Sample records for striatal cellular types

  1. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons.

    PubMed

    Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A

    2017-11-01

    Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease.

    PubMed

    Hamilton, James; Pellman, Jessica J; Brustovetsky, Tatiana; Harris, Robert A; Brustovetsky, Nickolay

    2016-07-01

    Alterations in oxidative metabolism and defects in mitochondrial Ca 2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca 2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca 2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca 2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca 2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca 2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca 2+ Overall, our data argue against respiratory deficiency and impaired Ca 2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Brain-specific enhancers for cell-based therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Rubenstein, John L.R.; Chen, Ying-Jiun

    Herein are described a set of novel specific human enhancers for specific forebrain cell types used to study and select for human neural progenitor cells. This approach enables the ability to generate interneurons from human ES, iPS and iN cells, making them available for human transplantation and for molecular/cellular analyzes. These approaches are also directly applicable to generating other neuronal cell types, such as cortical and striatal projection neurons, which have implications for many human diseases.

  4. Molecular substrates of action control in cortico-striatal circuits.

    PubMed

    Shiflett, Michael W; Balleine, Bernard W

    2011-09-15

    The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease.

    PubMed

    Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A

    2015-12-01

    Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.

  6. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  7. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  8. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions

    PubMed Central

    Klug, Jason R; Engelhardt, Max D; Cadman, Cara N; Li, Hao; Smith, Jared B; Ayala, Sarah; Williams, Elora W; Hoffman, Hilary

    2018-01-01

    Striatal cholinergic (ChAT) and parvalbumin (PV) interneurons exert powerful influences on striatal function in health and disease, yet little is known about the organization of their inputs. Here using rabies tracing, electrophysiology and genetic tools, we compare the whole-brain inputs to these two types of striatal interneurons and dissect their functional connectivity in mice. ChAT interneurons receive a substantial cortical input from associative regions of cortex, such as the orbitofrontal cortex. Amongst subcortical inputs, a previously unknown inhibitory thalamic reticular nucleus input to striatal PV interneurons is identified. Additionally, the external segment of the globus pallidus targets striatal ChAT interneurons, which is sufficient to inhibit tonic ChAT interneuron firing. Finally, we describe a novel excitatory pathway from the pedunculopontine nucleus that innervates ChAT interneurons. These results establish the brain-wide direct inputs of two major types of striatal interneurons and allude to distinct roles in regulating striatal activity and controlling behavior. PMID:29714166

  9. Dynamic Changes of Striatal and Extrastriatal Abnormalities in Glutaric Aciduria Type I

    ERIC Educational Resources Information Center

    Harting, Inga; Neumaier-Probst, Eva; Seitz, Angelika; Maier, Esther M.; Assmann, Birgit; Baric, Ivo; Troncoso, Monica; Muhlhausen, Chris; Zschocke, Johannes; Boy, Nikolas P. S.; Hoffmann, Georg F.; Garbade, Sven F.; Kolker, Stefan

    2009-01-01

    In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as…

  10. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  11. DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons.

    PubMed

    Engmann, Olivia; Giralt, Albert; Gervasi, Nicolas; Marion-Poll, Lucile; Gasmi, Laila; Filhol, Odile; Picciotto, Marina R; Gilligan, Diana; Greengard, Paul; Nairn, Angus C; Hervé, Denis; Girault, Jean-Antoine

    2015-12-07

    Environmental enrichment has multiple effects on behaviour, including modification of responses to psychostimulant drugs mediated by striatal neurons. However, the underlying molecular and cellular mechanisms are not known. Here we show that DARPP-32, a hub signalling protein in striatal neurons, interacts with adducins, which are cytoskeletal proteins that cap actin filaments' fast-growing ends and regulate synaptic stability. DARPP-32 binds to adducin MARCKS domain and this interaction is modulated by DARPP-32 Ser97 phosphorylation. Phospho-Thr75-DARPP-32 facilitates β-adducin Ser713 phosphorylation through inhibition of a cAMP-dependent protein kinase/phosphatase-2A cascade. Caffeine or 24-h exposure to a novel enriched environment increases adducin phosphorylation in WT, but not T75A mutant mice. This cascade is implicated in the effects of brief exposure to novel enriched environment on dendritic spines in nucleus accumbens and cocaine locomotor response. Our results suggest a molecular pathway by which environmental changes may rapidly alter responsiveness of striatal neurons involved in the reward system.

  12. Parkinson disease.

    PubMed

    Poewe, Werner; Seppi, Klaus; Tanner, Caroline M; Halliday, Glenda M; Brundin, Patrik; Volkmann, Jens; Schrag, Anette-Eleonore; Lang, Anthony E

    2017-03-23

    Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.

  13. TRPC1 Deletion Causes Striatal Neuronal Cell Apoptosis and Proteomic Alterations in Mice.

    PubMed

    Wang, Dian; Yu, Haitao; Xu, Benhong; Xu, Hua; Zhang, Zaijun; Ren, Xiaohu; Yuan, Jianhui; Liu, Jianjun; Guo, Yi; Spencer, Peter S; Yang, Xifei

    2018-01-01

    Transient receptor potential channel 1 (TRPC1) is widely expressed throughout the nervous system, while its biological role remains unclear. In this study, we showed that TRPC1 deletion caused striatal neuronal loss and significantly increased TUNEL-positive and 8-hydroxy-2'-deoxyguanosine (8-OHdG) staining in the striatum. Proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) revealed a total of 51 differentially expressed proteins (26 increased and 25 decreased) in the stratum of TRPC1 knockout (TRPC1 -/- ) mice compared to that of wild type (WT) mice. Bioinformatics analysis showed these dysregulated proteins included: oxidative stress-related proteins, synaptic proteins, endoplasmic reticulum (ER) stress-related proteins and apoptosis-related proteins. STRING analysis showed these differential proteins have a well-established interaction network. Based on the proteomic data, we revealed by Western-blot analysis that TRPC1 deletion caused ER stress as evidenced by the dysregulation of GRP78 and PERK activation-related signaling pathway, and elevated oxidative stress as suggested by increased 8-OHdG staining, increased NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUV2) and decreased protein deglycase (DJ-1), two oxidative stress-related proteins. In addition, we also demonstrated that TRPC1 deletion led to significantly increased apoptosis in striatum with concurrent decrease in both 14-3-3Z and dynamin-1 (D2 dopamine (DA) receptor binding), two apoptosis-related proteins. Taken together, we concluded that TRPC1 deletion might cause striatal neuronal apoptosis by disturbing multiple biological processes (i.e., ER stress, oxidative stress and apoptosis-related signaling). These data suggest that TRPC1 may be a key player in the regulation of striatal cellular survival and death.

  14. Midbrain functional connectivity and ventral striatal dopamine D2-type receptors: Link to impulsivity in methamphetamine users

    PubMed Central

    Kohno, Milky; Okita, Kyoji; Morales, Angelica M.; Robertson, Chelsea; Dean, Andy C.; Ghahremani, Dara G.; Sabb, Fred; Mandelkern, Mark A.; Bilder, Robert M.; London, Edythe D.

    2015-01-01

    Stimulant use disorders are associated with deficits in striatal dopamine receptor availability, abnormalities in mesocorticolimbic resting-state functional connectivity (RSFC), and impulsivity. In methamphetamine-dependent research participants, impulsivity is correlated negatively with striatal D2-type receptor availability, and mesocorticolimbic RSFC is stronger than in controls. The extent to which these features of methamphetamine dependence are interrelated, however, is unknown. This question was addressed in two studies. In Study 1, 19 methamphetamine-dependent and 26 healthy control subjects underwent [18F]fallypride positron emission tomography to measure ventral striatal dopamine D2-type receptor availability, indexed by binding potential (BPND), and functional magnetic resonance imaging (fMRI) to assess mesocorticolimbic RSFC, using a midbrain seed. In Study 2, an independent sample of 20 methamphetamine-dependent and 18 control subjects completed the Barratt Impulsiveness Scale in addition to fMRI. Study 1 showed a significant group by ventral striatal BPND interaction effect on RSFC, reflecting a negative relationship between ventral striatal BPND and RSFC between midbrain and striatum, orbitofrontal cortex, and insula in methamphetamine-dependent participants but a positive relationship in the control group. In Study 2, an interaction of group with RSFC on impulsivity was observed. Methamphetamine-dependent participants users exhibited a positive relationship of midbrain RSFC to the left ventral striatum with cognitive impulsivity, whereas a negative relationship was observed in healthy controls. The results indicate that ventral striatal D2-type receptor signaling may affect system-level activity within the mesocorticolimbic system, providing a functional link that may help explain high impulsivity in methamphetamine-dependent individuals. PMID:26830141

  15. Role of corticostriatal and nigrostriatal inputs in malonate-induced striatal toxicity.

    PubMed

    Meldrum, A; Dunnett, S B; Everitt, B J

    2001-01-22

    The striatal neuronal loss evident following cellular metabolic compromise may be dependent upon the presence of glutamate and dopamine within the striatum. In order to investigate the relative roles of corticostriatal and nigrostriatal projections in malonate-induced neuronal loss, the extent of toxicity was quantified in animals with cortical lesions to deplete the striatum of glutamate, nigrostriatal lesions to deplete the striatum of dopamine, or both. We found that malonate-induced striatal toxicity was significantly reduced following lesions of either the glutamatergic or dopaminergic afferents to the striatum. The extent of attenuation following the loss of both inputs within the same animal was similar to that seen following lesions of either alone. These data suggest that malonate-induced toxicity in the striatum depends upon the integrity of interactive influences from both glutamatergic and dopaminergic afferents.

  16. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    PubMed Central

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  17. Patterns, evolution, and severity of striatal injury in insidious- versus acute-onset glutaric aciduria type 1.

    PubMed

    Boy, Nikolas; Garbade, Sven F; Heringer, Jana; Seitz, Angelika; Kölker, Stefan; Harting, Inga

    2018-05-02

    Striatal injury in patients with glutaric aciduria type 1 (GA1) results in a complex, predominantly dystonic, movement disorder. Onset may be acute following acute encephalopathic crisis (AEC) or insidious without apparent acute event. We analyzed clinical and striatal magnetic resonance imaging (MRI) findings in 21 symptomatic GA1 patients to investigate if insidious- and acute-onset patients differed in timing, pattern of striatal injury, and outcome. Eleven patients had acute and ten had insidious onset, two with later AEC (acute-on-insidious). The median onset of dystonia was 10 months in both groups, and severity was greater in patients after AEC (n = 8 severe, n = 5 moderate) than in insidious onset (n = 4 mild, n = 3 moderate, n = 1 severe). Deviations from guideline-recommended basic metabolic treatment were identified in six insidious-onset patients. Striatal lesions were extensive in all acute-onset patients and restricted to the dorsolateral putamen in eight of ten insidious-onset patients. After AEC, the two acute-on-insidious patients had extensive striatal changes superimposed on pre-existing dorsolateral putaminal lesions. Two insidious-onset patients with progressive dystonia without overt AEC also had extensive striatal changes, one with sequential striatal injury revealed by diffusion-weighted imaging. Insidious-onset patients had a latency phase of 3.5 months to 6.5 years between detection and clinical manifestation of dorsolateral putaminal lesions. Insidious-onset type GA1 is characterized by dorsolateral putaminal lesions, less severe dystonia, and an asymptomatic latency phase, despite already existing lesions. Initially normal MRI during the first months and deviations from guideline-recommended treatment in a large proportion of insidious-onset patients substantiate the protective effect of neonatally initiated treatment.

  18. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration

    PubMed Central

    Bhalla, Upinder S.; Hellgren Kotaleski, Jeanette

    2016-01-01

    In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. PMID:27584878

  19. Striatal necrosis in type 1 glutaric aciduria: Different stages in two siblings.

    PubMed

    Sen, Anitha; Pillay, Rajesh Subramonia

    2011-07-01

    Two siblings born of a consanguineous marriage with history of neurologic deterioration were imaged. Imaging features are classical of glutaric aciduria type 1 (GA-1), acute (striatal necrosis) stage in younger sibling, and chronic stage in older sibling. GA-1 is an autosomal recessive disease with typical imaging features. Greater awareness about this condition among clinicians and radiologists is essential for early diagnosis and prevention of its catastrophic consequences. Striatal necrosis with stroke-like signal intensity on imaging correlates with clinical stage of patients.

  20. Striatal necrosis in type 1 glutaric aciduria: Different stages in two siblings

    PubMed Central

    Sen, Anitha; Pillay, Rajesh Subramonia

    2011-01-01

    Two siblings born of a consanguineous marriage with history of neurologic deterioration were imaged. Imaging features are classical of glutaric aciduria type 1 (GA-1), acute (striatal necrosis) stage in younger sibling, and chronic stage in older sibling. GA-1 is an autosomal recessive disease with typical imaging features. Greater awareness about this condition among clinicians and radiologists is essential for early diagnosis and prevention of its catastrophic consequences. Striatal necrosis with stroke-like signal intensity on imaging correlates with clinical stage of patients. PMID:22408669

  1. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  2. Beta-phenylethylamine stimulates striatal acetylcholine release through activation of the AMPA glutamatergic pathway.

    PubMed

    Ishida, Kota; Murata, Mikio; Kato, Masatoshi; Utsunomiya, Iku; Hoshi, Keiko; Taguchi, Kyoji

    2005-09-01

    Using an in vivo intra-striatal microdialysis technique, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor stimulating trace amine, on striatal acetylcholine release in freely moving rats. Infusion of N-methyl-D-aspartic acid (NMDA; 10(-5) M) significantly increased acetylcholine release. In addition, locally applied amino-3-hydroxy-5-methylisozasole-4-propionic acid (AMPA; 10(-5) M) significantly increased acetylcholine release in the striatum. Intra-striatal application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M), an AMPA-type glutamatergic receptor antagonist, had little effect on acetylcholine release, while application of MK-801 (10(-5) M, 10(-6) M), an NMDA-type glutamatergic receptor antagonist, significantly reduced acetylcholine release. Acetylcholine within striatal perfusate was significantly increased by intraperitoneal administration of beta-PEA in a dose-dependent manner. This increase in acetylcholine release was completely blocked by application of CNQX (10(-5) M) through the microdialysis probe into the striatum. However, increased acetylcholine response to systemic beta-PEA was unaltered by addition of MK-801 to the perfusion medium. These results suggest a regulatory function of beta-PEA, mediated by AMPA-type glutamatergic receptors, on the release of acetylcholine in the rat striatum.

  3. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice.

    PubMed

    Singh, Alpana; Verma, Poonam; Balaji, Gillela; Samantaray, Supriti; Mohanakumar, Kochupurackal P

    2016-10-01

    Parkinson's disease (PD), the most common progressive neurodegenerative movement disorder, results from loss of dopaminergic neurons of substantia nigra pars compacta. These neurons exhibit Cav1.3 channel-dependent pacemaking activity. Epidemiological studies suggest reduced risk for PD in population under long-term antihypertensive therapy with L-type calcium channel antagonists. These prompted us to investigate nimodipine, an L-type calcium channel blocker for neuroprotective effect in cellular and animal models of PD. Nimodipine (0.1-10 μM) significantly attenuated 1-methyl-4-phenyl pyridinium ion-induced loss in mitochondrial morphology, mitochondrial membrane potential and increases in intracellular calcium levels in SH-SY5Y neuroblastoma cell line as measured respectively employing Mitotracker green staining, TMRM, and Fura-2 fluorescence, but only a feeble neuroprotective effect was observed in MTT assay. Nimodipine dose-dependently reduced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian syndromes (akinesia and catalepsy) and loss in swimming ability in Balb/c mice. It attenuated MPTP-induced loss of dopaminergic tyrosine hydroxylase positive neurons in substantia nigra, improved mitochondrial oxygen consumption and inhibited reactive oxygen species production in the striatal mitochondria measured using dichlorodihydrofluorescein fluorescence, but failed to block striatal dopamine depletion. These results point to an involvement of L-type calcium channels in MPTP-induced dopaminergic neuronal death in experimental parkinsonism and more importantly provide evidences for nimodipine to improve mitochondrial integrity and function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Higher fasting plasma glucose is associated with smaller striatal volume and poorer fine motor skills in a longitudinal cohort.

    PubMed

    Zhang, Tianqi; Shaw, Marnie E; Walsh, Erin I; Sachdev, Perminder S; Anstey, Kaarin J; Cherbuin, Nicolas

    2018-06-07

    Previous studies have demonstrated associations between higher blood glucose and brain atrophy and functional deficits, however, little is known about the association between blood glucose, striatal volume and striatal function despite sensori-motor deficits being reported in diabetes. This study investigated the relationship between blood glucose levels, striatal volume and fine motor skills in a longitudinal cohort of cognitively healthy individuals living in the community with normal or impaired fasting glucose or type 2 diabetes. Participants were 271 cognitively healthy individuals (mean age 63 years at inclusion) with normal fasting glucose levels (<5.6 mmol/L) (n=173), impaired fasting glucose (5.6-6.9 mmol/L) (n=57), or with type 2 diabetes (≥7.0 mmol/L) (n=41). Fasting glucose, Purdue Pegboard scores as measurement of fine motor skills, and brain scans were collected at wave 1, 2 and 4, over a total follow-up of twelve years. Striatal volumes were measured using FreeSurfer after controlling for age, sex and intracranial volume. Results showed that type 2 diabetes was associated with smaller right putamen volume and lower Purdue Pegboard scores after controlling for age, sex and intracranial volume. These findings add to the evidence suggesting that higher blood glucose levels, especially type 2 diabetes, may impair brain structure and function. Copyright © 2018. Published by Elsevier B.V.

  5. Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine.

    PubMed

    Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana

    2016-10-11

    The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R + -MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits.

  6. Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine

    PubMed Central

    Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana

    2016-01-01

    The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos. Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R+-MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits. PMID:27671625

  7. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    PubMed

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  8. Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity.

    PubMed

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-09-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    PubMed Central

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  10. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction

    PubMed Central

    Peça, João; Feliciano, Cátia; Ting, Jonathan T.; Wang, Wenting; Wells, Michael F.; Venkatraman, Talaignair N.; Lascola, Christopher D.; Fu, Zhanyan; Feng, Guoping

    2011-01-01

    Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. Shank3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for development of 22q13 deletion syndrome (Phelan-McDermid Syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for Shank3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic like-behaviours in mice. PMID:21423165

  11. Reactive Neuroblastosis in Huntington’s Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain

    PubMed Central

    Kandasamy, Mahesh; Aigner, Ludwig

    2018-01-01

    The cellular and molecular mechanisms underlying the reciprocal relationship between adult neurogenesis, cognitive and motor functions have been an important focus of investigation in the establishment of effective neural replacement therapies for neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the self-repair capacity have extensively been characterized in neurodegenerative disorders, the transient excess production of neuroblasts detected in the adult striatum of animal models of Huntington’s disease (HD) and in post-mortem brain of HD patients, has only marginally been addressed. This abnormal cellular response in the striatum appears to originate from the selective proliferation and ectopic migration of neuroblasts derived from the subventricular zone (SVZ). Based on and in line with the term “reactive astrogliosis”, we propose to name the observed cellular event “reactive neuroblastosis”. Although, the functional relevance of reactive neuroblastosis is unknown, we speculate that this process may provide support for the tissue regeneration in compensating the structural and physiological functions of the striatum in lieu of aging or of the neurodegenerative process. Thus, in this review article, we comprehend different possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional relevance in the context of HD. PMID:29593498

  12. Inhibition of striatal cholinergic interneuron activity by the Kv7 opener retigabine and the nonsteroidal anti-inflammatory drug diclofenac.

    PubMed

    Paz, Rodrigo Manuel; Tubert, Cecilia; Stahl, Agostina; Díaz, Analía López; Etchenique, Roberto; Murer, Mario Gustavo; Rela, Lorena

    2018-05-11

    Striatal cholinergic interneurons provide modulation to striatal circuits involved in voluntary motor control and goal-directed behaviors through their autonomous tonic discharge and their firing "pause" responses to novel and rewarding environmental events. Striatal cholinergic interneuron hyperactivity was linked to the motor deficits associated with Parkinson's disease and the adverse effects of chronic antiparkinsonian therapy like l-DOPA-induced dyskinesia. Here we addressed whether Kv7 channels, which provide negative feedback to excitation in other neuron types, are involved in the control of striatal cholinergic interneuron tonic activity and response to excitatory inputs. We found that autonomous firing of striatal cholinergic interneurons is not regulated by Kv7 channels. In contrast, Kv7 channels limit the summation of excitatory postsynaptic potentials in cholinergic interneurons through a postsynaptic mechanism. Striatal cholinergic interneurons have a high reserve of Kv7 channels, as their opening using pharmacological tools completely silenced the tonic firing and markedly reduced their intrinsic excitability. A strong inhibition of striatal cholinergic interneurons was also observed in response to the anti-inflammatory drugs diclofenac and meclofenamic acid, however, this effect was independent of Kv7 channels. These data bring attention to new potential molecular targets and pharmacological tools to control striatal cholinergic interneuron activity in pathological conditions where they are believed to be hyperactive, including Parkinson's disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons

    PubMed Central

    Pappas, Samuel S; Darr, Katherine; Holley, Sandra M; Cepeda, Carlos; Mabrouk, Omar S; Wong, Jenny-Marie T; LeWitt, Tessa M; Paudel, Reema; Houlden, Henry; Kennedy, Robert T; Levine, Michael S; Dauer, William T

    2015-01-01

    Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI: http://dx.doi.org/10.7554/eLife.08352.001 PMID:26052670

  14. Deep brain optical measurements of cell type-specific neural activity in behaving mice.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.

  15. Perioperative management of a child with glutaric aciduria type I undergoing cardiac surgery.

    PubMed

    Kölker, Stefan; Eichhorn, Joachim; Sebening, Christian; Klein, Berthold; Springer, Wolfgang; Bopp, Christian; Rauch, Helmut

    2013-10-01

    Patients with glutaric aciduria type I are at risk for acute striatal injury precipitated by catabolic stress. Here, we report the successful interdisciplinary anesthetic and perioperative management of a child with glutaric aciduria type I undergoing cardiac surgery with extracorporeal circulation. Given the central focus on prevention of acute striatal injury, our anesthetic strategy emphasized avoiding a high protein load, high-dose inotropics, especially epinephrine (associated with impaired glucose utilization), deliberate hyperventilation, and other interventions associated with systemic inflammatory response.

  16. Striatal Pleiotrophin Overexpression Provides Functional and Morphological Neuroprotection in the 6-Hydroxydopamine Model

    PubMed Central

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-01-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult. PMID:22008908

  17. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    PubMed

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  18. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    PubMed Central

    Dreyer, Jakob K.; Jennings, Katie A.; Syed, Emilie C. J.; Wade-Martins, Richard; Cragg, Stephanie J.; Bolam, J. Paul; Magill, Peter J.

    2016-01-01

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson’s disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson’s disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  19. Striatal Sensitivity during Reward Processing in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Paloyelis, Yannis; Mehta, Mitul A.; Faraone, Stephen V.; Asherson, Philip; Kuntsi, Jonna

    2012-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) has been linked to deficits in the dopaminergic reward-processing circuitry; yet, existing evidence is limited, and the influence of genetic variation affecting dopamine signaling remains unknown. We investigated striatal responsivity to rewards in ADHD combined type (ADHD-CT) using…

  20. In vitro 6-hydroxydopamine-induced toxicity in striatal, cerebrocortical and hippocampal slices is attenuated by atorvastatin and MK-801.

    PubMed

    Massari, Caio M; Castro, Adalberto A; Dal-Cim, Tharine; Lanznaster, Débora; Tasca, Carla I

    2016-12-01

    Parkinson's disease (PD) involves the loss of striatal dopaminergic neurons, although other neurotransmitters and brain areas are also involved in its pathophysiology. In rodent models to PD it has been shown statins improve cognitive and motor deficits and attenuate inflammatory responses evoked by PD-related toxins. Statins are the drugs most prescribed to hypercholesterolemia, but neuroprotective effects have also been attributed to statins treatment in humans and in animal models. This study aimed to establish an in vitro model of 6-hydroxydopamine (6-OHDA)-induced toxicity, used as an initial screening test to identify effective drugs against neural degeneration related to PD. The putative neuroprotective effect of atorvastatin against 6-OHDA-induced toxicity in rat striatal, cerebrocortical and hippocampal slices was also evaluated. 6-OHDA (100μM) decreased cellular viability in slices obtained from rat cerebral cortex, hippocampus and striatum. 6-OHDA also induced an increased reactive oxygen species (ROS) production and mitochondrial dysfunction. Co-incubation of 6-OHDA with atorvastatin (10μM) or MK-801 (50μM) an N-methyl-d-aspartate (NMDA) receptor antagonist, partially attenuated the cellular damage evoked by 6-OHDA in the three brain areas. Atorvastatin partially reduced ROS production in the hippocampus and striatum and disturbances of mitochondria membrane potential in cortex and striatum. 6-OHDA-induced toxicity in vitro displays differences among the brain structures, but it is also observed in cerebrocortical and hippocampal slices, besides striatum. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain.

    PubMed

    Rhodes, Kenneth J; Carroll, Karen I; Sung, M Amy; Doliveira, Lisa C; Monaghan, Michael M; Burke, Sharon L; Strassle, Brian W; Buchwalder, Lynn; Menegola, Milena; Cao, Jie; An, W Frank; Trimmer, James S

    2004-09-08

    Voltage-gated potassium (Kv) channels from the Kv4, or Shal-related, gene family underlie a major component of the A-type potassium current in mammalian central neurons. We recently identified a family of calcium-binding proteins, termed KChIPs (Kv channel interacting proteins), that bind to the cytoplasmic N termini of Kv4 family alpha subunits and modulate their surface density, inactivation kinetics, and rate of recovery from inactivation (An et al., 2000). Here, we used single and double-label immunohistochemistry, together with circumscribed lesions and coimmunoprecipitation analyses, to examine the regional and subcellular distribution of KChIPs1-4 and Kv4 family alpha subunits in adult rat brain. Immunohistochemical staining using KChIP-specific monoclonal antibodies revealed that the KChIP polypeptides are concentrated in neuronal somata and dendrites where their cellular and subcellular distribution overlaps, in an isoform-specific manner, with that of Kv4.2 and Kv4.3. For example, immunoreactivity for KChIP1 and Kv4.3 is concentrated in the somata and dendrites of hippocampal, striatal, and neocortical interneurons. Immunoreactivity for KChIP2, KChIP4, and Kv4.2 is concentrated in the apical and basal dendrites of hippocampal and neocortical pyramidal cells. Double-label immunofluorescence labeling revealed that throughout the forebrain, KChIP2 and KChIP4 are frequently colocalized with Kv4.2, whereas in cortical, hippocampal, and striatal interneurons, KChIP1 is frequently colocalized with Kv4.3. Coimmunoprecipitation analyses confirmed that all KChIPs coassociate with Kv4 alpha subunits in brain membranes, indicating that KChIPs 1-4 are integral components of native A-type Kv channel complexes and are likely to play a major role as modulators of somatodendritic excitability.

  2. Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?

    PubMed Central

    Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor

    2015-01-01

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)–TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP–TH interneurons. Optogenetic activation of striatal EGFP–TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808

  3. Bilateral striatal necrosis caused by ADAR mutations in two siblings with dystonia and freckles-like skin changes that should be differentiated from Leigh syndrome.

    PubMed

    Piekutowska-Abramczuk, Dorota; Mierzewska, Hanna; Bekiesińska-Figatowska, Monika; Ciara, Elżbieta; Trubicka, Joanna; Pronicki, Maciej; Rokicki, Dariusz; Rydzanicz, Małgorzata; Płoski, Rafał; Pronicka, Ewa

    2016-01-01

    Pathogenic molecular variants in the ADAR gene are a known cause of rare diseases, autosomal recessive Aicardi- Goutières syndrome type 6, severe infantile encephalopathy with intracranial calcifications and dominant dyschromatosis symmetrica hereditaria, demonstrated mainly in Asian adults. Recently, they have been also found in patients with nonsyndromic bilateral striatal necrosis accompanied by skin changes of the freckles-like type. Here, we present Polish siblings with acute onset and slowly progressive extrapyramidal syndrome with preserved intellectual abilities and basal ganglia changes found in MRI. A Leigh syndrome was considered for a long time as the most frequent cause of such lesions in children. Finally, two molecular variants in non-mitochondria-related ADAR gene c.3202+1G>A (p.?) and c.577C>G (p.Pro193Ala) were revealed by whole exome sequencing. We suggest that bilateral striatal necrosis should be always differentiated from LS to prevent the diagnosis delay. The striatal involvement accompanied by the presence of freckles-like skin changes should direct differential diagnosis to the ADAR gene mutations screening.

  4. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease

    PubMed Central

    Francelle, Laetitia; Galvan, Laurie; Brouillet, Emmanuel

    2014-01-01

    HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion translated into an abnormal poly-glutamine (polyQ) tract in the huntingtin (Htt) protein. The most striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of mutant Htt (mHtt) is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of compensatory responses to cellular stress. In this review, we focus on gene products that are preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene products are for a vast majority down-regulated and more rarely increased in HD. Recent research shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g., MSK1, A2A, and CB1 receptors) whereas others enhance the susceptibility of striatal neurons to mHtt (e.g., Rhes, RGS2, D2 receptors). The down-regulation of these latter proteins may be considered as a potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products that have been identified so far, their function in the striatum is unknown and their modifying effects on mHtt toxicity remain to be experimentally addressed. Focusing on these striatal markers may contribute to a better understanding of HD pathogenesis, and possibly the identification of novel therapeutic targets. PMID:25309327

  5. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease.

    PubMed

    Francelle, Laetitia; Galvan, Laurie; Brouillet, Emmanuel

    2014-01-01

    HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion translated into an abnormal poly-glutamine (polyQ) tract in the huntingtin (Htt) protein. The most striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of mutant Htt (mHtt) is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of compensatory responses to cellular stress. In this review, we focus on gene products that are preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene products are for a vast majority down-regulated and more rarely increased in HD. Recent research shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g., MSK1, A2A, and CB1 receptors) whereas others enhance the susceptibility of striatal neurons to mHtt (e.g., Rhes, RGS2, D2 receptors). The down-regulation of these latter proteins may be considered as a potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products that have been identified so far, their function in the striatum is unknown and their modifying effects on mHtt toxicity remain to be experimentally addressed. Focusing on these striatal markers may contribute to a better understanding of HD pathogenesis, and possibly the identification of novel therapeutic targets.

  6. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers

    PubMed Central

    Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979

  7. Stimulant treatment history predicts frontal-striatal structural connectivity in adolescents with attention-deficit/hyperactivity disorder.

    PubMed

    Schweren, L J S; Hartman, C A; Zwiers, M P; Heslenfeld, D J; Franke, B; Oosterlaan, J; Buitelaar, J K; Hoekstra, P J

    2016-04-01

    Diffusion tensor imaging (DTI) has revealed white matter abnormalities in individuals with attention-deficit/hyperactivity disorder (ADHD). Stimulant treatment may affect such abnormalities. The current study investigated associations between long-term stimulant treatment and white matter integrity within the frontal-striatal and mesolimbic pathways, in a large sample of children, adolescents and young adults with ADHD. Participants with ADHD (N=172; mean age 17, range 9-26) underwent diffusion-weighted MRI scanning, along with an age- and gendermatched group of 96 control participants. Five study-specific white matter tract masks (orbitofrontal-striatal, orbitofrontal-amygdalar, amygdalar-striatal, dorsolateral-prefrontal-striatal and medialprefrontal-striatal) were created. First we analyzed case-control differences in fractional anisotropy (FA) and mean diffusivity (MD) within each tract. Second, FA and MD in each tract was predicted from cumulative stimulant intake within the ADHD group. After correction for multiple testing, participants with ADHD showed reduced FA in the orbitofrontal-striatal pathway (p=0.010, effect size=0.269). Within the ADHD group, higher cumulative stimulant intake was associated with lower MD in the same pathway (p=0.011, effect size=-0.164), but not with FA. The association between stimulant treatment and orbitofrontal-striatal MD was of modest effect size. It fell short of significance after adding ADHD severity or ADHD type to the model (p=0.036 and p=0.094, respectively), while the effect size changed little. Our findings are compatible with stimulant treatment enhancing orbitofrontal-striatal white matter connectivity, and emphasize the importance of the orbitofrontal cortex and its connections in ADHD. Longitudinal studies including a drug-naïve baseline assessment are needed to distinguish between-subject variability in ADHD severity from treatment effects. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. METHAMPHETAMINE-INDUCED CELL DEATH: SELECTIVE VULNERABILITY IN NEURONAL SUBPOPULATIONS OF THE STRIATUM IN MICE

    PubMed Central

    ZHU, J. P. Q.; XU, W.; ANGULO, J. A.

    2010-01-01

    Methamphetamine (METH) is an illicit and potent psychostimulant, which acts as an indirect dopamine agonist. In the striatum, METH has been shown to cause long lasting neurotoxic damage to dopaminergic nerve terminals and recently, the degeneration and death of striatal cells. The present study was undertaken to identify the type of striatal neurons that undergo apoptosis after METH. Male mice received a single high dose of METH (30 mg/kg, i.p.) and were killed 24 h later. To demonstrate that METH induces apoptosis in neurons, we combined terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining with immunohistofluorescence for the neuronal marker neuron-specific nuclear protein (NeuN). Staining for TUNEL and NeuN was colocalized throughout the striatum. METH induces apoptosis in approximately 25% of striatal neurons. Cell counts of TUNEL-positive neurons in the dorsomedial, ventromedial, dorsolateral and ventrolateral quadrants of the striatum did not reveal anatomical preference. The type of striatal neuron undergoing cell death was determined by combining TUNEL with immunohistofluorescence for selective markers of striatal neurons: dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000, parvalbumin, choline acetyltransferase and somatostatin (SST). METH induces apoptosis in approximately 21% of dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000-positive neurons (projection neurons), 45% of GABA-parvalbumin-positive neurons in the dorsal striatum, and 29% of cholinergic neurons in the dorsal–medial striatum. In contrast, the SST-positive interneurons were refractory to METH-induced apoptosis. Finally, the amount of cell loss determined with Nissl staining correlated with the amount of TUNEL staining in the striatum of METH-treated animals. In conclusion, some of the striatal projection neurons and the GABA-parvalbumin and cholinergic interneurons were removed by apoptosis in the aftermath of METH. This imbalance in the populations of striatal neurons may lead to functional abnormalities in the output and processing of neural information in this part of the brain. PMID:16650608

  9. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I.

    PubMed

    Harting, Inga; Neumaier-Probst, Eva; Seitz, Angelika; Maier, Esther M; Assmann, Birgit; Baric, Ivo; Troncoso, Monica; Mühlhausen, Chris; Zschocke, Johannes; Boy, Nikolas P S; Hoffmann, Georg F; Garbade, Sven F; Kölker, Stefan

    2009-07-01

    In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as asymptomatic newborns by newborn screening. Most previous studies have focused on the onset and mechanism of striatal injury, whereas little is known about neuroradiological abnormalities in pre-symptomatically diagnosed patients and about dynamic changes of extrastriatal abnormalities. Thus, the major aim of the present retrospective study was to improve our understanding of striatal and extrastriatal abnormalities in affected individuals including those diagnosed by newborn screening. To this end, we systematically analysed magnetic resonance imagings (MRIs) in 38 patients with glutaric aciduria type I diagnosed before or after the manifestation of neurological symptoms. To identify brain regions that are susceptible to cerebral injury during acute encephalopathic crises, we compared the frequency of magnetic resonance abnormalities in patients with and without such crises. Major specific changes after encephalopathic crises were found in the putamen (P < 0.001), nucleus caudatus (P < 0.001), globus pallidus (P = 0.012) and ventricles (P = 0.001). Analysis of empirical cumulative distribution frequencies, however, demonstrated that isolated pallidal abnormalities did not significantly differ over time in both groups (P = 0.544) suggesting that isolated pallidal abnormalities are not induced by acute crises--in contrast to striatal abnormalities. The manifestation of motor disability was associated with signal abnormalities in putamen, caudate, pallidum and ventricles. In addition, we found a large number of extrastriatal abnormalities in patients with and without preceding encephalophatic crises. These abnormalities include widening of anterior temporal and sylvian CSF spaces, pseudocysts, signal changes of substantia nigra, nucleus dentatus, thalamus, tractus tegmentalis centralis and supratentorial white matter as well as signs of delayed maturation (myelination and gyral pattern). In contrast to the striatum, extrastriatal abnormalities were variable and could regress or even normalize with time. This includes widening of sylvian fissures, delayed maturation, pallidal signal changes and pseudocysts. Based on these results, we hypothesize that neuroradiological abnormalities and neurological symptoms in glutaric aciduria type I can be explained by overlaying episodes of cerebral alterations including maturational delay of the brain in utero, acute striatal injury during a vulnerable period in infancy and chronic progressive changes that may continue lifelong. This may have widespread consequences for the pathophysiological understanding of this disease, long-term outcomes and therapeutic considerations.

  10. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat.

    PubMed

    Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L

    1997-10-01

    The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon terminals. The type 2 neurons comprised 20% of the total population of alpha1-subunit-immunoreactive neurons. The remaining large-sized alpha1-immunoreactive cells were designated type 3 cells; they were positive for parvalbumin and were distinguished by long branching dendrites extending dorsally for 600-800 microm into the striatum. These neurons comprised 5% of the total population of alpha1-subunit-immunoreactive neurons and were surrounded by enkephalin-immunoreactive terminals. Electron microscopy showed that the alpha1-subunit type 3 neurons had an indented nuclear membrane and were densely covered with small axon terminals which established alpha1-subunit-immunoreactive symmetrical synaptic contacts with the soma and dendrites. These results provide a detailed characterization of the distribution, morphology and chemical characteristics of the alpha1-subunit-immunoreactive neurons in the rat striatum and suggest that the type 1 and type 2 neurons comprise of separate populations of striatal interneurons while the type 3 neurons may represent the large striatonigral projection neurons described by Bolam et al. [Bolam J. P., Somogyi P., Totterdell S. and Smith A. D. (1981) Neuroscience 6, 2141-2157.].

  11. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    PubMed Central

    Wang, Wenting; Li, Chenchen; Chen, Qian; Hawrot, James; Yao, Annie Y.; Gao, Xian; Lu, Congyi; Zang, Ying; Lyman, Katherine; Wang, Dongqing; Guo, Baolin; Wu, Shengxi; Gerfen, Charles R.; Fu, Zhanyan

    2017-01-01

    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice. PMID:28414301

  12. Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.

    PubMed

    Meng, Chengbo; Zhou, Jingheng; Papaneri, Amy; Peddada, Teja; Xu, Karen; Cui, Guohong

    2018-04-25

    To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca 2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. Published by Elsevier Inc.

  13. Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N-Methyl-D-Aspartate Receptor Subunit.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Bagetta, Vincenza; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Costa, Cinzia; Di Filippo, Massimiliano; Ghiglieri, Veronica; Latagliata, Emanuele Claudio; Wegrzynowicz, Michal; Decressac, Mickael; Giampà, Carmela; Dalley, Jeffrey W; Xia, Jing; Gardoni, Fabrizio; Mellone, Manuela; El-Agnaf, Omar Mukhtar; Ardah, Mustafa Taleb; Puglisi-Allegra, Stefano; Björklund, Anders; Spillantini, Maria Grazia; Picconi, Barbara; Calabresi, Paolo

    2016-03-01

    Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Melatonin Ameliorates Injury and Specific Responses of Ischemic Striatal Neurons in Rats

    PubMed Central

    Ma, Yuxin; Feng, Qiqi; Ma, Jing; Feng, Zhibo; Zhan, Mali; OuYang, Lisi; Mu, Shuhua; Liu, Bingbing; Jiang, Zhuyi; Jia, Yu; Li, Youlan

    2013-01-01

    Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia. PMID:23686363

  15. Elevated Striatal Reactivity Across Monetary and Social Rewards in Bipolar I Disorder

    PubMed Central

    Dutra, Sunny J.; Cunningham, William A.; Kober, Hedy; Gruber, June

    2016-01-01

    Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation employed both a monetary and social incentive delay task among adults with remitted BD type I (N=24) and a healthy non-psychiatric control group (HC; N=25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated ventral and dorsal striatal reactivity across monetary and social reward receipt, but not anticipation, in the BD group. Post-hoc analyses further suggested that greater striatal reactivity to reward receipt across monetary and social reward tasks predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC, but not BD, group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of reward reactivity. PMID:26390194

  16. Survival of iPSC-derived grafts within the striatum of immunodeficient mice: Importance of developmental stage of both transplant and host recipient.

    PubMed

    Tom, Colton M; Younesi, Shahab; Meer, Elana; Bresee, Catherine; Godoy, Marlesa; Mattis, Virginia B

    2017-11-01

    Degeneration of the striatum can occur in multiple disorders with devastating consequences for the patients. Infantile infections with streptococcus, measles, or herpes can cause striatal necrosis associated with dystonia or dyskinesia; and in patients with Huntington's disease the striatum undergoes massive degeneration, leading to behavioral, psychological and movement issues, ultimately resulting in death. Currently, only supportive therapies are available for striatal degeneration. Clinical trials have shown some efficacy using transplantation of fetal-derived primary striatal progenitors. Large banks of fetal progenitors that give rise to medium spiny neurons (MSNs), the primary neuron of the striatum, are needed to make transplantation therapy a reality. However, fetal tissue is of limited supply, has ethical concerns, and is at risk of graft immunorejection. An alternative potential source of MSNs is induced pluripotent stem cells (iPSCs), adult somatic tissues reprogrammed back to a stem cell fate. Multiple publications have demonstrated the ability to differentiate striatal MSNs from iPSCs. Previous publications have demonstrated that the efficacy of fetal progenitor transplants is critically dependent upon the age of the donor embryo/fetus as well as the age of the transplant recipient. With the advent of iPSC technology, a question that remains unanswered concerns the graft's "age," which is crucial since transplanting pluripotent cells has an inherent risk of over proliferation and teratoma formation. Therefore, in order to also determine the effect of transplant recipient age on the graft, iPSCs were differentiated to three stages along a striatal differentiation paradigm and transplanted into the striatum of both neonatal and adult immunodeficient mice. This study demonstrated that increased murine transplant-recipient age (adult vs neonate) resulted in decreased graft survival and volume/rostro-caudal spread after six weeks in vivo, regardless of "age" of the cells transplanted. Importantly, this study implicates that the in vivo setting may provide a better neurogenic niche for iPSC-based modeling as compared to the in vitro setting. Together, these results recapitulate findings from fetal striatal progenitor transplantation studies and further demonstrate the influence of the host environment on cellular survival and maturation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntingtons Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonda M.; Miller L.; Perrin V.

    Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons usingmore » synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of {beta}-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's {beta}-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.« less

  18. 5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons.

    PubMed

    Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex; Cohenca, Nathalie; Sullivan, Jane M; Neumaier, John F

    2017-04-01

    The 5-HT 6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT 6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT 6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT 6 knockout (5-HT 6 KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT 6 KO mice to study the function of these receptors. Selective 5-HT 6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT 6 KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT 6 receptors affected the fidelity of ciliary localization in both WT and 5-HT 6 KO neurons; overexpression lead to increasing amounts of 5-HT 6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT 6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT 6 receptor to primary cilia. These data suggest that blocking 5-HT 6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT 6 receptors to cilia are more complex than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Vesicular neurotransmitter transporters in Huntington's disease: initial observations and comparison with traditional synaptic markers.

    PubMed

    Suzuki, M; Desmond, T J; Albin, R L; Frey, K A

    2001-09-15

    Markers of identified neuronal populations have previously suggested selective degeneration of projection neurons in Huntington's disease (HD) striatum. Interpretations are, however, limited by effects of compensatory regulation and atrophy. Studies of the vesicular monoamine transporter type-2 (VMAT2) and of the vesicular acetylcholine transporter (VAChT) in experimental animals indicate that they are robust markers of presynaptic integrity and are not subject to regulation. We measured dopamine and acetylcholine vesicular transporters to characterize the selectivity of degeneration in HD striatum. Brains were obtained at autopsy from four HD patients and five controls. Autoradiography was used to quantify radioligand binding to VMAT2, VAChT, the dopamine plasmalemmal transporter (DAT), benzodiazepine (BZ) binding sites, and D2-type dopamine receptors. The activity of choline acetyltransferase (ChAT) was determined as an additional marker of cholinergic neurons. Autoradiograms were analyzed by video-assisted densitometry and assessment of atrophy was made from regional structural areas in the coronal projection. Striatal VMAT2, DAT, and VAChT concentrations were unchanged or increased, while D2 and BZ binding and ChAT activity were decreased in HD. After atrophy correction, all striatal binding sites were decreased. However, the decrease in ChAT activity was 3-fold greater than that of VAChT binding. In addition to degeneration of striatal projection neurons, there are losses of extrinsic nigrostriatal projections and of striatal cholinergic interneurons in HD on the basis of vesicular transporter measures. There is also markedly reduced expression of ChAT by surviving cholinergic striatal interneurons. Copyright 2001 Wiley-Liss, Inc.

  20. Existence and control of Go/No-Go decision transition threshold in the striatum.

    PubMed

    Bahuguna, Jyotika; Aertsen, Ad; Kumar, Arvind

    2015-04-01

    A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.

  1. Existence and Control of Go/No-Go Decision Transition Threshold in the Striatum

    PubMed Central

    Bahuguna, Jyotika; Aertsen, Ad; Kumar, Arvind

    2015-01-01

    A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity. PMID:25910230

  2. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5.

    PubMed

    Fieblinger, Tim; Sebastianutto, Irene; Alcacer, Cristina; Bimpisidis, Zisis; Maslava, Natallia; Sandberg, Sabina; Engblom, David; Cenci, M Angela

    2014-03-26

    In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.

  3. Glutaric Acid-Mediated Apoptosis in Primary Striatal Neurons

    PubMed Central

    Tian, Fengyan; Fu, Xi; Gao, Jinzhi; Ying, Yanqin; Hou, Ling; Liang, Yan; Ning, Qin; Luo, Xiaoping

    2014-01-01

    Glutaric acid (GA) has been implicated in the mechanism of neurodegeneration in glutaric aciduria type I. In the present study, the potential cytotoxic effects of GA (0.1~50 mM for 24~96 h) were examined in cultured primary rat striatal neurons. Results showed increase in the number of cells labeled by annexin-V or with apoptotic features shown by Hoechst/PI staining and transmission electron microscopy (TEM) and upregulation of the expression of mRNA as well as the active protein fragments caspase 3, suggesting involvement of the caspase 3-dependent apoptotic pathway in GA-induced striatal neuronal death. This effect was in part suppressed by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 but not the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) antagonist 6-cyano-7-nitroquinoxalone-2,3-dione (CNQX). Thus, GA may trigger neuronal damage partially through apoptotic pathway and via activation of NMDA receptors in cultured primary striatal neurons. PMID:24900967

  4. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  5. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiujun; Department of Anesthesiology, The Third Clinical Hospital, Hebei Medical University, Shijiazhuang, Hebei 050051; Liang Ge

    2011-02-01

    Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cellmore » viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.« less

  6. Balance of Go1α and Go2α expression regulates motor function via the striatal dopaminergic system.

    PubMed

    Baron, J; Bilbao, A; Hörtnagl, H; Birnbaumer, L; Leixner, S; Spanagel, R; Ahnert-Hilger, G; Brunk, I

    2018-05-10

    The heterotrimeric G-protein Go with its splice variants, Go1α and Go2α, seems to be involved in the regulation of motor function but isoform specific effects are still unclear. We found that Go1α-/- knockouts performed worse on the rota-rod than Go2α-/- and wild type (WT) mice. In Go1+2α-/- mice motor function was partially recovered. Furthermore, Go1+2α-/- mice showed an increased spontaneous motor activity. Compared to wild types or Go2α-/- mice, Go1+2α-/- mice developed increased behavioural sensitization following repetitive cocaine treatment, but failed to develop conditioned place preference. Analysis of dopamine concentration and expression of D1 and D2 receptors unravelled splice-variant specific imbalances in the striatal dopaminergic system: In Go1α-/- mice dopamine concentration and vesicular monoamine uptake were increased compared to wild types. The expression of the D2 receptor was higher in Go1α-/- compared to wild type littermates, but unchanged in Go2α-/- mice. Deletion of both Go1α and Go2α re-established both dopamine and D2 receptor levels comparable to those in the wild type. Cocaine treatment had no effect on the ratio of D1 receptor to D2 receptor in Go1+2α-/- mutants, but decreased this ratio in Go2α-/- mice. Finally, we observed that the deletion of Go1α led to a threefold higher striatal expression of Go2α. Taken together our data suggest that a balance in the expression of Go1α and Go2α sustains normal motor function. Deletion of either splice variant results in divergent behavioural and molecular alterations in the striatal dopaminergic system. Deletion of both splice variants partially restores the behavioural and molecular changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Biphasic and bilateral changes in striatal VGLUT1 and 2 protein expression in hemi-Parkinson rats.

    PubMed

    Massie, Ann; Schallier, Anneleen; Vermoesen, Katia; Arckens, Lutgarde; Michotte, Yvette

    2010-09-01

    Parkinson's disease is characterized by disturbed glutamatergic neurotransmission in the striatum. Important mediators of extracellular glutamate levels are the vesicular glutamate transporters VGLUT1 and VGLUT2 in respectively corticostriatal and thalamostriatal afferents, next to the high-affinity Na(+)/K(+)-dependent glutamate transporters and the cystine/glutamate antiporter. In the present study, we compared bilateral striatal VGLUT1 and VGLUT2 protein expression as well as VGLUT1 and VGLUT2 transcript levels in the neocortex and parafascicular nucleus of hemi-Parkinson rats at different time intervals post unilateral 6-OHDA injection into the medial forebrain bundle versus controls. Three weeks post-injection we detected increased striatal VGLUT1 expression together with decreased VGLUT2 expression. On the other hand, after twelve weeks, the expression of VGLUT1 was decreased in hemi-Parkinson rats whereas the striatal expression of VGLUT2 was comparable to control rats. No effect could be seen on VGLUT transcript levels in the respective projection areas at any time. In conclusion, we observed a biphasic and bilateral change in the protein expression levels of both VGLUTs in the striatum of hemi-Parkinson rats indicative for a different and time-dependent change in glutamatergic neurotransmission from the two types of striatal afferents. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway.

    PubMed

    Castro-Caldas, Margarida; Carvalho, Andreia Neves; Rodrigues, Elsa; Henderson, Colin; Wolf, C Roland; Gama, Maria João

    2012-06-01

    Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.

  9. Early Deficits in Glycolysis Are Specific to Striatal Neurons from a Rat Model of Huntington Disease

    PubMed Central

    Gouarné, Caroline; Tardif, Gwenaëlle; Tracz, Jennifer; Latyszenok, Virginie; Michaud, Magali; Clemens, Laura Emily; Yu-Taeger, Libo; Nguyen, Huu Phuc; Bordet, Thierry; Pruss, Rebecca M.

    2013-01-01

    In Huntington disease (HD), there is increasing evidence for a link between mutant huntingtin expression, mitochondrial dysfunction, energetic deficits and neurodegeneration but the precise nature, causes and order of these events remain to be determined. In this work, our objective was to evaluate mitochondrial respiratory function in intact, non-permeabilized, neurons derived from a transgenic rat model for HD compared to their wild type littermates by measuring oxygen consumption rates and extracellular acidification rates. Although HD striatal neurons had similar respiratory capacity as those from their wild-type littermates when they were incubated in rich medium containing a supra-physiological glucose concentration (25 mM), pyruvate and amino acids, respiratory defects emerged when cells were incubated in media containing only a physiological cerebral level of glucose (2.5 mM). According to the concept that glucose is not the sole substrate used by the brain for neuronal energy production, we provide evidence that primary neurons can use lactate as well as pyruvate to fuel the mitochondrial respiratory chain. In contrast to glucose, we found no major deficits in HD striatal neurons’ capacity to use pyruvate as a respiratory substrate compared to wild type littermates. Additionally, we used extracellular acidification rates to confirm a reduction in anaerobic glycolysis in the same cells. Interestingly, the metabolic disturbances observed in striatal neurons were not seen in primary cortical neurons, a brain region affected in later stages of HD. In conclusion, our results argue for a dysfunction in glycolysis, which might precede any defects in the respiratory chain itself, and these are early events in the onset of disease. PMID:24303051

  10. Dysregulation of Corticostriatal Ascorbate Release and Glutamate Uptake in Transgenic Models of Huntington's Disease

    PubMed Central

    2013-01-01

    Abstract Significance: Dysregulation of cortical and striatal neuronal processing plays a critical role in Huntington's disease (HD), a dominantly inherited condition that includes a progressive deterioration of cognitive and motor control. Growing evidence indicates that ascorbate (AA), an antioxidant vitamin, is released into striatal extracellular fluid when glutamate is cleared after its release from cortical afferents. Both AA release and glutamate uptake are impaired in the striatum of transgenic mouse models of HD owing to a downregulation of glutamate transporter 1 (GLT1), the protein primarily found on astrocytes and responsible for removing most extracellular glutamate. Improved understanding of an AA–glutamate interaction could lead to new therapeutic strategies for HD. Recent Advances: Increased expression of GLT1 following treatment with ceftriaxone, a beta-lactam antibiotic, increases striatal glutamate uptake and AA release and also improves the HD behavioral phenotype. In fact, treatment with AA alone restores striatal extracellular AA to wild-type levels in HD mice and not only improves behavior but also improves the firing pattern of neurons in HD striatum. Critical Issues: Although evidence is growing for an AA-glutamate interaction, several key issues require clarification: the site of action of AA on striatal neurons; the precise role of GLT1 in striatal AA release; and the mechanism by which HD interferes with this role. Future Directions: Further assessment of how the HD mutation alters corticostriatal signaling is an important next step. A critical focus is the role of astrocytes, which express GLT1 and may be the primary source of extracellular AA. Antioxid. Redox Signal. 19, 2115–2128. PMID:23642110

  11. Glutaric aciduria type 1--importance of early diagnosis and treatment.

    PubMed

    Afroze, Bushra; Yunus, Zabedah Mohammad

    2014-05-01

    Glutaric aciduria type 1 is a rare inherited organic academia. Untreated patients characteristically develop dystonia secondary to striatal injury during early childhood, which results in high morbidity and mortality. In patients diagnosed during neonatal period, striatal injury can be prevented by metabolic treatment including low lysine diet, carnitine supplementation and aggressive emergency treatment during acute episode of inter current illnesses. However, after the onset of neurological damage initiation of treatment is generally not effective. Therefore; glutaric aciduria type 1 is included in newborn screening panel for inherited metabolic diseases in many countries. We describe two children in a family with glutaric aciduria type 1 and their different long term outcomes. The first child was diagnosed late leading to severe neurological damage. The second child was diagnosed in the neonatal period as a result of selective high-risk screening and was treated appropriately giving a normal growth.

