivity to both types of stressors at higher levels of peer victimization and blunted physiological reactivity to both types of stressors at lower levels of victimization. Results underscore the shared and distinct emotional processes underlying physical and relational aggression in boys and girls.

  15. Synergistic and Antagonistic Effects of Thermal Shock, Air Exposure, and Fishing Capture on the Physiological Stress of Squilla mantis (Stomatopoda)

    PubMed Central

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593

  16. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch.

    PubMed

    Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A

    2010-07-01

    Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction.

  17. Early Adversity, Elevated Stress Physiology, Accelerated Sexual Maturation and Poor Health in Females

    PubMed Central

    Belsky, Jay; Ruttle, Paula L.; Boyce, W. Thomas; Armstrong, Jeffrey M.; Essex, Marilyn J.

    2015-01-01

    Evolutionary-minded developmentalists studying predictive-adaptive-response processes linking childhood adversity with accelerated female reproductive development and health scientists investigating the developmental origins of health and disease (DOoHaD) may be tapping the same process, whereby longer-term health costs are traded off for increased probability of reproducing before dying via a process of accelerated reproductive maturation. Using data from 73 females, we test the following propositions using path analysis: (a) greater exposure to prenatal stress predicts greater maternal depression and negative parenting in infancy, (b) which predicts elevated basal cortisol at 4.5 years, (c) which predicts accelerated adrenarcheal development, (d) which predicts more physical and mental health problems at age 18. Results prove generally consistent with these propositions, including a direct link from cortisol to mental health problems. DOoHaD investigators should consider including early sexual maturation as a core component linking early adversity and stress physiology with poor health later in life in females. PMID:25915592

  18. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    Guo, Zhong-peng; Olsson, Lisbeth

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  19. Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus)

    PubMed Central

    EL-Khaldi, Aziza T.F.

    2010-01-01

    This study was conducted to determine the effect of different stress factors on some physiological measurements of Nile tilapia (Oreochromis niloticus). A total number of 160 Nile tilapia, the body weight ranging between 100 and 120 g, were exposed to three stress factors of hypoxia, overcrowding and starvation for different periods 24, 72 and 144 h. The results of cortisol level were 134.15, 144.27, 154.12 ng/ml and 140.18 ng/ml for control, hypoxia, overcrowding and starvation, respectively, while after 144 h did not show significant difference among treatments compared with control group. In contrast, the values of T3 and T4 observed reduction with significant difference that T3 ranged between the highest value 122.12 ng/ml for control group to lowest value of starvation group 94.35, 93.81 and 88.46 ng/ml after 24, 72 and 144 h. Also, similar trend of results observed in T4 and blood glucose among treatments. And the enzymatic activity of lactate dehydrogenise (LDH) increased in hypoxic group, while a significant reduction appeared in overcrowding and starved fish compared to control group. The pyruvate kinase (PK) activity decreased in hypoxic group but increased in other group. PMID:23961085

  20. Early adversity, elevated stress physiology, accelerated sexual maturation, and poor health in females.

    PubMed

    Belsky, Jay; Ruttle, Paula L; Boyce, W Thomas; Armstrong, Jeffrey M; Essex, Marilyn J

    2015-06-01

    Evolutionary-minded developmentalists studying predictive-adaptive-response processes linking childhood adversity with accelerated female reproductive development and health scientists investigating the developmental origins of health and disease (DOoHaD) may be tapping the same process, whereby longer-term health costs are traded off for increased probability of reproducing before dying via a process of accelerated reproductive maturation. Using data from 73 females, we test the following propositions using path analysis: (a) greater exposure to prenatal stress predicts greater maternal depression and negative parenting in infancy, (b) which predicts elevated basal cortisol at 4.5 years, (c) which predicts accelerated adrenarcheal development, (d) which predicts more physical and mental health problems at age 18. Results prove generally consistent with these propositions, including a direct link from cortisol to mental health problems. DOoHaD investigators should consider including early sexual maturation as a core component linking early adversity and stress physiology with poor health later in life in females.

  1. Reactivity to Social Stress in Subclinical Social Anxiety: Emotional Experience, Cognitive Appraisals, Behavior, and Physiology

    PubMed Central

    Crişan, Liviu G.; Vulturar, Romana; Miclea, Mircea; Miu, Andrei C.

    2016-01-01

    Recent research indicates that subclinical social anxiety is associated with dysfunctions at multiple psychological and biological levels, in a manner that seems reminiscent of social anxiety disorder (SAD). This study aimed to describe multidimensional responses to laboratory-induced social stress in an analog sample selected for social anxiety symptoms. State anxiety, cognitive biases related to negative social evaluation, speech anxiety behaviors, and cortisol reactivity were assessed in the Trier Social Stress Test (TSST). Results showed that social anxiety symptoms were associated with increased state anxiety, biased appraisals related to the probability and cost of negative social evaluations, behavioral changes in facial expression that were consistent with speech anxiety, and lower cortisol reactivity. In addition, multiple interrelations between responses in the TSST were found, with positive associations between subjective experience, cognitive appraisals, and observable behavior, as well as negative associations between each of the former two types of response and cortisol reactivity. These results show that in response to social stressors, subclinical social anxiety is associated with significant changes in emotional experience, cognitive appraisals, behaviors, and physiology that could parallel those previously found in SAD samples. PMID:26858658

  2. Stress physiological responses to tourist pressure in a wild population of European pine marten.

    PubMed

    Barja, Isabel; Silván, Gema; Rosellini, Stefano; Piñeiro, Ana; González-Gil, Alfredo; Camacho, Laura; Illera, Juan Carlos

    2007-05-01

    The tourist pressure in natural parks is a potential source of stress and may cause an increase in the adrenal activity of wild populations of European pine marten (Martes martes). Seventy-six faecal samples were collected during 15 months in a natural park of Northwest Spain. Analysis of faecal DNA was used for the specific identification using the PCR-RFLPs technique. Faecal steroid determinations were performed by EIA. Natural park was divided in three areas: free entry, restricted area, and integral reservation, and number of daily human visitors recorded. Faecal glucocorticoid metabolite levels (ng/g dry faeces) were significantly higher in spring (56.36+/-19.62) and summer (31.27+/-11.98) compared to autumn (15.33+/-6.89) and winter (11.13+/-3.30). These data are closely related to daily number of visitors (spring: 3204, summer: 1672, winter: 646, autumn: 551). Androgen, progestin and oestrogen levels were also significantly higher in spring (reproductive season) showing values of 43.62+/-18.6, 154.31+/-53.50 and 829.62+/-456.1, respectively. Glucocorticoid levels were significantly lower in integral reservation (15.95+/-3.56) compared to restricted (31.4+/-16.30) and free entry areas (41.59+/-12.73), respectively. Wild populations of European pine marten showed stress physiological response induced by the tourist pressure and this response is higher during reproductive season.

  3. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    PubMed

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  4. Background adaptation and water acidification affect pigmentation and stress physiology of tilapia, Oreochromis mossambicus.

    PubMed

    van der Salm, A L; Spanings, F A T; Gresnigt, R; Bonga, S E Wendelaar; Flik, G

    2005-10-01

    The ability to adjust skin darkness to the background is a common phenomenon in fish. The hormone alpha-melanophore-stimulating hormone (alphaMSH) enhances skin darkening. In Mozambique tilapia, Oreochromis mossambicus L., alphaMSH acts as a corticotropic hormone during adaptation to water with a low pH, in addition to its role in skin colouration. In the current study, we investigated the responses of this fish to these two environmental challenges when it is exposed to both simultaneously. The skin darkening of tilapia on a black background and the lightening on grey and white backgrounds are compromised in water with a low pH, indicating that the two vastly different processes both rely on alphaMSH-regulatory mechanisms. If the water is acidified after 25 days of undisturbed background adaptation, fish showed a transient pigmentation change but recovered after two days and continued the adaptation of their skin darkness to match the background. Black backgrounds are experienced by tilapia as more stressful than grey or white backgrounds both in neutral and in low pH water. A decrease of water pH from 7.8 to 4.5 applied over a two-day period was not experienced as stressful when combined with background adaptation, based on unchanged plasma pH and plasma alphaMSH, and Na levels. However, when water pH was lowered after 25 days of undisturbed background adaptation, particularly alphaMSH levels increased chronically. In these fish, plasma pH and Na levels had decreased, indicating a reduced capacity to maintain ion-homeostasis, implicating that the fish indeed experience stress. We conclude that simultaneous exposure to these two types of stressor has a lower impact on the physiology of tilapia than subsequent exposure to the stressors.

  5. [Determination of physiological indices in Albizzia julibrissin Durazz seedlings under alkaline stress with visible spectrophotometry].

    PubMed

    Zhou, Jian; Zhang, Lin; Yuan, De-Yi; Qi, An-Guo

    2008-02-01

    There is a large area of saline-alkali soil in our country, and soil alkalization is always a problem affecting urban gardening. To examine the capacity of alkaline resistance of Albizzia julibrissin Durazz seedlings, the contents of MDA, soluble sugar and proline, and the activity of POD and SOD in Albizzia julibrissin durazz tree body were measured by means of visible spectrophotometry. Also, the change patterns of the five indexes with different treatment concentration and time were analyzed. Attempts were then made to elucidate the physiological mechanism of how alkaline stress affects the growth of the Albizzia julibrissin durazz tree, which could provide theoretical foundation for planting and gardening and an approach to dealing with the difficulties in planting and gardening in saline and alkaline area. The results showed that with the increase in Na2 CO3 concentration, the contents of MDA and soluble sugar in the leaves slowly ascended when the treatment concentration was lower than 75 mmol x L(-1), and then rapidly increased when the treatment concentration was higher than 75 mmol x L(-1); There were significant differences between different treatments. Proline content exhibited the same change pattern with MDA and soluble sugar. It slowly ascended when the treatment concentration was lower than 100 mmol x L(-1), whereas it sharply increased when the treatment concentration was above 100 mmol x L(-1); The changes in SOD and POD were similar, showing a unimodal pattern. However, the treatment concentration corresponding to the maximum of SOD and POD was 50 and 75 mmol x L(-1), respectively. With the changes in stress time, in addition, the contents of MDA treated with the same concentration increased gradually. However, praline, soluble sugar, SOD and POD changed irregularly. These results indicated that Albizzia julibrissin Durazz could resist the alkaline stress by modulating values of physical indexes such as the contents of MDA, soluble sugar and

  6. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl.

    PubMed

    Yuan, Yinghui; Zhong, Min; Shu, Sheng; Du, Nanshan; Sun, Jin; Guo, Shirong

    2016-01-01

    Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well-reported. To gain a better understanding of the cucumber (Cucumis sativus L.) responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put) alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl, and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. Sixty-two differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%), protein metabolism (24.2%), carbohydrate metabolism (19.4%), and amino acid metabolism (14.5%). Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy. PMID:27471514

  7. Effects of pretransport handling stress on physiological and behavioral response of ostriches.

    PubMed

    Bejaei, M; Cheng, K M

    2014-05-01

    Ostrich (Struthio camelus) production is a relatively young industry and there has been little research on ostrich welfare during pretransport handling and the transportation process. A heavy body with a high center of gravity makes ostriches' handling and transportation problems different from other livestock. The main objective of this study was to investigate the effects of the pretransport holding time duration on ostrich behavior and physiological responses. A second objective was to identify and validate behavioral indicator(s) that could be used to identify stressed birds during pretransport handling. Prior to shipping, twenty-four 2.5-yr-old ostriches were moved into a holding pen. Birds were then individually restrained, hooded, and walked from the holding pen (approximately 12 min/bird) to a sampling pen (visually isolated from the holding pen) where they were weighed and a 10-mL blood sample obtained. A second blood sample was taken from each bird after a 1,100-km transportation. Blood samples were analyzed for concentrations of blood metabolites, enzymes, corticosterone, and white blood cell and differential counts. Behavioral responses and physical damages of ostriches were also recorded before and after transport. Results indicated that birds that spent longer time in the pretransport holding pen had higher pretransport plasma concentrations of aspartate aminotransferase, alanine aminotransferase, sodium, and packed cell volume. Immobile sitting behavior, observed in 5 out of the last 11 birds handled, was positively correlated with higher pretransport handling stress, higher posttransport aspartate aminotransferase, alanine aminotransferase, creatine phosphokinase, and glucose concentrations, and transport losses. Knowledge of pretransport handling impacts on ostrich stress and availability of behavioral indicators (e.g., immobile sitting response) could be used to improve handing processes, thereby decreasing potential weight loss, injury, and

  8. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    PubMed Central

    Yuan, Yinghui; Zhong, Min; Shu, Sheng; Du, Nanshan; Sun, Jin; Guo, Shirong

    2016-01-01

    Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well-reported. To gain a better understanding of the cucumber (Cucumis sativus L.) responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put) alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl, and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. Sixty-two differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%), protein metabolism (24.2%), carbohydrate metabolism (19.4%), and amino acid metabolism (14.5%). Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy. PMID:27471514

  9. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  10. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

  11. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    PubMed Central

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G. F.; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  12. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context.

    PubMed

    Juvany, Marta; Munné-Bosch, Sergi

    2015-10-01

    Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits-from leaf gas exchange to gene expression-but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat. PMID:26163697

  13. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  14. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach.

    PubMed

    Sidhu, Pardeep; Peng, Henry T; Cheung, Bob; Edginton, Andrea

    2011-05-01

    Under extreme conditions of heat exposure and exercise stress, the human body undergoes major physiological changes. Perturbations in organ blood flows, gastrointestinal properties, and vascular physiology may impact the body's ability to absorb, distribute, and eliminate drugs. Clinical studies on the effect of these stressors on drug pharmacokinetics demonstrate that the likelihood of pharmacokinetic alteration is dependent on drug properties and the intensity of the stressor. The objectives of this study were to use literature data to quantify the correlation between exercise and heat exposure intensity to changing physiological parameters and further, to use this information for the parameterization of a whole-body, physiologically based pharmacokinetic model for the purposes of determining those drug properties most likely to demonstrate altered drug pharmacokinetics under stress. Cardiac output and most organ blood flows were correlated with heart rate using regression analysis. Other altered parameters included hematocrit and intravascular albumin concentration. Pharmacokinetic simulations of intravenous and oral administration of hypothetical drugs with either a low or high value of lipophilicity, unbound fraction in plasma, and unbound intrinsic hepatic clearance demonstrated that the area under the curve of those drugs with a high unbound intrinsic clearance was most affected (up to a 130% increase) following intravenous administration, whereas following oral administration, pharmacokinetic changes were smaller (<40% increase in area under the curve) for all hypothetical compounds. A midazolam physiologically based pharmacokinetic model was also used to demonstrate that simulated changes in pharmacokinetic parameters under exercise and heat stress were generally consistent with those reported in the literature.

  15. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.

    PubMed

    Meza, Daphne; Abejar, Louie; Rubenstein, David A; Yin, Wei

    2016-03-01

    Endothelial cell (EC) morphology and functions can be highly impacted by the mechanical stresses that the cells experience in vivo. In most areas in the vasculature, ECs are continuously exposed to unsteady blood flow-induced shear stress and vasodilation-contraction-induced tensile stress/strain simultaneously. Investigations on how ECs respond to combined shear stress and tensile strain will help us to better understand how an altered mechanical environment affects EC mechanotransduction, dysfunction, and associated cardiovascular disease development. In the present study, a programmable shearing and stretching device that can apply dynamic fluid shear stress and cyclic tensile strain simultaneously to cultured ECs was developed. Flow and stress/strain conditions in the device were simulated using a fluid structure interaction (FSI) model. To characterize the performance of this device and the effect of combined shear stress-tensile strain on EC morphology, human coronary artery ECs (HCAECs) were exposed to concurrent shear stress and cyclic tensile strain in the device. Changes in EC morphology were evaluated through cell elongation, cell alignment, and cell junctional actin accumulation. Results obtained from the numerical simulation indicated that in the "in-plane" area of the device, both fluid shear stress and biaxial tensile strain were uniform. Results obtained from the in vitro experiments demonstrated that shear stress, alone or combined with cyclic tensile strain, induced significant cell elongation. While biaxial tensile strain alone did not induce any appreciable change in EC elongation. Fluid shear stress and cyclic tensile strain had different effects on EC actin filament alignment and accumulation. By combining various fluid shear stress and cyclic tensile strain conditions, this device can provide a physiologically relevant mechanical environment to study EC responses to physiological and pathological mechanical stimulation. PMID:26810848

  16. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart.

    PubMed

    Rasmussen, Tyler P; Wu, Yuejin; Joiner, Mei-ling A; Koval, Olha M; Wilson, Nicholas R; Luczak, Elizabeth D; Wang, Qinchuan; Chen, Biyi; Gao, Zhan; Zhu, Zhiyong; Wagner, Brett A; Soto, Jamie; McCormick, Michael L; Kutschke, William; Weiss, Robert M; Yu, Liping; Boudreau, Ryan L; Abel, E Dale; Zhan, Fenghuang; Spitz, Douglas R; Buettner, Garry R; Song, Long-Sheng; Zingman, Leonid V; Anderson, Mark E

    2015-07-21

    Myocardial mitochondrial Ca(2+) entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca(2+) are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca(2+) uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca(2+) entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU-permeabilized myocardial fibers or isolated mitochondria in low Ca(2+) were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca(2+) homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca(2+)] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca(2+) homeostasis. Mitochondrial Ca(2+) overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca(2+) homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury. PMID:26153425

  17. Physiological, Diurnal and Stress-Related Variability of Cadmium-Metallothionein Gene Expression in Land Snails

    PubMed Central

    Pedrini-Martha, Veronika; Niederwanger, Michael; Kopp, Renate; Schnegg, Raimund; Dallinger, Reinhard

    2016-01-01

    The terrestrial Roman snail Helix pomatia has successfully adapted to strongly fluctuating conditions in its natural soil habitat. Part of the snail’s stress defense strategy is its ability to express Metallothioneins (MTs). These are multifunctional, cysteine-rich proteins that bind and inactivate transition metal ions (Cd2+, Zn2+, Cu+) with high affinity. In Helix pomatia a Cadmium (Cd)-selective, inducible Metallothionein Isoform (CdMT) is mainly involved in detoxification of this harmful metal. In addition, the snail CdMT has been shown to also respond to certain physiological stressors. The aim of the present study was to investigate the physiological and diurnal variability of CdMT gene expression in snails exposed to Cd and non-metallic stressors such as desiccation and oxygen depletion. CdMT gene expression was upregulated by Cd exposure and desiccation, whereas no significant impact on the expression of CdMT was measured due to oxygen depletion. Overall, Cd was clearly more effective as an inducer of the CdMT gene expression compared to the applied non-metallic stressors. In unexposed snails, diurnal rhythmicity of CdMT gene expression was observed with higher mRNA concentrations at night compared to daytime. This rhythmicity was severely disrupted in Cd-exposed snails which exhibited highest CdMT gene transcription rates in the morning. Apart from diurnal rhythmicity, feeding activity also had a strong impact on CdMT gene expression. Although underlying mechanisms are not completely understood, it is clear that factors increasing MT expression variability have to be considered when using MT mRNA quantification as a biomarker for environmental stressors. PMID:26935042

  18. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart.