  12. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery.

    PubMed

    Zuccato, Chiara; Liber, Daniel; Ramos, Catarina; Tarditi, Alessia; Rigamonti, Dorotea; Tartari, Marzia; Valenza, Marta; Cattaneo, Elena

    2005-08-01

    Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.

  13. Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the HdhQ150/Q150 Mouse Model of Huntington’s Disease

    PubMed Central

    Rattray, Ivan; Smith, Edward J.; Crum, William R.; Walker, Thomas A.; Gale, Richard; Bates, Gillian P.

    2017-01-01

    A variety of mouse models have been developed that express mutant huntingtin (mHTT) leading to aggregates and inclusions that model the molecular pathology observed in Huntington’s disease. Here we show that although homozygous HdhQ150 knock-in mice developed motor impairments (rotarod, locomotor activity, grip strength) by 36 weeks of age, cognitive dysfunction (swimming T maze, fear conditioning, odor discrimination, social interaction) was not evident by 94 weeks. Concomitant to behavioral assessments, T2-weighted MRI volume measurements indicated a slower striatal growth with a significant difference between wild type (WT) and HdhQ150 mice being present even at 15 weeks. Indeed, MRI indicated significant volumetric changes prior to the emergence of the “clinical horizon” of motor impairments at 36 weeks of age. A striatal decrease of 27% was observed over 94 weeks with cortex (12%) and hippocampus (21%) also indicating significant atrophy. A hypothesis-free analysis using tensor-based morphometry highlighted further regions undergoing atrophy by contrasting brain growth and regional neurodegeneration. Histology revealed the widespread presence of mHTT aggregates and cellular inclusions. However, there was little evidence of correlations between these outcome measures, potentially indicating that other factors are important in the causal cascade linking the molecular pathology to the emergence of behavioral impairments. In conclusion, the HdhQ150 mouse model replicates many aspects of the human condition, including an extended pre-manifest period prior to the emergence of motor impairments. PMID:28099507

  14. Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network

    PubMed Central

    Moyer, Jason T.; Halterman, Benjamin L.; Finkel, Leif H.; Wolf, John A.

    2014-01-01

    Striatal medium spiny neurons (MSNs) receive lateral inhibitory projections from other MSNs and feedforward inhibitory projections from fast-spiking, parvalbumin-containing striatal interneurons (FSIs). The functional roles of these connections are unknown, and difficult to study in an experimental preparation. We therefore investigated the functionality of both lateral (MSN-MSN) and feedforward (FSI-MSN) inhibition using a large-scale computational model of the striatal network. The model consists of 2744 MSNs comprised of 189 compartments each and 121 FSIs comprised of 148 compartments each, with dendrites explicitly represented and almost all known ionic currents included and strictly constrained by biological data as appropriate. Our analysis of the model indicates that both lateral inhibition and feedforward inhibition function at the population level to limit non-ensemble MSN spiking while preserving ensemble MSN spiking. Specifically, lateral inhibition enables large ensembles of MSNs firing synchronously to strongly suppress non-ensemble MSNs over a short time-scale (10–30 ms). Feedforward inhibition enables FSIs to strongly inhibit weakly activated, non-ensemble MSNs while moderately inhibiting activated ensemble MSNs. Importantly, FSIs appear to more effectively inhibit MSNs when FSIs fire asynchronously. Both types of inhibition would increase the signal-to-noise ratio of responding MSN ensembles and contribute to the formation and dissolution of MSN ensembles in the striatal network. PMID:25505406

  15. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder.

    PubMed

    Hassel, Stefanie; Almeida, Jorge R; Frank, Ellen; Versace, Amelia; Nau, Sharon A; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2009-11-01

    The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. BD individuals scored significantly higher on these spectrum measures than healthy individuals (p<0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p<0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p<0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p<0.02) and neutral faces (p<0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BD individuals. Small sample size of predominantly medicated BD individuals. This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD.

  16. Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not

    PubMed Central

    Wilkinson, Leonora; Tai, Yen Foung; Lin, Chia Shu; Lagnado, David Albert; Brooks, David James; Piccini, Paola; Jahanshahi, Marjan

    2014-01-01

    The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB. PMID:24777947

  17. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

    PubMed

    Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu

    2010-02-03

    PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.

  18. A Sex- and Region-Specific Role of Akt1 in the Modulation of Methamphetamine-Induced Hyperlocomotion and Striatal Neuronal Activity: Implications in Schizophrenia and Methamphetamine-Induced Psychosis

    PubMed Central

    Lai, Wen-Sung

    2014-01-01

    AKT1 (also known as protein kinase B, α), a serine/threonine kinase of AKT family, has been implicated in both schizophrenia and methamphetamine (Meth) use disorders. AKT1 or its protein also has epistatic effects on the regulation of dopamine-dependent behaviors or drug effects, especially in the striatum. The aim of this study is to investigate the sex-specific role of Akt1 in the regulation of Meth-induced behavioral sensitization and the alterations of striatal neurons using Akt1 −/− mice and wild-type littermates as a model. A series of 4 Experiments were conducted. Meth-induced hyperlocomotion and Meth-related alterations of brain activity were measured. The neural properties of striatal medium spiny neurons (MSNs) were also characterized. Further, 17β-estradiol was applied to examine its protective effect in Meth-sensitized male mice. Our findings indicate that (1) Akt1 −/− males were less sensitive to Meth-induced hyperlocomotion during Meth challenge compared with wild-type controls and Akt1 −/− females, (2) further sex differences were revealed by coinjection of Meth with raclopride but not SCH23390 in Meth-sensitized Akt1 −/− males, (3) Meth-induced alterations of striatal activity were confirmed in Akt1 −/− males using microPET scan with 18F-flurodeoxyglucose, (4) Akt1 deficiency had a significant impact on the electrophysiological and neuromorphological properties of striatal MSNs in male mice, and (5) subchronic injections of 17β-estradiol prevented the reduction of Meth-induced hyperactivity in Meth-sensitized Akt1 −/− male mice. This study highlights a sex- and region-specific effect of Akt1 in the regulation of dopamine-dependent behaviors and implies the importance of AKT1 in the modulation of sex differences in Meth sensitivity and schizophrenia. PMID:23474853

  19. Altered brain response to reward and punishment in adolescents with Anorexia Nervosa

    PubMed Central

    Bischoff-Grethe, Amanda; McCurdy, Danyale; Grenesko-Stevens, Emily; (Zoe) Irvine, Laura E.; Wagner, Angela; Yau, Wai-Ying Wendy; Fennema-Notestine, Christine; Wierenga, Christina E.; Fudge, Julie L.; Delgado, Mauricio R.; Kaye, Walter H.

    2013-01-01

    Adults recovered from anorexia nervosa (AN) have altered reward modulation within striatal limbic regions associated with the emotional significance of stimuli, and executive regions concerned with planning and consequences. We hypothesized that adolescents with AN would show similar disturbed reward modulation within the striatum and the anterior cingulate cortex, a region connected to the striatum and involved in reward-guided action selection. Using functional magnetic resonance imaging, twenty-two adolescent females (10 restricting-type AN, 12 healthy volunteers) performed a monetary guessing task. Time series data associated with monetary wins and losses within striatal and cingulate regions of interest were subjected to a linear mixed effects analysis. All participants responded more strongly to wins versus losses in limbic and anterior executive striatal territories. However, AN participants exhibited an exaggerated response to losses compared to wins in posterior executive and sensorimotor striatal regions, suggesting altered function in circuitry responsible for coding the affective context of stimuli and action selection based upon these valuations. As AN individuals are particularly sensitive to criticism, failure, and making mistakes, these findings may reflect the neural processes responsible for a bias in those with AN to exaggerate negative consequences. PMID:24148909

  20. Altered brain response to reward and punishment in adolescents with Anorexia nervosa.

    PubMed

    Bischoff-Grethe, Amanda; McCurdy, Danyale; Grenesko-Stevens, Emily; Irvine, Laura E Zoe; Wagner, Angela; Yau, Wai-Ying Wendy; Fennema-Notestine, Christine; Wierenga, Christina E; Fudge, Julie L; Delgado, Mauricio R; Kaye, Walter H

    2013-12-30

    Adults recovered from Anorexia nervosa (AN) have altered reward modulation within striatal limbic regions associated with the emotional significance of stimuli, and executive regions concerned with planning and consequences. We hypothesized that adolescents with AN would show similar disturbed reward modulation within the striatum and the anterior cingulate cortex, a region connected to the striatum and involved in reward-guided action selection. Using functional magnetic resonance imaging, twenty-two adolescent females (10 restricting-type AN, 12 healthy volunteers) performed a monetary guessing task. Time series data associated with monetary wins and losses within striatal and cingulate regions of interest were subjected to a linear mixed effects analysis. All participants responded more strongly to wins versus losses in limbic and anterior executive striatal territories. However, AN participants exhibited an exaggerated response to losses compared to wins in posterior executive and sensorimotor striatal regions, suggesting altered function in circuitry responsible for coding the affective context of stimuli and action selection based upon these valuations. As AN individuals are particularly sensitive to criticism, failure, and making mistakes, these findings may reflect the neural processes responsible for a bias in those with AN to exaggerate negative consequences. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    PubMed

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  2. Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits.

    PubMed

    Friedman, Lauren G; Riemslagh, Fréderike W; Sullivan, Josefa M; Mesias, Roxana; Williams, Frances M; Huntley, George W; Benson, Deanna L

    2015-01-01

    Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. © 2014 Wiley Periodicals, Inc.

  3. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  4. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  5. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  6. Differential effects of pyrethroid insecticides on extracellular dopamine in the striatum of freely moving rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak Hossain, Muhammad; Suzuki, Tadahiko; United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193

    2006-11-15

    In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peakmore » effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 {mu}M tetrodotoxin, a Na{sup +} blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 {mu}M nimodipine, an L-type Ca{sup ++} channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I and the two type II pyrethroids indicating that dopaminergic circuitry, striatal DA in particular, may be a pyrethroid target and that pyrethroids may be acting on striatal DA by multiple mechanisms.« less

  7. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P; Mandyam, Chitra D

    2016-07-22

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: implication for dysregulation of neuronal function

    PubMed Central

    Somkuwar, Sucharita S.; Fannon, McKenzie J.; Head, Brian P.; Mandyam, Chitra D.

    2016-01-01

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. PMID:27138644

  9. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning

    PubMed Central

    Bath, Kevin G.; Daw, Nathaniel D.; Frank, Michael J.

    2016-01-01

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by “model-free” learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by “model-based” learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. SIGNIFICANCE STATEMENT Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies. PMID:26818509

  10. Adverse effects of bisphenol A (BPA) on the dopamine system in two distinct cell models and corpus striatum of the Sprague-Dawley rat.

    PubMed

    Nowicki, Brittney A; Hamada, Matt A; Robinson, Gina Y; Jones, Douglas C

    2016-01-01

    The aim of this study was to examine the effects of bisphenol A (BPA) on the brain dopamine (DA) system utilizing both in vitro models (GH3 cells, a rat pituitary cell line, and SH-SY5Y cells, a human neuroblastoma cell line) and an animal model such as Sprague-Dawley (SD) rats. First, cellular DA uptake was measured 2 or 8 h following BPA exposure (0.1-400 μM) in SH-SY5Y cells, where a significant increase in DA uptake was noted. BPA exerted no marked effect on dopamine active transporter levels in GH3 cells exposed for 8 or 24 h. However, SH-SY5Y cells displayed an increase in dopamine transporter (DAT) levels following 24 h of exposure to BPA. In contrast to DAT levels, BPA exposure produced no marked effect on DA D1 receptor levels in SH-SY5Y cells, yet a significant decrease in GH3 cells following both 8- and 24-h exposure periods was noted, suggesting that BPA exerts differential effects dependent upon cell type. BPA produced no significant effects on prolactin levels at 2 h, but a marked fall occurred at 24 h of exposure in GH3 cells. Finally, to examine the influence of dietary developmental exposure to BPA on brain DA levels in F1 offspring, SD rats were exposed to BPA (0.5-20 mg/kg) through maternal transfer and/or diet and striatal DA levels were measured on postnatal day (PND) 60 using high-performance liquid chromatography (HPLC). Data demonstrated that chronic exposure to BPA did not significantly alter striatal DA levels in the SD rat.

  11. Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function.

    PubMed

    Prüss, Harald; Wenzel, Mareike; Eulitz, Dirk; Thomzig, Achim; Karschin, Andreas; Veh, Rüdiger W

    2003-02-20

    Parkinson's disease is the most frequent movement disorder caused by loss of dopaminergic neurons in the midbrain. Intentions to avoid side effects of the conventional therapy should aim to identify additional targets for potential pharmacological intervention. In principle, every step of a signal transduction cascade such as presynaptic transmitter release, type and occupation of postsynaptic receptors, G protein-mediated effector mechanisms, and the alterations of pre- or postsynaptic potentials as determined by the local ion channel composition, have to be considered. Due to their diversity and their widespread but distinct localizations, potassium channels represent interesting candidates for new therapeutic strategies. As a first step, the present report aimed to study in the striatum the cellular and subcellular distribution of the individual members of the Kir2 family, a group of proteins forming inwardly rectifying potassium channels. For this purpose polyclonal monospecific affinity-purified antibodies against the less conserved carboxyterminal sequences from the Kir2.1, Kir2.2, Kir2.3, and Kir2.4 proteins were prepared. All subunits of the Kir2 family were detected on somata and dendrites of most striatal neurons. However, the distribution of two of them was not homogeneous. Striatal patch areas were largely devoid of the Kir2.3 protein, and the Kir2.4 subunit was most prominently expressed on the tonically active, giant cholinergic interneurons of the striatum. These two structures are among the key players in regulating dopaminergic and cholinergic neurotransmission within the striatum, and therefore are of major importance for the output of the basal ganglia. The heterogeneous localization of the Kir2.3 and the Kir2.4 subunits with respect to these strategic structures pinpoints to these channel proteins as promising targets for future pharmacological efforts.

  12. Striatal MPP+ levels do not necessarily correlate with striatal dopamine levels after MPTP treatment in mice.

    PubMed

    Vaglini, F; Fascetti, F; Tedeschi, D; Cavalletti, M; Fornai, F; Corsini, G U

    1996-06-01

    The present study offers confirmation of the fact that an MAO-B inhibitor, (-) deprenyl and a DA uptake blocker, GBR-12909, prevent MPTP-induced striatal DA decrease. This protective effect is accompanied by an almost complete prevention of MPP+ production induced by (-) deprenyl and an accelerated MPP+ clearance induced by GBR-12909 within the striatum. Similarly, the MPTP toxicity enhancers, DDC and acetaldehyde, both increase striatal MPP+ levels, as previously reported. On the contrary, the treatment with MK 801, although uneffective in preventing the long-term MPTP-induced striatal DA decrease, causes an increase in the striatal amount of MPP+. In a similar way, the administration of nicotine in combination with MPTP produces a significant increase in the levels of striatal MPP+, which does not elicit any effect on striatal DA. The effect of clonidine is consistent with these results and in sharp contrast with the current belief that a direct relationship exists between striatal MPP+ concentrations and the degree of MPTP-induced depletion of striatal DA. In this study, using different treatments, we failed to confirm the correlation between MPP+ striatal levels and dopaminergic lesions after MPTP administration in mice. We suggest that this correlation is not a rule and exceptions may depend on a different compartimentalization of the toxic metabolite.

  13. Serotonin inhibits low-threshold spike interneurons in the striatum

    PubMed Central

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  14. Amperozide, a putative anti-psychotic drug: Uptake inhibition and release of dopamine in vitro in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, E.

    1990-01-01

    The effects of amperozide (a diphenylbutylpiperazinecarboxamide derivative) on the uptake and release of {sup 3}H-dopamine in vitro were investigated. Amperozide inhibited the amphetamine-stimulated release of dopamine from perfused rat striatal tissue in a dose-dependent manner. With 1 and 10 {mu}m amperozide there was significant inhibition of the amphetamine-stimulated release of dopamine, to 44 and 36 % of control. In contrast, 10 {mu}M amperozide significantly strengthened the electrically stimulated release of dopamine from perfused striatal slices. Amperozide 1-10 {mu}M had no significant effect on the potassium-stimulated release of dopamine, 10 {mu}M amperozide also slightly increased the basal release of {sup 3}H-dopaminemore » from perfused striatal tissue. These effects on various types of release are similar to those reported for uptake inhibitors. The uptake of dopamine in striatal tissue was inhibited by amperozide with IC{sub 50} values of 18 {mu}M for uptake in chopped tissue and 1.0 {mu}M for uptake in synaptosomes. Amperozide also inhibited the uptake of serotonin in synaptosomes from frontal cortex, IC{sub 50} = 0.32 {mu}M and the uptake of noradrenaline in cortical synaptosomes, IC{sub 50} = 0.78 {mu}M.« less

  15. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia

    PubMed Central

    Jaunarajs, K.L. Eskow; Bonsi, P.; Chesselet, M.F.; Standaert, D.G.; Pisani, A.

    2015-01-01

    Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestion of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia. PMID:25697043

  16. Liquid computing on and off the edge of chaos with a striatal microcircuit

    PubMed Central

    Toledo-Suárez, Carlos; Duarte, Renato; Morrison, Abigail

    2014-01-01

    In reinforcement learning theories of the basal ganglia, there is a need for the expected rewards corresponding to relevant environmental states to be maintained and modified during the learning process. However, the representation of these states that allows them to be associated with reward expectations remains unclear. Previous studies have tended to rely on pre-defined partitioning of states encoded by disjunct neuronal groups or sparse topological drives. A more likely scenario is that striatal neurons are involved in the encoding of multiple different states through their spike patterns, and that an appropriate partitioning of an environment is learned on the basis of task constraints, thus minimizing the number of states involved in solving a particular task. Here we show that striatal activity is sufficient to implement a liquid state, an important prerequisite for such a computation, whereby transient patterns of striatal activity are mapped onto the relevant states. We develop a simple small scale model of the striatum which can reproduce key features of the experimentally observed activity of the major cell types of the striatum. We then use the activity of this network as input for the supervised training of four simple linear readouts to learn three different functions on a plane, where the network is stimulated with the spike coded position of the agent. We discover that the network configuration that best reproduces striatal activity statistics lies on the edge of chaos and has good performance on all three tasks, but that in general, the edge of chaos is a poor predictor of network performance. PMID:25484864

  17. Acute restriction impairs memory in the elevated T-maze (ETM) and modifies serotonergic activity in the dorsolateral striatum.

    PubMed

    Cruz-Morales, Sara Eugenia; García-Saldívar, Norma Laura; González-López, María Reyes; Castillo-Roberto, Georgina; Monroy, Juana; Domínguez, Roberto

    2008-12-16

    Serotonin (5-HT) is involved in behaviors such as sleep, eating, memory, in mental disorders like anxiety and depression and plays an important role in the modulation of stress. On the other hand, exposure to stress influence learning as well as declarative and non-declarative memory. These effects are dependent on the type of stressor, their magnitude, and the type of memory. The striatum has been associated with non-declarative procedural memory, while the information about stress effects on procedural memory and their relation with striatal serotonin is scarce. The objective of this study was to evaluate the effects of stress on the modifications of the striatal serotonergic system. In Experiment 1, the effects of either 60 min of restraint (R) or exposure to the elevated T-maze (ETM) was assessed. Exposure to ETM decreased 5-HT concentration and to R increased 5-HT activity ([metabolite]/[neurotransmitter]). In Experiment 2, we evaluated the effects of restraint on ETM trained immediately, 24 or 48 h after restraint. No effects were detected in acquisition or escape latencies, while retention latencies were lower in all groups compared with the non-restrained group, although significant effects were detected immediately and 24h after restraint. The memory impairment seems to be associated with changes in striatal serotonergic system, given that 5-HT concentration increased, while serotonergic activity decreased. The differences in the activity of 5-HT detected in each experiment could be explained by the effects of different stressors on the serotonergic neurons ability to synthesize the neurotransmitter. Thus, we suggest that exposure to stress impairs procedural memory and that striatal serotonin modulates this effect.

  18. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients

    PubMed Central

    Politis, Marios; Wu, Kit; Loane, Clare; Brooks, David J.; Kiferle, Lorenzo; Turkheimer, Federico E.; Bain, Peter; Molloy, Sophie; Piccini, Paola

    2014-01-01

    Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson’s disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of serotonergic terminals throughout their disease. Identical levodopa doses induced markedly higher striatal synaptic dopamine concentrations in PD patients with LIDs compared with PD patients with stable responses to levodopa. Oral administration of the serotonin receptor type 1A agonist buspirone prior to levodopa reduced levodopa-evoked striatal synaptic dopamine increases and attenuated LIDs. PD patients with LIDs that exhibited greater decreases in synaptic dopamine after buspirone pretreatment had higher levels of serotonergic terminal functional integrity. Buspirone-associated modulation of dopamine levels was greater in PD patients with mild LIDs compared with those with more severe LIDs. These findings indicate that striatal serotonergic terminals contribute to LIDs pathophysiology via aberrant processing of exogenous levodopa and release of dopamine as false neurotransmitter in the denervated striatum of PD patients with LIDs. Our results also support the development of selective serotonin receptor type 1A agonists for use as antidyskinetic agents in PD. PMID:24531549

  19. Confocal Laser Scanning Microscopy and Ultrastructural Study of VGLUT2 Thalamic Input to Striatal Projection Neurons in Rats

    PubMed Central

    Lei, Wanlong; Deng, Yunping; Liu, Bingbing; Mu, Shuhua; Guley, Natalie M.; Wong, Ting; Reiner, Anton

    2014-01-01

    We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axo-spinous terminals had a mean diameter of 0.624 lm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 µm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thala-mostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons. PMID:23047588

  20. Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats.

    PubMed

    Lei, Wanlong; Deng, Yunping; Liu, Bingbing; Mu, Shuhua; Guley, Natalie M; Wong, Ting; Reiner, Anton

    2013-04-15

    We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axospinous terminals had a mean diameter of 0.624 μm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 μm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thalamostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons. Copyright © 2012 Wiley Periodicals, Inc.

  1. Elevated striatal reactivity across monetary and social rewards in bipolar I disorder.

    PubMed

    Dutra, Sunny J; Cunningham, William A; Kober, Hedy; Gruber, June

    2015-11-01

    Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation used both a monetary and social incentive delay task among adults with remitted BD Type I (n = 24) and a healthy nonpsychiatric control group (HC; n = 25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated reactivity to reward receipt in the striatum, a region implicated in incentive sensitivity, in the BD group. Post hoc analyses revealed that greater striatal reactivity to reward receipt, across monetary and social reward tasks, predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC but not in the BD group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of persistent reward pursuit in BD. (c) 2015 APA, all rights reserved).

  2. Complete Disruption of the Kainate Receptor Gene Family Results in Corticostriatal Dysfunction in Mice.

    PubMed

    Xu, Jian; Marshall, John J; Fernandes, Herman B; Nomura, Toshihiro; Copits, Bryan A; Procissi, Daniele; Mori, Susumu; Wang, Lei; Zhu, Yongling; Swanson, Geoffrey T; Contractor, Anis

    2017-02-21

    Kainate receptors are members of the glutamate receptor family that regulate synaptic function in the brain. They modulate synaptic transmission and the excitability of neurons; however, their contributions to neural circuits that underlie behavior are unclear. To understand the net impact of kainate receptor signaling, we generated knockout mice in which all five kainate receptor subunits were ablated (5ko). These mice displayed compulsive and perseverative behaviors, including over-grooming, as well as motor problems, indicative of alterations in striatal circuits. There were deficits in corticostriatal input to spiny projection neurons (SPNs) in the dorsal striatum and correlated reductions in spine density. The behavioral alterations were not present in mice only lacking the primary receptor subunit expressed in adult striatum (GluK2 KO), suggesting that signaling through multiple receptor types is required for proper striatal function. This demonstrates that alterations in striatal function dominate the behavioral phenotype in mice without kainate receptors. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. MK-801 protection against methamphetamine-induced striatal dopamine terminal injury is associated with attenuated dopamine overflow.

    PubMed

    Weihmuller, F B; O'Dell, S J; Marshall, J F

    1992-06-01

    Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Geldanamycin attenuates 3-nitropropionic acid-induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells

    PubMed Central

    CHOI, YONG-JOON; KIM, NAM HO; LIM, MAN SUP; LEE, HEE JAE; KIM, SUNG SOO; CHUN, WANJOO

    2014-01-01

    Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington’s disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3-nitropropionic acid (3NP)-induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP-induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP-stimulated striatal cells. GA significantly attenuated 3NP-induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA-mediated protective effects in 3NP-stimulated striatal cells. To understand the underlying mechanism by which GA-mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP-induced c-Jun N-terminal kinase (JNK) phosphorylation and subsequent c-Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP-induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD. PMID:24756698

  5. Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells.

    PubMed

    Choi, Yong-Joon; Kim, Nam Ho; Lim, Man Sup; Lee, Hee Jae; Kim, Sung Soo; Chun, Wanjoo

    2014-07-01

    Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington's disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3‑nitropropionic acid (3NP)‑induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP‑induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP‑stimulated striatal cells. GA significantly attenuated 3NP‑induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA‑mediated protective effects in 3NP‑stimulated striatal cells. To understand the underlying mechanism by which GA‑mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP‑induced c‑Jun N‑terminal kinase (JNK) phosphorylation and subsequent c‑Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP‑induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD.

  6. Long-Term Behavioral Recovery in Parkinsonian Rats by an HSV Vector Expressing Tyrosine Hydroxylase

    PubMed Central

    Naegele, Janice R.; O’Malley, Karen L.; Geller, Alfred I.

    2006-01-01

    One therapeutic approach to treating Parkinson’s disease is to convert endogenous striatal cells into levo-3,4-dihydroxyphenylalanine (l-dopa)–producing cells. A defective herpes simplex virus type 1 vector expressing human tyrosine hydroxylase was delivered into the partially denervated striatum of 6-hydroxydopamine–lesioned rats, used as a model of Parkinson’s disease. Efficient behavioral and biochemical recovery was maintained for 1 year after gene transfer. Biochemical recovery included increases in both striatal tyrosine hydroxylase enzyme activity and in extracellular dopamine concentrations. Persistence of human tyrosine hydroxylase was revealed by expression of RNA and immunoreactivity. PMID:7669103

  7. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    PubMed

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies. Copyright © 2016 the authors 0270-6474/16/361211-12$15.00/0.

  8. Regulation of bat echolocation pulse acoustics by striatal dopamine.

    PubMed

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-10-01

    The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.

  9. Regulation of bat echolocation pulse acoustics by striatal dopamine

    PubMed Central

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-01-01

    SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471

  10. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    PubMed

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role of prefrontal and striatal glutamate for ventral striatal presynaptic dopamine levels. Such glutamate-dopamine relationships improve our understanding of neurochemical interactions in prefrontostriatal circuits and have implications for the neurobiology of mental disease. Copyright © 2015 the authors 0270-6474/15/359615-07$15.00/0.

  11. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation

    PubMed Central

    Wang, Jin; Gines, Silvia; MacDonald, Marcy E; Gusella, James F

    2005-01-01

    Background Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotype-phenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expression of mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1–171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 μM, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin. PMID:15649316

  12. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    PubMed

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection. © 2014 Wiley Periodicals, Inc.

  13. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment.

    PubMed

    Nora, Gerald J; Harun, Rashed; Fine, David F; Hutchison, Daniel; Grobart, Adam C; Stezoski, Jason P; Munoz, Miranda J; Kochanek, Patrick M; Leak, Rehana K; Drabek, Tomas; Wagner, Amy K

    2017-07-01

    Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (V max ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str V max in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions. © 2017 International Society for Neurochemistry.

  14. Specific Reactions of Different Striatal Neuron Types in Morphology Induced by Quinolinic Acid in Rats

    PubMed Central

    Mu, Shuhua; Wu, Jiajia; Chen, Si; OuYang, Lisi; Lei, Wanlong

    2014-01-01

    Huntington's disease (HD) is a neurological degenerative disease and quinolinic acid (QA) has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD) rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv)+ and neuropeptide Y (NPY)+ interneurons were both significantly reduced while those of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD. PMID:24632560

  15. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates.

    PubMed

    Quetscher, Clara; Yildiz, Ali; Dharmadhikari, Shalmali; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Dydak, Ulrike; Beste, Christian

    2015-11-01

    Response inhibition processes are important for performance monitoring and are mediated via a network constituted by different cortical areas and basal ganglia nuclei. At the basal ganglia level, striatal GABAergic medium spiny neurons are known to be important for response selection, but the importance of the striatal GABAergic system for response inhibition processes remains elusive. Using a novel combination of behavior al, EEG and magnetic resonance spectroscopy (MRS) data, we examine the relevance of the striatal GABAergic system for response inhibition processes. The study shows that striatal GABA levels modulate the efficacy of response inhibition processes. Higher striatal GABA levels were related to better response inhibition performance. We show that striatal GABA modulate specific subprocesses of response inhibition related to pre-motor inhibitory processes through the modulation of neuronal synchronization processes. To our knowledge, this is the first study providing direct evidence for the relevance of the striatal GABAergic system for response inhibition functions and their cortical electrophysiological correlates in humans.

  16. Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice.

    PubMed

    Dluzen, D E; Gao, X; Story, G M; Anderson, L I; Kucera, J; Walro, J M

    2001-07-01

    Deletion of a single copy of the BDNF gene has been shown to affect the nigrostriatal dopaminergic system of young adult BDNF mice. In the present report we evaluated various indices of nigrostriatal dopaminergic function between 9-month-old wild-type (+/+) and heterozygous (+/-) BDNF mutant mice. Performance in a sensorimotor beam walking task was significantly decreased in +/- mice as indicated by increased times required to traverse both a wide (21 mm) and narrow (6 mm) beam. No differences in spontaneous locomotor behavior were observed between the +/+ and +/- mice. Amphetamine-stimulated (5 mg/kg) locomotor behavior was increased to a greater degree in the +/- mice, with the number of movements performed by these mice being significantly greater than their +/+ controls. Corpus striatal dopamine concentrations were significantly greater in the +/- BDNF mice. The absence of any significant differences for dopamine concentrations within the hypothalamus and olfactory bulb of these mice, as well as an absence of any difference in striatal norepinephrine concentrations, suggested a relative specificity of these effects to the corpus striatum. Both the +/- and +/+ mice showed similar reductions in striatal dopamine concentrations in response to a neurotoxic regimen of methamphetamine (20 mg/kg). Collectively these data show increased levels of striatal dopamine concentrations associated with altered behavioral responses involving the nigrostriatal dopaminergic system within the heterozygous BDNF mutant mice. Copyright 2001 Academic Press.

  17. Corticostriatal dysfunction underlies diminished striatal ascorbate release in the R6/2 mouse model of Huntington’s disease

    PubMed Central

    Dorner, Jenelle L.; Miller, Benjamin R.; Klein, Emma L.; Murphy-Nakhnikian, Alexander; Andrews, Rachel L.; Barton, Scott J.; Rebec, George V.

    2009-01-01

    A behavior-related deficit in the release of ascorbate (AA), an antioxidant vitamin, occurs in the striatum of R6/2 mice expressing the human mutation for Huntington’s disease (HD), a dominantly inherited condition characterized by striatal dysfunction. To determine the role of corticostriatal fibers in AA release, we combined slow-scan voltammetry with electrical stimulation of cortical afferents to measure evoked fluctuations in extracellular AA in wild-type (WT) and R6/2 striatum. Although cortical stimulation evoked a rapid increase in AA release in both groups, the R6/2 response had a significantly shorter duration and smaller magnitude than WT. To determine if corticostriatal dysfunction also underlies the behavior-related AA deficit in R6/2s, we measured striatal AA release in separate groups of mice treated with d-amphetamine (5 mg/kg), a psychomotor stimulant known to release AA from corticostriatal terminals independently of dopamine. Relative to WT, both AA release and behavioral activation were diminished in R6/2 mice. Collectively, our results show that the corticostriatal pathway is directly involved in AA release and that this system is dysfunctional in HD. Moreover, because AA release requires glutamate uptake, a failure of striatal AA release in HD is consistent with an overactive glutamate system and diminished glutamate transport, both of which are thought to be central to HD pathogenesis. PMID:19616518

  18. Loss of Mitochondrial Ndufs4 in Striatal Medium Spiny Neurons Mediates Progressive Motor Impairment in a Mouse Model of Leigh Syndrome.

    PubMed

    Chen, Byron; Hui, Jessica; Montgomery, Kelsey S; Gella, Alejandro; Bolea, Irene; Sanz, Elisenda; Palmiter, Richard D; Quintana, Albert

    2017-01-01

    Inability of mitochondria to generate energy leads to severe and often fatal myoencephalopathies. Among these, Leigh syndrome (LS) is one of the most common childhood mitochondrial diseases; it is characterized by hypotonia, failure to thrive, respiratory insufficiency and progressive mental and motor dysfunction, leading to early death. Basal ganglia nuclei, including the striatum, are affected in LS patients. However, neither the identity of the affected cell types in the striatum nor their contribution to the disease has been established. Here, we used a mouse model of LS lacking Ndufs4 , a mitochondrial complex I subunit, to confirm that loss of complex I, but not complex II, alters respiration in the striatum. To assess the role of striatal dysfunction in the pathology, we selectively inactivated Ndufs4 in the striatal medium spiny neurons (MSNs), which account for over 95% of striatal neurons. Our results show that lack of Ndufs4 in MSNs causes a non-fatal progressive motor impairment without affecting the cognitive function of mice. Furthermore, no inflammatory responses or neuronal loss were observed up to 6 months of age. Hence, complex I deficiency in MSNs contributes to the motor deficits observed in LS, but not to the neural degeneration, suggesting that other neuronal populations drive the plethora of clinical signs in LS.

  19. Altered striatal intrinsic functional connectivity in pediatric anxiety

    PubMed Central

    Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique

    2016-01-01

    Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799

  20. Significance of Input Correlations in Striatal Function

    PubMed Central

    Yim, Man Yi; Aertsen, Ad; Kumar, Arvind

    2011-01-01

    The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia. PMID:22125480

  1. A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span.

    PubMed

    Sambataro, Fabio; Podell, Jamie E; Murty, Vishnu P; Das, Saumitra; Kolachana, Bhaskar; Goldberg, Terry E; Weinberger, Daniel R; Mattay, Venkata S

    2015-08-01

    Dopamine modulation of striatal function is critical for executive functions such as working memory (WM) updating. The dopamine transporter (DAT) regulates striatal dopamine signaling via synaptic reuptake. A variable number of tandem repeats in the 3'-untranslated region of SLC6A3 (DAT1-3'-UTR-VNTR) is associated with DAT expression, such that 9-repeat allele carriers tend to express lower levels (associated with higher extracellular dopamine concentrations) than 10-repeat homozygotes. Aging is also associated with decline of the dopamine system. The goal of the present study was to investigate the effects of aging and DAT1-3'-UTR-VNTR on the neural activity and functional connectivity of the striatum during WM updating. Our results showed both an age-related decrease in striatal activity and an effect of DAT1-3'-UTR-VNTR. Ten-repeat homozygotes showed reduced striatal activity and increased striatal-hippocampal connectivity during WM updating relative to the 9-repeat carriers. There was no age by DAT1-3'-UTR-VNTR interaction. These results suggest that, whereas striatal function during WM updating is modulated by both age and genetically determined DAT levels, the rate of the age-related decline in striatal function is similar across both DAT1-3'-UTR-VNTR genotype groups. They further suggest that, because of the baseline difference in striatal function based on DAT1-3'-UTR-VNTR polymorphism, 10-repeat homozygotes, who have lower levels of striatal function throughout the adult life span, may reach a threshold of decreased striatal function and manifest impairments in cognitive processes mediated by the striatum earlier in life than the 9-repeat carriers. Our data suggest that age and DAT1-3'-UTR-VNTR polymorphism independently modulate striatal function. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Dietary uridine-5'-monophosphate supplementation increases potassium-evoked dopamine release and promotes neurite outgrowth in aged rats.

    PubMed

    Wang, Lei; Pooler, Amy M; Albrecht, Meredith A; Wurtman, Richard J

    2005-01-01

    Membrane phospholipids like phosphatidylcholine (PC) are required for cellular growth and repair, and specifically for synaptic function. PC synthesis is controlled by cellular levels of its precursor, cytidine-5'-diphosphate choline (CDP-choline), which is produced from cytidine triphosphate (CTP) and phosphocholine. In rat PC12 cells exogenous uridine was shown to elevate intracellular CDP-choline levels, by promoting the synthesis of uridine triphosphate (UTP), which was partly converted to CTP. In such cells uridine also enhanced the neurite outgrowth produced by nerve growth factor (NGF). The present study assessed the effect of dietary supplementation with uridine-5'-monophosphate disodium (UMP-2Na+, an additive in infant milk formulas) on striatal dopamine (DA) release in aged rats. Male Fischer 344 rats consumed either a control diet or one fortified with 2.5% UMP for 6 wk, ad libitum. In vivo microdialysis was then used to measure spontaneous and potassium (K+)-evoked DA release in the right striatum. Potassium (K+)-evoked DA release was significantly greater among UMP-treated rats, i.e., 341+/-21% of basal levels vs. 283+/-9% of basal levels in control rats (p<0.05); basal DA release was unchanged. In general, each animal's K+-evoked DA release correlated with its striatal DA content, measured postmortem. The levels of neurofilament-70 and neurofilament-M proteins, biomarkers of neurite outgrowth, increased to 182+/-25% (p<0.05) and 221+/-34% (p<0.01) of control values, respectively, with UMP consumption. Hence, UMP treatment not only enhances membrane phosphatide production but also can modulate two membrane-dependent processes, neurotransmitter release and neurite outgrowth, in vivo.

  3. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    PubMed Central

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  4. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution.

    PubMed

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C

    2017-01-27

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca 2+ -regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution*

    PubMed Central

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C.

    2017-01-01

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo. Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. PMID:27998980

  6. Origin and Properties of Striatal Local Field Potential Responses to Cortical Stimulation: Temporal Regulation by Fast Inhibitory Connections

    PubMed Central

    Galiñanes, Gregorio L.; Braz, Barbara Y.; Murer, Mario Gustavo

    2011-01-01

    Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode. Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we characterized the effect of local GABAA receptor blockade on striatal field and multiunitary action potential responses to prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 µm from a microdialysis probe. Intrastriatal administration of the GABAA receptor antagonist bicuculline increased by 65±7% the duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during GABAA receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior. PMID:22163020

  7. Nature or nurture? Determining the heritability of human striatal dopamine function: an [18F]-DOPA PET study.

    PubMed

    Stokes, Paul R A; Shotbolt, Paul; Mehta, Mitul A; Turkheimer, Eric; Benecke, Aaf; Copeland, Caroline; Turkheimer, Federico E; Lingford-Hughes, Anne R; Howes, Oliver D

    2013-02-01

    Striatal dopamine function is important for normal personality, cognitive processes and behavior, and abnormalities are linked to a number of neuropsychiatric disorders. However, no studies have examined the relative influence of genetic inheritance and environmental factors in determining striatal dopamine function. Using [18F]-DOPA positron emission tomography (PET), we sought to determine the heritability of presynaptic striatal dopamine function by comparing variability in uptake values in same sex monozygotic (MZ) twins to dizygotic (DZ) twins. Nine MZ and 10 DZ twin pairs underwent high-resolution [18F]-DOPA PET to assess presynaptic striatal dopamine function. Uptake values for the overall striatum and functional striatal subdivisions were determined by a Patlak analysis using a cerebellar reference region. Heritability, shared environmental effects and non-shared individual-specific effects were estimated using a region of interest (ROI) analysis and a confirmatory parametric analysis. Overall striatal heritability estimates from the ROI and parametric analyses were 0.44 and 0.33, respectively. We found a distinction between striatal heritability in the functional subdivisions, with the greatest heritability estimates occurring in the sensorimotor striatum and the greatest effect of individual-specific environmental factors in the limbic striatum. Our results indicate that variation in overall presynaptic striatal dopamine function is determined by a combination of genetic factors and individual-specific environmental factors, with familial environmental effects having no effect. These findings underline the importance of individual-specific environmental factors for striatal dopaminergic function, particularly in the limbic striatum, with implications for understanding neuropsychiatric disorders such as schizophrenia and addictions.

  8. Nature or Nurture? Determining the Heritability of Human Striatal Dopamine Function: an [18F]-DOPA PET Study

    PubMed Central

    Stokes, Paul R A; Shotbolt, Paul; Mehta, Mitul A; Turkheimer, Eric; Benecke, Aaf; Copeland, Caroline; Turkheimer, Federico E; Lingford-Hughes, Anne R; Howes, Oliver D

    2013-01-01

    Striatal dopamine function is important for normal personality, cognitive processes and behavior, and abnormalities are linked to a number of neuropsychiatric disorders. However, no studies have examined the relative influence of genetic inheritance and environmental factors in determining striatal dopamine function. Using [18F]-DOPA positron emission tomography (PET), we sought to determine the heritability of presynaptic striatal dopamine function by comparing variability in uptake values in same sex monozygotic (MZ) twins to dizygotic (DZ) twins. Nine MZ and 10 DZ twin pairs underwent high-resolution [18F]-DOPA PET to assess presynaptic striatal dopamine function. Uptake values for the overall striatum and functional striatal subdivisions were determined by a Patlak analysis using a cerebellar reference region. Heritability, shared environmental effects and non-shared individual-specific effects were estimated using a region of interest (ROI) analysis and a confirmatory parametric analysis. Overall striatal heritability estimates from the ROI and parametric analyses were 0.44 and 0.33, respectively. We found a distinction between striatal heritability in the functional subdivisions, with the greatest heritability estimates occurring in the sensorimotor striatum and the greatest effect of individual-specific environmental factors in the limbic striatum. Our results indicate that variation in overall presynaptic striatal dopamine function is determined by a combination of genetic factors and individual-specific environmental factors, with familial environmental effects having no effect. These findings underline the importance of individual-specific environmental factors for striatal dopaminergic function, particularly in the limbic striatum, with implications for understanding neuropsychiatric disorders such as schizophrenia and addictions. PMID:23093224

  9. Differential loss of striatal projection neurons in Huntington disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, A.; Albin, R.L.; Anderson, K.D.

    1988-08-01

    Huntington disease (HD) is characterized by the loss of striatal projection neurons, which constitute the vast majority of striatal neurons. To determine whether there is differential loss among different populations of striatal projection neurons, the integrity of the axon terminal plexuses arising from the different populations of substance P-containing and enkephalin-containing striatal projection neurons was studied in striatal target areas by immunohistochemistry. Analysis of 17 HD specimens indicated that in early and middle stages of HD, enkephalin-containing neurons projecting to the external segment of the globus pallidus were much more affected than substance P-containing neurons projecting to the internal pallidalmore » segment. Furthermore, substance P-containing neurons projecting to the substantia nigra pars reticulata were more affected than those projecting to the substantia nigra pars compacta. At the most advanced stages of the disease, projections to all striatal target areas were depleted, with the exception of some apparent sparing of the striatal projection to the substantia nigra pars compacta. These finding may explain some of the clinical manifestations and pharmacology of HD. They also may aid in identifying the neural defect underlying HD and provide additional data with which to evaluate current models of HD pathogenesis.« less

  10. Type III Neuregulin-1 is required for normal sensorimotor gating, memory related behaviors and cortico-striatal circuit components

    PubMed Central

    Chen, Ying-Jiun J.; Johnson, Madeleine A.; Lieberman, Michael D.; Goodchild, Rose E.; Schobel, Scott; Lewandowski, Nicole; Rosoklija, Gorazd; Liu, Ruei-Che; Gingrich, Jay A.; Small, Scott; Moore, Holly; Dwork, Andrew J.; Talmage, David A.; Role, Lorna W.

    2008-01-01

    Neuregulin-1 (Nrg1)/erbB signaling regulates neuronal development, migration, myelination, and synaptic maintenance. The Nrg1 gene is a schizophrenia susceptibility gene. To understand the contribution of Nrg1 signaling to adult brain structure and behaviors, we have studied the regulation of Type III Nrg1 expression and evaluated the effect of decreased expression of the Type III Nrg1 isoforms. Type III Nrg1 is transcribed by a promoter distinct from those for other Nrg1 isoforms and, in the adult brain, is expressed in the medial prefrontal cortex, ventral hippocampus and ventral subiculum, regions involved in the regulation of sensorimotor gating and short term memory. Adult heterozygous mutant mice with a targeted disruption for Type III Nrg1 (Nrg1tm1.1Lwr+/-) have enlarged lateral ventricles and decreased dendritic spine density on subicular pyramidal neurons. MRI imaging of Type III Nrg1 heterozygous mice revealed hypo-function in the medial prefrontal cortex and the hippocampal CA1 and subiculum regions. Type III Nrg1 heterozygous mice also have impaired performance on delayed alternation memory tasks, and deficits in prepulse inhibition (PPI). Chronic nicotine treatment eliminated differences in PPI between Type III Nrg1 heterozygous mice and their wild type littermates. Our findings demonstrate a role of Type III Nrg1-signaling in the maintenance of cortico-striatal components, and in the neural circuits involved in sensorimotor gating and short term memory. PMID:18596162

  11. Differential excitability and modulation of striatal medium spiny neuron dendrites

    PubMed Central

    Day, Michelle; Wokosin, David; Plotkin, Joshua L.; Tian, Xinyoung; Surmeier, D. James

    2011-01-01

    The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single back-propagating action potentials (bAP) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs—but not in D1 MSNs. Following DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Taken together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models. PMID:18987196

  12. Cholinergic Interneurons Mediate Fast VGluT3-Dependent Glutamatergic Transmission in the Striatum

    PubMed Central

    Higley, Michael J.; Balthasar, Nina; Seal, Rebecca P.; Edwards, Robert H.; Lowell, Bradford B.; Kreitzer, Anatol C.; Sabatini, Bernardo L.

    2011-01-01

    The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity. PMID:21544206

  13. Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity.

    PubMed

    Friend, Danielle M; Devarakonda, Kavya; O'Neal, Timothy J; Skirzewski, Miguel; Papazoglou, Ioannis; Kaplan, Alanna R; Liow, Jeih-San; Guo, Juen; Rane, Sushil G; Rubinstein, Marcelo; Alvarez, Veronica A; Hall, Kevin D; Kravitz, Alexxai V

    2017-02-07

    Obesity is associated with physical inactivity, which exacerbates the health consequences of weight gain. However, the mechanisms that mediate this association are unknown. We hypothesized that deficits in dopamine signaling contribute to physical inactivity in obesity. To investigate this, we quantified multiple aspects of dopamine signaling in lean and obese mice. We found that D2-type receptor (D2R) binding in the striatum, but not D1-type receptor binding or dopamine levels, was reduced in obese mice. Genetically removing D2Rs from striatal medium spiny neurons was sufficient to reduce motor activity in lean mice, whereas restoring G i signaling in these neurons increased activity in obese mice. Surprisingly, although mice with low D2Rs were less active, they were not more vulnerable to diet-induced weight gain than control mice. We conclude that deficits in striatal D2R signaling contribute to physical inactivity in obesity, but inactivity is more a consequence than a cause of obesity. Published by Elsevier Inc.

  14. Gene transfer of constitutively active protein kinase C into striatal neurons accelerates onset of levodopa-induced motor response alterations in parkinsonian rats

    PubMed Central

    Oh, Justin D.; Geller, Alfred I.; Zhang, Guo-rong; Chase, Thomas N.

    2006-01-01

    Alterations in motor response that complicate levodopa treatment of Parkinson’s disease appear to involve sensitization of striatal ionotropic glutamate receptors. Since protein kinase C (PKC)-mediated phosphorylation regulates glutamatergic receptors of the α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) subtype and has been linked to several forms of behavioral plasticity, activation of PKC signaling in striatal spiny neurons may also contribute to the motor plasticity changes associated with chronic levodopa therapy. To evaluate this possibility, we sought to augment PKC signaling by using Herpes Simplex Virus type 1 vectors (pHSVpkcΔ) to directly transfer the catalytic domain of the PKCβII gene into striatal neurons of parkinsonian rats. Microinjection of pHSVpkcΔ vectors lead to the persistent expression of PkcΔ (35% loss over 21 days) in medium spiny neurons together with an increase in serine 831 phosphorylation on AMPA receptor GluR1 subunits and hastened the appearance of the shortened response duration produced by chronic levodopa treatment (P<0.05). In pHSVpkcΔ-infected animals, intrastriatal injection of the PKC inhibitor NPC-15437 (1.0 μg) attenuated both the increased GluR1 phosphorylation (P<0.01) and the accelerated onset of the levodopa-induced response modifications (P<0.01). However, in rats that received levodopa treatment for 21 days without the gene transfer, intrastriatal NPC-15437 had no effect on the response shortening or on GluR1 S831 phosphorylation. The results suggest that an increase in PKC-mediated signaling, including, in part, phosphorylation of AMPA receptors, on striatal spiny neurons may be sufficient to promote the initial appearance, but not necessary the ultimate expression, of the levodopa-induced motor response changes occurring in a rodent model of the human motor complication syndrome. PMID:12691833

  15. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption

    PubMed Central

    2014-01-01

    One line summary Metabolic syndrome and obesity-related co-morbidities are largely explained by co-adaptations to the energy use of the large human brain in the cortico-limbic-striatal and NRF2 systems. The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing ‘common or garden’ food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and metabolic inflammation, or metaflammation, allow susceptibility to infectious, degenerative atherosclerotic cardiovascular, autoimmune, neurodegenerative and dysplastic diseases. Other relevant human-specific co-adaptations are examined, and encompass the unusual ability to store fat, certain vitamin pathways, the generalised but flexible intestine and microbiota, and slow development and longevity. This theory has significant past and future corollaries, which are explored in a separate article by McGill, A-T, in Archives of Public Health, 72: 31. PMID:25708524

  16. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction.

    PubMed

    Hu, Yuzheng; Salmeron, Betty Jo; Gu, Hong; Stein, Elliot A; Yang, Yihong

    2015-06-01

    Converging evidence has long identified both impulsivity and compulsivity as key psychological constructs in drug addiction. Although dysregulated striatal-cortical network interactions have been identified in cocaine addiction, the association between these brain networks and addiction is poorly understood. To test the hypothesis that cocaine addiction is associated with disturbances in striatal-cortical communication as captured by resting-state functional connectivity (rsFC), measured from coherent spontaneous fluctuations in the blood oxygenation level-dependent functional magnetic resonance imaging signal, and to explore the relationships between striatal rsFC, trait impulsivity, and uncontrolled drug use in cocaine addiction. A case-control, cross-sectional study was conducted at the National Institute on Drug Abuse Intramural Research Program outpatient magnetic resonance imaging facility. Data used in the present study were collected between December 8, 2005, and September 30, 2011. Participants included 56 non-treatment-seeking cocaine users (CUs) (52 with cocaine dependence and 3 with cocaine abuse) and 56 healthy individuals serving as controls (HCs) matched on age, sex, years of education, race, estimated intelligence, and smoking status. Voxelwise statistical parametric analysis testing the rsFC strength differences between CUs and HCs in brain regions functionally connected to 6 striatal subregions defined a priori. Increased rsFC strength was observed predominantly in striatal-frontal circuits; decreased rsFC was found between the striatum and cingulate, striatal, temporal, hippocampal/amygdalar, and insular regions in the CU group compared with the HCs. Increased striatal-dorsal lateral prefrontal cortex connectivity strength was positively correlated with the amount of recent cocaine use (uncorrected P < .046) and elevated trait impulsivity in the CUs (uncorrected P < .012), and an index reflecting the balance between striatal-dorsal anterior cingulate cortex and striatal-anterior prefrontal/orbitofrontal cortex circuits was significantly associated with loss of control over cocaine use (corrected P < .012). Cocaine addiction is associated with disturbed rsFC in several specific striatal-cortical circuits. Specifically, compulsive cocaine use, a defining characteristic of dependence, was associated with a balance of increased striatal-anterior prefrontal/orbitofrontal and decreased striatal-dorsal anterior cingulate connectivity; trait impulsivity, both a risk factor for and a consequence of cocaine use, was associated with increased dorsal striatal-dorsal lateral prefrontal cortex connectivity uniquely in CUs. These findings provide new insights toward the neurobiological mechanisms of addiction and suggest potential novel therapeutic targets for treatment.

  17. Striatal norepinephrine efflux in l-DOPA-induced dyskinesia.

    PubMed

    Ostock, Corinne Y; Bhide, Nirmal; Goldenberg, Adam A; George, Jessica A; Bishop, Christopher

    2018-03-01

    l-DOPA remains the primary treatment for Parkinson's disease (PD). Unfortunately, its therapeutic benefits are compromised by the development of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID). The norepinephrine (NE) system originating in the locus coeruleus is profoundly affected in PD and known to influence dopamine (DA) signaling. However, the effect of noradrenergic loss on l-DOPA-induced striatal monoamine efflux and Parkinsonian motor behavior remains controversial and is frequently overlooked in traditional animal models of LID. Thus, the current study sought to determine whether degeneration of the DA and/or NE system(s) altered l-DOPA-induced striatal monoamine efflux in hemiparkinsonian rats with additional NE loss induced by the potent NE-toxin α DA beta hydroxylase (DBH)-saporin. Sham-, DA-, NE-, and dual DA + NE-lesioned rats were treated with l-DOPA (6 mg/kg, s.c.) for 2 weeks. Thereafter, l-DOPA-mediated striatal monoamine efflux was measured with in vivo microdialysis, and concurrent AIMs testing occurred to determine responsiveness to l-DOPA. Noradrenergic lesions exacerbated parkinsonian motor deficits but did not significantly alter LID expression or corresponding l-DOPA-induced striatal monoamine efflux. Interestingly, l-DOPA-induced striatal NE efflux rather than DA efflux, corresponded more closely with dyskinesia severity. Moreover, marked reductions in striatal NE tissue concentration did not appear to impact l-DOPA-induced striatal NE efflux. The current study implicates l-DOPA-induced striatal NE as an important factor in LID expression and demonstrates the importance of developing treatment strategies that co-modulate the NE and DA systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Aberrant striatal functional connectivity in children with autism.