    PubMed

    Rasmussen, Tyler P; Wu, Yuejin; Joiner, Mei-ling A; Koval, Olha M; Wilson, Nicholas R; Luczak, Elizabeth D; Wang, Qinchuan; Chen, Biyi; Gao, Zhan; Zhu, Zhiyong; Wagner, Brett A; Soto, Jamie; McCormick, Michael L; Kutschke, William; Weiss, Robert M; Yu, Liping; Boudreau, Ryan L; Abel, E Dale; Zhan, Fenghuang; Spitz, Douglas R; Buettner, Garry R; Song, Long-Sheng; Zingman, Leonid V; Anderson, Mark E

    2015-07-21

    Myocardial mitochondrial Ca(2+) entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca(2+) are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca(2+) uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca(2+) entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU-permeabilized myocardial fibers or isolated mitochondria in low Ca(2+) were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca(2+) homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca(2+)] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca(2+) homeostasis. Mitochondrial Ca(2+) overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca(2+) homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury.

  19. Thermal, physiological and perceptual strain mediate alterations in match-play tennis under heat stress

    PubMed Central

    Périard, Julien D; Racinais, Sébastien; Knez, Wade L; Herrera, Christopher P; Christian, Ryan J; Girard, Olivier

    2014-01-01

    Objectives This study compared the thermal, physiological and perceptual responses associated with match-play tennis in HOT (∼34°C wet-bulb-globe temperature (WBGT)) and COOL (∼19°C WBGT) conditions, along with the accompanying alterations in match characteristics. Methods 12 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼119 and ∼102 min of play in HOT and COOL conditions, respectively. Rectal and skin temperatures, heart rate, subjective ratings of thermal comfort, thermal sensation and perceived exertion were recorded, along with match characteristics. Results End-match rectal temperature increased to a greater extent in the HOT (∼39.4°C) compared with the COOL (∼38.7°C) condition (p<0.05). Thigh skin temperature was higher throughout the HOT match (p<0.001). Heart rate, thermal comfort, thermal sensation and perceived exertion were also higher during the HOT match (p<0.001). Total playing time was longer in the HOT compared with the COOL match (p<0.05). Point duration (∼7.1 s) was similar between conditions, while the time between points was ∼10 s longer in the HOT relative to the COOL match (p<0.05). This led to a ∼3.4% lower effective playing percentage in the heat (p<0.05). Although several thermal, physiological and perceptual variables were individually correlated to the adjustments in time between points and effective playing percentage, thermal sensation was the only predictor variable associated with both adjustments (p<0.005). Conclusions These adjustments in match-play tennis characteristics under severe heat stress appear to represent a behavioural strategy adopted to minimise or offset the sensation of environmental conditions being rated as difficult. PMID:24668377

  20. Habitat Degradation and Seasonality Affect Physiological Stress Levels of Eulemur collaris in Littoral Forest Fragments

    PubMed Central

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species. PMID:25229944

  1. [Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities].

    PubMed

    Ding, Hong; Zhang, Zhi-meng; Dai, Liang-xiang; Ci, Dun-wei; Qin, Fei-fei; Song, Wen-wu; Liu, Meng-juan; Fu, Xiao

    2015-02-01

    Taking 'Huayu 22' peanut as test material, effect of soil water content and nitrogen fertilization on the leaf physiological activities and root morphological characteristics of peanut plants were analyzed. Two levels of soil water condition were: (1) well-watered condition and (2) moderate water stress, and three levels of nitrogen were: (1) none nitrogen (N0), (2) moderate nitrogen (N1, 90 kg · hm(-2)) and (3) high nitrogen (N2, 180 kg · hm(-2)). The results showed that N1 significantly increased the peanut yield under two water conditions, but showed no significant effect on harvest index compared with N0. Under water stress condition, N1 had no significant effects on total root biomass and total root length, but the total root surface area was remarkably increased. The nitrogen fertilization significantly increased the root length and root surface area in 20-40 cm soil layer, and N2 significantly increased the root biomass and root surface area in the soil layer below 40 cm. The application of nitrogen remarkably increased CAT and POD activities in leaf, while MDA content was decreased with the increase of nitrogen level. Under well-watered condition, the root biomass, root length and root surface area in the soil layer below 40 cm and total root surface area were significantly reduced by nitrogen application, however, only N1 could increase leaf protective enzyme activities. Correlation analysis showed that the root length in 20-40 cm soil layer and SOD, CAT, POD activities in leaf were highly significantly related with peanut yield. PMID:26094460

  2. Gene Expression and Physiological Role of Pseudomonas aeruginosa Methionine Sulfoxide Reductases during Oxidative Stress

    PubMed Central

    Romsang, Adisak; Atichartpongkul, Sopapan; Trinachartvanit, Wachareeporn; Vattanaviboon, Paiboon

    2013-01-01

    Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive. PMID:23687271

  3. Can gender differences during exercise-heat stress be assessed by the physiological strain index?

    PubMed

    Moran, D S; Shapiro, Y; Laor, A; Izraeli, S; Pandolf, K B

    1999-06-01

    A physiological strain index (PSI) based on rectal temperature (Tre) and heart rate (HR) was recently suggested to evaluate exercise-heat stress. The purpose of this study was to evaluate PSI for gender differences under various combinations of exercise intensity and climate. Two groups of eight men each were formed according to maximal rate of O2 consumption (VO2 max). The first group of men (M) was matched to a group of nine women (W) with similar (P > 0.001) VO2 max (46.1 +/- 2.0 and 43.6 +/- 2.9 ml. kg-1. min-1, respectively). The second group of men (MF) was significantly (P < 0. 001) more fit than M or W with VO2 max of 59.1 +/- 1.8 ml. kg-1. min-1. Subjects completed a matrix of nine experimental combinations consisting of three different exercise intensities for 60 min [low, moderate, and high (300, 500, and 650 W, respectively)] each at three climates (comfortable, hot wet, and hot dry [20 degrees C 50% relative humidity (RH), 35 degrees C 70% RH, and 40 degrees C 35% RH, respectively]). No significant differences (P > 0.05) were found between matched genders (M and W) at the same exposure for sweat rate, relative VO2 max (%VO2 max), and PSI. However, MF had significantly (P < 0.05) lower strain than M and W as reflected by %VO2 max and PSI. In summary, PSI applicability was extended for exercise-heat stress and gender. This index continues to show potential for wide acceptance and application.

  4. [Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities].

    PubMed

    Ding, Hong; Zhang, Zhi-meng; Dai, Liang-xiang; Ci, Dun-wei; Qin, Fei-fei; Song, Wen-wu; Liu, Meng-juan; Fu, Xiao

    2015-02-01

    Taking 'Huayu 22' peanut as test material, effect of soil water content and nitrogen fertilization on the leaf physiological activities and root morphological characteristics of peanut plants were analyzed. Two levels of soil water condition were: (1) well-watered condition and (2) moderate water stress, and three levels of nitrogen were: (1) none nitrogen (N0), (2) moderate nitrogen (N1, 90 kg · hm(-2)) and (3) high nitrogen (N2, 180 kg · hm(-2)). The results showed that N1 significantly increased the peanut yield under two water conditions, but showed no significant effect on harvest index compared with N0. Under water stress condition, N1 had no significant effects on total root biomass and total root length, but the total root surface area was remarkably increased. The nitrogen fertilization significantly increased the root length and root surface area in 20-40 cm soil layer, and N2 significantly increased the root biomass and root surface area in the soil layer below 40 cm. The application of nitrogen remarkably increased CAT and POD activities in leaf, while MDA content was decreased with the increase of nitrogen level. Under well-watered condition, the root biomass, root length and root surface area in the soil layer below 40 cm and total root surface area were significantly reduced by nitrogen application, however, only N1 could increase leaf protective enzyme activities. Correlation analysis showed that the root length in 20-40 cm soil layer and SOD, CAT, POD activities in leaf were highly significantly related with peanut yield.

  5. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum 'Bugwang'.

    PubMed

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho; Jeong, Byoung Ryong

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

  6. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang'

    PubMed Central

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  7. Beyond physiological hypoarousal: the role of life stress and callous-unemotional traits in incarcerated adolescent males.

    PubMed

    Gostisha, Andrew J; Vitacco, Michael J; Dismukes, Andrew R; Brieman, Chelsea; Merz, Jenna; Shirtcliff, Elizabeth A

    2014-05-01

    The development of antisocial behavior in youth has been examined with neurobiological theories that suggest that adolescents who are less responsive to their environments are less likely to develop empathy in the absence of extant physiological arousal. However, little attention is paid to these individuals' social context. Individuals with adverse early experiences can also exhibit attenuated physiological arousal. The current investigation examines whether psychopathic symptoms or life stress exposure is associated with cortisol and its diurnal rhythm within 50 incarcerated adolescent boys (14-18years old). Ten saliva cortisol samples were collected 1-2weeks after admission to a maximum-security juvenile facility. Hierarchical Linear Modeling distinguished waking cortisol levels, the awakening response (CAR) and the diurnal rhythm. Multiple interviews and self-report measures of CU traits and stressor exposure were collected. Boys with higher levels of CU traits or greater life stress exposure had flat diurnal rhythms and a steeper awakening response in analyses with lifetime stress exposure specifically. Nonetheless, boys who were elevated on both CU traits and prior stress exposure had steeper diurnal rhythms. These results extend neurobiological theories of cortisol and illustrate that boys with the combination of severe stress with CU traits have a unique physiological profile. PMID:24726789

  8. Beyond Physiological Hypoarousal: The Role of Life Stress and Callous-Unemotional Traits in Incarcerated Adolescent Males

    PubMed Central

    Gostisha, Andrew J.; Vitacco, Michael J.; Dismukes, Andrew R.; Brieman, Chelsea; Merz, Jenna; Shirtcliff, Elizabeth A.

    2015-01-01

    The development of antisocial behavior in youth has been examined with neurobiological theories that suggest adolescents who are less responsive to their environments are less likely to develop empathy in the absence of extant physiological arousal. However, little attention is paid to these individuals’ social context. Individuals with adverse early experiences can also exhibit attenuated physiological arousal. The current investigation examines whether psychopathic symptoms or life stress exposure is associated with cortisol and its diurnal rhythm within 50 incarcerated adolescent boys (14–18 years old). Ten saliva cortisol samples were collected 1–2 weeks after admission to a maximum-security juvenile facility. Hierarchical Linear Modeling distinguished waking cortisol levels, the awakening response (CAR) and the diurnal rhythm. Multiple interviews and self-report measures of CU traits and stressor exposure were collected. Boys with higher levels of CU traits or greater life stress exposure had flat diurnal rhythms and a steeper awakening response in analyses with lifetime stress exposure specifically. Nonetheless, boys who were elevated on both CU traits and prior stress exposure had steeper diurnal rhythms. These results extend neurobiological theories of cortisol and illustrate that boys with the combination of severe stress with CU traits have a unique physiological profile. PMID:24726789

  9. Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala.

    PubMed

    Vouimba, Rose-Marie; Muñoz, Carmen; Diamond, David M

    2006-03-01

    Stress can profoundly affect memory and alter the functioning of the hippocampus and amygdala. Studies have also shown that the antidepressant tianeptine can block the effects of stress on hippocampal and amygdala morphology and synaptic plasticity. We examined the effects of acute predator stress and tianeptine on long-term potentiation (LTP; induced by 100 pulses in 1 s) and primed burst potentiation (PB; a low threshold form of LTP induced by only five physiologically patterned pulses) in CA1 and in the basolateral nucleus (BLA) of the amygdala in anesthetized rats. Predator stress blocked the induction of PB potentiation in CA1 and enhanced LTP in BLA. Tianeptine blocked the stress-induced suppression of PB potentiation in CA1 without affecting the stress-induced enhancement of LTP in BLA. In addition, tianeptine administered under non-stress conditions enhanced PB potentiation in the hippocampus and LTP in the amygdala. These findings support the hypothesis that acute stress impairs hippocampal functioning and enhances amygdaloid functioning. The work also provides insight into the actions of tianeptine with the finding that it enhanced electrophysiological measures of plasticity in the hippocampus and amygdala under stress, as well as non-stress, conditions.

  10. Stress physiology of migrant birds during stopover in natural and anthropogenic woodland habitats of the Northern Prairie region.

    PubMed

    Liu, Ming; Swanson, David L

    2014-01-01

    Anthropogenic alterations of woodland habitat may influence stopover biology, which in turn could alter the stress physiology of migratory landbirds. Woodland stopover habitats are scarce in the Northern Prairie region of North America and consist of native riparian corridor woodlands (corridors) and smaller, more isolated woodlots of anthropogenic origin around farmsteads (woodlots). Corridor habitats have been greatly reduced since the time of European settlement, but woodlot habitats have appeared over this same time period. In this study, we compared stopover biology and stress physiology of migratory landbirds using natural and anthropogenic woodland habitats. We first tested for differences between birds in the two habitats for baseline corticosterone (CORTB) and the magnitude of the stress response for individual species, taxonomic families and foraging guilds. Plasma corticosterone increased significantly for all bird groups in both habitats following 30 min of restraint stress (CORT30), and neither CORTB nor the magnitude of the stress response (CORT30 - CORTB) differed significantly between birds in the two habitats. Secondly, because CORTB levels are often elevated and CORT secretion following a stressor is often suppressed for birds in poor body condition, we hypothesized that woodland migrants with higher fattening rates would show reduced CORTB and a robust stress response. We tested this hypothesis by assessing the relationships between plasma corticosterone and plasma metabolites associated with refuelling. We found that CORTB was negatively associated and the magnitude of the stress response positively associated with plasma triglycerides (an indicator of fat deposition), with opposite patterns for corticosterone and plasma β-hydroxybutyrate (an indicator of fat catabolism). These data suggest that both corridor and woodlot habitats serve as effective stopover habitat and that the reduction of corridor habitat and increased reliance on

  11. Stress physiology of migrant birds during stopover in natural and anthropogenic woodland habitats of the Northern Prairie region

    PubMed Central

    Liu, Ming; Swanson, David L.

    2014-01-01

    Anthropogenic alterations of woodland habitat may influence stopover biology, which in turn could alter the stress physiology of migratory landbirds. Woodland stopover habitats are scarce in the Northern Prairie region of North America and consist of native riparian corridor woodlands (corridors) and smaller, more isolated woodlots of anthropogenic origin around farmsteads (woodlots). Corridor habitats have been greatly reduced since the time of European settlement, but woodlot habitats have appeared over this same time period. In this study, we compared stopover biology and stress physiology of migratory landbirds using natural and anthropogenic woodland habitats. We first tested for differences between birds in the two habitats for baseline corticosterone (CORTB) and the magnitude of the stress response for individual species, taxonomic families and foraging guilds. Plasma corticosterone increased significantly for all bird groups in both habitats following 30 min of restraint stress (CORT30), and neither CORTB nor the magnitude of the stress response (CORT30 − CORTB) differed significantly between birds in the two habitats. Secondly, because CORTB levels are often elevated and CORT secretion following a stressor is often suppressed for birds in poor body condition, we hypothesized that woodland migrants with higher fattening rates would show reduced CORTB and a robust stress response. We tested this hypothesis by assessing the relationships between plasma corticosterone and plasma metabolites associated with refuelling. We found that CORTB was negatively associated and the magnitude of the stress response positively associated with plasma triglycerides (an indicator of fat deposition), with opposite patterns for corticosterone and plasma β-hydroxybutyrate (an indicator of fat catabolism). These data suggest that both corridor and woodlot habitats serve as effective stopover habitat and that the reduction of corridor habitat and increased reliance on

  12. Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress

    SciTech Connect

    McKay, R.M.L.; LaRoche, J.; Geider, R.J.

    1997-06-01

    Flavodoxin is a small electron-transfer protein capable of replacing ferredoxin during periods of Fe deficiency. When evaluating the suitability of flavodoxin as a diagnostic indicator for Fe limitation of phytoplankton growth, we examined its expression in two marine diatoms we cultured using trace-metal-buffered medium. Thalassiosira weissflogii and Phaeodactylum tricornutum were cultured in ethylenediaminetetraacetic acid-buffered Sargasso Sea water containing from 10 to 1000 nm added Fe. Trace-metal-buffered cultures of each diatom maintained high growth rates across the entire range of Fe additions. Similarly, declines in chlorophyll/cell and in the ratio of photosystem II variable-to-maximum fluorescence were negligible (P. tricornutum) to moderate (T. weissflogii, 54% decline in chlorophyll/cell and 22% decrease in variable-to-maximum fluorescence). Moreover, only minor variations in photosynthetic parameters were observed across the range of additions. In contrast, flavodoxin was expressed to high levels in low-Fe cultures. Despite the inverse relationship between flavodoxin expression and Fe content of the medium, its expression was seemingly independent of any of the indicators of cell physiology that were assayed. It appears that flavodoxin is expressed as an early-stage response to Fe stress and that its accumulation need not be intimately connected to limitations imposed by Fe on the growth rate of these diatoms.

  13. Morphological and physiological characterization of different genotypes of faba bean under heat stress.

    PubMed

    Siddiqui, Manzer H; Al-Khaishany, Mutahhar Y; Al-Qutami, Mohammed A; Al-Whaibi, Mohamed H; Grover, Anil; Ali, Hayssam M; Al-Wahibi, Mona Suliman

    2015-09-01

    Heat stress (HS) is the major constraint to crop productivity worldwide. The objective of the present experiment was to select the tolerant and sensitive genotype(s) on the basis of morpho-physiological and biochemical characteristics of ten Vicia faba genotypes. These genotypes were as follows: Zafar 1, Zafar 2, Shebam 1, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853. The experimental work was undertaken to study the effects of different levels of temperature (control, mild, and modest) on plant height (PH) plant(-1), fresh weight (FW) and dry weight (DW) plant(-1), area leaf(-1), content of leaf relative water (RWC), proline content (Pro) and total chlorophyll (Total Chl), electrolyte leakage (EL), malondialdehyde level (MDA), hydrogen peroxide (H2O2), and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzymes. HS significantly affected growth performance of all genotypes. However, the magnitude of reduction in genotypes 'C5' was relatively low, possibly due to its better antioxidant activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, 'C5' was noted to be the most HS tolerant and 'Espan' most HS sensitive genotypes. It was concluded that the heat-tolerant genotypes may have better osmotic adjustment and protection from free radicals by increasing the accumulation of Pro content with increased activities of antioxidant enzyme. PMID:26288573

  14. Maternal Behavior and Physiological Stress Levels in Wild Chimpanzees (Pan troglodytes schweinfurthii)

    PubMed Central

    Stanton, Margaret A.; Heintz, Matthew R.; Lonsdorf, Elizabeth V.; Santymire, Rachel M.; Lipende, Iddi; Murray, Carson M.

    2015-01-01

    Individual differences in maternal behavior toward, and investment in, offspring can have lasting consequences, particularly among primate taxa characterized by prolonged periods of development over which mothers can exert substantial influence. Given the role of the neuroendocrine system in the expression of behavior, researchers are increasingly interested in understanding the hormonal correlates of maternal behavior. Here, we examined the relationship between maternal behavior and physiological stress levels, as quantified by fecal glucocorticoid metabolite (FGM) concentrations, in lactating chimpanzees, Pan troglodytes schweinfurthii, at Gombe National Park, Tanzania. After accounting for temporal variation in FGM concentrations, we found that mothers interacted socially (groomed and played) with and nursed their infants more on days when FGM concentrations were elevated compared to days when FGM concentrations were within the range expected given the time of year. However, the proportion of time mothers and infants spent in contact did not differ based on FGM concentrations. These results generally agree with the suggestion that elevated GC concentrations are related to maternal motivation and responsivity to infant cues and are the first evidence of a hormonal correlate of maternal behavior in a wild great ape. PMID:26213430

  15. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops

    PubMed Central

    Shabala, Sergey

    2013-01-01

    Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na+ sequestration; increasing the efficiency of internal Na+ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K+ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na+ transport to the shoot. PMID:24085482

  16. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress

    PubMed Central

    Ibstedt, Sebastian; Sideri, Theodora C.; Grant, Chris M.; Tamás, Markus J.

    2014-01-01

    ABSTRACT Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein–protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings. PMID:25217615

  17. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress

    PubMed Central

    Wu, Jiawen; Guo, Jia; Hu, Yanhong; Gong, Haijun

    2015-01-01

    The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants. PMID:26136764

  18. Effect of salt stress on morpho-physiology, vegetative growth and yield of rice.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ali, E; Ismail, Mohd Razi; Selamat, Ahmed; Karim, S M Rezaul

    2014-03-01

    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.

  19. Estimating disturbance effects from military training using developmental instability and physiological measures of plant stress

    USGS Publications Warehouse

    Duda, J.J.; Freeman, D.C.; Brown, M.L.; Graham, J.H.; Krzysik, A.J.; Emlen, J.M.; Zak, J.C.; Kovacic, D.A.

    2004-01-01

    We used developmental instability, water potential, and variable fluorescence to determine if populations of winged sumac (Rhus copallinum) were being negatively effected by military training disturbance. We established nine sites that represented a land-use disturbance gradient with three impact levels (low, medium, and high), the effects mostly due to mechanized infantry training maneuvers. Although mean values of developmental instability, water potential, and variable fluorescence differed significantly among sites, the patterns did not consistently differentiate sites relative to the disturbance gradient. At the population level, some measures of developmental instability and variable fluorescence were positively correlated. All nine sites consisted of habitat mosaics, with the abundance of higher quality habitat patches and canopy gaps closely related to habitat impacts. It may be that R. copallinum is selecting similar micro-environments at all sites and therefore minimizing inter-site variation in stress measures, despite large differences in overall habitat condition. Our results call for caution in developing ecological indicators using the response of physiological and morphological measures from a single plant species. ?? 2003 Elsevier Ltd. All rights reserved.

  20. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni.

    PubMed

    Zeng, Jianwei; Chen, Aimeng; Li, Dandan; Yi, Bin; Wu, Wei

    2013-06-19

    This study examined the effects of three different NaCl concentrations (60, 90, and 120 mM) on the growth, physiological responses, and steviol glycoside composition of Stevia rebaudiana Bertoni for 4 weeks. The results showed that the total dry weight decreased by 40% at 120 mM NaCl but remained the same at 60 and 90 mM NaCl. As salt concentration increased, chlorophyll contents decreased markedly by 10-70%, whereas the increments of the antioxidant enzyme activities were 1.0-1.6, 1.2-1.3, and 2.0-4.0 times, respectively, for superoxide dismutase, peroxidase, and catalase. The proline contents in salt-treated plants were 17-42 times higher than that in control. Moreover, leaf possessed significantly higher K⁺ content and K⁺/Na⁺ ratio than stem and root for all salt treatments. In addition, 90-120 mM NaCl treatment notably decreased the content of rebaudioside A (RA) and stevioside (ST) by 16.2-38.2%, whereas the increment of the ratio of RA/ST of salt-treated plants was 1.1-1.4 times. These results indicate that S. rebaudiana is moderately tolerant to salt stress. Hypohaline soil can be utilized in the plantation of S. rebaudiana and may be profitable for optimizing the steviol glycoside composition.

  1. Morphological and physiological characterization of different genotypes of faba bean under heat stress

    PubMed Central

    Siddiqui, Manzer H.; Al-Khaishany, Mutahhar Y.; Al-Qutami, Mohammed A.; Al-Whaibi, Mohamed H.; Grover, Anil; Ali, Hayssam M.; Al-Wahibi, Mona Suliman

    2015-01-01

    Heat stress (HS) is the major constraint to crop productivity worldwide. The objective of the present experiment was to select the tolerant and sensitive genotype(s) on the basis of morpho-physiological and biochemical characteristics of ten Vicia faba genotypes. These genotypes were as follows: Zafar 1, Zafar 2, Shebam 1, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853. The experimental work was undertaken to study the effects of different levels of temperature (control, mild, and modest) on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, content of leaf relative water (RWC), proline content (Pro) and total chlorophyll (Total Chl), electrolyte leakage (EL), malondialdehyde level (MDA), hydrogen peroxide (H2O2), and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzymes. HS significantly affected growth performance of all genotypes. However, the magnitude of reduction in genotypes ‘C5’ was relatively low, possibly due to its better antioxidant activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, ‘C5’ was noted to be the most HS tolerant and ‘Espan’ most HS sensitive genotypes. It was concluded that the heat-tolerant genotypes may have better osmotic adjustment and protection from free radicals by increasing the accumulation of Pro content with increased activities of antioxidant enzyme. PMID:26288573

  2. Inducing physiological stress recovery with sounds of nature in a virtual reality forest--results from a pilot study.

    PubMed

    Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias; Johansson, Gerd; Karlson, Björn; Grahn, Patrik; Hansen, Ase Marie; Währborg, Peter

    2013-06-13

    Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field.

  3. Linking social environment and stress physiology in feral mares (Equus caballus): group transfers elevate fecal cortisol levels.

    PubMed

    Nuñez, Cassandra M V; Adelman, James S; Smith, Jessica; Gesquiere, Laurence R; Rubenstein, Daniel I

    2014-01-15

    Feral horses (Equus caballus) have a complex social structure, the stability of which is important to their overall health. Behavioral and demographic research has shown that decreases in group (or band) stability reduce female fitness, but the potential effects on the physiological stress response have not been demonstrated. To fully understand how band stability affects group-member fitness, we need to understand not only behavioral and demographic, but also physiological consequences of decreases to that stability. We studied group changes in feral mares (an activity that induces instability, including both male and female aggression) on Shackleford Banks, NC. We found that mares in the midst of changing groups exhibit increased fecal cortisol levels. In addition, mares making more group transfers show higher levels of cortisol two weeks post-behavior. These results offer insights into how social instability is integrated into an animal's physiological phenotype. In addition, our results have important implications for feral horse management. On Shackleford Banks, mares contracepted with porcine zona pellucida (PZP) make approximately 10 times as many group changes as do untreated mares. Such animals may therefore be at higher risk of chronic stress. These results support the growing consensus that links between behavior and physiological stress must be taken into account when managing for healthy, functional populations. PMID:24275609

  4. Linking social environment and stress physiology in feral mares (Equus caballus): group transfers elevate fecal cortisol levels.

    PubMed

    Nuñez, Cassandra M V; Adelman, James S; Smith, Jessica; Gesquiere, Laurence R; Rubenstein, Daniel I

    2014-01-15

    Feral horses (Equus caballus) have a complex social structure, the stability of which is important to their overall health. Behavioral and demographic research has shown that decreases in group (or band) stability reduce female fitness, but the potential effects on the physiological stress response have not been demonstrated. To fully understand how band stability affects group-member fitness, we need to understand not only behavioral and demographic, but also physiological consequences of decreases to that stability. We studied group changes in feral mares (an activity that induces instability, including both male and female aggression) on Shackleford Banks, NC. We found that mares in the midst of changing groups exhibit increased fecal cortisol levels. In addition, mares making more group transfers show higher levels of cortisol two weeks post-behavior. These results offer insights into how social instability is integrated into an animal's physiological phenotype. In addition, our results have important implications for feral horse management. On Shackleford Banks, mares contracepted with porcine zona pellucida (PZP) make approximately 10 times as many group changes as do untreated mares. Such animals may therefore be at higher risk of chronic stress. These results support the growing consensus that links between behavior and physiological stress must be taken into account when managing for healthy, functional populations.

  5. Listening to music and physiological and psychological functioning: the mediating role of emotion regulation and stress reactivity.

    PubMed

    Thoma, M V; Scholz, U; Ehlert, U; Nater, U M

    2012-01-01

    Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.

  6. Sexually different morphological, physiological and molecular responses of Fraxinus mandshurica flowers to floral development and chilling stress.

    PubMed

    Zhu, Zhu; Qi, Fenghui; Yan, Chaofu; Zhan, Yaguang

    2016-02-01

    Fraxinus mandshurica is considered a dioecious hardwood, and the temporal separation of the maturation of the male and female flowers is one reason that F. mandshurica has become an endangered species in China. Rainfall and low temperature influence pollen formation and dispersal and the blooming of female flowers. Therefore, low fertilization efficiency strongly influences the population of F. mandshurica. Nevertheless, few studies have investigated the sex-specific morphological, physiological and molecular differentiation of F. mandshurica during flowering and its responses to low temperature. In this study, we investigated the sexual differences in the morphological, physiological, and biochemical parameters of F. mandshurica during flowering and determined the physiological and biochemical parameters and expression levels of related genes in response to low-temperature stress induced by exposure to 4 °C (chilling stress) during pollen dispersal and fertilization. Our study supports the hypothesis that male flowers suffer more severe injuries while female flowers are more adaptable to environmental stress during flower development in F. mandshurica. The results showed higher physiological and biochemical levels of malondialdehyde, proline, and soluble sugar, as well as the expression of genes involved in calcium signaling, cold shock and DNA methylation in male flowers compared with female flowers, which suggested that male flowers suffer from more serious peroxidation than female flowers. In contrast, higher antioxidant capacity and FmaCAT expression were detected in female flowers, providing preliminary evidence that male flowers rapidly fade after pollination and further demonstrating that female flowers need a much stronger antioxidant enzyme system to maintain embryonic growth. Most peaks related to physiological and molecular responses were observed at 2-4 h and 8-10 h of exposure to chilling stress in the female and male flowers, respectively

  7. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation

    PubMed Central

    Rodríguez, Iván; González, Marcelo

    2014-01-01

    Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase, and vascular endothelial growth factor, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters, and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life. PMID:25278895

  8. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation.

    PubMed

    Rodríguez, Iván; González, Marcelo

    2014-01-01

    Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase, and vascular endothelial growth factor, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters, and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life. PMID:25278895

  9. Effect of restricted potassium intake on its excretion and on physiological responses during heat stress.

    PubMed

    Malhotra, M S; Sridharan, K; Venkataswamy, Y; Rai, R M; Pichan, G; Radhakrishnan, U; Grover, S K

    1981-01-01

    The effect of low potassium (K+) intake on its excretion, concentration in sweat and on physiological responses during heat stress was evaluated on eight Indian male soldiers in winter months at Delhi. After a stabilization period of 3 days on each diet, i.e., 85 mEq of K+/d (diet I, normal), 55 mEq of K+/d (diet II), and 45 mEq of K+/d (diet III), the physiological responses and the sodium and potassium concentrations in sweat, plasma, RBC, and urine were measured when the subjects were exposed to heat for 3 h daily in a climatic chamber maintained at 40 degrees C DB and 32 degrees C WB. The subjects worked in the chamber at the rate of 465 W/h for 20 min periods with 40 min rest between each period of exercise. The whole body sweat was collected after the spell of work and was analysed for sodium and potassium levels. Throughout the study the subjects remained on positive sodium balance except on day 4 in diet III. Fluid balance also remained positive while potassium balance was negative in subjects on diet II and diet III. There was no significant change in heart rate, sweat volume, oral temperature, sodium, and potassium concentrations in plasma and RBC during the entire period of the study. Even in the subjects with negative potassium balance there was no change in the sodium and potassium concentrations in sweat during exercise in heat. The only evidence of potassium conservation was a reduced excretion in urine. Out of the eight subjects, in one subject there was a flattening of the 'T' wave in the ECG and reduction in amplitude of the 'T' wave in two more subjects. As there is no reduction in sweat potassium concentration and the urine volume is low, the marginal level of reduced excretion of potassium in urine with a high rate of sweating (7-81) in subjects doing work in the tropics, there is every likelihood of potassium deficiency if a liberal intake is not ensured. In our earlier studies (Malhotra et al. 1976) we found that the concentration of

  10. Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones

    PubMed Central

    Mohino-Herranz, Inma; Gil-Pita, Roberto; Ferreira, Javier; Rosa-Zurera, Manuel; Seoane, Fernando

    2015-01-01

    Determining the stress level of a subject in real time could be of special interest in certain professional activities to allow the monitoring of soldiers, pilots, emergency personnel and other professionals responsible for human lives. Assessment of current mental fitness for executing a task at hand might avoid unnecessary risks. To obtain this knowledge, two physiological measurements were recorded in this work using customized non-invasive wearable instrumentation that measures electrocardiogram (ECG) and thoracic electrical bioimpedance (TEB) signals. The relevant information from each measurement is extracted via evaluation of a reduced set of selected features. These features are primarily obtained from filtered and processed versions of the raw time measurements with calculations of certain statistical and descriptive parameters. Selection of the reduced set of features was performed using genetic algorithms, thus constraining the computational cost of the real-time implementation. Different classification approaches have been studied, but neural networks were chosen for this investigation because they represent a good tradeoff between the intelligence of the solution and computational complexity. Three different application scenarios were considered. In the first scenario, the proposed system is capable of distinguishing among different types of activity with a 21.2% probability error, for activities coded as neutral, emotional, mental and physical. In the second scenario, the proposed solution distinguishes among the three different emotional states of neutral, sadness and disgust, with a probability error of 4.8%. In the third scenario, the system is able to distinguish between low mental load and mental overload with a probability error of 32.3%. The computational cost was calculated, and the solution was implemented in commercially available Android-based smartphones. The results indicate that execution of such a monitoring solution is negligible

  11. Examining the potential for nutritional stress in young Steller sea lions: physiological effects of prey composition.

    PubMed

    Rosen, David A S; Trites, Andrew W

    2005-05-01

    The effects of high- and low-lipid prey on the body mass, body condition, and metabolic rates of young captive Steller sea lions (Eumetopias jubatus) were examined to better understand how changes in prey composition might impact the physiology and health of wild sea lions and contribute to their population decline. Results of three feeding experiments suggest that prey lipid content did not significantly affect body mass or relative body condition (lipid mass as a percent of total mass) when sea lions could consume sufficient prey to meet their energy needs. However, when energy intake was insufficient to meet daily requirements, sea lions lost more lipid mass (9.16+/-1.80 kg+/-SE) consuming low-lipid prey compared with eating high-lipid prey (6.52+/-1.65 kg). Similarly, the sea lions lost 2.7+/-0.9 kg of lipid mass while consuming oil-supplemented pollock at maintenance energy levels but gained 5.2+/-2.7 kg lipid mass while consuming identical energetic levels of herring. Contrary to expectations, there was a 9.7+/-1.8% increase in metabolism during mass loss on submaintenance diets. Relative body condition decreased only 3.7+/-3.8% during periods of imposed nutritional stress, despite a 10.4+/-4.8% decrease in body mass. These findings raise questions regarding the efficacy of measures of relative body condition to detect such changes in nutritional status among wild animals. The results of these three experiments suggest that prey composition can have additional effects on sea lion energy stores beyond the direct effects of insufficient energy intake. PMID:15900507

  12. Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones.