    PubMed

    Di Martino, Adriana; Kelly, Clare; Grzadzinski, Rebecca; Zuo, Xi-Nian; Mennes, Maarten; Mairena, Maria Angeles; Lord, Catherine; Castellanos, F Xavier; Milham, Michael P

    2011-05-01

    Models of autism spectrum disorders (ASD) as neural disconnection syndromes have been predominantly supported by examinations of abnormalities in corticocortical networks in adults with autism. A broader body of research implicates subcortical structures, particularly the striatum, in the physiopathology of autism. Resting state functional magnetic resonance imaging has revealed detailed maps of striatal circuitry in healthy and psychiatric populations and vividly captured maturational changes in striatal circuitry during typical development. Using resting state functional magnetic resonance imaging, we examined striatal functional connectivity (FC) in 20 children with ASD and 20 typically developing children between the ages of 7.6 and 13.5 years. Whole-brain voxelwise statistical maps quantified within-group striatal FC and between-group differences for three caudate and three putamen seeds for each hemisphere. Children with ASD mostly exhibited prominent patterns of ectopic striatal FC (i.e., functional connectivity present in ASD but not in typically developing children), with increased functional connectivity between nearly all striatal subregions and heteromodal associative and limbic cortex previously implicated in the physiopathology of ASD (e.g., insular and right superior temporal gyrus). Additionally, we found striatal functional hyperconnectivity with the pons, thus expanding the scope of functional alterations implicated in ASD. Secondary analyses revealed ASD-related hyperconnectivity between the pons and insula cortex. Examination of FC of striatal networks in children with ASD revealed abnormalities in circuits involving early developing areas, such as the brainstem and insula, with a pattern of increased FC in ectopic circuits that likely reflects developmental derangement rather than immaturity of functional circuits. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: a pilot study on the role of striatal dopamine.

    PubMed

    Aarts, Esther; van Holstein, Mieke; Hoogman, Martine; Onnink, Marten; Kan, Cornelis; Franke, Barbara; Buitelaar, Jan; Cools, Roshan

    2015-02-01

    Attention-deficit/hyperactivity disorder (ADHD) is accompanied by impairments in cognitive control, such as task-switching deficits. We investigated whether such problems, and their remediation by medication, reflect abnormal reward motivation and associated striatal dopamine transmission in ADHD. We used functional genetic neuroimaging to assess the effects of dopaminergic medication and reward motivation on task-switching and striatal BOLD signal in 23 adults with ADHD, ON and OFF methylphenidate, and 26 healthy controls. Critically, we took into account interindividual variability in striatal dopamine by exploiting a common genetic polymorphism (3'-UTR VNTR) in the DAT1 gene coding for the dopamine transporter. The results showed a highly significant group by genotype interaction in the striatum. This was because a subgroup of patients with ADHD showed markedly exaggerated effects of reward on the striatal BOLD signal during task-switching when they were OFF their dopaminergic medication. Specifically, patients carrying the 9R allele showed a greater striatal signal than healthy controls carrying this allele, whereas no effect of diagnosis was observed in 10R homozygotes. Aberrant striatal responses were normalized when 9R-carrying patients with ADHD were ON medication. These pilot data indicate an important role for aberrant reward motivation, striatal dopamine and interindividual genetic differences in cognitive processes in adult ADHD.

  20. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: a pilot study on the role of striatal dopamine

    PubMed Central

    Aarts, Esther; Hoogman, Martine; Onnink, Marten; Kan, Cornelis; Franke, Barbara; Buitelaar, Jan; Cools, Roshan

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is accompanied by impairments in cognitive control, such as task-switching deficits. We investigated whether such problems, and their remediation by medication, reflect abnormal reward motivation and associated striatal dopamine transmission in ADHD. We used functional genetic neuroimaging to assess the effects of dopaminergic medication and reward motivation on task-switching and striatal BOLD signal in 23 adults with ADHD, ON and OFF methylphenidate, and 26 healthy controls. Critically, we took into account interindividual variability in striatal dopamine by exploiting a common genetic polymorphism (3′-UTR VNTR) in the DAT1 gene coding for the dopamine transporter. The results showed a highly significant group by genotype interaction in the striatum. This was because a subgroup of patients with ADHD showed markedly exaggerated effects of reward on the striatal BOLD signal during task-switching when they were OFF their dopaminergic medication. Specifically, patients carrying the 9R allele showed a greater striatal signal than healthy controls carrying this allele, whereas no effect of diagnosis was observed in 10R homozygotes. Aberrant striatal responses were normalized when 9R-carrying patients with ADHD were ON medication. These pilot data indicate an important role for aberrant reward motivation, striatal dopamine and interindividual genetic differences in cognitive processes in adult ADHD. PMID:25485641

  1. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  2. Clonazepam increases in vivo striatal extracellular glucose in diabetic rats after glucose overload.

    PubMed

    Gomez, Rosane; Barros, Helena M T

    2003-12-01

    Hyperglycemia modulates brain function, including neuronal excitability, neurotransmitter release and behavioral changes. There may be connections between the GABAergic system, glucose sensing neurons and glucose in the neuronal environment that shed light on the mechanism by which GABA(A) agents influence depressive behavior in diabetic rats submitted to the forced swimming test. We aimed to investigate whether clonazepam (CNZ), a GABA(A) receptor positive modulator, modifies in vivo striatal extracellular glucose levels in diabetic rats under fasting condition or after oral glucose overload. Streptozotocin diabetic and nondiabetic rats were submitted to in vivo striatal microdialysis. Perfusate samples were collected at baseline, during fasting and following administration of CNZ (0.25 mg/kg) and oral glucose overload. Blood glucose and striatal extracellular glucose were measured simultaneously at several time points. Fasting striatal glucose levels were higher in diabetic than in nondiabetic rats and the differences between these animals were maintained after glucose overload. The increases in extracellular striatal glucose after glucose overload were around 40% and blood to brain transference was decreased in diabetics. CNZ treatment paradoxically increased striatal glucose after glucose overload in diabetic rats, which may mark the dysfunction in brain glucose homeostasis.

  3. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington's disease.

    PubMed

    Emerich, D F; Cain, C K; Greco, C; Saydoff, J A; Hu, Z Y; Liu, H; Lindner, M D

    1997-01-01

    The delivery of ciliary neurotrophic factor (CNTF) to the central nervous system has recently been proposed as a potential means of halting or slowing the neural degeneration associated with Huntington's disease (HD). The following set of experiments examined, in detail, the ability of human CNTF (hCNTF) to prevent the onset of behavioral dysfunction in a rodent model of HD. A DHFR-based expression vector containing the hCNTF gene was transfected into a baby hamster kidney fibroblast cell line (BHK). Using a polymeric device, encapsulated BHK-control cells and those secreting hCNTF were transplanted bilaterally into rat lateral ventricles. Eight days later, the same animals received bilateral injections of quinolinic acid (QA, 225 nmol) into the previously implanted striata. A third group received sham surgery (incision only) and served as a normal control group. Bilateral infusions of QA produced a significant loss of body weight and mortality that was prevented by prior implantation with hCNTF-secreting cells. Moreover, QA produced a marked hyperactivity, an inability to use the forelimbs to retrieve food pellets in a staircase test, increased the latency of the rats to remove adhesive stimuli from their paws, and decreased the number of steps taken in a bracing test that assessed motor rigidity. Finally, the QA-infused animals were impaired in tests of cognitive function-the Morris water maze spatial learning task, and the delayed nonmatching-to-position operant test of working memory. Prior implantation with hCNTF-secreting cells prevented the onset of all the above deficits such that implanted animals were nondistinguishable from sham-lesioned controls. At the conclusion of behavioral testing, 19 days following QA, the animals were sacrificed for neurochemical determination of striatal choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) levels. This analysis revealed that QA decreased striatal ChAT levels by 35% and striatal GAD levels by 45%. In contrast, hCNTF-treated animals did not exhibit any decrease in ChAT levels and only a 10% decrease in GAD levels. These results support the concepts that implants of polymer-encapsulated hCNTF-releasing cells can be used to protect striatal neurons from excitotoxic damage, produce extensive behavioral protection as a result of that neuronal sparing, and that this strategy may ultimately prove relevant for the treatment of HD.

  5. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, John, E-mail: jmweaver@salud.unm.edu; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131; Yang, Yirong

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissuemore » pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic insult.« less

  6. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value

    PubMed Central

    Tai, Lung-Hao; Lee, A. Moses; Benavidez, Nora; Bonci, Antonello; Wilbrecht, Linda

    2012-01-01

    In changing environments animals must adaptively select actions to achieve their goals. In tasks involving goal-directed action selection, striatal neural activity has been shown to represent the value of competing actions. Striatal representations of action value could potentially bias responses toward actions of higher value. However, no study to date has demonstrated the direct impact of distinct striatal pathways in goal-directed action selection. Here we show in mice that transient optogenetic stimulation of dorsal striatal dopamine D1 and D2 receptor-expressing neurons during decision-making introduces opposing biases in the distribution of choices. The effect of stimulation on choice is dependent on recent reward history and mimics an additive change in the action value. While stimulation prior to and during movement initiation produces a robust bias in choice behavior, this bias is significantly diminished when stimulation is delayed after response initiation. Together, our data demonstrate the role of striatal activity in goal-directed action selection. PMID:22902719

  7. Dopamine-Related Disruption of Functional Topography of Striatal Connections in Unmedicated Patients With Schizophrenia.

    PubMed

    Horga, Guillermo; Cassidy, Clifford M; Xu, Xiaoyan; Moore, Holly; Slifstein, Mark; Van Snellenberg, Jared X; Abi-Dargham, Anissa

    2016-08-01

    Despite the well-established role of striatal dopamine in psychosis, current views generally agree that cortical dysfunction is likely necessary for the emergence of psychotic symptoms. The topographic organization of striatal-cortical connections is central to gating and integration of higher-order information, so a disruption of such topography via dysregulated dopamine could lead to cortical dysfunction in schizophrenia. However, this hypothesis remains to be tested using multivariate methods ascertaining the global pattern of striatal connectivity and without the confounding effects of antidopaminergic medication. To examine whether the pattern of brain connectivity across striatal subregions is abnormal in unmedicated patients with schizophrenia and whether this abnormality relates to psychotic symptoms and extrastriatal dopaminergic transmission. In this multimodal, case-control study, we obtained resting-state functional magnetic resonance imaging data from 18 unmedicated patients with schizophrenia and 24 matched healthy controls from the New York State Psychiatric Institute. A subset of these (12 and 17, respectively) underwent positron emission tomography with the dopamine D2 receptor radiotracer carbon 11-labeled FLB457 before and after amphetamine administration. Data were acquired between June 16, 2011, and February 25, 2014. Data analysis was performed from September 1, 2014, to January 11, 2016. Group differences in the striatal connectivity pattern (assessed via multivariable logistic regression) across striatal subregions, the association between the multivariate striatal connectivity pattern and extrastriatal baseline D2 receptor binding potential and its change after amphetamine administration, and the association between the multivariate connectivity pattern and the severity of positive symptoms evaluated with the Positive and Negative Syndrome Scale. Of the patients with schizophrenia (mean [SEM] age, 35.6 [11.8] years), 9 (50%) were male and 9 (50%) were female. Of the controls (mean [SEM] age, 33.7 [8.8] years), 10 (42%) were male and 14 (58%) were female. Patients had an abnormal pattern of striatal connectivity, which included abnormal caudate connections with a distributed set of associative cortex regions (χ229 = 53.55, P = .004). In patients, more deviation from the multivariate pattern of striatal connectivity found in controls correlated specifically with more severe positive symptoms (ρ = -0.77, P = .002). Striatal connectivity also correlated with baseline binding potential across cortical and extrastriatal subcortical regions (t25 = 3.01, P = .01, Bonferroni corrected) but not with its change after amphetamine administration. Using a multimodal, circuit-level interrogation of striatal-cortical connections, it was demonstrated that the functional topography of these connections is globally disrupted in unmedicated patients with schizophrenia. These findings suggest that striatal-cortical dysconnectivity may underlie the effects of dopamine dysregulation on the pathophysiologic mechanism of psychotic symptoms.

  8. DRD2 Schizophrenia-Risk Allele Is Associated With Impaired Striatal Functioning in Unaffected Siblings of Schizophrenia Patients

    PubMed Central

    Vink, Matthijs; de Leeuw, Max; Luykx, Jurjen J.; van Eijk, Kristel R.; van den Munkhof, Hanna E.; van Buuren, Mariët; Kahn, René S.

    2016-01-01

    A recent Genome-Wide Association Study showed that the rs2514218 single nucleotide polymorphism (SNP) in close proximity to dopamine receptor D2 is strongly associated with schizophrenia. Further, an in silico experiment showed that rs2514218 has a cis expression quantitative trait locus effect in the basal ganglia. To date, however, the functional consequence of this SNP is unknown. Here, we used functional Magnetic resonance imaging to investigate the impact of this risk allele on striatal activation during proactive and reactive response inhibition in 45 unaffected siblings of schizophrenia patients. We included siblings to circumvent the illness specific confounds affecting striatal functioning independent from gene effects. Behavioral analyses revealed no differences between the carriers (n = 21) and noncarriers (n = 24). Risk allele carriers showed a diminished striatal response to increasing proactive inhibitory control demands, whereas overall level of striatal activation in carriers was elevated compared to noncarriers. Finally, risk allele carriers showed a blunted striatal response during successful reactive inhibition compared to the noncarriers. These data are consistent with earlier reports showing similar deficits in schizophrenia patients, and point to a failure to flexibly engage the striatum in response to contextual cues. This is the first study to demonstrate an association between impaired striatal functioning and the rs2514218 polymorphism. We take our findings to indicate that striatal functioning is impaired in carriers of the DRD2 risk allele, likely due to dopamine dysregulation at the DRD2 location. PMID:26598739

  9. Huntingtin processing in pathogenesis of Huntington disease.

    PubMed

    Qin, Zheng-Hong; Gu, Zhen-Lun

    2004-10-01

    Huntingtons disease (HD) is caused by an expansion of the polyglutamine tract in the protein named huntingtin. The expansion of polyglutamine tract induces selective degeneration of striatal projection neurons and cortical pyramidal neurons. The bio-hallmark of HD is the formation of intranuclear inclusions and cytoplasmic aggregates in association with other cellular proteins in vulnerable neurons. Accumulation of N-terminal mutant huntingtin in HD brains is prominent. These pathological features are related to protein misfolding and impairments in protein processing and degradation in neurons. This review focused on the role of proteases in huntingtin cleavage and degradation and the contribution of altered processing of mutant huntingtin to HD pathogenesis. Copyright 2004 Acta Pharmacologica Sinica

  10. An insulin resistance associated neural correlate of impulsivity in type 2 diabetes mellitus

    PubMed Central

    Eckstrand, Kristen L.; Mummareddy, Nishit; Kang, Hakmook; Cowan, Ronald; Zhou, Minchun; Zald, David; Silver, Heidi J.; Niswender, Kevin D.; Avison, Malcolm J.

    2017-01-01

    Central insulin resistance (IR) influences striatal dopamine (DA) tone, an important determinant of behavioral self-regulation. We hypothesized that an association exists between the degree of peripheral IR and impulse control, mediated by the impact of IR on brain circuits controlling the speed of executing “go” and/or “stop” responses. We measured brain activation and associated performance on a stop signal task (SST) in obese adults with type 2 diabetes (age, 48.1 ± 6.9 yrs (mean ± SD); BMI, 36.5 ± 4.0 kg/m2; HOMA-IR, 7.2 ± 4.1; 12 male, 18 female). Increasing IR, but not BMI, was a predictor of shorter critical stop signal delay (cSSD), a measure of the time window during which a go response can be successfully countermanded (R2 = 0.12). This decline was explained by an IR-associated increase in go speed (R2 = 0.13) with little impact of IR or BMI on stop speed. Greater striatal fMRI activation contrast in stop error (SE) compared with stop success (SS) trials (CONSE>SS) was a significant predictor of faster go speeds (R2 = 0.33, p = 0.002), and was itself predicted by greater IR (CONSE>SS vs HOMA-IR: R2 = 0.10, p = 0.04). Furthermore, this impact of IR on striatal activation was a significant mediator of the faster go speeds and greater impulsivity observed with greater IR. These findings suggest a neural mechanism by which IR may increase impulsivity and degrade behavioral self-regulation. PMID:29228027

  11. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  12. Striatal Mechanisms Underlying Movement, Reinforcement, and Punishment

    PubMed Central

    Kravitz, Alexxai V.; Kreitzer, Anatol C.

    2013-01-01

    Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion. PMID:22689792

  13. Control of glutamate release by calcium channels and κ-opioid receptors in rodent and primate striatum

    PubMed Central

    Hill, M P; Brotchie, J M

    1999-01-01

    The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by κ-opioid receptor activation and blockade of voltage-dependent Ca2+-channels has been investigated in synaptosomes prepared from rat and marmoset striatum.4-Aminopyridine (4-AP)-stimulated, Ca2+-dependent glutamate release was inhibited by enadoline, a selective κ-opioid receptor agonist, in a concentration-dependent and nor-binaltorphimine (nor-BNI, selective κ-opioid receptor antagonist)-sensitive manner in rat (IC50=4.4±0.4 μM) and marmoset (IC50=2.9±0.7 μM) striatal synaptosomes. However, in the marmoset, there was a significant (≈23%) nor-BNI-insensitive component.In rat striatal synaptosomes, the Ca2+-channel antagonists ω-agatoxin-IVA (P/Q-type blocker), ω-conotoxin-MVIIC (N/P/Q-type blocker) and ω-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+-dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5±0.9 nM, 75.5±5.9 nM and 106.5±8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+-dependent glutamate release was significantly inhibited by ω-agatoxin-IVA (30 nM, 57.6±2.3%, inhibition), ω-conotoxin-MVIIC (300 nM, 57.8±3.1%) and ω-conotoxin-GVIA (1 μM, 56.7±2%).Studies utilizing combinations of Ca2+-channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+-channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+-channel activation.Studies using combinations of enadoline and the Ca2+-channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+-influx through P-type Ca2+-channels in the rat but via N-type Ca2+-channels in the marmoset.In conclusion, the results presented suggest that there are species differences in the control of glutamate release by κ-opioid receptors and Ca2+-channels. PMID:10369483

  14. Connection between the striatal neurokinin-1 receptor and nitric oxide formation during methamphetamine exposure.

    PubMed

    Wang, Jing; Xu, Wenjing; Ali, Syed F; Angulo, Jesus A

    2008-10-01

    Methamphetamine (METH) is a widely used "club drug" that produces neural damage in the brain, including the loss of some neurons. METH-induced striatal neuronal loss has been attenuated by pretreatment with the neurokinin-1 receptor antagonist WIN-51,708 in mice. Using a histologic method, we have observed the internalization of the neurokinin-1 receptor into endosomes in the striatal somatostatin/NPY/nitric oxide synthase interneurons. To investigate the role of this interneuron in the striatal cell death induced by METH, we assessed by immunohistochemistry the number of striatal nitric oxide synthase-positive neurons in the presence of METH at 8 and 16 hours after systemic injection of a bolus of METH (30 mg/kg, i.p.). We found the number of striatal nitric oxide synthase-positive neurons unchanged at these time points after METH. In a separate experiment we measured the levels of striatal 3-nitrotyrosine (3-NT) by HPLC (high-pressure liquid chromatography) as an indirect index of nitric oxide synthesis. METH increased the levels of 3-nitrotyrosine in the striatum and this increase was significantly attenuated by pretreatment with a selective neurokinin-1 receptor antagonist. These observations suggest a causal relationship between the neurokinin-1 receptor and the activation of neuronal nitric oxide synthase that warrants further investigation.

  15. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident in brain, where the striatum featured signature accumulation of a set of lipids including sphingomyelin, phosphatidylcholine, cholesterol ester and triglyceride species. Importantly, in the presence of the CAG mutation, metabolite changes were unmasked in peripheral tissues by an interaction with dietary fat, implying that the design of studies to discover metabolic changes in HD mutation carriers should include metabolic perturbations. PMID:26295712

  16. Modulation of methamphetamine-induced nitric oxide production by neuropeptide Y in the murine striatum.

    PubMed

    Yarosh, Haley L; Angulo, Jesus A

    2012-11-05

    Methamphetamine (METH) is a potent stimulant that induces both acute and long-lasting neurochemical changes in the brain including neuronal cell loss. Our laboratory demonstrated that the neuropeptide substance P enhances the striatal METH-induced production of nitric oxide (NO). In order to better understand the role of the striatal neuropeptides on the METH-induced production of NO, we used agonists and antagonists of the NPY (Y1R and Y2R) receptors infused via intrastriatal microinjection followed by a bolus of METH (30 mg/kg, ip) and measured 3-NT immunofluorescence, an indirect index of NO production. One striatum received pharmacological agent while the contralateral striatum received aCSF and served as control. NPY receptor agonists dose dependently attenuated the METH-induced production of striatal 3-NT. Conversely, NPY receptor antagonists had the opposite effect. Moreover, METH induced the accumulation of cyclic GMP and activated caspase-3 in approximately 18% of striatal neurons, a phenomenon that was attenuated by pre-treatment with NPY2 receptor agonist. Lastly, METH increased the levels of striatal preproneuropeptide Y mRNA nearly five-fold 16 h after injection as determined by RT-PCR, suggesting increased utilization of the neuropeptide. In conclusion, NPY inhibits the METH-induced production of NO in striatal tissue. Consequently, production of this second messenger induces the accumulation of cyclic GMP and activated caspase-3 in some striatal neurons, an event that may precede the apoptosis of some striatal neurons. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I

    PubMed Central

    2014-01-01

    Background Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Results Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood–brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Conclusion Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke. PMID:24468193

  18. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I.

    PubMed

    Zinnanti, William J; Lazovic, Jelena; Housman, Cathy; Antonetti, David A; Koeller, David M; Connor, James R; Steinman, Lawrence

    2014-01-27

    Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood-brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke.

  19. Dysfunction of ventrolateral striatal dopamine receptor type 2-expressing medium spiny neurons impairs instrumental motivation.

    PubMed

    Tsutsui-Kimura, Iku; Takiue, Hiroyuki; Yoshida, Keitaro; Xu, Ming; Yano, Ryutaro; Ohta, Hiroyuki; Nishida, Hiroshi; Bouchekioua, Youcef; Okano, Hideyuki; Uchigashima, Motokazu; Watanabe, Masahiko; Takata, Norio; Drew, Michael R; Sano, Hiromi; Mimura, Masaru; Tanaka, Kenji F

    2017-02-01

    Impaired motivation is present in a variety of neurological disorders, suggesting that decreased motivation is caused by broad dysfunction of the nervous system across a variety of circuits. Based on evidence that impaired motivation is a major symptom in the early stages of Huntington's disease, when dopamine receptor type 2-expressing striatal medium spiny neurons (D2-MSNs) are particularly affected, we hypothesize that degeneration of these neurons would be a key node regulating motivational status. Using a progressive, time-controllable, diphtheria toxin-mediated cell ablation/dysfunction technique, we find that loss-of-function of D2-MSNs within ventrolateral striatum (VLS) is sufficient to reduce goal-directed behaviours without impairing reward preference or spontaneous behaviour. Moreover, optogenetic inhibition and ablation of VLS D2-MSNs causes, respectively, transient and chronic reductions of goal-directed behaviours. Our data demonstrate that the circuitry containing VLS D2-MSNs control motivated behaviours and that VLS D2-MSN loss-of-function is a possible cause of motivation deficits in neurodegenerative diseases.

  20. Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington's Disease Mice.

    PubMed

    Berggren, Kiersten L; Lu, Zhen; Fox, Julia A; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H

    2016-01-01

    Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington's disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363-74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Female neonatal mice were supplemented daily from days 10-17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later.

  1. Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation.

    PubMed

    Rico, Alberto J; Dopeso-Reyes, Iria G; Martínez-Pinilla, Eva; Sucunza, Diego; Pignataro, Diego; Roda, Elvira; Marín-Ramos, David; Labandeira-García, José L; George, Susan R; Franco, Rafael; Lanciego, José L

    2017-05-01

    Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1-D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1-D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1-D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1-D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1-D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1-D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1-D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1-D2 heteromers. Interestingly, macromolecular complexes of D1-D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.

  2. Protective effects of 3-alkyl luteolin derivatives are mediated by Nrf2 transcriptional activity and decreased oxidative stress in Huntington's disease mouse striatal cells.

    PubMed

    Oliveira, Ana M; Cardoso, Susana M; Ribeiro, Márcio; Seixas, Raquel S G R; Silva, Artur M S; Rego, A Cristina

    2015-12-01

    Huntington's disease (HD) is a polyglutamine-expansion neurodegenerative disorder caused by increased number of CAG repeats in the HTT gene, encoding for the huntingtin protein. The mutation is linked to several intracellular mechanisms, including oxidative stress. Flavones are compounds with a protective role in neurodegenerative pathologies. In the present study we analyzed the protective effect of luteolin (Lut, 3',4',5,7-tetrahydroxyflavone) and four luteolin derivatives bearing 3-alkyl chains of 1, 4, 6 and 10 carbons (Lut-C1, Lut-C4, Lut-C6, Lut-C10) in striatal cells derived from HD knock-in mice expressing mutant Htt (STHdh(Q111/Q111)) versus wild-type striatal cells (STHdh(Q7/Q7)). HD cells showed increased caspase-3-like activity and intracellular reactive oxygen species (ROS), which were significantly decreased following treatment with Lut-C4 and Lut-C6 under concentrations that enhanced cell viability. Interestingly, Lut-C4 and Lut-C6 rose the nuclear levels of phospho(Ser40)-nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and Nrf2/ARE transcriptional activity. Concordantly with increased Nrf2/ARE transcription, Lut-C6 enhanced superoxide dismutase 1 (SOD1) mRNA and SOD activity and glutamate-cysteine ligase catalytic subunit (GCLc) mRNA and protein levels, while Lut-C4 induced mRNA levels of GCLc only in mutant striatal cells. Data suggest that Lut-C6 luteolin derivative (in particular) might be relevant for the development of antioxidant strategies in HD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  4. Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation

    PubMed Central

    López-Gallardo, Ester; Llobet, Laura; Emperador, Sonia; Montoya, Julio; Ruiz-Pesini, Eduardo

    2016-01-01

    Background: The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)– and mitochondrial DNA (mtDNA)–encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. Objectives: We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. Methods: We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. Results: TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. Conclusions: In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. Citation: López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399–1405; http://dx.doi.org/10.1289/EHP182 PMID:27129022

  5. Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation.

    PubMed

    López-Gallardo, Ester; Llobet, Laura; Emperador, Sonia; Montoya, Julio; Ruiz-Pesini, Eduardo

    2016-09-01

    The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)- and mitochondrial DNA (mtDNA)-encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399-1405; http://dx.doi.org/10.1289/EHP182.

  6. Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington’s Disease Mice

    PubMed Central

    Berggren, Kiersten L.; Lu, Zhen; Fox, Julia A.; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H.

    2016-01-01

    Background: Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington’s disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363–74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. Objective: To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Methods: Female neonatal mice were supplemented daily from days 10–17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Results: Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Conclusions: Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later. PMID:27079948

  7. Molecular and functional definition of the developing human striatum.

    PubMed

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  8. Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits

    PubMed Central

    Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.

    2014-01-01

    This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237

  9. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    PubMed

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  10. Genetically Determined Measures of Striatal D2 Signaling Predict Prefrontal Activity during Working Memory Performance

    PubMed Central

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Bianco, Luciana Lo; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-01-01

    Background Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Methods Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Results Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Conclusions Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway. PMID:20179754

  11. Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction

    PubMed Central

    Mao, Li-Min; Guo, Ming-Lei; Jin, Dao-Zhong; Fibuch, Eugene E.; Choe, Eun Sang; Wang, John Q.

    2011-01-01

    Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction. PMID:21441996

  12. Embryonic mescencephalon derived neurospheres contain progenitors as well as differentiated neurons and glia.

    PubMed

    Khaing, Zin Z; Roberts, James L

    2009-01-01

    Stem cells and progenitor cells in the central nervous system may have potential for therapeutic use in patients with degenerative diseases or after injury. Neural precursor cells can be grown in culture in the presence of mitogens as aggregates termed neurospheres (NSs), as a source of proliferating progenitor cells. Withdrawal of mitogen and allowing the NSs to adhere to a substrate is the conventional way to study the differentiation potential of the progenitor cells propagated in NSs form. Here we asked if differentiation occurs within NSs cultured in the normal manner, in the presence of mitogen. We used non-passaged NSs derived from E13.5 mouse ventral mesencephalon. The NSs contained not only progenitor cells but also phenotypically-differentiated neurons and glia, in the presence of mitogen. Extracellular matrix molecules (fibronectin, laminin and collagen type IV) were also detected within these NSs, which may aid in the differentiation of progenitors inside the NSs. The cell types within NSs were also organized in a way that the differentiated cells were found in the inner cell mass while progenitors were found in the outer region. Additionally, the proportion of differentiated cell types within the NSs was also affected by exposure to different mitogens. Moreover, when placed together in to co-culture, dissociated embryonic striatal and mesencephalic cells aggregated spontaneously to form mixed NSs, enhancing the eventual differentiation into dopaminergic neurons from progenitors within these NSs. Therefore, the NSs contained progenitor cells and differentiated neurons and glial cells. In addition, NS culture system can be used to study cellular differentiation in vitro in non-adherent conditions.

  13. Mesocorticolimbic Connectivity and Volumetric Alterations in DCC Mutation Carriers.

    PubMed

    Vosberg, Daniel E; Zhang, Yu; Menegaux, Aurore; Chalupa, Amanda; Manitt, Colleen; Zehntner, Simone; Eng, Conrad; DeDuck, Kristina; Allard, Dominique; Durand, France; Dagher, Alain; Benkelfat, Chawki; Srour, Myriam; Joober, Ridha; Lepore, Franco; Rouleau, Guy; Théoret, Hugo; Bedell, Barry J; Flores, Cecilia; Leyton, Marco

    2018-05-16

    The axon guidance cue receptor DCC (deleted in colorectal cancer) plays a critical role in the organization of mesocorticolimbic pathways in rodents. To investigate whether this occurs in humans, we measured (1) anatomical connectivity between the substantia nigra/ventral tegmental area (SN/VTA) and forebrain targets, (2) striatal and cortical volumes, and (3) putatively associated traits and behaviors. To assess translatability, morphometric data were also collected in Dcc -haploinsufficient mice. The human volunteers were 20 DCC +/- mutation carriers, 16 DCC +/+ relatives, and 20 DCC +/+ unrelated healthy volunteers (UHVs; 28 females). The mice were 11 Dcc +/- and 16 wild-type C57BL/6J animals assessed during adolescence and adulthood. Compared with both control groups, the human DCC +/- carriers exhibited the following: (1) reduced anatomical connectivity from the SN/VTA to the ventral striatum [ DCC +/+ : p = 0.0005, r ( effect size ) = 0.60; UHV: p = 0.0029, r = 0.48] and ventral medial prefrontal cortex ( DCC +/+ : p = 0.0031, r = 0.53; UHV: p = 0.034, r = 0.35); (2) lower novelty-seeking scores ( DCC +/+ : p = 0.034, d = 0.82; UHV: p = 0.019, d = 0.84); and (3) reduced striatal volume ( DCC +/+ : p = 0.0009, d = 1.37; UHV: p = 0.0054, d = 0.93). Striatal volumetric reductions were also present in Dcc +/- mice, and these were seen during adolescence ( p = 0.0058, d = 1.09) and adulthood ( p = 0.003, d = 1.26). Together these findings provide the first evidence in humans that an axon guidance gene is involved in the formation of mesocorticolimbic circuitry and related behavioral traits, providing mechanisms through which DCC mutations might affect susceptibility to diverse neuropsychiatric disorders. SIGNIFICANCE STATEMENT Opportunities to study the effects of axon guidance molecules on human brain development have been rare. Here, the identification of a large four-generational family that carries a mutation to the axon guidance molecule receptor gene, DCC , enabled us to demonstrate effects on mesocorticolimbic anatomical connectivity, striatal volumes, and personality traits. Reductions in striatal volumes were replicated in DCC -haploinsufficient mice. Together, these processes might influence mesocorticolimbic function and susceptibility to diverse neuropsychiatric disorders. Copyright © 2018 the authors 0270-6474/18/384655-11$15.00/0.

  14. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling

    PubMed Central

    Lee, Yeunkum; Kim, Sun Gyun; Lee, Bokyoung; Zhang, Yinhua; Kim, Yoonhee; Kim, Shinhyun; Kim, Eunjoon; Kang, Hyojin; Han, Kihoon

    2017-01-01

    Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes), via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD). Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity and to the manic-like behaviors of Shank3 TG mice. PMID:28701918

  15. Beer flavor provokes striatal dopamine release in male drinkers: mediation by family history of alcoholism.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-08-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [(11)C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [(11)C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [(11)C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism.

  16. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    PubMed Central

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  17. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model.

    PubMed

    Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong

    2018-04-16

    Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate

    PubMed Central

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-01-01

    The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796

  19. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment.

    PubMed

    Robertson, Chelsea L; Ishibashi, Kenji; Chudzynski, Joy; Mooney, Larissa J; Rawson, Richard A; Dolezal, Brett A; Cooper, Christopher B; Brown, Amira K; Mandelkern, Mark A; London, Edythe D

    2016-05-01

    Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [(18)F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence.

  20. DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding.

    PubMed

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.

  1. DRD2 Genotype-Based Variation of Default Mode Network Activity and of Its Relationship With Striatal DAT Binding

    PubMed Central

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with “increased” activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([123I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling. PMID:21976709

  2. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment

    PubMed Central

    Robertson, Chelsea L; Ishibashi, Kenji; Chudzynski, Joy; Mooney, Larissa J; Rawson, Richard A; Dolezal, Brett A; Cooper, Christopher B; Brown, Amira K; Mandelkern, Mark A; London, Edythe D

    2016-01-01

    Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [18F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence. PMID:26503310

  3. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    PubMed

    Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A

    2015-08-01

    Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.

  4. Biochemical markers of striatal desensitization in cortical-limbic hyperglutamatergic TS- & OCD-like transgenic mice.

    PubMed

    O'Brien, Kylie B; Sharrief, Anjail Z; Nordstrom, Eric J; Travanty, Anthony J; Huynh, Mailee; Romero, Megan P; Bittner, Katie C; Bowser, Michael T; Burton, Frank H

    2018-04-01

    Tics and compulsions in comorbid Tourette's syndrome (TS) and obsessive-compulsive disorder (OCD) are associated with chronic hyperactivity of parallel cortico/amygdalo-striato-thalamo-cortical (CSTC) loop circuits. Comorbid TS- & OCD-like behaviors have likewise been observed in D1CT-7 mice, in which an artificial neuropotentiating transgene encoding the cAMP-elevating intracellular subunit of cholera toxin (CT) is chronically expressed selectively in somatosensory cortical & amygdalar dopamine (DA) D1 receptor-expressing neurons that activate cortico/amygdalo-striatal glutamate (GLU) output. We've now examined in D1CT-7 mice whether the chronic GLU output from their potentiated cortical/limbic CSTC subcircuit afferents associated with TS- & OCD-like behaviors elicits desensitizing neurochemical changes in the striatum (STR). Microdialysis-capillary electrophoresis and in situ hybridization reveal that the mice's chronic GLU-excited STR exhibits pharmacodynamic changes in three independently GLU-regulated measures of output neuron activation, co-excitation, and desensitization, signifying hyperactive striatal CSTC output and compensatory striatal glial and neuronal desensitization: 1) Striatal GABA, an output neurotransmitter induced by afferent GLU, is increased. 2) Striatal d-serine, a glial excitatory co-transmitter inhibited by afferent GLU, is decreased. 3) Striatal Period1 (Per1), which plays a non-circadian role in the STR as a GLU + DA D1- (cAMP-) dependent repressor thought to feedback-inhibit GLU + DA- triggered ultradian urges and motions, is transcriptionally abolished. These data imply that chronic cortical/limbic GLU excitation of the STR desensitizes its co-excitatory d-serine & DA inputs while freezing its GABA output in an active state to mediate chronic tics and compulsions - possibly in part by abolishing striatal Per1-dependent ultradian extinction of urges and motions. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    PubMed

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  6. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations

    PubMed Central

    Vinciati, Federica

    2017-01-01

    Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical–basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on “direct pathway” SPNs (dSPNs) and “indirect pathway” SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15–30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits. SIGNIFICANCE STATEMENT Chronic depletion of dopamine from the striatum, a part of the basal ganglia, causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters striatal neuron firing in vivo, with an emphasis on defining whether and how spiny projection neurons (SPNs) engage in the synchronized beta-frequency (15–30 Hz) oscillations that become pathologically exaggerated throughout basal ganglia circuits in parkinsonism. We discovered that a select population of so-called “indirect pathway” SPNs not only fire at abnormally high rates, but are also particularly prone to being recruited to exaggerated beta oscillations. Our results provide an important link between two complementary theories that explain the presentation of disease symptoms on the basis of changes in firing rate or firing synchronization/rhythmicity. PMID:28847810

  7. The mouse cortico-striatal projectome

    PubMed Central

    Hintiryan, Houri; Foster, Nicholas N.; Bowman, Ian; Bay, Maxwell; Song, Monica Y.; Gou, Lin; Yamashita, Seita; Bienkowski, Michael S.; Zingg, Brian; Zhu, Muye; Yang, X. William; Shih, Jean C.; Toga, Arthur W.; Dong, Hong-Wei

    2017-01-01

    Different cortical areas are organized into distinct intra-cortical subnetworks. How descending pathways from the entire cortex interact subcortically as a network remains unclear. Here, we report an open-access comprehensive mesoscale cortico-striatal projectome—a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. Based on these projections, we use novel computational neuroanatomical tools to identify 29 distinct functional striatal domains. Further, we characterize different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility in characterizing circuitry-specific connectopathies. Together, this work provides the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders. PMID:27322419

  8. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible.

    PubMed

    Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A

    2003-08-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.

  9. A treatable neurometabolic disorder: glutaric aciduria type 1.

    PubMed

    Pusti, S; Das, N; Nayek, K; Biswas, S

    2014-01-01

    Glutaric aciduria type 1 (GA-1) is an autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-CoA dehydrogenase. It results in the accumulation of 3-hydroxyglutaric and glutaric acid. Affected patients can present with brain atrophy and macrocephaly and with acute dystonia secondary to striatal degeneration in most cases triggered by an intercurrent childhood infection with fever between 6 and 18 months of age. We report two such cases with macrocephaly, typical MRI pictures, and tandem mass spectrometry suggestive of glutaric aciduria type 1.

  10. A Treatable Neurometabolic Disorder: Glutaric Aciduria Type 1

    PubMed Central

    Pusti, S.; Das, N.; Nayek, K.; Biswas, S.

    2014-01-01

    Glutaric aciduria type 1 (GA-1) is an autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-CoA dehydrogenase. It results in the accumulation of 3-hydroxyglutaric and glutaric acid. Affected patients can present with brain atrophy and macrocephaly and with acute dystonia secondary to striatal degeneration in most cases triggered by an intercurrent childhood infection with fever between 6 and 18 months of age. We report two such cases with macrocephaly, typical MRI pictures, and tandem mass spectrometry suggestive of glutaric aciduria type 1. PMID:24587932

  11. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.

    PubMed

    Sauer, Sven W; Opp, Silvana; Komatsuzaki, Shoko; Blank, Anna-Eva; Mittelbronn, Michel; Burgard, Peter; Koeller, D M; Okun, Jürgen G; Kölker, Stefan

    2015-05-01

    Glutaric aciduria type I is an inherited defect in L-lysine, L-hydroxylysine and L-tryptophan degradation caused by deficiency of glutaryl-CoA dehydrogenase (GCDH). The majority of untreated patients presents with accumulation of neurotoxic metabolites - glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) - and striatal injury. Gcdh(-/-) mice display elevated levels of GA and 3-OH-GA but do not spontaneously develop striatal lesions. L-lysine-enriched diets (appr. 235 mg/d) were suggested to induce a neurological phenotype similar to affected patients. In our hands 93% of mice stressed according to the published protocol remained asymptomatic. To understand the underlying mechanism, we modified their genetic background (F1 C57BL6/Jx129/SvCrl) and increased the daily oral L-lysine supply (235-433 mg). We identified three modulating factors, (1) gender, (2) genetic background, and (3) amount of L-lysine. Male mice displayed higher vulnerability and inbreeding for more than two generations as well as elevating L-lysine supply increased the diet-induced mortality rate (up to 89%). Onset of first symptoms leads to strongly reduced intake of food and, thus, L-lysine suggesting a threshold for toxic metabolite production to induce neurological disease. GA and 3-OH-GA tissue concentrations did not correlate with dietary L-lysine supply but differed between symptomatic and asymptomatic mice. Cerebral activities of glyceraldehyde 3-phosphate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and aconitase were decreased. Symptomatic mice did not develop striatal lesions or intracerebral hemorrhages. We found severe spongiosis in the hippocampus of Gcdh(-/-) mice which was independent of dietary L-lysine supply. In conclusion, the L-lysine-induced pathology in Gcdh(-/-) mice depends on genetic and dietary parameters. Copyright © 2014. Published by Elsevier B.V.

  12. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme.

    PubMed

    Siuciak, J A; McCarthy, S A; Chapin, D S; Reed, T M; Vorhees, C V; Repaske, D R

    2007-07-01

    PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.

  13. An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 ΔGAG knock-in mice

    PubMed Central

    Dang, Mai T.; Yokoi, Fumiaki; Cheetham, Chad C.; Lu, Jun; Vo, Viet; Lovinger, David M.; Li, Yuqing

    2011-01-01

    DYT1 early-onset generalized torsion dystonia is an inherited movement disorder associated with mutations in DYT1 that codes for torsinA protein. The most common mutation seen in this gene is a trinucleotide deletion of GAG. We previously reported a motor control deficit on a beam-walking task in our Dyt1 ΔGAG knock-in heterozygous mice. In this report we show the reversal of this motor deficit with the anticholinergic trihexyphenidyl (THP), a drug commonly used to treat movement problems in dystonia patients. THP also restored the reduced corticostriatal long-term depression (LTD) observed in these mice. Corticostriatal LTD has long been known to be dependent on D2 receptor activation. In this mouse model, striatal D2 receptors were expressed at lower quantities in comparison to wild-type mice. Furthermore, the mice were also partially resistant to FPL64176, an agonist of L-type calcium channels that have been previously reported to cause severe dystonic-like symptoms in wild-type mice. Our findings collectively suggest that altered communication between cholinergic interneurons and medium spiny neurons is responsible for the LTD deficit and that this synaptic plasticity modification may be involved in the striatal motor control abnormalities in our mouse model of DYT1 dystonia. PMID:21995941

  14. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  15. Common limbic and frontal-striatal disturbances in patients with obsessive compulsive disorder, panic disorder and hypochondriasis.

    PubMed

    van den Heuvel, O A; Mataix-Cols, D; Zwitser, G; Cath, D C; van der Werf, Y D; Groenewegen, H J; van Balkom, A J L M; Veltman, D J

    2011-11-01

    Direct comparisons of brain function between obsessive compulsive disorder (OCD) and other anxiety or OCD spectrum disorders are rare. This study aimed to investigate the specificity of altered frontal-striatal and limbic activations during planning in OCD, a prototypical anxiety disorder (panic disorder) and a putative OCD spectrum disorder (hypochondriasis). The Tower of London task, a 'frontal-striatal' task, was used during functional magnetic resonance imaging measurements in 50 unmedicated patients, diagnosed with OCD (n=22), panic disorder (n=14) or hypochondriasis (n=14), and in 22 healthy subjects. Blood oxygen level-dependent (BOLD) signal changes were calculated for contrasts of interest (planning versus baseline and task load effects). Moreover, correlations between BOLD responses and both task performance and state anxiety were analysed. Overall, patients showed a decreased recruitment of the precuneus, caudate nucleus, globus pallidus and thalamus, compared with healthy controls. There were no statistically significant differences in brain activation between the three patient groups. State anxiety was negatively correlated with dorsal frontal-striatal activation. Task performance was positively correlated with dorsal frontal-striatal recruitment and negatively correlated with limbic and ventral frontal-striatal recruitment. Multiple regression models showed that adequate task performance was best explained by independent contributions from dorsolateral prefrontal cortex (positive correlation) and amygdala (negative correlation), even after controlling for state anxiety. Patients with OCD, panic disorder and hypochondriasis share similar alterations in frontal-striatal brain regions during a planning task, presumably partly related to increased limbic activation.

  16. Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior

    PubMed Central

    Gantois, Ilse; Fang, Ke; Jiang, Luning; Babovic, Daniela; Lawrence, Andrew J.; Ferreri, Vincenzo; Teper, Yaroslav; Jupp, Bianca; Ziebell, Jenna; Morganti-Kossmann, Cristina M.; O'Brien, Terence J.; Nally, Rachel; Schütz, Günter; Waddington, John; Egan, Gary F.; Drago, John

    2007-01-01

    Huntington's disease is characterized by death of striatal projection neurons. We used a Cre/Lox transgenic approach to generate an animal model in which D1 dopamine receptor (Drd1a)+ cells are progressively ablated in the postnatal brain. Striatal Drd1a, substance P, and dynorphin expression is progressively lost, whereas D2 dopamine receptor (Drd2) and enkephalin expression is up-regulated. Magnetic resonance spectroscopic analysis demonstrated early elevation of the striatal choline/creatine ratio, a finding associated with extensive reactive striatal astrogliosis. Sequential MRI demonstrated a progressive reduction in striatal volume and secondary ventricular enlargement confirmed to be due to loss of striatal cells. Mutant mice had normal gait and rotarod performance but displayed hindlimb dystonia, locomotor hyperactivity, and handling-induced electrographically verified spontaneous seizures. Ethological assessment identified an increase in rearing and impairments in the oral behaviors of sifting and chewing. In line with the limbic seizure profile, cell loss, astrogliosis, microgliosis, and down-regulated dynorphin expression were seen in the hippocampal dentate gyrus. This study specifically implicates Drd1a+ cell loss with tail suspension hindlimb dystonia, hyperactivity, and abnormal oral function. The latter may relate to the speech and swallowing disturbances and the classic sign of tongue-protrusion motor impersistence observed in Huntington's disease. In addition, the findings of this study support the notion that Drd1a and Drd2 are segregated on striatal projection neurons. PMID:17360497

  17. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons

    PubMed Central

    DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.

    2013-01-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314

  18. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  19. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Changes in Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to Nerve Against in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Changes in extracellular striatal acetylcholine and brain seizure activity following...Acetylcholine, acetylcholinesterase, choline, guinea pig, in vivo microdialysis, nerve agents, organophosphorus compounds, sarin, seizure activity ...RESEARCH ARTICLE Changes in extracellular striatal acetylcholine and brain seizure activity following acute exposure to nerve agents in freely

  1. Dopamine Is Differentially Encoded by D2 Receptors in Striatal Subregions.

    PubMed

    Engeln, Michel; Fox, Megan E; Lobo, Mary Kay

    2018-05-02

    Striatal dopamine signaling is differentially regulated along the dorso-ventral axis, but how these differences are encoded by dopamine receptors is unknown. In this issue of Neuron, Marcott et al. (2018) show that dopamine activates D2 receptors in regionally distinct ways and dissect the underlying mechanisms behind striatal D2 heterogeneity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Estimates of projection overlap and zones of convergence within frontal-striatal circuits.

    PubMed

    Averbeck, Bruno B; Lehman, Julia; Jacobson, Moriah; Haber, Suzanne N

    2014-07-16

    Frontal-striatal circuits underlie important decision processes, and pathology in these circuits is implicated in many psychiatric disorders. Studies have shown a topographic organization of cortical projections into the striatum. However, work has also shown that there is considerable overlap in the striatal projection zones of nearby cortical regions. To characterize this in detail, we quantified the complete striatal projection zones from 34 cortical injection locations in rhesus monkeys. We first fit a statistical model that showed that the projection zone of a cortical injection site could be predicted with considerable accuracy using a cross-validated model estimated on only the other injection sites. We then examined the fraction of overlap in striatal projection zones as a function of distance between cortical injection sites, and found that there was a highly regular relationship. Specifically, nearby cortical locations had as much as 80% overlap, and the amount of overlap decayed exponentially as a function of distance between the cortical injection sites. Finally, we found that some portions of the striatum received inputs from all the prefrontal regions, making these striatal zones candidates as information-processing hubs. Thus, the striatum is a site of convergence that allows integration of information spread across diverse prefrontal cortical areas. Copyright © 2014 the authors 0270-6474/14/339497-09$15.00/0.

  3. Cortical Regulation of Dopamine Depletion-Induced Dendritic Spine Loss in Striatal Medium Spiny Neurons

    PubMed Central

    Neely, M. Diana; Schmidt, Dennis E.; Deutch, Ariel Y.

    2007-01-01

    The proximate cause of Parkinson’s Disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson’s Disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures comprised of ventral mesencephalon, striatum, and cortex, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin MPP+ or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson’s Disease. PMID:17888581

  4. Cortico-striatal language pathways dynamically adjust for syntactic complexity: A computational study.

    PubMed

    Szalisznyó, Krisztina; Silverstein, David; Teichmann, Marc; Duffau, Hugues; Smits, Anja

    2017-01-01

    A growing body of literature supports a key role of fronto-striatal circuits in language perception. It is now known that the striatum plays a role in engaging attentional resources and linguistic rule computation while also serving phonological short-term memory capabilities. The ventral semantic and the dorsal phonological stream dichotomy assumed for spoken language processing also seems to play a role in cortico-striatal perception. Based on recent studies that correlate deep Broca-striatal pathways with complex syntax performance, we used a previously developed computational model of frontal-striatal syntax circuits and hypothesized that different parallel language pathways may contribute to canonical and non-canonical sentence comprehension separately. We modified and further analyzed a thematic role assignment task and corresponding reservoir computing model of language circuits, as previously developed by Dominey and coworkers. We examined the models performance under various parameter regimes, by influencing how fast the presented language input decays and altering the temporal dynamics of activated word representations. This enabled us to quantify canonical and non-canonical sentence comprehension abilities. The modeling results suggest that separate cortico-cortical and cortico-striatal circuits may be recruited differently for processing syntactically more difficult and less complicated sentences. Alternatively, a single circuit would need to dynamically and adaptively adjust to syntactic complexity. Copyright © 2016. Published by Elsevier Inc.

  5. Does human presynaptic striatal dopamine function predict social conformity?

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  6. The pan-Kv7 (KCNQ) Channel Opener Retigabine Inhibits Striatal Excitability by Direct Action on Striatal Neurons In Vivo.

    PubMed

    Hansen, Henrik H; Weikop, Pia; Mikkelsen, Maria D; Rode, Frederik; Mikkelsen, Jens D

    2017-01-01

    Central Kv7 (KCNQ) channels are voltage-dependent potassium channels composed of different combinations of four Kv7 subunits, being differently expressed in the brain. Notably, striatal dopaminergic neurotransmission is strongly suppressed by systemic administration of the pan-Kv7 channel opener retigabine. The effect of retigabine likely involves the inhibition of the activity in mesencephalic dopaminergic neurons projecting to the striatum, but whether Kv7 channels expressed in the striatum may also play a role is not resolved. We therefore assessed the effect of intrastriatal retigabine administration on striatal neuronal excitability in the rat determined by c-Fos immunoreactivity, a marker of neuronal activation. When retigabine was applied locally in the striatum, this resulted in a marked reduction in the number of c-Fos-positive neurons after a strong excitatory striatal stimulus induced by acute systemic haloperidol administration in the rat. The relative mRNA levels of Kv7 subunits in the rat striatum were found to be Kv7.2 = Kv7.3 = Kv7.5 > >Kv7.4. These data suggest that intrastriatal Kv7 channels play a direct role in regulating striatal excitability in vivo. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Differential Resting-State Functional Connectivity of Striatal Subregions in Bipolar Depression and Hypomania

    PubMed Central

    Altinay, Murat I.; Hulvershorn, Leslie A.; Karne, Harish; Beall, Erik B.

    2016-01-01

    Abstract Bipolar disorder (BP) is characterized by periods of depression (BPD) and (hypo)mania (BPM), but the underlying state-related brain circuit abnormalities are not fully understood. Striatal functional activation and connectivity abnormalities have been noted in BP, but consistent findings have not been reported. To further elucidate striatal abnormalities in different BP states, this study investigated differences in resting-state functional connectivity of six striatal subregions in BPD, BPM, and healthy control (HC) subjects. Ninety medication-free subjects (30 BPD, 30 BPM, and 30 HC), closely matched for age and gender, were scanned using 3T functional magnetic resonance imaging (fMRI) acquired at resting state. Correlations of low-frequency blood oxygen level dependent signal fluctuations for six previously described striatal subregions were used to obtain connectivity maps of each subregion. Using a factorial design, main effects for differences between groups were obtained and post hoc pairwise group comparisons performed. BPD showed increased connectivity of the dorsal caudal putamen with somatosensory areas such as the insula and temporal gyrus. BPM group showed unique increased connectivity between left dorsal caudate and midbrain regions, as well as increased connectivity between ventral striatum inferior and thalamus. In addition, both BPD and BPM exhibited widespread functional connectivity abnormalities between striatal subregions and frontal cortices, limbic regions, and midbrain structures. In summary, BPD exhibited connectivity abnormalities of associative and somatosensory subregions of the putamen, while BPM exhibited connectivity abnormalities of associative and limbic caudate. Most other striatal subregion connectivity abnormalities were common to both groups and may be trait related. PMID:26824737

  8. Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing

    2011-01-01

    DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745

  9. Striatal Circuits as a Common Node for Autism Pathophysiology

    PubMed Central

    Fuccillo, Marc V.