    PubMed

    Mohino-Herranz, Inma; Gil-Pita, Roberto; Ferreira, Javier; Rosa-Zurera, Manuel; Seoane, Fernando

    2015-01-01

    Determining the stress level of a subject in real time could be of special interest in certain professional activities to allow the monitoring of soldiers, pilots, emergency personnel and other professionals responsible for human lives. Assessment of current mental fitness for executing a task at hand might avoid unnecessary risks. To obtain this knowledge, two physiological measurements were recorded in this work using customized non-invasive wearable instrumentation that measures electrocardiogram (ECG) and thoracic electrical bioimpedance (TEB) signals. The relevant information from each measurement is extracted via evaluation of a reduced set of selected features. These features are primarily obtained from filtered and processed versions of the raw time measurements with calculations of certain statistical and descriptive parameters. Selection of the reduced set of features was performed using genetic algorithms, thus constraining the computational cost of the real-time implementation. Different classification approaches have been studied, but neural networks were chosen for this investigation because they represent a good tradeoff between the intelligence of the solution and computational complexity. Three different application scenarios were considered. In the first scenario, the proposed system is capable of distinguishing among different types of activity with a 21.2% probability error, for activities coded as neutral, emotional, mental and physical. In the second scenario, the proposed solution distinguishes among the three different emotional states of neutral, sadness and disgust, with a probability error of 4.8%. In the third scenario, the system is able to distinguish between low mental load and mental overload with a probability error of 32.3%. The computational cost was calculated, and the solution was implemented in commercially available Android-based smartphones. The results indicate that execution of such a monitoring solution is negligible

  13. Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels.

    PubMed

    Kostenko, Victoria; Salek, Mohammad Mehdi; Sattari, Pooria; Martinuzzi, Robert John

    2010-08-01

    Bacterial infections in the blood system are usually associated with blood flow oscillation generated by some cardiovascular pathologies and insertion of indwelling devices. The influence of hydrodynamically induced shear stress fluctuations on the Staphylococcus aureus biofilm morphology and tolerance to antibiotics was investigated. Fluctuating shear stresses of physiologically relevant levels were generated in wells of a six-well microdish agitated by an orbital shaker. Numerical simulations were performed to determine the spatial distribution and local fluctuation levels of the shear stress field on the well bottom. It is found that the local biofilm deposition and morphology correlate strongly with shear stress fluctuations and maximum magnitude levels. Tolerance to killing by antibiotics correlates with morphotype and is generally higher in high shear regions. PMID:20528928

  14. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    PubMed

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions.

  15. Temperature Insensitivity and Behavioural Reduction of the Physiological Stress Response to Longline Capture by the Gummy Shark, Mustelus antarcticus.

    PubMed

    Guida, Leonardo; Walker, Terence I; Reina, Richard D

    2016-01-01

    Many factors influence the physiological stress response to fisheries capture in elasmobranchs. However, the influence of sea surface temperatures (SST) and behaviour are unknown and crucial considering global fishing pressures. We investigated the effect of SST and behaviour on the physiological stress response to capture of the gummy shark, Mustelus antarcticus, and compared our results to a laboratory study using similar conditions to test whether stress responses of in situ capture are consistent with those from laboratory simulations. Capture time for 23 M. antarcticus ranged 32-241 min as measured by hook timers or time depth recorders (TDR) in SSTs ranging 12-20°C. TDR data from 13 M. antarcticus were analysed to quantify capture behaviour as the percentage of time spent moving during capture. Several physiological variables measured from blood samples obtained immediately upon the animals' landing indicated that although warmer SSTs increased metabolic rate, the stress response to capture was not exacerbated by capture duration. During capture movement occurred for an average of 10% of the time and since M. antarcticus can respire whilst stationary, restricted movement probably mitigated potential influences of increased SSTs and capture duration on the stress response. Previous laboratory findings were also shown to be indicative of in situ conditions and we thus advise that studies control for water temperature given the influence it has on variables (e.g. lactate) used to measure capture stress in elasmobranchs. We highlight the importance of seasonal water temperatures and capture behaviour when assessing the resilience to fisheries capture and the implementation of appropriate fisheries management strategies. PMID:26886126

  16. Temperature Insensitivity and Behavioural Reduction of the Physiological Stress Response to Longline Capture by the Gummy Shark, Mustelus antarcticus

    PubMed Central

    Guida, Leonardo; Walker, Terence I.; Reina, Richard D.

    2016-01-01

    Many factors influence the physiological stress response to fisheries capture in elasmobranchs. However, the influence of sea surface temperatures (SST) and behaviour are unknown and crucial considering global fishing pressures. We investigated the effect of SST and behaviour on the physiological stress response to capture of the gummy shark, Mustelus antarcticus, and compared our results to a laboratory study using similar conditions to test whether stress responses of in situ capture are consistent with those from laboratory simulations. Capture time for 23 M. antarcticus ranged 32–241 min as measured by hook timers or time depth recorders (TDR) in SSTs ranging 12–20°C. TDR data from 13 M. antarcticus were analysed to quantify capture behaviour as the percentage of time spent moving during capture. Several physiological variables measured from blood samples obtained immediately upon the animals’ landing indicated that although warmer SSTs increased metabolic rate, the stress response to capture was not exacerbated by capture duration. During capture movement occurred for an average of 10% of the time and since M. antarcticus can respire whilst stationary, restricted movement probably mitigated potential influences of increased SSTs and capture duration on the stress response. Previous laboratory findings were also shown to be indicative of in situ conditions and we thus advise that studies control for water temperature given the influence it has on variables (e.g. lactate) used to measure capture stress in elasmobranchs. We highlight the importance of seasonal water temperatures and capture behaviour when assessing the resilience to fisheries capture and the implementation of appropriate fisheries management strategies. PMID:26886126

  17. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  18. Cross-talk between HIF and p53 as mediators of molecular responses to physiological and genotoxic stresses

    PubMed Central

    2013-01-01

    Abnormal rates of growth together with metastatic potential and lack of susceptibility to cellular signals leading to apoptosis are widely investigated characteristics of tumors that develop via genetic or epigenetic mechanisms. Moreover, in the growing tumor, cells are exposed to insufficient nutrient supply, low oxygen availability (hypoxia) and/or reactive oxygen species. These physiological stresses force them to switch into more adaptable and aggressive phenotypes. This paper summarizes the role of two key mediators of cellular stress responses, namely p53 and HIF, which significantly affect cancer progression and compromise treatment outcomes. Furthermore, it describes cross-talk between these factors. PMID:23945296

  19. Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2014-08-01

    Although conjugation is well known as an important contributor to color, there is scant recognition concerning involvement of imine and iminium functions in the physiological effects of this class of dyes and pigments. The group includes the dyes methylene blue, rhodamine, malachite green, fuchsin, crystal violet, auramine and cyanins, in addition to the pigments consisting of pyocyanine, phthalocyanine and pheophytin. The physiological effects consist of both toxicity and beneficial aspects. The unifying theme of electron transfer-reactive oxygen species-oxidative stress is used as the rationale in both cases. Toxicity is frequently prevented or alleviated by antioxidants. The apparent dichotomy of methylene blue action as both oxidant and antioxidant is rationalized based on similar previous cases. This mechanistic approach may have practical benefit. This review is important in conveying, for the first time, a unifying mechanism for toxicity based on electron transfer-reactive oxygen species-oxidative stress arising from imine-iminium.

  20. Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2014-08-01

    Although conjugation is well known as an important contributor to color, there is scant recognition concerning involvement of imine and iminium functions in the physiological effects of this class of dyes and pigments. The group includes the dyes methylene blue, rhodamine, malachite green, fuchsin, crystal violet, auramine and cyanins, in addition to the pigments consisting of pyocyanine, phthalocyanine and pheophytin. The physiological effects consist of both toxicity and beneficial aspects. The unifying theme of electron transfer-reactive oxygen species-oxidative stress is used as the rationale in both cases. Toxicity is frequently prevented or alleviated by antioxidants. The apparent dichotomy of methylene blue action as both oxidant and antioxidant is rationalized based on similar previous cases. This mechanistic approach may have practical benefit. This review is important in conveying, for the first time, a unifying mechanism for toxicity based on electron transfer-reactive oxygen species-oxidative stress arising from imine-iminium. PMID:24852913

  1. Impact of Sensory Sensitivity on Physiological Stress Response and Novel Peer Interaction in Children with and without Autism Spectrum Disorder

    PubMed Central

    Corbett, Blythe A.; Muscatello, Rachael A.; Blain, Scott D.

    2016-01-01

    Background: For many children with Autism Spectrum Disorder (ASD), social interactions can be stressful. Previous research shows that youth with ASD exhibit greater physiological stress response during peer interaction, compared to typically developing (TD) peers. Heightened sensory sensitivity may contribute to maladaptive patterns of stress and anxiety. The current study investigated between-group differences in stress response to peer interaction, as well as the role of sensory sensitivity. Methods: Participants included 80 children (40 ASD) between 8 and 12 years. Children participated in the peer interaction paradigm (PIP), an ecologically valid protocol that simulates real-world social interaction. Salivary cortisol was collected before and after the 20 min PIP. Parents completed questionnaires pertaining to child stress (Stress Survey Schedule) and sensory sensitivity (Short Sensory Profile). Statistical analyses included t-tests and ANCOVA models to examine between-group differences in cortisol and play; Pearson correlations to determine relations between cortisol, play, and questionnaire scores; and moderation analyses to investigate interactions among variables. Results: Controlling for baseline cortisol values, children with ASD showed significantly higher cortisol levels than TD peers, in response to the PIP [F(1, 77) = 5.77, p = 0.02]. Cortisol during play was negatively correlated with scores on the SSP (r = −0.242, p = 0.03), and positively correlated with SSS (r = 0.273, p = 0.02) indicating that higher cortisol was associated with greater sensory sensitivity (lower SSP reflects more impairment) and enhanced stress in various contexts (higher SSS reflects more stress). Furthermore, diagnosis was a significant moderator of the relation between cortisol and SSP, at multiple time points during the PIP (p < 0.05). Conclusions: The current study extends previous findings by showing that higher physiological arousal during play is associated with

  2. Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species?

    PubMed Central

    Dantzer, Ben; Fletcher, Quinn E.; Boonstra, Rudy; Sheriff, Michael J.

    2014-01-01

    Conservation physiology proposes that measures of physiological stress (glucocorticoid levels) can be used to assess the status and future fate of natural populations. Increases in glucocorticoids may reflect a more challenging environment, suggesting that the influence of human activities on free-living animals could be quantified by measuring glucocorticoids. Biomedical studies suggest that chronic increases in glucocorticoids can have detrimental effects on survival and reproduction, which could influence the viability of populations. Here, we discuss the use of measurements of glucocorticoids in conservation physiology. We first provide an overview of the different methods to quantify glucocorticoids and their utility in conservation physiology. We then discuss five questions we think are essential for conservation physiologists to address. We highlight how intrinsic (e.g. sex, reproductive status, age, recent experiences) and ecological factors (e.g. predation, food availability, snowfall) can, by themselves or through their interactions with anthropogenic disturbances, affect the physiological stress response and mask any general patterns about the effects of anthropogenic disturbances on glucocorticoids. Using a meta-analysis, we show that anthropogenic disturbances are consistently associated with increased glucocorticoids regardless of the type of human disturbance. We also show that males may be more sensitive to anthropogenic disturbances than females and that faecal glucocorticoids, but not baseline plasma glucocorticoids, consistently increase in response to anthropogenic disturbances. Finally, we discuss how increases in glucocorticoids in free-living animals can sometimes enhance survival and reproduction. Unfortunately, our literature analysis indicates that this observation has not yet gained traction, and very few studies have shown that increases in glucocorticoid levels resulting from anthropogenic disturbances decrease survival or reproduction

  3. The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics.

    PubMed

    Ioannou, Christos I; Furuya, Shinichi; Altenmüller, Eckart

    2016-05-01

    Recent investigations have suggested that stress can modulate motor function. However, the impact of stress on motor performance of musicians suffering from focal dystonia (FDM) remains unknown. The current study assessed motor performance in 20 FDM patients and 16 healthy musicians (HM) before and under stress. Stress was manipulated using the Trier Social Stress Test (TSST). Motor performance was evaluated based on analysis of electromyographic (EMG) activity and temporal variability, while electrocardiography (ECG) and the level of free cortisol were used to test for objective alterations of the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the psychological profiles of both groups were analyzed using three psycho-diagnostic standardized questionnaires. Results showed that patients' motor impairments did not change under acute stressful conditions. However, an increase in muscular co-contractions was observed, reflecting a physiological muscular response under stressful conditions. Psycho-diagnostic analysis revealed higher levels of psychological traits related to elevated anxiety, stress and perfectionism in 40% of the patients. Although the motor outcome between those patients and those with an opposing psychological profile did not differ, patients characterized by stressful and perfectionistic personalities had, on average, developed dystonia about ten years earlier than the rest of the patients. The current study suggests that acute stress conditions may not have any direct impact on fine motor control of FDM patients. However psychological traits associated with increased stress, anxiety and perfectionism may have a long-lasting effect on the motor function of affected musicians, by promoting the acceleration or even the triggering of dystonia. PMID:27033741

  4. Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere.

    PubMed

    Mao, Peili; Zhang, Yujuan; Cao, Banghua; Guo, Longmei; Shao, Hongbo; Cao, Zhenyu; Jiang, Qiankun; Wang, Xuan

    2016-10-15

    Robinia pseudoacacia is the main arbor species in the coastal saline-alkali area of the Yellow River Delta. Because most studies focus on the aboveground parts, detailed information regarding root functioning under salinity is scare. Root traits of seedlings of R. pseudoacacia including morphological, physiological and growth properties under four salinity levels (CK, 1‰, 3‰ and 5‰ NaCl) were studied by the pot experiments to better understand their functions and relationships with the shoots. The results showed that seedling biomass decreased by the reduction of root, stem and leaf biomass with the increase of salinity levels. With increasing salinity levels, total root length (TRL) and total root surface area (TRSA) decreased, whereas specific root length (SRL) and specific root area (SRA) increased. Salt stress decreased root activity (RA) and the maximum net photosynthetic rate (Amax) and increased the water saturation deficit (WSD) significantly in the body. Correlation analyses showed significantly correlations between root morphological and physiological parameters and seedling biomass and shoot physiological indexes. R. pseudoacacia seedlings could adapt to 1‰ salinity by regulating the root morphology and physiology, but failed in 5‰ salinity. How to adjust the water status in the body with decreasing water uptake by roots was an important way for R. pseudoacacia seedlings to adapt to the salt stress.

  5. Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere.

    PubMed

    Mao, Peili; Zhang, Yujuan; Cao, Banghua; Guo, Longmei; Shao, Hongbo; Cao, Zhenyu; Jiang, Qiankun; Wang, Xuan

    2016-10-15

    Robinia pseudoacacia is the main arbor species in the coastal saline-alkali area of the Yellow River Delta. Because most studies focus on the aboveground parts, detailed information regarding root functioning under salinity is scare. Root traits of seedlings of R. pseudoacacia including morphological, physiological and growth properties under four salinity levels (CK, 1‰, 3‰ and 5‰ NaCl) were studied by the pot experiments to better understand their functions and relationships with the shoots. The results showed that seedling biomass decreased by the reduction of root, stem and leaf biomass with the increase of salinity levels. With increasing salinity levels, total root length (TRL) and total root surface area (TRSA) decreased, whereas specific root length (SRL) and specific root area (SRA) increased. Salt stress decreased root activity (RA) and the maximum net photosynthetic rate (Amax) and increased the water saturation deficit (WSD) significantly in the body. Correlation analyses showed significantly correlations between root morphological and physiological parameters and seedling biomass and shoot physiological indexes. R. pseudoacacia seedlings could adapt to 1‰ salinity by regulating the root morphology and physiology, but failed in 5‰ salinity. How to adjust the water status in the body with decreasing water uptake by roots was an important way for R. pseudoacacia seedlings to adapt to the salt stress. PMID:27289394

  6. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    PubMed

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. PMID:25014264

  7. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    PubMed

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112.

  8. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress

    USGS Publications Warehouse

    Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2001-01-01

    In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.

  9. Costs of mate-guarding in wild male long-tailed macaques (Macaca fascicularis): physiological stress and aggression.

    PubMed

    Girard-Buttoz, Cédric; Heistermann, Michael; Rahmi, Erdiansyah; Agil, Muhammad; Fauzan, Panji Ahmad; Engelhardt, Antje

    2014-09-01

    Mate-guarding is an important determinant of male reproductive success in a number of species. However, it is known to potentially incur costs. The aim of the present study was to assess the effect of mate-guarding on male physiological stress and aggression in long-tailed macaques, a species in which males mate-guard females to a lesser extent than predicted by the Priority of Access model (PoA). The study was carried out during two mating periods on three groups of wild long-tailed macaques in Indonesia by combining behavioral observations with non-invasive measurements of fecal glucocorticoid (fGC) levels. Mate-guarding was associated with a general rise in male stress hormone levels but, from a certain threshold of mate-guarding onwards, increased vigilance time was associated with a decrease in stress hormone output. Mate-guarding also increased male-male aggression rate and male vigilance time. Overall, alpha males were more physiologically stressed than other males independently of mating competition. Increased glucocorticoid levels during mate-guarding are most likely adaptive since it may help males to mobilize extra-energy required for mate-guarding and ultimately maintain a balanced energetic status. However, repeated exposure to high levels of stress over an extended period is potentially deleterious to the immune system and thus may carry costs. This potential physiological cost together with the cost of increased aggression mate-guarding male face may limit the male's ability to mate-guard females, explaining the deviance from the PoA model observed in long-tailed macaques. Comparing our results to previous findings we discuss how ecological factors, reproductive seasonality and rank achievement may modulate the extent to which costs of mate-guarding limit male monopolization abilities. PMID:25236888

  10. Costs of mate-guarding in wild male long-tailed macaques (Macaca fascicularis): physiological stress and aggression.

    PubMed

    Girard-Buttoz, Cédric; Heistermann, Michael; Rahmi, Erdiansyah; Agil, Muhammad; Fauzan, Panji Ahmad; Engelhardt, Antje

    2014-09-01

    Mate-guarding is an important determinant of male reproductive success in a number of species. However, it is known to potentially incur costs. The aim of the present study was to assess the effect of mate-guarding on male physiological stress and aggression in long-tailed macaques, a species in which males mate-guard females to a lesser extent than predicted by the Priority of Access model (PoA). The study was carried out during two mating periods on three groups of wild long-tailed macaques in Indonesia by combining behavioral observations with non-invasive measurements of fecal glucocorticoid (fGC) levels. Mate-guarding was associated with a general rise in male stress hormone levels but, from a certain threshold of mate-guarding onwards, increased vigilance time was associated with a decrease in stress hormone output. Mate-guarding also increased male-male aggression rate and male vigilance time. Overall, alpha males were more physiologically stressed than other males independently of mating competition. Increased glucocorticoid levels during mate-guarding are most likely adaptive since it may help males to mobilize extra-energy required for mate-guarding and ultimately maintain a balanced energetic status. However, repeated exposure to high levels of stress over an extended period is potentially deleterious to the immune system and thus may carry costs. This potential physiological cost together with the cost of increased aggression mate-guarding male face may limit the male's ability to mate-guard females, explaining the deviance from the PoA model observed in long-tailed macaques. Comparing our results to previous findings we discuss how ecological factors, reproductive seasonality and rank achievement may modulate the extent to which costs of mate-guarding limit male monopolization abilities.