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by two seemingly unrelated symptom domains—deficits in social interactions and restrictive, repetitive patterns of behavioral output. Whether the diverse nature of ASD symptomatology represents distributed dysfunction of brain networks or abnormalities within specific neural circuits is unclear. Striatal dysfunction is postulated to underlie the repetitive motor behaviors seen in ASD, and neurological and brain-imaging studies have supported this assumption. However, as our appreciation of striatal function expands to include regulation of behavioral flexibility, motivational state, goal-directed learning, and attention, we consider whether alterations in striatal physiology are a central node mediating a range of autism-associated behaviors, including social and cognitive deficits that are hallmarks of the disease. This review investigates multiple genetic mouse models of ASD to explore whether abnormalities in striatal circuits constitute a common pathophysiological mechanism in the development of autism-related behaviors. Despite the heterogeneity of genetic insult investigated, numerous genetic ASD models display alterations in the structure and function of striatal circuits, as well as abnormal behaviors including repetitive grooming, stereotypic motor routines, deficits in social interaction and decision-making. Comparative analysis in rodents provides a unique opportunity to leverage growing genetic association data to reveal canonical neural circuits whose dysfunction directly contributes to discrete aspects of ASD symptomatology. The description of such circuits could provide both organizing principles for understanding the complex genetic etiology of ASD as well as novel treatment routes. Furthermore, this focus on striatal mechanisms of behavioral regulation may also prove useful for exploring the pathogenesis of other neuropsychiatric diseases, which display overlapping behavioral deficits with ASD. PMID:26903795

  10. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels.

    PubMed

    Jastreboff, Ania M; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M; Sherwin, Robert S; Potenza, Marc N

    2013-02-01

    Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity.

  11. Neural Correlates of Stress- and Food Cue–Induced Food Craving in Obesity

    PubMed Central

    Jastreboff, Ania M.; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M.; Sherwin, Robert S.; Potenza, Marc N.

    2013-01-01

    OBJECTIVE Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. RESEARCH DESIGN AND METHODS Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. RESULTS Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. CONCLUSIONS These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity. PMID:23069840

  12. Reduced striatal activation in females with major depression during the processing of affective stimuli.

    PubMed

    Connolly, Megan E; Gollan, Jackie K; Cobia, Derin; Wang, Xue

    2015-09-01

    The extent to which affective reactivity and associated neural underpinnings are altered by depression remains equivocal. This study assessed striatal activation in fifty-one unmedicated female participants meeting DSM-IV criteria for Major Depressive Disorder (MDD) and 61 age-matched healthy females (HC) aged 17-63 years. Participants completed an affective reactivity functional magnetic resonance imaging task. Data were preprocessed using SPM8, and region-of-interest analyses were completed using MarsBaR to extract caudate, putamen, and nucleus accumbens (NAcc) activation. General linear repeated measure ANOVAs were used to assess group differences and correlational analyses were used to measure the association between activation, depression severity, and anhedonia. Main effects of hemisphere, valence, and group status were observed, with MDD participants demonstrating decreased striatal activation compared with HC. Across groups and valence types, the left hemisphere demonstrated greater activation than the right hemisphere in the putamen and nucleus accumbens, whereas the right hemisphere demonstrated greater activation than the left in the caudate. Additionally, unpleasant stimuli elicited greater activation than pleasant and neutral stimuli in the caudate and putamen, and unpleasant stimuli elicited greater activation than neutral stimuli in the NAcc. There were no significant associations between activation, depression severity, and anhedonia. Overall, depression was characterized by reduced affective reactivity in the striatum, regardless of stimuli valence, supporting the emotion context insensitivity model of depression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effort-Based Reinforcement Processing and Functional Connectivity Underlying Amotivation in Medicated Patients with Depression and Schizophrenia.

    PubMed

    Park, Il Ho; Lee, Boung Chul; Kim, Jae-Jin; Kim, Joong Il; Koo, Min-Seung

    2017-04-19

    Amotivation is a common phenotype of major depressive disorder and schizophrenia, which are clinically distinct disorders. Effective treatment targets and strategies can be discovered by examining the dopaminergic reward network function underlying amotivation between these disorders. We conducted an fMRI study in healthy human participants and medicated patients with depression and schizophrenia using an effort-based reinforcement task. We examined regional activations related to reward type (positive and negative reinforcement), effort level, and their composite value, as well as resting-state functional connectivities within the meso-striatal-prefrontal pathway. We found that integrated reward and effort values of low effort-positive reinforcement and high effort-negative reinforcement were behaviorally anticipated and represented in the putamen and medial orbitofrontal cortex activities. Patients with schizophrenia and depression did not show anticipation-related and work-related reaction time reductions, respectively. Greater amotivation severity correlated with smaller work-related putamen activity changes according to reward type in schizophrenia and effort level in depression. Patients with schizophrenia showed feedback-related putamen hyperactivity of low effort compared with healthy controls and depressed patients. The strength of medial orbitofrontal-striatal functional connectivity predicted work-related reaction time reduction of high effort negative reinforcement in healthy controls and amotivation severity in both patients with schizophrenia and those with depression. Patients with depression showed deficient medial orbitofrontal-striatal functional connectivity compared with healthy controls and patients with schizophrenia. These results indicate that amotivation in depression and schizophrenia involves different pathophysiology in the prefrontal-striatal circuitry. SIGNIFICANCE STATEMENT Amotivation is present in both depression and schizophrenia. However, treatment involves the use of drugs that enhance serotonin activity in depression and inhibit serotonin and dopamine activity in schizophrenia. Understanding how motivation processed in the mesocorticolimbic and nigostriatal pathways is affected in depression and schizophrenia is important in discovering treatment targets and strategies for amotivation. To our knowledge, this is the first study to compare patients with depression and schizophrenia in a common functional construct. By using an effort-based reinforcement task and examining resting-state functional connectivity in the dopaminergic network, we propose that difference in striato-orbitofrontal dysfunction in effort-based reinforcement between depression and schizophrenia may be related to differences in the extent of functional dysconnectivity in the dopaminergic pathway. Copyright © 2017 the authors 0270-6474/17/374371-11$15.00/0.

  14. High-fat simple carbohydrate (HFSC) diet impairs hypothalamic and corpus striatal serotonergic metabolic pathway in metabolic syndrome (MetS) induced C57BL/6J mice.

    PubMed

    Stephen, DSouza Serena; Abraham, Asha

    2017-07-26

    To study the effect of specially formulated high-fat simple carbohydrate diet (HFSC) on the serotonin metabolic pathway in male C57BL/6J mice. Previous studies from our laboratory have shown that specially formulated HFSC induces metabolic syndrome in C57BL/6J mice. In the present investigation, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid were analyzed in two brain regions (hypothalamus, corpus striatum), urine and plasma of HFSC-fed mice on a monthly basis up to 5 months using high-performance liquid chromatography fitted with electrochemical detector. The data were analyzed using Graph pad Prism v7.3 by two-way ANOVA and post hoc Tukey's test (to assess the effect of time on the serotonergic metabolic pathway). HFSC feed was observed to lower the hypothalamic serotonergic tone as compared to the age-matched control-fed C57BL/6J mice. Although the hypothalamic serotonergic tone was unaltered over time due to consumption of diet per se, hypothalamic 5-HTP levels were observed to be lower on consumption of HFSC feed over duration of 5 months as compared to 1st month of consumption of HFSC feed. The striatal 5-HTP levels were lowered in the HFSC-fed mice after 4 months of feeding as compared to the age-matched control-fed mice. The striatal 5-HTP levels were also lower in both control and HFSC-fed mice due to consumption of the respective diet over a duration of 5 months. Increased plasma 5-HTP levels were observed due to consumption of HFSC feed over duration of 5 months in the HFSC-fed group. However, higher breakdown of serotonin was observed in both the plasma and urine of HFSC-fed C57BL/6J mice as per the turnover studies. The central and peripheral serotonergic pathway is affected differentially by both the type of diet consumed and the duration for which the diet is consumed. The hypothalamic, striatal and plasma serotonergic pathway were altered both by the type of feed consumed and the duration of feeding. The urine serotonergic pathway was affected by mainly the duration for which a particular diet was consumed. These findings may have implications in the feeding behavior, cognitive decline and depression associated with metabolic syndrome patients.

  15. Early Downregulation of p75NTR by Genetic and Pharmacological Approaches Delays the Onset of Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice.

    PubMed

    Suelves, Nuria; Miguez, Andrés; López-Benito, Saray; Barriga, Gerardo García-Díaz; Giralt, Albert; Alvarez-Periel, Elena; Arévalo, Juan Carlos; Alberch, Jordi; Ginés, Silvia; Brito, Verónica

    2018-05-27

    Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 NTR expression. Genetic normalization of p75 NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75 NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75 NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75 NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75 NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75 NTR could be promising to prevent motor deficits in HD.

  16. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    PubMed

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Brief exposure to obesogenic diet disrupts brain dopamine networks

    PubMed Central

    Williams, Jason M.; Siuta, Michael A.; Tantawy, Mohammed N.; Speed, Nicole K.; Saunders, Christine; Galli, Aurelio; Niswender, Kevin D.; Avison, Malcolm J.

    2018-01-01

    Objective We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). Methods We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). Results We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens–anterior cingulate) and sensorimotor circuits (caudate/putamen–thalamus–sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. Conclusion These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding. PMID:29698491

  18. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia.

    PubMed

    Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E

    2015-09-01

    Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically significant increase in their absolute number in the MSC group compared to their diluent controls. Investigation of behavior in another cohort of animals showed that delayed administration of a high-dose of bone marrow-derived MSCs, at one week after neonatal rat hypoxia-ischemia, improved motor function on the cylinder test. Thus, delayed therapy with a high- or low-dose of adult MSCs, at one week after injury, is effective in restoring the loss of striatal medium-spiny projection neurons after neonatal rat hypoxia-ischemia and a high-dose of MSCs improved motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Huntingtin polyQ Mutation Impairs the 17β-Estradiol/Neuroglobin Pathway Devoted to Neuron Survival.

    PubMed

    Nuzzo, Maria Teresa; Fiocchetti, Marco; Totta, Pierangela; Melone, Mariarosa A B; Cardinale, Antonella; Fusco, Francesca R; Gustincich, Stefano; Persichetti, Francesca; Ascenzi, Paolo; Marino, Maria

    2017-10-01

    Among several mechanisms underlying the well-known trophic and protective effects of 17β-estradiol (E2) in the brain, we recently reported that E2 induces the up-regulation of two anti-apoptotic and neuroprotectant proteins: huntingtin (HTT) and neuroglobin (NGB). Here, we investigate the role of this up-regulation. The obtained results indicate that E2 promotes NGB-HTT association, induces the localization of the complex at the mitochondria, and protects SK-N-BE neuroblastoma cells and murine striatal cells, which express wild-type HTT (i.e., polyQ 7 ), against H 2 O 2 -induced apoptosis. All E2 effects were completely abolished in HTT-knocked out SK-N-BE cells and in striatal neurons expressing the mutated form of HTT (mHTT; i.e., polyQ 111 ) typical of Huntington's disease (HD). As a whole, these data provide a new function of wild-type HTT which drives E2-induced NGB in mitochondria modulating NGB anti-apoptotic activity. This new function is lost by HTT polyQ pathological expansion. These data evidence the existence of a novel E2/HTT/NGB neuroprotective axis that may play a relevant role in the development of HD therapeutics.

  20. Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression.

    PubMed

    Canela, Laia; Selga, Elisabet; García-Martínez, Juan Manuel; Amaral, Olavo B; Fernández-Dueñas, Víctor; Alberch, Jordi; Canela, Enric I; Franco, Rafael; Noé, Véronique; Lluís, Carme; Ciudad, Carlos J; Ciruela, Francisco

    2012-10-25

    G protein-coupled receptor oligomerization is a concept which is changing the understanding of classical pharmacology. Both, oligomerization and functional interaction between adenosine A(2A,) dopamine D(2) and metabotropic glutamate type 5 receptors have been demonstrated in the striatum. However, the transcriptional consequences of receptors co-activation are still unexplored. We aim here to determine the changes in gene expression of striatal primary cultured neurons upon isolated or simultaneous receptor activation. Interestingly, we found that 95 genes of the total analyzed (15,866 transcripts and variants) changed their expression in response to simultaneous stimulation of all three receptors. Among these genes, we focused on the β-synuclein (β-Syn) gene (SCNB). Quantitative PCR verified the magnitude and direction of change in expression of SCNB. Since β-Syn belongs to the homologous synuclein family and may be considered a natural regulator of α-synuclein (α-Syn), it has been proposed that β-Syn might act protectively against α-Syn neuropathology. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats.

    PubMed

    Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes

    2012-07-01

    Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

  2. Obsessive Compulsive Disorder: Beyond Segregated Cortico-striatal Pathways

    PubMed Central

    Milad, Mohammed R.; Rauch, Scott L.

    2016-01-01

    Obsessive-compulsive disorder (OCD) affects ∼2-3% of the population and is characterized by recurrent intrusive thoughts (obsessions) and repetitive behaviors or mental acts (compulsions), typically performed in response to obsessions or related anxiety. In the past few decades, the prevailing models of OCD pathophysiology have focused on cortico-striatal circuitry. More recent neuroimaging evidence, however, points to critical involvement of the lateral and medial orbitofrontal cortices, the dorsal anterior cingulate cortex and amygdalo-cortical circuitry, in addition to cortico-striatal circuitry, in the pathophysiology of the disorder. In this review, we elaborate proposed features of OCD pathophysiology beyond the classic parallel cortico-striatal pathways and argue that this evidence suggests that fear extinction, in addition to behavioral inhibition, may be impaired in OCD. PMID:22138231

  3. Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.

    PubMed

    Login, I S

    1997-05-27

    Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.

  4. Diagnosis and management of glutaric aciduria type I--revised recommendations.

    PubMed

    Kölker, Stefan; Christensen, Ernst; Leonard, James V; Greenberg, Cheryl R; Boneh, Avihu; Burlina, Alberto B; Burlina, Alessandro P; Dixon, Marjorie; Duran, Marinus; García Cazorla, Angels; Goodman, Stephen I; Koeller, David M; Kyllerman, Mårten; Mühlhausen, Chris; Müller, Edith; Okun, Jürgen G; Wilcken, Bridget; Hoffmann, Georg F; Burgard, Peter

    2011-06-01

    Glutaric aciduria type I (synonym, glutaric acidemia type I) is a rare organic aciduria. Untreated patients characteristically develop dystonia during infancy resulting in a high morbidity and mortality. The neuropathological correlate is striatal injury which results from encephalopathic crises precipitated by infectious diseases, immunizations and surgery during a finite period of brain development, or develops insidiously without clinically apparent crises. Glutaric aciduria type I is caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. This defect gives rise to elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine which can be detected by gas chromatography/mass spectrometry (organic acids) or tandem mass spectrometry (acylcarnitines). Glutaric aciduria type I is included in the panel of diseases that are identified by expanded newborn screening in some countries. It has been shown that in the majority of neonatally diagnosed patients striatal injury can be prevented by combined metabolic treatment. Metabolic treatment that includes a low lysine diet, carnitine supplementation and intensified emergency treatment during acute episodes of intercurrent illness should be introduced and monitored by an experienced interdisciplinary team. However, initiation of treatment after the onset of symptoms is generally not effective in preventing permanent damage. Secondary dystonia is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings into the guideline.

  5. Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells.

    PubMed

    Lamp, Jessica; Keyser, Britta; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris

    2011-05-20

    The inherited neurodegenerative disorder glutaric aciduria type 1 (GA1) results from mutations in the gene for the mitochondrial matrix enzyme glutaryl-CoA dehydrogenase (GCDH), which leads to elevations of the dicarboxylates glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in brain and blood. The characteristic clinical presentation of GA1 is a sudden onset of dystonia during catabolic situations, resulting from acute striatal injury. The underlying mechanisms are poorly understood, but the high levels of GA and 3OHGA that accumulate during catabolic illnesses are believed to play a primary role. Both GA and 3OHGA are known to be substrates for Na(+)-coupled dicarboxylate transporters, which are required for the anaplerotic transfer of the tricarboxylic acid cycle (TCA) intermediate succinate between astrocytes and neurons. We hypothesized that GA and 3OHGA inhibit the transfer of succinate from astrocytes to neurons, leading to reduced TCA cycle activity and cellular injury. Here, we show that both GA and 3OHGA inhibit the uptake of [(14)C]succinate by Na(+)-coupled dicarboxylate transporters in cultured astrocytic and neuronal cells of wild-type and Gcdh(-/-) mice. In addition, we demonstrate that the efflux of [(14)C]succinate from Gcdh(-/-) astrocytic cells mediated by a not yet identified transporter is strongly reduced. This is the first experimental evidence that GA and 3OHGA interfere with two essential anaplerotic transport processes: astrocytic efflux and neuronal uptake of TCA cycle intermediates, which occur between neurons and astrocytes. These results suggest that elevated levels of GA and 3OHGA may lead to neuronal injury and cell death via disruption of TCA cycle activity. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Response learning stimulates dendritic spine growth on dorsal striatal medium spiny neurons.

    PubMed

    Briones, Brandy A; Tang, Vincent D; Haye, Amanda E; Gould, Elizabeth

    2018-06-23

    Increases in the number and/or the size of dendritic spines, sites of excitatory synapses, have been linked to different types of learning as well as synaptic plasticity in several brain regions, including the hippocampus, sensory cortex, motor cortex, and cerebellum. By contrast, a previous study reported that training on a maze task requiring the dorsal striatum has no effect on medium spiny neuron dendritic spines in this area. These findings might suggest brain region-specific differences in levels of plasticity as well as different cellular processes underlying different types of learning. No previous studies have investigated whether dendritic spine density changes may be localized to specific subpopulations of medium spiny neurons, nor have they examined dendritic spines in rats trained on a dorsolateral striatum-dependent maze task in comparison to rats exposed to the same type of maze in the absence of training. To address these questions further, we labeled medium spiny neurons with the lipophilic dye DiI and stained for the protein product of immediate early gene zif 268, an indirect marker of neuronal activation, in both trained and untrained groups. We found a small but significant increase in dendritic spine density on medium spiny neurons of the dorsolateral striatum after short-term intensive training, along with robust increases in the density of spines with mushroom morphology coincident with reductions in the density of spines with thin morphology. However, these results were not associated with zif 268 expression. Our findings suggest that short-term intensive training on a dorsolateral striatum-dependent maze task induces rapid increases in dendritic spine density and maturation on medium spiny neurons of the dorsolateral striatum, an effect which may contribute to early acquisition of the learned response in maze training. Copyright © 2018. Published by Elsevier Inc.

  7. Intrastriatal administration of botulinum neurotoxin A normalizes striatal D2 R binding and reduces striatal D1 R binding in male hemiparkinsonian rats.

    PubMed

    Wedekind, Franziska; Oskamp, Angela; Lang, Markus; Hawlitschka, Alexander; Zilles, Karl; Wree, Andreas; Bauer, Andreas

    2018-01-01

    Cerebral administration of botulinum neurotoxin A (BoNT-A) has been shown to improve disease-specific motor behavior in a rat model of Parkinson disease (PD). Since the dopaminergic system of the basal ganglia fundamentally contributes to motor function, we investigated the impact of BoNT-A on striatal dopamine receptor expression using in vitro and in vivo imaging techniques (positron emission tomography and quantitative autoradiography, respectively). Seventeen male Wistar rats were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) and assigned to two treatment groups 7 weeks later: 10 rats were treated ipsilaterally with an intrastriatal injection of 1 ng BoNT-A, while the others received vehicle (n = 7). All animals were tested for asymmetric motor behavior (apomorphine-induced rotations and forelimb usage) and for striatal expression of dopamine receptors and transporters (D 1 R, D 2 R, and DAT). The striatal D 2 R availability was also quantified longitudinally (1.5, 3, and 5 months after intervention) in 5 animals per treatment group. The 6-OHDA lesion alone induced a unilateral PD-like phenotype and a 13% increase of striatal D 2 R. BoNT-A treatment reduced the asymmetry in both apomorphine-induced rotational behavior and D 2 R expression, with the latter returning to normal values 5 months after intervention. D 1 R expression was significantly reduced, while DAT concentrations showed no alteration. Independent of the treatment, higher interhemispheric symmetry in raclopride binding to D 2 R was generally associated with reduced forelimb akinesia. Our findings indicate that striatal BoNT-A treatment diminishes motor impairment and induces changes in D 1 and D 2 binding site density in the 6-OHDA rat model of PD. © 2017 Wiley Periodicals, Inc.

  8. Blunted striatal response to monetary reward anticipation during smoking abstinence predicts lapse during a contingency-managed quit attempt

    PubMed Central

    Sweitzer, Maggie M.; Geier, Charles F.; Denlinger, Rachel; Forbes, Erika E.; Raiff, Bethany R.; Dallery, Jesse; McClernon, F.J.; Donny, Eric C.

    2017-01-01

    Rationale Tobacco smoking is associated with dysregulated reward processing within the striatum, characterized by hypersensitivity to smoking rewards and hyposensitivity to non-smoking rewards. This bias toward smoking reward at the expense of alternative rewards is further exacerbated by deprivation from smoking, which may contribute to difficulty maintaining abstinence during a quit attempt. Objective We examined whether abstinence-induced changes in striatal processing of rewards predicted lapse likelihood during a quit attempt supported by contingency management (CM), in which abstinence from smoking was reinforced with money. Methods Thirty-six non-treatment seeking smokers participated in two fMRI sessions, one following 24-hr abstinence and one following smoking as usual. During each scan, participants completed a rewarded guessing task designed to elicit striatal activation in which they could earn smoking and monetary rewards delivered after the scan. Participants then engaged in a 3-week CM-supported quit attempt. Results As previously reported, 24-hr abstinence was associated with increased striatal activation in anticipation of smoking reward and decreased activation in anticipation of monetary reward. Individuals exhibiting greater decrements in right striatal activation to monetary reward during abstinence (controlling for activation during non-abstinence) were more likely to lapse during CM (p<.05), even when controlling for other predictors of lapse outcome (e.g., craving); no association was seen for smoking reward. Conclusions These results are consistent with a growing number of studies indicating the specific importance of disrupted striatal processing of non-drug reward in nicotine dependence, and highlight the importance of individual differences in abstinence-induced deficits in striatal function for smoking cessation. PMID:26660448

  9. Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture.

    PubMed

    Buren, Caodu; Tu, Gaqi; Parsons, Matthew P; Sepers, Marja D; Raymond, Lynn A

    2016-08-01

    Corticostriatal cocultures are utilized to recapitulate the cortex-striatum connection in vitro as a convenient model to investigate the development, function, and regulation of synapses formed between cortical and striatal neurons. However, optimization of this dissociated neuronal system to more closely reproduce in vivo circuits has not yet been explored. We studied the effect of varying the plating ratio of cortical to striatal neurons on striatal spiny projection neuron (SPN) characteristics in primary neuronal cocultures. Despite the large difference in cortical-striatal neuron ratio (1:1 vs. 1:3) at day of plating, by 18 days in vitro the difference became modest (∼25% lower cortical-striatal neuron ratio in 1:3 cocultures) and the neuronal density was lower in the 1:3 cocultures, indicating enhanced loss of striatal SPNs. Comparing SPNs in cocultures plated at a 1:1 vs. 1:3 ratio, we found that resting membrane potential, input resistance, current injection-induced action potential firing rates, and input-output curves were similar in the two conditions. However, SPNs in the cocultures plated at the lower cortical ratio exhibited reduced membrane capacitance along with significantly shorter total dendritic length, decreased dendritic complexity, and fewer excitatory synapses, consistent with their trend toward reduced miniature excitatory postsynaptic current frequency. Strikingly, the proportion of NMDA receptors found extrasynaptically in recordings from SPNs was significantly higher in the less cortical coculture. Consistently, SPNs in cocultures with reduced cortical input showed decreased basal pro-survival signaling through cAMP response element binding protein and enhanced sensitivity to NMDA-induced apoptosis. Altogether, our study indicates that abundance of cortical input regulates SPN dendritic arborization and survival/death signaling. Copyright © 2016 the American Physiological Society.

  10. Blunted striatal response to monetary reward anticipation during smoking abstinence predicts lapse during a contingency-managed quit attempt.

    PubMed

    Sweitzer, Maggie M; Geier, Charles F; Denlinger, Rachel; Forbes, Erika E; Raiff, Bethany R; Dallery, Jesse; McClernon, F J; Donny, Eric C

    2016-03-01

    Tobacco smoking is associated with dysregulated reward processing within the striatum, characterized by hypersensitivity to smoking rewards and hyposensitivity to non-smoking rewards. This bias toward smoking reward at the expense of alternative rewards is further exacerbated by deprivation from smoking, which may contribute to difficulty maintaining abstinence during a quit attempt. We examined whether abstinence-induced changes in striatal processing of rewards predicted lapse likelihood during a quit attempt supported by contingency management (CM), in which abstinence from smoking was reinforced with money. Thirty-six non-treatment-seeking smokers participated in two functional MRI (fMRI) sessions, one following 24-h abstinence and one following smoking as usual. During each scan, participants completed a rewarded guessing task designed to elicit striatal activation in which they could earn smoking and monetary rewards delivered after the scan. Participants then engaged in a 3-week CM-supported quit attempt. As previously reported, 24-h abstinence was associated with increased striatal activation in anticipation of smoking reward and decreased activation in anticipation of monetary reward. Individuals exhibiting greater decrements in right striatal activation to monetary reward during abstinence (controlling for activation during non-abstinence) were more likely to lapse during CM (p < 0.025), even when controlling for other predictors of lapse outcome (e.g., craving); no association was seen for smoking reward. These results are consistent with a growing number of studies indicating the specific importance of disrupted striatal processing of non-drug reward in nicotine dependence and highlight the importance of individual differences in abstinence-induced deficits in striatal function for smoking cessation.

  11. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  12. An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 ΔGAG knock-in mice.

    PubMed

    Dang, Mai T; Yokoi, Fumiaki; Cheetham, Chad C; Lu, Jun; Vo, Viet; Lovinger, David M; Li, Yuqing

    2012-01-15

    DYT1 early-onset generalized torsion dystonia is an inherited movement disorder associated with mutations in DYT1 that codes for torsinA protein. The most common mutation seen in this gene is a trinucleotide deletion of GAG. We previously reported a motor control deficit on a beam-walking task in our Dyt1 ΔGAG knock-in heterozygous mice. In this report we show the reversal of this motor deficit with the anticholinergic trihexyphenidyl (THP), a drug commonly used to treat movement problems in dystonia patients. THP also restored the reduced corticostriatal long-term depression (LTD) observed in these mice. Corticostriatal LTD has long been known to be dependent on D2 receptor activation. In this mouse model, striatal D2 receptors were expressed at lower quantities in comparison to wild-type mice. Furthermore, the mice were also partially resistant to FPL64176, an agonist of L-type calcium channels that have been previously reported to cause severe dystonic-like symptoms in wild-type mice. Our findings collectively suggest that altered communication between cholinergic interneurons and medium spiny neurons is responsible for the LTD deficit and that this synaptic plasticity modification may be involved in the striatal motor control abnormalities in our mouse model of DYT1 dystonia. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. L-Dopa Modulates Functional Connectivity in Striatal Cognitive and Motor Networks: A Double-Blind Placebo-Controlled Study

    PubMed Central

    Kelly, Clare; de Zubicaray, Greig; Di Martino, Adriana; Copland, David A.; Reiss, Philip T.; Klein, Donald F.; Castellanos, F. Xavier; Milham, Michael P.; McMahon, Katie

    2010-01-01

    Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults. We examined the FC of 6 striatal regions-of-interest previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., Cerebral Cortex, 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. While L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions. PMID:19494158

  14. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task

    PubMed Central

    Carli, Mirjana; Invernizzi, Roberto W.

    2014-01-01

    Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders. PMID:24966814

  15. Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence

    PubMed Central

    Ballard, Michael E.; Mandelkern, Mark A.; Monterosso, John R.; Hsu, Eustace; Robertson, Chelsea L.; Ishibashi, Kenji; Dean, Andy C.

    2015-01-01

    Background: Individuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence. Methods: Fifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [18F]fallypride. Results: MA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5). Conclusions: These results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed. PMID:25603861

  16. Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence.

    PubMed

    Ballard, Michael E; Mandelkern, Mark A; Monterosso, John R; Hsu, Eustace; Robertson, Chelsea L; Ishibashi, Kenji; Dean, Andy C; London, Edythe D

    2015-01-20

    Individuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence. Fifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [(18)F]fallypride. MA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5). These results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  17. Generalization of value in reinforcement learning by humans

    PubMed Central

    Wimmer, G. Elliott; Daw, Nathaniel D.; Shohamy, Daphna

    2012-01-01

    Research in decision making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well-described by reinforcement learning (RL) theories. However, basic RL is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used fMRI and computational model-based analyses to examine the joint contributions of these mechanisms to RL. Humans performed an RL task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about options’ values based on experience with the other options and to generalize across them. We observed BOLD activity related to learning in the striatum and also in the hippocampus. By comparing a basic RL model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of RL and striatal BOLD, both choices and striatal BOLD were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional connectivity between the ventral striatum and hippocampus was modulated, across participants, by the ability of the augmented model to capture participants’ choice. Our results thus point toward an interactive model in which striatal RL systems may employ relational representations typically associated with the hippocampus. PMID:22487039

  18. Antagonistic effects of beta-phenylethylamine on quinpirole- and (-)-sulpiride-induced changes in evoked dopamine release from rat striatal slices.

    PubMed

    Yamada, S; Harano, M; Tanaka, M

    1998-02-19

    To assess the role of beta-phenylethylamine in aspects of dopamine release, we measured the level of beta-phenylethylamine in the rat striatum after killing the rats by microwave irradiation. We then investigated the effect of beta-phenylethylamine on electrically evoked dopamine release from rat striatal slices in vitro. The striatal beta-phenylethylamine level was 46.5 +/- 3.5 ng/g wet tissue, equivalent to 0.3 micromol/l. Superfusion with low concentrations of beta-phenylethylamine up to 1 micromol/l had no effect on spontaneous or electrically evoked dopamine release from striatal slices. Quinpirole reduced the evoked dopamine release from slices in a concentration-dependent manner. The quinpirole-induced reduction of evoked dopamine release was attenuated 30% by superfusion with 0.3 micromol/l beta-phenylethylamine. Moreover, the (-)-sulpiride (0.1 micromol/l)-induced increase in evoked dopamine release was also attenuated by superfusion with 0.3 micromol/l beta-phenylethylamine. These data indicate that submicromolar levels of beta-phenylethylamine could modify the dopamine autoreceptor mediated changes in evoked dopamine release from rat striatal slices.

  19. Cigarette Use and Striatal Dopamine D2/3 Receptors: Possible Role in the Link between Smoking and Nicotine Dependence.

    PubMed

    Okita, Kyoji; Mandelkern, Mark A; London, Edythe D

    2016-11-01

    Cigarette smoking induces dopamine release in the striatum, and smoking- or nicotine-induced ventral striatal dopamine release is correlated with nicotine dependence. Smokers also exhibit lower dopamine D2/3 receptor availability in the dorsal striatum than nonsmokers. Negative correlations of striatal dopamine D2/3 receptor availability with smoking exposure and nicotine dependence, therefore, might be expected but have not been tested. Twenty smokers had positron emission tomography scans with [ 18 F]fallypride to measure dopamine D2/3 receptor availability in ventral and dorsal regions of the striatum and provided self-report measures of recent and lifetime smoking and of nicotine dependence. As reported before, lifetime smoking was correlated with nicotine dependence. New findings were that ventral striatal dopamine D2/3 receptor availability was negatively correlated with recent and lifetime smoking and also with nicotine dependence. The results suggest an effect of smoking on ventral striatal D2/3 dopamine receptors that may contribute to nicotine dependence. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  20. A scalable population code for time in the striatum.

    PubMed

    Mello, Gustavo B M; Soares, Sofia; Paton, Joseph J

    2015-05-04

    To guide behavior and learn from its consequences, the brain must represent time over many scales. Yet, the neural signals used to encode time in the seconds-to-minute range are not known. The striatum is a major input area of the basal ganglia associated with learning and motor function. Previous studies have also shown that the striatum is necessary for normal timing behavior. To address how striatal signals might be involved in timing, we recorded from striatal neurons in rats performing an interval timing task. We found that neurons fired at delays spanning tens of seconds and that this pattern of responding reflected the interaction between time and the animals' ongoing sensorimotor state. Surprisingly, cells rescaled responses in time when intervals changed, indicating that striatal populations encoded relative time. Moreover, time estimates decoded from activity predicted timing behavior as animals adjusted to new intervals, and disrupting striatal function led to a decrease in timing performance. These results suggest that striatal activity forms a scalable population code for time, providing timing signals that animals use to guide their actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda.

    PubMed

    Boot, Nathalie; Baas, Matthijs; van Gaal, Simon; Cools, Roshan; De Dreu, Carsten K W

    2017-07-01

    Creative cognition is key to human functioning yet the underlying neurobiological mechanisms are sparsely addressed and poorly understood. Here we address the possibility that creative cognition is a function of dopaminergic modulation in fronto-striatal brain circuitries. It is proposed that (i) creative cognition benefits from both flexible and persistent processing, (ii) striatal dopamine and the integrity of the nigrostriatal dopaminergic pathway is associated with flexible processing, while (iii) prefrontal dopamine and the integrity of the mesocortical dopaminergic pathway is associated with persistent processing. We examine this possibility in light of studies linking creative ideation, divergent thinking, and creative problem-solving to polymorphisms in dopamine receptor genes, indirect markers and manipulations of the dopaminergic system, and clinical populations with dysregulated dopaminergic activity. Combined, studies suggest a functional differentiation between striatal and prefrontal dopamine: moderate (but not low or high) levels of striatal dopamine benefit creative cognition by facilitating flexible processes, and moderate (but not low or high) levels of prefrontal dopamine enable persistence-driven creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Low Striatal Dopamine D2-type Receptor Availability is Linked to Simulated Drug Choice in Methamphetamine Users.

    PubMed

    Moeller, Scott J; Okita, Kyoji; Robertson, Chelsea L; Ballard, Michael E; Konova, Anna B; Goldstein, Rita Z; Mandelkern, Mark A; London, Edythe D

    2018-03-01

    Individuals with drug use disorders seek drugs over other rewarding activities, and exhibit neurochemical deficits related to dopamine, which is involved in value-based learning and decision-making. Thus, a dopaminergic disturbance may underpin drug-biased choice in addiction. Classical drug-choice assessments, which offer drug-consumption opportunities, are inappropriate for addicted individuals seeking treatment or abstaining. Fifteen recently abstinent methamphetamine users and 15 healthy controls completed two laboratory paradigms of 'simulated' drug choice (choice for drug-related vs affectively pleasant, unpleasant, and neutral images), and underwent positron emission tomography measurements of dopamine D2-type receptor availability, indicated by binding potential (BP ND ) for [ 18 F]fallypride. Thirteen of the methamphetamine users and 10 controls also underwent [ 11 C]NNC112 PET scans to measure dopamine D1-type receptor availability. Group analyses showed that, compared with controls, methamphetamine users chose to view more methamphetamine-related images on one task, with a similar trend on the second task. Regression analyses showed that, on both tasks, the more methamphetamine users chose to view methamphetamine images, specifically vs pleasant images (the most frequently chosen images across all participants), the lower was their D2-type BP ND in the lateral orbitofrontal cortex, an important region in value-based choice. No associations were observed with D2-type BP ND in striatal regions, or with D1-type BP ND in any region. These results identify a neurochemical correlate for a laboratory drug-seeking paradigm that can be administered to treatment-seeking and abstaining drug-addicted individuals. More broadly, these results refine the central hypothesis that dopamine-system deficits contribute to drug-biased decision-making in addiction, here showing a role for the orbitofrontal cortex.

  3. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2

    PubMed Central

    Lindroos, Robert; Dorst, Matthijs C.; Du, Kai; Filipović, Marko; Keller, Daniel; Ketzef, Maya; Kozlov, Alexander K.; Kumar, Arvind; Lindahl, Mikael; Nair, Anu G.; Pérez-Fernández, Juan; Grillner, Sten; Silberberg, Gilad; Hellgren Kotaleski, Jeanette

    2018-01-01

    The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. PMID:29467627

  4. Role of aberrant striatal dopamine D1 receptor/cAMP/protein kinase A/DARPP32 signaling in the paradoxical calming effect of amphetamine.

    PubMed

    Napolitano, Francesco; Bonito-Oliva, Alessandra; Federici, Mauro; Carta, Manolo; Errico, Francesco; Magara, Salvatore; Martella, Giuseppina; Nisticò, Robert; Centonze, Diego; Pisani, Antonio; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro

    2010-08-18

    Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, impulsivity, and motor hyperactivity. Several lines of research support a crucial role for the dopamine transporter (DAT) gene in this psychiatric disease. Consistently, the most commonly prescribed medications in ADHD treatment are stimulant drugs, known to preferentially act on DAT. Recently, a knock-in mouse [DAT-cocaine insensitive (DAT-CI)] has been generated carrying a cocaine-insensitive DAT that is functional but with reduced dopamine uptake function. DAT-CI mutants display enhanced striatal extracellular dopamine levels and basal motor hyperactivity. Herein, we showed that DAT-CI animals present higher striatal dopamine turnover, altered basal phosphorylation state of dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP32) at Thr75 residue, but preserved D(2) receptor (D(2)R) function. However, although we demonstrated that striatal D(1) receptor (D(1)R) is physiologically responsive under basal conditions, its stimulus-induced activation strikingly resulted in paradoxical electrophysiological, behavioral, and biochemical responses. Indeed, in DAT-CI animals, (1) striatal LTP was completely disrupted, (2) R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) treatment induced paradoxical motor calming effects, and (3) SKF 81297 administration failed to increase cAMP/protein kinase A (PKA)/DARPP32 signaling. Such biochemical alteration selectively affected dopamine D(1)Rs since haloperidol, by blocking the tonic inhibition of D(2)R, unmasked a normal activation of striatal adenosine A(2A) receptor-mediated cAMP/PKA/DARPP32 cascade in mutants. Most importantly, our studies highlighted that amphetamine, nomifensine, and bupropion, through increased striatal dopaminergic transmission, are able to revert motor hyperactivity of DAT-CI animals. Overall, our results suggest that the paradoxical motor calming effect induced by these drugs in DAT-CI mutants depends on selective aberrant phasic activation of D(1)R/cAMP/PKA/DARPP32 signaling in response to increased striatal extracellular dopamine levels.

  5. Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors

    PubMed Central

    Braun, Erin Kendall; Daw, Nathaniel D.

    2014-01-01

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157

  6. Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration.

    PubMed

    Stauch, Kelly L; Villeneuve, Lance M; Purnell, Phillip R; Ottemann, Brendan M; Emanuel, Katy; Fox, Howard S

    2016-12-01

    Mutations in PTEN-induced putative kinase 1 (Pink1), a mitochondrial serine/threonine kinase, cause a recessive inherited form of Parkinson's disease (PD). Pink1 deletion in rats results in a progressive PD-like phenotype, characterized by significant motor deficits starting at 4 months of age. Despite the evidence of mitochondrial dysfunction, the pathogenic mechanism underlying disease due to Pink1-deficiency remains obscure. Striatal synaptic mitochondria from 3-month-old Pink1-deficient rats were characterized using bioenergetic and mass spectroscopy (MS)-based proteomic analyses. Striatal synaptic mitochondria from Pink1-deficient rats exhibit decreased complex I-driven respiration and increased complex II-mediated respiration compared with wild-type rats. MS-based proteomics revealed 69 of the 811 quantified mitochondrial proteins were differentially expressed between Pink1-deficient rats and controls. Down-regulation of several electron carrier proteins, which shuttle electrons to reduce ubiquinone at complex III, in the Pink1-knockouts suggests disruption of the linkage between fatty acid, amino acid, and choline metabolism and the mitochondrial respiratory system. These results suggest that complex II activity is increased to compensate for loss of electron transfer mechanisms due to reduced complex I activity and loss of electron carriers within striatal nerve terminals early during disease progression. This may contribute to the pathogenesis of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reduced striatal D2 receptor binding in myoclonus-dystonia.

    PubMed

    Beukers, R J; Booij, J; Weisscher, N; Zijlstra, F; van Amelsvoort, T A M J; Tijssen, M A J

    2009-02-01

    To study striatal dopamine D(2) receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using (123)I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D(2) receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

  8. Age-associated striatal dopaminergic denervation and falls in community-dwelling subjects

    PubMed Central

    Bohnen, Nicolaas I.; Muller, Martijn L. T. M.; Kuwabara, Hiroto; Cham, Rakié; Constantine, Gregory M.; Studenski, Stephanie A.

    2016-01-01

    Older adults have a high prevalence of gait and balance disturbances and falls. Normal aging is associated with significant striatal dopaminergic denervation, which might be a previously unrecognized additional contributor to geriatric falls. This study investigated the relationship between the severity of age-associated striatal dopaminergic denervation (AASDD) and falls in community-dwelling subjects. Community-dwelling subjects who did not have a clinical diagnosis to explain falls (n = 77: 43 female, 34 male; mean age 61.4 +/− 16.4; range 20–85) completed clinical assessment and brain dopamine transporter (DAT) [11C]beta-CFT (2-beta-carbomethoxy-3beta-(4-fluorophenyl) tropane) positron emission tomography imaging followed by 6 months of prospective fall monitoring using diaries. Results showed a significant inverse relationship between striatal DAT activity and age (r = −0.82, p < 0.001). A total of 26 subjects (33.8%) reported at least one fall, with 5 subjects (6.5%) reporting two or more falls. While no significant difference was noted in striatal DAT activity between nonfallers (n = 51) and fallers (n = 26; f = 0.02, not significant), striatal DAT activity was modestly reduced in the small subgroup of recurrent fallers compared with the other subjects (f = 5.07, p < 0.05). Findings indicate that AASDD does not explain isolated self-reported falls in community-dwelling subjects. However, it may be a contributing factor in the small subgroup of subjects with recurrent falls. PMID:20157861

  9. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function.

    PubMed

    Sarter, Martin; Albin, Roger L; Kucinski, Aaron; Lustig, Cindy

    2014-07-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function

    PubMed Central

    Sarter, Martin; Albin, Roger L.; Kucinski, Aaron; Lustig, Cindy

    2015-01-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson’s disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive–behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional–motor integration by striatal circuitry. PMID:24805070

  11. Neuroprotection by caffeine in the MPTP model of Parkinson’s disease and its dependence on adenosine A2A receptors

    PubMed Central

    Xu, Kui; Di Luca, Daniel Garbin; Orrú, Marco; Xu, Yuehang; Chen, Jiang-Fan; Schwarzschild, Michael A.

    2016-01-01

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of Parkinson’s disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine’s neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on MPTP neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in CNS cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25 mg/kg ip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine’s locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. PMID:26905951

  12. In vivo dopaminergic and serotonergic dysfunction in DCTN1 gene mutation carriers

    PubMed Central

    Felicio, Andre C.; Dinelle, Katherine; Agarwal, Pankaj A.; McKenzie, Jessamyn; Heffernan, Nicole; Road, Jeremy D.; Appel-Cresswell, Silke; Wszolek, Zbigniew K.; Farrer, Matthew J.; Schulzer, Michael; Sossi, Vesna; Stoessl, A. Jon

    2014-01-01

    Introduction We have used positron emission tomography (PET) to assess dopaminergic and serotonergic terminal density in three subjects carrying a mutation in the DCT1 gene, two clinically affected with Perry syndrome. Methods All subjects had brain imaging using 18F-6-fluoro-L-dopa (FDOPA, dopamine synthesis and storage), (+)-11C-dihydrotetrabenazine (DTBZ, vesicular monoamine transporter type 2), and 11C-raclopride (RAC, dopamine D2/D3 receptors). One subject also underwent PET with 11C-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB, serotonin transporter). Results FDOPA-PET and DTBZ-PET in the affected individuals showed a reduction of striatal tracer uptake. Also, RAC-PET showed higher uptake in these area. DASB-PET showed significant uptake changes in left orbitofrontal cortex, bilateral anterior insula, left dorsolateral prefrontal cortex, left orbitofrontal cortex, left posterior cingulate cortex, left caudate and left ventral striatum. Conclusions Our data showed evidence of both striatal dopaminergic and widespread cortical/subcortical serotonergic dysfunctions in individuals carrying a mutation in the DCTN1 gene. PMID:24797316

  13. A neurobehavioral examination of individuals with high-functioning autism and Asperger's disorder using a fronto-striatal model of dysfunction.

    PubMed

    Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Brereton, Avril V; Bellgrove, Mark A

    2002-06-01

    The repetitive, stereotyped, and obsessive behaviors that characterize autism may in part be attributable to disruption of the region of the fronto-striatal system, which mediates executive abilities. Neuropsychological testing has shown that children with autism exhibit set-shifting deficiencies on tests such as the Wisconsin Card Sorting task but show normal inhibitory ability on variants of the Stroop color-word test. According to Minshew and Goldstein's multiple primary deficit theory, the complexity of the executive functioning task is important in determining the performance of individuals with autism. This study employed a visual-spatial task (with a Stroop-type component) to examine the integrity of executive functioning, in particular inhibition, in autism (n = 12) and Asperger's disorder (n = 12) under increasing levels of cognitive complexity. Whereas the Asperger's disorder group performed similarly to age- and IQ-matched control participants, even at the higher levels of cognitive complexity, the high-functioning autism group displayed inhibitory deficits specifically associated with increasing cognitive load.

  14. Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia.

    PubMed

    Grimm, Oliver; Heinz, Andreas; Walter, Henrik; Kirsch, Peter; Erk, Susanne; Haddad, Leila; Plichta, Michael M; Romanczuk-Seiferth, Nina; Pöhland, Lydia; Mohnke, Sebastian; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Schäfer, Axel; Cichon, Sven; Nöthen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2014-05-01

    Attenuated ventral striatal response during reward anticipation is a core feature of schizophrenia that is seen in prodromal, drug-naive, and chronic schizophrenic patients. Schizophrenia is highly heritable, raising the possibility that this phenotype is related to the genetic risk for the disorder. To examine a large sample of healthy first-degree relatives of schizophrenic patients and compare their neural responses to reward anticipation with those of carefully matched controls without a family psychiatric history. To further support the utility of this phenotype, we studied its test-retest reliability, its potential brain structural contributions, and the effects of a protective missense variant in neuregulin 1 (NRG1) linked to schizophrenia by meta-analysis (ie, rs10503929). Examination of a well-established monetary reward anticipation paradigm during functional magnetic resonance imaging at a university hospital; voxel-based morphometry; test-retest reliability analysis of striatal activations in an independent sample of 25 healthy participants scanned twice with the same task; and imaging genetics analysis of the control group. A total of 54 healthy first-degree relatives of schizophrenic patients and 80 controls matched for demographic, psychological, clinical, and task performance characteristics were studied. Blood oxygen level-dependent response during reward anticipation, analysis of intraclass correlations of functional contrasts, and associations between striatal gray matter volume and NRG1 genotype. Compared with controls, healthy first-degree relatives showed a highly significant decrease in ventral striatal activation during reward anticipation (familywise error-corrected P < .03 for multiple comparisons across the whole brain). Supplemental analyses confirmed that the identified systems-level functional phenotype is reliable (with intraclass correlation coefficients of 0.59-0.73), independent of local gray matter volume (with no corresponding group differences and no correlation to function, and with all uncorrected P values >.05), and affected by the NRG1 genotype (higher striatal responses in controls with the protective rs10503929 C allele; familywise error-corrected P < .03 for ventral striatal response). Healthy first-degree relatives of schizophrenic patients show altered striatal activation during reward anticipation in a directionality and localization consistent with prior patient findings. This provides evidence for a functional neural system mechanism related to familial risk. The phenotype can be assessed reliably, is independent of alterations in striatal structure, and is influenced by a schizophrenia candidate gene variant in NRG1. These data encourage us to further investigate the genetic and molecular contributions to this phenotype.

  15. Striatal volume predicts level of video game skill acquisition.

    PubMed

    Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2010-11-01

    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.

  16. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors.

    PubMed

    Kim, Hyun Jin; Lee, Joo Han; Yun, Kyunghwa; Kim, Joung-Hun

    2017-06-30

    Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

  17. Fronto-striatal contribution to lexical set-shifting.

    PubMed

    Simard, France; Joanette, Yves; Petrides, Michael; Jubault, Thomas; Madjar, Cécile; Monchi, Oury

    2011-05-01

    Fronto-striatal circuits in set-shifting have been examined in neuroimaging studies using the Wisconsin Card Sorting Task (WCST) that requires changing the classification rule for cards containing visual stimuli that differ in color, shape, and number. The present study examined whether this fronto-striatal contribution to the planning and execution of set-shifts is similar in a modified sorting task in which lexical rules are applied to word stimuli. Young healthy adults were scanned with functional magnetic resonance imaging while performing the newly developed lexical version of the WCST: the Wisconsin Word Sorting Task. Significant activation was found in a cortico-striatal loop that includes area 47/12 of the ventrolateral prefrontal cortex (PFC), and the caudate nucleus during the planning of a set-shift, and in another that includes the posterior PFC and the putamen during the execution of a set-shift. However, in the present lexical task, additional activation peaks were observed in area 45 of the ventrolateral PFC area during both matching periods. These results provide evidence that the functional contributions of the various fronto-striatal loops are not dependent on the modality of the information to be manipulated but rather on the specific executive processes required.

  18. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity

    PubMed Central

    Clark, Luke; Stokes, Paul R.; Wu, Kit; Michalczuk, Rosanna; Benecke, Aaf; Watson, Ben J.; Egerton, Alice; Piccini, Paola; Nutt, David J.; Bowden-Jones, Henrietta; Lingford-Hughes, Anne R.

    2012-01-01

    Pathological gambling (PG) is a behavioural addiction associated with elevated impulsivity and suspected dopamine dysregulation. Reduced striatal dopamine D2/D3 receptor availability has been reported in drug addiction, and may constitute a premorbid vulnerability marker for addictive disorders. The aim of the present study was to assess striatal dopamine D2/D3 receptor availability in PG, and its association with trait impulsivity. Males with PG (n = 9) and male healthy controls (n = 9) underwent [11C]-raclopride positron emission tomography imaging and completed the UPPS-P impulsivity scale. There was no significant difference between groups in striatal dopamine D2/D3 receptor availability, in contrast to previous reports in drug addiction. However, mood-related impulsivity (‘Urgency’) was negatively correlated with [11C]-raclopride binding potentials in the PG group. The absence of a group difference in striatal dopamine binding implies a distinction between behavioural addictions and drug addictions. Nevertheless, our data indicate heterogeneity in dopamine receptor availability in disordered gambling, such that individuals with high mood-related impulsivity may show differential benefits from dopamine-based medications. PMID:22776462

  19. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism.

    PubMed

    Wang, Xiaoming; Bey, Alexandra L; Katz, Brittany M; Badea, Alexandra; Kim, Namsoo; David, Lisa K; Duffney, Lara J; Kumar, Sunil; Mague, Stephen D; Hulbert, Samuel W; Dutta, Nisha; Hayrapetyan, Volodya; Yu, Chunxiu; Gaidis, Erin; Zhao, Shengli; Ding, Jin-Dong; Xu, Qiong; Chung, Leeyup; Rodriguiz, Ramona M; Wang, Fan; Weinberg, Richard J; Wetsel, William C; Dzirasa, Kafui; Yin, Henry; Jiang, Yong-Hui

    2016-05-10

    Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4-22 (Δe4-22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4-22(-/-) mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs.

  20. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism

    PubMed Central

    Wang, Xiaoming; Bey, Alexandra L.; Katz, Brittany M.; Badea, Alexandra; Kim, Namsoo; David, Lisa K.; Duffney, Lara J.; Kumar, Sunil; Mague, Stephen D.; Hulbert, Samuel W.; Dutta, Nisha; Hayrapetyan, Volodya; Yu, Chunxiu; Gaidis, Erin; Zhao, Shengli; Ding, Jin-Dong; Xu, Qiong; Chung, Leeyup; Rodriguiz, Ramona M.; Wang, Fan; Weinberg, Richard J.; Wetsel, William C.; Dzirasa, Kafui; Yin, Henry; Jiang, Yong-hui

    2016-01-01

    Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs. PMID:27161151

  1. Bimodal control of stimulated food intake by the endocannabinoid system.

    PubMed

    Bellocchio, Luigi; Lafenêtre, Pauline; Cannich, Astrid; Cota, Daniela; Puente, Nagore; Grandes, Pedro; Chaouloff, Francis; Piazza, Pier Vincenzo; Marsicano, Giovanni

    2010-03-01

    Activation of cannabinoid type-1 receptors (CB(1)) is universally recognized as a powerful endogenous orexigenic signal, but the detailed underlying neuronal mechanisms are not fully understood. Using combined genetic and pharmacological approaches in mice, we found that ventral striatal CB(1) receptors exerted a hypophagic action through inhibition of GABAergic transmission. Conversely, brain CB(1) receptors modulating excitatory transmission mediated the well-known orexigenic effects of cannabinoids.

  2. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  3. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the corticostriatal projections in mAMPH neurotoxicity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  5. Striatal action-value neurons reconsidered.

    PubMed

    Elber-Dorozko, Lotem; Loewenstein, Yonatan

    2018-05-31

    It is generally believed that during economic decisions, striatal neurons represent the values associated with different actions. This hypothesis is based on studies, in which the activity of striatal neurons was measured while the subject was learning to prefer the more rewarding action. Here we show that these publications are subject to at least one of two critical confounds. First, we show that even weak temporal correlations in the neuronal data may result in an erroneous identification of action-value representations. Second, we show that experiments and analyses designed to dissociate action-value representation from the representation of other decision variables cannot do so. We suggest solutions to identifying action-value representation that are not subject to these confounds. Applying one solution to previously identified action-value neurons in the basal ganglia we fail to detect action-value representations. We conclude that the claim that striatal neurons encode action-values must await new experiments and analyses. © 2018, Elber-Dorozko et al.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, H.C.; Henriksen, L.; Bruhn, P.

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHDmore » with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD.« less

  7. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons.

    PubMed

    Angulo-Garcia, David; Berke, Joshua D; Torcini, Alessandro

    2016-02-01

    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.