  11. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos)

    PubMed Central

    Carlson, Ruth I.; Cattet, Marc R. L.; Sarauer, Bryan L.; Nielsen, Scott E.; Boulanger, John; Stenhouse, Gordon B.; Janz, David M.

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic–pituitary–adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50–100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change. PMID:27293753

  12. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    PubMed

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  13. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    PubMed

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change. PMID:27293753

  14. Mechanisms of Change: Testing how Preventative Interventions Impact Psychological and Physiological Stress Functioning in Mothers in Neglectful Families

    PubMed Central

    Toth, Sheree L.; Sturge-Apple, Melissa L.; Rogosch, Fred A.; Cicchetti, Dante

    2015-01-01

    The present study applies a multilevel approach to an examination of the effect of two randomized preventative interventions with mothers in neglectful families who are also contending with elevated levels of impoverishment and ecological risk. Specifically, we examined how participation in either Child-Parent Psychotherapy (CPP) or Psychoeducational Parenting (PPI) interventions was associated with reductions in maternal psychological parenting stress and in turn physiological stress system functioning when compared to mothers involved in standard community services (CS) as well as a demographic comparison group of nonmaltreating mothers (NC). The resulting group sizes in the current investigation were: CPP (n = 44), PPI (n = 34), CS (n = 27), and NC (n = 52). Mothers and infants who were 13-months of age were randomly assigned to intervention group at baseline. Mothers completed assessments on stress within the parenting role at baseline and post-intervention. Basal cortisol was sampled at post-intervention and 1-year follow-up. Latent difference score analyses examined change in these constructs over time. Results suggested that mothers within the CPP intervention experienced significant declines in child-related parenting stress while mothers in the PPI intervention reported declines in parent-related parenting stress. In turn, significant decreases in stress within the CPP mothers were further associated with adaptive basal cortisol functioning at 1-year post-intervention. Results highlight the value of delineating how participation in preventtive interventions aimed at ameliorating child maltreatment in neglectful families within the context of poverty may operate through improvements in psychological and physiological stress functioning. Findings are discussed with respect to the importance of multi-level assessments of intervention process and outcome. PMID:26535951

  15. Mechanisms of change: Testing how preventative interventions impact psychological and physiological stress functioning in mothers in neglectful families.

    PubMed

    Toth, Sheree L; Sturge-Apple, Melissa L; Rogosch, Fred A; Cicchetti, Dante

    2015-11-01

    The present study applies a multilevel approach to an examination of the effect of two randomized preventive interventions with mothers in neglectful families who are also contending with elevated levels of impoverishment and ecological risk. Specifically, we examined how participation in either child-parent psychotherapy (CPP) or psychoeducational parenting intervention (PPI) was associated with reductions in maternal psychological parenting stress and in turn physiological stress system functioning when compared to mothers involved in standard community services as well as a demographic comparison group of nonmaltreating mothers. The resulting group sizes in the current investigation were 44 for CPP, 34 for PPI, 27 for community services, and 52 for nonmaltreating mothers. Mothers and their 13-month-old infants were randomly assigned to intervention group at baseline. Mothers completed assessments on stress within the parenting role at baseline and postintervention. Basal cortisol was sampled at postintervention and 1-year follow-up. Latent difference score analyses examined change in these constructs over time. Results suggested that mothers within the CPP intervention experienced significant declines in child-related parenting stress, while mothers in the PPI intervention reported declines in parent-related parenting stress. In turn, significant decreases in stress within the CPP mothers were further associated with adaptive basal cortisol functioning at 1-year postintervention. The results highlight the value of delineating how participation in preventive interventions aimed at ameliorating child maltreatment in neglectful families within the context of poverty may operate through improvements in psychological and physiological stress functioning. Findings are discussed with respect to the importance of multilevel assessments of intervention process and outcome. PMID:26535951

  16. ROLE OF ENVIRONMENTAL HEAT AND COLD STRESS ON THE PHYSIOLOGICAL RESPONSE TO ORGANOPHOSPHATES AND OTHER TOXICANTS.

    EPA Science Inventory

    Most toxicological and pharmacological studies are performed in laboratory rodents maintained under comfortable environmental conditions. However, exposure to toxicants as well as some drugs can occur under stressful conditions during rest or while exercising. Heat stress can exa...

  17. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.

    PubMed

    Yin, Yongqi; Yang, Runqiang; Han, Yongbin; Gu, Zhenxin

    2015-01-15

    suppressed under salt stress condition. According to previous studies, exogenous calcium counters the harmful effect of salt stress and increases the biomass and GABA content of germinating soybeans. Nevertheless, the precise molecular mechanism underlying the role of calcium in resistance to salt stress is still unknown. This paper is the first study employing comparative proteomic and physiological analyses to reveal the protective effect of exogenous calcium in the germinating soybean response to salt stress. Our study links the biological events with proteomic information and provides detailed peptide information on all identified proteins. The functions of those significantly changed proteins are also analyzed. The physiological and comparative proteomic analyses revealed the putative molecular mechanism of exogenous calcium treatment induced salt stress responses. The findings from this paper are beneficial to high GABA-rich germinating soybean biomass. Additionally, these findings also might be applicable to the genetic engineering of soybean plants to improve stress tolerance.

  18. FPGA-based smart sensor for drought stress detection in tomato plants using novel physiological variables and discrete wavelet transform.

    PubMed

    Duarte-Galvan, Carlos; Romero-Troncoso, Rene de J; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G; Fernandez-Jaramillo, Arturo A; Contreras-Medina, Luis M; Carrillo-Serrano, Roberto V; Millan-Almaraz, Jesus R

    2014-01-01

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  19. FPGA-Based Smart Sensor for Drought Stress Detection in Tomato Plants Using Novel Physiological Variables and Discrete Wavelet Transform

    PubMed Central

    Duarte-Galvan, Carlos; de J. Romero-Troncoso, Rene; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G.; Fernandez-Jaramillo, Arturo A.; Contreras-Medina, Luis M.; Carrillo-Serrano, Roberto V.; Millan-Almaraz, Jesus R.

    2014-01-01

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions. PMID:25302811

  20. Genetic evaluation of several physiological traits for screening of suitable spring safflower (Carthamus tinctorius L.) genotypes under stress and non-stress irrigation regimes.

    PubMed

    Ashkani, J; Pakniyat, H; Ghotbi, V

    2007-07-15

    Seven cultivars and one line of spring safflower (Carthamus tinctorius L.) were used to estimate genetic variation, heritability, genetic gain and genetic factor analysis for several physiological traits. Each experiment was conducted in a randomized complete block design with three replications. Factor loadings in first factor were used for determination of important physiological traits for suitable genotype screening under each irrigation regimes. Under non-stress conditions, factor analysis technique extracted six factors which exploited about 93% of the total genetic variation, while 30% of the total genetic variance was associated by the first factor. Under stress conditions factor analysis extracted four factors and they totally explained 100% of the total genetic variation, while, the first factor accounted for 38% of the total genetic variation. Ultimate, leaf area index (at stem-elongation and flowering), leaf osmotic potential (at stem-elongation) and rate of water loss from excised leaves (at flowering) under non-stress conditions and also leaf area index (at flowering and grain filling) and rate of water loss from excised leaves (at grain filling) under stress conditions were the best criteria for screening of suitable genotype under explicated conditions.

  1. Hormones: commentary. Riding the physiological roller coaster: adaptive significance of cortisol stress reactivity to social contexts.

    PubMed

    Shirtcliff, Elizabeth A; Peres, Jeremy C; Dismukes, Andrew R; Lee, Yoojin; Phan, Jenny M

    2014-02-01

    The authors conjecture that to understand normal stress regulation, including cortisol stress reactivity, it is important to understand why these biomarkers are released and what they function to accomplish within the individual. This perspective holds that high (or rising) cortisol has advantages and disadvantages that must be understood within a context to understand how individual differences unfold. This perspective is juxtaposed with a popular vantage point of this stress hormone or of stress exposure that emphasizes the deleterious consequences or problems of this hormone. While the costs and benefits of cortisol are emphasized for normal stress regulation, this dynamic context-dependent purpose of stress hormones should extend to the development of psychopathology as well. This functional and dynamic view of cortisol is helpful for interpreting why Tackett and colleagues (2014) appear to observe advantageous cortisol recovery from stress in individuals with elevated personality disorder symptoms. PMID:24344886

  2. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  3. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.

  4. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions

    PubMed Central

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  5. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    PubMed

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  6. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    PubMed

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  7. Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia L.) Subjected to Salt Stress

    PubMed Central

    Wang, Zhiming; Wang, Mingyue; Liu, Likun; Meng, Fanjuan

    2013-01-01

    Tetraploid black locust (Robinia pseudoacacia L.) is adaptable to salt stress. Here, we compared morphological, physiological, ultrastructural, and proteomic traits of leaves in tetraploid black locust and its diploid relatives under salt stress. The results showed that diploid (2×) plants suffered from greater negative effects than those of tetraploid (4×) plants. After salt treatment, plant growth was inhibited, photosynthesis was reduced, reactive oxygen species, malondialdehyde content, and relative electrolyte leakage increased, and defense-related enzyme activities decreased in 2× compared to those in 4×. In addition, salt stress resulted in distorted chloroplasts, swollen thylakoid membranes, accumulation of plastoglobules, and increased starch grains in 2× compared to those in 4×. However, 4× developed diverse responses under salt stress. A comparative proteomic analysis revealed that 41 and 37 proteins were differentially expressed in 2× and 4×, respectively. These proteins were mainly involved in photosynthesis, stress and defense, energy, metabolism, transcription/translation, and transportation. Distinct patterns of protein changes between 2× and 4× were analyzed. Collectively, our results suggest that the plants showed significantly different responses to salt stress based on ploidy level of the plant. The 4× possessed a better salt protection mechanism than that of 2×, suggesting salt tolerance in the polyploid plant. PMID:24129170

  8. Psychological and physiological stress negatively impacts early engagement and retention of opioid-dependent individuals on methadone maintenance

    PubMed Central

    Jaremko, Kellie M.; Sterling, Robert C.; Van Bockstaele, Elisabeth J.

    2014-01-01

    The present study investigated whether psychological and/or physiological measures of stress would impede induction onto methadone maintenance and predict early (<6 months) discontinuation. Compared with controls, opioid-dependent subjects displayed increased distress on the perceived stress scale (PSS) and post-traumatic stress disorder checklist (PCLC); 60% exhibited abnormal cortisol. Addiction severity index (ASI), drug-use, and stress indices explained between 17–37% of the variance in engagement including attendance, opioid abstinence, and methadone stabilization. Participants who discontinued treatment displayed poor engagement, abnormal cortisol, elevated withdrawal symptoms, higher distress, and increased ongoing opioid use versus compliant individuals. Discontinuation was initially related to drug-use severity; however, by 6 months, retention depended primarily upon cortisol abnormalities, which increased an individual’s discontinuation risk by 7.7-fold. These findings support admission screening with the ASI/cortisol for drop out, and stress/drug-use indices for engagement that together may enable clinically-relevant early recognition and interventions for prevention of stress-induced relapse in opioid-dependent populations. PMID:25239858

  9. Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum.

    PubMed

    Roy, Swapan Kumar; Kwon, Soo Jeong; Cho, Seong-Woo; Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Sarker, Kabita; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-06-01

    Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.

  10. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    PubMed

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  11. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587

  12. Influence of o'p-DDD on the physiological response to stress in Arctic charr (Salvelinus alpinus).

    PubMed

    Jørgensen, E H; Balm, P H; Christiansen, J S; Plotitsyna, N; Ingebrigtsen, K

    2001-10-01

    of o'p-DDD on Arctic charr metabolism were not associated with the stress response, we propose that they may well interfere with the animals' ability to cope with stress in the long term, or may compromise other physiological processes, such as smoltification. Finally, the high level of integration of components involved in the stress response complicates the identification of single stress-sensitive indices as biomarkers applicable in environmental monitoring programmes.

  13. The effect of consignment to broodmare Sales on physiological stress measured by faecal glucocorticoid metabolites in pregnant Thoroughbred mares

    PubMed Central

    2014-01-01

    Background Validation of a method for the minimally-invasive measurement of physiological stress will help understanding of risk factors that may contribute to stress-associated events including recrudescence of Equid herpesvirus (EHV), which is anecdotally associated with sales consignment of pregnant Thoroughbred mares. In this study we compared two similar groups of late-gestation Thoroughbred broodmares on the same farm: a consigned Sales group (N = 8) and a non-consigned Control group (N = 6). The Sales mares were separated from their paddock companions and grouped prior to their preparation for, transport to, and return from the sales venue. Both groups were monitored by sampling at regular intervals from 5 days prior to until 14 days after the sales date (D0) to measure physiological stress in terms of changes in faecal glucocorticoid metabolite (FGM) concentrations, and for event-related viral recrudescence via daily body temperature measurements and periodic nasal swabs for PCR analysis for EHV-1 and -4 DNA. Results In both groups, FGM levels increased post-sales before returning to pre-sales levels. Specifically, FGM concentrations in the Sales mares were significantly higher on D + 3 and D + 10 than on D-4 and D-3 (F = 12.03, P < 0.0001, Post hoc: P = 0.0003 – 0.0008) and in the Control group FGM concentrations were higher on D + 10 than D-4 (F = 5.52, P = 0.004, Post hoc: P = 0.005). Interestingly, mean FGM levels in Control mares were significantly higher at 4 of the 5 sampling points (t = 5.64 – 2.25, p = 0.0001 – 0.044). Only one (Sales) mare showed PCR evidence of EHV-1 shedding. Conclusions Using FGM to measure physiological stress was supported by the increases observed in all mares after Sales consignment, including those not consigned to the sale. Monitoring FGM levels therefore represents an appropriate, minimally-invasive method for future studies to assess the contribution of

  14. Adaptive style and physiological reactivity during a laboratory stress paradigm in children with cancer and healthy controls.

    PubMed

    Williams, Natalie A; Allen, Michael T; Phipps, Sean

    2011-10-01

    Repressive adaptation has been conceptualized as one pathway to psychological resilience in children with cancer, but the physiological costs of maintaining a repressive adaptive style are currently unknown. The goal of this study was to examine physiological functioning as a function of adaptive style in children with cancer (N = 120) and healthy controls (N = 120). Children completed self-report measures of state anxiety and defensiveness prior to participating in three verbal stress tasks while monitoring blood pressure, electrocardiogram, and electrodermal response, and rated their anxiety following each task. Findings indicated no consistent differences in baseline indices and physiological reactivity as a function of adaptive style or health status (cancer vs. control). In addition, children identified as having a repressive adaptive style did not exhibit greater verbal-autonomic discrepancy than low-anxious children. In contrast to findings with adults, children with a repressive adaptive style do not appear to experience adverse effects of this coping style in terms of physiological reactivity.

  15. Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress.

    PubMed

    Szpilewska, Hanna; Czyz, Agata; Wegrzyn, Grzegorz

    2003-11-01

    The origin and function of bioluminescence was considered a problematic question of the Charles Darwin theory. Early evolution of bacterial luminescence and its current physiological importance seem to be especially mysterious. Recently, it was proposed that stimulation of DNA repair may be a physiological role for production of light by bacterial cells. On the other hand, it was also proposed that primary role of luminescent systems could be detoxification of the deleterious oxygen derivatives. Although some previous results might suggest that this hypothesis can be correct, until now experimental evidence for such a mechanism operating in bacterial cells and having physiological importance was generally lacking. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, and ferrous ions) at certain concentrations in the culture medium, growth of Vibrio harveyi mutants luxA and luxB, but not of the mutant luxD, is severely impaired relative to wild-type bacteria. This deleterious effect of oxidants on the mutants luxA and luxB could be significantly reduced by addition of the antioxidants A-TEMPO or 40H-TEMPO. We conclude that bacterial luciferase may indeed play a physiological role in the protection of cells against oxidative stress.

  16. Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    PubMed Central

    Zeng, Li; Liu, Fang; Ding, Guoshan; Kang, Yindong; Mao, Jingyan; Cai, Ming; Zhu, Youhua; Wang, Quan-xing

    2011-01-01

    Background Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress. Materials and Methods Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury. Results After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE). Conclusions Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions. PMID:22022451

  17. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects.

    PubMed

    Wang, Jun-ling; Li, Tao; Liu, Gao-yuan; Smith, Joshua M; Zhao, Zhi-wei

    2016-01-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg(-1)). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels. PMID:26911444

  18. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects

    PubMed Central

    Wang, Jun-ling; Li, Tao; Liu, Gao-yuan; Smith, Joshua M.; Zhao, Zhi-wei

    2016-01-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg−1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels. PMID:26911444

  19. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  20. Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen

    PubMed Central

    Schwalbach, Michael S.; Tremaine, Mary; Marner, Wesley D.; Zhang, Yaoping; Bothfeld, William; Higbee, Alan; Grass, Jeffrey A.; Cotten, Cameron; Reed, Jennifer L.; da Costa Sousa, Leonardo; Jin, Mingjie; Balan, Venkatesh; Ellinger, James; Dale, Bruce; Kiley, Patricia J.

    2012-01-01

    The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates. PMID:22389370

  1. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects.

    PubMed

    Wang, Jun-ling; Li, Tao; Liu, Gao-yuan; Smith, Joshua M; Zhao, Zhi-wei

    2016-01-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg(-1)). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  2. Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione.

    PubMed

    Daud, M K; Mei, Lei; Azizullah, Azizullah; Dawood, Muhammad; Ali, Imran; Mahmood, Qaisar; Ullah, Waheed; Jamil, Muhammad; Zhu, S J

    2016-08-01

    Cadmium (Cd) pollution is present in the world over especially in the industrialized parts of the world. To reduce Cd accumulation in various crops especially food crops, alleviating agents such as reduced glutathione (GSH) can be applied, which are capable either to exclude or to sequester Cd contamination. This study investigated the leaf-based spatial distribution of physiological, metabolic, and microstructural changes in two cotton cultivars (Coker 312 and TM-1) under GSH-mediated Cd stress using single levels of Cd (50 μM) and GSH (50 μM) both separately and in mix along with control. Results showed that GSH revived the morphology and physiology of both cotton cultivars alone or in mix with Cd. Cd uptake was enhanced in all segments of leaf and whole leaf upon the addition of GSH. GSH alleviated Cd-induced reduction in the photosynthetic pigment compositions and chlorophyll a fluorescence parameters. Mean data of biomarkers (2,3,5-triphenyltetrazolium (TTC), total soluble protein (TSP), malondialdehyde (MDA), hydrogen peroxide (H2O2)) revealed the adverse effects of Cd stress on leaf segments of both cultivars, which were revived by GSH. The oxidative metabolism induced by Cd stress was profoundly influenced by exogenous GSH application. The microstructural alterations were mainly confined to chloroplastic regions of leaves under Cd-stressed conditions, which were greatly revived upon the GSH addition. As a whole, Cd stress greatly affected TM-1 as compared to Coker 312. These results suggest a positive role of GSH in alleviating Cd-mediated changes in different leaf sections of cotton cultivars.

  3. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte).

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Munné-Bosch, Sergi; Abdelly, Chedly

    2011-06-01

    Early changes in physiological and oxidative status induced by salt stress were monitored in two Brassicaceae plants differing in their tolerance to salinity, Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Growth response and antioxidant defense of C. maritima under 400 mM NaCl were compared with those of A. thaliana exposed to 100 mM NaCl. Salinity induced early growth reduction that is less pronounced in C. maritima than in A. thaliana. Maximum hydrogen peroxide (H₂O₂) level occurred in the leaves of both species 4 h after the onset of salt treatment. A rapid decline in H₂O₂ concentration was observed thereafter in C. maritima, whereas it remained high in A. thaliana. Correlatively, superoxide dismutase, catalase and peroxidase activities increased at 4 h of treatment in C. maritima and decreased thereafter. However, the activity of these enzymes remained higher in treated plants than that in controls, regardless of the duration of treatment, in A. thaliana. The concentrations of malondialdehyde (MDA) reached maximum values at 24 h of salt stress in both species. Again, MDA levels decreased later in C. maritima, but remained high in A. thaliana. The contents of α-tocopherol remained constant during salt stress in C. maritima and decreased during the first 24 h of salt stress and then remained low in A. thaliana. The results clearly showed that C. maritima, in contrast to A. thaliana, can rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. This may explain, at least partially, the difference in salt tolerance between halophytes and glycophytes. PMID:21288246

  4. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L.

    PubMed

    Choudhary, Sikander Pal; Kanwar, Mukesh; Bhardwaj, Renu; Yu, Jing-Quan; Tran, Lam-Son Phan

    2012-01-01

    Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10(-9) M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H(2)O(2) levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to

  5. The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress.

    PubMed

    Ni, Meng; Wen, Haishen; Li, Jifang; Chi, Meili; Bu, Yan; Ren, Yuanyuan; Zhang, Mo; Song, Zhifei; Ding, Houmeng

    2014-02-01

    Stocking density and hypoxia are considered priority issues in aquaculture research. In this study, two experiments were carried out in order to investigate the effects of chronic stress (stocking density) and acute stress (hypoxia) on the immune physiology responses (hematology, serum cortisol, glucose, total protein and the mRNA expression of CYP 1A) of juvenile Amur sturgeon (Acipenser schrenckii). In the chronic stress study, three triplicate groups of Amur sturgeon (42.0 ± 2.3 g) were reared in nine square concrete ponds (4.4 × 4.4 × 0.45 m³) at three stocking densities (3.7, 6.9 and 9.0 kg/m³) for 50 days. In the acute stress study, three triplicate groups: normal group (7 mg/l), hypoxia group 1 (5 mg/l) and hypoxia group 2 (3 mg/l) were used in nine 100 L indoor tanks. Sampling was performed at the end of the stocking density experiment (50 days) and at 0, 0.5, 1.5, 3 and 6 h after hypoxia stress. The results showed that increased stocking density reduced the morphological indexes (hepatosomatic index, spleen-somatic index and kidney-somatic index), while total protein and hemoglobin increased significantly in the stressed group. In response to hypoxia, the levels of cortisol, glucose and hematological parameters elevated significantly after this stress. As for spleen-somatic index, there was a decline after hypoxia though H1 group returned to the normal level at 3 h and 6 h after hypoxia stress. Additionally, In order to better understand the immune response of Amur sturgeon to chronic and acute stressors, we cloned the complete coding sequence of Amur sturgeon CYP 1A for the first time and investigated its tissue-specific expression and stress-induced expression. CYP 1A mRNA in liver showed over expressions both in crowding condition and in hypoxia stress. The same trend was also found in spleen and kidney which may provide evidence that CYP 1A could serve as a good indicator of immune response in Amur sturgeon. In addition, the result suggested a

  6. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L.

    PubMed

    Choudhary, Sikander Pal; Kanwar, Mukesh; Bhardwaj, Renu; Yu, Jing-Quan; Tran, Lam-Son Phan

    2012-01-01

    Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10(-9) M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H(2)O(2) levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to

  7. Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L.

    PubMed Central

    Choudhary, Sikander Pal; Kanwar, Mukesh; Bhardwaj, Renu; Yu, Jing-Quan; Tran, Lam-Son Phan

    2012-01-01

    Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10−9 M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H2O2 levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to

  8. Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea.

    PubMed

    Vanaja, M; Maheswari, M; Sathish, P; Vagheera, P; Jyothi Lakshmi, N; Vijay Kumar, G; Yadav, S K; Razzaq, Abdul; Singh, Jainender; Sarkar, B

    2015-10-01

    Three pigeonpea (Cajanus cajan L. Millsp.) genotypes- GT-1, AKP-1 and PRG-158 with varying crop duration, growth habit and flowering pattern were evaluated for variability in their response for drought stress. Drought stress was imposed at initiation of flowering and the observations on biomass and seed yield parameters were recorded at harvest. The magnitude of response of individual component to drought stress was found to be genotype specific. Drought stress significantly decreased photosynthetic rate (PN), transpiration rate (Tr) and relative water content (RWC) in all the genotypes, however the magnitude of reduction differed with genotype. With drought stress, the reduction of PN was highest in GT-1 while reduction in Tr was highest in PRG-158. The genotype AKP-1, accumulated significantly higher concentrations of osmotic solutes especially proline under water deficit stress, this facilitated it to maintain higher relative water content (RWC) and lower malondialdehyde (MDA) content as compared to other genotypes. Drought stress also impacted biomass production and their partitioning to vegetative and reproductive components at harvest. There was significant variability between the genotypes for seed yield under drought stress while it was non-significant under well-watered condition. Drought stress enhanced flower drop and decreased flower to pod conversion resulting in reduced pod number and seed number in PRG-158 and GT-1. The genotype AKP-1 recorded superior performance for seed yield under stress environment due to its ability in maintaining pod and seed number as well as improved test weight (100 seed weight). Under drought stress, significant positive association of seed yield with proline, seed number, pod number and test weight clearly indicating their role in drought tolerance. PMID:26600680

  9. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress.

    PubMed

    Arbona, Vicent; Argamasilla, Rosa; Gómez-Cadenas, Aurelio

    2010-11-01

    To explain the higher tolerance of Thellungiella to abiotic stress in comparison to Arabidopsis, several studies have focused on differences in ion absorption and gene expression. However, little is known about hormone regulation and metabolic responses. In this work, plants of both species were subjected to desiccation and salt stress to compare common and divergent responses. In control conditions, the number of significantly upregulated mass features as well as proline levels was higher in Tellungiella than in Arabidopsis. When subjected to desiccation, both species exhibited similar rates of water loss but proline over accumulation only occurred in Thellungiella; both species accumulated ABA and JA with a similar trend although Arabidopsis showed higher concentrations of both hormones which indicated a stronger impact of desiccation on Arabidopsis. However, Arabidopsis showed a higher number of significantly altered mass features than Thellungiella. Under salt stress, Thellungiella plants accumulated lower amounts of Cl(-) ions than Arabidopsis but exhibited a similar proline response. Under these conditions, ABA and JA levels increased in Arabidopsis whereas minimal changes in both hormone concentrations were recorded in Thellungiella. Contrastingly, the impact of salt stress on metabolite profiles was higher in Thellungiella than in Arabidopsis. Overall, data indicated that physiological responses in Arabidopsis are induced after stress imposition through hormonal regulation whereas Thellungiella has a basal metabolic configuration, better prepared to endure environmental cues.

  10. Different neural circuitry is involved in physiological and psychological stress-induced PTSD-like “nightmares” in rats

    PubMed Central

    Yu, Bin; Cui, Su-Ying; Zhang, Xue-Qiong; Cui, Xiang-Yu; Li, Sheng-Jie; Sheng, Zhao-Fu; Cao, Qing; Huang, Yuan-Li; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Zhang, Yong-He

    2015-01-01

    Posttraumatic nightmares are a core component of posttraumatic stress disorder (PTSD) and mechanistically linked to the development and maintenance of this disorder, but little is known about their mechanism. We utilized a communication box to establish an animal model of physiological stress (foot-shock [FS]) and psychological stress (PS) to mimic the direct suffering and witnessing of traumatic events. Twenty-one days after traumatic stress, some of the experimental animals presented startled awakening (i.e., were startled awake by a supposed “nightmare”) with different electroencephalographic spectra features. Our neuroanatomical results showed that the secondary somatosensory cortex and primary auditory cortex may play an important role in remote traumatic memory retrieval in FS “nightmare” (FSN) rats, whereas the temporal association cortex may play an important role in PS “nightmare” (PSN) rats. The FSN and PSN groups possessed common emotion evocation circuits, including activation of the amygdala and inactivation of the infralimbic prefrontal cortex and ventral anterior cingulate cortex. The decreased activity of the granular and dysgranular insular cortex was only observed in PSN rats. The present results imply that different types of stress may cause PTSD-like “nightmares” in rodents and identified the possible neurocircuitry of memory retrieval and emotion evocation. PMID:26530305

  11. Physiological stresses of limber pine seedlings at and above treeline immediately following natural and experimentally advanced snowmelt

    NASA Astrophysics Data System (ADS)

    Moyes, A. B.; Germino, M. J.; Kueppers, L. M.

    2012-12-01

    Treeline positions are anticipated to shift uphill in response to climate warming, a prediction which depends on future seedling recruitment at and above the current distribution limits of subalpine trees. To examine the role of cold temperature in seedling establishment at treeline, we measured physiological performance of limber pine seedlings after surviving their first winter in heated and ambient temperature plots within the Alpine Treeline Warming Experiment. Fluorometric measurements of maximum photosystem II efficiency (Fv/Fm) indicated severe photoinhibition 10 days following melt (Fv/Fm near 0), but photoinhibition diminished over the subsequent 10 days. Over the same period, seedlings showed highly variable degrees of moisture stress in midday stem water potentials (Ψ), possibly related to frost drought and freeze-thaw embolism, despite consistently abundant afternoon soil moisture. Many seedlings would not exude water under maximum measurement pressure (Ψ < -5 MPa) across all sampling dates (up to 60 days following melt), indicating high spatial variability in cold-associated moisture stress, and possibly limited xylem conduit refilling. Net CO2 assimilation appeared to be independently limited by photoinhibition and moisture stress. Although these stresses were not significantly impacted by the timing of snowmelt or whether seeds were sourced from high or low elevation provenances, the observation of severe cold stress indicates that seedling establishment above treeline will be sensitive to future patterns of snowmelt and air temperature.

  12. Stuttering Behavior and Physiological Stress Profiles: A Preliminary Investigation of School-Aged Children

    ERIC Educational Resources Information Center

    Ortega, Aishah Y.

    2009-01-01

    The impact of observable increases in stress during moments of stuttering has long been an interesting area of research. Although stuttering type, severity, and associated behaviors may vary widely among individuals, it is not uncommon to find stress management, relaxation, and desensitization incorporated into the therapeutic remediation of…

  13. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the US mini core collection were analyzed for differentially expressed leaf proteins during reproductive stage under water-deficit stress. Accessions showing tolerant and susceptible responses to stress were selected based on a bioassay involving chloroph...

  14. Effects of oxytocin administration in early life on the behavioral and physiological stress response of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The swine industry is moving toward the group-housing of sows. However, group-housing can result in increased aggression and social stress, with detrimental effects on swine health and productivity. In contrast, positive social relationships can reduce the adverse effects of social stress. This migh...

  15. Hypothalamic-Pituitary-Adrenal Axis Physiology and Cognitive Control of Behavior in Stress Inoculated Monkeys

    ERIC Educational Resources Information Center

    Parker, Karen J.; Buckmaster, Christine L.; Lindley, Steven E.; Schatzberg, Alan F.; Lyons, David M.

    2012-01-01

    Monkeys exposed to stress inoculation protocols early in life subsequently exhibit diminished neurobiological responses to moderate psychological stressors and enhanced cognitive control of behavior during juvenile development compared to non-inoculated monkeys. The present experiments extended these findings and revealed that stress inoculated…

  16. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  17. Markers of physiological stress in juvenile bonobos (Pan paniscus): are enamel hypoplasia, skeletal development and tooth size interrelated?

    PubMed

    Lukacs, John R

    2009-07-01

    A reduction in enamel thickness due to disrupted amelogenesis is referred to as enamel hypoplasia (EH). Linear EH in permanent teeth is a widely accepted marker of systemic physiological stress. An enigmatic, nonlinear form of EH commonly manifest in great ape and human deciduous canines (dc) is known as localized hypoplasia of primary canines (LHPC). The etiology of LHPC and what it signifies-localized traumatic or systemic physiological stress-remains unclear. This report presents frequency data on LHPC, hypostotic cranial traits, and tooth size in a sample of juvenile bonobos, then tests hypotheses of intertrait association that improve knowledge of the etiology and meaning of LHPC. The fenestration hypothesis is tested using hypostotic cranial traits as a proxy for membrane bone ossification, and the relationship between tooth size, LHPC, and hypostosis is investigated. Macroscopic observations of EH, hypostotic traits, and measurements of buccolingual tooth size were conducted according to established standards. LHPC was found in 51.2% of bonobos (n = 86) and in 26% of dc teeth (n = 269). Hypostotic traits were observed in 55.2% of bonobos (n = 96). A test of the association between LHPC and hypostosis yielded nonsignificant results (chi(2) = 2.935; P = 0.0867). Primary canines were larger in specimens with LHPC than in unaffected specimens (paired samples t test; udc, P = 0.011; ldc, P = 0.018), a result consistent with the fenestration hypothesis of LHPC pathogenesis. Hypostosis was not associated with differences in tooth size (P > 0.05). LHPC may be an indirect indicator of physiological stress, resulting from large, buccally displaced primary canines.

  18. Physiological stress response, reflex impairment and delayed mortality of white sturgeon Acipenser transmontanus exposed to simulated fisheries stressors

    PubMed Central

    McLean, Montana F.; Hanson, Kyle C.; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Nettles, Taylor L.; Litvak, Matt K.; Crossin, Glenn T.

    2016-01-01

    White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations

  19. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses.

    PubMed

    Carvalho, L C; Coito, J L; Gonçalves, E F; Chaves, M M; Amâncio, S

    2016-01-01

    Worldwide, extensive agricultural losses are attributed to drought, often in combination with heat in Mediterranean climate regions, where grapevine traditionally grows. The available scenarios for climate change suggest increases in aridity in these regions. Under natural conditions plants are affected by a combination of stresses, triggering synergistic or antagonistic physiological, metabolic or transcriptomic responses unique to the combination. However the study of such stresses in a controlled environment can elucidate important mechanisms by allowing the separation of the effects of individual stresses. To gather those effects, cuttings of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), were grown under controlled conditions and subjected to three abiotic stresses (drought - WS, heat - HS and high light - LS) individually and in combination two-by-two (WSHS, WSLS, HSLS) or all three (WSHSLS). Photosynthesis, water status, contents of H2 O2 , abscisic acid and metabolites of the ascorbate-glutathione cycle were measured in the leaves. Common and distinct response features were identified in the different stress combinations. Photosynthesis was not hindered in TN by LS, while even individual stresses severely affect photosynthesis in TR. Abscisic acid may be implicated in grapevine osmotic responses since it is correlated with tolerance parameters, especially in combined stresses involving drought. Overall, the responses to drought-including treatments were clearly distinct to those without drought. From the specific behaviours of the varieties, it can be concluded that TN shows a higher capacity for heat dissipation and for withstanding high light intensities, indicating better adjustment to warm conditions, provided that water supply is plentiful. PMID:26518605

  20. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses.