  8. Elevated striatal γ-aminobutyric acid in youth with major depressive disorder.

    PubMed

    Bradley, Kailyn A; Alonso, Carmen M; Mehra, Lushna M; Xu, Junqian; Gabbay, Vilma

    2018-06-08

    Alterations in γ-aminobutyric acid (GABA) have been hypothesized to play a role in the pathogenesis of psychiatric illness. Our previous work has specifically linked anterior cingulate cortex (ACC) GABA deficits with anhedonia in youth with major depressive disorder (MDD). As anhedonia reflects alterations within the reward circuitry, we sought to extend this investigation and examine GABA levels in another key reward-related region, the striatum, in the same adolescent population. Thirty-six youth [20 with MDD and 16 healthy controls; (HC)], ages 12 to 21 years old, underwent J-edited proton magnetic resonance spectroscopy ( 1 H MRS) whereby GABA levels were measured in striatal and ACC voxels. GABA levels were compared between groups and between voxel positions and were examined in relation to clinical symptomatology, such as depression severity, anhedonia, anxiety, and suicidality. Depressed youth had unexpectedly higher GABA levels in the striatum compared to HC. In both depressed and healthy youth, GABA levels were higher in the striatum than in the ACC, while the differences in depressed youth were greater. Moreover, in depressed youth, higher striatal GABA above the mean of HCs was correlated with lower ACC GABA below the mean of HCs. Striatal GABA was not correlated with clinical symptomatology in this small sample. Together, these findings suggest that higher striatal GABA levels may serve some compensatory function as a result of lower ACC GABA in depressed adolescents. It is also possible that, like lower ACC GABA, higher striatal GABA might simply be another pathological feature of adolescent depression. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Aripiprazole Selectively Reduces Motor Tics in a Young Animal Model for Tourette’s Syndrome and Comorbid Attention Deficit and Hyperactivity Disorder

    PubMed Central

    Rizzo, Francesca; Nespoli, Ester; Abaei, Alireza; Bar-Gad, Izhar; Deelchand, Dinesh K.; Fegert, Jörg; Rasche, Volker; Hengerer, Bastian; Boeckers, Tobias M.

    2018-01-01

    Tourette’s syndrome (TS) is a neurodevelopmental disorder characterized primarily by motor and vocal tics. Comorbidities such as attention deficit and hyperactivity disorder (ADHD) are observed in over 50% of TS patients. We applied aripiprazole in a juvenile rat model that displays motor tics and hyperactivity. We additionally assessed the amount of ultrasonic vocalizations (USVs) as an indicator for the presence of vocal tics and evaluated the changes in the striatal neurometabolism using in vivo proton magnetic resonance spectroscopy (1H-MRS) at 11.7T. Thirty-one juvenile spontaneously hypertensive rats (SHRs) underwent bicuculline striatal microinjection and treatment with either aripiprazole or vehicle. Control groups were sham operated and sham injected. Behavior, USVs, and striatal neurochemical profile were analyzed at early, middle, and late adolescence (postnatal days 35 to 50). Bicuculline microinjections in the dorsolateral striatum induced motor tics in SHR juvenile rats. Acute aripiprazole administration selectively reduced both tic frequency and latency, whereas stereotypies, USVs, and hyperactivity remained unaltered. The striatal neurochemical profile was only moderately altered after tic-induction and was not affected by systemic drug treatment. When applied to a young rat model that provides high degrees of construct, face, and predictive validity for TS and comorbid ADHD, aripiprazole selectively reduces motor tics, revealing that tics and stereotypies are distinct phenomena in line with clinical treatment of patients. Finally, our 1H-MRS results suggest a critical revision of the striatal role in the hypothesized cortico-striatal dysregulation in TS pathophysiology. PMID:29487562

  10. Decreased dopamine activity predicts relapse in methamphetamine abusers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang G. J.; Wang, G.-J.; Smith, L.

    2011-01-20

    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [{sup 11}C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested withinmore » 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.« less

  11. Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity.

    PubMed

    Lee, Buyean; London, Edythe D; Poldrack, Russell A; Farahi, Judah; Nacca, Angelo; Monterosso, John R; Mumford, Jeanette A; Bokarius, Andrew V; Dahlbom, Magnus; Mukherjee, Jogeshwar; Bilder, Robert M; Brody, Arthur L; Mandelkern, Mark A

    2009-11-25

    While methamphetamine addiction has been associated with both impulsivity and striatal dopamine D(2)/D(3) receptor deficits, human studies have not directly linked the latter two entities. We therefore compared methamphetamine-dependent and healthy control subjects using the Barratt Impulsiveness Scale (version 11, BIS-11) and positron emission tomography with [(18)F]fallypride to measure striatal dopamine D(2)/D(3) receptor availability. The methamphetamine-dependent subjects reported recent use of the drug 3.3 g per week, and a history of using methamphetamine, on average, for 12.5 years. They had higher scores than healthy control subjects on all BIS-11 impulsiveness subscales (p < 0.001). Volume-of-interest analysis found lower striatal D(2)/D(3) receptor availability in methamphetamine-dependent than in healthy control subjects (p < 0.01) and a negative relationship between impulsiveness and striatal D(2)/D(3) receptor availability in the caudate nucleus and nucleus accumbens that reached statistical significance in methamphetamine-dependent subjects. Combining data from both groups, voxelwise analysis indicated that impulsiveness was related to D(2)/D(3) receptor availability in left caudate nucleus and right lateral putamen/claustrum (p < 0.05, determined by threshold-free cluster enhancement). In separate group analyses, correlations involving the head and body of the caudate and the putamen of methamphetamine-dependent subjects and the lateral putamen/claustrum of control subjects were observed at a weaker threshold (p < 0.12 corrected). The findings suggest that low striatal D(2)/D(3) receptor availability may mediate impulsive temperament and thereby influence addiction.

  12. Decreased dopamine activity predicts relapse in methamphetamine abusers.

    PubMed

    Wang, G J; Smith, L; Volkow, N D; Telang, F; Logan, J; Tomasi, D; Wong, C T; Hoffman, W; Jayne, M; Alia-Klein, N; Thanos, P; Fowler, J S

    2012-09-01

    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.

  13. Dopamine-dependent periadolescent maturation of corticostriatal functional connectivity in mouse.

    PubMed

    Galiñanes, Gregorio L; Taravini, Irene R E; Murer, M Gustavo

    2009-02-25

    Altered corticostriatal information processing associated with early dopamine systems dysfunction may contribute to attention deficit/hyperactivity disorder (ADHD). Mice with neonatal dopamine-depleting lesions exhibit hyperactivity that wanes after puberty and is reduced by psychostimulants, reminiscent of some aspects of ADHD. To assess whether the maturation of corticostriatal functional connectivity is altered by early dopamine depletion, we examined preadolescent and postadolescent urethane-anesthetized mice with or without dopamine-depleting lesions. Specifically, we assessed (1) synchronization between striatal neuron discharges and oscillations in frontal cortex field potentials and (2) striatal neuron responses to frontal cortex stimulation. In adult control mice striatal neurons were less spontaneously active, less responsive to cortical stimulation, and more temporally tuned to cortical rhythms than in infants. Striatal neurons from hyperlocomotor mice required more current to respond to cortical input and were less phase locked to ongoing oscillations, resulting in fewer neurons responding to refined cortical commands. By adulthood some electrophysiological deficits waned together with hyperlocomotion, but striatal spontaneous activity remained substantially elevated. Moreover, dopamine-depleted animals showing normal locomotor scores exhibited normal corticostriatal synchronization, suggesting that the lesion allows, but is not sufficient, for the emergence of corticostriatal changes and hyperactivity. Although amphetamine normalized corticostriatal tuning in hyperlocomotor mice, it reduced horizontal activity in dopamine-depleted animals regardless of their locomotor phenotype, suggesting that amphetamine modified locomotion through a parallel mechanism, rather than that modified by dopamine depletion. In summary, functional maturation of striatal activity continues after infancy, and early dopamine depletion delays the maturation of core functional capacities of the corticostriatal system.

  14. Dopamine-dependent periadolescent maturation of corticostriatal functional connectivity in mouse

    PubMed Central

    Galiñanes, Gregorio L.; Taravini, Irene R.E.; Murer, M. Gustavo

    2009-01-01

    Altered corticostriatal information processing associated with early dopamine systems dysfunction may contribute to attention deficit/hyperactivity disorder (ADHD). Mice with neonatal dopamine-depleting lesions exhibit hyperactivity that wanes after puberty and is reduced by psychostimulants, reminiscent of some aspects of ADHD. To assess whether the maturation of corticostriatal functional connectivity is altered by early dopamine depletion, we examined pre- and post-adolescent urethane-anesthetized mice with or without dopamine-depleting lesions. Specifically, we assessed (1) synchronization between striatal neuron discharges and oscillations in frontal cortex field potentials and (2) striatal neuron responses to frontal cortex stimulation. In adult control mice striatal neurons were less spontaneously active, less responsive to cortical stimulation and more temporally tuned to cortical rhythms than in infants. Striatal neurons from hyperlocomotor mice required more current to respond to cortical input and were less phase-locked to ongoing oscillations, resulting in fewer neurons responding to refined cortical commands. By adulthood some electrophysiological deficits waned together with hyperlocomotion, but striatal spontaneous activity remained substantially elevated. Moreover, dopamine-depleted animals showing normal locomotor scores exhibited normal corticostriatal synchronization, suggesting that the lesion allows, but is not sufficient, for the emergence of corticostriatal changes and hyperactivity. Although amphetamine normalized corticostriatal tuning in hyperlocomotor mice, it reduced horizontal activity in dopamine-depleted animals irrespective of their locomotor phenotype, suggesting that amphetamine modified locomotion through a parallel mechanism, rather than that modified by dopamine depletion. In summary, functional maturation of striatal activity continues after infancy, and early dopamine depletion delays the maturation of core functional capacities of the corticostriatal system. PMID:19244524

  15. Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers.

    PubMed

    Li, Yangding; Yuan, Kai; Cai, Chenxi; Feng, Dan; Yin, Junsen; Bi, Yanzhi; Shi, Sha; Yu, Dahua; Jin, Chenwang; von Deneen, Karen M; Qin, Wei; Tian, Jie

    2015-06-01

    Smoking during early adulthood results in neurophysiological and brain structural changes that may promote nicotine dependence later in life. Previous studies have revealed the important roles of fronto-striatal circuits in the pathology of nicotine dependence; however, few studies have focused on both cortical thickness and subcortical striatal volume differences between young adult smokers and nonsmokers. Twenty-seven young male adult smokers and 22 age-, education- and gender-matched nonsmokers were recruited in the present study. The cortical thickness and striatal volume differences of young adult smokers and age-matched nonsmokers were investigated in the present study and then correlated with pack-years and Fagerström Test for Nicotine Dependence (FTND). The following results were obtained: (1) young adult smokers showed significant cortical thinning in the frontal cortex (left caudal anterior cingulate cortex (ACC), right lateral orbitofrontal cortex (OFC)), left insula, left middle temporal gyrus, right inferior parietal lobule, and right parahippocampus; (2) in regards to subcortical striatal volume, the volume of the right caudate was larger in young adult smokers than nonsmokers; and (3) the cortical thickness of the right dorsolateral prefrontal cortex (DLPFC) and OFC were associated with nicotine dependence severity (FTND) and cumulative amount of nicotine intake (pack-years) in smokers, respectively. This study revealed reduced frontal cortical thickness and increased caudate volume in the fronto-striatal circuits in young adult smokers compared to nonsmokers. These deficits suggest an imbalance between cognitive control (reduced protection factors) and reward drive behaviours (increased risk factors) associated with nicotine addiction and relapse. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Striatal D(2)/D(3) receptor availability is inversely correlated with cannabis consumption in chronic marijuana users.

    PubMed

    Albrecht, Daniel S; Skosnik, Patrick D; Vollmer, Jennifer M; Brumbaugh, Margaret S; Perry, Kevin M; Mock, Bruce H; Zheng, Qi-Huang; Federici, Lauren A; Patton, Elizabeth A; Herring, Christine M; Yoder, Karmen K

    2013-02-01

    Although the incidence of cannabis abuse/dependence in Americans is rising, the neurobiology of cannabis addiction is not well understood. Imaging studies have demonstrated deficits in striatal D(2)/D(3) receptor availability in several substance-dependent populations. However, this has not been studied in currently using chronic cannabis users. The purpose of this study was to compare striatal D(2)/D(3) receptor availability between currently using chronic cannabis users and healthy controls. Eighteen right-handed males age 18-34 were studied. Ten subjects were chronic cannabis users; eight were demographically matched controls. Subjects underwent a [(11)C]raclopride (RAC) PET scan. Striatal RAC binding potential (BP(ND)) was calculated on a voxel-wise basis. Prior to scanning, urine samples were obtained from cannabis users for quantification of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic acid; THC-COOH and 11-hydroxy-THC;OH-THC). There were no differences in D(2)/D(3) receptor availability between cannabis users and controls. Voxel-wise analyses revealed that RAC BP(ND) values were negatively associated with both urine levels of cannabis metabolites and self-report of recent cannabis consumption. In this sample, current cannabis use was not associated with deficits in striatal D(2)/D(3) receptor availability. There was an inverse relationship between chronic cannabis use and striatal RAC BP(ND). Additional studies are needed to identify the neurochemical consequences of chronic cannabis use on the dopamine system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. The effects of administration of monoamine oxidase-B inhibitors on rat striatal neurone responses to dopamine.

    PubMed Central

    Berry, M D; Scarr, E; Zhu, M Y; Paterson, I A; Juorio, A V

    1994-01-01

    1. (-)-Deprenyl has been shown to potentiate rat striatal neurone responses to dopamine agonists at doses not altering dopamine metabolism. Since there are a number of effects of (-)-deprenyl which could result in this phenomenon, we have investigated the effects of MDL 72,145 and Ro 19-6327, whose only common effect with (-)-deprenyl is an inhibition of monoamine oxidase-B (MAO-B), on rat striatal neurone responses to dopamine and on striatal dopamine metabolism. 2. Using in vivo electrophysiology, i.p. injection of either MDL 72,145 or Ro 19-6327 was found to produce a dose-dependent potentiation of striatal neurone responses to dopamine but not gamma-aminobutyric acid. 3. Neurochemical investigations revealed that this occurred at doses (0.25-1 mg kg-1) which, while not affecting levels of dopamine or its metabolites, 3,4-dihydroxyphenylacetic acid or homovanillic acid, did cause a significant, dose-dependent, elevation in striatal levels of the putative neuromodulator, 2-phenylethylamine (PE). 4. Inhibition of PE synthesis by i.p. injection of the aromatic L-amino acid decarboxylase inhibitor, NSD 1015, produced a reversal of the effects of MDL 72,145 and Ro 19-6327. 5. Neurochemical analysis revealed this to occur at a dose of NSD 1015 (10 mg kg-1) selective for reduction of elevated PE levels. 6. These results suggest that PE can act as a neuromodulator of dopaminergic responses and that MAO-B inhibitors may potentiate neuronal responses to dopamine via the indirect mechanism of elevation of PE following MAO-B inhibition. PMID:7889269

  18. Striatal connectivity changes following gambling wins and near-misses: Associations with gambling severity.

    PubMed

    van Holst, Ruth J; Chase, Henry W; Clark, Luke

    2014-01-01

    Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. 'Near-miss' events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the 'illusion of control'). Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression. For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex. These findings corroborate the 'non-categorical' nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling.

  19. Striatal hyper-sensitivity during stress in remitted individuals with recurrent depression

    PubMed Central

    Admon, Roee; Holsen, Laura M.; Aizley, Harlyn; Remington, Anne; Whitfield-Gabrieli, Susan; Goldstein, Jill M.; Pizzagalli, Diego A.

    2014-01-01

    Background Increased sensitivity to stress and dysfunctional reward processing are two primary characteristics of Major Depressive Disorder (MDD) that may persist following remission. Preclinical work has established the pivotal role of the striatum in mediating both stress and reward responses. Human neuroimaging studies have corroborated these preclinical findings and highlighted striatal dysfunction in MDD in response to reward, but have yet to investigate striatal function during stress, in particular in individuals with recurrent depression. Methods Thirty three remitted individuals with a history of recurrent MDD (rMDD) and 35 matched healthy controls underwent a validated mild psychological stress task involving viewing of negative stimuli during fMRI. Cortisol and anxiety levels were assessed throughout scanning. Stress-related activation was investigated in three striatal regions: caudate, nucleus accumbens (Nacc), and putamen. Psychophysiological interaction (PPI) analyses probed connectivity of those regions with central structures of the neural stress circuitry, the amygdala and hippocampus. Results The task increased cortisol and anxiety levels, although to a greater extent in rMDD than healthy controls. In response to the negative stimuli, rMDD individuals, but not controls, also exhibited significantly potentiated caudate, Nacc, and putamen activations, as well as increased caudate-amygdala and caudate-hippocampus connectivity. Conclusions Findings highlight striatal hyper-sensitivity in response to a mild psychological stress in rMDD, as manifested by hyper-activation and hyper-connectivity with the amygdala and hippocampus. Striatal hyper-sensitivity during stress might thus constitute a trait mark of depression, providing a potential neural substrate for the interaction between stress and reward dysfunction in MDD. PMID:25483401

  20. Erasing the engram: the unlearning of procedural skills.

    PubMed

    Crossley, Matthew J; Ashby, F Gregory; Maddox, W Todd

    2013-08-01

    Huge amounts of money are spent every year on unlearning programs--in drug-treatment facilities, prisons, psychotherapy clinics, and schools. Yet almost all of these programs fail, since recidivism rates are high in each of these fields. Progress on this problem requires a better understanding of the mechanisms that make unlearning so difficult. Much cognitive neuroscience evidence suggests that an important component of these mechanisms also dictates success on categorization tasks that recruit procedural learning and depend on synaptic plasticity within the striatum. A biologically detailed computational model of this striatal-dependent learning is described (based on Ashby & Crossley, 2011). The model assumes that a key component of striatal-dependent learning is provided by interneurons in the striatum called the tonically active neurons (TANs), which act as a gate for the learning and expression of striatal-dependent behaviors. In their tonically active state, the TANs prevent the expression of any striatal-dependent behavior. However, they learn to pause in rewarding environments and thereby permit the learning and expression of striatal-dependent behaviors. The model predicts that when rewards are no longer contingent on behavior, the TANs cease to pause, which protects striatal learning from decay and prevents unlearning. In addition, the model predicts that when rewards are partially contingent on behavior, the TANs remain partially paused, leaving the striatum available for unlearning. The results from 3 human behavioral studies support the model predictions and suggest a novel unlearning protocol that shows promising initial signs of success. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. Role of contingency in striatal response to incentive in adolescents with anxiety.

    PubMed

    Benson, Brenda E; Guyer, Amanda E; Nelson, Eric E; Pine, Daniel S; Ernst, Monique

    2015-03-01

    This study examines the effect of contingency on reward function in anxiety. We define contingency as the aspect of a situation in which the outcome is determined by one's action-that is, when there is a direct link between one's action and the outcome of the action. Past findings in adolescents with anxiety or at risk for anxiety have revealed hypersensitive behavioral and neural responses to higher value rewards with correct performance. This hypersensitivity to highly valued (salient) actions suggests that the value of actions is determined not only by outcome magnitude, but also by the degree to which the outcome is contingent on correct performance. Thus, contingency and incentive value might each modulate reward responses in unique ways in anxiety. Using fMRI with a monetary reward task, striatal response to cue anticipation is compared in 18 clinically anxious and 20 healthy adolescents. This task manipulates orthogonally reward contingency and incentive value. Findings suggest that contingency modulates the neural response to incentive magnitude differently in the two groups. Specifically, during the contingent condition, right-striatal response tracks incentive value in anxious, but not healthy, adolescents. During the noncontingent condition, striatal response is bilaterally stronger to low than to high incentive in anxious adolescents, while healthy adolescents exhibit the expected opposite pattern. Both contingency and reward magnitude differentiate striatal activation in anxious versus healthy adolescents. These findings may reflect exaggerated concern about performance and/or alterations of striatal coding of reward value in anxious adolescents. Abnormalities in reward function in anxiety may have treatment implications.

  2. Patient-Derived iPSCs and iNs-Shedding New Light on the Cellular Etiology of Neurodegenerative Diseases.

    PubMed

    Tang, Bor Luen

    2018-05-08

    Induced pluripotent stem cells (iPSCs) and induced neuronal (iN) cells are very much touted in terms of their potential promises in therapeutics. However, from a more fundamental perspective, iPSCs and iNs are invaluable tools for the postnatal generation of specific diseased cell types from patients, which may offer insights into disease etiology that are otherwise unobtainable with available animal or human proxies. There are two good recent examples of such important insights with diseased neurons derived via either the iPSC or iN approaches. In one, induced motor neurons (iMNs) derived from iPSCs of Amyotrophic lateral sclerosis/Frontotemporal dementia (ALS/FTD) patients with a C9orf72 repeat expansion revealed a haploinsufficiency of protein function resulting from the intronic expansion and deficiencies in motor neuron vesicular trafficking and lysosomal biogenesis that were not previously obvious in knockout mouse models. In another, striatal medium spinal neurons (MSNs) derived directly from fibroblasts of Huntington’s disease (HD) patients recapitulated age-associated disease signatures of mutant Huntingtin (mHTT) aggregation and neurodegeneration that were not prominent in neurons differentiated indirectly via iPSCs from HD patients. These results attest to the tremendous potential for pathologically accurate and mechanistically revealing disease modelling with advances in the derivation of iPSCs and iNs.

  3. Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder through Striatal Activation

    ERIC Educational Resources Information Center

    Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman

    2008-01-01

    The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.

  4. Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development.

    PubMed

    Perucho, Juan; Gómez, Ana; Muñoz, María Paz; de Yébenes, Justo García; Mena, María Ángeles; Casarejos, María José

    2016-07-01

    The pathological hallmark of Huntington disease (HD) is the intracellular aggregation of mutant huntingtin (mHTT) in striatal neurons and glia associated with the selective loss of striatal medium-sized spiny neurons. Up to the present, the role of glia in HD is poorly understood and has been classically considered secondary to neuronal disorder. Trehalose is a disaccharide known to possess many pharmacological properties, acting as an antioxidant, a chemical chaperone, and an inducer of autophagy. In this study, we analyzed at an early postnatal development stage the abnormalities observed in striatal glial cell cultures of postnatal R6/1 mice (HD glia), under baseline and stressing conditions and the protective effects of trehalose. Our data demonstrate that glial HD alterations already occur at early stages of postnatal development. After 20 postnatal days in vitro, striatal HD glia cultures showed more reactive astrocytes with increased expression of glial fibrillary acidic protein (GFAP) but with less replication capacity, less A2B5(+) glial progenitors and more microglia than wild-type (WT) cultures. HD glia had lower levels of intracellular glutathione (GSH) and was more susceptible to H2O2 and epoxomicin insults. The amount of expressed GDNF and secreted mature-BDNF by HD astrocytes were much lower than by WT astrocytes. In addition, HD glial cultures showed a deregulation of the major proteolytic systems, the ubiquitin-proteasomal system (UPS), and the autophagic pathway. This produces a defective protein quality control, indicated by the elevated levels of ubiquitination and p62 protein. Interestingly, we show that trehalose, through its capacity to induce autophagy, inhibited p62/SQSTM1 accumulation and facilitated the degradation of cytoplasmic aggregates from mHTT and α-synuclein proteins. Trehalose also reduced microglia activation and reversed the disrupted cytoskeleton of astrocytes accompanied with an increase in the replication capacity. In addition, trehalose up-regulated mature-BDNF neurotrophic factor expression and secretion, probably mediating cytoskeletal organization and helping in vesicular BDNF transport. Together, these findings indicate that glia suffers functional early changes in the disease process, changes that may contribute to HD neurodegeneration. Trehalose could be a very promising compound for treatment of HD and other diseases with abnormal protein aggregates. Furthermore our study identifies glial cells as a novel target for trehalose to induce neurotrophic and neuroprotective actions in HD. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sex-related differences in striatal dopaminergic system after traumatic brain injury.

    PubMed

    Xu, Xiupeng; Cao, Shengwu; Chao, Honglu; Liu, Yinlong; Ji, Jing

    2016-06-01

    Several studies have demonstrated alterations in the dopamine (DA) system after traumatic brain injury (TBI). Additionally, the existence of significant sex-related differences in the dopaminergic system has long been recognized. Accordingly, the purpose of the present study was to investigate whether TBI would differentially alter, in female and male mice, the expression and the function of the striatal vesicular monoamine transporter-2 (VMAT-2), an important DA transporter. After controlled cortical impact (CCI) injury, female mice showed significantly lower striatal DA concentrations and K(+)-evoked DA output. By contrast, no significant sex-related differences were observed in the mRNA and protein levels of striatal dopamine transporter (DAT) and VMAT-2 and the methamphetamine (MA)-evoked DA output. These results demonstrated clear sex-related differences in striatal VMAT-2 function in response to TBI and suggested that female mice may be more sensitive to the TBI-induced inhibition of the VMAT-2 function, as indicated by the greater degree of deficits observed when the VMAT-2 DA-storage function was inhibited by TBI. Moreover, the TBI-induced suppression of locomotion was more pronounced than female mice. Such findings highlight the need for sex-specific considerations when examining differences among brain injury conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Striatal dopamine transporter binding for predicting the development of delayed neuropsychological sequelae in suicide attempters by carbon monoxide poisoning: A SPECT study.

    PubMed

    Yang, Kai-Chun; Ku, Hsiao-Lun; Wu, Chia-Liang; Wang, Shyh-Jen; Yang, Chen-Chang; Deng, Jou-Fang; Lee, Ming-Been; Chou, Yuan-Hwa

    2011-12-30

    Carbon monoxide poisoning (COP) after charcoal burning results in delayed neuropsychological sequelae (DNS), which show clinical resemblance to Parkinson's disease, without adequate predictors at present. This study examined the role of dopamine transporter (DAT) binding for the prediction of DNS. Twenty-seven suicide attempters with COP were recruited. Seven of them developed DNS, while the remainder did not. The striatal DAT binding was measured by single photon emission computed tomography with (99m)Tc-TRODAT. The specific uptake ratio was derived based on a ratio equilibrium model. Using a logistic regression model, multiple clinical variables were examined as potential predictors for DNS. COP patients with DNS had a lower binding on left striatal DAT binding than patients without DNS. Logistic regression analysis showed that a combination of initial loss of consciousness and lower left striatal DAT binding predicted the development of DNS. Our data indicate that the left striatal DAT binding could help to predict the development of DNS. This finding not only demonstrates the feasibility of brain imaging techniques for predicting the development of DNS but will also help clinicians to improve the quality of care for COP patients. 2011 Elsevier Ireland Ltd. All rights reserved.

  7. The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies

    PubMed Central

    Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni

    2012-01-01

    To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504

  8. Clozapine and olanzapine but not risperidone impair the pre-frontal striatal system in relation to egocentric spatial orientation in a Y-maze.

    PubMed

    Castro, Cibele Canal; Dos Reis-Lunardelli, Eleonora Araujo; Schmidt, Werner J; Coitinho, Adriana Simon; Izquierdo, Iván

    2007-11-01

    Many studies indicate a dissociation between two forms of orientation: allocentric orientation, in which an organism orients on the basis of cues external to the organism, and egocentric spatial orientation (ESO) by which an organism orients on the basis of proprioceptive information. While allocentric orientation is mediated primarily by the hippocampus and its afferent and efferent connections, ESO is mediated by the prefronto-striatal system. Striatal lesions as well as classical neuroleptics, which block dopamine receptors, act through the prefronto-striatal system and impair ESO. The purpose of the present study was to determine the effects of the atypical antipsychotics clozapine, olanzapine and risperidone which are believed to exert its antipsychotic effects mainly by dopaminergic, cholinergic and serotonergic mechanisms. A delayed-two-alternative-choice-task, under conditions that required ESO and at the same time excluded allocentric spatial orientation was used. Clozapine and olanzapine treated rats made more errors than risperidone treated rats in the delayed alternation in comparison with the controls. Motor abilities were not impaired by any of the drugs. Thus, with regard to the delayed alternation requiring ESO, clozapine and olanzapine but not risperidone affects the prefronto-striatal system in a similar way as classical neuroleptics does.

  9. p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.

    PubMed

    Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy; Gordon, Richard; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-03-01

    Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease

    PubMed Central

    Mazzio, Elizabeth A.; Close, Fran; Soliman, Karam F.A.

    2011-01-01

    Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible. PMID:21340000

  11. Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum.

    PubMed

    Frick, Luciana R; Rapanelli, Maximiliano; Jindachomthong, Kantiya; Grant, Paul; Leckman, James F; Swedo, Susan; Williams, Kyle; Pittenger, Christopher

    2018-03-01

    Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus, or PANDAS, is a syndrome of acute childhood onset of obsessive-compulsive disorder and other neuropsychiatric symptoms in the aftermath of an infection with Group A beta-hemolytic Streptococcus (GABHS). Its pathophysiology remains unclear. PANDAS has been proposed to result from cross-reactivity of antibodies raised against GABHS with brain antigens, but the targets of these antibodies are unclear and may be heterogeneous. We developed an in vivo assay in mice to characterize the cellular targets of antibodies in serum from individuals with PANDAS. We focus on striatal interneurons, which have been implicated in the pathogenesis of tic disorders. Sera from children with well-characterized PANDAS (n = 5) from a previously described clinical trial (NCT01281969), and matched controls, were infused into the striatum of mice; antibody binding to interneurons was characterized using immunofluorescence and confocal microscopy. Antibodies from children with PANDAS bound to ∼80% of cholinergic interneurons, significantly higher than the <50% binding seen with matched healthy controls. There was no elevated binding to two different populations of GABAergic interneurons (PV and nNOS-positive), confirming the specificity of this phenomenon. Elevated binding to cholinergic interneurons resolved in parallel with symptom improvement after treatment with intravenous immunoglobulin. Antibody-mediated dysregulation of striatal cholinergic interneurons may be a locus of pathology in PANDAS. Future clarification of the functional consequences of this specific binding may identify new opportunities for intervention in children with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Iron Accumulates in Huntington’s Disease Neurons: Protection by Deferoxamine

    PubMed Central

    Chen, Jianfang; Lai, Barry; Zhang, Zhaojie; Duce, James A.; Lam, Linh Q.; Volitakis, Irene; Bush, Ashley I.; Hersch, Steven

    2013-01-01

    Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD. PMID:24146952

  13. Neuropathological Basis of Non-Motor Manifestations of Parkinson’s Disease

    PubMed Central

    Adler, Charles H.; Beach, Thomas G.

    2016-01-01

    Non-motor manifestations of Parkinson’s disease (PD) can begin well before motor PD begins. It is now clear, from clinical and autopsy studies, that there is significant Lewy type alpha-synucleinopathy present outside the nigro-striatal pathway, and that this may underlie these non-motor manifestations. This review will discuss neuropathological findings that may underlie non-motor symptoms that either predate motor findings or occur as the disease progresses. PMID:27030013

  14. Constructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigra.

    PubMed

    Zhou, F C; Chiang, Y H; Wang, Y

    1996-11-01

    The physical repair and restoration of a completely damaged pathway in the brain has not been achieved previously. In a previous study, using excitatory amino acid bridging and fetal neural transplantation, we demonstrated that a bridged mesencephalic transplant in the substantia nigra generated an artificial nerve pathway that reinnervated the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats. In the current study, we report that a bridged mesencephalic transplant can anatomically, neurochemically, and functionally reinstate the 6-OHDA-eradicated nigro-striatal pathway. An excitatory amino acid, kainic acid, laid down in a track during the transplant generated a trophic environment that effectively guided the robust growth of transplanted neuronal fibers in a bundle to innervate the distal striatum. Growth occurred at the remarkable speed of approximately 200 microm/d. Two separate and distinct types of dopamine (DA) innervation from the transplant have been achieved for the first time: (1) DA innervation of the striatum, and (2) DA innervation of the pars reticularis of the substantia nigra. In addition, neuronal tracing revealed that reciprocal connections were achieved. The grafted DA neurons in the SNr innervated the host's striatum, whereas the host's striatal neurons, in turn, innervated the graft within 3-8 weeks. Electrochemical volt- ammetry recording revealed the restoration of DA release and clearance in a broad striatal area associated with the DA reinnervation. Furthermore, the amphetamine-induced rotation was attenuated, which indicates that the artificial pathways were motor functional. This study provides additional evidences that our bridged transplantation technique is a potential means for the repair of a completely damaged neuronal pathway.

  15. A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-10-01

    Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.

  16. No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [123I]FP-CIT (DaTSCAN) and SPECT.

    PubMed

    Thomsen, Gerda; Knudsen, Gitte Moos; Jensen, Peter S; Ziebell, Morten; Holst, Klaus K; Asenbaum, Susanne; Booij, Jan; Darcourt, Jacques; Dickson, John C; Kapucu, Ozlem L; Nobili, Flavio; Sabri, Osama; Sera, Terez; Tatsch, Klaus; Tossici-Bolt, Livia; Laere, Koen Van; Borght, Thierry Vander; Varrone, Andrea; Pagani, Marco; Pinborg, Lars Hageman

    2013-05-20

    Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present tobacco smoking: (1) non-smokers (n = 64), (2) ex-smokers (n = 39) and (3) active smokers (n = 26). For imaging of the DAT availability, we used [123I]FP-CIT (DaTSCAN) and single photon emission computed tomography (SPECT). Data were collected in collaboration between 13 SPECT centres located in 10 different European countries. The striatal measure of DAT availability was analyzed in a multiple regression model with age, SPECT centre and smoking as predictor. There was no statistically significant difference in DAT availability between the groups of active smokers, ex-smokers and non-smokers (p = 0.34). Further, we could not demonstrate a significant association between striatal DAT and the number of cigarettes per day or total lifetime cigarette packages in smokers and ex-smokers. Our results do not support the hypothesis that large differences in striatal DAT availability are present in smokers compared to ex-smokers and healthy volunteers with no history of smoking.

  17. Investigating expectation and reward in human opioid addiction with [(11) C]raclopride PET.

    PubMed

    Watson, Ben J; Taylor, Lindsay G; Reid, Alastair G; Wilson, Sue J; Stokes, Paul R; Brooks, David J; Myers, James F; Turkheimer, Federico E; Nutt, David J; Lingford-Hughes, Anne R

    2014-11-01

    The rewarding properties of some abused drugs are thought to reside in their ability to increase striatal dopamine levels. Similar increases have been shown in response to expectation of a positive drug effect. The actions of opioid drugs on striatal dopamine release are less well characterized. We examined whether heroin and the expectation of heroin reward increases striatal dopamine levels in human opioid addiction. Ten opioid-dependent participants maintained on either methadone or buprenorphine underwent [(11) C]raclopride positron emission tomography imaging. Opioid-dependent participants were scanned three times, receiving reward from 50-mg intravenous heroin (diamorphine; pharmaceutical heroin) during the first scan to generate expectation of the same reward at the second scan, during which they only received 0.1-mg intravenous heroin. There was no heroin injection during the third scan. Intravenous 50-mg heroin during the first scan induced pronounced effects leading to high levels of expectation at the second scan. There was no detectable increase in striatal dopamine levels to either heroin reward or expectation of reward. We believe this is the first human study to examine whether expectation of heroin reward increases striatal dopamine levels in opioid addiction. The absence of detectable increased dopamine levels to both the expectation and delivery of a heroin-related reward may have been due to the impact of substitute medication. It does however contrast with the changes seen in abstinent stimulant users, suggesting that striatal dopamine release alone may not play such a pivotal role in opioid-maintained individuals. © 2013 The Authors. Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  18. Differential Effects of Acute Stress on Anticipatory and Consummatory Phases of Reward Processing

    PubMed Central

    Kumar, Poornima; Berghorst, Lisa H.; Nickerson, Lisa D.; Dutra, Sunny J.; Goer, Franziska; Greve, Douglas; Pizzagalli, Diego A.

    2014-01-01

    Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain largely unknown in humans. Emerging evidence suggests that stress has dissociable effects on distinct components of reward processing, as it has been found to potentiate motivation/‘wanting’ during the anticipatory phase but reduce reward responsiveness/‘liking’ during the consummatory phase. To examine the impact of stress on reward processing, we used a monetary incentive delay (MID) task and an acute stress manipulation (negative performance feedback) in conjunction with functional magnetic resonance imaging (fMRI). Fifteen healthy participants performed the MID task under no-stress and stress conditions. We hypothesized that stress would have dissociable effects on the anticipatory and consummatory phases in reward-related brain regions. Specifically, we expected reduced striatal responsiveness during reward consumption (mirroring patterns previously observed in clinical depression) and increased striatal activation during reward anticipation consistent with non-human findings. Supporting our hypotheses, significant Phase (Anticipation/Consumption) x Stress (Stress/No-stress) interactions emerged in the putamen, nucleus accumbens, caudate and amygdala. Post-hoc tests revealed that stress increased striatal and amygdalar activation during anticipation but decreased striatal activation during consumption. Importantly, stress-induced striatal blunting was similar to the profile observed in clinical depression under baseline (no-stress) conditions in prior studies. Given that stress is a pivotal vulnerability factor for depression, these results offer insight to better understand the etiology of this prevalent disorder. PMID:24508744

  19. Unravelling the Intrinsic Functional Organization of the Human Striatum: A Parcellation and Connectivity Study Based on Resting-State fMRI

    PubMed Central

    Jung, Wi Hoon; Jang, Joon Hwan; Park, Jin Woo; Kim, Euitae; Goo, Eun-Hoe; Im, Oh-Soo; Kwon, Jun Soo

    2014-01-01

    As the main input hub of the basal ganglia, the striatum receives projections from the cerebral cortex. Many studies have provided evidence for multiple parallel corticostriatal loops based on the structural and functional connectivity profiles of the human striatum. A recent resting-state fMRI study revealed the topography of striatum by assigning each voxel in the striatum to its most strongly correlated cortical network among the cognitive, affective, and motor networks. However, it remains unclear what patterns of striatal parcellation would result from performing the clustering without subsequent assignment to cortical networks. Thus, we applied unsupervised clustering algorithms to parcellate the human striatum based on its functional connectivity patterns to other brain regions without any anatomically or functionally defined cortical targets. Functional connectivity maps of striatal subdivisions, identified through clustering analyses, were also computed. Our findings were consistent with recent accounts of the functional distinctions of the striatum as well as with recent studies about its functional and anatomical connectivity. For example, we found functional connections between dorsal and ventral striatal clusters and the areas involved in cognitive and affective processes, respectively, and between rostral and caudal putamen clusters and the areas involved in cognitive and motor processes, respectively. This study confirms prior findings, showing similar striatal parcellation patterns between the present and prior studies. Given such striking similarity, it is suggested that striatal subregions are functionally linked to cortical networks involving specific functions rather than discrete portions of cortical regions. Our findings also demonstrate that the clustering of functional connectivity patterns is a reliable feature in parcellating the striatum into anatomically and functionally meaningful subdivisions. The striatal subdivisions identified here may have important implications for understanding the relationship between corticostriatal dysfunction and various neurodegenerative and psychiatric disorders. PMID:25203441

  20. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia

    PubMed Central

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A.; Quik, Maryka

    2016-01-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos+ D2 MSNs and decreased c-Fos+ non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. PMID:27658674

  1. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study

    PubMed Central

    Greenberg, Tsafrir; Chase, Henry W.; Almeida, Jorge R.; Stiffler, Richelle; Zevallos, Carlos R.; Aslam, Haris A.; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G.; Oquendo, Maria A.; McGrath, Patrick J.; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H.; Phillips, Mary L.

    2016-01-01

    Objective Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error-(discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. Method A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Results Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. Conclusions The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward identifying potential biosignatures of treatment response. PMID:26183698

  2. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study.

    PubMed

    Greenberg, Tsafrir; Chase, Henry W; Almeida, Jorge R; Stiffler, Richelle; Zevallos, Carlos R; Aslam, Haris A; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G; Oquendo, Maria A; McGrath, Patrick J; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H; Phillips, Mary L

    2015-09-01

    Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error- (discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward identifying potential biosignatures of treatment response.

  3. Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome.

    PubMed

    van Duin, Esther D A; Kasanova, Zuzana; Hernaus, Dennis; Ceccarini, Jenny; Heinzel, Alexander; Mottaghy, Felix; Mohammadkhani-Shali, Siamak; Winz, Oliver; Frank, Michael; Beck, Merrit C H; Booij, Jan; Myin-Germeys, Inez; van Amelsvoort, Thérèse

    2018-06-01

    22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D 2/3 receptor [ 18 F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BP ND ) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.

  4. Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments

    PubMed Central

    Crittenden, Jill R.; Graybiel, Ann M.

    2011-01-01

    The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders. PMID:21941467

  5. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Thanos, Panayotis K.; Logan, Jean; Alexoff, David; Ding, Yu-Shin; Wong, Christopher; Ma, Yeming; Pradhan, Kith

    2009-01-01

    Dopamine's role in inhibitory control is well recognized and its disruption may contribute to behavioral disorders of discontrol such as obesity. However, the mechanism by which impaired dopamine neurotransmission interferes with inhibitory control is poorly understood. We had previously documented a reduction in dopamine D2 receptors in morbidly obese subjects. To assess if the reductions in dopamine D2 receptors were associated with activity in prefrontal brain regions implicated in inhibitory control we assessed the relationship between dopamine D2 receptor availability in striatum with brain glucose metabolism (marker of brain function) in ten morbidly obese subjects (BMI>40 kg/m2) and compared it to that in twelve non-obese controls. PET was used with [11C]raclopride to assess D2 receptors and with [18F] FDG to assess regional brain glucose metabolism. In obese subjects striatal D2 receptor availability was lower than controls and was positively correlated with metabolism in dorsolateral prefrontal, medial orbitofrontal, anterior cingulate gyrus and somatosensory cortices. In controls correlations with prefrontal metabolism were not significant but comparisons with those in obese subjects were not significant, which does not permit to ascribe the associations as unique to obesity. The associations between striatal D2 receptors and prefrontal metabolism in obese subjects suggest that decreases in striatal D2 receptors could contribute to overeating via their modulation of striatal prefrontal pathways, which participate in inhibitory control and salience attribution. The association between striatal D2 receptors and metabolism in somatosensory cortices (regions that process palatability) could underlie one of the mechanisms through which dopamine regulates the reinforcing properties of food. PMID:18598772

  6. CB1 Cannabinoid Receptor Expression in the Striatum: Association with Corticostriatal Circuits and Developmental Regulation

    PubMed Central

    Van Waes, Vincent; Beverley, Joel A.; Siman, Homayoun; Tseng, Kuei Y.; Steiner, Heinz

    2012-01-01

    Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains). We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25) and then progressively decreases toward adolescent (P40) and adult (P70) levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors) tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors) receive inputs from cortical regions with higher expression (medial prefrontal cortex). In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important. PMID:22416230

  7. Acute effects of 3,4-methylenedioxymethamphetamine on striatal single-unit activity and behavior in freely moving rats: differential involvement of dopamine D(1) and D(2) receptors.

    PubMed

    Ball, Kevin T; Budreau, Daniel; Rebec, George V

    2003-12-24

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused amphetamine derivative that increases dopamine (DA) and serotonin release via a reverse transport mechanism. Changes in the activity of striatal neurons in response to increased DA transmission may shape the behavioral patterns associated with amphetamine-like stimulants. To determine how the striatum participates in MDMA-induced locomotor activation, we recorded the activity of >100 single units in the striatum of freely moving rats in response to a dose that increased motor activation (5.0 mg/kg). MDMA had a predominantly excitatory effect on neuronal activity that was positively correlated with the magnitude of locomotor activation. Categorizing neurons according to baseline locomotor responsiveness revealed that MDMA excited significantly more neurons showing movement-related increases in activity compared to units that were non-movement-related or associated with movement-related decreases in activity. Further analysis revealed that the drug-induced striatal activation was not simply secondary to the behavioral change, indicating a primary action of MDMA on striatal motor circuits. Prior administration of SCH-23390 (0.2 mg/kg), a D(1) antagonist, resulted in a late onset of MDMA-induced locomotion, which correlated positively with delayed neuronal excitations. Conversely, prior administration of eticlopride (0.2 mg/kg), a D(2) antagonist, completely abolished MDMA-induced locomotion, which paralleled its blockade of MDMA-induced excitatory neuronal responses. Our results highlight the importance of striatal neuronal activity in shaping the behavioral response to MDMA, and suggest that DA D(1) and D(2) receptors have distinct functional roles in the expression of MDMA-induced striatal and locomotor activation.

  8. Dopamine D2 Receptor Signaling in the Nucleus Accumbens Comprises a Metabolic-Cognitive Brain Interface Regulating Metabolic Components of Glucose Reinforcement.

    PubMed

    Michaelides, Michael; Miller, Michael L; DiNieri, Jennifer A; Gomez, Juan L; Schwartz, Elizabeth; Egervari, Gabor; Wang, Gene Jack; Mobbs, Charles V; Volkow, Nora D; Hurd, Yasmin L

    2017-11-01

    Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.

  9. Striatal D2/3 Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome

    PubMed Central

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus; Jensen, Lars Thorbjørn; Nielsen, Mette Ødegaard; Allerup, Peter; Bak, Nikolaj; Rasmussen, Hans; Frandsen, Erik; Rostrup, Egill; Glenthøj, Birte Yding

    2015-01-01

    One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D2/3 receptor binding potential (BPp) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D2/3 receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [123I]iodobenzamide ([123I]-IBZM) was used to examine striatal D2/3 receptor BPp. Patients were examined before and after 6 weeks of treatment with the D2/3 receptor antagonist amisulpride. There was a significant negative correlation between striatal D2/3 receptor BPp at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BPp in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BPp of dopamine D2/3 receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BPp have a better treatment response than patients with a high BPp. The results further suggest that functioning may decline at high levels of dopamine receptor blockade. PMID:25698711

  10. Effects of progesterone administered after MPTP on dopaminergic neurons of male mice.

    PubMed

    Litim, Nadhir; Morissette, Marc; Di Paolo, Thérèse

    2017-05-01

    Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Striatal connectivity changes following gambling wins and near-misses: Associations with gambling severity

    PubMed Central

    van Holst, Ruth J.; Chase, Henry W.; Clark, Luke

    2014-01-01

    Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. ‘Near-miss’ events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the ‘illusion of control’). Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression. For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex. These findings corroborate the ‘non-categorical’ nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling. PMID:25068112

  12. Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice.

    PubMed

    Deng, Y P; Wong, T; Bricker-Anthony, C; Deng, B; Reiner, A

    2013-12-01

    Motor slowing, forebrain white matter loss, and striatal shrinkage have been reported in premanifest Huntington's disease (HD) prior to overt striatal neuron loss. We carried out detailed LM and EM studies in a genetically precise HD mimic, heterozygous Q140 HD knock-in mice, to examine the possibility that loss of corticostriatal and thalamostriatal terminals prior to striatal neuron loss underlies these premanifest HD abnormalities. In our studies, we used VGLUT1 and VGLUT2 immunolabeling to detect corticostriatal and thalamostriatal (respectively) terminals in dorsolateral (motor) striatum over the first year of life, prior to striatal projection neuron pathology. VGLUT1+ axospinous corticostriatal terminals represented about 55% of all excitatory terminals in striatum, and VGLUT2+ axospinous thalamostriatal terminals represented about 35%, with VGLUT1+ and VGLUT2+ axodendritic terminals accounting for the remainder. In Q140 mice, a significant 40% shortfall in VGLUT2+ axodendritic thalamostriatal terminals and a 20% shortfall in axospinous thalamostriatal terminals were already observed at 1 month of age, but VGLUT1+ terminals were normal in abundance. The 20% deficiency in VGLUT2+ thalamostriatal axospinous terminals persisted at 4 and 12 months in Q140 mice, and an additional 30% loss of VGLUT1+ corticostriatal terminals was observed at 12 months. The early and persistent deficiency in thalamostriatal axospinous terminals in Q140 mice may reflect a development defect, and the impoverishment of this excitatory drive to striatum may help explain early motor defects in Q140 mice and in premanifest HD. The loss of corticostriatal terminals at 1 year in Q140 mice is consistent with prior evidence from other mouse models of corticostriatal disconnection early during progression, and can explain both the measurable bradykinesia and striatal white matter loss in late premanifest HD. © 2013.

  13. Generalization of value in reinforcement learning by humans.

    PubMed

    Wimmer, G Elliott; Daw, Nathaniel D; Shohamy, Daphna

    2012-04-01

    Research in decision-making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well described by reinforcement learning theories. However, basic reinforcement learning is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision-making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used functional magnetic resonance imaging and computational model-based analyses to examine the joint contributions of these mechanisms to reinforcement learning. Humans performed a reinforcement learning task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about option values based on experience with the other options and to generalize across them. We observed blood oxygen level-dependent (BOLD) activity related to learning in the striatum and also in the hippocampus. By comparing a basic reinforcement learning model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of reinforcement learning and striatal BOLD, both choices and striatal BOLD activity were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional connectivity between the ventral striatum and hippocampus was modulated, across participants, by the ability of the augmented model to capture participants' choice. Our results thus point toward an interactive model in which striatal reinforcement learning systems may employ relational representations typically associated with the hippocampus. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    PubMed

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.

  15. Time Processing in Children with Tourette's Syndrome

    ERIC Educational Resources Information Center

    Vicario, Carmelo Mario; Martino, Davide; Spata, Felice; Defazio, Giovanni; Giacche, Roberta; Martino, Vito; Rappo, Gaetano; Pepi, Anna Maria; Silvestri, Paola Rosaria; Cardona, Francesco

    2010-01-01

    Background: Tourette syndrome (TS) is characterized by dysfunctional connectivity between prefrontal cortex and sub-cortical structures, and altered meso-cortical and/or meso-striatal dopamine release. Since time processing is also regulated by fronto-striatal circuits and modulated by dopaminergic transmission, we hypothesized that time…

  16. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    PubMed

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  17. Lrrk2 and alpha-synuclein are co-regulated in rodent striatum.

    PubMed

    Westerlund, Marie; Ran, Caroline; Borgkvist, Anders; Sterky, Fredrik H; Lindqvist, Eva; Lundströmer, Karin; Pernold, Karin; Brené, Stefan; Kallunki, Pekka; Fisone, Gilberto; Olson, Lars; Galter, Dagmar

    2008-12-01

    LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.

  18. Cortico-striatal synaptic defects and OCD-like behaviors in SAPAP3 mutant mice

    PubMed Central

    Welch, Jeffrey M.; Lu, Jing; Rodriguiz, Ramona M.; Trotta, Nicholas C.; Peca, Joao; Ding, Jin-Dong; Feliciano, Catia; Chen, Meng; Adams, J. Paige; Luo, Jianhong; Dudek, Serena M.; Weinberg, Richard J.; Calakos, Nicole; Wetsel, William C.; Feng, Guoping

    2008-01-01

    Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, though the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of SAPAP3 exhibit increased anxiety and compulsive grooming behavior leading to facial hair loss and skin lesions; both behaviors are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural, and biochemical studies of SAPAP3 mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of SAPAP3 in the striatum rescues the synaptic and behavioral defects of SAPAP3 mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviors. PMID:17713528

  19. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Telegdy, Gyula

    2009-05-01

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

  20. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats.

    PubMed

    Hankir, Mohammed K; Seyfried, Florian; Hintschich, Constantin A; Diep, Thi-Ai; Kleberg, Karen; Kranz, Mathias; Deuther-Conrad, Winnie; Tellez, Luis A; Rullmann, Michael; Patt, Marianne; Teichert, Jens; Hesse, Swen; Sabri, Osama; Brust, Peter; Hansen, Harald S; de Araujo, Ivan E; Krügel, Ute; Fenske, Wiebke K

    2017-02-07

    Bariatric surgery remains the single most effective long-term treatment modality for morbid obesity, achieved mainly by lowering caloric intake through as yet ill-defined mechanisms. Here we show in rats that Roux-en-Y gastric bypass (RYGB)-like rerouting of ingested fat mobilizes lower small intestine production of the fat-satiety molecule oleoylethanolamide (OEA). This was associated with vagus nerve-driven increases in dorsal striatal dopamine release. We also demonstrate that RYGB upregulates striatal dopamine 1 receptor (D1R) expression specifically under high-fat diet feeding conditions. Mechanistically, interfering with local OEA, vagal, and dorsal striatal D1R signaling negated the beneficial effects of RYGB on fat intake and preferences. These findings delineate a molecular/systems pathway through which bariatric surgery improves feeding behavior and may aid in the development of novel weight loss strategies that similarly modify brain reward circuits compromised in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  2. Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF.

    PubMed

    Puerta, Elena; Hervias, Isabel; Barros-Miñones, Lucía; Jordan, Joaquin; Ricobaraza, Ana; Cuadrado-Tejedor, Mar; García-Osta, Ana; Aguirre, Norberto

    2010-05-01

    In this study we tested whether phosphodiesterase 5 (PDE5) inhibitors, sildenafil and vardenafil, would afford protection against 3-nitropropionic acid (3NP), which produces striatal lesions that closely mimic some of the neuropathological features of Huntington's Disease (HD). The neurotoxin was given over 5 days by constant systemic infusion using osmotic minipumps. Animals treated with PDE5 inhibitors (sildenafil or vardenafil) showed improved neurologic scores, reduced the loss of striatal DARPP-32 protein levels and lesion volumes, and decreased calpain activation produced by 3NP. This protective effect was independent of changes in 3NP-induced succinate dehydrogenase inhibition. Furthermore, striatal p-CREB levels along with the expression of BDNF were significantly increased in sildenafil-treated rats. In summary, PDE5 inhibitors protected against 3NP-induced striatal degeneration by reducing calpain activation and by promoting survival pathways. These data encourage further evaluation of PDE5 inhibitors in transgenic mouse models of HD. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    PubMed

    McGill, Anne-Thea

    2014-01-01

    The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing 'common or garden' food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and metabolic inflammation, or metaflammation, allow susceptibility to infectious, degenerative atherosclerotic cardiovascular, autoimmune, neurodegenerative and dysplastic diseases. Other relevant human-specific co-adaptations are examined, and encompass the unusual ability to store fat, certain vitamin pathways, the generalised but flexible intestine and microbiota, and slow development and longevity. This theory has significant past and future corollaries, which are explored in a separate article by McGill, A-T, in Archives of Public Health, 72: 31.

  4. Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca

    2017-12-01

    The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparative assessment of 6-[18 F]fluoro-L-m-tyrosine and 6-[18 F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson's disease rat model.

    PubMed

    Becker, Guillaume; Bahri, Mohamed Ali; Michel, Anne; Hustadt, Fabian; Garraux, Gaëtan; Luxen, André; Lemaire, Christian; Plenevaux, Alain

    2017-05-01

    Because of the progressive loss of nigro-striatal dopaminergic terminals in Parkinson's disease (PD), in vivo quantitative imaging of dopamine (DA) containing neurons in animal models of PD is of critical importance in the preclinical evaluation of highly awaited disease-modifying therapies. Among existing methods, the high sensitivity of positron emission tomography (PET) is attractive to achieve that goal. The aim of this study was to perform a quantitative comparison of brain images obtained in 6-hydroxydopamine (6-OHDA) lesioned rats using two dopaminergic PET radiotracers, namely [ 18 F]fluoro-3,4-dihydroxyphenyl-L-alanine ([ 18 F]FDOPA) and 6-[ 18 F]fluoro-L-m-tyrosine ([ 18 F]FMT). Because the imaging signal is theoretically less contaminated by metabolites, we hypothesized that the latter would show stronger relationship with behavioural and post-mortem measures of striatal dopaminergic deficiency. We used a within-subject design to measure striatal [ 18 F]FMT and [ 18 F]FDOPA uptake in eight partially lesioned, eight fully lesioned and ten sham-treated rats. Animals were pretreated with an L-aromatic amino acid decarboxylase inhibitor. A catechol-O-methyl transferase inhibitor was also given before [ 18 F]FDOPA PET. Quantitative estimates of striatal uptake were computed using conventional graphical Patlak method. Striatal dopaminergic deficiencies were measured with apomorphine-induced rotations and post-mortem striatal DA content. We observed a strong relationship between [ 18 F]FMT and [ 18 F]FDOPA estimates of decreased uptake in the denervated striatum using the tissue-derived uptake rate constant K c . However, only [ 18 F]FMT K c succeeded to discriminate between the partial and the full 6-OHDA lesion and correlated well with the post-mortem striatal DA content. This study indicates that the [ 18 F]FMT could be more sensitive, with respect of [ 18 F]FDOPA, to investigate DA terminals loss in 6-OHDA rats, and open the way to in vivo L-aromatic amino acid decarboxylase activity targeting in future investigations on progressive PD models. © 2017 International Society for Neurochemistry.

  6. Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.

    PubMed

    Kaasinen, Valtteri; Vahlberg, Tero

    2017-12-01

    A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.

  7. D2 dopamine receptor activation inhibits basal and forskolin-evoked acetylcholine release from dissociated striatal cholinergic interneurons.

    PubMed

    Login, I S

    1997-02-21

    We tested whether D2 ligands inhibit basal and forskolin-stimulated [3H]ACh release from dissociated striata, as opposed to striatal slices. Quinpirole inhibited both basal (40% maximal inhibition; IC50 approximately 50 nM) and 10 microM forskolin-stimulated release (80% inhibition; IC50 approximately 25 nM quinpirole) and both actions were blocked by a D2 antagonist. Vesamicol prevented the quinpirole and forskolin actions. The ability of D2 agonists to inhibit basal and cyclase-stimulated acetylcholine release emanating from vesamicol-sensitive vesicles appears to be tonically suppressed by inhibitory elements within striatal circuitry.

  8. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    PubMed

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  9. Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.

    PubMed

    Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel

    2018-04-01

    This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.

  10. Regulation of striatal nitric oxide synthesis by local dopamine and glutamate interactions

    PubMed Central

    Park, Diana J.; West, Anthony R.

    2009-01-01

    Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF-81297 was blocked following intrastriatal infusion of: 1) the D1/5 receptor antagonist SCH-23390, 2) the nNOS inhibitor 7-nitroindazole, 3) the nonspecific ionotropic glutamate receptor antagonist kynurenic acid, and 4) the selective NMDA receptor antagonist 3-phosphonopropyl-piperazine-2-carboxylic acid. Glycine coperfusion did not affect SKF-81297-induced NO efflux. Furthermore, intrastriatal infusion of SKF-81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF-81297 were both blocked by intrastriatal infusion of SCH-23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA-glutamate interactions play a critical role in stimulating striatal nNOS activity. PMID:19799710

  11. Adversity in childhood linked to elevated striatal dopamine function in adulthood.

    PubMed

    Egerton, Alice; Valmaggia, Lucia R; Howes, Oliver D; Day, Fern; Chaddock, Christopher A; Allen, Paul; Winton-Brown, Toby T; Bloomfield, Michael A P; Bhattacharyya, Sagnik; Chilcott, Jack; Lappin, Julia M; Murray, Robin M; McGuire, Philip

    2016-10-01

    Childhood adversity increases the risk of psychosis in adulthood. Theoretical and animal models suggest that this effect may be mediated by increased striatal dopamine neurotransmission. The primary objective of this study was to examine the relationship between adversity in childhood and striatal dopamine function in early adulthood. Secondary objectives were to compare exposure to childhood adversity and striatal dopamine function in young people at ultra high risk (UHR) of psychosis and healthy volunteers. Sixty-seven young adults, comprising 47 individuals at UHR for psychosis and 20 healthy volunteers were recruited from the same geographic area and were matched for age, gender and substance use. Presynaptic dopamine function in the associative striatum was assessed using 18F-DOPA positron emission tomography. Childhood adversity was assessed using the Childhood Experience of Care and Abuse questionnaire. Within the sample as a whole, both severe physical or sexual abuse (T63=2.92; P=0.005), and unstable family arrangements (T57=2.80; P=0.007) in childhood were associated with elevated dopamine function in the associative striatum in adulthood. Comparison of the UHR and volunteer subgroups revealed similar incidence of childhood adverse experiences, and there was no significant group difference in dopamine function. This study provides evidence that childhood adversity is linked to elevated striatal dopamine function in adulthood. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Neurotrophin-3 restores synaptic plasticity in the striatum of a mouse model of Huntington's disease.

    PubMed

    Gómez-Pineda, Victor G; Torres-Cruz, Francisco M; Vivar-Cortés, César I; Hernández-Echeagaray, Elizabeth

    2018-04-01

    Neurotrophin-3 (NT-3) is expressed in the mouse striatum; however, it is not clear the NT-3 role in striatal physiology. The expression levels of mRNAs and immune localization of the NT-3 protein and its receptor TrkC are altered in the striatum following damage induced by an in vivo treatment with 3-nitropropionic acid (3-NP), a mitochondrial toxin used to mimic the histopathological hallmarks of Huntington's disease (HD). The aim of this study was to evaluate the role of NT-3 on corticostriatal synaptic transmission and its plasticity in both the control and damaged striatum. Corticostriatal population spikes were electrophysiologically recorded and striatal synaptic plasticity was induced by high-frequency stimulation. Further, the phosphorylation status of Trk receptors was tested under conditions that imitated electrophysiological experiments. NT-3 modulates both synaptic transmission and plasticity in the striatum; nonetheless, synaptic plasticity was modified by the 3-NP treatment, where instead of producing striatal long-term depression (LTD), long-term potentiation (LTP) was obtained. Moreover, the administration of NT-3 in the recording bath restored the plasticity observed under control conditions (LTD) in this model of striatal degeneration. NT-3 modulates corticostriatal transmission through TrkB stimulation and restores striatal LTD by signaling through its TrkC receptor. © 2018 John Wiley & Sons Ltd.

  13. Fully Automated Quantification of the Striatal Uptake Ratio of [99mTc]-TRODAT with SPECT Imaging: Evaluation of the Diagnostic Performance in Parkinson's Disease and the Temporal Regression of Striatal Tracer Uptake

    PubMed Central

    Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Weng, Yi-Hsin

    2015-01-01

    Purpose. We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [99mTc]-TRODAT with SPECT imaging. Procedures. A normal [99mTc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. Results. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R 2 = 0.84. Conclusions. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients. PMID:26366413

  14. Fully Automated Quantification of the Striatal Uptake Ratio of [(99m)Tc]-TRODAT with SPECT Imaging: Evaluation of the Diagnostic Performance in Parkinson's Disease and the Temporal Regression of Striatal Tracer Uptake.

    PubMed

    Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Yen, Tzu-Chen; Weng, Yi-Hsin

    2015-01-01

    We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [(99m)Tc]-TRODAT with SPECT imaging. A normal [(99m)Tc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R (2) = 0.84. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients.

  15. Changes in Striatal Dopamine Release Associated with Human Motor-Skill Acquisition

    PubMed Central

    Kawashima, Shoji; Ueki, Yoshino; Kato, Takashi; Matsukawa, Noriyuki; Mima, Tatsuya; Hallett, Mark; Ito, Kengo; Ojika, Kosei

    2012-01-01

    The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The 11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition. PMID:22355391

  16. Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity.

    PubMed

    Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse

    2007-11-01

    The selective estrogen receptor modulator tamoxifen and estradiol were shown to protect nigrostriatal dopamine concentration loss by methamphetamine in female mice whereas male mice were protected only by tamoxifen. The present study examined the protective properties of tamoxifen in male mice on several nigrostriatal dopaminergic markers and body temperature. Intact male mice were administered 12.5 or 50 microg tamoxifen 24 h before methamphetamine treatment. Basal body temperatures of male mice remained unchanged by the tamoxifen treatment. Methamphetamine reduced striatal dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations, striatal and substantia nigra dopamine and vesicular monoamine transporter specific binding as well substantia nigra dopamine and vesicular monoamine transporter mRNA levels and increased striatal preproenkephalin mRNA levels. These methamphetamine effects were not altered by 12.5 microg tamoxifen except for increased striatal dopamine metabolites and turnover. Tamoxifen at 50 microg reduced the methamphetamine effect on striatal dopamine concentration, dopamine transporter specific binding and prevented the increase in preproenkephalin mRNA levels; in the substantia nigra tamoxifen prevented the decrease of dopamine transporter mRNA levels. The present results show a tamoxifen dose-dependent prevention of loss of various dopaminergic markers against methamphetamine-induced toxicity in male mice. Since this is the only known hormonal protection of male mice against methamphetamine toxicity, these findings provide important new information on specific parameters of nigrostriatal dopaminergic function preserved by tamoxifen.

  17. Early uneven ear input induces long-lasting differences in left-right motor function.

    PubMed

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  18. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping.

    PubMed

    Beier, Kevin T; Steinberg, Elizabeth E; DeLoach, Katherine E; Xie, Stanley; Miyamichi, Kazunari; Schwarz, Lindsay; Gao, Xiaojing J; Kremer, Eric J; Malenka, Robert C; Luo, Liqun

    2015-07-30

    Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons

    PubMed Central

    Kraft, Andrew D.; Kaltenbach, Linda S.; Lo, Donald C.; Harry, G. Jean

    2011-01-01

    In Huntington's disease (HD), mutated huntingtin (mhtt) causes striatal neurodegeneration which is paralleled by elevated microglia cell numbers. In vitro cortico-striatal slice and primary neuronal culture models, in which neuronal expression of mhtt fragments drives HD-like neurotoxicity, were employed to examine wild type microglia during both the initiation and progression of neuronal pathology. As neuronal pathology progressed, microglia initially localized in the vicinity of neurons expressing mhtt fragments increased in number, demonstrated morphological evidence of activation, and expressed the proliferation marker, Ki67. These microglia were positioned along irregular neurites, but did not localize with mhtt inclusions nor exacerbate mhtt fragment-induced neurotoxicity. Prior to neuronal pathology, microglia upregulated Iba1, signaling a functional shift. With neurodegeneration, interleukin-6 and complement component 1q were increased. The results suggest a stimulatory, proliferative signal for microglia present at the onset of mhtt fragment-induced neurodegeneration. Thus, microglia effect a localized inflammatory response to neuronal mhtt expression that may serve to direct microglial removal of dysfunctional neurites or aberrant synapses, as is required for reparative actions in vivo. PMID:21482444

  20. Robust Induction of DARPP32-Expressing GABAergic Striatal Neurons from Human Pluripotent Stem Cells.

    PubMed

    Fjodorova, Marija; Li, Meng

    2018-01-01

    Efficient generation of disease relevant neuronal subtypes from human pluripotent stem cells (PSCs) is fundamental for realizing their promise in disease modeling, pharmaceutical drug screening and cell therapy. Here we describe a step-by-step protocol for directing the differentiation of human embryonic and induced PSCs (hESCs and hiPSCs, respectively) toward medium spiny neurons, the type of cells that are preferentially lost in Huntington's disease patients. This method is based on a novel concept of Activin A-dependent induction of the lateral ganglionic/striatal fate using a simple monolayer culture paradigm under chemically defined conditions. Transplantable medium spiny neuron progenitors amenable for cryopreservation are produced in less than 20 days, which differentiate and mature into a high yield of dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP32) expressing gamma-aminobutyric acid (GABA)-ergic neurons in vitro and in the adult rat brain after transplantation. This method has been validated in multiple hESC and hiPSC lines, and is independent of the regime for PSC maintenance.

  1. Interaction between interleukin-1β and type-1 cannabinoid receptor is involved in anxiety-like behavior in experimental autoimmune encephalomyelitis.

    PubMed

    Gentile, Antonietta; Fresegna, Diego; Musella, Alessandra; Sepman, Helena; Bullitta, Silvia; De Vito, Francesca; Fantozzi, Roberta; Usiello, Alessandro; Maccarrone, Mauro; Mercuri, Nicola B; Lutz, Beat; Mandolesi, Georgia; Centonze, Diego

    2016-09-02

    Mood disorders, including anxiety and depression, are frequently diagnosed in multiple sclerosis (MS) patients, even independently of the disabling symptoms associated with the disease. Anatomical, biochemical, and pharmacological evidence indicates that type-1 cannabinoid receptor (CB1R) is implicated in the control of emotional behavior and is modulated during inflammatory neurodegenerative diseases such as MS and experimental autoimmune encephalomyelitis (EAE). We investigated whether CB1R could exert a role in anxiety-like behavior in mice with EAE. We performed behavioral, pharmacological, and electrophysiological experiments to explore the link between central inflammation, mood, and CB1R function in EAE. We observed that EAE-induced anxiety was associated with the downregulation of CB1R-mediated control of striatal GABA synaptic transmission and was exacerbated in mice lacking CB1R (CB1R-KO mice). Central blockade of interleukin-1β (IL-1β) reversed the anxiety-like phenotype of EAE mice, an effect associated with the concomitant rescue of dopamine (DA)-regulated spontaneous behavior, and DA-CB1R neurotransmission, leading to the rescue of striatal CB1R sensitivity. Overall, results of the present investigation indicate that synaptic dysfunction linked to CB1R is involved in EAE-related anxiety and motivation-based behavior and contribute to clarify the complex neurobiological mechanisms underlying mood disorders associated to MS.

  2. Suppressing aberrant GluN3A expression rescues NMDA receptor dysfunction, synapse loss and motor and cognitive decline in Huntington's disease models

    PubMed Central

    Marco, Sonia; Giralt, Albert; Petrovic, Milos M.; Pouladi, Mahmoud A.; Martínez-Turrillas, Rebeca; Martínez-Hernández, José; Kaltenbach, Linda S.; Torres-Peraza, Jesús; Graham, Rona K.; Watanabe, Masahiko; Luján, Rafael; Nakanishi, Nobuki; Lipton, Stuart A.; Lo, Donald C.; Hayden, Michael R.; Alberch, Jordi; Wesseling, John F.

    2013-01-01

    Huntington's disease is caused by an expanded polyglutamine repeat in huntingtin (Htt), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in NMDA-type glutamate receptors (NMDARs) have been implicated, yet it remains unclear how the Htt mutation impacts NMDAR function and direct evidence for a causative role is missing. Here we show that mutant Htt re-directs an intracellular store of juvenile NMDARs to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the GluN3A subunit-specific endocytic adaptor PACSIN1. Overexpressing GluN3A in wild-type striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline, and reduced striatal atrophy and neuronal loss in the YAC128 model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease, and suggest that therapies targeting GluN3A or pathogenic Htt-PACSIN1 interactions might prevent or delay disease progression. PMID:23852340

  3. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model.

    PubMed

    Fu, Xi; Gao, Hongjie; Tian, Fengyan; Gao, Jinzhi; Lou, Liping; Liang, Yan; Ning, Qin; Luo, Xiaoping

    2014-01-01

    Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.

  4. Mechanistic Effects of Amino Acids and Glucose in a Novel Glutaric Aciduria Type 1 Cell Model

    PubMed Central

    Fu, Xi; Gao, Hongjie; Tian, Fengyan; Gao, Jinzhi; Lou, Liping; Liang, Yan; Ning, Qin; Luo, Xiaoping

    2014-01-01

    Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease. PMID:25333616

  5. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. Copyright © 2016 IBRO. All rights reserved.

  6. Anethole dithiolethione prevents oxidative damage in glutathione-depleted astrocytes.

    PubMed

    Drukarch, B; Schepens, E; Stoof, J C; Langeveld, C H

    1997-06-25

    Astrocytes protect neurons against reactive oxygen species such as hydrogen peroxide, a capacity which reportedly is abolished following loss of the antioxidant glutathione. Anethole dithiolethione, a sulfur-containing compound which is used in humans, is known to increase cellular glutathione levels and thought thereby to protect against oxidative damage. In the present study we found that anethole dithiolethione increased the glutathione content of cultured rat striatal astrocytes. This effect was abolished by coincubation with the glutathione synthesis inhibitor buthionine sulfoximine. Nevertheless, in the presence of buthionine sulfoximine, despite the lack of an increase in the lowered glutathione level, anethole dithiolethione fully protected the astrocytes against the enhanced toxicity of hydrogen peroxide. Thus, apparently other mechanisms than stimulation of glutathione synthesis are involved in the compound's protective action in astrocytes. Considering the occurrence of lowered glutathione levels in neurodegenerative syndromes, we conclude that further evaluation of the therapeutic potential of anethole dithiolethione is warranted.

  7. The prefrontal cortex: a target for antipsychotic drugs.

    PubMed

    Artigas, F

    2010-01-01

    At therapeutic doses, classical antipsychotic drugs occupy a large proportion of subcortical dopamine D2 receptors, whereas atypical antipsychotics preferentially occupy cortical 5-HT(2) receptors. However, the exact cellular and network basis of their therapeutic action is not fully understood. To review the mechanism of action of antipsychotic drugs with a particular emphasis on their action in the prefrontal cortex (PFC). The PFC controls a large number of higher brain functions altered in schizophrenia. Histological studies indicate the presence of a large proportion of PFC neurons expressing monoaminergic receptors sensitive to the action of atypical- and to a lesser extentclassical antipsychotic drugs. Functional studies also indicate that both drug families act at PFC level. Atypical antipsychotic drugs likely exert their therapeutic activity by a preferential action on PFC neurons, thus modulating the PFC output to basal ganglia circuits. Classical antipsychotics also interact with these PFC targets in addition to blocking massively striatal D2 receptors.

  8. Food reward in the absence of taste receptor signaling.

    PubMed

    de Araujo, Ivan E; Oliveira-Maia, Albino J; Sotnikova, Tatyana D; Gainetdinov, Raul R; Caron, Marc G; Nicolelis, Miguel A L; Simon, Sidney A

    2008-03-27

    Food palatability and hedonic value play central roles in nutrient intake. However, postingestive effects can influence food preferences independently of palatability, although the neurobiological bases of such mechanisms remain poorly understood. Of central interest is whether the same brain reward circuitry that is responsive to palatable rewards also encodes metabolic value independently of taste signaling. Here we show that trpm5-/- mice, which lack the cellular machinery required for sweet taste transduction, can develop a robust preference for sucrose solutions based solely on caloric content. Sucrose intake induced dopamine release in the ventral striatum of these sweet-blind mice, a pattern usually associated with receipt of palatable rewards. Furthermore, single neurons in this same ventral striatal region showed increased sensitivity to caloric intake even in the absence of gustatory inputs. Our findings suggest that calorie-rich nutrients can directly influence brain reward circuits that control food intake independently of palatability or functional taste transduction.

  9. T157. FRONTOSTRIATAL CONNECTIVITY IN TREATMENT-RESISTANT SCHIZOPHRENIA: RELATIONSHIP TO POSITIVE SYMPTOMS AND COGNITIVE FLEXIBILITY

    PubMed Central

    Cropley, Vanessa; Ganella, Eleni; Wannan, Cassandra; Zalesky, Andrew; Van Rheenen, Tamsyn; Bousman, Chad; Everall, Ian; Fornito, Alexander; Pantelis, Christos

    2018-01-01

    Abstract Background The frontostriatal circuits linking different parts of the frontal cortex to subregions of the striatum are proposed to regulate different aspects of cognition, executive function, affect and reward processing. Dysregulation of these brain circuits is also known to be important in the etiology of psychotic disorders, with the magnitude of dysfunction correlating with the severity of positive symptoms. These observations suggest that the integrity of brain circuits connected to the striatum is important for antipsychotic treatment response as well as specific cognitive processes. However, not all individuals with schizophrenia benefit from antipsychotic treatment, with up to 20% of individuals considered to be treatment-resistant. These individuals also show pervasive impairments in cognition, including cognitive flexibility. Nevertheless, few studies have examined striatal connectivity in treatment-resistant schizophrenia (TRS), particularly in relation to positive symptomatology and specific cognitive deficits subserved by the striatal circuits. This study therefore aimed to (i) assess for disruptions in frontostriatal connectivity in a sample of TRS and (ii) assess the relationship between the frontostriatal circuits with positive symptoms and attentional set-shifting (cognitive flexibility) given recent associations with the dorsal striatal circuit. Methods Resting-state functional magnetic resonance imaging was used to investigate functional connectivity (FC) in 42 TRS participants prescribed clozapine (30 males, mean age=41.3(10)), and 42 healthy controls (24 males, mean age=38.4(10)). The whole striatum (caudate, putamen and nucleus accumbens) and the left and right dorsal striatum were separately seeded as regions of interest, and Pearson’s correlations between the seeds and all other voxels comprising cortical and subcortical gray matter were investigated. For brain regions that showed significant group differences in FC with the striatal seeds, Pearson’s correlations explored the relationship between the strength of connectivity with positive symptoms and attentional set-shifting (extradimensional shift errors) as measured with the CANTAB intra-/extradimensional set shift task. Results In comparison with healthy controls, TRS patients displayed significantly reduced FC between the whole striatum and the bilateral anterior cingulate, cerebellum, precuneus, right and left frontal pole and left insular/temporal pole, and reduced FC of the left and right dorsal striatum with cerebellum, and between the right dorsal striatum and bilateral cingulate and right frontal pole. Reduced FC between the whole striatum and precuneus and insular/temporal pole was associated with greater delusions of jealousy (p<.002 uncorrected); no other associations with positive symptoms were detected. In the entire sample, reduced FC from all striatal seeds was associated with greater extradimensional errors, indicating worse cognitive flexibility. These associations were not detected in TRS and controls separately. Discussion Our preliminary findings reveal reduced striatal FC in TRS, including hypoconnectivity of the dorsal striatal circuit. In contrast to early psychosis, reduced dorsal striatal connectivity does not appear to mediate positive symptoms. Our finding relating hypoconnectivity of the striatal circuits with impaired cognitive flexibility is partly consistent with recent observations in other psychiatric disorders, although such deficits appear not specific to the dorsal circuit and to TRS. Future work will examine connectivity of the ventral striatum, as well as striatal connectivity in early-onset psychosis and siblings of patients with schizophrenia.

  10. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid.

    PubMed

    Vodicka, Petr; Mo, Shunyan; Tousley, Adelaide; Green, Karin M; Sapp, Ellen; Iuliano, Maria; Sadri-Vakili, Ghazaleh; Shaffer, Scott A; Aronin, Neil; DiFiglia, Marian; Kegel-Gleason, Kimberly B

    2015-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.

  11. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  12. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    PubMed

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Subependymal mass lesions and peripheral polyneuropathy in adult-onset glutaric aciduria type I.

    PubMed

    Herskovitz, Moshe; Goldsher, Dorith; Sela, Ben-Ami; Mandel, Hanna

    2013-08-27

    Glutaric aciduria type I (GA-I) is an autosomal recessive disease caused by a deficiency of the mitochondrial enzyme glutaryl CoA dehydrogenase (GCDH). This metabolic block causes increased urinary concentrations of glutaric and 3-hydroxyglutaric acids. The accumulation and excretion of glutarylcarnitine esters leads to secondary carnitine deficiency. GA-I has an incidence of 1:30,000. The clinical hallmark of GA-I is an acute encephalopathic crisis, with bilateral striatal necrosis presented by severe dystonic dyskinetic disorder. Most patients have their first symptoms during infancy, but some have a less severe form of the disease and some may even remain asymptomatic.

  14. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Diversity in Long-Term Synaptic Plasticity at Inhibitory Synapses of Striatal Spiny Neurons

    ERIC Educational Resources Information Center

    Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose

    2009-01-01

    Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…

  16. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism.

    PubMed

    Tubert, Cecilia; Taravini, Irene R E; Flores-Barrera, Eden; Sánchez, Gonzalo M; Prost, María Alejandra; Avale, María Elena; Tseng, Kuei Y; Rela, Lorena; Murer, Mario Gustavo

    2016-09-06

    The mechanism underlying a hypercholinergic state in Parkinson's disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  18. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys

    PubMed Central

    Deffains, Marc; Iskhakova, Liliya; Katabi, Shiran; Haber, Suzanne N; Israel, Zvi; Bergman, Hagai

    2016-01-01

    The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI: http://dx.doi.org/10.7554/eLife.16443.001 PMID:27552049

  19. Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine.

    PubMed

    Sotnikova, Tatyana D; Budygin, Evgeny A; Jones, Sara R; Dykstra, Linda A; Caron, Marc G; Gainetdinov, Raul R

    2004-10-01

    Beta-phenylethylamine (beta-PEA) is an endogenous amine that is found in trace amounts in the brain. It is believed that the locomotor-stimulating action of beta-PEA, much like amphetamine, depends on its ability to increase extracellular dopamine (DA) concentrations owing to reversal of the direction of dopamine transporter (DAT)-mediated DA transport. beta-PEA can also bind directly to the recently identified G protein-coupled receptors, but the physiological significance of this interaction is unclear. To assess the mechanism by which beta-PEA mediates its effects, we compared the neurochemical and behavioral effects of this amine in wild type (WT), heterozygous and 'null' DAT mutant mice. In microdialysis studies, beta-PEA, administered either systemically or locally via intrastriatal infusion, produced a pronounced outflow of striatal DA in WT mice whereas no increase was detected in mice lacking the DAT (DAT-KO mice). Similarly, in fast-scan voltammetry studies beta-PEA did not alter DA release and clearance rate in striatal slices from DAT-KO mice. In behavioral studies beta-PEA produced a robust but transient increase in locomotor activity in WT and heterozygous mice. In DAT-KO mice, whose locomotor activity and stereotypy are increased in a novel environment, beta-PEA (10-100 mg/kg) exerted a potent inhibitory action. At high doses, beta-PEA induced stereotypies in WT and heterozygous mice; some manifestations of stereotypy were also observed in the DAT-KO mice. These data demonstrate that the DAT is required for the striatal DA-releasing and hyperlocomotor actions of beta-PEA. The inhibitory action on hyperactivity and certain stereotypies induced by beta-PEA in DAT-KO mice indicate that targets other than the DAT are responsible for these effects.

  20. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion

    PubMed Central

    Reyes-Corona, David; Vázquez-Hernández, Nallely; Escobedo, Lourdes; Orozco-Barrios, Carlos E.; Ayala-Davila, Jose; Moreno, Mario Gil; Amaro-Lara, Miriam E.; Flores-Martinez, Yazmin M.; Espadas-Alvarez, Armando J.; Fernandez-Parrilla, Manuel A.; Gonzalez-Barrios, Juan A.; Gutierrez-Castillo, ME; González-Burgos, Ignacio

    2017-01-01

    The structural effect of neurturin (NRTN) on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson’s disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA) lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks). Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH)+ cells (28 ± 2%), their neurites (32 ± 2%) and the neuron-specific cytoskeletal marker β-III-tubulin in the substantia nigra; striatal TH(+) fibers were also recovered (52 ± 3%), when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine) and 89 ± 1% (apomorphine). Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches. PMID:29176874

  1. Behavioral control by striatal adenosine A2A -dopamine D2 receptor heteromers.

    PubMed

    Taura, J; Valle-León, M; Sahlholm, K; Watanabe, M; Van Craenenbroeck, K; Fernández-Dueñas, V; Ferré, S; Ciruela, F

    2018-04-01

    G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A 2A receptors (A 2A R) and dopamine D 2 receptors (D 2 R) predominantly form A 2A R-D 2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A 2A R and D 2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D 2 R-deficient mouse with the same genetic background (CD-1) than the A 2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A 2A R and D 2 R knock-out mice, with and without the concomitant administration of either the D 2 R agonist sumanirole or the A 2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D 2 R signaling. Similarly, a significant dependence on A 2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A 2A R-D 2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor.

    PubMed

    Zhou, Qing-Hui; Sumbria, Rachita; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2011-11-01

    Biologic tumor necrosis factor (TNF)-α inhibitors do not cross the blood-brain barrier (BBB). A BBB-penetrating TNF-α inhibitor was engineered by fusion of the extracellular domain of the type II human TNF receptor (TNFR) to the carboxyl terminus of the heavy chain of a mouse/rat chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-TNFR. The cTfRMAb-TNFR fusion protein and etanercept bound human TNF-α with high affinity and K(D) values of 374 ± 77 and 280 ± 80 pM, respectively. Neuroprotection in brain in vivo after intravenous administration of the fusion protein was examined in a mouse model of Parkinson's disease. Mice were also treated with saline or a non-BBB-penetrating TNF decoy receptor, etanercept. After intracerebral injection of the nigral-striatal toxin, 6-hydroxydopamine, mice were treated every other day for 3 weeks. Treatment with the cTfRMAb-TNFR fusion protein caused an 83% decrease in apomorphine-induced rotation, a 67% decrease in amphetamine-induced rotation, a 82% increase in vibrissae-elicited forelimb placing, and a 130% increase in striatal tyrosine hydroxylase (TH) enzyme activity. In contrast, chronic treatment with etanercept, which does not cross the BBB, had no effect on neurobehavior or striatal TH enzyme activity. A bridging enzyme-linked immunosorbent assay specific for the cTfRMAb-TNFR fusion protein showed that the immune response generated in the mice was low titer. In conclusion, a biologic TNF inhibitor is neuroprotective after intravenous administration in a mouse model of neurodegeneration, providing that the TNF decoy receptor is reengineered to cross the BBB.

  3. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

    PubMed

    Buren, Caodu; Parsons, Matthew P; Smith-Dijak, Amy; Raymond, Lynn A

    2016-03-01

    Huntington's disease (HD) is a genetically inherited neurodegenerative disease caused by a mutation in the gene encoding the huntingtin protein. This mutation results in progressive cell death that is particularly striking in the striatum. Recent evidence indicates that early HD is initially a disease of the synapse, in which subtle alterations in synaptic neurotransmission, particularly at the cortico-striatal (C-S) synapse, can be detected well in advance of cell death. Here, we used a cell culture model in which striatal neurons are co-cultured with cortical neurons, and monitored the development of C-S connectivity up to 21days in vitro (DIV) in cells cultured from either the YAC128 mouse model of HD or the background strain, FVB/N (wild-type; WT) mice. Our data demonstrate that while C-S connectivity in WT co-cultures develops rapidly and continuously from DIV 7 to 21, YAC128 C-S connectivity shows no significant growth from DIV 14 onward. Morphological and electrophysiological data suggest that a combination of pre- and postsynaptic mechanisms contribute to this effect, including a reduction in both the postsynaptic dendritic arborization and the size and replenishment rate of the presynaptic readily releasable pool of excitatory vesicles. Moreover, a chimeric culture strategy confirmed that the most robust impairment in C-S connectivity was only observed when mutant huntingtin was expressed both pre- and postsynaptically. In all, our data demonstrate a progressive HD synaptic phenotype in this co-culture system that may be exploited as a platform for identifying promising therapeutic strategies to prevent early HD-associated synaptopathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion.

    PubMed

    Reyes-Corona, David; Vázquez-Hernández, Nallely; Escobedo, Lourdes; Orozco-Barrios, Carlos E; Ayala-Davila, Jose; Moreno, Mario Gil; Amaro-Lara, Miriam E; Flores-Martinez, Yazmin M; Espadas-Alvarez, Armando J; Fernandez-Parrilla, Manuel A; Gonzalez-Barrios, Juan A; Gutierrez-Castillo, M E; González-Burgos, Ignacio; Martinez-Fong, Daniel

    2017-01-01

    The structural effect of neurturin (NRTN) on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson's disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA) lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks). Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH)+ cells (28 ± 2%), their neurites (32 ± 2%) and the neuron-specific cytoskeletal marker β-III-tubulin in the substantia nigra; striatal TH(+) fibers were also recovered (52 ± 3%), when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine) and 89 ± 1% (apomorphine). Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches.

  5. Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse.

    PubMed

    Zhu, Wei; Gao, Yufeng; Wan, Jieru; Lan, Xi; Han, Xiaoning; Zhu, Shanshan; Zang, Weidong; Chen, Xuemei; Ziai, Wendy; Hanley, Daniel F; Russo, Scott J; Jorge, Ricardo E; Wang, Jian

    2018-03-01

    Intracerebral hemorrhage (ICH) is a detrimental type of stroke. Mouse models of ICH, induced by collagenase or blood infusion, commonly target striatum, but not other brain sites such as ventricular system, cortex, and hippocampus. Few studies have systemically investigated brain damage and neurobehavioral deficits that develop in animal models of ICH in these areas of the right hemisphere. Therefore, we evaluated the brain damage and neurobehavioral dysfunction associated with right hemispheric ICH in ventricle, cortex, hippocampus, and striatum. The ICH model was induced by autologous whole blood or collagenase VII-S (0.075 units in 0.5 µl saline) injection. At different time points after ICH induction, mice were assessed for brain tissue damage and neurobehavioral deficits. Sham control mice were used for comparison. We found that ICH location influenced features of brain damage, microglia/macrophage activation, and behavioral deficits. Furthermore, the 24-point neurologic deficit scoring system was most sensitive for evaluating locomotor abnormalities in all four models, especially on days 1, 3, and 7 post-ICH. The wire-hanging test was useful for evaluating locomotor abnormalities in models of striatal, intraventricular, and cortical ICH. The cylinder test identified locomotor abnormalities only in the striatal ICH model. The novel object recognition test was effective for evaluating recognition memory dysfunction in all models except for striatal ICH. The tail suspension test, forced swim test, and sucrose preference test were effective for evaluating emotional abnormality in all four models but did not correlate with severity of brain damage. These results will help to inform future preclinical studies of ICH outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling

    PubMed Central

    Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhn, Donald M.

    2009-01-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration. PMID:18410508

  7. Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation.

    PubMed

    Vicente-Rodríguez, Marta; Rojo Gonzalez, Loreto; Gramage, Esther; Fernández-Calle, Rosalía; Chen, Ying; Pérez-García, Carmen; Ferrer-Alcón, Marcel; Uribarri, María; Bailey, Alexis; Herradón, Gonzalo

    2016-11-01

    It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  9. Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.

    PubMed

    Martins, Ruben; Simard, France; Provost, Jean-Sebastien; Monchi, Oury

    2012-06-01

    Some older individuals seem to use compensatory mechanisms to maintain high-level performance when submitted to cognitive tasks. However, whether and how these mechanisms affect fronto-striatal activity has never been explored. The purpose of this study was to investigate how aging affects brain patterns during the performance of a lexical analog of the Wisconsin Card Sorting Task, which has been shown to strongly depend on fronto-striatal activity. In the present study, both younger and older individuals revealed significant fronto-striatal loop activity associated with planning and execution of set-shifts, though age-related striatal activity reduction was observed. Most importantly, while the younger group showed the involvement of a "cognitive loop" during the receiving negative feedback period (which indicates that a set-shift will be required to perform the following trial) and the involvement of a "motor loop" during the matching after negative feedback period (when the set-shift must be performed), older participants showed significant activation of both loops during the matching after negative feedback period only. These findings are in agreement with the "load-shift" model postulated by Velanova et al. (Velanova K, Lustig C, Jacoby LL, Buckner RL. 2007. Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex. 17:1033-1046.) and indicate that the model is not limited to memory retrieval but also applies to executive processes relying on fronto-striatal regions.

  10. Imaging Intracellular Ca2+ Signals in Striatal Astrocytes from Adult Mice Using Genetically-encoded Calcium Indicators

    PubMed Central

    Jiang, Ruotian; Haustein, Martin D.; Sofroniew, Michael V.; Khakh, Baljit S.

    2014-01-01

    Astrocytes display spontaneous intracellular Ca2+ concentration fluctuations ([Ca2+]i) and in several settings respond to neuronal excitation with enhanced [Ca2+]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca2+]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca2+]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca2+]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca2+]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca2+]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca2+]i signals in the striatal microcircuitry. PMID:25490346

  11. Imaging intracellular Ca²⁺ signals in striatal astrocytes from adult mice using genetically-encoded calcium indicators.

    PubMed

    Jiang, Ruotian; Haustein, Martin D; Sofroniew, Michael V; Khakh, Baljit S

    2014-11-19

    Astrocytes display spontaneous intracellular Ca(2+) concentration fluctuations ([Ca(2+)]i) and in several settings respond to neuronal excitation with enhanced [Ca(2+)]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca(2+)]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca(2+)]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca(2+)]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca(2+)]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca(2+)]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca(2+)]i signals in the striatal microcircuitry.

  12. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  13. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Maennistoe, P. T.

    1991-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 microg/kg or about 2 percent of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5 percent and 1.5 percent, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33 percent and 16 percent, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine, and 3,4-dihydroxyphenvlacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However, dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceedimg 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  14. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Mannisto, P. T.

    1992-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 micrograms/ml, or about 2% of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5% and 1.5%, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33% and 16%, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceeding 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  15. Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons

    PubMed Central

    Adler, Avital; Katabi, Shiran; Finkes, Inna; Prut, Yifat; Bergman, Hagai

    2013-01-01

    The striatum is populated by a single projection neuron group, the medium spiny neurons (MSNs), and several groups of interneurons. Two of the electrophysiologically well-characterized striatal interneuron groups are the tonically active neurons (TANs), which are presumably cholinergic interneurons, and the fast spiking interneurons (FSIs), presumably parvalbumin (PV) expressing GABAergic interneurons. To better understand striatal processing it is thus crucial to define the functional relationship between MSNs and these interneurons in the awake and behaving animal. We used multiple electrodes and standard physiological methods to simultaneously record MSN spiking activity and the activity of TANs or FSIs from monkeys engaged in a classical conditioning paradigm. All three cell populations were highly responsive to the behavioral task. However, they displayed different average response profiles and a different degree of response synchronization (signal correlation). TANs displayed the most transient and synchronized response, MSNs the most diverse and sustained response and FSIs were in between on both parameters. We did not find evidence for direct monosynaptic connectivity between the MSNs and either the TANs or the FSIs. However, while the cross correlation histograms of TAN to MSN pairs were flat, those of FSI to MSN displayed positive asymmetrical broad peaks. The FSI-MSN correlogram profile implies that the spikes of MSNs follow those of FSIs and both are driven by a common, most likely cortical, input. Thus, the two populations of striatal interneurons are probably driven by different afferents and play complementary functional roles in the physiology of the striatal microcircuit. PMID:24027501

  16. Brain reactivity to alcohol and cannabis marketing during sobriety and intoxication.

    PubMed

    de Sousa Fernandes Perna, Elizabeth B; Theunissen, Eef L; Kuypers, Kim P C; Evers, Elisabeth A; Stiers, Peter; Toennes, Stefan W; Witteman, Jurriaan; van Dalen, Wim; Ramaekers, Johannes G

    2017-05-01

    Drugs of abuse stimulate striatal dopamine release and activate reward pathways. This study examined the impact of alcohol and cannabis marketing on the reward circuit in alcohol and cannabis users while sober and intoxicated. It was predicted that alcohol and cannabis marketing would increase striatal activation when sober and that reward sensitivity would be less during alcohol and cannabis intoxication. Heavy alcohol (n = 20) and regular cannabis users (n = 21) participated in a mixed factorial study involving administration of alcohol and placebo in the alcohol group and cannabis and placebo in the cannabis group. Non-drug users (n = 20) served as between group reference. Brain activation after exposure to alcohol and cannabis marketing movies was measured using functional magnetic resonance imaging and compared between groups while sober and compared with placebo while intoxicated. Implicit alcohol and cannabis cognitions were assessed by means of a single-category implicit association test. Alcohol and cannabis marketing significantly increased striatal BOLD activation across all groups while sober. Striatal activation however decreased during intoxication with alcohol and cannabis. Implicit associations with cannabis marketing cues were significantly more positive in alcohol and cannabis users as compared with non-drug using controls. Public advertising of alcohol or cannabis use elicits striatal activation in the brain's reward circuit. Reduction of marketing would reduce brain exposure to reward cues that motivate substance use. Conversely, elevated dopamine levels protect against the reinforcing potential of marketing. © 2016 Society for the Study of Addiction.

  17. Dopamine and α-synuclein dysfunction in Smad3 null mice

    PubMed Central

    2011-01-01

    Background Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-β1 (TGF-β1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade. Results Striatal monoamine oxidase (MAO)-mediated dopamine (DA) catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC) is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM) and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus) or neurites (motor and cingulate cortices, striatum and spinal cord). Interestingly, these α-synuclein deposits are detected with ubiquitin and PS129-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB). Conclusions Smad3 deficiency promotes strong catabolism of DA in the striatum (ST), decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents. PMID:21995845

  18. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    PubMed

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  19. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease

    PubMed Central

    Vázquez-Manrique, Rafael P.; Farina, Francesca; Cambon, Karine; Dolores Sequedo, María; Parker, Alex J.; Millán, José María; Weiss, Andreas; Déglon, Nicole; Neri, Christian

    2016-01-01

    The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD. PMID:26681807

  20. Striatal Synaptic Dysfunction and Hippocampal Plasticity Deficits in the Hu97/18 Mouse Model of Huntington Disease

    PubMed Central

    Kolodziejczyk, Karolina; Parsons, Matthew P.; Southwell, Amber L.; Hayden, Michael R.; Raymond, Lynn A.

    2014-01-01

    Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the gene (HTT) encoding the huntingtin protein (HTT). This mutation leads to multiple cellular and synaptic alterations that are mimicked in many current HD animal models. However, the most commonly used, well-characterized HD models do not accurately reproduce the genetics of human disease. Recently, a new ‘humanized’ mouse model, termed Hu97/18, has been developed that genetically recapitulates human HD, including two human HTT alleles, no mouse Hdh alleles and heterozygosity of the HD mutation. Previously, behavioral and neuropathological testing in Hu97/18 mice revealed many features of HD, yet no electrophysiological measures were employed to investigate possible synaptic alterations. Here, we describe electrophysiological changes in the striatum and hippocampus of the Hu97/18 mice. At 9 months of age, a stage when cognitive deficits are fully developed and motor dysfunction is also evident, Hu97/18 striatal spiny projection neurons (SPNs) exhibited small changes in membrane properties and lower amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs); however, release probability from presynaptic terminals was unaltered. Strikingly, these mice also exhibited a profound deficiency in long-term potentiation (LTP) at CA3-to-CA1 synapses. In contrast, at 6 months of age we found only subtle alterations in SPN synaptic transmission, while 3-month old animals did not display any electrophysiologically detectable changes in the striatum and CA1 LTP was intact. Together, these data reveal robust, progressive deficits in synaptic function and plasticity in Hu97/18 mice, consistent with previously reported behavioral abnormalities, and suggest an optimal age (9 months) for future electrophysiological assessment in preclinical studies of HD. PMID:24728353

  1. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    PubMed

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos + D2 MSNs and decreased c-Fos + non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity

    PubMed Central

    Eisenstein, Sarah A.; Gredysa, Danuta M.; Antenor–Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M.; Black, Kevin J.; Perlmutter, Joel S.; Moerlein, Stephen M.; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans. PMID:26192187

  3. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    PubMed

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  4. nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep.

    PubMed

    Drury, Paul P; Davidson, Joanne O; Mathai, Sam; van den Heuij, Lotte G; Ji, Haitao; Bennet, Laura; Tan, Sidhartha; Silverman, Richard B; Gunn, Alistair J

    2014-08-01

    Basal ganglia injury after hypoxia-ischemia remains common in preterm infants, and is closely associated with later cerebral palsy. In the present study we tested the hypothesis that a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10, would improve survival of striatal phenotypic neurons after profound asphyxia, and that the subsequent seizure burden and recovery of EEG are associated with neural outcome. 24 chronically instrumented preterm fetal sheep were randomized to either JI-10 (3 ml of 0.022 mg/ml, n = 8) or saline (n = 8) infusion 15 min before 25 min complete umbilical cord occlusion, or saline plus sham-occlusion (n = 8). Umbilical cord occlusion was associated with reduced numbers of calbindin-28k-, GAD-, NPY-, PV-, Calretinin- and nNOS-positive striatal neurons (p < 0.05 vs. sham occlusion) but not ChAT-positive neurons. JI-10 was associated with increased numbers of calbindin-28k-, GAD-, nNOS-, NPY-, PV-, Calretinin- and ChAT-positive striatal neurons (p < 0.05 vs. saline + occlusion). Seizure burden was strongly associated with loss of calbindin-positive cells (p < 0.05), greater seizure amplitude was associated with loss of GAD-positive cells (p < 0.05), and with more activated microglia in the white matter tracts (p < 0.05). There was no relationship between EEG power after 7 days recovery and total striatal cell loss, but better survival of NPY-positive neurons was associated with lower EEG power. In summary, these findings suggest that selective nNOS inhibition during asphyxia is associated with protection of phenotypic striatal projection neurons and has potential to help reduce basal ganglia injury in some premature babies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing.

    PubMed

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum--the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico-striatal function in sentence processing.

  6. Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir Computing

    PubMed Central

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum – the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico-striatal function in sentence processing. PMID:23383296

  7. Loss of Corticostriatal and Thalamostriatal Synaptic Terminals Precedes Striatal Projection Neuron Pathology in Heterozygous Q140 Huntington’s Disease Mice

    PubMed Central

    Deng, Y.P.; Wong, T.; Bricker-Anthony, C.; Deng, B.; Reiner, A.

    2013-01-01

    Motor slowing, forebrain white matter loss, and striatal shrinkage have been reported in premanifest Huntington’s disease (HD) prior to overt striatal neuron loss. We carried out detailed LM and EM studies in a genetically precise HD mimic, heterozygous Q140 HD knock-in mice, to examine the possibility that loss of corticostriatal and thalamostriatal terminals prior to striatal neuron loss underlies these premanifest HD abnormalities. In our studies, we used VGLUT1 and VGLUT2 immunolabeling to detect corticostriatal and thalamostriatal (respectively) terminals in dorsolateral (motor) striatum over the first year of life, prior to striatal projection neuron pathology. VGLUT1+ axospinous corticostriatal terminals represented about 55% of all excitatory terminals in striatum, and VGLUT2+ axospinous thalamostriatal terminals represented about 35%, with VGLUT1+ and VGLUT2+ axodendritic terminals accounting for the remainder. In Q140 mice, a significant 40% shortfall in VGLUT2+ axodendritic thalamostriatal terminals and a 20% shortfall in axospinous thalamostriatal terminals was already observed at 1 month of age, but VGLUT1+ terminals were normal in abundance. The 20% deficiency in VGLUT2+ thalamostriatal axospinous terminals persisted at 4 and 12 months in Q140 mice, and an additional 30% loss of VGLUT1+ corticostriatal terminals was observed at 12 months. The early and persistent deficiency in thalamostriatal axospinous terminals in Q140 mice may reflect a development defect, and the impoverishment of this excitatory drive to striatum may help explain early motor defects in Q140 mice and in premanifest HD. The loss of corticostriatal terminals at 1 year in Q140 mice is consistent with prior evidence from other mouse models of corticostriatal disconnection early during progression, and can explain both the measurable bradykinesia and striatal white matter loss in late premanifest HD. PMID:23969239

  8. Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics

    PubMed Central

    Israelashvili, Michal

    2015-01-01

    Striatal disinhibition leads to the formation of motor tics resembling those expressed during Tourette syndrome and other tic disorders. The spatial properties of these tics are dependent on the location of the focal disinhibition within the striatum; however, the factors affecting the temporal properties of tic expression are still unknown. Here, we used microstimulation within the motor cortex of freely behaving rats before and after striatal disinhibition to explore the factors underlying the timing of individual tics. Cortical activation determined the timing of individual tics via an accumulation process of inputs that was dependent on the frequency and amplitude of the inputs. The resulting tics and their neuronal representation within the striatum were highly stereotypic and independent of the cortical activity properties. The generation of tics was limited by absolute and relative tic refractory periods that were derived from an internal striatal state. Thus, the precise time of the tic expression depends on the interaction between the summation of incoming excitatory inputs to the striatum and the timing of the previous tic. A data-driven computational model of corticostriatal function closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. These converging experimental and computational findings suggest a clear functional dichotomy within the corticostriatal network, pointing to disparate temporal (cortical) versus spatial (striatal) encoding. Thus, the abnormal striatal inhibition typical of Tourette syndrome and other tic disorders results in tics due to cortical activation of the abnormal striatal network. SIGNIFICANCE STATEMENT The factors underlying the temporal properties of tics expressed in Tourette syndrome and other tic disorders have eluded clinicians and scientists for decades. In this study, we highlight the key role of corticostriatal activity in determining the timing of individual tics. We found that cortical activation determined the timing of tics but did not determine their form. A data-driven computational model of the corticostriatal network closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. This study thus shows that, although tics originate in the striatum, their timing depends on the interplay between incoming excitatory corticostriatal inputs and the internal striatal state. PMID:26674861

  9. Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics.

    PubMed

    Israelashvili, Michal; Bar-Gad, Izhar

    2015-12-16

    Striatal disinhibition leads to the formation of motor tics resembling those expressed during Tourette syndrome and other tic disorders. The spatial properties of these tics are dependent on the location of the focal disinhibition within the striatum; however, the factors affecting the temporal properties of tic expression are still unknown. Here, we used microstimulation within the motor cortex of freely behaving rats before and after striatal disinhibition to explore the factors underlying the timing of individual tics. Cortical activation determined the timing of individual tics via an accumulation process of inputs that was dependent on the frequency and amplitude of the inputs. The resulting tics and their neuronal representation within the striatum were highly stereotypic and independent of the cortical activity properties. The generation of tics was limited by absolute and relative tic refractory periods that were derived from an internal striatal state. Thus, the precise time of the tic expression depends on the interaction between the summation of incoming excitatory inputs to the striatum and the timing of the previous tic. A data-driven computational model of corticostriatal function closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. These converging experimental and computational findings suggest a clear functional dichotomy within the corticostriatal network, pointing to disparate temporal (cortical) versus spatial (striatal) encoding. Thus, the abnormal striatal inhibition typical of Tourette syndrome and other tic disorders results in tics due to cortical activation of the abnormal striatal network. The factors underlying the temporal properties of tics expressed in Tourette syndrome and other tic disorders have eluded clinicians and scientists for decades. In this study, we highlight the key role of corticostriatal activity in determining the timing of individual tics. We found that cortical activation determined the timing of tics but did not determine their form. A data-driven computational model of the corticostriatal network closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. This study thus shows that, although tics originate in the striatum, their timing depends on the interplay between incoming excitatory corticostriatal inputs and the internal striatal state. Copyright © 2015 the authors 0270-6474/15/3516340-12$15.00/0.

  10. Robust presynaptic serotonin 5-HT1B receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment

    PubMed Central

    Ding, Shengyuan; Li, Li

    2015-01-01

    The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT1BRs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT1BRs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT1BR agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT1BR-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT1BRs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT1BR-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment. PMID:25787955

  11. Multiple Memory Stores and Operant Conditioning: A Rationale for Memory's Complexity

    ERIC Educational Resources Information Center

    Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu

    2009-01-01

    Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory…

  12. Coordinate High-Frequency Pattern of Stimulation and Calcium Levels Control the Induction of LTP in Striatal Cholinergic Interneurons

    ERIC Educational Resources Information Center

    Bonsi, Paola; De Persis, Cristiano; Calabresi, Paolo; Bernardi, Giorgio; Pisani, Antonio

    2004-01-01

    Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium…

  13. Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior

    PubMed Central

    Burke, Mary V; Small, Dana M

    2017-01-01

    Emerging evidence from human and animal studies suggest that consumption of palatable foods rich in fat and/or carbohydrates may produce deleterious influences on brain function independently of body weight or metabolic disease. Here we consider two mechanisms by which diet can impact striatal circuits to amplify food cue reactivity and impair inhibitory control. First, we review findings demonstrating that the energetic properties of foods regulate nucleus accumbens food cue reactivity, a demonstrated predictor of weight gain susceptibility, which is then sensitized by chronic consumption of an energy dense diet. Second, we consider evidence for diet-induced adaptations in dorsal striatal dopamine signaling that is associated with impaired inhibitory control and negative outcome learning. PMID:29619405

  14. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  15. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinasemore » C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders. - Highlights: • Quinolinic acid (QUIN) induces hypersphorylation of cytoskeletal proteins in striatal astrocytes. • Glutamate, Ca{sup 2+}, PKA and PKC are implicated in the aberrantly phosphorylated GFAP and vimentin. • QUIN induces reorganization of actin and GFAP cytoskeleton. • Hyperphosphorylation and cytoskeletal remodeling are reversed after QUIN removal. • Disruption of cytoskeleton is a cytotoxic action of QUIN in striatal astrocytes.« less

  16. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    PubMed Central

    Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo

    2012-01-01

    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  17. A role for calmodulin-stimulated adenylyl cyclases in cocaine sensitization.

    PubMed

    DiRocco, Derek P; Scheiner, Zachary S; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R

    2009-02-25

    Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca(2+)/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that, whereas AC1 and AC8 single knock-out mice (AC1(-/-) and AC8(-/-)) exhibit Ca(2+)-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knock-out (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization after chronic cocaine treatment. Because of the known role for the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated ERK (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase-positive interneurons in DKO mice relative to wild-type (WT) controls. After acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581 and cAMP response element-binding protein (pCREB) at Ser133 after acute cocaine treatment. Our results demonstrate that the Ca(2+)-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs.