    PubMed

    Carvalho, L C; Coito, J L; Gonçalves, E F; Chaves, M M; Amâncio, S

    2016-01-01

    Worldwide, extensive agricultural losses are attributed to drought, often in combination with heat in Mediterranean climate regions, where grapevine traditionally grows. The available scenarios for climate change suggest increases in aridity in these regions. Under natural conditions plants are affected by a combination of stresses, triggering synergistic or antagonistic physiological, metabolic or transcriptomic responses unique to the combination. However the study of such stresses in a controlled environment can elucidate important mechanisms by allowing the separation of the effects of individual stresses. To gather those effects, cuttings of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), were grown under controlled conditions and subjected to three abiotic stresses (drought - WS, heat - HS and high light - LS) individually and in combination two-by-two (WSHS, WSLS, HSLS) or all three (WSHSLS). Photosynthesis, water status, contents of H2 O2 , abscisic acid and metabolites of the ascorbate-glutathione cycle were measured in the leaves. Common and distinct response features were identified in the different stress combinations. Photosynthesis was not hindered in TN by LS, while even individual stresses severely affect photosynthesis in TR. Abscisic acid may be implicated in grapevine osmotic responses since it is correlated with tolerance parameters, especially in combined stresses involving drought. Overall, the responses to drought-including treatments were clearly distinct to those without drought. From the specific behaviours of the varieties, it can be concluded that TN shows a higher capacity for heat dissipation and for withstanding high light intensities, indicating better adjustment to warm conditions, provided that water supply is plentiful.

  1. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes.

    PubMed

    Kottapalli, Kameswara Rao; Rakwal, Randeep; Shibato, Junko; Burow, Gloria; Tissue, David; Burke, John; Puppala, Naveen; Burow, Mark; Payton, Paxton

    2009-04-01

    Peanut genotypes from the US mini-core collection were analysed for changes in leaf proteins during reproductive stage growth under water-deficit stress. One- and two-dimensional gel electrophoresis (1- and 2-DGE) was performed on soluble protein extracts of selected tolerant and susceptible genotypes. A total of 102 protein bands/spots were analysed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) analysis. Forty-nine non-redundant proteins were identified, implicating a variety of stress response mechanisms in peanut. Lipoxygenase and 1l-myo-inositol-1-phosphate synthase, which aid in inter- and intracellular stress signalling, were more abundant in tolerant genotypes under water-deficit stress. Acetyl-CoA carboxylase, a key enzyme of lipid biosynthesis, increased in relative abundance along with a corresponding increase in epicuticular wax content in the tolerant genotype, suggesting an additional mechanism for water conservation and stress tolerance. Additionally, there was a marked decrease in the abundance of several photosynthetic proteins in the tolerant genotype, along with a concomitant decrease in net photosynthesis in response to water-deficit stress. Differential regulation of leaf proteins involved in a variety of cellular functions (e.g. cell wall strengthening, signal transduction, energy metabolism, cellular detoxification and gene regulation) indicates that these molecules could affect the molecular mechanism of water-deficit stress tolerance in peanut. PMID:19143990

  2. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata.

    PubMed

    Guan, Gui-Fang; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Fei, Jiao

    2015-10-01

    Drought stress is one of the major abiotic stresses that affects plant growth and metabolism adversely around the world. According to this research, the effect of drought stress on the activity of antioxidative enzymes, soluble sugar, protein and lipid peroxidation were studied in leaves of two mangrove plants, Kandelia obovata and Aegiceras corniculatum. The result showed that superoxide dismutase (SOD) and peroxidase (POD) varied significantly between the leaves and roots studied. The activities increased in different stress levels. The production rate of O 2 (-·) changed with the activity of SOD and POD. Lipid peroxidation was enhanced and Glycine betaine (GB) could decrease the level of malonaldehyde in order to reduce the damage of membrane system. The content of soluble sugar and protein also increased under drought stress and GB helped to eliminate the accumulation of them which somehow enhance the ability of defensing the plants under drought stress. These results indicated that antioxidative activity may play an important role in A. corniculatum and K. obovata and that cell membrane in leaves of K. obovata had greater stability than those of A. corniculatum. Exogenous application of GB had positive effects on A. corniculatum and K. obovata under drought stress which could be products exogenously applied to mangrove plants in order to alleviates the adverse effects. PMID:25956979

  3. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes.

    PubMed

    Kottapalli, Kameswara Rao; Rakwal, Randeep; Shibato, Junko; Burow, Gloria; Tissue, David; Burke, John; Puppala, Naveen; Burow, Mark; Payton, Paxton

    2009-04-01

    Peanut genotypes from the US mini-core collection were analysed for changes in leaf proteins during reproductive stage growth under water-deficit stress. One- and two-dimensional gel electrophoresis (1- and 2-DGE) was performed on soluble protein extracts of selected tolerant and susceptible genotypes. A total of 102 protein bands/spots were analysed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) analysis. Forty-nine non-redundant proteins were identified, implicating a variety of stress response mechanisms in peanut. Lipoxygenase and 1l-myo-inositol-1-phosphate synthase, which aid in inter- and intracellular stress signalling, were more abundant in tolerant genotypes under water-deficit stress. Acetyl-CoA carboxylase, a key enzyme of lipid biosynthesis, increased in relative abundance along with a corresponding increase in epicuticular wax content in the tolerant genotype, suggesting an additional mechanism for water conservation and stress tolerance. Additionally, there was a marked decrease in the abundance of several photosynthetic proteins in the tolerant genotype, along with a concomitant decrease in net photosynthesis in response to water-deficit stress. Differential regulation of leaf proteins involved in a variety of cellular functions (e.g. cell wall strengthening, signal transduction, energy metabolism, cellular detoxification and gene regulation) indicates that these molecules could affect the molecular mechanism of water-deficit stress tolerance in peanut.

  4. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata.

    PubMed

    Guan, Gui-Fang; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Fei, Jiao

    2015-10-01

    Drought stress is one of the major abiotic stresses that affects plant growth and metabolism adversely around the world. According to this research, the effect of drought stress on the activity of antioxidative enzymes, soluble sugar, protein and lipid peroxidation were studied in leaves of two mangrove plants, Kandelia obovata and Aegiceras corniculatum. The result showed that superoxide dismutase (SOD) and peroxidase (POD) varied significantly between the leaves and roots studied. The activities increased in different stress levels. The production rate of O 2 (-·) changed with the activity of SOD and POD. Lipid peroxidation was enhanced and Glycine betaine (GB) could decrease the level of malonaldehyde in order to reduce the damage of membrane system. The content of soluble sugar and protein also increased under drought stress and GB helped to eliminate the accumulation of them which somehow enhance the ability of defensing the plants under drought stress. These results indicated that antioxidative activity may play an important role in A. corniculatum and K. obovata and that cell membrane in leaves of K. obovata had greater stability than those of A. corniculatum. Exogenous application of GB had positive effects on A. corniculatum and K. obovata under drought stress which could be products exogenously applied to mangrove plants in order to alleviates the adverse effects.

  5. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    PubMed

    Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions. PMID:26244554

  6. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    PubMed

    Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  7. Collegiate Swimmers: Sex Differences in Self Reported and Physiological Stress Indices.

    ERIC Educational Resources Information Center

    Gackenbach, Jayne

    Research has suggested that sex role identity is a major factor in sports anxiety across the sexes. Sex and sex role differences in sports anxiety as expressed by collegiate swimmers prior to competition were investigated on both self-report and physiological levels. An hour before practice and competition the blood pressures of 13 female and 14…

  8. Physiological responses to low-force work and psychosocial stress in women with chronic trapezius myalgia

    PubMed Central

    Sjörs, Anna; Larsson, Britt; Dahlman, Joakim; Falkmer, Torbjörn; Gerdle, Björn

    2009-01-01

    Background Repetitive and stressful work tasks have been linked to the development of pain in the trapezius muscle, although the underlying mechanisms still remain unclear. In earlier studies, it has been hypothesized that chronic muscle pain conditions are associated with imbalance in the autonomic nervous system, predominantly expressed as an increased sympathetic activity. This study investigates whether women with chronic trapezius myalgia show higher muscle activity and increased sympathetic tone at baseline and during repetitive low-force work and psychosocial stress, compared with pain-free controls. Methods Eighteen women with chronic trapezius myalgia (MYA) and 30 healthy female controls (CON) were studied during baseline rest, 100 min of repetitive low-force work, 20 min of psychosocial stress (Trier Social Stress Test, TSST), and 80 min recovery. The subjects rated their pain intensity, stress and energy level every 20 min throughout the experiment. Muscle activity was measured by surface electromyography in the trapezius muscle (EMGtrap) and deltoid muscle (EMGdelt). Autonomic reactivity was measured through heart rate (HR), skin conductance (SCL), blood pressure (MAP) and respiration rate (Resp). Results At baseline, EMGtrap, stress ratings, and HR were higher in MYA than in CON. Energy ratings, EMGdelt, SCL, MAP and Resp were, however, similar in the two groups. Significant main group effects were found for pain intensity, stress ratings and EMGtrap. Deltoid muscle activity and autonomic responses were almost identical in MYA and CON during work, stress and recovery. In MYA only, pain intensity and stress ratings increased towards the end of the repetitive work. Conclusion We found increased muscle activity during uninstructed rest in the painful muscle of a group of women with trapezius myalgia. The present study could not confirm the hypothesis that chronic trapezius myalgia is associated with increased sympathetic activity. The suggestion of

  9. [Physiological responses of sugar beet (Beta vulgaris) to drought stress during vegetative development period under drip irrigation].

    PubMed

    Li, Yang-yang; Geng, Qing-yun; Fei, Cong; Fan, Huai

    2016-01-01

    Sugar beet (Beta vulgaris cv. Beta 356) was subjected to drought stress during vegetative development by maintaining the soil water content in the 0-40 cm soil depth at 70%, 50% or 30% of field capacity to study the physiological traits of the leaves. Results showed that the compensation index was the highest in the 50% field capacity treatment. Malonaldehyde (MDA) content, relative conductivity, catalase (CAT) activity, and soluble sugar content began to increase 24 h after rehydration. Proline content began to increase 48 h after rehydration. In contrast, no compensation effect was observed in peroxidase (POD) activity after rehydration. Among the active oxygen scavenging enzymes, CAT was most sensitive to drought stress. Supplemental irrigation should be carried out promptly when the soil water content dropped to 50% of field capacity during vegetative development. Rehydration could promote self-repair functions in leaves, thus reducing the effects of drought on sugar beet yield and sugar content.

  10. [Physiological responses of sugar beet (Beta vulgaris) to drought stress during vegetative development period under drip irrigation].

    PubMed

    Li, Yang-yang; Geng, Qing-yun; Fei, Cong; Fan, Huai

    2016-01-01

    Sugar beet (Beta vulgaris cv. Beta 356) was subjected to drought stress during vegetative development by maintaining the soil water content in the 0-40 cm soil depth at 70%, 50% or 30% of field capacity to study the physiological traits of the leaves. Results showed that the compensation index was the highest in the 50% field capacity treatment. Malonaldehyde (MDA) content, relative conductivity, catalase (CAT) activity, and soluble sugar content began to increase 24 h after rehydration. Proline content began to increase 48 h after rehydration. In contrast, no compensation effect was observed in peroxidase (POD) activity after rehydration. Among the active oxygen scavenging enzymes, CAT was most sensitive to drought stress. Supplemental irrigation should be carried out promptly when the soil water content dropped to 50% of field capacity during vegetative development. Rehydration could promote self-repair functions in leaves, thus reducing the effects of drought on sugar beet yield and sugar content. PMID:27228610

  11. Simultaneous Changes in Sleep, qEEG, Physiology, Behaviour and Neurochemistry in Rats Exposed to Repeated Social Defeat Stress.

    PubMed

    Ahnaou, A; Drinkenburg, W H I M

    2016-01-01

    Depression is a heterogeneous disorder characterized by alterations at psychological, behavioural, physiological, neurophysiological, and neurochemical levels. Social stress is a prevalent stress in man, and the repeated social defeat stress model in rats has been proposed as being the rodent equivalent to loss of control, which in subordinate animals produces alterations that resemble several of the cardinal symptoms found in depressed patients. Here, rats followed a resident-intruder protocol for 4 consecutive days during which behavioural, physiological, and electroencephalographic (EEG) parameters were simultaneously monitored in subordinate rats. On day 5, prefrontal dopamine (DA) and hippocampal serotonin (5-HT) as well as corticosterone were measured in submissive rats that had visual, acoustic, and olfactory (but no physical) contact with a dominant, resident conspecific rat. Socially defeated rats demonstrated increases in ultrasonic vocalizations (20-25 KHz), freezing, submissive defensive behaviour, inactivity, and haemodynamic response, while decreases were found in repetitive grooming behaviour and body weight. Additionally, alterations in the sleep-wake architecture were associated with reduced active waking, enhanced light sleep, and increased frequency of transitions from light sleep to quiet wakefulness, indicating sleep instability. Moreover, the attenuation of EEG power over the frequency range of 4.2-30 Hz, associated with a sharp transient increase in delta oscillations, appeared to reflect increased brain activity and metabolism in subordinate animals. These EEG changes were synchronous with a marked increase in body temperature and a decrease in locomotor activity. Furthermore, psychosocial stress consistently increased 5-HT, DA, and corticosterone levels. The increased levels of cortical DA and hippocampal 5-HT during social threat may reflect a coping mechanism to promote alertness and psychological adaptation to provocative and threatening

  12. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing.

    PubMed

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem

    2016-01-01

    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices. PMID:27435456

  13. Simultaneous Changes in Sleep, qEEG, Physiology, Behaviour and Neurochemistry in Rats Exposed to Repeated Social Defeat Stress.

    PubMed

    Ahnaou, A; Drinkenburg, W H I M

    2016-01-01

    Depression is a heterogeneous disorder characterized by alterations at psychological, behavioural, physiological, neurophysiological, and neurochemical levels. Social stress is a prevalent stress in man, and the repeated social defeat stress model in rats has been proposed as being the rodent equivalent to loss of control, which in subordinate animals produces alterations that resemble several of the cardinal symptoms found in depressed patients. Here, rats followed a resident-intruder protocol for 4 consecutive days during which behavioural, physiological, and electroencephalographic (EEG) parameters were simultaneously monitored in subordinate rats. On day 5, prefrontal dopamine (DA) and hippocampal serotonin (5-HT) as well as corticosterone were measured in submissive rats that had visual, acoustic, and olfactory (but no physical) contact with a dominant, resident conspecific rat. Socially defeated rats demonstrated increases in ultrasonic vocalizations (20-25 KHz), freezing, submissive defensive behaviour, inactivity, and haemodynamic response, while decreases were found in repetitive grooming behaviour and body weight. Additionally, alterations in the sleep-wake architecture were associated with reduced active waking, enhanced light sleep, and increased frequency of transitions from light sleep to quiet wakefulness, indicating sleep instability. Moreover, the attenuation of EEG power over the frequency range of 4.2-30 Hz, associated with a sharp transient increase in delta oscillations, appeared to reflect increased brain activity and metabolism in subordinate animals. These EEG changes were synchronous with a marked increase in body temperature and a decrease in locomotor activity. Furthermore, psychosocial stress consistently increased 5-HT, DA, and corticosterone levels. The increased levels of cortical DA and hippocampal 5-HT during social threat may reflect a coping mechanism to promote alertness and psychological adaptation to provocative and threatening

  14. Infant negative reactivity defines the effects of parent-child synchrony on physiological and behavioral regulation of social stress.

    PubMed

    Pratt, Maayan; Singer, Magi; Kanat-Maymon, Yaniv; Feldman, Ruth

    2015-11-01

    How infants shape their own development has puzzled developmentalists for decades. Recent models suggest that infant dispositions, particularly negative reactivity and regulation, affect outcome by determining the extent of parental effects. Here, we used a microanalytic experimental approach and proposed that infants with varying levels of negative reactivity will be differentially impacted by parent-infant synchrony in predicting physiological and behavioral regulation of increasing social stress during an experimental paradigm. One hundred and twenty-two mother-infant dyads (4-6 months) were observed in the face-to-face still face (SF) paradigm and randomly assigned to three experimental conditions: SF with touch, standard SF, and SF with arms' restraint. Mother-infant synchrony and infant negative reactivity were observed at baseline, and three mechanisms of behavior regulation were microcoded; distress, disengagement, and social regulation. Respiratory sinus arrhythmia baseline, reactivity, and recovery were quantified. Structural equation modeling provided support for our hypothesis. For physiological regulation, infants high in negative reactivity receiving high mother-infant synchrony showed greater vagal withdrawal, which in turn predicted comparable levels of vagal recovery to that of nonreactive infants. In behavioral regulation, only infants low in negative reactivity who received high synchrony were able to regulate stress by employing social engagement cues during the SF phase. Distress was reduced only among calm infants to highly synchronous mothers, and disengagement was lowest among highly reactive infants experiencing high mother-infant synchrony. Findings chart two pathways by which synchrony may bolster regulation in infants of high and low reactivity. Among low reactive infants, synchrony builds a social repertoire for handling interpersonal stress, whereas in highly reactive infants, it constructs a platform for repeated reparation of

  15. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.