  18. A Role for Calmodulin-Stimulated Adenylyl Cyclases in Cocaine Sensitization

    PubMed Central

    DiRocco, Derek P.; Scheiner, Zachary S.; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R.

    2009-01-01

    Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca2+/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that while AC1 and AC8 single knockout mice (AC1−/− and AC8−/−) exhibit Ca2+-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knockout (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization following chronic cocaine treatment. Because of the known role for the ERK/MAP kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated extracellular signal-regulated kinase (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase positive (ChAT+) interneurons in DKO mice relative to wild-type (WT) controls. Following acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581, and cAMP response element-binding protein (pCREB) at Ser133 following acute cocaine treatment. Our results demonstrate that the Ca2+-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs. PMID:19244515

  19. Delta FosB regulates wheel running.

    PubMed

    Werme, Martin; Messer, Chad; Olson, Lars; Gilden, Lauren; Thorén, Peter; Nestler, Eric J; Brené, Stefan

    2002-09-15

    DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.

  20. Prolonged striatal disinhibition as a chronic animal model of tic disorders.

    PubMed

    Vinner, Esther; Israelashvili, Michal; Bar-Gad, Izhar

    2017-12-01

    Experimental findings and theoretical models have associated Tourette syndrome with abnormal striatal inhibition. The expression of tics, the hallmark symptom of this disorder, has been transiently induced in non-human primates and rodents by the injection of GABA A antagonists into the striatum, leading to temporary disinhibition. The novel chronic model of tic expression utilizes mini-osmotic pumps implanted subcutaneously in the rat's back for prolonged infusion of bicuculline into the dorsolateral striatum. Tics were expressed on the contralateral side to the infusion over a period of multiple days. Tic expression was stable, and maintained similar properties throughout the infusion period. Electrophysiological recordings revealed the existence of tic-related local field potential spikes and individual neuron activity changes that remained stable throughout the infusion period. The striatal disinhibition model provides a unique combination of face validity (tic expression) and construct validity (abnormal striatal inhibition) but is limited to sub-hour periods. The new chronic model extends the period of tic expression to multiple days and thus enables the study of tic dynamics and the effects of behavior and pharmacological agents on tic expression. The chronic model provides similar behavioral and neuronal correlates of tics as the acute striatal disinhibition model but over prolonged periods of time, thus providing a unique, basal ganglia initiated model of tic expression. Chronic expression of symptoms is the key to studying the time varying properties of Tourette syndrome and the effects of multiple internal and external factors on this disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  2. [18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease.

    PubMed

    Stark, Adam J; Smith, Christopher T; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Donahue, Manus J; Kessler, Robert M; Deutch, Ariel Y; Zald, David H; Claassen, Daniel O

    2018-01-01

    Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D 2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D 2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D 2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [ 18 F]fallypride, a high affinity D 2/3 receptor ligand, to measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP ND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D 2/3 receptors, where reduced BP ND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D 2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D 2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.

  3. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease.

    PubMed

    Ciucci, Michelle R; Schaser, Allison J; Russell, John A

    2013-09-01

    Unilateral lesions to the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) lead to force and timing deficits during a complex licking task. We hypothesized that training targeting tongue force generation during licking would improve timing and force measures and also lead to striatal dopamine sparing. Nine month-old male Fisher344/Brown Norway rats were used in this experiment. Sixteen rats were in the control condition and received tongue exercise (n=8) or no exercise (n=8). Fourteen rats were in the 6-OHDA lesion condition and underwent tongue exercise (n=7) and or no exercise (n=7). Following 4 weeks of training and post-training measures, all animals underwent bilateral stimulation of the hypoglossal nerves to measure muscle contractile properties and were then transcardially perfused and brain tissues collected for immunohistochemistry to examine striatal dopamine content. Results demonstrated that exercise animals performed better for maximal force, average force, and press rate than their no-exercise counterparts, and the 6-OHDA animals that underwent exercise performed as well as the Control No Exercise group. Interestingly, there were no group differences for tetanic muscle force, despite behavioral recovery of forces. Additionally, behavioral and neurochemical analyses indicate that there were no differences in striatal dopamine. Thus, targeted exercise can improve tongue force and timing deficits related to 6-OHDA lesions and this exercise likely has a central, versus peripheral (muscle strength) mechanism. However, this mechanism is not related to sparing of striatal dopamine content. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Differences in Spontaneously Avoiding or Approaching Mice Reflect Differences in CB1-Mediated Signaling of Dorsal Striatal Transmission

    PubMed Central

    Laricchiuta, Daniela; Rossi, Silvia; Musella, Alessandra; De Chiara, Valentina; Cutuli, Debora; Centonze, Diego; Petrosini, Laura

    2012-01-01

    Approach or avoidance behaviors are accompanied by perceptual vigilance for, affective reactivity to and behavioral predisposition towards rewarding or punitive stimuli, respectively. We detected three subpopulations of C57BL/6J mice that responded with avoiding, balancing or approaching behaviors not induced by any experimental manipulation but spontaneously displayed in an approach/avoidance conflict task. Although the detailed neuronal mechanisms underlying the balancing between approach and avoidance are not fully clarified, there is growing evidence that endocannabinoid system (ECS) plays a critical role in the control of these balancing actions. The sensitivity of dorsal striatal synapses to the activation of cannabinoid CB1 receptors was investigated in the subpopulations of spontaneously avoiding, balancing or approaching mice. Avoiding animals displayed decreased control of CB1 receptors on GABAergic striatal transmission and in parallel increase of behavioral inhibition. Conversely, approaching animals exhibited increased control of CB1 receptors and in parallel increase of explorative behavior. Balancing animals reacted with balanced responses between approach and avoidance patterns. Treating avoiding animals with URB597 (fatty acid amide hydrolase inhibitor) or approaching animals with AM251 (CB1 receptor inverse agonist) reverted their respective behavioral and electrophysiological patterns. Therefore, enhanced or reduced CB1-mediated control on dorsal striatal transmission represents the synaptic hallmark of the approach or avoidance behavior, respectively. Thus, the opposite spontaneous responses to conflicting stimuli are modulated by a different involvement of endocannabinoid signaling of dorsal striatal neurons in the range of temperamental traits related to individual differences. PMID:22413007

  5. Normative development of ventral striatal resting state connectivity in humans.

    PubMed

    Fareri, Dominic S; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Gee, Dylan G; Lumian, Daniel S; Caldera, Christina; Tottenham, Nim

    2015-09-01

    Incentives play a crucial role in guiding behavior throughout our lives, but perhaps no more so than during the early years of life. The ventral striatum is a critical piece of an incentive-based learning circuit, sharing robust anatomical connections with subcortical (e.g., amygdala, hippocampus) and cortical structures (e.g., medial prefrontal cortex (mPFC), insula) that collectively support incentive valuation and learning. Resting-state functional connectivity (rsFC) is a powerful method that provides insight into the development of the functional architecture of these connections involved in incentive-based learning. We employed a seed-based correlation approach to investigate ventral striatal rsFC in a cross-sectional sample of typically developing individuals between the ages of 4.5 and 23-years old (n=66). Ventral striatal rsFC with the mPFC showed regionally specific linear age-related changes in connectivity that were associated with age-related increases in circulating testosterone levels. Further, ventral striatal connectivity with the posterior hippocampus and posterior insula demonstrated quadratic age-related changes characterized by negative connectivity in adolescence. Finally, across this age range, the ventral striatum demonstrated positive coupling with the amygdala beginning during childhood and remaining consistently positive across age. In sum, our findings suggest that normative ventral striatal rsFC development is dynamic and characterized by early establishment of connectivity with medial prefrontal and limbic structures supporting incentive-based learning, as well as substantial functional reorganization with later developing regions during transitions into and out of adolescence. Copyright © 2015. Published by Elsevier Inc.

  6. The role of the neuropeptide somatostatin on methamphetamine and glutamate-induced neurotoxicity in the striatum of mice.

    PubMed

    Afanador, Lauriaselle; Mexhitaj, Ina; Diaz, Carolyn; Ordonez, Dalila; Baker, Lisa; Angulo, Jesus A

    2013-05-13

    A large body of evidence shows that methamphetamine (METH) causes sustained damage to the brain in animal models and human METH users. In chronic users there are indications of cognitive and motor deficits. Striatal neuropeptides are in a position to modulate the neurochemical effects of METH and consequently striatal neural damage. Somatostatin (SST) is an intrinsic striatal neuropeptide that has been shown to inhibit glutamate transmission; glutamate is integral to METH toxicity and contributes to nitric oxide (NO) synthesis. We hypothesize that SST will protect from METH by inhibition of NO synthesis and thus reducing oxidative stress. To this end, the SST analogue octreotide (OCT) was microinjected into the striatum prior to a systemic injection of METH (30mg/kg). We then assessed 3-nitrotyrosine (3-NT), an indirect index of NO production, tyrosine hydroxylase (TH) protein levels (dopamine terminal marker) and Fluoro-Jade C positive cells (degenerating cells). The SST agonist OCT dose dependently attenuated the METH-induced accumulation of striatal 3-NT. Moreover, pretreatment with OCT effectively mitigated cell death but failed to protect dopamine terminals. Next we co-infused OCT and NMDA and measured 3-NT and Fluoro-Jade C staining. Treatment with OCT had no effect on these parameters. The data demonstrate that SST attenuates the METH-induced production of NO protecting the striatum from the METH-induced cell loss. However, SST failed to prevent the toxicity of the dopamine terminals suggesting that pre- and post-synaptic striatal damage occur via independent mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Anatomical and Electrophysiological Changes in Striatal TH Interneurons after Loss of the Nigrostriatal Dopaminergic Pathway

    PubMed Central

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M.

    2013-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3000 striatal EGFP-TH interneurons per hemisphere in mice. Here we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory postsynaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson’s disease by increasing feedforward GABAergic inhibition exerted by these interneurons. PMID:24173616

  8. Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway.

    PubMed

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M

    2015-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3,000 striatal EGFP-TH interneurons per hemisphere in mice. Here, we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory post-synaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson's disease by increasing feedforward GABAergic inhibition exerted by these interneurons.

  9. The Role of the Neuropeptide Somatostatin on Methamphetamine and Glutamate-Induced Neurotoxicity in the Striatum of Mice

    PubMed Central

    Afanador, Lauriaselle; Mexhitaj, Ina; Diaz, Carolyn; Ordonez, Dalila; Baker, Lisa; Angulo, Jesus A.

    2014-01-01

    A large body of evidence shows that methamphetamine (METH) causes sustained damage to the brain in animal models and human METH users. In chronic users there are indications of cognitive and motor deficits. Striatal neuropeptides are in a position to modulate the neurochemical effects of METH and consequently striatal neural damage. Somatostatin (SST) is an intrinsic striatal neuropeptide that has been shown to inhibit glutamate transmission; glutamate is integral to METH toxicity and contributes to nitric oxide (NO) synthesis. We hypothesize that SST will protect from METH by inhibition of NO synthesis and thus reducing oxidative stress. To this end, the SST analogue octreotide (OCT) was microinjected into the striatum prior to a systemic injection of METH (30 mg/kg). We then assessed 3-nitrotyrosine (3-NT), an indirect index of NO production, tyrosine hydroxylase (TH) protein levels (dopamine terminal marker) and Fluoro-Jade C positive cells (degenerating cells). The SST agonist OCT dose dependently attenuated the METH-induced accumulation of striatal 3-NT. Moreover, pretreatment with OCT effectively mitigated cell death but failed to protect dopamine terminals. Next we co-infused OCT and NMDA and measured 3-NT and Fluoro-Jade C staining. Treatment with OCT had no effect on these parameters. The data demonstrate that SST attenuates the METH-induced production of NO protecting the striatum from the METH-induced cell loss. However, SST failed to prevent the toxicity of the dopamine terminals suggesting that pre- and post-synaptic striatal damage occur via independent mechanisms. PMID:23524190

  10. Relationships between changes in Sustained Fronto-Striatal Connectivity and Positive Affect with Antidepressant Treatment in Major Depression

    PubMed Central

    Heller, Aaron S.; Johnstone, Tom; Light, Sharee; Peterson, Michael J.; Kolden, Gregory G.; Kalin, Ned H.; Davidson, Richard J.

    2012-01-01

    Objective Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement over time of this network is unknown. Accordingly, we sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect. Method Using fMRI, we assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during performance of an emotion regulation paradigm in 21 depressed patients prior to, and after 2 months of antidepressant treatment. 14 healthy control subjects were scanned over the same interval. Results After 2 months of treatment, self-reported positive affect increased. Those patients demonstrating the largest increases in sustained nucleus accumbens activity over the 2 months were those demonstrating the largest increases in positive affect. In addition, those patients demonstrating the largest increases in sustained fronto-striatal connectivity were also those demonstrating the largest increases in positive affect when controlling for negative affect. Healthy controls showed none of these associations. Conclusions Treatment induced changes in the sustained engagement of fronto-striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a variety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to understand changes in daily positive affect. PMID:23223803

  11. Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder.

    PubMed

    Harrison, Ben J; Pujol, Jesus; Cardoner, Narcis; Deus, Joan; Alonso, Pino; López-Solà, Marina; Contreras-Rodríguez, Oren; Real, Eva; Segalàs, Cinto; Blanco-Hinojo, Laura; Menchon, José M; Soriano-Mas, Carles

    2013-02-15

    Functional neuroimaging studies have provided consistent support for the idea that obsessive-compulsive disorder (OCD) is associated with disturbances of brain corticostriatal systems. However, in general, these studies have not sought to account for the disorder's prominent clinical heterogeneity. To address these concerns, we investigated the influence of major OCD symptom dimensions on brain corticostriatal functional systems in a large sample of OCD patients (n = 74) and control participants (n = 74) examined with resting-state functional magnetic resonance imaging. We employed a valid method for mapping ventral and dorsal striatal functional connectivity, which supported both standard group comparisons and linear regression analyses with patients' scores on the Dimensional Yale-Brown Obsessive-Compulsive Scale. Consistent with past findings, patients demonstrated a common connectivity alteration involving the ventral striatum and orbitofrontal cortex that predicted overall illness severity levels. This common alteration was independent of the effect of particular symptom dimensions. Instead, we observed distinct anatomical relationships between the severity of symptom dimensions and striatal functional connectivity. Aggression symptoms modulated connectivity between the ventral striatum, amygdala, and ventromedial frontal cortex, while sexual/religious symptoms had a specific influence on ventral striatal-insular connectivity. Hoarding modulated the strength of ventral and dorsal striatal connectivity with distributed frontal regions. Taken together, these results suggest that pathophysiological changes among orbitofrontal-striatal regions may be common to all forms of OCD. They suggest that a further examination of certain dimensional relationships will also be relevant for advancing current neurobiological models of the disorder. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. A case of Cotard syndrome: (123)I-IBZM SPECT imaging of striatal D(2) receptor binding.

    PubMed

    De Risio, Sergio; De Rossi, Giuseppe; Sarchiapone, Marco; Camardese, Giovanni; Carli, Vladimir; Cuomo, Chiara; Satta, Maria Antonietta; Di Giuda, Daniela

    2004-01-15

    A case of 'dèlire de nègation' that suddenly appeared in a 43-year-old male is presented. No alteration in regional cerebral blood, as measured by (99m)Tc-HMPAO-SPECT, was found, but (123)I-IBZM-SPECT analysis showed reduced striatal D(2) receptor binding that further decreased after treatment.

  13. A Study on the Role of the Dorsal Striatum and the Nucleus Accumbens in Allocentric and Egocentric Spatial Memory Consolidation

    ERIC Educational Resources Information Center

    De Leonibus, Elvira; Oliverio, Alberto; Mele, Andrea

    2005-01-01

    There is now accumulating evidence that the striatal complex in its two major components, the dorsal striatum and the nucleus accumbens, contributes to spatial memory. However, the possibility that different striatal subregions might modulate specific aspects of spatial navigation has not been completely elucidated. Therefore, in this study, two…

  14. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence

    PubMed Central

    Schlagenhauf, Florian; Rapp, Michael A.; Huys, Quentin J. M.; Beck, Anne; Wüstenberg, Torsten; Deserno, Lorenz; Buchholz, Hans-Georg; Kalbitzer, Jan; Buchert, Ralph; Kienast, Thorsten; Cumming, Paul; Plotkin, Michail; Kumakura, Yoshitaka; Grace, Anthony A.; Dolan, Raymond J.; Heinz, Andreas

    2013-01-01

    Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adaptation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward prediction errors in the ventral striatum, which has been associated with phasic dopamine release in animal studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological parametric mapping with 1) functional magnetic resonance imaging during a reversal learning task and 2) in a subsample of 17 subjects also with positron emission tomography using 6-[18F]fluoro-L-DOPA to assess dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsychological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis capacity (FDOPA Kinapp). When exploring aspects of fluid intelligence, we observed that prediction error signaling correlates with complex attention and reasoning. These findings indicate that individual differences in the capacity for flexible problem solving may be driven by ventral striatal activation during reward-related learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity. PMID:22344813

  15. Differences in navigation performance and postpartal striatal volume associated with pregnancy in humans.

    PubMed

    Lisofsky, Nina; Wiener, Jan; de Condappa, Olivier; Gallinat, Jürgen; Lindenberger, Ulman; Kühn, Simone

    2016-10-01

    Pregnancy is accompanied by prolonged exposure to high estrogen levels. Animal studies have shown that estrogen influences navigation strategies and, hence, affects navigation performance. High estrogen levels are related to increased use of hippocampal-based allocentric strategies and decreased use of striatal-based egocentric strategies. In humans, associations between hormonal shifts and navigation strategies are less well studied. This study compared 30 peripartal women (mean age 28years) to an age-matched control group on allocentric versus egocentric navigation performance (measured in the last month of pregnancy) and gray matter volume (measured within two months after delivery). None of the women had a previous pregnancy before study participation. Relative to controls, pregnant women performed less well in the egocentric condition of the navigation task, but not the allocentric condition. A whole-brain group comparison revealed smaller left striatal volume (putamen) in the peripartal women. Across the two groups, left striatal volume was associated with superior egocentric over allocentric performance. Limited by the cross-sectional study design, the findings are a first indication that human pregnancy might be accompanied by structural brain changes in navigation-related neural systems and concomitant changes in navigation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Met5]Enkephalin content in brain regions of rats treated with lithium.

    PubMed Central

    Gillin, J C; Hong, J S; Yang, H Y; Costa, E

    1978-01-01

    In rats, chronic treatment with lithium elicits a dose-dependent increase in the [Met5]enkephalin content of nucleus caudatus and globus pallidus. A single injection of lithium fails to change the striatal [Met5]enkephalin content. The increase in [Met5]enkephalin caused by chronic lithium is proportional to the serum lithium level. The extent of the increase in striatal [Met5]enkephalin content levels off at a value of about 250% that of untreated rats. This increase has a time latency of 2--3 days and reaches a plateau at 5 days. The increase that was present at 5 days was no longer evident if the treatment was continued for 2 weeks. Lithium also increases striatal [Leu5]enkephalin content by an extent equal to the increase of [Met 5]enkephalin. Based on the characteristics of the lithium-induced increase in [Met6]enkephalin content, it is proposed that lithium may reduce the rate of release of [Met5]enkephalin from the small enkephalinergic neurons that are intrinsic to the striatum; this action may be related to a change in the regulation of striatal neurons. PMID:275866

  17. Language processing within the striatum: evidence from a PET correlation study in Huntington's disease.

    PubMed

    Teichmann, Marc; Gaura, Véronique; Démonet, Jean-François; Supiot, Frédéric; Delliaux, Marie; Verny, Christophe; Renou, Pierre; Remy, Philippe; Bachoud-Lévi, Anne-Catherine

    2008-04-01

    The role of sub-cortical structures in language processing, and more specifically of the striatum, remains controversial. In line with psycholinguistic models stating that language processing implies both the recovery of lexical information and the application of combinatorial rules, the striatum has been claimed to be involved either in the former component or in the latter. The present study reconciles these conflicting views by showing the striatum's involvement in both language processes, depending on distinct striatal sub-regions. Using PET scanning in a model of striatal disorders, namely Huntington's disease (HD), we correlated metabolic data of 31 early stage HD patients regarding different striatal sub-regions with behavioural scores on three rule/lexicon tasks drawn from word morphology, syntax and from a non-linguistic domain, namely arithmetic. Behavioural results reflected impairment on both processing aspects, while deficits predominated on rule application. Both correlated with the left striatum but involved distinct striatal sub-regions. We suggest that the left striatum encompasses linguistic and arithmetic circuits, which differ with respect to their anatomical and functional specification, comprising ventrally located regions dedicated to rule computations and more dorsal portions pertaining to lexical devices.

  18. Dermatoglyphic asymmetries and fronto-striatal dysfunction in young-adults reporting non-clinical psychosis

    PubMed Central

    Mittal, Vijay A.; Dean, Derek J.; Pelletier, Andrea

    2012-01-01

    Objective Growing evidence indicates that non-clinical psychotic-like experiences occur in otherwise healthy individuals, suggesting that psychosis may occur on a continuum. However, little is know about how the diathesis for formal psychosis maps on to individuals at the non-clinical side of this continuum. Our current understanding of the pathophysiology of schizophrenia implicates certain key factors such as early developmental abnormalities and fronto-striatal dysfunction. To date, no studies have examined these core factors in the context of non-clinical psychosis. Method A total of 221 young adults were assessed for distressing attenuated positive symptoms (DAPS), dermatoglyphic asymmetries (a marker of early developmental insult), and procedural memory (a proxy for fronto-striatal function). Results Participants reporting DAPS (n=16; 7.2%) and no-DAPS (n=205; 92.7%) were split into two groups. The DAPS group showed significantly elevated depression, elevated dermatoglyphic asymmetries, and a pattern of procedural learning consistent with other studies with formally psychotic patients. Conclusion The results indicate that the non-clinical side of the psychosis continuum also shares key vulnerability factors implicated in schizophrenia, suggesting that both early developmental disruption and abnormalities in fronto-striatal function are core aspects underlying the disorder. PMID:22519833

  19. Revisiting the 'self-medication' hypothesis in light of the new data linking low striatal dopamine to comorbid addictive behavior.

    PubMed

    Awad, A George; Voruganti, Lakshmi L N P

    2015-06-01

    Persons with schizophrenia are at a high risk, almost 4.6 times more likely, of having drug abuse problems than persons without psychiatric illness. Among the influential proposals to explain such a high comorbidity rate, the 'self-medication hypothesis' proposed that persons with schizophrenia take to drugs in an effort to cope with the illness and medication side effects. In support of the self-medication hypothesis, data from our earlier clinical study confirmed the strong association between neuroleptic dysphoria and negative subjective responses and comorbid drug abuse. Though dopamine has been consistently suspected as one of the major culprits for the development of neuroleptic dysphoria, it is only recently our neuroimaging studies correlated the emergence of neuroleptic dysphoria to the low level of striatal dopamine functioning. Similarly, more evidence has recently emerged linking low striatal dopamine with the development of vulnerability for drug addictive states in schizophrenia. The convergence of evidence from both the dysphoria and comorbidity research, implicating the role of low striatal dopamine in both conditions, has led us to propose that the person with schizophrenia who develops dysphoria and comorbid addictive disorder is likely to be one and the same.

  20. Striatal Infusion of Glial Conditioned Medium Diminishes Huntingtin Pathology in R6/1 Mice

    PubMed Central

    Perucho, Juan; Casarejos, Maria José; Gómez, Ana; Ruíz, Carolina; Fernández-Estevez, Maria Ángeles; Muñoz, Maria Paz; de Yébenes, Justo García; Mena, Maria Ángeles

    2013-01-01

    Huntington's disease is a neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene which produces widespread neuronal and glial pathology. We here investigated the possible therapeutic role of glia or glial products in Huntington's disease using striatal glial conditioned medium (GCM) from fetus mice (E16) continuously infused for 15 and 30 days with osmotic minipumps into the left striatum of R6/1 mice. Animals infused with GCM had significantly less huntingtin inclusions in the ipsilateral cerebral cortex and in the ipsilateral and contralateral striata than mice infused with cerebrospinal fluid. The numbers of DARPP-32 and TH positive neurons were also greater in the ipsilateral but not contralateral striata and substantia nigra, respectively, suggesting a neuroprotective effect of GCM on efferent striatal and nigro-striatal dopamine neurons. GCM increases activity of the autophagic pathway, as shown by the reduction of autophagic substrate, p-62, and the augmentation of LC3 II, Beclin-1 and LAMP-2 protein levels, direct markers of autophagy, in GCM infused mice. GCM also increases BDNF levels. These results suggest that CGM should be further explored as a putative neuroprotective agent in Huntington's disease. PMID:24069174

  1. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder.

    PubMed

    Smoski, Moria J; Felder, Jennifer; Bizzell, Joshua; Green, Steven R; Ernst, Monique; Lynch, Thomas R; Dichter, Gabriel S

    2009-11-01

    The purpose of the present investigation was to evaluate reward processing in unipolar major depressive disorder (MDD). Specifically, we investigated whether adults with MDD demonstrated hyporesponsivity in striatal brain regions and/or hyperresponsivity in cortical brain regions involved in conflict monitoring using a Wheel of Fortune task designed to probe responses during reward selection, reward anticipation, and reward feedback. Functional magnetic resonance imaging (fMRI) data indicated that the MDD group was characterized by reduced activation of striatal reward regions during reward selection, reward anticipation, and reward feedback, supporting previous data indicating hyporesponsivity of reward systems in MDD. Support was not found for hyperresponsivity of cognitive control regions during reward selection or reward anticipation. Instead, MDD participants showed hyperresponsivity in orbitofrontal cortex, a region associated with assessment of risk and reward, during reward selection, as well as decreased activation of the middle frontal gyrus and the rostral cingulate gyrus during reward selection and anticipation. Finally, depression severity was predicted by activation in bilateral midfrontal gyrus during reward selection. Results indicate that MDD is characterized by striatal hyporesponsivity, and that future studies of MDD treatments that seek to improve responses to rewarding stimuli should assess striatal functioning.

  2. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse.

    PubMed

    Sørensen, Emilie M; Bertelsen, Freja; Weikop, Pia; Skovborg, Maria M; Banke, Tue; Drasbek, Kim R; Scheel-Krüger, Jørgen

    2015-12-01

    The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.

  3. Distinctive striatal dopamine signaling after dieting and gastric bypass.

    PubMed

    Hankir, Mohammed K; Ashrafian, Hutan; Hesse, Swen; Horstmann, Annette; Fenske, Wiebke K

    2015-05-01

    Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reward Processing And Risk For Depression Across Development

    PubMed Central

    Luking, Katherine R; Pagliaccio, David; Luby, Joan L; Barch, Deanna M

    2016-01-01

    Striatal response to reward has been of great interest in the typical development and psychopathology literatures. These parallel lines of inquiry demonstrate that while typically developing adolescents show robust striatal response to reward, adolescents with major depressive disorder (MDD) or those at high-risk for MDD show blunted response to reward. Understanding how these findings intersect is critical for the development and application of early preventative interventions in at-risk children, ideally before the sharp increase in the rate of MDD onset that occurs in adolescence. Robust findings relating blunted striatal response to reward and MDD-risk are reviewed and situated within a normative developmental context. We highlight the need for future studies investigating longitudinal development, specificity to MDD, and roles of potential moderators and mediators. PMID:27131776

  5. Frontal, Striatal, and Medial Temporal Sensitivity to Value Distinguishes Risk-Taking from Risk-Aversive Older Adults during Decision Making.

    PubMed

    Goh, Joshua O S; Su, Yu-Shiang; Tang, Yong-Jheng; McCarrey, Anna C; Tereshchenko, Alexander; Elkins, Wendy; Resnick, Susan M

    2016-12-07

    Aging compromises the frontal, striatal, and medial temporal areas of the reward system, impeding accurate value representation and feedback processing critical for decision making. However, substantial variability characterizes age-related effects on the brain so that some older individuals evince clear neurocognitive declines whereas others are spared. Moreover, the functional correlates of normative individual differences in older-adult value-based decision making remain unclear. We performed a functional magnetic resonance imaging study in 173 human older adults during a lottery choice task in which costly to more desirable stakes were depicted using low to high expected values (EVs) of points. Across trials that varied in EVs, participants decided to accept or decline the offered stakes to maximize total accumulated points. We found that greater age was associated with less optimal decisions, accepting stakes when losses were likely and declining stakes when gains were likely, and was associated with increased frontal activity for costlier stakes. Critically, risk preferences varied substantially across older adults and neural sensitivity to EVs in the frontal, striatal, and medial temporal areas dissociated risk-aversive from risk-taking individuals. Specifically, risk-averters increased neural responses to increasing EVs as stakes became more desirable, whereas risk-takers increased neural responses with decreasing EV as stakes became more costly. Risk preference also modulated striatal responses during feedback with risk-takers showing more positive responses to gains compared with risk-averters. Our findings highlight the frontal, striatal, and medial temporal areas as key neural loci in which individual differences differentially affect value-based decision-making ability in older adults. Frontal, striatal, and medial temporal functions implicated in value-based decision processing of rewards and costs undergo substantial age-related changes. However, age effects on brain function and cognition differ across individuals. How this normative variation relates to older-adult value-based decision making is unclear. We found that although the ability make optimal decisions declines with age, there is still much individual variability in how this deterioration occurs. Critically, whereas risk-averters showed increased neural activity to increasingly valuable stakes in frontal, striatal, and medial temporal areas, risk-takers instead increased activity as stakes became more costly. Such distinct functional decision-making processing in these brain regions across normative older adults may reflect individual differences in susceptibility to age-related brain changes associated with incipient cognitive impairment. Copyright © 2016 the authors 0270-6474/16/3612498-12$15.00/0.

  6. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status

    PubMed Central

    Eisenstein, Sarah A.; Bogdan, Ryan; Love-Gregory, Latisha; Corral-Frías, Nadia S.; Koller, Jonathan M.; Black, Kevin J.; Moerlein, Stephen M.; Perlmutter, Joel S.; Barch, Deanna M.; Hershey, Tamara

    2016-01-01

    In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are non-selective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in 2 independent samples. Sample 1 (n = 39) was composed of obese and non-obese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5-12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states. GRAPHICAL ABSTRACT We investigated the difference in striatal dopamine D2 receptor binding, as measured by PET with (N-[11C]methyl)benperidol ([11C]NMB), between A1 allele carriers (A1+) and individuals homozygous for the A2 allele (A1−) of the DRD2/ANKK1 TaqIA single nucleotide polymorphism. In Study 1, A1+ had 5-12% less striatal [11C]NMB binding than A1−. PMID:27241797

  7. Effects of 5-HT1A Receptor Stimulation on D1 Receptor Agonist-Induced Striatonigral Activity and Dyskinesia in Hemiparkinsonian Rats

    PubMed Central

    2013-01-01

    Accumulating evidence supports the value of 5-HT1A receptor (5-HT1AR) agonists for dyskinesias that arise with long-term L-DOPA therapy in Parkinson’s disease (PD). Yet, how 5-HT1AR stimulation directly influences the dyskinetogenic D1 receptor (D1R)-expressing striatonigral pathway remains largely unknown. To directly examine this, one cohort of hemiparkinsonian rats received systemic injections of Vehicle + Vehicle, Vehicle + the D1R agonist SKF81297 (0.8 mg/kg), or the 5-HT1AR agonist ±8-OH-DPAT (1.0 mg/kg) + SKF81297. Rats were examined for changes in abnormal involuntary movements (AIMs), rotations, striatal preprodynorphin (PPD), and glutamic acid decarboxylase (GAD; 65 and 67) mRNA via RT-PCR. In the second experiment, hemiparkinsonian rats received intrastriatal pretreatments of Vehicle (aCSF), ±8-OH-DPAT (7.5 mM), or ±8-OH-DPAT + the 5-HT1AR antagonist WAY100635 (4.6 mM), followed by systemic Vehicle or SKF81297 after which AIMs, rotations, and extracellular striatal glutamate and nigral GABA efflux were measured by in vivo microdialysis. Results revealed D1R agonist-induced AIMs were reduced by systemic and intrastriatal 5-HT1AR stimulation while rotations were enhanced. Although ±8-OH-DPAT did not modify D1R agonist-induced increases in striatal PPD mRNA, the D1R/5-HT1AR agonist combination enhanced GAD65 and GAD67 mRNA. When applied locally, ±8-OH-DPAT alone diminished striatal glutamate levels while the agonist combination increased nigral GABA efflux. Thus, presynaptic 5-HT1AR stimulation may attenuate striatal glutamate levels, resulting in diminished D1R-mediated dyskinetic behaviors, but maintain or enhance striatal postsynaptic factors ultimately increasing nigral GABA levels and rotational activity. The current findings offer a novel mechanistic explanation for previous results concerning 5-HT1AR agonists for the treatment of dyskinesia. PMID:23496922

  8. Gain in Body Fat Is Associated with Increased Striatal Response to Palatable Food Cues, whereas Body Fat Stability Is Associated with Decreased Striatal Response

    PubMed Central

    Yokum, Sonja

    2016-01-01

    Cross-sectional brain-imaging studies reveal that obese versus lean humans show greater responsivity of reward and attention regions to palatable food cues, but lower responsivity of reward regions to palatable food receipt. However, these individual differences in responsivity may result from a period of overeating. We conducted a repeated-measures fMRI study to test whether healthy weight adolescent humans who gained body fat over a 2 or 3 year follow-up period show an increase in responsivity of reward and attention regions to a cue signaling impending milkshake receipt and a simultaneous decrease in responsivity of reward regions to milkshake receipt versus adolescents who showed stability of or loss of body fat. Adolescents who gained body fat, who largely remained in a healthy weight range, showed increases in activation in the putamen, mid-insula, Rolandic operculum, and precuneus to a cue signaling impending milkshake receipt versus those who showed stability of or loss of body fat, though these effects were partially driven by reductions in responsivity among the latter groups. Adolescents who gained body fat reported significantly greater milkshake wanting and milkshake pleasantness ratings at follow-up compared to those who lost body fat. Adolescents who gained body fat did not show a reduction in responsivity of reward regions to milkshake receipt or changes in responsivity to receipt and anticipated receipt of monetary reward. Data suggest that initiating a prolonged period of overeating may increase striatal responsivity to food cues, and that maintaining a balance between caloric intake and expenditure may reduce striatal, insular, and Rolandic operculum responsivity. SIGNIFICANCE STATEMENT This novel, repeated-measures brain-imaging study suggests that adolescents who gained body fat over our follow-up period experienced an increase in striatal responsivity to cues for palatable foods compared to those who showed stability of or loss of body fat. Results also imply that maintaining a balance between caloric intake and expenditure over time may reduce striatal, insular, and Rolandic operculum responsivity to food cues, which might decrease risk for future overeating. PMID:27358453

  9. Glycogen synthase kinase-3 reduces acetylcholine level in striatum via disturbing cellular distribution of choline acetyltransferase in cholinergic interneurons in rats.

    PubMed

    Zhao, L; Chu, C-B; Li, J-F; Yang, Y-T; Niu, S-Q; Qin, W; Hao, Y-G; Dong, Q; Guan, R; Hu, W-L; Wang, Y

    2013-01-01

    Cholinergic interneurons, which provide the main source of acetylcholine (ACh) in the striatum, control the striatal local circuits and deeply involve in the pathogenesis of neurodegenerative diseases. Glycogen synthase kinase-3 (GSK-3) is a crucial kinase with diverse fundamental functions and accepted that deregulation of GSK-3 activity also plays important roles in diverse neurodegenerative diseases. However, up to now, there is no direct proof indicating whether GSK-3 activation is responsible for cholinergic dysfunction. In the present study, with combined intracerebroventricular injection of Wortmannin and GF-109203X, we activated GSK-3 and demonstrated the increased phosphorylation level of microtubule-associated protein tau and neurofilaments (NFs) in the rat striatum. The activated GSK-3 consequently decreased ACh level in the striatum as a result of the reduction of choline acetyltransferase (ChAT) activity. The alteration of ChAT activity was due to impaired ChAT distribution rather than its expression. Furthermore, we proved that cellular ChAT distribution was dependent on low phosphorylation level of NFs. Nevertheless, the cholinergic dysfunction in the striatum failed to induce significant neuronal number reduction. In summary, our data demonstrates the link between GSK-3 activation and cholinergic dysfunction in the striatum and provided beneficial evidence for the pathogenesis study of relevant neurodegenerative diseases. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Expression of mRNAs encoding dopamine receptors in striatal regions is differentially regulated by midbrain and hippocampal neurons.

    PubMed

    Brené, S; Herrera-Marschitz, M; Persson, H; Lindefors, N

    1994-02-01

    The glutamate analogue kainic acid was injected into the hippocampus of intact or 6-hydroxydopamine deafferented rats to investigate the influence of hippocampal neurons on the expression of dopamine D1 and D2 receptor mRNAs in subregions of the striatal complex and possible modulation by dopaminergic neurons. Quantitative in situ hybridization using 35S-labeled oligonucleotide probes specific for dopamine D1 and D2 receptor mRNAs, respectively, were used. It was found that an injection of kainic acid into the hippocampal formation had alone no significant effect on dopamine D1 or D2 receptor mRNA levels in any of the analyzed striatal subregions in animals analyzed 4 h after the injections. Kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion produced an increase in D1 receptor mRNA levels in the ipsilateral medial caudate-putamen, and a bilateral increase in core and shell of nucleus accumbens (ventral striatal limbic regions). A unilateral 6-hydroxydopamine lesion alone caused an increase in D2 receptor mRNA in the lateral caudate-putamen (dorsal striatal motor region) ipsilateral to the lesion and an increase in D1 receptor mRNA in the accumbens core ipsilateral to the lesion. However, in dopamine-lesioned animals, dopamine D1 receptor mRNA levels were increased bilaterally in nucleus accumbens core and shell and in the ipsilateral medial caudate-putamen following kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion. These results indicate a differential regulation of the expression of dopamine D1 and D2 receptor mRNAs by midbrain and hippocampal neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Real-time functional magnetic resonance imaging neurofeedback can reduce striatal cue-reactivity to alcohol stimuli.

    PubMed

    Kirsch, Martina; Gruber, Isabella; Ruf, Matthias; Kiefer, Falk; Kirsch, Peter

    2016-07-01

    It has been shown that in alcoholic patients, alcohol-related cues produce increased activation of reward-related brain regions like the ventral striatum (VS), which has been proposed as neurobiological basis of craving. Modulating this activation might be a promising option in the treatment of alcohol addiction. One approach might be real-time functional magnetic resonance imaging neurofeedback (rtfMRI NF). This study was set up to implement and evaluate a rtfMRI approach in a group of non-addicted heavy social drinkers. Thirty-eight heavy drinking students were assigned to a real feedback group (rFB, n = 13), a yoke feedback group (yFB, n = 13) and a passive control group (noFB, n = 12). After conducting a reward task as functional localizer to identify ventral striatal regions, the participants viewed alcohol cues during three NF training blocks in a 3 T MRI scanner. The rFB group received feedback from their own and the yFB from another participants' VS. The noFB group received no feedback. The rFB and the yFB groups were instructed to downregulate the displayed activation. Activation of the VS and prefrontal control regions was compared between the groups. We found significant downregulation of striatal regions specifically in the rFB group. While the rFB and the yFB groups showed significant activation of prefrontal regions during feedback, this activation was only correlated to the reduction of striatal activation in the rFB group. We conclude that rtfMRI NF is a suitable method to reduce striatal activation to alcohol cues. It might be a promising supplement to the treatment of alcoholic patients. © 2015 Society for the Study of Addiction.

  12. Selective inactivation of adenosine A2A receptors in striatal neurons enhances working memory and reversal learning

    PubMed Central

    Wei, Catherine J.; Singer, Philipp; Coelho, Joana; Boison, Detlev; Feldon, Joram; Yee, Benjamin K.; Chen, Jiang-Fan

    2011-01-01

    The adenosine A2A receptor (A2AR) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A2AR inactivation can be pro-cognitive, analyses of A2AR's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A2ARs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A2ARs. Specifically, we evaluated the cognitive impacts of conditional A2AR deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A2AR KO) or to striatum alone (st-A2AR KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A2AR-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility—enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A2ARs as they were captured by A2AR deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D1, D2, or A1 receptor expression was found. This study provides the first direct demonstration that targeting striatal A2ARs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions. PMID:21693634

  13. Sex differences of gray matter morphology in cortico-limbic-striatal neural system in major depressive disorder.

    PubMed

    Kong, Lingtao; Chen, Kaiyuan; Womer, Fay; Jiang, Wenyan; Luo, Xingguang; Driesen, Naomi; Liu, Jie; Blumberg, Hilary; Tang, Yanqing; Xu, Ke; Wang, Fei

    2013-06-01

    Sex differences are observed in both epidemiological and clinical aspects of major depressive disorder (MDD). The cortico-limbic-striatal neural system, including the prefrontal cortex, amygdala, hippocampus, and striatum, have shown sexually dimorphic morphological features and have been implicated in the dysfunctional regulation of mood and emotion in MDD. In this study, we utilized a whole-brain, voxel-based approach to examine sex differences in the regional distribution of gray matter (GM) morphological abnormalities in medication-naïve participants with MDD. Participants included 29 medication-naïve individuals with MDD (16 females and 13 males) and 33 healthy controls (HC) (17 females and 16 males). Gray matter morphology of the cortico-limbic-striatal neural system was examined using voxel-based morphometry analyzes of high-resolution structural magnetic resonance imaging scans. The main effect of diagnosis and interaction effect of diagnosis by sex on GM morphology were statistically significant (p < 0.05, corrected) in the left ventral prefrontal cortex, right amygdala, right hippocampus and bilateral caudate when comparing the MDD and HC groups. Posthoc analyzes showed that females with MDD had significant GM decreases in limbic regions (p < 0.05, corrected), compared to female HC; while males with MDD demonstrated significant GM reduction in striatal regions, (p < 0.05, corrected), compared to HC males. The observed sex-related patterns of abnormalities within the cortico-limbic-strial neural system, such as predominant prefrontal-limbic abnormalities in MDD females vs. predominant prefrontal-striatal abnormalities in MDD males, suggest differences in neural circuitry that may mediate sex differences in the clinical presentation of MDD and potential targets for sex-differentiated treatment of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Motor tics evoked by striatal disinhibition in the rat

    PubMed Central

    Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar

    2013-01-01

    Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893

  15. Searching for a neurobiological basis for self-medication theory in ADHD comorbid with substance use disorders: an in vivo study of dopamine transporters using (99m)Tc-TRODAT-1 SPECT.

    PubMed

    Silva, Neivo; Szobot, Claudia M; Shih, Ming C; Hoexter, Marcelo Q; Anselmi, Carlos Eduardo; Pechansky, Flavio; Bressan, Rodrigo A; Rohde, Luis Augusto

    2014-02-01

    Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD) frequently co-occur. Although several studies have shown changes in striatal dopamine transporter (DAT) density in these disorders, little is known about the neurobiological basis of the comorbidity. The aim of this study was to evaluate striatal DAT density in treatment-naive ADHD adolescents with SUD (ADHD + SUD) and without SUD (ADHD), compared to SUD adolescents without ADHD (SUD) and healthy control subjects (HC). Sixty-two male age-matched subjects diagnosed with DSM-IV criteria were included: ADHD + SUD (n = 18), SUD (n = 14), HC (n = 19), and ADHD (n = 11). Urine tests confirmed participants' drug use. All subjects performed SPECT scans with Tc-TRODAT-1 to evaluate DAT density in the striatum. The mean right striatum specific binding were 1.68 (ADHD), 1.38 (ADHD + SUD), 1.19 (HC), 1.17 (SUD), and in left striatum 1.65 (ADHD), 1.39 (ADHD + SUD), 1.19 (HC), and 1.17 (SUD). The ADHD group presented significantly higher striatal DAT density compared with ADHD + SUD, SUD, and HC groups. Adolescents with ADHD + SUD had significantly lower DAT density than those with ADHD, but significantly higher DAT density than those with SUD only and no significant difference from the healthy control group. The ADHD + SUD group had lower striatal DAT density in comparison with ADHD without SUD. It is possible to speculate that the use of cannabis and cocaine is responsible for the lower striatal DAT density in this group which would help in understanding the neurobiological basis for the self-medication theory in ADHD adolescents.

  16. Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2.

    PubMed

    Taurisano, Paolo; Romano, Raffaella; Mancini, Marina; Giorgio, Annabella Di; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Quarto, Tiziana; Gelao, Barbara; Porcelli, Annamaria; Papazacharias, Apostolos; Ursini, Gianluca; Caforio, Grazia; Masellis, Rita; Niccoli-Asabella, Artor; Todarello, Orlando; Popolizio, Teresa; Rubini, Giuseppe; Blasi, Giuseppe; Bertolino, Alessandro

    2014-01-01

    "Schizotypy" is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [(123)I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.

  17. Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2

    PubMed Central

    Taurisano, Paolo; Romano, Raffaella; Mancini, Marina; Giorgio, Annabella Di; Antonucci, Linda A.; Fazio, Leonardo; Rampino, Antonio; Quarto, Tiziana; Gelao, Barbara; Porcelli, Annamaria; Papazacharias, Apostolos; Ursini, Gianluca; Caforio, Grazia; Masellis, Rita; Niccoli-Asabella, Artor; Todarello, Orlando; Popolizio, Teresa; Rubini, Giuseppe; Blasi, Giuseppe; Bertolino, Alessandro

    2014-01-01

    “Schizotypy” is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [123I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum. PMID:25071490

  18. Deletion of striatal adenosine A2A receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning

    PubMed Central

    Singer, Philipp; Wei, Catherine J.; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K.

    2013-01-01

    Following early clinical leads, the adenosine A2AR receptor (A2AR) has continued to attract attention as a potential novel target for treating schizophrenia; especially against the negative and cognitive symptoms of the disease because of A2AR’s unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through the antagonistic interaction with the dopamine D2 receptor, and by regulating glutamate release and N-methyl-d-aspartate receptor function, striatal A2AR is ideally positioned to fine-tune the dopamine-glutamate balance whose disturbance is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A2ARsin the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A2AR knockout (st-A2AR-KO) on latent inhibition (LI) and prepulse inhibition (PPI) – behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A2AR-KO mice; although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning – conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A2ARs– a finding that may undermine the hypothesized importance of A2AR in the genesis and/or treatment of schizophrenia. PMID:23276608

  19. Striatal output markers do not alter in response to circling behaviour in 6-OHDA lesioned rats produced by acute or chronic administration of the monoamine uptake inhibitor BTS 74 398.

    PubMed

    Lane, E L; Cheetham, S; Jenner, P

    2008-01-01

    The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.

  20. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies.

    PubMed

    Gluskin, B S; Mickey, B J

    2016-03-01

    The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.

  1. Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats.

    PubMed

    Robertson, G S; Damsma, G; Fibiger, H C

    1991-07-01

    Dopamine (DA) is released not only from the terminals of the nigrostriatal projection, but also from the dendrites of these neurons, which arborize in the substantia nigra pars reticulata (SNR). Although striatal DA release has been extensively studied by in vivo microdialysis, dendritic DA release in the SNR has not been characterized by this technique. Extracellular DA was monitored simultaneously in the ipsilateral striatum and SNR. The nigral probe was implanted at a 50 degree angle, permitting 2.5 mm of SNR to be dialyzed. Delivery of the tracer Fluoro-Gold into the striatal probe retrogradely labeled tyrosine hydroxylase-positive cell bodies and dendrites in the vicinity of the nigral probe. Hence, it could be demonstrated that dopaminergic neurons near the nigral probe projected to the vicinity of the striatal probe. Addition of 50 mM KCl to the SNR perfusion solution produced a 3.5-fold increase in DA and a 50% reduction in dihydroxyphenylacetic acid (DOPAC) in the SNR; in contrast, this manipulation in the SNR caused DA release in the striatum to be decreased by 20%, while striatal DOPAC was increased by 50%. Local administration of nomifensine (10 microM) in the SNR produced a sevenfold increase in SNR DA but had no effect on striatal DA. Systemic injection of d-amphetamine (2 mg/kg, s.c.) elevated DA in the SNR and striatum five- to sevenfold, while DOPAC was decreased in both structures by at least 40%. To determine the effect of tetrodotoxin (TTX), basal concentrations of DA in the SNR were first elevated threefold by including nomifensine (1 microM) in the nigral perfusion solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men.

    PubMed

    Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E

    2016-06-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.

  3. Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease.

    PubMed

    F Hernández, Ledia; Castela, Ivan; Ruiz-DeDiego, Irene; Obeso, Jose A; Moratalla, Rosario

    2017-04-01

    Long-term levodopa (l-dopa) treatment is associated with the development of l-dopa-induced dyskinesias in the majority of patients with Parkinson disease (PD). The etiopathogonesis and mechanisms underlying l-dopa-induced dyskinesias are not well understood. We used striatal optogenetic stimulation to induce dyskinesias in a hemiparkinsonian model of PD in rats. Striatal dopamine depletion was induced unilaterally by 6-hydroxydopamine injection into the medial forebrain bundle. For the optogenetic manipulation, we injected adeno-associated virus particles expressing channelrhodopsin to stimulate striatal medium spiny neurons with a laser source. Simultaneous optical activation of medium spiny neurons of the direct and indirect striatal pathways in the 6-hydroxydopamine lesion but l-dopa naïve rats induced involuntary movements similar to l-dopa-induced dyskinesias, labeled here as optodyskinesias. Noticeably, optodyskinesias were facilitated by l-dopa in animals that did not respond initially to the laser stimulation. In general, optodyskinesias lasted while the laser stimulus was applied, but in some instances remained ongoing for a few seconds after the laser was off. Postmortem tissue analysis revealed increased FosB expression, a molecular marker of l-dopa-induced dyskinesias, primarily in medium spiny neurons of the direct pathway in the dopamine-depleted hemisphere. Selective optogenetic activation of the dorsolateral striatum elicits dyskinesias in the 6-hydroxydopamine rat model of PD. This effect was associated with a preferential activation of the direct striato-nigral pathway. These results potentially open new avenues in the understanding of mechanisms involved in l-dopa-induced dyskinesias. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  4. Repin-induced neurotoxicity in rodents.

    PubMed

    Robles, M; Choi, B H; Han, B; Santa Cruz, K; Kim, R C

    1998-07-01

    Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an alpha-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD. Copyright 1998 Academic Press.

  5. Opiate agonist-induced re-distribution of Wntless, a mu-opioid receptor interacting protein, in rat striatal neurons.

    PubMed

    Reyes, B A S; Vakharia, K; Ferraro, T N; Levenson, R; Berrettini, W H; Van Bockstaele, E J

    2012-01-01

    Wntless (WLS), a mu-opioid receptor (MOR) interacting protein, mediates Wnt protein secretion that is critical for neuronal development. We investigated whether MOR agonists induce re-distribution of WLS within rat striatal neurons. Adult male rats received either saline, morphine or [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) directly into the lateral ventricles. Following thirty minutes, brains were extracted and tissue sections were processed for immunogold silver detection of WLS. In saline-treated rats, WLS was distributed along the plasma membrane and within the cytoplasmic compartment of striatal dendrites as previously described. The ratio of cytoplasmic to total dendritic WLS labeling was 0.70±0.03 in saline-treated striatal tissue. Morphine treatment decreased this ratio to 0.48±0.03 indicating a shift of WLS from the intracellular compartment to the plasma membrane. However, following DAMGO treatment, the ratio was 0.85±0.05 indicating a greater distribution of WLS intracellularly. The difference in the re-distribution of the WLS following different agonist exposure may be related to DAMGO's well known ability to induce internalization of MOR in contrast to morphine, which is less effective in producing receptor internalization. Furthermore, these data are consistent with our hypothesis that MOR agonists promote dimerization of WLS and MOR, thereby preventing WLS from mediating Wnt secretion. In summary, our findings indicate differential agonist-induced trafficking of WLS in striatal neurons following distinct agonist exposure. Adaptations in WLS trafficking may represent a novel pharmacological target in the treatment of opiate addiction and/or pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Prenatal ethanol enhances rotational behavior to apomorphine in the 24-month-old rat offspring with small striatal lesion.

    PubMed

    Gomide, Vânia C; Chadi, Gerson

    2004-01-01

    Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.

  7. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage.

    PubMed

    O'dell, Steven J; Marshall, John F

    2014-09-01

    Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" dosing regimen produces long-lasting damage to forebrain dopaminergic nerve terminals as measured by decreases in tissue dopamine (DA) content and levels of the plasmalemmal DA transporter (DAT). However, the midbrain cell bodies from which the DA terminals arise survive, and previous reports show that striatal DA markers return to control levels by 12 months post-mAMPH, suggesting long-term repair or regrowth of damaged DA terminals. We previously showed that when rats engaged in voluntary aerobic exercise for 3 weeks before and 3 weeks after a binge regimen of mAMPH, exercise significantly ameliorated mAMPH-induced decreases in striatal DAT. However, these data left unresolved the question of whether exercise protected against the initial neurotoxicity from the mAMPH binge or accelerated the repair of the damaged DA terminals. The present experiments were designed to test whether exercise protects against the mAMPH-induced injury. Adult male Sprague-Dawley rats were allowed to run in wheels for 3 weeks before an acute binge regimen of mAMPH or saline, then placed into nonwheel cages for an additional week before autoradiographic determination of striatal DAT binding. The autoradiographic findings showed that prior exercise provided no protection against mAMPH-induced damage to striatal DA terminals. These results, together with analyses from our previous experiments, suggest that voluntary exercise may accelerate the repair of mAMPH-damaged DA terminals and that voluntary exercise may be useful as therapeutic adjunct in the treatment mAMPH addicts. © 2014 Wiley Periodicals, Inc.

  8. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.