    PubMed

    Takagi, Hiroshi

    2008-11-01

    Proline is an important amino acid in terms of its biological functions and biotechnological applications. In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. However, it has been shown that proline levels are not increased under various stress conditions in the yeast Saccharomyces cerevisiae cells. Proline is believed to serve multiple functions in vitro such as protein and membrane stabilization, lowering the T (m) of DNA, and scavenging of reactive oxygen species, but the mechanisms of these functions in vivo are poorly understood. Yeast cells biosynthesize proline from glutamate in the cytoplasm via the same pathway found in bacteria and plants and also convert excess proline to glutamate in the mitochondria. Based on the fact that proline has stress-protective activity, S. cerevisiae cells that accumulate proline were constructed by disrupting the PUT1 gene involved in the degradation pathway and by expressing the mutant PRO1 gene encoding the feedback inhibition-less sensitive gamma-glutamate kinase to enhance the biosynthetic activity. The engineered yeast strains successfully showed enhanced tolerance to many stresses, including freezing, desiccation, oxidation, and ethanol. However, the appropriate cellular level and localization of proline play pivotal roles in the stress-protective effect. These results indicate that the increased stress protection is observed in yeast cells under the artificial condition of proline accumulation. Proline is expected to contribute to yeast-based industries by improving the production of frozen dough and alcoholic beverages or breakthroughs in bioethanol production. PMID:18802692

  16. Hostility and Physiological Responses to Acute Stress in People With Type 2 Diabetes

    PubMed Central

    Hackett, Ruth A.; Lazzarino, Antonio I.; Carvalho, Livia A.; Hamer, Mark; Steptoe, Andrew

    2015-01-01

    ABSTRACT Objective Hostility is associated with cardiovascular mortality and morbidity, and one of the mechanisms may involve heightened reactivity to mental stress. However, little research has been conducted in populations at high risk for cardiovascular disease. The aim of the present study was to assess the relationship between hostility and acute stress responsivity in individuals with Type 2 diabetes. Methods A total of 140 individuals (median age [standard deviation] 63.71 [7.00] years) with Type 2 diabetes took part in laboratory-based experimental stress testing. Systolic blood pressure, diastolic blood pressure, heart rate, plasma interleukin-6 (IL-6), and salivary cortisol were assessed at baseline, during two stress tasks, and 45 and 75 minutes later. Cynical hostility was assessed using the Cook Medley Cynical Hostility Scale. Results Participants with greater hostility scores had heightened increases in IL-6 induced by the acute stress tasks (B = 0.082, p = .002), independent of age, sex, body mass index, smoking, household income, time of testing, medication, and baseline IL-6. Hostility was inversely associated with cortisol output poststress (B = −0.017, p = .002), independent of covariates. No associations between hostility and blood pressure or heart rate responses were observed. Conclusions Hostile individuals with Type 2 diabetes may be susceptible to stress-induced increases in inflammation. Further research is needed to understand if such changes increase the risk of cardiovascular disease in this population. PMID:25886832

  17. Morphological, physiological, and structural responses of two species of artemisia to NaCl stress.

    PubMed

    Guan, Zhi-Yong; Su, Yi-Ji; Teng, Nian-Jun; Chen, Su-Mei; Sun, Hai-Nan; Li, Chu-Ling; Chen, Fa-Di

    2013-01-01

    Effects of salt stress on Artemisia scoparia and A. vulgaris "Variegate" were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris "Variegate" leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na(+) increased in both species under salt stress, but A. vulgaris "Variegate" had higher level of proline and soluble carbohydrate and lower level of MDA and Na(+). The ratios of K(+)/Na(+), Ca(2+)/Na(+), and Mg(2+)/Na(+) in A. vulgaris "Variegate" under NaCl stress were higher. Moreover, A. vulgaris "Variegate" had higher transport selectivity of K(+)/Na(+) from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris "Variegate" chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris "Variegate." Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K(+) between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance. PMID:24235883

  18. Transcriptomic and physiological variations of three Arabidopsis ecotypes in response to salt stress.

    PubMed

    Wang, Yanping; Yang, Li; Zheng, Zhimin; Grumet, Rebecca; Loescher, Wayne; Zhu, Jian-Kang; Yang, Pingfang; Hu, Yuanlei; Chan, Zhulong

    2013-01-01

    Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms.

  19. The physiological role of the brain GLP-1 system in stress

    PubMed Central

    Holt, Marie K.; Trapp, Stefan

    2016-01-01

    Abstract Glucagon-like peptide-1 (GLP-1) within the brain is a potent regulator of food intake and most studies have investigated the anorexic effects of central GLP-1. A range of brain regions have now been found to be involved in GLP-1 mediated anorexia, including some which are not traditionally associated with appetite regulation. However, a change in food intake can be indicative of not only reduced energy demand, but also changes in the organism’s motivation to eat following stressful stimuli. In fact, acute stress is well-known to reduce food intake. Recently, more research has focused on the role of GLP-1 in stress and the central GLP-1 system has been found to be activated in response to stressful stimuli. The source of GLP-1 within the brain, the preproglucagon (PPG) neurons, are ideally situated in the brainstem to receive and relay signals of stress and our recent data on the projection pattern of the PPG neurons to the spinal cord suggest a potential strong link with the sympathetic nervous system. We review here the role of central GLP-1 in the regulation of stress responses and discuss the potential involvement of the endogenous source of GLP-1 within the brain, the PPG neurons. PMID:27722184

  20. Examining the Relationship between Physiological Measurements and Self-Reports of Stress and Well-Being in Middle School Teachers over One School Year

    ERIC Educational Resources Information Center

    Katz, Deirdre A.; Harris, Alexis R.; Abenavoli, Rachel M.; Greenberg, Mark T.

    2013-01-01

    Educators are exposed to a variety of stressors, which can lead to poorer teaching performance, burnout, and increased student misbehavior (Jennings & Greenberg, 2009). Although self-report measures of stress are most commonly used in education research, physiological measures of stress may also contribute to the understanding of educators'…

  1. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings.

    PubMed

    Subba, Pratap; Mukhopadhyay, Mainaak; Mahato, Suresh Kumar; Bhutia, Karma Diki; Mondal, Tapan Kumar; Ghosh, Swapan Kumar

    2014-10-01

    Zinc (Zn) is an essential micronutrient for higher plants; yet, at higher concentrations it is toxic. In order to explore the effect of Zn stress on growth, biochemical, physiological and ultra-structural changes, 1 year old mandarin plants were grown under various Zn concentrations (1, 2, 3, 4, 5, 10 15 and 20 mM) for 14 weeks. The biomass of the plants increased with increasing Zn concentrations and finally declined under excess Zn concentration but the prime increase was observed at 4 and 5 mM Zn. Zn stress reduced the photosynthetic rate, stomatal conductance, and transpiration along with reduction of chlorophyll a, chlorophyll b, and carotenoids content in leaf. Superoxide anion, malondialdehyde, hydrogen peroxide and electrolyte leakage were elevated in Zn stressed plants. The activities of ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) enzymes were increased in both Zn-deficient and Zn-excess plants. Therefore it is suggested that antioxidant defense system did not sufficiently protect the plants under rigorous Zn stress which was also corroborated by the alteration in cell ultrastructure as revealed by transmission electron microscopy. PMID:25320469

  2. DL-alpha-tocopherol acetate mitigates maternal hyperthermia-induced pre-implantation embryonic death accompanied by a reduction of physiological oxidative stress in mice.

    PubMed

    Sakamoto, Natsumi; Ozawa, Manabu; Yokotani-Tomita, Kaori; Morimoto, Aki; Matsuzuka, Takaya; Ijiri, Daichi; Hirabayashi, Miho; Ushitani, Atsuko; Kanai, Yukio

    2008-04-01

    Maternal hyperthermia induces pre-implantation embryo death, which is accompanied by enhanced physiological oxidative stress. We evaluated whether the administration of DL-alpha-tocopherol acetate (TA) to hyperthermic mothers mitigated pre-implantation embryo death. Mice were exposed to heat stress (35 degrees C, 60% relative humidity) for 12 h or not heated (25 degrees C) on the day of mating. Twelve hours before the beginning of temperature treatment, TA was injected intraperitoneally at a dose of 1 g/kg body weight. After the treatment, zygotes were recovered and the developmental abilities and intracellular glutathione (GSH) levels were evaluated. Another set of mice, with or without TA treatment, was exposed to heat stress for 12, 24 and 36 h, and the urinary levels of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. Heat stress significantly decreased the blastocyst development rate and the GSH content in zygotes, as compared with the non-heat-stressed embryos, while TA administration significantly mitigated the deleterious effects of heat stress with regard to both parameters. Moreover, although the urinary levels of 8-OHdG gradually increased according to the duration of heat exposure, with or without TA administration, the levels were lower in the TA-administered group than in the placebo-injected mice. These results suggest that heat stress enhances physiological oxidative stress, and that TA administration alleviates the hyperthermia-induced death of pre-implantation embryos by reducing physiological oxidative stress.

  3. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    PubMed

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect.

  4. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    PubMed

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect. PMID:24380343

  5. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts

    NASA Astrophysics Data System (ADS)

    Hoadley, Kenneth D.; Pettay, Daniel. T.; Dodge, Danielle; Warner, Mark E.

    2016-06-01

    Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host-algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta ( Symbiodinium C15) and Pocillopora damicornis ( Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme ( Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity ( D. nummiforme) to a range of 2.0-4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.

  6. Physiologic monitoring in extreme environments: application of microsensors and embedded processors to predict heat stress in fire fighters

    NASA Astrophysics Data System (ADS)

    Van Gelder, Carin; Pranger, L. Alex; Urias, Adrian R.; Lo, Ronalee; Wiesmann, William P.; Winchell, Robert J.; Kolka, Margaret A.; Stachenfeld, Nina; Bogucki, Sandy

    2002-05-01

    Interior structural firefighting involves heavy physical exertion under extreme environmental conditions. Personal protective clothing and equipment impose 50 lbs of weight on fire fighters and impede the evaporative cooling mechanisms normally responsible for thermoregulation during exercise. The intense heat of the fire ground further exacerbates the physiological stress on working fire fighters. Occupational morbidity and mortality statistics reflect the impact of such stressors on fire service personnel. Non-invasive physiological monitoring capabilities are needed to more precisely define the cardiovascular responses to the demands of fire fighting and identify markers of impending failure of compensatory mechanisms prior to collapse or onset of irreversible pathology. A suite of sensors designed to provide continuous remote monitoring of fire fighters has been developed. Oximetry sensors are incorporated into SCBA facemask to allow unencumbered monitoring and analysis of cardiovascular and pulmonary function. The present report also describes a model system for physiological studies of fire fighting. This system comprises a series of timed simulations of fire ground tasks performed by fire fighters in a heated environmental chamber. Preliminary testing confirms the feasibility of reliable oximetry signal acquisition under fire ground conditions.

  7. The interactive effects of multiple stressors on physiological stress responses and club cell investment in fathead minnows.

    PubMed

    Manek, Aditya K; Ferrari, Maud C O; Niyogi, Som; Chivers, Douglas P

    2014-04-01

    Anthropogenic activities have dramatically increased over the past decades, with the consequence that many organisms are simultaneously exposed to multiple stressors. Understanding how organisms respond to these stressors is a key focus for scientists from many disciplines. Here we investigated the interactive effects of two stressors, UV radiation (UVR) and cadmium (Cd) exposure on a common freshwater fish, fathead minnow (Pimephales promelas). UVR is known to influence the density of epidermal club cells (ECCs), which are not only a key component of the innate immune system of fishes, but are also the source of chemical alarm cues that serve to warn other fishes of nearby predators. In contrast, Cd impairs the physiological stress response and ability of fish to respond to alarm cues. We used an integrative approach to examine physiological stress response as well as investment in ECCs. Fish exposed to UVR had higher levels of cortisol than non-exposed controls, but Cd reduced cortisol levels substantially for fish exposed to UVR. Fish exposed to UVR, either in the presence or absence of Cd, showed consistent decreases in ECC investment compared to non-exposed controls. Despite differences in ECC number, there was no difference in the potency of alarm cues prepared from the skin of UVR and Cd exposed or non-exposed fish indicating that UVR and Cd exposure combined may have little influence on chemically-mediated predator-prey interactions. PMID:24463029

  8. Innate immunity and stress physiology of eastern hellbenders (Cryptobranchus alleganiensis) from two stream reaches with differing habitat quality.

    PubMed

    Hopkins, William A; Durant, Sarah E

    2011-11-01

    In addition to depriving amphibians of physical habitat requirements (e.g., shelter, moisture, and food), habitat modification may also have subtle effects on the health of amphibians and potentially precipitate interactions with other deleterious factors such as pathogens, contaminants, and invasive species. The current study was designed to evaluate the physiological state of imperiled giant salamanders, the eastern hellbender (Cryptobranchus alleganiensis), experiencing different surrounding land use that influences in-stream habitat quality. When we compared hellbenders from a stream reach with greater anthropogenic disturbance to a more forested site, we found that baseline and stress-induced plasma levels of corticosterone were similar in the two areas, but were very low compared to other amphibians. Males consistently had higher plasma corticosterone levels than females, a finding congruent with the known territorial activities of males early in the breeding season. Innate immune responsiveness (measured as bactericidal ability of blood; BKA) was also similar at the two sites, but juveniles had less robust BKA than adults. We found a positive relationship between restraint time and BKA, suggesting that the bactericidal ability of hellbenders may improve following acute stress. Finally, there was a tendency for hellbenders with skin abnormalities to have higher BKA compared to individuals with normal integument, an observation consistent with patterns observed in other animals actively responding to pathogens. Our study provides foundational physiological information on an imperiled amphibian species and reveals important knowledge gaps that will be important for understanding the ecology, evolution, and conservation of hellbenders. PMID:21872597

  9. Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium

    PubMed Central

    He, Fupo; Wang, Xiupeng; Maruyama, Osamu; Kosaka, Ryo; Sogo, Yu; Ito, Atsuo; Ye, Jiandong

    2013-01-01

    Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml−1) or albumin (800 μg ml−1). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin–apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin–apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials. PMID:23407573

  10. Impact of Mindfulness Training on Physiological Measures of Stress and Objective Measures of Attention Control in a Military Helicopter Unit

    PubMed Central

    Meland, Anders; Ishimatsu, Kazuma; Pensgaard, Anne Marte; Wagstaff, Anthony; Fonne, Vivianne; Garde, Anne Helene; Harris, Anette

    2015-01-01

    Objective: This study sought to determine if mindfulness training (MT) has a measurable impact on stress and attentional control as measured by objective physiological and psychological means. Background: Periods of persistent, intensive work demands are known to compromise recovery and attentional capacity. The effects of 4-month MT on salivary cortisol and performance on 2 computer-based cognitive tasks were tested on a military helicopter unit exposed to a prolonged period of high workload. Methods: MT participants were compared to a wait list control group on levels of saliva cortisol and performance on a go–no go test and a test of stimulus-driven attentional capture. Participants also reported mental demands on the go–no go test, time of wakeup, sleep duration, quality of sleep, outcome expectancies, physical activity level, self-perceived mindfulness, and symptoms of depression and anxiety. Results: The results from a mixed between–within analysis revealed that the MT participants compared to the control group had a larger pre to post increase in high- and low-cortisol slopes, and decrease in perceived mental demand imposed by the go–no go test. Conclusion: MT alleviates some of the physiological stress response and the subjective mental demands of challenging tasks in a military helicopter unit during a period of high workload. PMID:27226703

  11. Vulnerability to predation and physiological stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha) experimentally infected with Renibacterium salmoninarum

    USGS Publications Warehouse

    Mesa, M.G.; Poe, T.P.; Maule, A.G.; Schreck, C.B.

    1998-01-01

    We experimentally infected juvenile chinook salmon (Oncorhynchus tshawytscha) with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), to examine the vulnerability to predation of fish with differing levels of Rs infection and assess physiological change during progression of the disease. Immersion challenges conducted during 1992 and 1994 produced fish with either a low to moderate (1992) or high (1994) infection level of Rs during the 14-week postchallenge rearing period. When equal numbers of treatment and unchallenged control fish were subjected to predation by either northern squaw fish (Ptychocheilus oregonensis) or smallmouth bass (Micropterus dolomieui), Rs-challenged fish were eaten in significantly greater numbers than controls by nearly two to one. In 1994, we also sampled fish every 2 weeks after the challenge to determine some stressful effects of Rs infection. During disease progression in fish, plasma cortisol and lactate increased significantly whereas glucose decreased significantly. Our results indicate the role that BKD may play in predator-prey interactions, thus ascribing some ecological significance to this disease beyond that of direct pathogen-related mortality. In addition, the physiological changes observed in our fish during the chronic progression of BKD indicate that this disease is stressful, particularly during the later stages.

  12. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining

  13. Bacterial Physiological Diversity in the Rhizosphere of Range Plants in Response to Retorted Shale Stress

    PubMed Central

    Metzger, W. C.; Klein, D. A.; Redente, E. F.

    1986-01-01

    Bacterial populations were isolated from the soil-root interface and root-free regions of Agropyron smithii Rydb. and Atriplex canescens (Pursh) Nutt. grown in soil, retorted shale, or soil over shale. Bacteria isolated from retorted shale exhibited a wider range of tolerance to alkalinity and salinity and decreased growth on amino acid substrates compared with bacteria from soil and soil-over-shale environments. Exoenzyme production was only slightly affected by growth medium treatment. Viable bacterial populations were higher in the rhizosphere and rhizoplane of plants grown in retorted shale than in plants grown in soil or soil over shale. In addition, a greater number of physiological groups of rhizosphere bacteria was observed in retorted shale compared with soil alone. Two patterns of community similarity were observed in comparisons of bacteria from soil over shale with those from soil and retorted-shale environments. Root-associated populations from soil over shale had a higher proportion of physiological groups in common with those from the soil control than with those from the retorted-shale treatment. However, in non-rhizosphere populations, bacterial groups from soil over shale more closely resembled the physiological groups from retorted shale. PMID:16347169

  14. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals.

    PubMed

    Hooker, S K; Fahlman, A; Moore, M J; de Soto, N Aguilar; de Quirós, Y Bernaldo; Brubakk, A O; Costa, D P; Costidis, A M; Dennison, S; Falke, K J; Fernandez, A; Ferrigno, M; Fitz-Clarke, J R; Garner, M M; Houser, D S; Jepson, P D; Ketten, D R; Kvadsheim, P H; Madsen, P T; Pollock, N W; Rotstein, D S; Rowles, T K; Simmons, S E; Van Bonn, W; Weathersby, P K; Weise, M J; Williams, T M; Tyack, P L

    2012-03-22

    Decompression sickness (DCS; 'the bends') is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N(2)) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N(2) tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N(2) loading to management of the N(2) load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.

  15. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    PubMed Central

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402