    PubMed

    Marshall, John J; Xu, Jian; Contractor, Anis

    2018-04-18

    Kainate receptors are members of the glutamate receptor family that function by both generating ionotropic currents through an integral ion channel pore and coupling to downstream metabotropic signaling pathways. They are highly expressed in the striatum, yet their roles in regulating striatal synapses are not known. Using mice of both sexes, we demonstrate that GluK2-containing kainate receptors expressed in direct pathway spiny projection neurons (dSPNs) inhibit glutamate release at corticostriatal synapses in the dorsolateral striatum. This inhibition requires postsynaptic kainate-receptor-mediated mobilization of a retrograde endocannabinoid (eCB) signal and activation of presynaptic CB1 receptors. This pathway can be activated during repetitive 25 Hz trains of synaptic stimulation, causing short-term depression of corticostriatal synapses. This is the first study to demonstrate a role for kainate receptors in regulating eCB-mediated plasticity at the corticostriatal synapse and demonstrates an important role for these receptors in regulating basal ganglia circuits. SIGNIFICANCE STATEMENT The GRIK2 gene, encoding the GluK2 subunit of the kainate receptor, has been linked to several neuropsychiatric and neurodevelopmental disorders including obsessive compulsive disorder (OCD). Perseverative behaviors associated with OCD are known to result from pathophysiological changes in the striatum and kainate receptor knock-out mice have striatal-dependent phenotypes. However, the role of kainate receptors in striatal synapses is not known. We demonstrate that GluK2-containing kainate receptors regulate corticostriatal synapses by mobilizing endocannabinoids from direct pathway spiny projection neurons. Synaptic activation of GluK2 receptors during trains of synaptic input causes short-term synaptic depression, demonstrating a novel role for these receptors in regulating striatal circuits. Copyright © 2018 the authors 0270-6474/18/383901-10$15.00/0.

  9. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-05-01

    The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.

  10. Selective inactivation of adenosine A(2A) receptors in striatal neurons enhances working memory and reversal learning.

    PubMed

    Wei, Catherine J; Singer, Philipp; Coelho, Joana; Boison, Detlev; Feldon, Joram; Yee, Benjamin K; Chen, Jiang-Fan

    2011-01-01

    The adenosine A(2A) receptor (A(2A)R) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A(2A)R inactivation can be pro-cognitive, analyses of A(2A)R's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A(2A)Rs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A(2A)Rs. Specifically, we evaluated the cognitive impacts of conditional A(2A)R deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A(2A)R KO) or to striatum alone (st-A(2A)R KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A(2A)R-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility-enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A(2A)Rs as they were captured by A(2A)R deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D(1), D(2), or A(1) receptor expression was found. This study provides the first direct demonstration that targeting striatal A(2A)Rs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions.

  11. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl) pyridine decreases striatal VGlut2 expression in association with an attenuation of L-DOPA-induced dyskinesias.

    PubMed

    Marin, C; Bonastre, M; Aguilar, E; Jiménez, A

    2011-10-01

    The striatal glutamatergic hyperactivity is considered critical in the development of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD). Pharmacological antagonism of the metabotropic glutamate receptors (mGluRs), in particular, the subtype mGluR5, can inhibit the expression of dyskinesia in both rodent and nonhuman primate models of PD. However, the exact mechanisms underlying the mGluR5 antagonism effects are not completely known. The vesicular glutamate transporters (VGluts) are localized in the synaptic vesicles of the striatal glutamatergic axonal terminals. The effects of mGluR5 antagonism modulating VGlut1 and VGlut2, as selective markers for the corticostriatal and thalamostriatal pathways, respectively, are still unknown. We investigated the effects of the mGluR5 antagonist, 2-methyl-6-(phenylethynyl) pyridine (MPEP) on the striatal expression of VGlut1 and VGlut2 in levodopa-treated hemiparkinsonian rats. Male Sprague-Dawley rats received a unilateral 6-hydroxydopamine (6-OHDA) administration in the nigrostriatal pathway. Rats were treated with: (a) levodopa (12 mg/kg/day with benserazide 15 mg/kg, ip) + vehicle; (b) MPEP (1.5 mg/kg/day, ip) + vehicle; (c) levodopa + MPEP, or (d) saline for 10 days. Levodopa treatment induced dyskinesias and did not modify the striatal expression of either VGlut1 or VGlut2. The administration of MPEP significantly attenuated LID and decreased the levels of VGlut2, but not the VGlut1, in the striatum ipsilateral to the lesion (P < 0.05). Our results suggest that the effects of MPEP on LID might be mediated by a modulating effect on VGlut 2 expression. Copyright © 2011 Wiley-Liss, Inc.

  12. Alteration in plasma and striatal levels of d-serine after d-serine administration with or without nicergoline: An in vivo microdialysis study.

    PubMed

    Onozato, Mayu; Nakazawa, Hiromi; Ishimaru, Katsuyuki; Nagashima, Chihiro; Fukumoto, Minori; Hakariya, Hitomi; Sakamoto, Tatsuya; Ichiba, Hideaki; Fukushima, Takeshi

    2017-09-01

    d-Serine (d-Ser), a co-agonist of N -methyl-d-aspartate receptor (NMDAR), is effective for treating schizophrenia. The present study investigated changes in plasma and striatal d-Ser levels in Sprague-Dawley (SD) rats after intraperitoneal d-Ser administration alone or together with nicergoline (Nic), a commercial cerebral ameliorating drug, using in vivo microdialysis (MD) to explore the function of Nic. Phosphate-buffered saline (PBS) or Nic (0, 1.0, or 3.0 mg/kg) followed by d-Ser (5.0, 10.0, 20.0, and 50.0 mg/kg for PBS or 20.0 mg/kg for Nic) was administered intraperitoneally to male SD rats, and the profiles of d-Ser levels in plasma and striatal MD samples were examined by high-performance liquid chromatography (HPLC) with fluorescence detection. The area under the curve (AUC) for the MD and plasma samples was also calculated and statistically compared among groups. AUC values of d-Ser increased in a d-Ser dose-dependent manner in plasma samples, while a proportional increase in the AUC values of striatal MD samples was only observed in d-Ser doses up to 20 mg/kg. The Nic co-administered group showed a significant increase in the AUC of plasma d-Ser in a Nic dose-dependent manner, but the AUC in striatal d-Ser significantly decreased with increasing Nic doses suggesting that Nic may prevent excess d-Ser from penetrating the central nervous system (CNS). Nic may prevent an excessive distribution of exogenous d-Ser, such as that from a dietary origin, into the CNS by suppressing excitatory neurotransmission through NMDAR.

  13. Ketamine Suppresses the Ventral Striatal Response to Reward Anticipation: A Cross-Species Translational Neuroimaging Study

    PubMed Central

    Francois, Jennifer; Grimm, Oliver; Schwarz, Adam J; Schweiger, Janina; Haller, Leila; Risterucci, Celine; Böhringer, Andreas; Zang, Zhenxiang; Tost, Heike; Gilmour, Gary; Meyer-Lindenberg, Andreas

    2016-01-01

    Convergent evidence implicates regional neural responses to reward anticipation in the pathogenesis of several psychiatric disorders, such as schizophrenia, where blunted ventral striatal responses to positive reward are observed in patients and at-risk populations. In vivo oxygen amperometry measurements in the ventral striatum in awake, behaving rats reveal reward-related tissue oxygen changes that closely parallel blood oxygen level dependent (BOLD) signal changes observed in human functional magnetic resonance imaging (fMRI), suggesting that a cross-species approach targeting this mechanism might be feasible in psychopharmacology. The present study explored modulatory effects of acute, subanaesthetic doses of ketamine—a pharmacological model widely used in psychopharmacological research, both preclinically and clinically—on ventral striatum activity during performance of a reward anticipation task in both species, using fMRI in humans and in vivo oxygen amperometry in rats. In a region-of-interest analysis conducted following a cross-over placebo and ketamine study in human subjects, an attenuated ventral striatal response during reward anticipation was observed following ketamine relative to placebo during performance of a monetary incentive delay task. In rats, a comparable attenuation of ventral striatal signal was found after ketamine challenge, relative to vehicle, in response to a conditioned stimulus that predicted delivery of reward. This study provides the first data in both species demonstrating an attenuating effect of acute ketamine on reward-related ventral striatal (O2) and fMRI signals. These findings may help elucidate a deeper mechanistic understanding of the potential role of ketamine as a model for psychosis, show that cross-species pharmacological experiments targeting reward signaling are feasible, and suggest this phenotype as a promising translational biomarker for the development of novel compounds, assessment of disease status, and treatment efficacy. PMID:26388147

  14. Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression.

    PubMed

    Mancini, Maria; Ghiglieri, Veronica; Bagetta, Vincenza; Pendolino, Valentina; Vannelli, Anna; Cacace, Fabrizio; Mineo, Desireé; Calabresi, Paolo; Picconi, Barbara

    2016-02-01

    Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs). In vitro application of memantine in striatal slices elicited a disruption of long-term potentiation (LTP) induction and maintenance, and revealed, in the majority of the recorded neurons, a long-term depression (LTD), whose amplitude was concentration-dependent (0.3-10 μM). Interestingly, preincubation with the dopamine (DA) D2 receptor antagonist sulpiride (10 μM) prevented memantine-induced LTD and restored LTP. Moreover, the DA D2 agonist quinpirole (10 μM), similarly to memantine, induced LTD in a subgroup of SPNs. In addition, memantine-induced LTD was also prevented by the CB1 endocannabinoid receptor antagonist AM 251 (1 μM). These results suggest that the actions exerted by memantine on striatal synaptic plasticity, and in particular the induction of LTD observed in SPNs, could be attributed to its ability to activate DA D2 receptors. By contrast, blockade of NMDA receptor is not involved in memantine-induced LTD since APV (30 μM) and MK801 (10 μM), two NMDA receptor antagonists, failed to induce this form of synaptic plasticity. Our data indicate that memantine could be used as treatment of neurological disorders in which DA D2 receptor represents a possible therapeutic target. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease.

    PubMed

    Jouve, Loréline; Salin, Pascal; Melon, Christophe; Kerkerian-Le Goff, Lydia

    2010-07-21

    The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.

  16. Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia.

    PubMed

    Ueno, Tatsuya; Yamada, Junko; Nishijima, Haruo; Arai, Akira; Migita, Keisuke; Baba, Masayuki; Ueno, Shinya; Tomiyama, Masahiko

    2014-04-01

    Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmission at corticostriatal synapses. Recent work using transcranial magnetic stimulation suggests that the motor cortex displays the same supersensitivity in Parkinson's disease patients with LID. To date, the cellular mechanisms underlying the abnormal cortical plasticity have not been examined. The morphology of the dendritic spines has a strong relationship to synaptic plasticity. Therefore, we explored the spine morphology of pyramidal neurons in the motor cortex in a rat model of LID. We used control rats, 6-hydroxydopamine-lesioned rats (a model of Parkinson's disease), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Because the direct pathway of the basal ganglia plays a central role in the development of LID, we quantified the density and size of dendritic spines in intratelencephalic (IT)-type pyramidal neurons in M1 cortex that project to the striatal medium spiny neurons in the direct pathway. The spine density was not different among the four groups. In contrast, spine size became enlarged in the Parkinson's disease and LID rat models. The enlargement was significantly greater in the LID model than in the Parkinson's disease model. This enlargement of the spines suggests that IT-type pyramidal neurons acquire supersensitivity to excitatory stimuli. To confirm this possibility, we monitored miniature excitatory postsynaptic currents (mEPSCs) in the IT-type pyramidal neurons in M1 cortex using whole-cell patch clamp. The amplitude of the mEPSCs was significantly increased in the LID model compared with the control. This indicates that the IT-type pyramidal neurons become hyperexcited in the LID model, paralleling the enlargement of spines. Thus, spine enlargement and the resultant hyperexcitability of IT-type pyramidal neurons in M1 cortex might contribute to the abnormal cortical neuronal plasticity in LID. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch Between Cortical and Striatal Interneurons

    PubMed Central

    McKinsey, Gabriel L.; Lindtner, Susan; Trzcinski, Brett; Visel, Axel; Pennacchio, Len A.; Huylebroeck, Danny; Higashi, Yujiro; Rubenstein, John L. R.

    2013-01-01

    Summary Mammalian pallial (cortical and hippocampal) and striatal interneurons are both generated in the embryonic subpallium, including the medial ganglionic eminence (MGE). Herein we demonstrate that the Zfhx1b (Sip1, Zeb2) zinc finger homeobox gene is required in the MGE, directly downstream of Dlx1&2, to generate cortical interneurons that express Cxcr7, MafB and cMaf. In its absence, Nkx2-1 expression is not repressed, and cells that ordinarily would become cortical interneurons appear to transform towards a subtype of GABAeric striatal interneurons. These results show that Zfhx1b is required to generate cortical interneurons, and suggest a mechanism for the epilepsy observed in humans with Zfhx1b mutations (Mowat-Wilson syndrome). PMID:23312518

  18. Neural systems analysis of decision making during goal-directed navigation.

    PubMed

    Penner, Marsha R; Mizumori, Sheri J Y

    2012-01-01

    The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.

  19. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease

    PubMed Central

    Gomez-Pastor, Rocio; Burchfiel, Eileen T.; Neef, Daniel W.; Jaeger, Alex M.; Cabiscol, Elisa; McKinstry, Spencer U.; Doss, Argenia; Aballay, Alejandro; Lo, Donald C.; Akimov, Sergey S.; Ross, Christopher A.; Eroglu, Cagla; Thiele, Dennis J.

    2017-01-01

    Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α′ kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α′ shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α′. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD. PMID:28194040

  20. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    PubMed

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  1. alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia.

    PubMed

    Cappon, G D; Broening, H W; Pu, C; Morford, L; Vorhees, C V

    1996-10-01

    Methamphetamine (MA) administration to adult rats (4 x 10 mg/kg s.c.) induces neurotoxicity predominately characterized by a persistent reduction of neostriatal dopamine (DA) content. Hyperthermia following MA administration potentiates the resulting DA depletion. DA-derived free radicals are postulated to be a mechanism through which MA-induced neurotoxicity is produced. The spin trapping agent PBN reacts with free radicals to form nitroxyl adducts, thereby preventing damaging free radical reactions with cellular substrates. MA with saline pretreatment (Sal-MA) reduced neostriatal DA by 55% (P < 0.01 vs. Sal-Sal). MA with PBN pretreatment (PBN-MA) at 36 or 60 mg/kg reduced neostriatal DA by 36 and 22%, respectively (P < 0.05 and P < 0.01 vs Sal-MA) indicating partial protection. PBN pretreatment did not alter MA-induced hyperthermia. Thus, PBN does not attenuate MA-induced neurotoxicity by reducing MA-induced hyperthermia. These results support a role for free radicals in the generation of MA-induced dopaminergic neurotoxicity.

  2. Local and downstream effects of excitotoxic lesions in the rat medial prefrontal cortex on In vivo 1H-MRS signals.

    PubMed

    Roffman, J L; Lipska, B K; Bertolino, A; Van Gelderen, P; Olson, A W; Khaing, Z Z; Weinberger, D R

    2000-04-01

    The rat medial prefrontal cortex (mPFC) regulates subcortical dopamine transmission via projections to the striatum and ventral tegmental area. We used in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T to determine whether excitotoxic lesions of the mPFC result in alterations of N-acetylaspartate (NAA), a marker of neuronal integrity, both locally and downstream in the striatum. Lesioned rats exhibited persistent reductions of NAA and other metabolites within the prefrontal cortex; selective reductions of NAA were seen in the striatum, but not in the parietal cortex. Consistent with earlier reports, lesioned rats exhibited a transient enhancement in amphetamine-induced hyperlocomotion. Prefrontal NAA losses correlated with lesion extent. In the striatum, while there was no change in tissue volume, expression of striatal glutamic acid decarboxylase-67 mRNA was significantly reduced. In vivo NAA levels thus appear sensitive to both local and downstream alterations in neuronal integrity, and may signal meaningful effects at cellular and behavioral levels.

  3. Invasion of Epithelial Cells and Proteolysis of Cellular Focal Adhesion Components by Distinct Types of Porphyromonas gingivalis Fimbriae

    PubMed Central

    Nakagawa, Ichiro; Inaba, Hiroaki; Yamamura, Taihei; Kato, Takahiro; Kawai, Shinji; Ooshima, Takashi; Amano, Atsuo

    2006-01-01

    Porphyromonas gingivalis fimbriae are classified into six types (types I to V and Ib) based on the fimA genes encoding FimA (a subunit of fimbriae), and they play a critical role in bacterial interactions with host tissues. In this study, we compared the efficiencies of P. gingivalis strains with distinct types of fimbriae for invasion of epithelial cells and for degradation of cellular focal adhesion components, paxillin, and focal adhesion kinase (FAK). Six representative strains with the different types of fimbriae were tested, and P. gingivalis with type II fimbriae (type II P. gingivalis) adhered to and invaded epithelial cells at significantly greater levels than the other strains. There were negligible differences in gingipain activities among the six strains; however, type II P. gingivalis apparently degraded intracellular paxillin in association with a loss of phosphorylation 30 min after infection. Degradation was blocked with cytochalasin D or in mutants with fimA disrupted. Paxillin was degraded by the mutant with Lys-gingipain disrupted, and this degradation was prevented by inhibition of Arg-gingipain activity by Nα-p-tosyl-l-lysine chloromethyl ketone. FAK was also degraded by type II P. gingivalis. Cellular focal adhesions with green fluorescent protein-paxillin macroaggregates were clearly destroyed, and this was associated with cellular morphological changes and microtubule disassembly. In an in vitro wound closure assay, type II P. gingivalis significantly inhibited cellular migration and proliferation compared to the cellular migration and proliferation observed with the other types. These results suggest that type II P. gingivalis efficiently invades epithelial cells and degrades focal adhesion components with Arg-gingipain, which results in cellular impairment during wound healing and periodontal tissue regeneration. PMID:16790749

  4. Frontal Decortication and Adaptive Changes in Striatal Cholinergic Neurons: Neuropharmacological and Behavioral Implications

    DTIC Science & Technology

    1989-11-24

    ACh); choline (Oh); apomnorphine (APO); oxotremorine (OTMN); OXI, oxiracetam; SDHACU, sodium-dependent high affinity choline uptake: PC...control group, Dunnett’s test. TABLE 3- Restoration of the ACh increasing effect of oxotremorine by piracetam in DC rats. Striatal ACh content (nmoles/g...ACh content induced by oxotremorine and apomorphine useful model for studying means to restore the deficit in stria- acting at muscarine and dopamine

  5. A genetic determinant of the striatal dopamine response to alcohol in men

    PubMed Central

    Ramchandani, Vijay A.; Umhau, John; Pavon, Francisco J.; Ruiz-Velasco, Victor; Margas, Wojciech; Sun, Hui; Damadzic, Ruslan; Eskay, Robert; Schoor, Michael; Thorsell, Annika; Schwandt, Melanie L.; Sommer, Wolfgang H.; George, David T.; Parsons, Loren H.; Herscovitch, Peter; Hommer, Daniel; Heilig, Markus

    2010-01-01

    Excessive alcohol use, a major cause of morbidity and mortality, is less well understood than other addictive disorders. Dopamine release in ventral striatum is a common element of drug reward, but alcohol has an unusually complex pharmacology, and humans vary greatly in their alcohol responses. This variation is related to genetic susceptibility for alcoholism, which contributes more than half of alcoholism risk. Here, we report that a functional OPRM1 A118G polymorphism is a major determinant of striatal dopamine responses to alcohol. Social drinkers recruited based on OPRM1 genotype were challenged in separate sessions with alcohol and placebo under pharmacokinetically controlled conditions, and examined for striatal dopamine release using positron emission tomography and [11C]-raclopride displacement. A striatal dopamine response to alcohol was restricted to carriers of the minor 118G allele. To directly establish the causal role of OPRM1 A118G variation, we generated two humanized mouse lines, carrying the respective human sequence variant. Brain microdialysis showed a four-fold greater peak dopamine response to an alcohol challenge in h/mOPRM1-118GG than in h/mOPRM1-118AA mice. OPRM1 A118G variation is a genetic determinant of dopamine responses to alcohol, a mechanism by which it likely modulates alcohol reward. PMID:20479755

  6. Differences in the time course of dopaminergic supersensitivity following chronic administration of haloperidol, molindone, or sulpiride.

    PubMed

    Prosser, E S; Pruthi, R; Csernansky, J G

    1989-01-01

    The onset and persistence of changes in 3H-spiroperidol binding to dopamine (DA) D2 receptors were examined in rat mesolimbic and striatal brain regions following daily administration of haloperidol, molindone, or sulpiride for 3, 7, 14, or 28 days. Neuroleptic dose equivalencies were determined by inhibition of 3H-spiroperidol in vivo binding in several rat brain regions. Changes in locomotor and stereotyped responses to the specific DA D2 agonist quinpirole were examined 3 days after the last treatment dose. Haloperidol or molindone administration increased mean stereotypy scores and striatal DA D2 receptor densities throughout the 28-day treatment period. In contrast, mesolimbic DA D2 receptor densities were transiently increased and returned to control values, after 28 days of haloperidol or molindone treatment. Sulpiride treatment increased mean stereotypy scores and striatal Bmax values, but had no effect on locomotion or mesolimbic dopamine receptor density. Additionally, the magnitude of change in the various measures of brain DA function varied among the three neuroleptic treatment groups. Results from this study suggest that mesolimbic and striatal brain regions differ in their response to long-term neuroleptic administration and that drug choice may influence the magnitude of neuroleptic-induced dopaminergic supersensitivity.

  7. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making.

    PubMed

    Deserno, Lorenz; Huys, Quentin J M; Boehme, Rebecca; Buchert, Ralph; Heinze, Hans-Jochen; Grace, Anthony A; Dolan, Raymond J; Heinz, Andreas; Schlagenhauf, Florian

    2015-02-03

    Dual system theories suggest that behavioral control is parsed between a deliberative "model-based" and a more reflexive "model-free" system. A balance of control exerted by these systems is thought to be related to dopamine neurotransmission. However, in the absence of direct measures of human dopamine, it remains unknown whether this reflects a quantitative relation with dopamine either in the striatum or other brain areas. Using a sequential decision task performed during functional magnetic resonance imaging, combined with striatal measures of dopamine using [(18)F]DOPA positron emission tomography, we show that higher presynaptic ventral striatal dopamine levels were associated with a behavioral bias toward more model-based control. Higher presynaptic dopamine in ventral striatum was associated with greater coding of model-based signatures in lateral prefrontal cortex and diminished coding of model-free prediction errors in ventral striatum. Thus, interindividual variability in ventral striatal presynaptic dopamine reflects a balance in the behavioral expression and the neural signatures of model-free and model-based control. Our data provide a novel perspective on how alterations in presynaptic dopamine levels might be accompanied by a disruption of behavioral control as observed in aging or neuropsychiatric diseases such as schizophrenia and addiction.

  8. Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability.

    PubMed

    Morè, Lorenzo; Künnecke, Basil; Yekhlef, Latefa; Bruns, Andreas; Marte, Antonella; Fedele, Ernesto; Bianchi, Veronica; Taverna, Stefano; Gatti, Silvia; D'Adamo, Patrizia

    2017-03-06

    RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Associations between Electrophysiological Evidence of Reward and Punishment-Based Learning and Psychotic Experiences and Social Anhedonia in At-Risk Groups

    PubMed Central

    Karcher, Nicole R; Bartholow, Bruce D; Martin, Elizabeth A; Kerns, John G

    2017-01-01

    Both positive psychotic symptoms and anhedonia are associated with striatal functioning, but few studies have linked risk for psychotic disorders to a neural measure evoked during a striatal dopamine-related reward and punishment-based learning task, such as a reversal learning task (RLT; Cools et al, 2009). The feedback-related negativity (FRN) is a neural response that in part reflects striatal dopamine functioning. We recorded EEG during the RLT in three groups: (a) people with psychotic experiences (PE; n=20) at increased risk for psychotic disorders; (b) people with extremely elevated social anhedonia (SocAnh; n=22); and (c) controls (n=20). Behaviorally, consistent with increased striatal dopamine, the PE group exhibited better behavioral learning (ie, faster responses) after unexpected reward than after unexpected punishment. Moreover, although the control and SocAnh groups showed a larger FRN to punishment than reward, the PE group showed similar FRNs to punishment and reward, with a numerically larger FRN to reward than punishment (with similar results on these trials also found for a P3a component). These results are among the first to link a neural response evoked by a reward and punishment-based learning task specifically with elevated psychosis risk. PMID:27629367

  10. Lacosamide protects striatal and hippocampal neurons from in vitro ischemia without altering physiological synaptic plasticity.

    PubMed

    Mazzocchetti, Petra; Tantucci, Michela; Bastioli, Guendalina; Calabrese, Valeria; Di Filippo, Massimiliano; Tozzi, Alessandro; Calabresi, Paolo; Costa, Cinzia

    2018-06-01

    Lacosamide ([(R)-2-acetamido-N-benzyl-3-methoxypropanamide], LCM), is an antiepileptic that exerts anticonvulsant activity by selectively enhancing slow sodium channel inactivation. By inhibiting seizures and neuronal excitability it might therefore be a good candidate to stabilize neurons and protect them from energetic insults. Using electrophysiological analyses, we have investigated in mice the possible neuroprotective effect of LCM against in vitro ischemia obtained by oxygen and glucose deprivation (ODG), in striatal and hippocampal tissues, two brain structures particularly susceptible to ischemic injury and of pivotal importance for different form of learning and memory. We also explored in these regions the influence of LCM on firing discharge and on long-term synaptic plasticity. We found that in both areas LCM reduced the neuronal firing activity in a use-dependent manner without influencing the physiological synaptic transmission, confirming its anticonvulsant effects. Moreover, we found that this AED is able to protect, in a dose dependent manner, striatal and hippocampal neurons from energy metabolism failure produced by OGD. This neuroprotective effect does not imply impairment of long-term potentiation of striatal and hippocampal synapses and suggests that LCM might exert additional beneficial therapeutic effects beyond its use as antiepileptic. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators.

    PubMed

    Reeves, Suzanne J; Polling, Catherine; Stokes, Paul R A; Lappin, Julia M; Shotbolt, Paul P; Mehta, Mitul A; Howes, Oliver D; Egerton, Alice

    2012-04-30

    Positron emission tomography (PET) studies have reported an association between reduced striatal dopamine D2/3 receptor availability and higher scores on self-report measures of trait impulsivity in healthy adults. However, impulsivity is a multi-faceted construct, and it is unclear which aspect(s) of impulsivity might be driving these associations. The current study aimed to investigate the relationship between limbic (ventral) striatal D2/3 receptor availability and individual components of impulsivity (attentional, motor and non-planning) using the Barratt Impulsiveness Scale (BIS-11) and [(11)C]raclopride PET in 23 healthy volunteers. A partial correlational analysis showed a significant association between non-planning impulsiveness (lack of forethought or 'futuring') and limbic D2/3 receptor availability, which was only apparent after the exclusion of potential dissimulators (indexed by high scores on impression management). Our findings suggest that non-planning impulsiveness is associated with individual variation in limbic striatal D2/3 receptor availability and that different facets of impulsivity may have specific neurochemical correlates. Future studies that combine D2/3 receptor imaging with behavioral measures of impulsivity are required to further elucidate the precise relationship between individual components of trait impulsivity and brain dopaminergic function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Extended access to methamphetamine self-administration up-regulates dopamine transporter levels 72 hours after withdrawal in rats.

    PubMed

    D'Arcy, Christina; Luevano, Joe E; Miranda-Arango, Manuel; Pipkin, Joseph A; Jackson, Jonathan A; Castañeda, Eddie; Gosselink, Kristin L; O'Dell, Laura E

    2016-01-01

    Previous studies have demonstrated that there are persistent changes in dopamine systems following withdrawal from methamphetamine (METH). This study examined changes in striatal dopamine transporter (DAT), tyrosine hydroxylase (TH) and dopamine receptor 2 (D2) 72 h after withdrawal from METH intravenous self- administration (IVSA). Rats were given limited (1h) or extended (6h) access to METH IVSA (0.05 mg/kg/0.1 ml infusion) for 22 days. Controls did not receive METH IVSA. The rats given extended access to IVSA displayed higher METH intake during the first hour of drug access compared to rats given limited access. Extended access to METH also produced a concomitant increase in striatal DAT levels relative to drug-naïve controls. There were no changes in TH or D2 levels across groups. Previous studies have reported a decrease in striatal DAT levels during protracted periods (>7 days) of withdrawal from METH IVSA. This study extends previous work by showing an increase in striatal DAT protein expression during an earlier time point of withdrawal from this drug. These results are an important step toward understanding the dynamic changes in dopamine systems that occur during different time points of withdrawal from METH IVSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Striatal changes in Parkinson disease: An investigation of morphology, functional connectivity and their relationship to clinical symptoms.

    PubMed

    Owens-Walton, Conor; Jakabek, David; Li, Xiaozhen; Wilkes, Fiona A; Walterfang, Mark; Velakoulis, Dennis; van Westen, Danielle; Looi, Jeffrey C L; Hansson, Oskar

    2018-05-30

    We sought to investigate morphological and resting state functional connectivity changes to the striatal nuclei in Parkinson disease (PD) and examine whether changes were associated with measures of clinical function. Striatal nuclei were manually segmented on 3T-T1 weighted MRI scans of 74 PD participants and 27 control subjects, quantitatively analysed for volume, shape and also functional connectivity using functional MRI data. Bilateral caudate nuclei and putamen volumes were significantly reduced in the PD cohort compared to controls. When looking at left and right hemispheres, the PD cohort had significantly smaller left caudate nucleus and right putamen volumes compared to controls. A significant correlation was found between greater atrophy of the caudate nucleus and poorer cognitive function, and between greater atrophy of the putamen and more severe motor symptoms. Resting-state functional MRI analysis revealed altered functional connectivity of the striatal structures in the PD group. This research demonstrates that PD involves atrophic changes to the caudate nucleus and putamen that are linked to clinical dysfunction. Our work reveals important information about a key structure-function relationship in the brain and provides support for caudate nucleus and putamen atrophy as neuroimaging biomeasures in PD. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.

    PubMed

    Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina

    2017-03-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  15. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats

    PubMed Central

    Killinger, Bryan; Shah, Mrudang; Moszczynska, Anna

    2013-01-01

    Psychostimulant methamphetamine (METH) is toxic to dopaminergic and serotonergic striatal nerve terminals in adult, but not in adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti-HIV agents with some toxic properties. Many METH users, particularly young men, are HIV-positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, is neurotoxic in combination with METH in adolescent brain. The present study investigated the effects of BA and binge METH in the striatum in late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose-dependent manner. BA and METH combination also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of the enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to dopaminergic and serotonergic striatal nerve terminals in late adolescent brain via mitochondrial dysfunction and parkin deficit. PMID:24151877

  16. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    PubMed Central

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  17. Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict.

    PubMed

    Chun, Ji-Won; Park, Hae-Jeong; Kim, Dai Jin; Kim, Eosu; Kim, Jae-Jin

    2017-07-01

    Conflict processing mediated by fronto-striatal regions may be influenced by emotional properties of stimuli. This study aimed to examine the effects of emotion repetition on cognitive control in a conflict-provoking situation. Twenty-one healthy subjects were scanned using functional magnetic resonance imaging while performing a sequential cognitive conflict task composed of emotional stimuli. The regional effects were analyzed according to the repetition or non-repetition of cognitive congruency and emotional valence between the preceding and current trials. Post-incongruence interference in error rate and reaction time was significantly smaller than post-congruence interference, particularly under repeated positive and non-repeated positive, respectively, and post-incongruence interference, compared to post-congruence interference, increased activity in the ACC, DLPFC, and striatum. ACC and DLPFC activities were significantly correlated with error rate or reaction time in some conditions, and fronto-striatal connections were related to the conflict processing heightened by negative emotion. These findings suggest that the repetition of emotional stimuli adaptively regulates cognitive control and the fronto-striatal circuit may engage in the conflict adaptation process induced by emotion repetition. Both repetition enhancement and repetition suppression of prefrontal activity may underlie the relationship between emotion and conflict adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Striatal dopaminergic modulation of reinforcement learning predicts reward-oriented behavior in daily life.

    PubMed

    Kasanova, Zuzana; Ceccarini, Jenny; Frank, Michael J; Amelsvoort, Thérèse van; Booij, Jan; Heinzel, Alexander; Mottaghy, Felix; Myin-Germeys, Inez

    2017-07-01

    Much human behavior is driven by rewards. Preclinical neurophysiological and clinical positron emission tomography (PET) studies have implicated striatal phasic dopamine (DA) release as a primary modulator of reward processing. However, the relationship between experimental reward-induced striatal DA release and responsiveness to naturalistic rewards, and therefore functional relevance of these findings, has been elusive. We therefore combined, for the first time, a DA D 2/3 receptor [ 18 F]fallypride PET during a probabilistic reinforcement learning (RL) task with a six day ecological momentary assessments (EMA) of reward-related behavior in the everyday life of 16 healthy volunteers. We detected significant reward-induced DA release in the bilateral putamen, caudate nucleus and ventral striatum, the extent of which was associated with better behavioral performance on the RL task across all regions. Furthermore, individual variability in the extent of reward-induced DA release in the right caudate nucleus and ventral striatum modulated the tendency to be actively engaged in a behavior if the active engagement was previously deemed enjoyable. This study suggests a link between striatal reward-related DA release and ecologically relevant reward-oriented behavior, suggesting an avenue for the inquiry into the DAergic basis of optimal and impaired motivational drive. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Anodal Transcranial Direct Current Stimulation Enhances Survival and Integration of Dopaminergic Cell Transplants in a Rat Parkinson Model.

    PubMed

    Winkler, Christian; Reis, Janine; Hoffmann, Nadin; Gellner, Anne-Kathrin; Münkel, Christian; Curado, Marco Rocha; Furlanetti, Luciano; Garcia, Joanna; Döbrössy, Máté D; Fritsch, Brita

    2017-01-01

    Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves motor symptoms in Parkinson's disease (PD) patients. In this proof-of-concept study, we combine cell based therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model. Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative diseases. In particular, such an assistive approach may be beneficial for the already established cell transplantation therapy in PD.

  20. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    PubMed

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  1. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  2. Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys.

    PubMed

    Lee, Alex G; Nechvatal, Jordan M; Shen, Bin; Buckmaster, Christine L; Levy, Michael J; Chin, Frederick T; Schatzberg, Alan F; Lyons, David M

    2016-06-01

    Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping in a process called stress inoculation. Stress inoculation also enhances cognitive control and response inhibition of impulsive motivated behavior. Cognitive control and motivation have been linked to striatal dopamine D2 and/or D3 receptors (DRD2/3) in rodents, monkeys, and humans. Here, we study squirrel monkeys randomized early in life to stress inoculation with or without maternal companionship and a no-stress control treatment condition. Striatal DRD2/3 availability in adulthood was measured in vivo by [ 11 C]raclopride binding using positron emission tomography (PET). DRD2/3 availability was greater in caudate and putamen compared to ventral striatum as reported in PET studies of humans and other non-human primates. DRD2/3 availability in ventral striatum was also consistently greater in stress inoculated squirrel monkeys compared to no-stress controls. Squirrel monkeys exposed to stress inoculation in the presence of their mother did not differ from squirrel monkeys exposed to stress inoculation without maternal companionship. Similar effects in different social contexts extend the generality of our findings and together suggest that stress inoculation increases striatal DRD2/3 availability as a correlate of cognitive control in squirrel monkeys.

  3. The difference in the effect of glutamate and NO synthase inhibitor on free calcium concentration and Na+, K+-ATPase activity in synaptosomes from various brain regions.

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Leont'ev, V G

    1999-09-01

    The significant increase of free calcium concentration ([Ca2+]i) was found in rat cerebral cortex synaptosomes and hippocampal crude synaptosomal fraction after their exposure to glutamate. But no change of [Ca2+]i was revealed in cerebellar synaptosomes, the slight increase of [Ca2+]i in striatal synaptosomes was not significant. The presence of Ng-nitro-L-arginine methyl ester (L-NAME) in the incubation medium practically prevented the increase of [Ca2+]i initiated by glutamate in cerebral cortex synaptosomes, but not in hippocampal ones. The significant diminution of [Ca2+]i in the presence of this inhibitor was shown in striatal synaptosomes exposed to glutamate. Na+,K+-ATPase activity is significantly lower in cerebral cortex, striatal and hippocampal synaptosomes exposed to glutamate. L-NAME prevented the inactivation of this enzyme by glutamate. In cerebellar synaptosomes the tendency to the decrease of enzymatic activity in the presence of L-NAME was on the contrary noticed. Thus, the data obtained provide evidence of the protective effect of NO synthase inhibitor in brain cortex and striatal synaptosomes, but not in cerebellar synaptosomes. Synaptosomes appear to be an adequate model to study the regional differences in the mechanism of toxic effect of excitatory amino acids.

  4. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity.

    PubMed

    Brevers, Damien; Noël, Xavier; He, Qinghua; Melrose, James A; Bechara, Antoine

    2016-05-01

    The aim of this study was to examine the impact of different neural systems on monetary decision making in frequent poker gamblers, who vary in their degree of problem gambling. Fifteen frequent poker players, ranging from non-problem to high-problem gambling, and 15 non-gambler controls were scanned using functional magnetic resonance imaging (fMRI) while performing the Iowa Gambling Task (IGT). During IGT deck selection, between-group fMRI analyses showed that frequent poker gamblers exhibited higher ventral-striatal but lower dorsolateral prefrontal and orbitofrontal activations as compared with controls. Moreover, using functional connectivity analyses, we observed higher ventral-striatal connectivity in poker players, and in regions involved in attentional/motor control (posterior cingulate), visual (occipital gyrus) and auditory (temporal gyrus) processing. In poker gamblers, scores of problem gambling severity were positively associated with ventral-striatal activations and with the connectivity between the ventral-striatum seed and the occipital fusiform gyrus and the middle temporal gyrus. Present results are consistent with findings from recent brain imaging studies showing that gambling disorder is associated with heightened motivational-reward processes during monetary decision making, which may hamper one's ability to moderate his level of monetary risk taking. © 2015 Society for the Study of Addiction.

  5. Chronic treatment of haloperidol induces pathological changes in striatal neurons of guinea pigs: a light and electron microscopical study.

    PubMed

    Altunkaynak, B Zuhal; Ozbek, Elvan; Unal, Bunyami; Aydin, Nazan; Aydin, M Dumlu; Vuraler, Ozgen

    2012-10-01

    In the present work, we investigated whether there would be any change in histological structure of striatal neurons after haloperidol applications at different doses. Adult male guinea pigs were treated once-daily with saline (group 4, control) or haloperidol during 6 weeks, and the dose was 1, 2, or 3 mg/kg (groups 1, 2, and 3, respectively). After treatment, all animals were anesthetized and striata were dissected and examined. When striata were evaluated histologically, dark neurons and some degenerating striatal neurons had distinctive morphological changes consistent with cell death, including reduced neuronal size with nuclear and cytoplasmic shrinkage. Also, in sections of striata in groups 1 and 2, but not in group 3, more glial cells were observed than in those of the control group. In all treated groups, fibrous content of intersititium was paralelly increased by increasing dose. Ultrastructural investigation of striatal neurons in haloperidol-treated rats showed notched nuclei and many lysosomes. Moreover, degeneration of myelin, scarce microglial macrophages, expansion of nuclear intermembranous space, degenerated mitochondria, and vacuoles were found. Also, cytoplasmic swelling, lysosomes, and apoptotic bodies were present. These results suggest that haloperidol treatment may lead to damage in neurons via the necrotic process in both low- and high-dose applications.

  6. Associations between Electrophysiological Evidence of Reward and Punishment-Based Learning and Psychotic Experiences and Social Anhedonia in At-Risk Groups.

    PubMed

    Karcher, Nicole R; Bartholow, Bruce D; Martin, Elizabeth A; Kerns, John G

    2017-03-01

    Both positive psychotic symptoms and anhedonia are associated with striatal functioning, but few studies have linked risk for psychotic disorders to a neural measure evoked during a striatal dopamine-related reward and punishment-based learning task, such as a reversal learning task (RLT; Cools et al, 2009). The feedback-related negativity (FRN) is a neural response that in part reflects striatal dopamine functioning. We recorded EEG during the RLT in three groups: (a) people with psychotic experiences (PE; n=20) at increased risk for psychotic disorders; (b) people with extremely elevated social anhedonia (SocAnh; n=22); and (c) controls (n=20). Behaviorally, consistent with increased striatal dopamine, the PE group exhibited better behavioral learning (ie, faster responses) after unexpected reward than after unexpected punishment. Moreover, although the control and SocAnh groups showed a larger FRN to punishment than reward, the PE group showed similar FRNs to punishment and reward, with a numerically larger FRN to reward than punishment (with similar results on these trials also found for a P3a component). These results are among the first to link a neural response evoked by a reward and punishment-based learning task specifically with elevated psychosis risk.

  7. Extrastriatal changes in patients with late-onset glutaric aciduria type I highlight the risk of long-term neurotoxicity.

    PubMed

    Boy, Nikolas; Heringer, Jana; Brackmann, Renate; Bodamer, Olaf; Seitz, Angelika; Kölker, Stefan; Harting, Inga

    2017-04-24

    Without neonatal initiation of treatment, 80-90% of patients with glutaric aciduria type 1 (GA1) develop striatal injury during the first six years of life resulting in a complex, predominantly dystonic movement disorder. Onset of motor symptoms may be acute following encephalopathic crisis or insidious without apparent crisis. Additionally, so-called late-onset GA1 has been described in single patients diagnosed after the age of 6 years. With the aim of better characterizing and understanding late-onset GA1 we analyzed clinical findings, biochemical phenotype, and MRI changes of eight late-onset patients and compared these to eight control patients over the age of 6 years with early diagnosis and start of treatment. No late-onset or control patient had either dystonia or striatal lesions on MRI. All late-onset (8/8) patients were high excretors, but only four of eight control patients. Two of eight late-onset patients were diagnosed after the age of 60 years, presenting with dementia, tremor, and epilepsy, while six were diagnosed before the age of 30 years: Three were asymptomatic mothers identified by following a positive screening result in their newborns and three had non-specific general symptoms, one with additional mild neurological deficits. Frontotemporal hypoplasia and white matter changes were present in all eight and subependymal lesions in six late-onset patients. At comparable age a greater proportion of late-onset patients had (non-specific) clinical symptoms and possibly subependymal nodules compared to control patients, in particular in comparison to the four clinically and MR-wise asymptomatic low-excreting control patients. While clinical findings are non-specific, frontotemporal hypoplasia and subependymal nodules are characteristic MRI findings of late-onset GA1 and should trigger diagnostic investigation for this rare disease. Apart from their apparent non-susceptibility for striatal injury despite lack of treatment, patients with late-onset GA1 are not categorically different from early treated control patients. Differences between late-onset patients and early treated control patients most likely reflect greater cumulative neurotoxicity in individuals remaining undiagnosed and untreated for years, even decades as well as the higher long-term risk of high excretors for intracerebral accumulation of neurotoxic metabolites compared to low excretors.

  8. Risky Decision Making in Neurofibromatosis Type 1: An Exploratory Study.

    PubMed

    Jonas, Rachel K; Roh, EunJi; Montojo, Caroline A; Pacheco, Laura A; Rosser, Tena; Silva, Alcino J; Bearden, Carrie E

    2017-03-01

    Neurofibromatosis type 1 (NF1) is a monogenic disorder affecting cognitive function. About one third of children with NF1 have attentional disorders, and the cognitive phenotype is characterized by impairment in prefrontally-mediated functions. Mouse models of NF1 show irregularities in GABA release and striatal dopamine metabolism. We hypothesized that youth with NF1 would show abnormal behavior and neural activity on a task of risk-taking reliant on prefrontal-striatal circuits. Youth with NF1 (N=29) and demographically comparable healthy controls (N=22), ages 8-19, were administered a developmentally sensitive gambling task, in which they chose between low-risk gambles with a high probability of obtaining a small reward, and high-risk gambles with a low probability of obtaining a large reward. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with risky decision making, as well as age-associated changes in these behavioral and neural processes. Behaviorally, youth with NF1 tended to make fewer risky decisions than controls. Neuroimaging analyses revealed significantly reduced neural activity across multiple brain regions involved in higher-order semantic processing and motivation (i.e., anterior cingulate, paracingulate, supramarginal, and angular gyri) in patients with NF1 relative to controls during the task. We also observed atypical age-associated changes in neural activity in patients with NF1, such that during risk taking, neural activity tended to decrease with age in controls, whereas it tended to increase with age in patients with NF1. Findings suggest that developmental trajectories of neural activity during risky decision-making may be disrupted in youth with NF1.

  9. A simple method for characterizing passive and active neuronal properties: application to striatal neurons.

    PubMed

    Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin

    2011-11-01

    The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Effects of meditation practice on spontaneous eyeblink rate.

    PubMed

    Kruis, Ayla; Slagter, Heleen A; Bachhuber, David R W; Davidson, Richard J; Lutz, Antoine

    2016-05-01

    A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here, we investigated the effects of meditation on spontaneous eyeblink rates (sEBR), a noninvasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind wandering, cognitive flexibility, and attention-functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eyeblink activity. To test this, we recorded baseline sEBR and intereyeblink intervals (IEBI) in long-term meditators (LTM) and meditation-naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eyeblink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8-week course of mindfulness-based stress reduction on sEBR and IEBI, compared to an active control group and a waitlist control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eyeblink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. © 2016 Society for Psychophysiological Research.

  11. Effects of Meditation Practice on Spontaneous Eye Blink Rate

    PubMed Central

    Kruis, Ayla; Slagter, Heleen A.; Bachhuber, David R.W.; Davidson, Richard J.; Lutz, Antoine

    2016-01-01

    A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here we investigated the effects of meditation on spontaneous Eye Blink Rates (sEBR), a non-invasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind-wandering, cognitive flexibility, and attention–functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eye-blink activity. To test this, we recorded baseline sEBR and Inter Eye-Blink Intervals (IEBI) in long-term meditators (LTM) and meditation naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eye-blink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8 week-course of Mindfulness Based Stress Reduction (MBSR) on sEBR and IEBI, compared to an active control group and a waitlist-control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eye blink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. PMID:26871460

  12. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo

    PubMed Central

    Zucca, Stefano; Zucca, Aya; Nakano, Takashi; Aoki, Sho

    2018-01-01

    The cholinergic interneurons (CINs) of the striatum are crucial for normal motor and behavioral functions of the basal ganglia. Striatal CINs exhibit tonic firing punctuated by distinct pauses. Pauses occur in response to motivationally significant events, but their function is unknown. Here we investigated the effects of pauses in CIN firing on spiny projection neurons (SPNs) – the output neurons of the striatum – using in vivo whole cell and juxtacellular recordings in mice. We found that optogenetically-induced pauses in CIN firing inhibited subthreshold membrane potential activity and decreased firing of SPNs. During pauses, SPN membrane potential fluctuations became more hyperpolarized and UP state durations became shorter. In addition, short-term plasticity of corticostriatal inputs was decreased during pauses. Our results indicate that, in vivo, the net effect of the pause in CIN firing on SPNs activity is inhibition and provide a novel mechanism for cholinergic control of striatal output. PMID:29578407

  13. Neurological Correlates of Reward Responding in Adolescents With and Without Externalizing Behavior Disorders

    PubMed Central

    Gatzke-Kopp, Lisa M.; Beauchaine, Theodore P.; Shannon, Katherine E.; Chipman, Jane; Fleming, Andrew P.; Crowell, Sheila E.; Liang, Olivia; Aylward, Elizabeth; Johnson, L. Clark

    2009-01-01

    Opposing theories of striatal hyper- and hypodopaminergic functioning have been suggested in the pathophysiology of externalizing behavior disorders. To test these competing theories, the authors used functional MRI to evaluate neural activity during a simple reward task in 12- to 16-year-old boys with attention-deficit/hyperactivity disorder and/or conduct disorder (n = 19) and in controls with no psychiatric condition (n = 11). The task proceeded in blocks during which participants received either (a) monetary incentives for correct responses or (b) no rewards for correct responses. Controls exhibited striatal activation only during reward, shifting to anterior cingulate activation during nonreward. In contrast, externalizing adolescents exhibited striatal activation during both reward and nonreward. Externalizing psychopathology appears to be characterized by deficits in processing the omission of predicted reward, which may render behaviors that are acquired through environmental contingencies difficult to extinguish when those contingencies change. PMID:19222326

  14. Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds.

    PubMed

    Tokarev, Kirill; Hyland Bruno, Julia; Ljubičić, Iva; Kothari, Paresh J; Helekar, Santosh A; Tchernichovski, Ofer; Voss, Henning U

    2017-08-11

    In many songbird species, males sing to attract females and repel rivals. How can gregarious, non-territorial songbirds such as zebra finches, where females have access to numerous males, sustain monogamy? We found that the dopaminergic reward circuitry of zebra finches can simultaneously promote social cohesion and breeding boundaries. Surprisingly, in unmated males but not in females, striatal dopamine neurotransmission was elevated after hearing songs. Behaviorally too, unmated males but not females persistently exchanged mild punishments in return for songs. Song reinforcement diminished when dopamine receptors were blocked. In females, we observed song reinforcement exclusively to the mate's song, although their striatal dopamine neurotransmission was only slightly elevated. These findings suggest that song-triggered dopaminergic activation serves a dual function in social songbirds: as low-threshold social reinforcement in males and as ultra-selective sexual reinforcement in females. Co-evolution of sexually dimorphic reinforcement systems can explain the coexistence of gregariousness and monogamy.

  15. Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds

    PubMed Central

    Hyland Bruno, Julia; Ljubičić, Iva; Kothari, Paresh J; Helekar, Santosh A; Tchernichovski, Ofer; Voss, Henning U

    2017-01-01

    In many songbird species, males sing to attract females and repel rivals. How can gregarious, non-territorial songbirds such as zebra finches, where females have access to numerous males, sustain monogamy? We found that the dopaminergic reward circuitry of zebra finches can simultaneously promote social cohesion and breeding boundaries. Surprisingly, in unmated males but not in females, striatal dopamine neurotransmission was elevated after hearing songs. Behaviorally too, unmated males but not females persistently exchanged mild punishments in return for songs. Song reinforcement diminished when dopamine receptors were blocked. In females, we observed song reinforcement exclusively to the mate’s song, although their striatal dopamine neurotransmission was only slightly elevated. These findings suggest that song-triggered dopaminergic activation serves a dual function in social songbirds: as low-threshold social reinforcement in males and as ultra-selective sexual reinforcement in females. Co-evolution of sexually dimorphic reinforcement systems can explain the coexistence of gregariousness and monogamy. PMID:28826502

  16. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice.

    PubMed

    Tong, Xiaoping; Ao, Yan; Faas, Guido C; Nwaobi, Sinifunanya E; Xu, Ji; Haustein, Martin D; Anderson, Mark A; Mody, Istvan; Olsen, Michelle L; Sofroniew, Michael V; Khakh, Baljit S

    2014-05-01

    Huntington's disease (HD) is characterized by striatal medium spiny neuron (MSN) dysfunction, but the underlying mechanisms remain unclear. We explored roles for astrocytes, in which mutant huntingtin is expressed in HD patients and mouse models. We found that symptom onset in R6/2 and Q175 HD mouse models was not associated with classical astrogliosis, but was associated with decreased Kir4.1 K(+) channel functional expression, leading to elevated in vivo striatal extracellular K(+), which increased MSN excitability in vitro. Viral delivery of Kir4.1 channels to striatal astrocytes restored Kir4.1 function, normalized extracellular K(+), ameliorated aspects of MSN dysfunction, prolonged survival and attenuated some motor phenotypes in R6/2 mice. These findings indicate that components of altered MSN excitability in HD may be caused by heretofore unknown disturbances of astrocyte-mediated K(+) homeostasis, revealing astrocytes and Kir4.1 channels as therapeutic targets.

  17. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations

    PubMed Central

    Hawking, Thomas G.

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45–90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state. PMID:23114217

  18. "Parkinson-dementia" diseases: a comparison by double tracer SPECT studies.

    PubMed

    Rossi, Carlo; Volterrani, Duccio; Nicoletti, Valentina; Manca, Gianpiero; Frosini, Daniela; Kiferle, Lorenzo; Unti, Elisa; De Feo, Paola; Bonuccelli, Ubaldo; Ceravolo, Roberto

    2009-12-01

    We performed 123I-FP-CIT/SPECT and ECD/SPECT in 30 patients with Parkinson's disease with dementia (PDD) and 30 patients with dementia with Lewy bodies (DLB) to evaluate whether presynaptic nigro-striatal function and/or cerebral perfusional pattern is different in these diseases. The striatal uptake of DAT tracer was statistically significantly lower in PDD and DLB with respect to control data (p < 0.0005), however no significant difference was found between PDD and DLB. Patients with PDD and DLB showed a significant reduction of rCBF (p < 0.001) in parieto-occipital and frontal areas, with respect to controls, but the comparison between the two groups did not result in any significant difference by SPM analysis. Finally no correlation was found between any regional perfusional changes and nigro-striatal dysfunction. We conclude that neither studies with 123I-FP-CIT nor ECD/SPECT were able to discriminate between DLB and PDD in vivo.

  19. L-dopa-induced desensitization depends on 5-hydroxytryptamine imbalance in hemiparkinsonian rats.

    PubMed

    Kääriäinen, Tiina M; García-Horsman, Juan Arturo; Piltonen, Marjo; Männistö, Pekka T

    2009-02-18

    We have shown before that 2-week intrastriatal L-3,4-dihydroxyphenylalanine (L-dopa) infusion significantly decreased contralateral rotations induced by acute intraperitoneal L-dopa/carbidopa and increased striatal tryptophan hydroxylase in 6-hydroxydopamine-lesioned rats. Here, we examined the effect of acutely administered L-dopa (10 microg) into 6-hydroxydopamine-lesioned rat striata under the inhibition of tryptophan hydroxylase by 4-chloro-DL-phenylalanine. Acute intrastriatal L-dopa infusion significantly decreased contralateral rotations induced by intraperitoneal L-dopa/carbidopa (10/30 mg/kg) 1 and 7 days after intrastriatal L-dopa. This desensitization to L-dopa occurred only when there was a striatal 5-hydroxytryptamine (5-HT) imbalance, not when 5-HT levels in the intact and lesioned sides were similar, either very low (day 1 postinfusion) or similarly recovered (day 7 postinfusion). We conclude that 5-HT plays a significant role in the striatal dopaminergic imbalance that evokes the rotational behavior.

  20. Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release.

    PubMed

    Foster, Daniel J; Wilson, Jermaine M; Remke, Daniel H; Mahmood, M Suhaib; Uddin, M Jashim; Wess, Jürgen; Patel, Sachin; Marnett, Lawrence J; Niswender, Colleen M; Jones, Carrie K; Xiang, Zixiu; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey

    2016-09-21

    Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

Top